
ParaP

ynTM

Paradyn Paral le l Performance Tools

User’s Guide 1/10/02

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

User’s Guide

Release 3.3
January 2002

Table of Contents Page i

1-2
1-2
1-3
1-3
-5
-6
-6
-7

1-8

2
-1
.2-1
-1

-3
-5
-5
-7
-9
9
9
10

-1
-1

-1
-1
-2
2
-2
3-3
-

4
-1
4-2
-2

.
-1
-3
-4
-5
-6
1 Overview..1-1
1.1 Release notes (version 3.3) ..
1.2 Release notes (version 3.2) ..
1.3 Release notes (version 3.1) ..
1.4 Release notes (version 3.0) ..
1.5 Supported hardware and software platforms ...1
1.6 Currently Unsupported Features ..1
1.7 Other documentation: Manuals ..1
1.8 Other documentation: Technical papers ...1
1.9 Contacting the Paradyn developers ..

2 Running Paradyn..-1
2.1 Overview of major steps ..2
2.2 Setting up Paradyn and the Paradyn daemons ..
2.3 Preparing your application program ..2

2.3.1 Generation of debug information (all platforms)2-2
2.3.2 Including CodeView debug info in the executable (Windows NT)2-2

2.4 Running Paradyn ..2
2.5 Running applications with Paradyn ...2

2.5.1 Defining a new process ...2
2.5.2 Attaching to a process ...2

2.6 Architectural issues ..2
2.6.1 Common Platforms ...2-
2.6.2 MPI ...2-
2.6.3 Windows NT ...2-

3 Main Control window ..3
3.1 Main menubar ..3

3.1.1 File menu ..3
3.1.2 Setup menu ..3
3.1.3 Phase menu ...3
3.1.4 Visi menu/button ...3-
3.1.5 Help menu ...3

3.2 Status lines ...
3.3 Buttons ...33

4 Tunable Constants..-1
4.1 Overview ..4
4.2 User Tunable Constants ...
4.3 Developer Tunable Constants ..4

5 Selecting resources..5-1
5.1 Resources (The “Where” Axis) ...5
5.2 The Where Axis display ...5
5.3 How to select foci using the Where Axis ...5
5.4 The Where Axis GUI ...5
5.5 Call Graph display ...5
User’s Guide January 10, 2002 Release 3.3

Table of Contents Page ii

-1
-2

-2

8-1
8-1
8-1

9-1
-1

2
-3
-4
4
-5
6
-7

-8
9-13

10
0-1
0-2
0-2
0-2
0-
-5
-5

0-7
0-7
0-8
-9

11-1
11-1
1-1
1-3
1-4
11-4

12-1
6 Selecting metrics..6-1
6.1 How to select metrics ...6
6.2 Metric Descriptions ..6

7 Controlling visis...7-1
7.1 Starting ...7-1
7.2 Stopping ...7

8 Phases...8-1
8.1 Starting a new phase ..
8.2 Visualizations and Phases ..
8.3 The Performance Consultant and phases ...

9 Performance Consultant...
9.1 The W3 search model ..9

9.1.1 The Why Axis ...9-
9.1.2 The search strategy ...9

9.2 Running the Performance Consultant ..9
9.2.1 The Performance Consultant window ...9-
9.2.2 Starting and stopping a search ..9
9.2.3 The Search History Graph display ..9-

9.3 Interpreting the results of callgraph-based search ...9
9.4 Interpreting the results of module-then-function search ..9
9.5 Customizing the search parameters ...

10 Standard visi modules..-1
10.1 Time Histogram visi ...1

10.1.1 File menu ..1
10.1.2 Curve menu ...1
10.1.3 Panning and zooming ..1

10.2 Barchart visi ...14
10.2.1 Changing metrics and foci being viewed ..10
10.2.2 Viewing data ...10

10.3 Table visi ..10-6
10.3.1 Actions menu ..1
10.3.2 View menu ..1

10.4 3D Terrain visi ...1
10.5 Viewing the application output display ..10

11 Exporting Paradyn Data...
11.1 Saving Performance Data ..

11.1.1 Saving Performance Data From Front-End ..1
11.1.2 Saving Performance Data From the Visis ...1

11.2 Saving the Where Axis ..1
11.3 Saving Performance Consultant Search Data ..

12 Paradyn Configuration Language ..
12.1 Notation ..12-1
User’s Guide January 10, 2002 Release 3.3

Table of Contents Page iii

2-1
12-2
2-3
2-4
2-5

2-6
2-6
2-7
-8
2-8
2-9
2-10
2-11
2-12
-13
2-15
2-15
2-16
2-17
2-17
2-18
2-19
12.2 Lexical conventions ...1
12.3 Language structure ...
12.4 Daemon definition ..1
12.5 Process definition ...1
12.6 Tunable constant definition ..1
12.7 Visi definition ...1
12.8 Exclude definition ..1
12.9 Metric Description Language ..1

12.9.1 Metric definition ..12
12.9.2 Variables ..1
12.9.3 Types ...1
12.9.4 Predefined variables ..1
12.9.5 Resource lists ..1
12.9.6 Constraints ..1
12.9.7 Metric definitions ..12
12.9.8 Metric statements ..1
12.9.9 Metric expressions ..1
12.9.10 Function calls ..1
12.9.11 Instrumentation requests ...1
12.9.12 Instrumentation code ...1
12.9.13 Interaction of constraints and metrics ...1
12.9.14 A complete example ...1
User’s Guide January 10, 2002 Release 3.3

List of Figures

..... 1-5

...... 2-2

..... 2-3
..... 2-
.... 2-5
..... 2-6
..... 2-8
... 2-8
. 2-10

.... 3-1

..... 4-1
.... 4-2
..... 4-3
.... 4-4

.... 5-1

.... 5-3
..... 5-4
... 5-5
..... 5-

.... 6-1

.... 6-2
..... 6-3
.... 6-7

.... 7-1
.... 7-1

...... 8-1

..... 8-2
.... 8-2

.... 9-
.... 9-4
...... 9-6
..... 9-8
1 Overview
Figure 1: Platforms on which Paradyn can monitor application processes

2 Running Paradyn
Figure 2: Files needed to run Paradyn ...
Figure 3: Environment variables used when running Paradyn ...
Figure 4: Starting Paradyn ..4
Figure 5: Defining a new application process ...
Figure 6: Paradyn ready to run the application ..
Figure 7: Specifying a process to attach to. ..
Figure 8: Attach completed and application execution continuing.
Figure 9: Sample Makefile for Windows NT. ..

3 Main Control window
Figure 10: Paradyn Main Control window ..

4 Tunable Constants
Figure 11: The Tunable Constants Window ...
Figure 12: Tunable Constants Descriptions Window ..
Figure 13: User-level Tunable Constants ...
Figure 14: Developer-level Tunable Constants. Use at your own risk!

5 Selecting resources
Figure 15: Where Axis window. ...
Figure 16: Showing all resources in the Where Axis display ...
Figure 17: A single focus selected ..
Figure 18: Multiple foci selection ..
Figure 19: Callgraph display ..7

6 Selecting metrics
Figure 20: Metrics dialog box ...
Figure 21: Metrics dialog box with several metrics selected ..
Figure 22: Metrics defined in Paradyn ...
Figure 23: Developer Mode Metrics defined in Paradyn ..

7 Controlling visis
Figure 24: Paradyn Main Control window ..
Figure 25: Start A Visualization menu ..

8 Phases
Figure 26: Phase Table Display ...
Figure 27: Time Histogram: Global Phase ...
Figure 28: Time Histogram: Local Phase (3) ..

9 Performance Consultant
Figure 29: The Why Axis ..2
Figure 30: A sample Performance Consultant window ...
Figure 31: The Performance Consultant’s search begins ..
Figure 32: The Performance Consultant refines bottleneck to CPUbound
Tutorial January 10, 2002 Release 3.3

List of Figures

...... 9-9
... 9-10
.... 9-11
.. 9-12

.. 10-1

.. 10-3

.. 10-3

. 10-4
... 10-5
.. 10-6
... 10-7
10-9
.. 10-9
10-10

.. 11-1

.... 11-2
.. 11-3
.. 11-3
... 11-4
... 11-5
.. 11-5

. 12-2
. 12-10
. 12
Figure 33: Search History Graph tunable constants for saving screen space
Figure 34: The Performance Consultant refines bottleneck beyond CPUbound
Figure 35: The second set of Search History Graph refinements
Figure 36: Final Search History Graph bottleneck refinement ...

10 Standard visi modules
Figure 37: Time Histogram with selected curve ...
Figure 38: Time Histogram with unsmoothed and hidden curves
Figure 39: Zoomed Time Histogram ...
Figure 40: Barchart visualization window ...
Figure 41: Barchart showing total values ...
Figure 42: Table visualization window ...
Figure 43: Table visualization showing short focus names ..
Figure 44: Table visualization with values shown to two significant digits
Figure 45: 3D Terrain visualization ..
Figure 46: Application output window ..

11 Exporting Paradyn Data
Figure 47: Export dialog window ..
Figure 48: Performance Data File Header and Data Format ...
Figure 49: The Paradyn Main Window after saving performance data.
Figure 50: Visi Menu to Export Paradyn Data ..
Figure 51: The Paradyn Main Window after saving resource names.
Figure 52: Format for exported search data in shg.txt. ...
Figure 53: Paradyn Main Window after saving Performance Consultant data.

12 Paradyn Configuration Language
Figure 54: List of MDL keywords ..
Figure 55: Predefined variables ..
Figure 56: Metric labels. ...-14
Tutorial January 10, 2002 Release 3.3

Page 1-1

n run
and

spe-

erfor-

has a
em.

laris

ystems.

s to

age
These

dyn’s
ance
l tools.

ata to
layed
hering
and

se).

a vol-
ing

Con-
cted.
lay a
ils, so

ish
1 OVERVIEW

Paradyn is a tool for measuring the performance of parallel and distributed programs. Whe
with Paradyn, instrumentation is dynamically inserted into an executing application program
its performance is reported in real-time. Paradyn’s features include:

• Run-time program instrumentation: you do not have to modify your source code or use a
cial compiler. Paradyn directly instruments the binary image of your running program.

• Performance data visualizations: Paradyn currently provides visualizations to present p
mance data in time-plots, bar graphs, and tables.

• Automated search for performance bottlenecks: Paradyn’s Performance Consultant
well-defined notion of bottlenecks and directs Paradyn’s instrumentation in search of th

• Multi-platform support: Paradyn currently can measure programs running on So
(SPARC), Linux (x86), Windows NT and 2000 (x86), and AIX (RS6000).

• Paradyn can measure programs running on heterogeneous combinations of the above s

• Support for MPI message-passing.

• The ability to monitor and display performance data, and isolate performance problem
particular intervals (“phases”) of program execution.

• An open interface for defining new performance metrics: the Metric Description Langu
allows the advanced Paradyn user/programmer to define new performance metrics.
metrics can be based on application specific performance data.

• An open interface for adding new run-time visualizers and external analysis: using Para
Visilib, programmers can interface new or existing display routines to Paradyn perform
data, and Paradyn’s measurement data export capability supports analysis with externa

Paradyn differs from many performance tools in that it can decide what performance d
collect while the program is running. When you select some performance metric to be disp
for some part of your program, at that moment Paradyn will insert the necessary data gat
instrumentation into your application program. This method allows you to have direct
dynamic control over the overhead of data collection (so you don’t pay for what you don’t u

A tool based on dynamic instrumentation can control instrumentation overhead and dat
ume while still being able to collect information about the time-varying behavior of long-runn
complex application programs.

Dynamic instrumentation may seem a bit unusual at first. When you (or the Performance
sultant) are not requesting a particular kind of performance data, it is usually not being colle
This means that there may be intervals of time for which you cannot display data: if you disp
time-plot, there will be gaps in the curves. Paradyn tries to keep you informed of these deta
that you can use this information to your advantage.

Note: this manual contains color figures with detail which may not be easy to distingu
when printed/viewed in grayscale.
User’s Guide January 10, 2002 Release 3.3

Page 1-2

ce dis-
intro-

and
s, and
n from

ase.

last

the
1.1 Release notes (version 3.3)

Release 3.3 of the Paradyn Parallel Performance Tools is provided as both binary and sour
tributions, along with extensive documentation. This new release consolidates functionality
duced with the preceding releases, incorporates fundamentally improved analysis
instrumentation techniques, deploys these advanced technologies to additional platform
generally enhances capabilities, performance and software engineering. The documentatio
the preceding 3.2 release is substantially unaltered for this release.

Key improvements for Paradyn 3.3 include:

• can instrument many more application functions on the x86 and SPARC platforms

• now handle applications with multiple names for the same function

• separate window to display application stderr/stdout output

• ability to export data from visualizations for off-line analysis

• optimization of instrumentation based on sharing of common subexpressions

• handle MPI applications that create communicators and tags at a rapid rate

• CPU time can be based on hardware counters on AIX, if they’re availables

• sampling of wall time has been made much more efficient for AIX

• 64 bit data path now from data collection to main Paradyn process

• scalability improvements when aggregating sampling data

Platform changes and notes for Paradyn 3.3:

• glibc versions 2.1 and 2.2 are supported on Linux.

• MPI message passing is supported for MPICH 1.2.2 with the ch_p4 device.

• support for instrumenting multithreaded applications is deferred until the next minor rele

• Windows 2000 is now supported.

• IRIX (MIPS), Solaris (x86) and Tru64 (Alpha) are no longer supported by Paradyn. The
release for these platforms was Release 3.2

• Paradyn 3.3 is the last release for Linux 2.2, Solaris 7, and Windows NT 4.0.

1.2 Release notes (version 3.2)

Key improvements for Paradyn 3.2 include:

• support for high-resolution wall timers on Linux based on the TSC register

• support for high-resolution CPU timers on Linux when used with a kernel built with
hrtime patch. (See theParadyn Installation Guidefor details about obtaining and installing
this patch.)

• support for shared objects on AIX

• support for high-resolution wall timers on Irix
User’s Guide January 10, 2002 Release 3.3

Page 1-3

and

the

pro-

wise
)

r-

reads
eparate

sed on
ions
• improved predicted and observed cost estimates on Linux and Solaris

• improved process control and Fortran support on Irix

• function relocation on x86: functions with tight instrumention points are now relocated
expanded to avoid trap-based instrumentation

• improved x86 function parsing

• many performance improvements and bug fixes

Platform changes for Paradyn 3.2:

• The Paradyn daemon is now supported for sequential programs on AIX 4.3

• PVM is no longer supported

• Paradyn 3.2 is the last release for Solaris 2.6

1.3 Release notes (version 3.1)

Key improvements for Paradyn 3.1 include:

• preliminary support for applications running on Tru64 Unix (Alpha): “beta” versions of
Paradyn daemon and run-time library are available on request

• more reliable bootstrapping (for both explicit process creation and attaching to existing
cesses) and handling of processes as they fork(), exec() and exit()

• support for x86 applications which have their own signal handlers (which would other
conflict with Paradyn’s use of signals for instrumentation and control on these platforms

• more flexible static and dynamic instrumentation heap organization

• cleaner source organization and easier, more configurable build

• many performance improvements, bug-fixes and software revisions.

1.4 Release notes (version 3.0)

New features for Paradyn 3.0 include:

• support for Irix 6.5 (MIPS; N64 & N32 ABIs; Origin MPI), Linux 2.2 (x86) and newer ve
sions of Solaris

• support for applications using MPICH 1.2.0 on Linux and Solaris platforms

• support for Fortran applications on Irix and WindowsNT

• support for multithreaded applications and per-thread metrics (currently only Solaris th
on SPARC/Solaris, through a separate Paradyn daemon and run-time library: see the s
Instrumentation of Multithreaded Programs document.)

• dynamic instrumentation and notification of dynamic function calls

• an extensive suite of inclusive metrics (i.e., metrics which include called functions)

• program callgraph display and alternative callgraph-based Code hierarchy search ba
retroactive (“catchup”) instrumentation execution for currently-executing (on-stack) funct
User’s Guide January 10, 2002 Release 3.3

Page 1-4

tion

I)

radyn

variety

arge
then

n) and
with

ations
.

d/opti-
ned to
non-
nodes

with
p is
under
od-
ally-
and cheaper inclusive metrics

• reorganization of processes and threads under the Machine resource hierarchy

• execution measurement data export capability to support analysis with external tools

• multiple inferior instrumentation heaps, localized to allow use of atomic single-instruc
instrumentation points on SPARC and MIPS.

• system-call interruption and restart (Solaris)

• instrumentation trigger guards available on SPARC, MIPS, RS6000 and x86 platforms

• support for remote/wide-area application monitoring

• shared-memory sampling now standard (i.e., added for WindowsNT and AIX)

• dynamic loading of Paradyn runtime library (libdyninstRT) now standard on all platforms
(except AIX)

• runtime histogram (rthist) visi ported to Tk (like most other Paradyn visis and the main GU

• Paradyn GUI and visis ported to WindowsNT

• support for Microsoft CodeView debug format (WindowsNT)

• many performance improvements, bug-fixes and software re-engineering.

Further implementation details behind these features (and more) are available in the Pa
Developer’s Guide.

Paradyn releases attempt to make capabilities available as early as possible on a wide
of platforms, however, there are some limitations in the current version:

• Fortran and C++ application support is being improved on a number of platforms.

• CPU timers are being derived from virtual timers for more efficient management of l
groups of metric timers (such as those used for timing functions which are disabled and
re-enabled during message-passing communication operations based on spin-waiting).

• Handling of collections of processes (on the same processor by a single Paradyn daemo
propagation of associated metrics to fork&exec’d processes are being improved, along
the management of metrics defined on dynamic sets of processes. Support for applic
consisting of multiple executables (and distinct callgraphs/resources) is being improved

• The automated search executed by the Performance Consultant is being streamline
mized to avoid redundant instrumentation of nodes, and the callgraph-based version refi
re-evaluate inclusively-exigent nodes with exclusive metrics to verify whether internal (
leaf) graph nodes are themselves exigent. The search from all such exclusively-exigent
will then progress to consider other resource hierarchies.

• AIX application programs that are to be monitored using Paradyn need to be re-linked
explicit code block markers and Paradyn’s run-time instrumentation library. This link ste
necessary because Paradyn isn’t yet able to dynamically load its instrumentation library
AIX, and the peculiar format of libraries makes it difficult to distinguish user and library m
ules. Details of this link step are described in Section 2.3. Instrumentation of dynamic
linked libraries is not supported on AIX.
User’s Guide January 10, 2002 Release 3.3

Page 1-5

pplica-
n-pre-

o the
r pre-
ke no
orting

r very
ters or

allow

laris

ystem

ajor

of the
plica-

.

.

rs.

rs.

o-

-

• The standard version of Paradyn cannot safely handle some threaded applications or a
tions that share code space as it currently does not know about threads. If you use a no
emptive thread package, Paradyn will still work; performance data can be attributed t
Unix processes, but cannot be broken-down by thread. If you use any multiprocessing o
emptive threading package, Paradyn’s instrumentation is likely to misbehave (i.e., we ma
guarantees on what will happen). A separate Paradyn daemon and run-time library supp
applications based on Solaris threads on SPARC is available: see the separateInstrumenta-
tion of Multithreaded Programs document for further information.

• Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. Fo
frequent events, such as those triggered by hardware counters (such as instruction coun
memory reference counters), these 32-bit counters will overflow. Future releases will
larger counters.

• Instrumentation and monitoring of 64-bit applications is not supported. 64-bit SPARC/So
support is under development.

• Instrumentation metrics for I/O are based on the Unixread() andwrite() system calls. If
you use read or write for socket operations, these will appear as I/O. If you use other s
calls that do file I/O, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in an intermediate release or the next m
release of Paradyn.

1.5 Supported hardware and software platforms

The Paradyn user interface can run and Paradyn can monitor application programs on any
types of workstations and parallel computers listed in Figure 1. Paradyn can also monitor ap
tion program running on heterogeneous combinations of these platforms.

System Identifier Description

sparc-sun-solaris2.7 Sun Solaris operating system version 7 on SPARC processors

sparc-sun-solaris2.8 Sun Solaris operating system version 8 on SPARC processors

i386-unknown-linux2.2 Linux operating system with kernel version 2.2 on x86 processo

i386-unknown-linux2.4 Linux operating system with kernel version 2.4 on x86 processo

i386-unknown-nt4.0 Microsoft Windows NT operating system version 4.0 on x86 pr
cessors.

i386-unknown-w2k Microsoft Windows 2000 operating system on x86 processors.

rs6000-ibm-aix4.3a

a. Power3-based AIX systems will only function properly if APAR IY03550 has been applied. This is
detailed in the AIX installation notes, below.

IBM AIX operating system version 4.3.3 or greater on RS6000 pro
cessors.

Figure 1: Platforms on which Paradyn can monitor application processes
User’s Guide January 10, 2002 Release 3.3

Page 1-6

s, and

it on
ersion

h the
, and
mon
anual

ance
Table
yn.

ual-
ming
radyn

ce for
te on
Note the following qualifiers:

• MPI programs can only be run under the non-threaded POE environment on SP cluster
under MPICH 1.2 on Linux and Solaris platforms. Additional support is in development.

1.6 Currently Unsupported Features

• threaded programs

• exceptions

• stripped binaries on Linux & AIX

• 64-bit applications (on AIX & Solaris)

1.7 Other documentation: Manuals

In addition to thisUser’s Guide, the following documentation is available for Paradyn:

Installation Guide

The Installation Guide describes how to obtain Paradyn via anonymous ftp and install
your system(s). It also describes the minimum operating system and system software v
numbers needed for compatibility with this release of Paradyn.

Tutorial

The tutorial provides a step-by-step example of the use of Paradyn. It walks you throug
main features of starting a program with Paradyn, displaying performance visualizations
using the Performance Consultant. The tutorial is intended to show you many of the com
and most useful features, but is not a complete description of Paradyn’s features. This m
(theUser’s Guide) contains the complete description of Paradyn.

VisiLib Programmer’s Guide

Visilib is the standard API interface for external processes that want to collect perform
data from Paradyn. Paradyn performance visualizations (Time Histogram, Bar Chart,
and 3D Terrain) execute as separate processes, using Visilib as their interface to Parad

Visilib provides a simple interface and abstraction to the writer of a new performance vis
ization. The library handles the details of communicating with Paradyn, processing inco
performance data, providing notifications of changes in the data, and clean-up when Pa
terminates. Paradyn itself will start the visualization process and provide the user interfa
selecting the data to visualize. The writer of the visualization module is left to concentra
the display and graphics aspects.

MDL Programmer’s Guide

MDL programming hints and examples for those wishing to write their own metrics.
User’s Guide January 10, 2002 Release 3.3

Page 1-7

to just
tch.

e and
RCs.

lated
e page.

han,
un-
lel

ton

Bar-

ing-

and

”, R.

n P.

n P.

ton P.

ller.

Uni-
is).
Developer’s Guide

This is intended for those who wish to understand the Paradyn source code—whether
to browse it or to actually make changes with the intent of rebuilding Paradyn from scra

Instrumentation of Multithreaded Programs

Describes implementation of instrumentation for threaded programs, with current usag
status information for using Paradyn with applications based on Solaris threads on SPA

1.8 Other documentation: Technical papers

Following is a bibliography of currently available papers on the technology contained in or re
to Paradyn. These papers and others may be obtained from the Paradyn Project Web hom

1. “The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callag
Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna K
chithapadam, and Tia Newhall.IEEE Computer28, 11, (November 1995). Special issue on Paral
and Distributed Processing Tools.

2. “An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Bar
P. Miller. EuroPar’96 Conference, Lyon, France, August 1996. Appears asLNCS 1123, Vol.I, pp. 88-
97, Springer-Verlag.

3. “Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth,
ton P. Miller, and Jon Cargille.Scalable High Performance Computing Conf., Knoxville, May 1994.

4. “Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Holl
sworth and Barton P. Miller.International Conference on Supercomputing, Tokyo, July 19-23, 1993.

5. “The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth,
Mark D. Callaghan.Environments and Tools for Parallel Scientific Computing, J. J. Dongarra and
B. Tourancheau, eds., SIAM Press, 1994.

6. “Mapping Performance Data for High-Level and Data Views of Parallel Program Performance
Bruce Irvin and Barton P. Miller.International Conf. on Supercomputing, Philadelphia, May 1996.

7. “A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barto
Miller. Programming Environments for Massively Parallel Distributed Systems, K. M. Decker
and R. M. Rehmann editors, Birkhauser Verlag, pp. 299-314, 1994.

8. “Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barto
Miller. 7th Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY. August 1994.

9. “Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Bar
Miller. Workshop on Debugging and Performance Tuning for Parallel Computing Systems. Cape Cod,
Massachusetts, USA, October 1994.

10. “What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Miller.Jour-
nal of Parallel and Distributed Computing18, 2 (June 1993).

11. “Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Mi
SIGPLAN Notices27, 6 (June 1992).

12. “Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994.
versity of Wisconsin-Madison Computer Sciences Department Tech. Report #1243 (Ph.D. Thes
User’s Guide January 10, 2002 Release 3.3

Page 1-8

Irvin,
eport

rth,

arton

reciate

rsion

bi-
s!
13. “Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce
October 1995. University of Wisconsin-Madison Computer Science Department Technical R
#1292 (Ph.D. Thesis).

14. “MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingswo
Barton P. Miller, Marcelo J. R. Gonçalves, Oscar Naìm, Zhichen Xu and Ling Zheng.PACT’97, San
Francisco, California, USA, November, 1997.

15. “A Callgraph-based Search Strategy for Automated Performance Diagnosis,” Harold W. Cain, B
P. Miller and Brian J. N. Wylie.EuroPar’2000, München, Germany, August 2000.

1.9 Contacting the Paradyn developers

There are various ways to get in touch with us. We are glad to answer questions and app
feedback.

e-mail: paradyn@cs.wisc.edu

This is our project e-mail address. Use this address for technical questions or requests.

Web: http://www.cs.wisc.edu/~paradyn

This is our home page. From this page, you can find out how to get a binary or source ve
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://grilled.cs.wisc.edu/paradyn/

This is our ftp site. In the “paradyn” directory, you will find subdirectories containing the
nary and source versions of the Paradyn release. Make sure to look at the README file

FAX: +1-608-262-9777

Postal: Paradyn Project
c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
U.S.A.
User’s Guide January 10, 2002 Release 3.3

Page 2-1

ou an
e are

n

i-
pro-

tion,
ctly on

aradyn
ication
ance
ation,
trol of

ion files
must

l RPC

fer to

le and
tions
listed

m the
ation
2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give y
overview of the major steps and then we explain each one in detail. For this section, w
assuming that you have already installed Paradyn as documented in theInstallation Guide.

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2.2):You need to specify the location of the Parady
executable and configuration files and some external libraries.

2. Prepare your application program (Section 2.3):Generally Paradyn is able to handle unmod
fied executables, however, on some platforms you may need to re-link your application
gram with Paradyn’s run-time dynamic instrumentation library.

3. Run Paradyn (Section 2.4):Paradyn has several options that you may use during execu
such as adding a new process to your application. These options may be specified dire
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the P
daemons (“paradynd”), which are the agents that run on each remote host where your appl
program is running. Paradyn contains the user interface that allows you to display perform
visualizations, use the Performance Consultant to find bottlenecks, start or stop your applic
and monitor the status of your application. The Paradyn daemons operate under the con
Paradyn to monitor and instrument the application processes. Paradyn also uses configurat
to specify details of Paradyn configuration, instrumentation and application programs. You
have Tcl and Tk library files installed to be able to use the Paradyn front-end. Also, a specia
package is required to use Paradyn on Windows NT systems.

For the details of installing Paradyn, its daemons, Tcl/Tk and other external software, re
theParadyn Installation Guide.

After you have installed Paradyn, you need to specify the location of Paradyn’s executab
configuration files. The files needed to run Paradyn are listed in Figure 2, along with explana
of their use. The environment variables that are needed or helpful when running Paradyn are
in Figure 3, along with a description of their use.

2.3 Preparing your application program

On most platforms, Paradyn is able to instrument unmodified executable files (a.out or *.exe).
However, some platforms require preparation of executables, and Paradyn will benefit fro
inclusion of debug information on all platforms. This section details the application prepar
User’s Guide January 10, 2002 Release 3.3

Page 2-2

ution

o we
mpil-
rosoft

erat-
re no

. The
ram
ra-
rrently
in the

user
pri-
l’s

up-
uld
or

he
required or recommended for use with Paradyn. Additional platform-specific build and exec
details are documented in Section 2.6

2.3.1 Generation of debug information (all platforms)

Paradyn will benefit from access to debug information for the application under study, s
recommend that executables be built to contain debug information if possible. For most co
ers, this means passing the -g compile flag to generate debugging information. For the Mic
Visual C++ compiler, use -Z7 or -Zi.

Note that often this does not require disabling any compiler optimizations, and while gen
ing debug information may result in a slightly slower build and larger executable, there a
execution performance implications.

2.3.2 Including CodeView debug info in the executable (Windows NT)

Windows NT presents a special case for Paradyn with respect to debug information
Microsoft Visual C++ compiler, by default, places debug information in an external “prog
database” file with a.pdb extension. However, with debug information in this external file, Pa
dyn cannot determine the information it needs about the executable. Instead, Paradyn cu
requires that executables on Windows NT be built so that the debug information is included
executable itself.

File Use

paradyn
paradyn.exe

The executable that starts a Paradyn session and provides the main
interface. There are versions for each supported platform and an appro
ate version should be placed in a location that will be found by your shel
search path (or you can specify the full path name to run it).

paradynd
paradynd.exe

The executable for a Paradyn daemon. Versions exist for each of the s
ported target application environments, and an appropriate version sho
be placed in a location that will be found by your shell’s search path (
you can specify the full path name to run it).

paradyn.rc Contains crucial information, such as metric and daemon definitions. T
following steps are used to try to find this file (in the order listed):

1. Look for the fileparadyn.rc in the directory specified by the environ-
ment variable “PARADYN_ROOT” (i.e., $PARADYN_ROOT/paradyn.rc).

2. Look in your current working directory for the fileparadyn.rc .

.paradynrc In addition toparadyn.rc , Paradyn will also look in your account’s home
directory for a file named.paradynrc (note the slightly different form).
Should it exist, this file is processed after, and in addition to,paradyn.rc .

Figure 2: Files needed to run Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 2-3

ss the
gs
bug

ara-

;

me is

he
m

ect

k
If

a-
he

-

are
a
u

To ensure that debug information is appropriately placed in the executable file itself, pa
“ -debug -pdb:none ” flags to the Microsoft linker when linking the executable. These fla
indicate that the linker should generate CodeView-format (also called “Microsoft style”) de
information and place it in the executable rather than a separate PDB file.

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start P

dyn by entering the following command at a command prompt1

% paradyn

Several optional command line arguments can be used when invoking Paradyn:

• -f <pcl-configuration-filename>
specifies a file from where Paradyn can read configuration commands (see Section 12)

• -default_host <host name>
specifies the default host where Paradyn should start an application when no host na

Environment Variable Use

PARADYN_ROOT Specifies the location of theparadyn.rc configuration file. In source
code distributions of Paradyn, it is also used to locate the root of t
Paradyn code tree. (Not required if you are running Paradyn fro
your current working directory or from your home directory.)

PARADYN_LIB Used to specify the Paradyn run-time instrumentation shared obj
file (libdyninstRT.so.1 or libdyninstRT.dll). It must specify
the full path name of this file. E.g.,

setenv PARADYN_LIB /usr/home/me/lib/libdyninstRT.so.1

TCL_LIBRARY
TK_LIBRARY

These environment variables specify the location of the Tcl and T
command files needed to implement the basic Tcl/Tk object types.
you have been using a current installed version of Tcl/Tk, you prob
bly already have these correctly set. If not, see the instructions in t
Paradyn Installation Guide for information on setting them.

PD_TIMER_SHOW_INFO If this environment variable is set, Paradyn will display the time que
rying method it will be using in the termWin visi. For example, if
Paradyn is querying the cpu time with a method that uses a hardw
counter, “Chosen cpu timer level: 1” will display. If Paradyn uses
software based time querying method for cpu time, “Chosen cp
timer level: 2” will appear.

Figure 3: Environment variables used when running Paradyn

1. A command prompt is available under Windows NT from the “Command Prompt” item under the Pro-
grams submenu of the Start menu.
User’s Guide January 10, 2002 Release 3.3

Page 2-4

y be
h will

n in

run
ion
u
e
e

).

allow

inally,
n.

repre-
is a

rface
given. (If the-default_host option is not used, the default host is the local host.)

• -x <connect-filename>
specifies a file to which Paradyn daemon start-up information will be written, which ma
used by external programs to explicitly start Paradyn daemons on different hosts whic
connect to this Paradyn front-end. (This file is created if it doesn’t already exist.)

• Paradyn should start running and display the Paradyn Main Control Window, show
Figure 4. This window has five menu options,File , Setup , Phase , Visi, and Help . These
options allow you to:

1. File : In this menu there is an option to get information on how to start up a daemon (Daemon
start-up info) and an option to exit the program (Exit Paradyn .)

2. Setup : This menu has selections to allow you to describe a new application program to
from scratch (Define a Process , described below) or attach to an already-running applicat
process (Attach to a Process , below). In addition, you can bring up windows which allow yo
to start the Performance Consultant (Performance Consultant , described in Section 9), chang
Paradyn’s tunable constants (Tunable Constants Control , described in Section 4), bring up th
call graph of the program (Call Graph), and view the WhereAxis (Where Axis).

3. Phase : start and define a new local phase for visualizations and analysis (see Section 8

4. Visi : start visualizations of your application performance (see Section 7).

5. Help : get additional information about Paradyn.

Additionally, there are four buttons in this window:RUN, PAUSE, EXPORT andEXIT. RUN
andPAUSE are disabled when there is no application currently defined. These two buttons
you to run or stop execution of your application as you wish.EXPORT will open a dialog offering
to save the data from current measurements to files for off-line analysis (see Section 11). F
EXIT will exit Paradyn, terminating the application program if necessary, and end the sessio

The Paradyn Main Control Window can contain several status lines. Each status line
sents information about some part of Paradyn or your application. In the initial window, there
status line labeled “UIM status”. This line shows the current state of Paradyn’s User Inte
Manager (“ready” in this case).

Figure 4: Starting Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 2-5

ess to
w.

ess.

ave

ing),

ote
(on
tion

e to
name
tax

ame,
a
e not
Win-
ba”.

the
2.5 Running applications with Paradyn

There are two ways to give Paradyn an application program to monitor: defining a new proc
start, and attaching to an already-running process. These two methods are described belo

2.5.1 Defining a new process

One way to measure a program with Paradyn is to select the optionDefine A Process from
theSetUp menu. A new window appears, as shown in Figure 5.

From this window, you can specify the following parameters:

1. User: This is your login name on the host on which Paradyn will run your application proc
If you leave this field blank, the login will default to your current login name.

2. Host: This is the name of the host on which Paradyn will run your application. If you le
this field blank, it will default to the host specified with the-default_host command line
option to paradyn, or to the current host (the one on which the Paradyn front-end is runn
if the option-default_host is not used.

3. Directory : Paradyn runs paradynd and your application as follows. First, it performs a rem
login operation using the “User” and “Host” fields specified above. The current directory
the remote machine) at this point is the root directory—not usually where your applica
program resides. The “directory” entry box allows you to specify a directory to chang
before executing the command specified in the “Command” entry box. Note that the path
given is interpreted on the field named in the “Host” field. For UNIX hosts, the allowed syn
is familiar: the path specified may start with a slash (“/”) (specifying an absolute path n
starting from the file system root directory), or it may start with a tilde (“~”) followed by
user name (specifying a path name rooted at the specified user’s home directory). A tild
followed by a user name is the same as a tilde followed by the current user name. For
dows NT hosts, the path may start with a drive letter, for example “d:\myprograms\bub
Both forward and backslashes are accepted in Windows NT paths.

4. Command: The command that will start this instance of your application program. If

Figure 5: Defining a new application process
User’s Guide January 10, 2002 Release 3.3

Page 2-6

et to
with
, any
\bubba

, the
ae-
the

pro-

the

ation;
pro-

ready

ation
, new
Directory entry has been filled in, the command is executed with the current directory s
the specified path. If the Directory entry is left blank, then the command will be executed
the current directory set to the home directory of the specified user. Under Windows NT
backslashes in the command must be escaped with another backslash, for example “..\
example5”.

5. Daemon: This option allows you to specify which Paradyn daemon to run. For most uses
default daemon (“defd”) is appropriate. For Windows NT applications, use the “winntd” d
mon. For MPI applications, select either “mpid”. If you specify additional daemons in
Paradyn configuration file, they will appear here.

Once you have made your selections, click onAccept and Paradyn will start the application
program and initialize it. When the status of the Paradyn window is like that in Figure 6, the
gram is ready to run and be measured.

The window in Figure 6 shows several new status lines with the following information:

1. Application name: This is the name of the application program (foo), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), and
type of daemon which is monitoring it (defd).

2. Application status: This is the overall application status (eitherPAUSED or RUNNING).

3. Data Manager: This is the status of Paradyn’s Data Manager.

4. Processes: This is the process identifier of the controlling process in your application.

5. brie: There is one status line on each host or node on which you are running your applic
here there is the status line for host “brie”. It shows the current status of your application
cess on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you are
to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configur
Language (PCL) file. In this file, the user can specify information such as: user application

Figure 6: Paradyn ready to run the application
User’s Guide January 10, 2002 Release 3.3

Page 2-7

e com-

file
in:

:

dir”
“dae-

ot con-
every
sh to

them.
time.
ish to

ing
ro-

ost

e
cutable

g a
a pro-
from

-
min-

m

visualizations to be added to the system, new metrics, and additional paradyn daemons. Th
plete details of the Paradyn Configuration Language are given in Section 12.

As a simple example, if we want to run an application called “bubba”, with an executable
named “bubba_pd” indicating special Paradyn support, a file called “bubba.pcl” might conta

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba_pd example.dat”;
daemon defd;

}

and the command to automatically start Paradyn with this application would be like this

% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba” in the directory specified by “
using the command line specified by “command” with the Paradyn daemon specified by
mon” (defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is n
venient. The main limitation of defining a new process is that a new process is launched
time you run Paradyn (and killed every time you exit Paradyn). Many programs you may wi
measure are not amenable to starting up and shutting down every time you wish to measure
Typically these are server-type programs, which are meant to run for an indefinite amount of
In such cases, it is more convenient to attach to an already-running program when you w
measure it with Paradyn, and to detach from it when you exit Paradyn.

Paradyn currently does not offer the option to detach from the application leaving it runn
when you exit; on exit, Paradyn kills the application it is monitoring and all its associated p
cesses. This limitation will be removed in a future release.

To attach to a running process, chooseAttach to a Process from theSetup menu of the Para-
dyn main window. A dialog box (Figure 7) will appear.

The User, Host , and Daemon items have the same meaning as in Section 2.5.1. The m
important box isPid , where you specify the process identifier of the process (on theHost
machine) you wish to attach to. TheExecutable file item lets you specify a full pathname to th
executable file corresponding to the process id. The Paradyn Daemon needs to find the exe
file on disk in order to extract symbols (procedures, modules) that will go in theCode portion of
the ParadynWhere Axis . Obtaining symbols from the executable file is also done when definin
new process (Section 2.5.1). However, it can be burdensome to enter the full path name of
cess that you want to attach to; it is possible that you might not even know the disk directory
which it was launched. Therefore, if you leave theExecutable file item blank, the Paradyn Dae
mon will make an effort to locate its value automatically. (It obtains the program name by exa
ing the process’ first argument,argv[0] . It then looks in several directories for this progra
name; it searches the process’ current directory and all items in itsPATH environment variable.
User’s Guide January 10, 2002 Release 3.3

Page 2-8

e sep-
ou

. After
on. To
t
tach.
lizes it

-

For those interested, further technical details on how attach is performed can be found in th
arateParadyn Developer’s Guide.) If Paradyn reports that it cannot locate the executable file, y
will have to enter the full path name in theExecutable file field.

The Paradyn daemon can attach to a process, whether it is currently running or stopped
it has attached, you may wish to have the daemon automatically pause or run the applicati
do this, choose eitherPause application or Run application items from the dialog box. The defaul
is Leave as is , which detects whether the program was running or stopped at the time of at
Note that the process is necessarily paused for a short time while the Paradyn daemon initia
(parses its symbol table, parses any shared libraries it has been linked with, etc.)

When you have entered the desired parameters, click onATTACH to perform the attach opera
tion. When ready, the Paradyn main window should look like Figure 8.

Figure 7: Specifying a process to attach to.

Figure 8: Attach completed and application execution continuing.
User’s Guide January 10, 2002 Release 3.3

Page 2-9

ubsec-

and

ries).
default
ic exe-

e.

llected
s in

erfor-

in
ble
n

e as
to their

d in

.

user
ns

-

d.
2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this s
tion, we describe each of them in turn.

2.6.1 Common Platforms

These notes apply for Solaris, Linux (x86), and AIX (RS/6000). Variations for Windows NT
MPI programs follow.

On these platforms we support instrumenting shared objects (dynamically-linked libra
Dynamic executables are executables that are linked with shared object files, and are the
output generated by the link-editor, therefore no special flags are needed to create dynam
cutables. Paradyn’s run-time instrumentation library is a shared object (libdyninstRT.so.1)
which is dynamically loaded at run-time, and does not need to be linked with the executabl

Shared objects will show up on the Paradyn Where axis and performance data can be co
for functions from shared objects. Also, the Performance Consultant will include function
shared objects in its search for bottlenecks. The MDLexclude option can be used to specify
shared objects and/or functions from shared objects that should not be included in the P
mance Consultant’s search. This is discussed in more detail in Section 12.8.

When using the Sun C or Fortran compilers on Solaris, you should also specify the-xs option
together with-g . The -g option alone will direct the compiler to place debugging information
the object files (.o files), but it will not place the debugging information on the executa
(a.out) file. You must use the-xs option so that the compiler will add the debugging informatio
to the a.out file. The-xs option is not needed if you are using GNU compilers..

Inter-library calls on AIX appear to be made by a “shadow” function with the same nam
the function being called. Paradyn detects these shadow functions and appends “_linkage”
names. This is simply for clarification purposes.

2.6.2 MPI

To run an MPI application under Paradyn one should follow the steps describe
Section 2.5.1. The user should setDaemonto mpid.TheCommandfield should contain the same
command line one uses to launch the application without Paradyn(e.g., “mpirun -np 2 hello ”).
Note that theProcessesfield for MPI will identify the type of MPI being used (POE, IRIX or
MPICH) and not the processes involved in the job. Platform-specific details are given below

• MPICH : Currently, Paradyn supports MPICH version 1.2.2 with the ch_p4 device. The
should use the “mpirun ” command to start an application. Unsupported mpirun optio
include “-p4pg file ”, “ - gdb ” and “- dbx ”. The “mpirun ” command will be started through
a remote shell on the machine specified in theHostfield of the dialog box. If no name is spec
ified, it will run on the frontend machine.

• POE MPI on AIX : the POE job launcherpoe can be entered in the command field or omitte
User’s Guide January 10, 2002 Release 3.3

Page 2-10

few

the

with
le”)
com-
sym-

The
for

with
. the

,

used
ecto-

for the

Unix

tion
face.
ppro-
ing
hine)
2.6.3 Windows NT

The way Paradyn works in Windows NT is similar to other platforms, however there are a
small differences.

On Windows NT the run-time instrumentation library (libdyninstRT.dll) is loaded dynam-
ically. You must either definePARADYN_LIBwith a full path tolibdyninstRT.dll or have it in
a directory that is listed in your “path” environment variable, so that it can be found by
dynamic linker.

Paradyn needs symbolic debug information, so you must compile your application
debugging information enabled. We currently handle CodeView (also called “Microsoft sty
and COFF symbol formats, though we recommend CodeView format since it provides more
plete and accurate information than with COFF symbols. The option to enable a CodeView
bol table will depend on the compiler used. For the Microsoft compiler this option is/Z7 or /Zi .
You must also direct the linker to generate symbolic information in the executable file.
options/debug and /pdb:none must be passed to the linker. Figure 9 shows a sample Makefile
the Microsoft Visual C++ compiler.

Paradyn needs to instrument some system libraries (in particular,kernel32.dll), and this can
only be done if the symbols for the system libraries are installed. The symbols are available
the NT CD-ROM, and they can be installed by the installation programs of compilers (e.g
Microsoft Development Studio has an option to install the system symbols files).

The files which are needed to run on Windows NT areparadynd.exe (the paradyn daemon)
libdyninstRT.dll (the run-time dynamic instrumentation library), andoncrpc.dll (a version
of the Sun RPC library for Windows NT, included with the Paradyn binary release, which is
by Paradynd to communicate with the Paradyn front-end). All of these files should be in dir
ries that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as
other platforms), you need to have a remote shell daemon (rshd or sshd) running on the Windows
NT machine(s), and you must be able to execute commands on Windows NT from the
machine where the Paradyn front-end is running. If you don’t have anrshd running on the Win-
dows NT machine, you must start the Paradyn daemon manually. Either refer to the-x command-
line option for Paradyn to automatically get this information (Section 2.4) or use the informa
from the “Daemon start-up info” menu item under the “File” menu in the Paradyn user inter
You must start paradynd giving the exact arguments shown in that dialog but specifying the a
priate “flavor” (which will bewinntd for a Paradyn daemon and application processes runn
on Windows NT): note that for each session the port identifier (and possibly also host mac

CC = cl /Z7
OBJECTS = main.obj this.obj that.obj

bubba.exe: $(OBJECTS)
link -out:bubba.exe -debug -pdb:none $(OBJECTS)

Figure 9: Sample Makefile for Windows NT.
User’s Guide January 10, 2002 Release 3.3

Page 2-11

iffer-

on, and

ams
arguments will be slightly different, so you can’t reuse exactly the same command line for d
ent Paradyn sessions. The command line to start paradynd on Windows NT will look like:

paradynd -zwinnt -l2 -m myhostmachine.domain.org -p 12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end sessi
everything else will work as usual.

Note that Paradyn is currently not expected to work with gcc-compiled application progr
under Windows NT.
User’s Guide January 10, 2002 Release 3.3

Page 3-1

wn in
arts of
menu
a part
ection

lay a

es exit.

nning
Con-

ha-
n can
3 MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is sho
Figure 10). The Paradyn main window is the interface though which a user can access all p
the Paradyn tool. The main window is divided into three sections; the top section contains a
bar, the middle section contains a dynamic set of status lines (split into a generic part and
for per-process status information which is both resizable and scrollable), and the bottom s
contains a set of menu buttons. We discuss the details of each of these below.

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these disp
sub-menu when selected, and the other opens a dialog, as follows:

3.1.1 File menu

TheFile sub-menu contains two menu items. The optionDaemon start-up infogives information
on how to manually start a daemon from a terminal. When the optionExit Paradyn is selected, the
Paradyn process and all currently-associated application, daemon and visualization process
The same effect can be achieved by clicking on theEXIT button (Section 3.3).

3.1.2 Setup menu

The Setup menu contains items to define an application process, to attach to an already-ru
application process, to create a Performance Consultant window, to bring up the Tunable
stants dialog, and to bring up the Where Axis display. SelectingDefine A Process displays the
Define A Process window (this window is shown in Figure 5 in Section 2.5.1). This is a mec
nism through which a user can provide information about their application so that Parady
start it. A description of how to use theDefine A Process window is given in Section 2.5.1.

Figure 10: Paradyn Main Control window
User’s Guide January 10, 2002 Release 3.3

Page 3-2

can
attach
eful for
ry time
pro-

w.
neck

ich
set of

er
5.2.

ive
e Call

nu:

e first

efining

w
visual-

inters

the
t

Using Define A Process creates (i.e. starts) a new application process, which Paradyn
begin monitoring right away. Sometimes, however, it is more convenient to ask Paradyn to
to an already-running process (supported since Paradyn release 1.2). This is especially us
server-type processes such as database servers or file servers, for which re-launching eve
you wish to measure with Paradyn would be inconvenient. To attach to an already-running
cess, selectAttach to a Process from theSetup sub-menu. A description of how to useAttach to a
Process is given in Section 2.5.2.

The Performance Consultant menu item will bring up the Performance Consultant windo
This window provides an interface for the user to start automated performance bottle
searches. The Performance Consultant is described in Section 9.

TheTunable Constants menu item will bring up the Tunable Constants dialog, through wh
the user can set values for any tunable constants defined in Paradyn. Information about the
tunable constants and how they can be modified is given in Section 4.

The Where Axis menu item will bring up the Where Axis display, through which the us
makes resource hierarchy selections. Information about the Where Axis is given in Section

TheCall Graph menu item will bring up the Call Graph display, which provides an interact
representation of the callgraph of each executable in the application. Information about th
Graph is given in Section 5.5.

3.1.3 Phase menu

Phases may be started using thePhase menu. There are presently four items under this me
Start , Start with Perf Consultant , Start with Visis , andStart with Perf Consultant & Visis . Each item
under this menu will create a new phase; they differ in what additional actions they take. Th
item, Start , does nothing additional.Start with Perf Consultant will have Paradyn’s Performance
Consultant module (Section 9) commence searching on this phase, as opposed to simply d
the new phase.Note: Start with Visis and Start with Perf Consultant & Visis are not yet imple-
mented.Complete information about phases is provided in Section 8.

3.1.4 Visi menu/button

Visualization processes can be started by selecting them from theStart A Visualization dialog
which appears upon pressing theVisi button in the main menubar. A complete description of ho
to start a visualization process is given in Section 7.1, and documentation on the standard
ization modules is given in Section 10.

3.1.5 Help menu

TheHelp menu options offers basic information about Paradyn in separate displays.General Info
has summary information about Paradyn capabilities and supported platforms, along with po
to project Web pages and theparadyn@cs.wisc.edu maintainers’ account for further information
or to report problems.License Info contains a copy of the license agreement governing use of
Paradyn Parallel Performance Tools.Release Info provides information related to the curren
User’s Guide January 10, 2002 Release 3.3

Page 3-3

d ver-
vide

hich
ys status
toring

single
pplica-
on
pro-

titutes
ea no
of the
ode

yed).

hen
,

files
lysis

and
Paradyn release (and obtaining other releases). Finally,Version Info displays build/release infor-
mation about the version of Paradyn which is running: it is more detailed than the abbreviate
sion identifier appearing in the upper-right of the display title, and you may be asked to pro
this information when reporting any problems with special versions of Paradyn.

3.2 Status lines

The middle section of the Paradyn main window consists of a dynamic set of status lines w
are updated as Paradyn runs and learns about new application processes. Each line displa
information about some part of Paradyn, the application, or the Paradyn daemons moni
application processes.

The main window in Figure 10 contains status lines that were created after a sequential (
process) application was defined. Some of the status lines contain information about the a
tion program, such as its name (foo), the process identifier(s) associated with the application
the host (PID=19271) and an indented/offset area with status lines for each host machine or
cessor node on which the application is running (in this case, only on one host,beaufort).
There are also lines displaying the status of the UI Manager and Data Manager (ready).

The indented/offset area grows additional lines as hosts or nodes join the set which cons
the application managed by Paradyn. After a certain number of lines is reached, this ar
longer grows automatically and a scrollbar appears in the indent area to manage this region
display. If desired, the window can be vertically resized to display more (or all) of the host/n
status lines, or shrunk to display fewer (down to a minimum number which can still be displa

3.3 Buttons

There are four buttons at the bottom of the Paradyn main window.

TheRUN andPAUSE buttons allow the user to run or pause execution of the application. W
the application is running, theRUN button is disabled and thePAUSE button enabled. Conversely
when the application is paused thePAUSE button is disabled and theRUN button enabled. Before
an application has been defined, both buttons are disabled.

TheEXPORT button dumps the application execution data Paradyn currently maintains to
for off-line analysis. This is useful for exporting execution data from Paradyn to other ana
tools. Complete details are in Section 11.

TheEXIT button, when selected, will exit Paradyn and terminate all associated application
visualization processes.
User’s Guide January 10, 2002 Release 3.3

Page 4-1

-
layout

ction 9).

listed

n-
e con-
nable
and the
the
right

d.

ed by
4 TUNABLE CONSTANTS

4.1 Overview

Users can customize Paradyn’s operation throughtunable constants. Paradyn defines several tun
able constants that may be altered by the user, ranging in scope from user-interface window
issues to tuning the automated search parameters of the Performance Consultant (see Se

Tunable constants are either boolean or floating-point. Paradyn’s tunable constants are
in Sections 4.2 and 4.3.

To change the value of a tunable constant, chooseTunable Constants Control from theSetup
menu of theParadyn Main Control window. This brings up the window shown in Figure 11.

Boolean tunable constants (developerMode, showWhereAxisTips, showShgKey, showShgTips, and
so on throughhideShgShadowNodes in Figure 11) are shown before floating-point numeric co
stants. The checkbox to the right of a boolean tunable constant is colored gray if the tunabl
stant’s setting is false, and blue if the tunable constant’s setting is true. Floating-point tu
constants with bounds on their acceptable values have a slider widget between the name
entry field. A new value can be typed into the entry field or click on the slider and “drag” it to
desired value. The minimum and maximum allowable values are displayed on the left and
sides of the slider as a convenience: attempts to set values outside this range are truncate

Changes made to tunable constant values do not take effect until the window is dismiss

Figure 11: The Tunable Constants Window
User’s Guide January 10, 2002 Release 3.3

Page 4-2

s.
, until

values.
ur lik-
yn on
liking.

re

if any
r tun-
realize

.

el-
clicking on Accept . Clicking on Cancel will dismiss the window without making any change
Tunable constant settings remain in effect for the duration of this Paradyn session; that is
you explicitly change the value again through this dialog or quit the Paradyn process.

Each time a new Paradyn session is started, tunable constants are reset to their default
This can be an inconvenience if the default values of certain tunable constants are not to yo
ing. The Paradyn Configuration Language (PCL) allows you to create files read by Parad
startup. Among many other things, such files can contain tunable constant settings to your
See Section 12.6 for particulars on how to set tunable constant values in a PCL file.

Under the Tunable Constants WindowHelp menu is an entryShow Tunable Descriptions .
Invoking this menu item brings up theTunable Descriptions window, giving a concise description
of each tunable constant. An example is shown in Figure 12.

4.2 User Tunable Constants

Each tunable constant is classified as eitherUser or Developer mode. User tunable constants a
intended for everyday use. User tunable constants are listed in Figure 13.

4.3 Developer Tunable Constants

Developer tunable constants are not intended for everyday use.If you change a developer mode
tunable constant, you are presuming a detailed knowledge of the internal workings of Para-
dyn. We provide no guarantees on how system behavior changes, nor can we offer support
developer tunable constant has been altered from its original setting. In addition, develope
able constants are subject to significant change from release to release. Nevertheless, we
that some experienced users may benefit by occasional access to these tunable constants

To access developer tunable constants set the tunable constantdeveloperMode to true and click
Accept : the Tunable Constants window will re-present itself containing both the user and dev
oper tunable constants. Setting the tunable constantdeveloperMode to false will “hide” the devel-

Figure 12: Tunable Constants Descriptions Window
User’s Guide January 10, 2002 Release 3.3

Page 4-3

n
real

s
If
n-

-
the
-

on

ce
e

ce

g

t

t

oper tunable constants once again. Developer tunable constants are listed in Figure 14.

Tunable Name Description

showWhereAxisTips (bool) If true, the Where Axis window is drawn with several user-interface tips o
how to select and expand where axis items. Setting to false saves screen
estate.

persistentData (bool) If true, all performance data remains stored internally in Paradyn histogram
after data collection has been halted by removing the instrumentation.
false (the default), internal data is deleted at the time the related instrume
tation is removed (for example, when a visualization is exited).

costLimit (float) Maximum allowable perturbation of the application when running the Per
formance Consultant (Section 9). Paradyn keeps track of an estimate of
extent to which its instrumentation is perturbing the application under exe
cution; this tunable constant allows users to set a maximum upper-bound
such perturbation, as a percentage of execution time.

minObservationTime (float) Specifies a lower bound on the time (in seconds) before the Performan
Consultant will begin using data collected to evaluate hypotheses. This tim
guards against the effects of transient data values at the start of a phase.

sufficientTime (float) Specifies the minimum amount of time (in seconds) before the Performan
Consultant can conclude that a hypothesis is false.

showShgKey (bool) If true, the Performance Consultant window includes a key to the meanin
of the node and text colors shown.

showShgTips (bool) If true, the Performance Consultant window includes a key to relevan
mouse functions.

hideShgTrueNodes (bool) If true, the Performance Consultant’s Search History Graph (SHG) will no
show true nodes.

hideShgFalseNodes (bool) If true, the SHG will not show false nodes.

Figure 13: User-level Tunable Constants
User’s Guide January 10, 2002 Release 3.3

Page 4-4

r

t.

.

iza-

ir

PU

I/O

ing

he

ode

ed

me

ed

nts

.

me

ny
hideShgUnknownNodes (bool) If true, the SHG will not show nodes which haven’t been determined true o
false yet.

hideShgNeverSeenNodes (bool) If true, the SHG will not show nodes which it has not begun to evaluate ye

hideShgActiveNodes (bool) If true, the SHG will not show nodes which are active (instrumented).

hideShgInactiveNodes (bool) If true, the SHG will not show nodes which are inactive (un-instrumented)

hideShgShadowNodes (bool) If true, the SHG will not show shadow nodes.

PC_SyncThreshold (float) Percentage Performance Consultant uses as threshold for all synchron
tion hypotheses (such asExcessiveSyncWaitingTime). For example, select-
ing 20% here will cause any synchronization-related hypothesis-focus pa
testing above 0.20 to conclude “true.”

PC_CPUThreshold (float) Percentage Performance Consultant uses as threshold for determining C
bottlenecks (CPUbound).

PC_IOThreshold (float) Percentage Performance Consultant uses as threshold for determining
blocking time bottlenecks (ExcessiveIOBlockingTime).

PC_IOOpThreshold (float) Number of bytes Performance Consultant uses as threshold for determin
small I/O operation bottlenecks (TooManySmallIOOps).

developerMode (bool) If set, additional tunable constants and metrics are made available to t
user. NB: USE AT YOUR OWN RISK!!

Tunable Name Description

hysteresisRange (float) Represents the fraction above and below threshhold that a test should use.

PCuseCallGraphSearch
(bool)

If true, the Performance Consultant uses a callgraph-based search of the C
hierarchy, otherwise uses a module-then-function search.

PCprintDataTrace (bool) If true, the Performance Consultant prints a full trace to stdout of all PC-relat
data events: data arrival at the PC, data values after filtering, etc.

PCprintTestResults (bool) If true, the Performance Consultant prints data to the console window every ti
it computes a result value for an experiment.

PCprintDataCollection
(bool)

If true, the Performance Consultant prints out trace information on PC-initiat
instrumentation requests and disables.

PCuseIndividualThresholds
(bool)

If true, the Performance Consultant will ignore the user-level tunable consta
PC_SyncThreshold ,PC_CPUThreshold ,PC_IOThreshold ,PC_IOOpThreshold ,
and use a set of hypothesis-specific developer-level tunable constants instead

PCprintSearchChanges
(bool)

If true, the Performance Consultant prints data to the console window every ti
it draws a conclusion for a hypothesis, or starts or stops an experiment.

PCcollectInstrTimings
(bool)

Times all instrumentation requests, saving result inTESTresult.out

printChangeCollection
(bool)

If true, the name of each metric/focus pair is printed to the console window a
time it is enabled or disabled.

Figure 14: Developer-level Tunable Constants. Use at your own risk!

Figure 13: User-level Tunable Constants
User’s Guide January 10, 2002 Release 3.3

Page 4-5

ddi-

he

The

e

e

e

e

e

e

e

When theDeveloper Mode tunable constant is set, Paradyn makes available a number of a
tional “developer-mode metrics” for selection. For further details, see Section 6.

printSampleArrival (bool) If true, the arrival of each sample fromparadynd is printed out to the console
window.

tclPrompt (bool) If true, a Paradyn prompt is presented in the start-up shell window, allowing t
user to type in and execute arbitrary Tcl language commands.

enableRequestPacketSize
(float)

It represents the length of the packet sent when batching enable requests.
default value is 5.

highSyncThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forExcessiveSyncWaitingTime.

highCPUtoSyncRatio-
Threshold (float)

If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forCPUbound.

lockOverhead (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forlockOverhead.

minLockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forminLockSize.

highIOthreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forExcessiveIOBlockingTime.

diskBlockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test value forTooManySmallIOOps.

seekBoundThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forseekBound.

Figure 14: Developer-level Tunable Constants. Use at your own risk!
User’s Guide January 10, 2002 Release 3.3

Page 5-1

data
gram
1 dis-

rfor-
ample

future
xis, its

barriers,
mming
Some

would
5 SELECTING RESOURCES

You specify performance data for Paradyn to collect in two parts: the type of performance
and the part(s) of the program for which you want this data collected. The parts of your pro
are calledresourcesin Paradyn. This section discusses how to select resources. (Section 6.
cusses how to selectmetrics—the type of performance data.)

5.1 Resources (The “Where” Axis)

TheWhere Axisis used to describe the parts of your program for which Paradyn can report pe
mance data. It is a visual representation of different ways to specify these parts. A simple ex
of a Where Axis is given in Figure 15. The Where Axis is used to make allresource-related selec-
tions. For example, users will use the Where Axis for adding resources to a visi, and in the
for manual refinements in the Performance Consultant. This section describes the Where A
visual representation, and how to make selections.

Before we delve into specific examples of usage, a few definitions are in order:

Resources:

Resources are program components. Examples include modules, procedures, processes,
locks, processor nodes, and disks. Some of the resource types are common to all progra
platforms. Examples of these common resources include Modules and Procedures.
resources are only supported on particular platforms. An example of this type of resource
be the Barrier synchronization object.

Figure 15: Where Axis window.
“Whole Program” has three unexpanded subtrees and one expanded subtree (Code)
User’s Guide January 10, 2002 Release 3.3

Page 5-2

resents
ierar-

e
gs,

e pro-
ed into
dule
dule
rar-

t cor-
d next.

her
ons are
able.
y the
files or

s into
l
rsing a
the
IX
, all

ctive

sting”
-
com-

by

e set
Resource Hierarchy:

Paradyn organizes all of a program’s resources into hierarchies (trees). Each hierarchy rep
a broad class of objects in an application. Typically, a parallel program has at least four h
chies:Code (under which we have an application’s modules, then individual functions),Process

(under which we have each node in a parallel machine),Machine (these are the nodes or hosts in th
parallel or distributed environment), andSyncObject (that includes such types as message ta
semaphores and barriers).

The code hierarchy contains a hierarchical representation of the code which comprises th
gram under examination. It is a two level hierarchy. The code space as a whole is separat
modules, which represent a high level grouping of program functionality. In general, a mo
corresponds to an individual source file in a higher level language, or to a single library. A mo
contains all of the functions located in the corresponding original source file (or files, for lib
ies).

There are a few instances in which the set of modules displayed in the code hierarchy will no
respond exactly to the set of source files and modules linked into the program, as discusse

The “DEFAULT_MODULE” module holds all functions which could not be assigned to any ot
module, either because the necessary information could not be found, or because the functi
not rightfully assigned to any of the input files or libraries which make up the given execut
On most supported platforms, this module should include only functions which are built-in b
compiler or environment, in the sense that they do not come from any user specified source
libraries (e.g., the_start , __do_global_ctors_aux , and __do_global_dtors_aux func-
tions provided incrt0 by most Unix C compilers).

Some compiler and linker settings do not generate enough information to resolve function
modules: e.g., when compiled/linked without the ‘-g ’ compilation flag which requests a symbo
table be included in the object/executable for the use of tools such as a debugger. When pa
file which does not contain this information, Paradyn assigns all functions to
“DEFAULT_MODULE”. In particular, we are not aware of any compilers and linkers on the A
platform which provide the necessary information. As such, when Paradyn is used on AIX
functions are generally placed in that module. Note that this affects the MDL “exclude” dire
(Section 12.8).

In Paradyn versions 2.1 and above, it is no longer necessary to explicitly delineate “intere
user code withDYNINSTstartCode andDYNINSTendCode block objects. However, later Para
dyn versions should still correctly parse executables which have been so built. To maintain
patibility with older Paradyn versions, when an application is linked withDYNINSTstartCode
and DYNINSTendCode, any statically linked code which is outside of the range delimited
DYNINSTstartCode andDYNINSTendCode is placed in the “DYN_MODULE” module.

Focus:

A focus is a set of selections from the Where Axis containing exactly one resource fromeach
resource hierarchy. For example, in the Where Axis of Figure 15, a focus might be th
User’s Guide January 10, 2002 Release 3.3

Page 5-3

e
e in

(all

lowing

U
by

ppli-

ource
ds, if
nodes

. The
single

le, in
es

side.
{/Code/Alloc.o, /Machine, /Process, /SyncObject}. The selection/Code/Alloc.o means restrict our perfor-
mance data collection to only the code contained in moduleAlloc.o . The selection/Machine

means all machines (nodes) on which your program is running./Process means all processes in th
program and/SyncObject means for all types of synchronization used. If you select the root nod
each hierarchy, this means that Paradyn will collect data for a metric for the whole program
nodes, processes, modules, etc.).

Performance data is collected for a particular focus. For example, suppose we made the fol
focus selection and requested that CPU time data be collected for this focus:{/Code/Alloc.o/XtCalloc,

/Machine, /Process/psicm.pd.pn{123657_mendota}, /SyncObject}. This selection means “measure the CP
time spent in functionXtCalloc while it’s being executed on any machine, only when executed
processpsicm.pd.pn{123657_mendota}, and for any type and instance of aSyncObject.” In this example,
CPU time is ametric. Paradyn metrics are functions that describe how the behavior of your a
cation program changes over time. Metrics and their selection are presented in Section 6.

5.2 The Where Axis display

Resources for your application program are displayed in the Where Axis display. The res
hierarchy in Figure 15 is an example of a such a window. Many programs will have hundre
not thousands of resources; displaying the complete tree for all of their hierarchies and their
(as in Figure 16) is cumbersome to the user, who will have difficulty finding desired items.

Paradyn allows the user to control how much of the Where Axis is visible at any one time
children of a node may be displayed as separate single nodes or be displayed together in a
listbox. The listbox is a compact way of representing many children of a node. For examp
Figure 15, the root node (Whole Program) has four (yes, four!) child nodes. Three of these nod
(Machine, Process, andSyncObject) are combined in the blue listbox. The fourth child ofWhole Pro-
gram is the salmon colored single node,Code .

If the listbox contains a large number of nodes, then it may even have a scroll bar on the

Figure 16: Showing all resources in the Where Axis display
User’s Guide January 10, 2002 Release 3.3

Page 5-4

sently
it from
tbox
de

box

. You
tbox

ick the
n one

own in

tions
ently
8 there
A triangle beside a node in a listbox means that it is not a leaf node—that the subtree is pre
un-expanded to conserve screen real estate. Double-clicking on such a node will expand
the listbox as a single node. This new single node will be salmon colored with a blue lis
below, containing its child nodes. TheCode node in Figure 15 was originally displayed as a no
in the listboxWhole Program. Double-clicking on theCode resulted inCode being displayed as single
node. SinceCode is not a leaf node, its children (a list of modules) are displayed as a list
below.

After expanding a node, the resource desired may still be buried lower in the hierarchy
can continue to double-click on appropriate nodes. Shift-double-click on the parent of a lis
(that is, on a pink node showing a listbox under it) will expandall listbox items one level.

5.3 How to select foci using the Where Axis

A focus is a selection of one resource from each resource hierarchy. To choose a focus, cl
left mouse button over a resource name, thereby selecting it. Performing this operation o
resource in each hierarchy selects a single focus. An example of such a selection is sh
Figure 17. The focus selected in this figure is:

{/Code/anneal.c/a_cost, /Machine/goat, /process, /SyncObject}.

The Where Axis also can be used to select multiple foci at the same time. Multiple selec
are done by making more than one selection in a given hierarchy. The set of foci curr
selected is the cross-product of all resource hierarchy selections. For example, in Figure 1
are three resources selected from theCode hierarchy (/Code/channel.c, /Code/anneal.c, and
/Code/anneal.c/a_cost), one resource selected from theMachine hierarchy (/Machine/goat), one resource
selected from theProcess hierarchy (/Process), and two resources selected from theSyncObject hier-

Figure 17: A single focus selected
User’s Guide January 10, 2002 Release 3.3

Page 5-5

s

d sub-
d by
n.

at the
to the
tch.
is case-

dese-
not
archy (they are/SyncObject and/SyncObject/Semaphore). The total number of foci currently selected i
therefore (3× 1 × 1 × 2 = 6). They are:

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject}

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject/Semaphore}

5.4 The Where Axis GUI

Locating a resource

Resource names are sorted in every listbox, to ease locating resources. All sibling expande
trees are sorted left-to-right on screen. A subtree’s sibling listbox is always leftmost, followe
its expanded items, if any. If all of a subtree’s children are expanded, then no listbox is draw

To quickly locate a resource, you may type a resource prefix into the “Search” entry box
bottom of the Where Axis window and press return. This feature finds, expands, and scrolls
first resource with that prefix (if any). Continuing to press return will find the next prefix ma
The search wraps around to the beginning when no more matches are found. The search
sensitive.

Selecting a resource

Clicking on a resource name (whether in a listbox or expanded) selects it. Clicking again
lects it. A <ctrl-dbl-click> on the root of an expanded subtree will select all of its children (but

Figure 18: Multiple foci selection
User’s Guide January 10, 2002 Release 3.3

Page 5-6

ote
he cor-

To
nt
un-

tain-

, the
nd so

ddi-
lding
here

utable
h as

same

nized
ted, the
of the
hy is
re also

be
its children’s children; i.e., not recursively). Another <ctrl-dbl-click> deselects the same. N
that when a function is selected or deselected in the code hierarchy, the selection state of t
responding function in the Call Graph is changed (see Section 5.5 for more details).

To deselect every node in the Where Axis, chooseClear from theSelections menu.

Listbox expansion

As previously mentioned, double-clicking on a non-leaf listbox item will expand it.
quickly expandall (non-leaf) items of a given listbox, <shift-dbl-click> on the listbox’s pare
node (which is always salmon colored). Another <shift-dbl-click> on the listbox’s parent will
expand all children back into the listbox.

The navigate menu

If many Where Axis items have been expanded (e.g. a <shift-dbl-click> on a listbox con
ing 100 elements), it may be difficult finding your way around the Where Axis. TheNavigate
menu can help with this. After clicking on any node (whether or not it was a listbox node)
Navigate menu will contain every ancestor of that node (i.e., its parent, its parent’s parent, a
on up to the root node). Selecting any item from theNavigate menu will scroll the Where Axis so
the chosen item is visible.

Scrolling

The Where Axis contains traditional horizontal and vertical scrollbars for navigation. In a
tion, the Where Axis may be scrolled by moving the mouse to the center of the window, ho
down the Alt key, and moving the mouse. The mouse pointer will remain fixed, but the W
Axis will scroll around it.

5.5 Call Graph display

A new display added to Paradyn provides a representation of the callgraph of each exec
in the application: see Figure 19. Starting from each program’s entry-point function (suc
main for C/C++ applications), the graph of functions called from it are presented, using the
hierarchical display and search functionality as the WhereAxis.

The resource selection state of functions in the Call Graph and Where Axis are synchro
since they represent the same resources. When a function node in the Call Graph is selec
shadow nodes in the Call Graph and the corresponding function in the code hierarchy
Where Axis are also selected. On the other hand, when a function in the code hierarc
selected, the primary and shadow nodes in the Call Graph representing the same function a
selected.

One view option currently supported allows the module containing each function to
prepended to its name.
User’s Guide January 10, 2002 Release 3.3

Page 5-7

made
the

rough
The call graph displays statically determined edges, that is function calls that are not
through function pointers. Function calls made through function pointers will be displayed in
call graph when the Performance Consultant instruments the function containing the call th
the function pointer.

Figure 19: Callgraph display
User’s Guide January 10, 2002 Release 3.3

Page 6-1

s sec-
ct met-

ion 5)

etrics
ox is

s
the
ribes

in the

addi-
rics”
n 6.2;
ction)

select
to the
x of
6 SELECTING METRICS

A metric is a time-varying function that quantifies some aspect of program performance. Thi
tion illustrates the metrics selection process in Paradyn. Section 6.1 describes how to sele
rics and Section 6.2 describes all the metrics currently defined in Paradyn.

6.1 How to select metrics

When you wish to display or modify performance data, you must select a focus (see Sect
and list of metrics. This section discusses how to selectmetrics—the type of performance data.

The Metrics Dialog Box appears when Paradyn needs the user to specify one or more m
for some operation. Currently, there is only one place in Paradyn where the Metrics Dialog B
used: when choosing metric-focus pairs to add to avisi. Choosing a set of metric-focus pair
involves making selection(s) from both the Metrics Dialog Box (for the metrics) and from
where axis (for the foci). In this section, we will discuss only metric selection; Section 5 desc
in detail how to make focus selections.

A sample metrics dialog box appears in Figure 20. Note that the metrics which appear

dialog box are specific to the platform being run (such as sequential vs. parallel/PVM). In
tion, if thedeveloperMode tunable constant is set (see Section 4.3), the “developer mode met
are also made available. Complete descriptions of the various metrics are provided in Sectio
expert users can use Paradyn Configuration Language’s Metric Description Language (Se
to add custom metrics.

When the metrics dialog box appears, select one or more metrics from the given list. To
a metric, simply click the mouse in any checkbox. Selected metrics will have a red square
left of the metric name in the dialog box. Figure 21 shows how the metrics dialog bo
Figure 20 would look after the metricscpu , msg_bytes_sent , andprocedure_calls were selected.
Clicking on a previously-selected metric will deselect it. Clicking on theCLEAR button at the bot-

Figure 20: Metrics dialog box
User’s Guide January 10, 2002 Release 3.3

Page 6-2

ious
nfigura-
ng this

e or for

rcent-

are like
tom will deselect all selected metrics.

When done with metric selections, pressACCEPT or CANCEL . The metrics dialog box will

disappear at that time; it will reappear the next time a metric selection is required1.

6.2 Metric Descriptions

A list of all current metrics is presented in Figure 22. As we have described in the prev
Section, expert users can create their own custom designed metrics using the Paradyn Co
tion Language. Most of the metrics that appear in Figure 20 and Figure 21 were created usi
language and are provided within Paradyn. Additionally, an expert user can selectDeveloper
Modemetrics (Figure 22). Developer mode metrics are mostlyinternal metrics, or metrics that
have been hard coded into Paradyn, that can be used to monitor Paradyn’s own performanc
debugging purposes. Developer mode can be selected from theTunable Constantsoption of the
Setup menu, as it is illustrated in Figure 11 (Section 4). AfterdeveloperMode is selected, a
larger list of metrics will appear in the metrics dialog box.

It is important to make a distinction between three types of metrics:normalized, unnormalized
andsampled. Normalized metrics are time related metrics that are being computed as a pe
age (e.g.,cpu). Unnormalized metrics are mainly computed using counters (e.g.,procedure_calls)
and they are usually expressed as a rate (e.g., operations per second). Sampled metrics
unnormalized metrics, but the units are not represented as a rate (e.g., operations).

Figure 21: Metrics dialog box with several metrics selected

1. This contrasts with theWhere Axiswindow (Section 5), which is kept open because the ability to browse a
program’s resource hierarchy at any time is desirable.
User’s Guide January 10, 2002 Release 3.3

Page 6-3
Metric Description Units Visi Axis
Label

active_processes Each bin represents the number of processes
active during the corresponding interval of
time. Aggregation is the average number of
processes active over an interval of time.

of pro-
cesses

operations

cpu Each bin represents the percentage of CPU
time spent during the corresponding time inter-
val. Aggregation is total CPU time over an
interval.

CPUs CPUs

cpu_inclusive Same ascpu but includes called procedures in
the process time calculation.

CPUs CPUs

exec_time Each bin represents the elapsed wall clock time
per unit during the corresponding time interval.
Aggregation is the sum over the interval.

exec
time

CPUs

io_bytes This metric represents the number of bytes for
Input/Output operations. Currently, only “read”
and “write” are supported as input/output oper-
ations for UNIX, MPI, and PVM. On WinNT,
“ReadFile” and “WriteFile” are used.

#bytes
read/
written

bytes

io_ops Number of Input/Output operations. IO opera-
tions are the same as forio_bytes.

IO ops operations

io_wait Time spent during Input/Output operations. IO
operations are the same as forio_bytes.

CPUs CPUs

io_wait_inclusive Same asio_wait but includes called procedures
in the process time calculation.

CPUs CPUs

msgs The total number of messages sent and
received. The unit is operations per unit of
time. Aggregation is the sum of all sends and
receives over the time interval. Send and
receives are defined as follows:

UNIX send:“write”
UNIX recv:“read”
PVM send:“pvm_send”
PVM recv:“pvm_recv”

#msgs
sent/recv

msgs

Figure 22: Metrics defined in Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 6-4
pp_msgs Similar tomsgs, but it counts the number of
point-to-point messages (only for MPI applica-
tions). Point-to-point communications are
defined as follows:PMPI_Send, PMPI_Bsend,
PMPI_Ssend, PMPI_Isend, PMPI_Issend,
PMPI_Recv, PMPI_Irecv, PMPI_Sendrecv,

PMPI_Sendrecv_replace .

#msgs msgs

cc_msgs Similar tomsgs, but it counts the number of
collective communications (only for MPI appli-
cations). Collective communications are
defined as follows:PMPI_Bcast,
PMPI_Alltoall, PMPI_Alltoallv,
PMPI_Gather, PMPI_Gatherv,
PMPI_Allgather, PMPI_Allgatherv,
PMPI_Reduce, PMPI_Allreduce,
PMPI_Reduce_scatter, PMPI_Scatter,

PMPI_Scatterv, PMPI_Scan .

#msgs msgs

msg_bytes Number of message bytes sent and received.
Aggregation is the total number of bytes sent
and received. Send and receive are defined as
follows:

UNIX : “read”, “write”
PVM : “pvm_send”, “pvm_recv”

#bytes
sent/recv

bytes

msg_bytes_recv Number of message bytes received per unit of
time. Aggregation is the total number of bytes
received. Message receives are defined as for
msgs.

msg-
bytes
recv’d

bytes

pp_msgBytesRecv Similar tomsg_bytes_recv, but only for receive
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
PMPI_Recv, PMPI_Irecv, PMPI_Sendrecv,

PMPI_Sendrecv_replace.

msg
bytes
recv’d

bytes

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 6-5
cc_msgBytesRecv Similar tomsg_bytes_recv, but only for receive
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
PMPI_Bcast, PMPI_Alltoall,
PMPI_Alltoallv, PMPI_Gather,
PMPI_Gatherv, PMPI_Allgather,
PMPI_Allgatherv, PMPI_Reduce,
PMPI_Allreduce, PMPI_Reduce_scatter,
PMPI_Scatter, PMPI_Scatterv,

PMPI_Scan .

msg
bytes
recv’d

bytes

msg_bytes_sent Number of message bytes sent per unit of
time. Aggregation is the total number of bytes
sent. Message sends are defined as for “msgs”.

msg-
bytes
sent

bytes

pp_msgBytesSent Similar to msg_bytes_sent, but only for send
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
PMPI_Send, PMPI_Bsend, PMPI_Ssend,
PMPI_Isend, PMPI_Issend,

PMPI_Sendrecv, MPI_Sendrecv_replace .

msg
bytes
sent

bytes

cc_msgBytesSent Similar tomsg_bytes_sent, but only for send
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
PMPI_Bcast, PMPI_Alltoall,
PMPI_Alltoallv, PMPI_Gather,
PMPI_Gatherv, PMPI_Allgather,
PMPI_Allgatherv, PMPI_Reduce,
PMPI_Allreduce, PMPI_Reduce_scatter,
PMPI_Scatter, PMPI_Scatterv,

PMPI_Scan .

msg
bytes
sent

bytes

number_of_cpus Number of CPUs in the system. #CPUs #CPUs

observed_cost Internal metric : Indicates the effect on the
application from collecting data. Its purpose is
to check that the overhead of data collection
does not exceed pre-defined levels, and should
these levels be exceeded, it reports to the higher
level consumers of data.

slow-
down

slowdown

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 6-6
pause_time Each bin represents the fraction of time in
which the application program was paused by
Paradyn. Maximum value is 1.0. Aggregation
is the total time paused over an interval.

pause
time

CPUs

predicted_cost Internal metric : Expected overhead of collect-
ing the data necessary to compute a metric for a
particular focus or combination of resources.
The predicted cost is expressed as the percent-
age utilization of CPU.

slow-
down

slowdown

func_calls_to Represents the number of procedure calls to the
specified function or module.

#calls operations

func_calls_by Represents the number of procedure calls made
by the selected function or by all of the func-
tions in the selected metric.

#calls operations

sync_ops The number of synchronization operations per
unit of time. Aggregation is the sum. The fol-
lowing are defined as synchronization opera-
tions:

UNIX : “write”, “read”, “recv”, “recvfrom”,
“select”, “sendmsg”, “send”, “sendto”
PVM : “pvm_send”, “pvm_recv”

#sync
ops

operations

sync_wait The elapsed wall time spent waiting for a syn-
chronization operation. Aggregation is the sum
of all waiting time. The following will be
included in the reported times:

UNIX : “write”, “read”
PVM : “pvm_send”, “pvm_recv”

sync
wait time

CPUs

sync_wait_inclusive Same as sync_wait, but includes called proce-
dures in the process time calculation.

sync
wait time

CPUs

Metric Description Units Visi Axis
Label

Figure 22: Metrics defined in Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 6-7
Metric Description Units Visi Axis
Label

sampling_rate Internal metric : It is the time interval at which
samples are taken of the application by the dae-
mon.

millisec-
onds

millisec-
onds

stackwalk_time Internal metric : Amount of time the Paradyn
daemon(s) spend walking the stack. This is done
when timers or counters need to be manually
started.

stack-
walk
time

CPUs

numOfActCounters Internal metric : The number of active count
based metric-focus pairs. Or the number of
counters that are actively being sampled.

of
counters

opera-
tions

numOfActProcTim-
ers

Internal metric : The number of active process
time based metric-focus pairs. Or the number of
process timers that are actively being sampled.

of tim-
ers

opera-
tions

numOfActWallTim-
ers

Internal metric : The number of active wall time
based metric-focus pairs. Or the number of wall
timers that are actively being sampled.

of tim-
ers

opera-
tions

Figure 23: Developer Mode Metrics defined in Paradyn
User’s Guide January 10, 2002 Release 3.3

Page 7-1

liza-
ase per-
eive

efore
y the

ual-
rting
7 CONTROLLING VISIS

This section describes how to start and stop visualizers (known as ‘visis’) from Paradyn.

7.1 Starting

A new visualization can be requested by pressing theVisi button from the Paradyn main window
menubar (Figure 24), which opens theStart A Visualization dialog.

This dialog presents a list of visualizations to choose from as shown in Figure 25. Visua
tions can be started so that they receive either global phase performance data or current ph
formance data. The selection in Figure 25 is for a Histogram visualization that will rec
performance data from the global phase of the application’s execution.

Once a visualization has been defined, metric and focus menuing is usually initiated b
the visualization process is started. Whether or not this menuing is done is determined b
forceflag setting in the PCL entry for this visualization. If the force option is set then the vis
ization process is started without metric and focus menuing. This is typically used for sta

Figure 24: Paradyn Main Control window

Figure 25: Start A Visualization menu
User’s Guide January 10, 2002 Release 3.3

Page 7-2

zation
menu-
zation
visualizations that do not want to enable data flow before starting. The Phase Table visuali
is an example of one which should have the force option set. For other visualizations, once
ing is done, and at least one metric/focus combination is successfully enabled, the visuali
process is started.

7.2 Stopping

Each visualizer has a menu option to quit that invokes the VisiLibQuitVisi routine which takes
care of disabling data collection and cleans up any associated state, then exits.
User’s Guide January 10, 2002 Release 3.3

Page 8-1

re two
he
tervals
e ends

cur at
ecu-
global
l phase
se of

ew
mance
when

ualiza-
. Typi-
ows a
shows

and the
ing on
8 PHASES

Phases in Paradyn are contiguous time-intervals within an application’s execution. There a
kinds of phases: theglobal phaseandlocal phases. The global phase starts at the begining of t
program execution and extends to the current time. Local phases are non-overlapping subin
of the global phase. When a new local phase is defined in the system, the current local phas
and all data collection for the current phase stops. Data collection for the new phase will oc
a finer granularity than collection for data the global phase. At any time in the program’s ex
tion, data collection can be enabled for one or both of the the current local phase and the
phase. Similarly, a Performance Consultant search (Section 9) can be started for the globa
of an application’s execution, or can be restricted to search over only the current local pha
execution.

8.1 Starting a new phase

A new local phase can be defined by selectingStart under thePhase menu of the Paradyn main
window (Section 3) orStart Phase from the Phase Table display menu (Figure 26). When a n
phase is defined, any visualizations defined for the current local phase stop receiving perfor
data. Similarly, if the Performance Consultant is active for the current phase, its search ends
a new phase is defined.

8.2 Visualizations and Phases

Visualizations can show data for either the local phase or the global phase. Local phase vis
tions receive and display performance data from the phase’s start time until the phase ends
cally, local phase data is collected at a finer granularity than global phase data. Figure 27 sh
real time histogram visualization that has been defined for the global phase, and Figure 28
one that has been defined for specific phase.

8.3 The Performance Consultant and phases

The Performance Consultant (Section 9) can simultaneously search both the local phase
global phase. Complete details are given in the Performance Consultant section; search
multiple phases in particular is discussed in that section.

Figure 26: Phase Table Display
User’s Guide January 10, 2002 Release 3.3

Page 8-2
Figure 27: Time Histogram: Global Phase

Figure 28: Time Histogram: Local Phase (3)
User’s Guide January 10, 2002 Release 3.3

Page 9-1

t your
x pro-
yn’s

tify the
re”)
hy-

arch-
met-

ificant
cated
ses (to
ogether.
former

or-
9.4),

5).

e PC

t
of its

ms.

he
4).

ution
hich
9 PERFORMANCE CONSULTANT

Paradyn provides many options for selecting and displaying performance information abou
application program. Sometimes these options can be overwhelming. In a large, comple
gram, it can be difficult to know where to start looking for performance problems, and Parad
Performance Consultant is designed to help. The Performance Consultant (PC) helps iden
type of performance problems (“why”), where in the program these problems occur (“whe
and the time during the execution during which the problem occurred (“when”). This “w

where-when” model of searching for performance problems is called the W3 (pronounced “W-
cubed”) Search Model and forms the core of the PC.

The PC is automated so that, in its normal mode of operation, you simply tell it to start se
ing for performance problems. The PC will continually select and refine which performance
rics are enabled and for which foci they will be enabled.

The Performance Consultant in Release 3.0 of Paradyn introduces a couple of sign
changes to previous behavior. Firstly, the former Process/Thread hierarchy is now relo
underneath Machine, so that searches progress from considering machines to proces
threads where supported), instead of separately considering machines and processes t
Secondly, a callgraph-based search of the Code hierarchy replaces (as default) the

unwieldy modules-then-functions search.1

In this section, we describe the W3 Search Model (Section 9.1), the components of the Perf
mance Consultant’s window (Section 9.2), how to interpret what the PC tells you (Section
and (once you get a bit of experience) how to adjust and fine-tune its operation (Section 9.

9.1 The W3 search model

The Performance Consultant automatically locates potential bottlenecks in your code. Th
describes each bottleneck by statingwhy there is a problem (thehypothesis), andwhere in the
application the problem was found (thefocus, see Section 5). You can direct the search to find ou
when the problem occurred by including either the entire execution or a particular phase
execution.

The “Why” Axis: The PC includes the definition of a set of generic performance proble
These problems, called “hypotheses”, are typically of the form:

PerfMetricX > SpecifiedThreshold

where PerfMetricX is some metric defined in Paradyn (Section 6) and t
SpecifiedThreshold is a value that you can set by using a Tunable Constant (Section
The threshold value is typically expressed as a fraction (between 0 and 1) of the exec
time of the application program. Each hypothesis may also contain pruning directives, w
cause some portion of the resource hierarchy to be ignored while searching.

1. The former search behavior is available by setting (before opening the Performance
Consultant window) a developer mode Tunable Constant:PCuseCallGraphSearch.
User’s Guide January 10, 2002 Release 3.3

Page 9-2

icu-
xis, as

h to
that
hase

ms that
r prob-

the
lored
ottle-

es not
al of
ignif-

tc.) is

le

nt
The “Where” Axis: A focus in Paradyn allow you to constrain a performance metric to a part
lar subset of program resources. The PC makes step-by-step selections in the Where A
it tries to isolate the cause of performance problems.

The “When” Axis: The PC can look for performance problems whose effect is large enoug
stand out over the total execution of the application program, or it can look for problems
stand out during a restricted interval of time. You can associate a PC with each p
(Section 8). The PC associated with the global phases searches for performance proble
affect the entire program execution; the PC associated with a local phase searches fo
lems that affect (at least) that interval of execution.

Depending on the complexity of the application program, i.e., the number of nodes in
Where Axis for the application, the number of hypothesis/focus pairs that could be exp
might be quite large. On the other hand, the goal is to find the handful of most troublesome b
necks in the application. Any hypothesis/focus pair that doesn’t exceed the threshold do
require further attention; realistically, any that exceeds the threshold for only a short interv
time won’t get any attention. For this reason the PC only reports bottlenecks that exist for a s
icant portion of the overall phase being tuned.

9.1.1 The Why Axis

The space of all possible hypotheses (such as synchronization-bound, CPU-bound, e

called the Why Axis. The root hypothesis is the genericTopLevelHypothesis. This hypothesis is
considered true if any hypothesis at the next level is true. The remaining hypotheses are:

• CPUbound: Compares CPU time to the tunable constantPC_CPUThreshold . Searching
through/SyncObject and/Process hierarchies is disabled.

• ExcessiveSyncWaitingTime: Compares total synchronization waiting time to the tunab
constantPC_SyncThreshold .

• ExcessiveIOBlockingTime: Compares total I/O waiting time to the tunable consta
PC_IOThreshold . Searching through the/SyncObject hierarchy is disabled.

Figure 29: The Why Axis

TopLevelHypothesis

ExcessiveSyncWaitingTime CPUbound ExcessiveIOBlockingTime

TooManySmallIOOps
User’s Guide January 10, 2002 Release 3.3

Page 9-3

to

that
ay to
been

ests to
pothe-
ocus

ansion
t

a
to

moving
mple,
l-

ion
nstru-
cking
rches
her

lled
pair

nts
m

• TooManySmallIOOps: Compares average number of bytes per I/O operation
PC_IOOpThreshold . Searching through the/SyncObject hierarchy is disabled.

If a particular hypothesis in the Why Axis tests true, the PC will try to test the children of
hypothesis next. When the Performance Consultant searches along the Why Axis in this w
test more detailed hypotheses for a particular focus, we say a Why Axis refinement has
made.

9.1.2 The search strategy

When a new search is started, the Performance Consultant makes instrumentation requ
evaluate the topmost levels of the why and where axes; that is, it evaluates each top level hy
sis (CPUBound, SyncWaiting, IOBlocking) for WholeProgram. These particular hypothesis/f
pairs will continue to be evaluated for the entire phase.

There are two questions of interest here: when is the search expanded, and how is exp
done? The search is expanded anytime a(hypothesis : focus) pair tests true. The only exception is a
start-up, when an initial set of(hypothesis : focus) pairs are enabled. If, at any time,
(hypothesis : focus) pair (h : f) tests true, then the following hypothesis:focus pairs will be added
the search:(h : all child foci of WholeProgram), plus (all child hypotheses of h : f). The why axis, and
each of the resource hierarchies, are trees, so refining one step in the search is defined as
down along a single edge in either the why axis or one of the resource hierarchies. For exa
from (ExcessiveIOBlockingTime : WholeProgram), using the resource hierarchy in Figure 17, the fo
lowing set of(hypothesis : focus) pairs would be added:

1. One step along the Why Axis:
(TooManySmallIOOps : WholeProgram)

2. One step along the Code hierarchy:

3. One step along the Machine hierarchy:
(ExcessiveIOBlockingTime : goat)

All of the new (hypothesis : focus) pairs resulting from this expansion generate instrumentat
requests, and, if possible, data collection begins immediately. However, the total amount of i
mentation active at any given time during the tuning session is limited by an internal cost-tra
system. If the total cost of currently enabled instrumentation for all visualizations and sea
exceeds the cost threshold, new(hypothesis : focus) pairs are queued and activated after some ot
instrumentation is disabled.

Each(hypothesis : focus) pair is represented as a node of a directed acyclic graph (DAG), ca
the Search History Graph (SHG). The root node of the SHG represents the
(TopLevelHypothesis : WholeProgram), and its child nodes represent the list of possible refineme
chosen as described above. If a SHGnode tests false, it is not expanded. After a certain minimu

(ExcessiveIOBlockingTime : bubba.c) (ExcessiveIOBlockingTime : channel.c)

(ExcessiveIOBlockingTime : graph.c) (ExcessiveIOBlockingTime : outchan.c)

(ExcessiveIOBlockingTime : partition.c) (ExcessiveIOBlockingTime : anneal.c)
User’s Guide January 10, 2002 Release 3.3

Page 9-4

ady-

tion.
ing and
Graph.

been

ested
not

Cur-
e gray
for all

Consult-
observation interval, testing on all but the topmost level false nodes is halted. If an alre
expanded node changes from true to false, then testing is halted for all of its children.

9.2 Running the Performance Consultant

In this section, we describe how to run the Performance Consultant on an applica
Section 9.2.1 describes the Performance Consultant Window, Section 9.2.2 describes start
stopping a search, and Section 9.2.3 provides a detailed description of the Search History

9.2.1 The Performance Consultant window

The Performance Consultant window may be opened any time after an application has
defined (see Section 2.4) by choosingPerformance Consultant from theSetup menu of Paradyn’s
main window. Figure 30 shows a sample Performance Consultant window.

TheSearches menu contains a list of all possible phases on which a search has been requ
or may be started, including the default, “Global”, for whole program searches. If you have
defined any phases for the application, then you will see only two choices, “Global” and “
rent.” The currently displayed phase has a blue diamond next to its name; the others hav
diamonds. Choosing items under this menu allows you to page through the search displays
active, paused, and completed searches. When a new phase is defined, the Performance
ant detects it, and adds the new phase’s name to itsSearches menu.

Figure 30: A sample Performance Consultant window

Searches
Menu

Current
Search

Search Status

Search History
Graph

Node Status

SHG Color
Key

Help Tips
User’s Guide January 10, 2002 Release 3.3

Page 9-5

iven

layed
xpected
rma-
a dif-

rch
erfor-
ill show
il.

the
. For
node

e a

cuss
ved by

con-

t
Note
ation

e a new

enta-
only

art of a
TheCurrent Search line gives the name of the currently displayed search phase. At any g
time, it is always the same as theSearches menu item having a blue diamond before its name.

The Search Status box is a scrolling text display just beneath theCurrent Search line. From
time to time, the Performance Consultant adds some information about the currently disp
search in this box; examples include when refinements are made, phases end, and une
error conditions occur. As with most items in the Performance Consultant window, the info
tion displayed is specific to the currently displayed search; changing searches (by choosing
ferent item under theSearches menu) will show different information.

The Search History Graph Display is the resizable window below the status box. The Sea
History Graph is a compact graphical display of the history of refinements made by the P
mance Consultant. Each search has a distinct Search History Graph; changing searches w
a different Search History Graph. Section 9.2.3 discusses the Search History Graph in deta

TheNode Status displays extra information for a given Search History Graph node. To see
full description for any node in the SHG display, click the middle mouse button on the node
example, the node status line in Figure 34 shows the full hypothesis and focus for the blue
labeledgoat. For convenience, this line of information will remain present until the next tim
node is clicked on with the middle mouse button. TheSearch andPause buttons are described in
Section 9.2.2, where we discuss running the Performance Consultant.

TheSHG Color Key explains the colors and display styles used in the SHG display. We dis
each key item in Section 9.2.3. To conserve screen space, the SHG Color Key may be remo
setting the tunable constantshowShgKey to false.

Help Tips describe mouse and key presses in the Performance Consultant window. To
serve screen space, these may be removed by setting the tunable constantshowShgTips to false.

9.2.2 Starting and stopping a search

To start the currently displayed search, click on theSearch button in the Performance Consultan
window. The PC directs instrumentation insertion to begin locating application bottlenecks.
that the application program must be running for data to be collected for the PC; if the applic
has not been started or has been paused, (re-)start it by pressing theRUN button of the Paradyn
Main Window (see Section 2). Current Phase Searches may also be started at the same tim
phase is defined. To do so, chooseStart with Performance Consultant from the Phase menu of
Paradyn’s main window.

ThePause button stops the Performance Consultant temporarily, and removes all instrum
tion for the particular search displayed. Note that it does not stop the application itself; its
effect is on the PC’s currently displayed search. To resume a search after pausing, pressResume .

A search ends when its phase ends; for a current phase, this is when you define the st
new phase; for the global phase, it is when the application terminates.
User’s Guide January 10, 2002 Release 3.3

Page 9-6

ress in
:

ook

time,
ance

istory
9.2.3 The Search History Graph display

As the Performance Consultant searches for bottleneck(s), it leaves a record of its prog
the Search History Graph. Initially, the Search History Graph contains only a single item
TopLevelHypothesis. A few moments after the search begins, the Search History Graph will l
like that in Figure 31. The three items within the listbox belowTopLevelHypothesis are what the

Performance Consultant first tests the program for—excessive synchronization waiting
excessive I/O blocking time, or CPU bound. To use the terminology given above, the Perform
Consultant is presently trying to find outwhy the program is running slowly, as opposed towhere
(what program resource(s)) it is running slowly. Whenever items are added to the Search H
Graph, we say that arefinementhas been performed. In this example, aWhy Axis refinementhas
been performed, indicated by the yellow line connectingTopLevelHypothesis to its descendant list-

Figure 31: The Performance Consultant’s search begins
User’s Guide January 10, 2002 Release 3.3

Page 9-7

ow, a

in the

in the

and is

ement
CPU

s

s will
been

a
exam-
am is

s
g large

tly
e in the

ons of
ultant
nodes
har-
of any

n more

ing in

e and
er and
box. As shown in the window’s key area at the bottom of the Performance Consultant wind
yellow line is a Why Axis refinement; a purple line is a Where Axis refinement.

Each item in the Search History Graph of Figure 31 has a green background. As shown
window’s key area, a green background indicatesUnknown status; that is, we do not yet know
whether any ofExcessiveSyncWaitingTime, ExcessiveIOBlockingTime, or CPUBound are true or false,
since we have just begun the Performance Consultant’s search. Also, the text of each item
listbox has a white foreground. As shown in the window’s key area, white text indicates anactive
test; that is, the Performance Consultant has instrumented the program to perform the test
collecting data for it.

We continue the search until the Performance Consultant has made a further refin
(Figure 32). First, note that the Performance Consultant has decided that the program is
bound (because CPUbound is drawn with a blue background). The node
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have
both tested false, so their background color is now pink. Although all three of these node
continue to be tested (which we see by the white text), only the true node, CPUBound, has
expanded to try to further refine the bottleneck. As a result of the search, a listbox belowCPUb-
ound has appeared. The line connectingCPUbound to its children is drawn in purple, since is
Where Axis refinement. Each item in the listbox contains program resources that are being
ined with theCPUbound hypothesis. The Performance Consultant has decided that the progr
CPU bound; now it’s trying to refine the bottleneck to (in this case) a certain machine (goat) or in
the Code hierarchy.

Double-clicking on a true node (such asCPUbound in Figure 32) collapses the display so it
children are no longer shown. Because it saves screen space, this is useful for traversin
complex search graphs. In the example of Figure 32, double-clicking onCPUbound would put
CPUbound into the listbox withExcessiveSyncWaitingTime andExcessiveIOBlockingTime. A triangle
will appear next toCPUbound in the listbox to indicate that it has children which are presen
being hidden to save screen space. To expand the node’s children, double-click on the nam
listbox.

Screen space can be saved in the Search History Graph by hiding certain combinati
node types. For example, you may wish to view only nodes which the Performance Cons
has determined to be true bottlenecks (blue nodes). Or, you may wish to show all but those
which have been determinednot to be bottlenecks (pink nodes). There are seven such node c
acteristics; boolean tunable constants (Section 4) can be set to show or not to show nodes
given characteristic. We now briefly describe each node characteristic; they are discussed i
detail in Section 9.4.

9.3 Interpreting the results of callgraph-based search

The callgraph-based search is similar in principle to the module-then-function search, differ
the way searches and refinements proceed through theCode hierarchy, and in the initial use of
inclusive metrics instead of exclusive metrics. Since inclusive metrics are less costly/intrusiv
the search is directed by executing functions, the callgraph-based search is typically fast
more accurate than the module-then-function search.
User’s Guide January 10, 2002 Release 3.3

Page 9-8

for the
o inter-
d (and
s

main
ck.
pos-
9.4 Interpreting the results of module-then-function search

Results may change over time because the Performance Consultant continues running
duration of the phase being tuned. Figure 34 shows a search in progress and explains how t
pret the PC display. The Performance Consultant has decided that the program is CPU boun
it represents this by presentingCPUbound drawn with a blue background). The node
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have
both tested false, so their background color is now pink. Although all three of these nodes re
active, only the true node,CPUbound, has been expanded to try to further refine the bottlene
Each item in the listbox underCPUbound contains program resources that have been tested as

Figure 32: The Performance Consultant refines bottleneck to CPUbound
User’s Guide January 10, 2002 Release 3.3

Page 9-9

ine
t is
thesis/
re 34,

r exam-

same
a copy.

list-
of
always
tbox is

nts are
air
e

-

sible refinements of theCPUbound hypothesis. Refinements to two different true nodes (mach
namegoat and source code modulepartition.c) have been made. The Performance Consultan
capable of making an arbitrary number of simultaneous refinements, because multiple hypo
focus pairs may be tested concurrently. For example, in the Search History Graph of Figu
the Performance Consultant will try to make refinements of the two true nodes belowCPUbound:
goat andpartition.c.

Two separate search paths may converge through expansion to the same child node. Fo
ple, the next refinement ofgoat might bepartition.c, and the next refinement ofpartition.c might be
goat. If so, they would share the same child node:(CPUbound : /Code/partition.c,/Machine/goat,/Pro-
cess,/SyncObject). The search display does not connect the two different parent nodes to the
child; instead, it adds a child node for each, where one is a regular node and the other(s) is
These copies are calledshadow nodes. In Figure 34, the regular nodegoat has been clicked with
the middle mouse button to provide its details in the information line below the shg, while the
box itemgoat underpartition.c is drawn in italics to indicate that it is a shadow node. The color
a shadow node will be updated to reflect the status of its regular node. Shadow nodes are
leaf nodes; although the regular node may be expanded in the usual way, the resulting lis
not be copied to the shadow nodes. In this example, the nodegoat underpartition.c is a shadow
node because it has the same hypothesis/focus pair (CPUbound : /Code/partition.c,/Machine/goat,/
Process,/SyncObject) as the listbox itempartition.c undergoat.

Figure 35 shows the contents of the Search History Graph after the next set of refineme
made. First, the nodepartition.c undergoat has been found true; this is the hypothesis/focus p
CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject discussed above. This focus can b

Visual representation
Tunable Constant to
control display look

Description

1. Gray node background shgHideNeverSeenNodes Nodes that the Performance Consultant has not yet
examined.

2. Green node backgroundshgHideUnknownNodes Nodes that the Performance Consultant has not yet
determined to be true or false.

3. Blue node background shgHideTrueNodes Nodes that the Performance Consultant has deter-
mined to be true.

4. Pink node background shgHideFalseNodes Nodes that the Performance Consultant has deter-
mined to be false.

5. White node text shgHideActiveNodes Nodes with white text are those that are active—the
Performance Consultant has instrumented the pro-
gram and is collecting performance data for it.

6. Black node text shgHideInactiveNodes Nodes with black text are inactive—the Performance
Consultant has not instrumented the program to col
lect performance data for it.

7. Italicized node text shgHideShadowNodes Nodes with italicized text are shadow nodes; they are
discussed in Section 9.4.

Figure 33: Search History Graph tunable constants for saving screen space
User’s Guide January 10, 2002 Release 3.3

Page 9-10

e it’s

licked

nta-
read as, “code in modulepartition.c when executing on machinegoat”. The shadow nodegoat
underpartition.c is also true; no attempt is made to refine anything beyond it, however, becaus
just a shadow node ofpartition.c undergoat. Additionally, the nodep_makeMG underpartition.c is
now true. Its hypothesis/focus pair is(CPUbound : /Code/partition.c/p_makeMG,/Machine,/Process,/
SyncObject). Note thatp_makeMG has just a single element in the listbox below it (goat), and it’s a
shadow node. The hypothesis/focus pair for this node is shown in Figure 35 (i.e., we have c
the middle button on that node). It can be read as “functionp_makeMG of modulepartition.c;
machinegoat”. This item is a shadow node ofp_makeMG, located in the listbox belowpartition.c
which is in turn undergoat. Hence, in Figure 35, two searches are in progress. The first has te
tively concluded that a bottleneck exists for modulepartition.c on machinegoat. The other has ten-
tatively concluded that a bottleneck exists for the functionp_makeMG (of modulepartition.c), and

Figure 34: The Performance Consultant refines bottleneck beyond CPUbound
User’s Guide January 10, 2002 Release 3.3

Page 9-11

wn in

licked
is trying to refine further.

The state of the Performance Consultant after the next (and last) refinement is sho
Figure 36. In the middle of the figure, we see thatp_makeMG (underpartition.c, in turn undergoat)
is true. Its hypothesis/focus pair is shown below the Search History Graph (i.e., we have c
the middle button on the node). It can be read “functionp_makeMG of modulepartition.c; machine
goat”. In addition, the shadow nodegoat underp_makeMG (in turn underpartition.c) has been set to
true, to reflect the change in truth value of the actual node for which it is a marker.

Figure 35: The second set of Search History Graph refinements
User’s Guide January 10, 2002 Release 3.3

Page 9-12

d will
stbox
or-
that a

s that
odes to
l of the
In this example, we are done. The Performance Consultant has found the bottleneck, an
not refine any further nodes. After a few more moments, the green items (unknown) in the li
below partition.c will turn pink (false); though we do not show a picture of it here. The Perf
mance Consultant will continue to re-evaluate all true nodes and top level hypotheses so
change in application behavior will update the search.

All nodes which are true (blue) at the end of the search indicate hypothesis/focus pair
have remained true for a significant portion of the phase searched. The PC refines all true n
as specific a focus as possible; in some cases the focus will be refined down to the leaf leve

Figure 36: Final Search History Graph bottleneck refinement
User’s Guide January 10, 2002 Release 3.3

Page 9-13

and so
urrent
PU
evel.

lts.

t may
er the
distinct
bottle-

may
true

search
perfor-
ons in

arch:

than
control

lu-

tive at
tion,
wer.

aliza-
resource hierarchies, but in others the bottleneck is spread across some number of foci
refinement stops earlier. For example, total CPU time for a module may exceed the c
PC_CPUThreshold , but the module may contain a number of functions with roughly equal C
times. If no single function exceeds the threshold, refinement will terminate at the module l

Whenever a node tests true, a note is added to theSearch Status Box near the top of the win-
dow. During your tuning session you may scroll through this list to see a history of test resu

Note that it is possible for the Performance Consultant to report false negatives: that is, i
fail to detect bottlenecks in the code for any of the following reasons: you start a search aft
behavior has started and ended; you perform a search on a phase that contains several
behavioral phases, so no individual bottleneck occurs throughout the entire phase; or the
neck is of relatively short duration, relative to the length of the phase being tested. The PC
fail to completely refine a given bottleneck, if the individual refinement changes from false to
after the PC has tested and found it false.

9.5 Customizing the search parameters

The Performance Consultant has several kinds of controls that you can set to customize its
operation. These controls are tunable constants that set the threshold for deciding when a
mance problems exists. Setting the tunable constants is easily done following the instructi
Section 4.

Several user-level tunable constants are currently defined to control the se
PC_CPUThreshold , PC_SyncThreshold , PC_IOThreshold , andPC_IOOpThreshold . For example, if
PC_CPUThreshold is set to 0.3 (30% of the phase), then any focus with CPU time greater
30% of the phase’s elapsed time will be reported as a bottleneck. Other tunable constants
the sensitivity of the hypothesis testing.

The tunable constants determine the thresholds used for testing hypotheses:

PC_CPUThreshold : used for hypothesisCPUbound.

PC_SyncThreshold : used for hypothesesExcessiveSyncWaitingTime.

PC_IOThreshold : used for hypothesisExcessiveIOBlockingTime.

PC_IOOpThreshold : used for hypothesisTooSmallIOOps.

These tunable constants determine search parameters:

minObservationTime: all tests will be continued for at least this interval of time before any conc
sions are drawn. This protects against transitory effects at the start of a phase.

costLimit : determines an upper bound on the total amount of instrumentation that can be ac
a given time while the application runs. A low value permits less concurrent instrumenta
so the search may proceed more slowly but perturbation of the application will also be lo
A high value increases perturbation, which may result in less accurate values for all visu
tions as well as the Performance Consultant.
User’s Guide January 10, 2002 Release 3.3

Page 10-1

ure call
asily

data.
ation.
ribed

time.
etric/

g dis-
time-

t
etric
a-

f

10 STANDARD VISI MODULES

Paradyn provides an open interface to its performance data. All visualization modules (visis) in
Paradyn are external processes that use the Paradyn-provided library and remote proced
interface (VisiLib) to access performance data in real time. Existing visualizations can be e
added to Paradyn by modifying them to use VisiLib routines to access Paradyn performance
Paradyn currently has visis for a time-histogram, bar chart, table and 3D terrain visualiz
These visualizations are described in the following sections, and the VisiLib library is desc
in a separate document, theVisiLib Programmer’s Guide.

10.1 Time Histogram visi

The time-histogram visualization plots performance data for metric/focus pairs over
Figure 37 displays a time-histogram showing three curves corresponding to three enabled m
focus pairs. The time axis begins at the start time for the phase over which the data is bein
played (in this case the data is displayed for the global phase which begins at time 0). The

histogram can display multipley-axes. In Figure 37 there are twoy-axes displayed; the rightmos
one corresponding to the metric “CPU utilization”, and the leftmost corresponding to the m
“Procedure Calls”. Eachy-axis is labeled with the units in which its corresponding metric is me
sured. They-axis labels can be seen in Figure 37.

Time-histogram is launched by choosing Histogram from theStart A Visualization dialog pro-
duced by pressing theVisi button in the Paradyn Main Control window. A dialog box with a list o
all visis known to Paradyn is brought up; choose Histogram and clickAccept .

Figure 37: Time Histogram with selected curve
User’s Guide January 10, 2002 Release 3.3

Page 10-2

ram
s-
se the
dy has
togram

ing

f the
of the

ara-
o be
rrent

hen
d are

col-

s one
a. The
he His-

om-
38.
on-
the
e dis-

yed
d view
of
can be
hows
10.1.1 File menu

The Histogram visi’s File menu contains two items for operations that apply to the Histog
visualization as a whole. TheKeep on Paradyn Exit item is a check box that specifies that the Hi
togram display should not terminate when Paradyn is closed. This behavior is useful in ca
user wishes to make screen dumps of the histogram display after the application under stu
completed and Paradyn has been closed. By default, this behavior is disabled (i.e., the His
window closes when Paradyn is closed).

The Close item closes the Histogram visi window, disabling instrumentation and remov
resources no longer required.

10.1.2 Curve menu

The Curve Menu contains items that manipulate curves in the Histogram visi window. Most o
items operate on the selected curve(s). To select a curve, click on its name in the legend
Histogram visualization window. See Figure 37 for an example of a selected curve.

The Add... menu item adds curves to the Histogram visualization. When selected, the “P
dyn Metrics Menu” dialog will be displayed to allow the user to choose which metrics are t
shown in the Histogram. The Where Axis is also used in adding a new curve, in that the cu
selection in the Where Axis is the focus for the new curve. TheAdd... menu item is the only item
in the Curve menu that does not require a current selection.

TheRemove menu item removes one or more curves from the Histogram visualization. W
this item is chosen, the curves selected in the Histogram visualization window’s legen
removed from the Histogram visualization. If possible, the instrumentation that was used to
lect the data for that curve is removed from the application under study.

TheSmooth menu item smoothes the data for the selected curve(s). A smoothed curve i
that shows the effects of passing a filter over the data to remove spikes from the curve’s dat
curves shown in Figure 37 are smoothed. By default, curves are smoothed when added to t
togram.

TheUnsmooth menu item removed the smoothing effect from the selected curve(s). For c
parison with the smoothed curves of Figure 37, see the same curves unsmoothed in Figure

The Show menu item reshows a hidden curve in the Histogram visualization window. C
versely, theHide menu item hides a visible curve in the display. Both operations work on
selected curve(s) only. In Figure 38, the “cpu<Whole Program>” curve has been hidden in th
play..

10.1.3 Panning and zooming

The scroll bars at the bottom and right of the time-histogram allow the interval of time displa
in the histogram window to be adjusted. The zoom bar can be adjusted to get a more detaile
of a particular time interval along thex-axis. As the zoom bar is moved upwards, the percent
the totalx-axis displayed decreases. Also, once the zoom bar has been moved, the pan bar
used to change the time interval that is currently being displayed in the window. Figure 39 s
the time-histogram with a zoomed and panned view.
User’s Guide January 10, 2002 Release 3.3

Page 10-3
Figure 38: Time Histogram with unsmoothed and hidden curves

Figure 39: Zoomed Time Histogram
User’s Guide January 10, 2002 Release 3.3

Page 10-4

ed in

ected
long
own

i and
it is
isto-
n the

to

elect
heck-

xis

.

10.2 Barchart visi

Barchart is an external visualization module that enables many metric-focus pairs to be view
real time. Barchart receives its data through thevisi lib. The visi lib is described in theVisiLib
Programmer’s Guide; we do not discuss it further here.

Figure 40 shows the Barchart window. The vertical axis contains the names of all foci sel
for viewing. There are also a certain number of metrics currently selected for viewing; they (a
with a range of values) are displayed in the horizontal axis. Note that each metric has its
color; this helps identify the bars emanating horizontally next to each focus.

Barchart is designed to view many metric/focus pairs. In Figure 40, there are seven foc
two metrics, leading to metric/focus pairs. Barchart can easily handle far more;
not unusual to display 30 or more foci, and five or more metrics. This contrasts with the H
gram visi (see Section 10.1), which is restricted to eleven metric/focus pairs at a time. O
other hand, Barchart has no way to show how metric/focus pairs change over time.

Barchart is launched by choosing it from theStart A Visualization dialog produced by pressing the
Visi button in the Paradyn Main Control window. A dialog box with a list of all visis known
Paradyn is brought up; choose Barchart and clickAccept .

A dialog box containing all metrics known to Paradyn will appear. Paradyn is asking you to s
some initial metric-focus pair(s) for the Barchart. Choose metric(s) by selecting desired c

boxes in the metrics dialog box1. Choose foci by selecting desired resources in the Where A

window.2 The metric-focus pairs generated will be the cross-product of the foci and metrics

Figure 40: Barchart visualization window

1. For details on selecting metrics, refer to Section 6.
2. For details of focus selection, and the Where Axis in general, refer to Section 5.

7 2× 14=
User’s Guide January 10, 2002 Release 3.3

Page 10-5

i you

d as
oose
int
, and

data
rwrit-

alues
own
ewing
me.
At this point, the Barchart window (as in Figure 40) should appear, with the metrics and foc
selected. If Paradyn is running an application, data should begin appearing immediately.

10.2.1 Changing metrics and foci being viewed

You must specify an initial metric/focus set when launching a barchart. You may later ad
many more metric/focus pairs as desired (duplicates will be correctly filtered). To do this, ch
Add Bars from the Barchart’sActions menu. The interface for adding metrics and foci at this po
is the same as upon startup; you will be shown the metrics dialog box for choosing metrics
the where axis for choosing foci.

You may delete foci by clicking on their names and choosingDelete Selected Foci from the
Actions menu.

10.2.2 Viewing data

Values being viewed in a Barchart are, by default, current. Each time a screenful of new
arrives (from Paradyn), Barchart immediately displays the most recent values, thereby ove

ing the previous screenful of data, which cannot be re-displayed later3.

There are two other ways of viewing data. Under theView menu, we could choose to viewAver-
age values. In this case, what we see on the screen will be the average (over time) of all v
collected by this instantiation of Barchart. After a short time, the bars will probably setting d
to a steady state; this is to be expected when viewing average values. The third way of vi
data is to viewTotal values . This causes the bar values to monotonically increase over ti
Figure 41 shows a Barchart, otherwise similar to that of Figure 40, withTotal instead ofCurrent

3. To get a feeling for metric/focus pair changes over time, try the run-time Histogram visi (Section 10.1).

Figure 41: Barchart showing total values
User’s Guide January 10, 2002 Release 3.3

Page 10-6

cord-

aliza-

that

e line

pairs
tric-
ever,

dyn

yn is
cting
in the
ct of

you
values displayed. Note that the metric units (the lower left corner of Figure 41) changes ac
ingly, and that the metric bounds (the lower right part of Figure 41) adjust accordingly.

10.3 Table visi

Like the Time Histogram (Section 10.1) and Barchart (Section 10.2), Table is a Paradyn visu
tion module (visi) that receives its data through thevisi lib (described in the documentVisiLib
Programmer’s Guide) interface.

Figure 42 shows the Table window. The columns are metrics; the rows are foci. Note

there are two lines describing each metric: the first name (in blue) is the metric name; th
below it (in black) gives the metric’s units.

Like Barchart, Table uses screen real estate efficiently—it can show many metric-focus
at a time. For example, Figure 42 has four metrics and eight foci for a total of me
focus pairs. It is reasonable for a Table to show hundreds of metric/focus pairs at a time. How
like Barchart, Table cannot show how metric/focus pair values are changing over time.

Table is launched from theStart A Visualization dialog resulting from pressing theVisi button
in the Paradyn Main Control window menubar. A dialog with a list of all visis known to Para
is brought up; chooseTable and clickAccept .

A dialog box containing all metrics known to Paradyn will appear (see Section 6). Parad
asking you to select some initial metric-focus pair(s) for the Table. Choose metric(s) by sele
desired checkboxes in the metrics dialog box. Choose foci by selecting desired resources
Where Axis window (see Section 5). The metric-focus pairs generated will be the cross-produ
the foci and metrics.

At this point, the Table window (as in Figure 42) should appear, with the metrics and foci
specified. If the application is running, data should begin appearing immediately.

Figure 42: Table visualization window

4 8× 32=
User’s Guide January 10, 2002 Release 3.3

Page 10-7

r add
). To

e met-

etric
one
n the
e; the
p of

pair,
cond

nu

short

adyn,
10.3.1 Actions menu

Launching Table requires an initial metric/focus set to be specified. However, you may late
or delete metric-focus pairs as desired (when adding, duplicate pairs will be correctly filtered
add metric-focus pairs, chooseAdd Entries from Table’sActions menu. The interface for adding
metric/focus pairs is the same as when starting Table (Section 10.3); choose entries from th
rics dialog box and the Where Axis window.

Deletion in Table can take 3 forms; you can delete a focus (an entire row of the table), a m
(an entire column of the table), or a single metric-focus pair (a single cell of the table) with
delete operation. First you select what to delete by clicking once with the left mouse button o
appropriate item. To delete a focus, click on the focus name itself on the left side of the tabl
entire row will become highlighted. To delete a metric, click on the metric name itself at the to
the table; the entire column will become highlighted. To delete an individual metric/focus
click on the cell value; it will become highlighted. Once you have selected an item, the se
entry of theActions menu (namedDelete Selected Focus (entire row) , Delete Selected Metric
(entire column) , or Delete Selected Cell , as appropriate) will become active. Choose that me
item to perform the deletion.

10.3.2 View menu

 Long vs. short names

Focus names can be displayed in long form (e.g.,/Code/anneal.c) or in short form (e.g.,
anneal.c). To toggle between the long and short forms, chooseLong Names from Table’sView
menu. The default is to show long names. Figure 43 shows the equivalent of Figure 42 with
instead of long names..

 Current vs. average vs. total values

By default, Table cells are “current”: As soon as a screenful of new data arrives from Par

Figure 43: Table visualization showing short focus names
User’s Guide January 10, 2002 Release 3.3

Page 10-8

view
s
n of
to be

. To

rt by
to
is
to the

n, the

best

am-
foci

nifi-

cant

data

a
nt to
Table redraws the cells with the new values. As with Barchart, there are two other ways to
data. Under theView menu, we could choose to viewAverage values. In that case, metric/focu
pair values shown will be the average (over time) of all values collected by this instantiatio
Table . After a short time, the values shown will probably settle down to a steady state; this is
expected when viewing averages. The third way of viewing data isTotal values . This causes the
bar values to monotonically increase over time.

 Sorting metrics

By default, Table displays the columns (metrics) in the order in which they were added
sort them by name, chooseSort Metrics (ascending) from Table’sView menu. To change back to
the default, chooseDon’t Sort Metrics from Table’sView menu.

 Sorting foci

By default, Table displays the rows (foci) in the order in which they were added. To so
name, chooseSort Foci (ascending) from Table’s View menu. Note that sorting foci is sensitive
the current setting ofLong Names in theView menu: if long focus names are displayed, sorting
according to these long names; if short focus names are displayed, sorting is according
short names.

There is another way to sort foci: by value. ChoosingSort Foci By Values (of Selected Metric)
effectively turns Table into a profiler; whenever a screenful of new data arrives from Parady
foci (rows) are reordered to match the new values. When viewingCurrent Values , rows can seem
to jump around so quickly that they are difficult to read. Sorting foci by value clearly works
when viewingAverage Values or Total Values , which reach a steady state quickly.

In order to sort foci by value, Table needs to know which metric to sort by. To give an ex
ple, sorting the foci of the table in Figure 43 would yield very different orderings between the
procedure_calls andcpu . In the former,graph.c has a higher value thanpartition.c ; not so the lat-
ter.

 Significant digits

Individual metric/focus pairs are floating point values. You can change the number of sig
cant digits in which these values are viewed by choosing the desired item under theView menu.
Figure 43 is shown to five significant digits. Figure 44 shows the same table with two signifi
digits. Scientific notation is used when necessary.

10.4 3D Terrain visi

Like all the previous visis, Terrain is a Paradyn visualization module (visi) that receives its

through the visi lib (described in the documentVisiLib Programmer’s Guide) interface.4 The Ter-
rain visualization displays data in 3D, allowing the performance data to be analyzed usingsur-
face rather than curves or bars. This visualization can be particularly useful when we wa

4. Note that the Terrain visi is not supported under Windows NT.
User’s Guide January 10, 2002 Release 3.3

Page 10-9

hich

plica-
this
radyn
compare a particular metric for different foci (like the example shown below in Figure 45, w
displays CPU time for machines “beaufort”, “cham” and “poona”).

10.5 Viewing the application output display

A special graphical window, called the termWin, is created whenever Paradyn starts an ap
tion. This window displays the output of the application. The output information displayed in
window can be edited and saved to a file. In developer mode, debug information from Pa

Figure 44: Table visualization with values shown to two significant digits

Figure 45: 3D Terrain visualization
User’s Guide January 10, 2002 Release 3.3

Page 10-10

out-

rd save
dow
after

rm,
daemon is also displayed in this window; a different color is used to identify the debugging
put. An example is shown in Figure 46.

There are two commands available: the File|Save menu option, which creates a standa
dialog for the application output; the Option|Close menu option, which controls when the win
can be closed. By default it is closed when Paradyn exits. Alternatively, it will remain even
Paradyn exits, so that the user can continue working on it.

There currently is no termWin visi for Paradyn on the Windows platform. On this platfo
application output is directed to a terminal window.

Figure 46: Application output window
User’s Guide January 10, 2002 Release 3.3

Page 11-1

tion by

You

aradyn
one or
ibe

plica-

bal or
r speci-
r the
elect

ted,

e con-
or each
is one

was
histo-
11 EXPORTING PARADYN DATA

Paradyn profiling, resource, and search data may be saved for external analysis or examina
pressing theEXPORT button from the Paradyn main control window. This opens theEXPORT dia-
log, presenting a variety of options for writing Paradyn data to files as shown in Figure 47.

may select one or more types of data to be saved: raw Paradyn performance data, the P
Where Axis, and/or Performance Consultant Search Data. Depending on your selections,
more files will be written into the directory you specify in the dialog window. Next we descr
each specific option in detail.

11.1 Saving Performance Data

Paradyn allows one to save the performance data that is collected during monitoring of an ap
tion.

11.1.1 Saving Performance Data From Front-End

To save raw performance data select Global Data or Phase Data in the Export dialog. Glo
Phase correspond to the phase Paradyn was in when the data was collected, which is use
fied, so if you didn’t start new phases during your Paradyn session there will be only data fo
global phase. Type in the name of the directory to which you want the data written. Then s
“EXPORT.”

Two types of files are written into the specified directory. An index file (“index”) is genera
with one line per data file written, of the form: “filename metric focus”. Then, each existing inter-
nal Paradyn histogram is written to a separate data file into the same directory. If the tunabl
stant “persistentData” was set during the Paradyn session, there is one Paradyn histogram f
metric/focus pair instrumented at any time during the current execution. Otherwise, there
Paradyn histogram for each metric/focus pair instrumented at the time the Export button
pressed. The files are named hist_0, hist_1, ... hist_n where n is the total number of Paradyn
grams.

Each data file starts with a 3-line header containing the following:

Figure 47: Export dialog window
User’s Guide January 10, 2002 Release 3.3

Page 11-2

etric

func-

st
each

mea-

te that
stru-

e mea-
rt and
n be

g
der)

d as
• Line 1:dataType metric

• Line 2: focus

• Line 3:maxNumBins binSize.

At present,dataTypeis always “histogram” for exported Paradyn data. Themetricis the particular
measurement instrumented, such as CPU time (metric “cpu”) or I/O waiting time (m
“io_wait”). See Section 6.2 for a description of metrics available in Paradyn. Thefocusis the par-
ticular part of the program run measured, which might be the whole program or perhaps one
tion or one process out of many in the whole program.

The header is followed by a list of up tomaxNumBinsvalues, one per line. The header and fir
few data values of a data file is shown in Figure 48. To calculate the start and end time for
measured value, use thebinSize: each data value represents onebinSizeunit of time in seconds,
starting at time 0. In the example shown, the bin size is 0.2 seconds, so the first value was

sured for time 0 to time 0.2, second value was measured for time interval 0.2 to 0.4, etc. No
“NaN” indicates that no value was measured for a particular time interval. Since Paradyn in
mentation may be inserted and deleted freely during execution, the common case is to hav
sured values for only a subset of the total number of data bins. Missing values at the sta
middle of the time period are indicated with a “NaN” entry. The total number of bins that ca
stored for the Paradyn histogram,maxNumBins, is indicated in the third row of the Data File
header. There may be fewer thanmaxNumBinstotal data values written in the file, since trailin
NaN’s are not written. However, the maximum number of lines in the data file is 3 (for the hea
plusmaxNumBins(one line per data value).

After all data files and the index file are successfully written, the UIM status bar is update
shown in Figure 49.

Figure 48: Performance Data File Header and Data Format
User’s Guide January 10, 2002 Release 3.3

Page 11-3

g col-
the his-

up.
ribed
in and
lect

rmat of
ously.
.

11.1.2 Saving Performance Data From the Visis

The previous sub-section describes how to do a "bulk" save of all the performance data bein
lected at the Paradyn front-end. This section discusses how a user may selectively choose
togram data he wishes to save.

For each of the following visis, Time Histogram, Barchart and Table, aSavefunction is available
from theFILE menu. When selected, a dialog window like the one shown in Figure 50 pops
This dialogue presents a list of all the valid Metric-Focus pairs that the current visi is subsc
to in the format <Metric:Focus>. The user chooses the Metric-Focus pairs he is interested
clicks the *Export* button. A standard TCL dialogue box now pops up allowing the user to se
a directory in which to save the performance data files. Clicking theOK button on this dialogue
instantiates an exportation of the selected performance data to the chosen directory. The fo
the files is similar to those obtained when doing the bulk data exportation described previ
Note that saving to an existing directory overwrites any previously stored performance data

Figure 49: The Paradyn Main Window after saving performance data.

Figure 50: Visi Menu to Export Paradyn Data
User’s Guide January 10, 2002 Release 3.3

Page 11-4

Axis”
one
r the

Phase
of all
char-
e Para-
istory

rm “#
a; the
his-

mat:

raph.

arch

peri-
11.2 Saving the Where Axis

Generate a list of all valid resource nodes for the application session by selecting “Where
from the Export Menu. The resulting file (named “resources”) is a simple text file with
resource name per line. The complete Where Axis may be reconstructed from this file. Afte
resources are successfully written, the UIM status bar is updated as shown in Figure 51.

11.3 Saving Performance Consultant Search Data

Save the contents of one or more Search History Graphs by selecting Global Search or
Search(es) from the Export Menu. One file (“shg.txt”) is generated that lists the contents
Search History Graphs in the format shown in Figure 52. Note that “#” is used as a comment
acter in the file. There is one Search History Graph for each phase that was diagnosed in th
dyn session. If Phase Search(es) was selected, this file will contain data for one Search H
Graph for each phase-level search either in progress or completed. A banner of the fo
searchNumPerformance Consultant Search History Graph” starts each set of search dat
example shown lists search 0, which is the global search. A banner of the form “*** search
tory node ***” starts each search history node listing. Each node listing has the following for

• Row 1:nodeID

• Row 2:hypothesisName::Focus

• Row 3:experiment defined?

• Row 4:experimentStartTime experimentEndTime currentValue currentThreshold.

NodeID is a unique integer id assigned to each node of a single Search History G
HypothesisNameis the Performance Consultant test name as described in Chapter 9, andfocusis
the particular part of the program run that was measured, e.g. function foo or process 1.Experi-
mentDefined?is 0 if this search node’s experiment was never activated, for example, if the se
was halted before the instrumentation was inserted; otherwise its 1.ExperimentStartTimeand
experimentEndTimeare the timestamps on the first and last piece of data received for the ex

Figure 51: The Paradyn Main Window after saving resource names.
User’s Guide January 10, 2002 Release 3.3

Page 11-5

or

ted as
ment.currentValueis the calculated value, averaged over the interval, of the hypothesis, andcur-
rentThresholdis the valuecurrentValuewas compared against to determine a result of true
false.

After all Performance Consultant data is successfully saved, the UIM status bar is upda
shown in Figure 53.

Figure 52: Format for exported search data in shg.txt.

Figure 53: Paradyn Main Window after saving Performance Consultant data.
User’s Guide January 10, 2002 Release 3.3

Page 12-1

sis, set-
one or

uration

rminal

non-
titions,

White
ment is
s

rscore.
ith a $

r way.
pt for
ll”

ess-
ara-
12 PARADYN CONFIGURATION LANGUAGE

The Paradyn configuration language (PCL) is used for defining daemons, processes, and vi
ting value of tunable constants, and defining new metrics. Paradyn reads commands from
more of the following files (in this order):

1. a file named$PARADYN_ROOT/paradyn.rc , wherePARADYN_ROOTis a shell environ-
ment variable defining a path, or if this file is not found, a file namedparadyn.rc in the
current working directory (see Section 2.2, and also theParadyn Installation Guide);

2. a file named$HOME/.paradynrc in the user’s home directory;

3. a configuration file given as a command line argument to Paradyn with the ‘-f ’ option (e.g.
“paradyn -f foo ”).

The remainder of this chapter describes the syntax and semantics of the Paradyn config
language.

12.1 Notation

We use an extended-BNF (EBNF) notation to describe the syntax of the language. Nonte
symbols in the grammar are written initalics, terminal symbols (tokens) incourier , and reserved
keywords and symbols are written inboldface.

In the description of the grammar the symbol ::= is used to introduce the definition for a
terminal symbol, a vertical bar | represents a choice, braces {} represent zero or more repe
and brackets [] are used to represent an optional item. Parentheses are used for grouping.

12.2 Lexical conventions

The tokens of the language are identifiers (Ident), integer (Integer), floating-point (Float), and
string (string) constants, and the reserved keywords and symbols enumerated below.
spaces, tabs, newlines, and comments are ignored, except to separate tokens. A com
started by the characters// . All characters from the// until the first newline are considered a
part of the comment and are ignored.

Identifiers are a sequence of letters, digits, and underscore, starting with a letter or unde
Identifiers are case sensitive and may be of arbitrary length. Predefined identifiers start w
(dollar) sign.

Some identifiers are reserved for use as keywords and cannot be used in any othe
Figure 54 is a list of all keywords in the language (all keywords are case sensitive, exce
“true” and “false”). The four words “setCounter”, “addCounter”, “subCounter”, “functionCa
are obsolete, but they are reserved so that MDL can detect an old configuration file.

There are six words: “readAddress”, “readSymbol”, “startProcessTimer”, “stopProc
Timer”, “startWallTimer”, “stopWallTimer”, which are not keywords, but are considered as P
dyn standard function calls. See Section 12.9.10 for an explanation of their meanings.
User’s Guide January 10, 2002 Release 3.3

Page 12-2

uence
ouble
string

e.

races.

, pro-
jects.
There are three types of constants: strings, integers, and floating-point. A string is a seq
of zero or more characters (not containing a newline or a double quote) surrounded by d
quotes. (Note that the usual expansion of control characters does not apply, e.g. “\n” is a
containing two characters, a ‘\’ and a ‘n’, not a string containing the newline character.)

Integer and floating-point constants are unsigned and defined as:
Integer ::= digit { digit }
Float ::= Integer . Integer

The following operators are currently supported. More operators may be added in the futur

& = + += - -= / * < > <= >= == != && || () [] , . ++

A statement is teminated with a semicolon, and statements are grouped together with curly b
Instrumentation code are inside brackets (* and *), see Section 12.9.12.

12.3 Language structure

A Paradyn configuration file consists of a sequence of zero or more definitions of daemons
cesses, visis, metrics, values for tunable constants, and functions excluded from shared ob

DefinitionList ::= { Definition }

$arg $return addCounter

aggregateOperator append avg

base Call command

constraint constrained counter

daemon default derived

developer dir EventCounter

exclude false flavor

float force foreach

functionCall host if

is in int

items library limit

list max metric

min mode module

name normal normalized

postInsn preInsn prepend

procedure process processTimer

replace resourceList SampledFunction

setCounter string style

subCounter sum true

tunable_constant units unitsType

unnormalized user visi

void wallTimer

Figure 54: List of MDL keywords
User’s Guide January 10, 2002 Release 3.3

Page 12-3

ay be
efined

is made
a dae-
r metric
).

ferent
andard

for
can

adyn.
e fla-
adyn
ed. The

entify
es not
rocess

and
e path-
envi-
Definition ::=
DaemonDef|
ProcessDef|
TunableDef|
VisiDef |
ExcludeDef|
mdlDef

Each definition introduces a name to an object. The scope of names is global. A name m
redefined, in which case the new definition replaces the old one. Thus, all references to a red
name become a reference to the newest object that is bound to the name, even if the use
before the redefinition. However, different types of objects have different name spaces, so
mon and a process may have the same name, for example. The name and scope rules fo
definitions differ from the rules for other definitions (see Section for a complete description

One attribute that can appear in many object definitions is a flavor. Paradyn may have dif
versions that are used on different systems. Currently, there are five versions, one for st
Unix systems, one for Unix systems running PVM, one for MPI, one for WindowsNT and one
COW (cluster of workstations). Each of these versions is called a Paradyn flavor. A PCL file
have many object definitions, some of which may make sense only for some flavors of Par
The flavor of an object tells Paradyn that this object is meaningful only for some subset of th
vors of Paradyn, and that it should be ignored for all of the other flavors. When we run Par
only those objects that are of the same flavor of the Paradyn that is being used are consider
others are ignored.

12.4 Daemon definition

DaemonDef ::= daemon Ident { { DaemonField } }

DaemonField ::=
remoteShell string ; |
command string ; |
flavor Ident ;

A daemon definition defines a new daemon with a given name. The name is used to id
the daemon in other PCL definitions, such as the process definition. A daemon definition do
cause the daemon to be started immediately; the daemon only starts when an application p
that uses that daemon is run.

A daemon definition must include at least one field (thecommandfield). The other fields are
optional. Thecommandfield gives the command (that is, the executable file name and comm
arguments) that Paradyn uses to start the daemon. The executable path may be a relativ
name, in which case Paradyn searches for the file like the shell does, using the user’s PATH
ronment variable on the machine where the daemon will run.

The fieldflavor should be one ofpvm, unix, winnt, mpi . Defining a daemon to be of a
wrong flavor can have unpredictable results.
User’s Guide January 10, 2002 Release 3.3

Page 12-4

, to

fines a
radyn
le file,
cation
enu. A
e

t

t

The optionalremoteShellfield allows a substitute start-up shell/mechanism to be specified
be used instead of the default “rsh” for starting the daemon process.

Example:

daemon pd_daemon {
remoteShell “/bin/ssh”;
command "/u/mjrg/bin/sparc-sun-solaris2.4/paradynd";
flavor unix;

}

This PCL command defines a unix daemon namedpd_daemon that is started via/bin/ssh

with the command “/u/mjrg/bin/sparc-sun-solaris2.4/paradynd ”.

Paradyn provides predefined daemons,defd andpvmd, that are defined as follows.

daemon defd {
command “paradynd”;
flavor unix;

}

daemon pvmd {
command “paradynd”;
flavor pvm;

}

12.5 Process definition

ProcessDef::=
processIdent { { ProcessField} }

ProcessField ::=
commandstring; |
daemonIdent; |
host string; |
user Ident; |
dir string;

A process definition defines an application program to be run by Paradyn. When the user de
process to Paradyn (either through a configuration file or with the graphic user interface), Pa
starts the necessary daemons, which read symbol table information from the executab
inserts the initial instrumentation, and leave the program in a ready to run state. The appli
processes can then be run by using the appropriate commands from the Paradyn main m
process definition is equivalent to theDefine a Process command in the Paradyn main menu (se
Section 2.4).

A process definition has five fields. The requiredcommandfield specifies the command tha
Paradyn uses to start the process, including the command arguments, if any. The requireddaemon
field specifies the daemon that will run that process. The optionalhost field specifies the name of
the machine where the process will run. If nohost field is present, it will default to the defaul
User’s Guide January 10, 2002 Release 3.3

Page 12-5

e
l
hat is
ignated
was

nable

s:
host specified with the-default_host command line option (or the local machine, that is, th
machine on which Paradyn is running, if the-default_host option is not used). The optiona
user field specifies the user name (login) under which the process will run. The local user, t
the user that runs Paradyn, must be authorized to login as the designated user in the des
host. If nouser field is present, it will default to the same user name under which Paradyn
started. The optionaldir field specifies the working directory for the process. If nodir field is
present, it will default to user’s home directory on the remote machine.

Example:

process foo {
command "/u/mjrg/bin/mp3d arg1 arg2";
daemon defd;

}

This example defines a process named foo that is started by the commandmp3d with argu-
mentsarg1 arg2 , and is monitored by the daemondefd .

Paradyn only searches for the executable file in the directory specified by thedir field. If this
field is not given, then the path to the executable file must be absolute.

12.6 Tunable constant definition

TunableConstant ::=
tunable_constantTunableItem |
tunable_constant { { TunableItem } }

TunableItem ::=
string Integer; |
string Float; |
string true; |
string false;

A tunable constant definition gives a value for a tunable constant. For a list of all available tu
constants and their values, see Section 4.

Example:

tunable_constant "minObservationTime" 10.0;
tunable_constant "suppressSHG" false;

In this example, the value of the tunable constantminObservationTime is set to 10.0 and the
value ofsuppressSHG is set to false. Alternatively, these two commands could be rewritten a

tunable_constant {
"minObservationTime" 10.0;
"suppressSHG" false;

}

User’s Guide January 10, 2002 Release 3.3

Page 12-6

. The
isi
viron-
visi

f
r if it

ction
cluded
ns or
uld be
(for

e” or
lude
ction

nked
anism
speci-
the

ior is
was
12.7 Visi definition

VisiDef::= visi Ident { { VisiItem } }

VisiItem::=
commandstring; |
dir string ; |
user Ident ; |
host string ; |
force Integer; |

limit Integer;

A visi definition gives the command that Paradyn uses to start a new visualization module
only required field iscommand, which gives the file path (and optional arguments) to the v
program. Paradyn searches for commands according to the shell rules, using the PATH en
ment variable.force is interpreted as a boolean value, and any non-zero value will cause the
to start without asking the user for metric selections.limit is an upper bound on the number o
metric/focus pairs that the visi can have enabled at one time. If this field is not specified, o
has a non-positive value, then there is no upper bound.dir , user andhost have the same previ-
ously discussed meaning.

Example:

visi Histogram {
command "rthist";

}

12.8 Exclude definition

ExcludeDef ::= excludestring;

The exclude definition specifies a shared object (or dynamically-loaded library) or a fun
therein that cannot be included in any focus. Performance data cannot be collected from ex
functions or modules. Also, the Performance Consultant will not search in excluded functio
modules. The string that specifies the shared object function or shared object to exclude sho
of the form “/Code/shared_library_name/function_name” or “/Code/shared_library_name”
Paradyn versions 2.1 and above, or of the form “shared_library_name/function_nam
“shared_library_name” for versions below 2.1). The “*” character can be used within exc
definitions as a wildcard which matches zero or more characters in a library name or fun
name. Modules and functions froma.out files cannot be excluded.

Paradyn versions 2.1 and above allow exclusion of both statically and dynamically li
modules and functions. Static and dynamic code is excluded identically, using the mech
described above. All modules and functions are included (not excluded), unless otherwise
fied, and accordingly all functions, including those in dynamically linked libraries, appear in
$procedures variable described in “Metric Definition Language” section below. This behav
different from that encountered in older versions of Paradyn in which shared object code
treated differently than statically linked code with respect to exclusion.
User’s Guide January 10, 2002 Release 3.3

Page 12-7

modi-
as fol-

pro-

ning
l pro-
s can
called
ted for
ently

tem-
com-

is set

clara-
ts for
od-

etric

artic-
ing as
erted
“met-
the

ion”
The Paradyn Control Language files distributed with releases 2.1 and above have been
fied to take these changes into account. Existing unmodified PCL files should be updated
lows:

1. Names of excluded modules and functions should be proceeded by “/Code ”.

2. All dynamic libraries or functions therein whose members should not be included in $
cedures should be explicitly excluded.

Example (version 2.1 and above):

exclude “/Code/libc.so.1”; #exclude all functions from libc.so.1
exclude “/Code/libthread.so/read”; #exclude function read from libthread.so

Example (version 2.0 and below):

exclude “libc.so.1”; #exclude all functions from libc.so.1
exclude “libthread.so/read”; #exclude function read from libthread.so

12.9 Metric Description Language

The metric description language (MDL) is a sub-language of the PCL that is used for defi
new metrics. A metric is a time-varying function that characterizes some aspect of a paralle
gram performance, such as CPU utilization or number of synchronization operations. Metric
be computed for the entire program or they can be restricted to program components (
resources) such as a particular procedure, or a particular processor. Metrics can be compu
the global phase (from the start of application execution until the present time) or the curr
defined phase. (Phases are described in Section 8.)

A list of resources of interest to the user is called a focus. A metric definition provides a
plate (the base metric) that is used to compute the metric, and a list of constraints that are
bined with the base metric to restrict it to a particular focus. A constraint defines a flag that
whenever a particular resource is active.

For example, consider a metric that counts how many functions are called. The metric de
tion must provide code to increment a counter every time a function is called. The constrain
this metric can provide ways of restricting the computation to a single function, to a single m
ule, or to a single process. When combined with a focus, such as functionf and processp, the met-
ric will count how many times the functionf is called in processp.

If there’s no constraint declaration or replace constraint inside a metric definition, the m
can only be applied to the whole program.

Metric and constraint definitions are not evaluated until there is a request to compute a p
ular set of metrics for particular focus. At this time the requested metrics are evaluated, tak
input the focus. The result of the metric evaluation is a collection of code blocks that are ins
into the application code to compute the metric. In the remainder of this section, the phrase
ric evaluation time” or “metric insertion time” refer to time a metric is evaluated to generate
code to be inserted into the application, and “metric execution time” or simply “metric execut
User’s Guide January 10, 2002 Release 3.3

Page 12-8

on-

o that
with

uding
are, or

ni-

n vari-
nd to
refer to the time when the generated code is executed.

12.9.1 Metric definition

An MDL definition consists of declarations of one or more MDL objects: resource lists, c
straints, and metrics:

mdlDef::=
resourceListDef |
constraintDef |
metricDef

Each definition introduces a new object with a given name, which is used for references t
object. A name may be redefined, in which case the definition of the old object is replaced
the definition of the new object. The new object is used in all occurrences of the name, incl
those that precede the redefinition. Therefore, redefinitions of objects must be done with c
unexpected results may occur. For example, the value offoo at the foreach statement in the
example below is “bar”, because the namemsgFilt has been redefined after the constraint defi
tion.

Example:

resourceList msgFilt is procedure {
items { "foo" };
library false;
flavor {unix};

}

constraint msgTagConstraint /SyncObject/Message is counter {
foreach func in msgFilt {

prepend preInsn func.entry (*
if ($arg[1] == $constraint[0])

msgTagConstraint = 1;
*)
append preInsn func.return (*

msgTagConstraint = 0;
*)

}
}

resourceList msgFilt is procedure {
items { "bar" };
library false;
flavor {unix};

}

12.9.2 Variables

There are two classes of variables that can be used in metric descriptions: metric insertio
ables and instrumentation variables. A metric insertion variable is simply a name that is bou
User’s Guide January 10, 2002 Release 3.3

Page 12-9

n only
les in
instru-
s can
ation

er. A
r and
er spe-
sts, is
stop-

ring,
e the

code
indi-

ode:

xecut-

ts like
an object (a list, constraint, or metric). As explained above, the value of these variables ca
be modified by binding the name to a new object. Instrumentation variables are like variab
an imperative language (that is, they denote a memory location) and can only be used in
mentation blocks, that is, the code to be inserted at the application. Metric insertion variable
be used at any place in a metric definition, including an instrumentation block. Instrument
blocks are delineated in PCL by the(* and*) tokens.

12.9.3 Types

Instrumentation variables can have one of three types: counter, wallTimer, or processTim
counter is equivalent to an integer variable in imperative languages like C or C++. WallTime
processTimer are abstract types used to record time and can only be manipulated with tim
cific functions. A set of predefined functions, that can only be used in instrumentation reque
provided for operations with timers: startProcessTimer, stopProcessTimer, startWallTimer,
WallTimer.

Metric insertion variables can have several different types: integer, floating-point, st
point, procedure, module, memory, and list. The types integer, floating-point, and string hav
usual meaning.

Type: Point

A point is an abstract type that represents a well-defined location in an application
where instrumentation can be inserted (currently available points are function entry, exit, and
vidual call sites).

Type: Procedure

Procedure is a structured type that describes a procedure (function) in the application c

procedure {
string name;
point list calls;
point entry;
point return;

}

The value of each member is implicitly initialized by Paradyn, and cannot be modified.Name

is the name of the procedure, as defined in the symbol table in the application program’s e
able file.Calls is the list of calls made in the procedure code.Entry andreturn are the entry and
return points of the procedure.

The dot operator “.” is used to access the value of each member of a structured objec
procedures and modules. Ifproc is a procedure object, thenproc.name gives the name of the pro-
cedure, andproc.entry gives the entry point of the procedure.
User’s Guide January 10, 2002 Release 3.3

Page 12-10

ions.

nts of
be

,

nt of
Type: Module

Module is a structured type with two fields that describe the module name and its funct
The value of these fields is implicitly initialized by Paradyn.

module {
string name;
procedure list funcs;

}

Type: List

The typelist consists of an ordered collection of elements of the same type. The eleme
a list can be accessed sequentially with theforeach statement, or one particular element may
obtained with the subscript operator[] .

Theforeach statement applies a metric statement to each element in a list. For example

foreach callsite in proc.calls
<< metric statement >>

appliesmetric statement (metric statements are defined in Section 12.9.8) to each eleme
the listproc.calls . The expressionproc.calls[1] returns the first element in listproc.calls .

12.9.4 Predefined variables

MDL provides a number of predefined variables, described in Figure 55.

Variable Name Type Explanation

$constraint procedure, module,
or int

The list of components in the resource path.
Each component can be accessed through an
incremental index, starting from the last ele-
ment; for example $constraint[0] is the last
component, $constraint[1] is the second to
last. Each component can be of a different
type. (see Section 12.9.3).

$arg int The list of arguments to a procedure call. A
specific argument can be selected with index-
ing. for example:$arg[2] .

$return int The return value of a function.

$start point The entry point of the program (usually
main).

$exit point The exit point of the program (e.g.
_exithandle for Solaris).

$procedures procedure list The list of functions in a module.

Figure 55: Predefined variables
User’s Guide January 10, 2002 Release 3.3

Page 12-11

ents.
ist are

12.9.8,
12.9.5 Resource lists

A resource list statement defines a new MDL variable of type list:

resourceListDef::=
resourceList Identis ListType {

items { StringList } ;
flavor { IdentList } ;
library OptLibrary:

}

ListType ::=
string |
procedure |
module |
float |
int

StringList::= string { , string }

IdentList ::= IDENT { , IDENT }

OptLibrary ::=
true | false

The identifier after the keywordresourceList gives the MDL variable that will be bound
to the list. ListType specifies the type of the elements of the list. Items give the list of elem
Library is used when elements are of type procedure, and tells whether the functions in the l
library functions or not. Flavor gives the Paradyn flavors of this list (e.g., unix or pvm).

The elements of a list can be accessed with the foreach statement, described in Section
or via indexing (e.g.foo[1]).

$modules module list The list of modules in a program.

$machine string The machine where a program is running.

$globalId int An unique identifier to a particular metric/fo-
cus/phase combination. It can be used by
metrics that need to maintain extra informa-
tion on a per metric instance basis.

Variable Name Type Explanation

Figure 55: Predefined variables
User’s Guide January 10, 2002 Release 3.3

Page 12-12

source
ncep-
odule,

everal

The
a path
rtic-
ro-

con-

aint in

e

-

te any
ay be
ic will
Example:

resourceList generic_lib_pvm is procedure {
items {"write", "read"};
library true;
flavor {pvm};

}

declares a variable generic_lib_pvm, of type procedure list, with two elements (write andread),
which are library functions. This definition of the variable is valid only for PVM.

12.9.6 Constraints

Constraints provide a mechanism to restrict a metric to a subset of the resources in the re
hierarchy. A constraint definition declares a new counter instrumentation variable that is co
tually a boolean flag. This flag is set whenever a certain resource, such as a function or a m
is active.

constraintDef ::=
constraint Ident matchPathis default ;
constraint Ident matchPathis counter { metricStmt}

matchPath ::= { / Ident }

A constraint definition creates a new constraint with a given name that can be used in s
metrics. ThematchPathspecifies the resources to be constrained. AmatchPathis a sequence of
resource names, with a “/ ” used as a delimiter, and it defines a path in the resource hierarchy.
resource that is constrained is determined by the last element in the path. For example,
/SyncObject/Message specifies that the constraint is to children of this path, in this case a pa
ular message class instance;/Code specifies that the constraint is applied to modules in a p
gram. A wildcard, “*”, is used as amatchPathresource name; for example,/Code/* specifies that
the constraint is applied to functions in a specific module, which is unknown at the time the
straint was created.

At metric insertion time, the selected focus is compared to the matchPath of each constr
a metric to determine which constraints to apply. For example, thematchPath/Code matches the
foci /Code/Mod1 and/Code/Mod2 whereMod1 andMod2 are modules in the application; and, th
matchPath/Code/* matches the foci/Code/Mod1/F1 and /Code/Mod2/F2 modules whereF1

andF2 are functions in the application.

The predefined variable$constraint is initialized at metric insertion time to the list of com
ponents in focus. If path is/Code/* , and the foci is/Code/Mod1/F1 and /Code/Mod2/F2 , then
the value of$constraint[0] is a procedure list withF1 andF2, and $constraint[1] is a
module list with Mod1 and Mod2.

A default constraint defines a constraint that matches some focus. It does not genera
instrumentation code. Usually, a metric must provide a constraint for each resource that m
specified in a focus. If there is no constraint that matches a given resource, then the metr
User’s Guide January 10, 2002 Release 3.3

Page 12-13

ticular

ion in
to set
ction

om a
would
s the

flag
t code
13 say
eturns.
fail. Default constraints are used in cases where no action is needed to constrain a par
resource.

Example: a constraint for modules must define a counter that is set to one only if a funct
the module is being executed. The constraint definition must direct Paradyn to insert code
the flag to one whenever a function in the module is called, and set it to zero when the fun
exits. In addition, we may want to set the flag to zero whenever a function call is made fr
function in the module, and reset it after this that call has returned. In this case, the module
not be considered active when an external function is called. The definition of this metric i
following:

01: constraint moduleConstraint /Code is counter {
02: foreach func in $constraint[0].funcs {
03: prepend preInsn func.entry (*
04: moduleConstraint = 1;
05: *)
06: append preInsn func.return (*
07: moduleConstraint = 0;
08: *)
09: foreach callsite in func.calls {
10: append preInsn callsite (*
11: moduleConstraint = 0;
12: *)
13: prepend postInsn callsite (*
14: moduleConstraint = 1;
15: *)
16: }
17: }
18: }

Line 1 in this program declares a constraintmoduleConstraint , of typecounter , that is to be
applied to modules. At metric insertion time, the variable$constraint[0] will be set to a partic-
ular module in the application (usually selected from the Paradyn where axis).$con-

straint[0].funcs is the list of all functions in the module. Line 3 says that code to set the
should be inserted before the entry point of each function in the module, and line 6 says tha
to reset the flag should be inserted before the return point of each function. Lines 9, 10, and
that the flag should be set before any call made inside the function, and reset after the call r

12.9.7 Metric definitions

metricDef ::=
metric Ident {

name string ;

units Ident;

unitsType (normalized | unnormalized | sampled) ;
aggregateOperator (avg | sum | min | max) ;
style (EventCounter | SampledFunction);
flavor { IdentList } ;

{ mode (developer | normal); }
User’s Guide January 10, 2002 Release 3.3

Page 12-14

ing

etric.

ro-
r-
etric,

t sam-
e. One

ct the
enta-

es a
ration
onent.
s the
{ Constraint}
{ counter Ident ; }
base is (counter | processTimer | wallTimer)
{ metricStmt } ;

}

Constraint::=
constraint Ident ; |
constraint Ident { / Ident } is
replace (counter | processTimer | wallTimer)
{ metricStmt} ;

IdentList::=
Ident { , Ident }

A metric definition defines a new metric with a given internal name (the identifier follow
the metric keyword). A metric definition must specify several fields. Thename is a string that
gives the external name of the metric, that is how Paradyn users refer to this metric.Units and
unitsType specifies the label to be used by Paradyn and visis when displaying values of a m
Units can be any string andunitsType must be eithernormalized, unnormalized or sampled.
Figure 56 shows how a label is displayed, for each unit type.

AggregateOperatorgives the operator used to combine values of the metric for different p
cesses to compute a single value. TheStyle field specifies how to interpret the metric value. Cu
rently, only event counter and sampled function metrics are supported. In an event counter m
Paradyn samples the value of a metric at periodic intervals, with the difference since the las
ple as the reported value. The sampled function metric, however, does not take the differenc
example is to use the sampled function metric to measure the memory access pattern. Theflavor
field gives the flavors of Paradyn for which this metric should be used. Themodefield indicates
whether the metric is for developers. The default isnormal if this field is not specified.

The rest of the metric definition gives an optional list of constraints that are used to restri
metric to specific resources, an optional list of auxiliary counters that can be used in instrum
tion requests, and the template code for the instrumentation code to compute the metric. Acon-
straint declaration either gives the name of a constraint defined elsewhere, or defin
replacement constraint that replaces the base definition of the metric. If a constraint decla
matches the focus, the constraint is used to restrict the metric to the specified program comp
If a constraint definition (inside a metric definition, this is called replace constraint) matche
current focus, the constraint replaces thebase statement of the metric.

Units Type Data label Average label Total label

normalized units units units_seconds

unnormalized units/sec units/sec units

sampled units units units

Figure 56: Metric labels.
User’s Guide January 10, 2002 Release 3.3

Page 12-15

st,

pplies
en by

ecutes

code.
12.9.8 Metric statements

There are four metric statements,foreach statement,if statement, single instrumentation reque
and a block of multiple instrumentation requests.

metricStmt ::=
foreach Ident in MetricExpr metricStmt|
if MetricExpr metricStmt|
InstrRequest|
{ { metricStmt} } ;

The foreach statement evaluates a metric expression that should evaluate to a list, and a
a metric statement to each element in the list. It defines a new variable with a name giv
Ident and that has the same type as the elements of the list. The scope of this variable ismetric-
Stmt, and its value is bound at each iteration to one element of the list.

The if statement evaluates a metric expression that must be of type integer, and it ex
metricStmt if the value is non-zero.

A single instrumentation request defines instrumentation to be added to an application
Each instrumentation request will generate a mini-trampoline in the application core.

12.9.9 Metric expressions

MetricExpr ::=
Literal |
(Ident) { . Ident } |
Call (“Ident” [, ArgList]) |
Ident ([ArgList]) |
MetricExpr BinOP MetricExpr|
PreUOp MetricExpr |
MetricExpr PostUOp |
IdentAssignOp MetricExpr |
Ident [MetricExpr] |
(MetricExpr)

Literal ::= Integer | string

ArgList ::=
MetricExpr { , MetricExpr }

BinOp ::=
+ | - | / | * | < | > | <= | >= | == | && | ||

PreUOp ::= & | -

PostUOp ::= ++
User’s Guide January 10, 2002 Release 3.3

Page 12-16

s its
iden-

ckets,
ent of

ements

type
. The

usual
ifferent
rted to
r

returns

lly a
ame

d. The
e not
rds are:
er”,

on
. if

10),

d (the
AssignOp ::= = | += | -=

More operators will be supported in the future.

A literal is an expression of type integer or string, that has the integer or string literal a
value. An identifier is an expression that has the type and value of the variable bound to the
tifier. If the identifier is followed by an expression that evaluates to an integer n between bra
the identifier must be bound to a list, and the value of the indexed expression is the nth elem
the list. The list elements are numbered from zero, and n must be less than the number of el
in the list.

If an identifier is followed by a sequence of dots and identifiers, it must be of a structured
(procedure or module). The second identifier must be the name of a field in the structure
value and type of the expression are the value and type of this field.

The arithmetic operators+, - , * , and / , and the relational operators<, >, <=, and>= can be
applied to two binary expressions of type integer or floating-point. The operators have the
meaning and associativity rules. Parenthesized expressions may be used to enforce a d
evaluation order. If the two sub-expressions are not of the same type, the values are conve
floating-point. The logical operators&& (and) and|| (or) can be applied to a pair of intege
expressions. A zero value denotes false, and any nonzero value denotes true.

The& operator returns the address of a variable. The argument reference expression
the value of one of the arguments of a function. For example,arg[0] returns the value of the first
argument. Only the value of arguments passed in registers can be obtained.

12.9.10 Function calls

The MetricExpr syntax indicates that an metric expression can be a function call. Usua
function call is an identifier followed by a list of arguments in parenthesis. If the function n
has conflict with Paradyn’s reserved keywords, the alternative syntax ofCall(“Ident”[,Arglist])
can be used, with the Ident being the function name. Note that the name must be quote
function name can be any legal identifier. However, there are six words which, although ar
reserved, are treated as Paradyn standard functions if used as function names. The six wo
“readSymbol”, “readAddress”, “startProcessTimer”, “stopProcessTimer”, “startWallTim
“stopWallTimer”.

The expressionreadSymbol("sym") returns the integer value stored in a memory locati
namedsym, wheresym must be defined in the symbol table of the application. For example
_intvar is an integer variable in an application, the expressionreadSymbol("_intvar") returns
the value of_intvar . readAddress returns the integer value at a given address (in base
which must be a valid address for the application.startProcessTimer, stopProcessTimer, start-
WallTimer , stopWallTimer start and stop recording time into a timer variable.

The maximum number of arguments that can be passed to a function call may be limite
User’s Guide January 10, 2002 Release 3.3

Page 12-17

an be

ecific

of
ltiple
the

fore
m-

ted
s.

int in
ction

either

e

limit is architecture dependent, and usually is the maximum number of arguments that c
passed in registers). The return value of a function is treated as an integer.

12.9.11 Instrumentation requests

An instrumentation request defines a block of instrumentation code to be inserted at a sp
point of an application code:

instrRequest : := position where point [constrained] (* { instrumentationCode } *)

position ::= append | prepend

where::= preInsn | postInsn

point ::= metricExpr

Position gives the order in which this instrumentation block will be inserted in the list
instrumentation blocks for this point, and can be used to control the order of execution of mu
blocks at a point. If position isappend , then the instrumentation block is inserted at the end of
list of instrumentation blocks at the point. If position isprepend , the instrumentation block is
inserted as the first block in the list.

Where gives the place where the instrumentation block will be inserted, either be
(preInsn) or after (postInsn) the instruction at the instrumentation point is executed. For exa
ple, if the point is a call site,preInsn specifies that the instrumentation code is to be inser
before the call is made andpostInsn specifies that it should be inserted after the call return

Point is a metric expression (Section 12.9.9) that must evaluate to a point; it gives the po
a program where instrumentation is to be inserted. Currently, the possible points are fun
entry and exit points, and function calls.

Constrained determines if constraints should be applied to this request. Ifconstrained is not
specified, no constraints will be applied to the request.

12.9.12 Instrumentation code

The instrumentation code gives a list of statements to be inserted at a point. A statement is
an if statement or a simple instrumentation statement.

instrumentationCode ::=
if (metricExpr) instrStmt |
instrStmt

The if statement evaluates themetricExprand if it the result is a nonzero value, then th
instrStmt is executed.

An instrumentation statement is anMetricExpr terminated by a semicolon.
User’s Guide January 10, 2002 Release 3.3

Page 12-18

r
econd

plica-

the

he
he
imer

primi-
re the
is an
d the

e con-
e con-
The following are examples of valid instrumentation code:

cntr = 1;

cntr += foo(cntr);
cntr += Call (“foo”, cntr);

if (readSymbol("_foos") == 1) cntr -= readAddress(123456));

startWallTimer(tmr);

cntr = cntr - $arg[2];

The first example sets the value of countercntr to 1.cntr must be a variable of type counte
declared in a constraint declaration, a metric declaration, or a in a counter declaration. The s
example calls a functionfoo in the application code, passing the value of countercntr as an
argument, and then adds the value returned by this call to countercntr . foo must be a function
taking one integer argument and returning an integer value, and it must be defined in the ap
tion’s symbol table.

The third example reads the value of a global variablefoos (note that if the variable name is
foos it must be referenced as_foos) in the application and if the value is equal to 1, subtracts
integer value at address 123456 in the application address space from countercntr . The fourth
example starts recording time in timertmr , which must be declared in a metric declaration. T
timer will record time until a call tostopWallTimer is made on it. The last example subtracts t
value of the third argument to a function call (the function that is being instrumented) from t
cntr .

12.9.13 Interaction of constraints and metrics

When creating a constraint and metric, one of the things you must do is specify where the
tives (for the constraints) and predicates (for the metrics) are placed. They can go befo
instruction you are placing it at, or after. Then, for each location (preInsn or postInsn) there
ordered list for the instructions; and, you are able to specify if you want to append or prepen
instrumented code. The following rules, and patterns, should be adopted when doing this

Constraints:
prepend preInsn func.entry
append preInsn func.return

Callsites within constraints (if necessary):
foreach callsite in func.calls {

append preInsn callsite
prepend postInsn callsite

}
Metrics:

foreach func in XXX {
append preInsn func.entry
prepend preInsn func.return

}

This is done to make sure the metrics and predicates are checked at a time when all th
straints and primitives are set with their correct values. This set of rules and patterns have th
User’s Guide January 10, 2002 Release 3.3

Page 12-19

entry)
turn).
a func-
ction
ich is
rules

ction;

t that
in the
tion.

ns, we

ns in
when
straints and primitives be the first thing set when entering a function (prepend preInsn func.
and then the last thing cleared when returning from a function (append preInsn func.re
Along the same lines, the metrics and predicates are the last thing checked when entering
tion (append preInsn func.entry) and the first thing checked when returning from a fun
(prepend preInsn func.return). For example, if you have a metric M1 using constraint C1, wh
set when your in a specific function and cleared when you leave that function. With these
and patterns, C1 will be the first thing set, before M1 is executed at the beginning of the fun
and, at the end of the function M1 will be executed before C1 is cleared again.

12.9.14 A complete example

This section presents a complete metric definition. We will define a metric called SyncWai
computes the time spent on by an application on synchronization operations. The first step
definition of SyncWait is to identify the synchronization operations (functions) of the applica
These depend on the specific system that is being used. For example, for PVM applicatio
can consider the functions pvm_send and pvm_recv as synchronization functions.

Next, we defined a resource list with the synchronization functions.

resourceList pvm_sync_ops is procedure {
items { “pvm_send”, “pvm_recv” };
flavor { pvm };
library true;

}

To compute the synchronization time we must start a timer every time one of the functio
pvm_sync_ops is called (lines 2 and 3 in the following code block), and stop the same timer
User’s Guide January 10, 2002 Release 3.3

Page 12-20

The
mod-

(lines
reset
10).

e time
ation
econd
), and
of the

t will
s

the function returns (lines 4 and 5).

01: foreach func in pvm_sync_ops {
02: append preInsn func.entry constrained
03: (* startWallTimer(p_syncWait); *)
04: prepend postInsn func.return constrained
05: (* stopWallTimer(p_syncWait); *)
06: }

The complete metric definition must define all of the metric attributes and constraints.
constraints define how to compute the metric for specific resources, such as a function, or a
ule. To constraint the metric to a function, we need to set a flag when the function is entered
2 and 3 in the code block below), and reset it when the function exits (lines 4 and 5). We also
the flag before any function call inside the function, and set it when the call returns (lines 6 to

1: constraint funcConstraint /Code/* is counter {
2: prepend preInsn $constraint[0].entry
3: (* funcConstraint = 1; *)
4: append postInsn $constraint[0].return
5: (* funcConstraint = 0; *)
6: foreach callsite in $constraint[0].calls {
7: append preInsn callsite
8: (* funcConstraint = 0; *)
9: prepend postInsn callsite
10: (* funcConstraint = 1; *)
11: }
12: }

We can also define a constraint for message tags, in case we are interested in finding th
the application is waiting for a particular message tag. At the entry point of each synchroniz
function (lines 3 to 5 in the code block below) we must check if the tag of the message (the s
argument in a call to pvm_send or pvm_recv) is equal to the tag specified in the focus (line 4
if so set the constraint flag to one (line 5). The flag is set to zero again at the return point
function (lines 7 and 8).

1: constraint msgTagConstraint /SyncObject/Message is counter {
2: foreach func in pvm_sync_ops {
3: prepend preInsn func.entry constrained
4: (* if ($arg[1] == $constraint[0])
5: msgTagConstraint = 1;
6: *)
7: append preInsn func.return constrained
8: (* msgTagConstraint = 0; *)
9: }
10: }

Finally we must specify the remaining attributes of the metric, such as the name tha
appear in the Paradyn metric selection menu,PVM SyncWait . The unit is seconds since thi
metric measures time, and the unit style isnormalized. Aggregate operator isavg, so when we
aggregate values from different processes, we get the average value. The flavor ispvm.

The complete definition of the metric follows. The constraintmoduleConstraint was
User’s Guide January 10, 2002 Release 3.3

Page 12-21
defined in Section 12.9.6.

metric p_syncWait {
name “PVM SyncWait”;
units Seconds;
unitStyle normalized;
aggregateOperator avg;
style EventCounter;
flavor = { pvm };

constraint functionConstraint;
constraint moduleConstraint;
constraint msgTagConstraint;

base is wallTimer {
foreach func in pvm_sync_ops {

append preInsn func.entry constrained (*
startWallTimer(p_syncWait);

*)
prepend preInsn func.return constrained (*

stopWallTimer(p_syncWait);
*)

}

}
}

For useful hints and guidelines for writing metrics, consult theMDL Programmer’s Guide.

■

User’s Guide January 10, 2002 Release 3.3

	User’s Guide
	1 Overview 1-1
	2 Running Paradyn 2-1
	3 Main Control window 3-1
	4 Tunable Constants 4-1
	5 Selecting resources 5-1
	6 Selecting metrics 6-1
	7 Controlling visis 7-1
	8 Phases 8-1
	9 Performance Consultant 9-1
	10 Standard visi modules 10-1
	11 Exporting Paradyn Data 11-1
	12 Paradyn Configuration Language 12-1
	1 Overview
	1.1 Release notes (version 3.3)
	1.2 Release notes (version 3.2)
	1.3 Release notes (version 3.1)
	1.4 Release notes (version 3.0)
	1.5 Supported hardware and software platforms
	Figure�1: Platforms on which Paradyn can monitor application processes

	1.6 Currently Unsupported Features
	1.7 Other documentation: Manuals
	1.8 Other documentation: Technical papers
	1. “The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callaghan, Jon...
	2. “An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Bar...
	3. “Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth, Ba...
	4. “Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Hollin...
	5. “The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth, ...
	6. “Mapping Performance Data for High-Level and Data Views of Parallel Program Performance”, R. B...
	7. “A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barton ...
	8. “Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barton ...
	9. “Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Barton ...
	10. “What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Miller. J...
	11. “Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Mill...
	12. “Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994...
	13. “Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce Irvin...
	14. “MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingsworth,...
	15. “A Callgraph-based Search Strategy for Automated Performance Diagnosis,” Harold W. Cain, Bart...

	1.9 Contacting the Paradyn developers

	2 Running Paradyn
	2.1 Overview of major steps
	1. Set up Paradyn and daemons (Section�2.2): You need to specify the location of the Paradyn exec...
	2. Prepare your application program (Section�2.3): Generally Paradyn is able to handle unmodified...
	3. Run Paradyn (Section�2.4): Paradyn has several options that you may use during execution, such...

	2.2 Setting up Paradyn and the Paradyn daemons
	1. Look for the file paradyn.rc in the directory specified by the environment variable “PARADYN_R...
	2. Look in your current working directory for the file paradyn.rc.
	Figure�2: Files needed to run Paradyn
	Figure�3: Environment variables used when running Paradyn

	2.3 Preparing your application program
	2.3.1 Generation of debug information (all platforms)
	2.3.2 Including CodeView debug info in the executable (Windows NT)

	2.4 Running Paradyn
	1. File: In this menu there is an option to get information on how to start up a daemon (Daemon s...
	2. Setup: This menu has selections to allow you to describe a new application program to run from...
	3. Phase: start and define a new local phase for visualizations and analysis (see Section�8).
	4. Visi: start visualizations of your application performance (see Section�7).
	5. Help: get additional information about Paradyn.
	Figure�4: Starting Paradyn

	2.5 Running applications with Paradyn
	2.5.1 Defining a new process
	Figure�5: Defining a new application process
	1. User: This is your login name on the host on which Paradyn will run your application process. ...
	2. Host: This is the name of the host on which Paradyn will run your application. If you leave th...
	3. Directory: Paradyn runs paradynd and your application as follows. First, it performs a remote ...
	4. Command: The command that will start this instance of your application program. If the Directo...
	5. Daemon: This option allows you to specify which Paradyn daemon to run. For most uses, the defa...

	Figure�6: Paradyn ready to run the application
	1. Application name: This is the name of the application program (foo), the host machine where it...
	2. Application status: This is the overall application status (either PAUSED or RUNNING).
	3. Data Manager: This is the status of Paradyn’s Data Manager.
	4. Processes: This is the process identifier of the controlling process in your application.
	5. brie: There is one status line on each host or node on which you are running your application;...

	2.5.2 Attaching to a process
	Figure�7: Specifying a process to attach to.
	Figure�8: Attach completed and application execution continuing.

	2.6 Architectural issues
	2.6.1 Common Platforms
	2.6.2 MPI
	2.6.3 Windows NT
	Figure�9: Sample Makefile for Windows NT.

	3 Main Control window
	Figure�10: Paradyn Main Control window
	3.1 Main menubar
	3.1.1 File menu
	3.1.2 Setup menu
	3.1.3 Phase menu
	3.1.4 Visi menu/button
	3.1.5 Help menu

	3.2 Status lines
	3.3 Buttons

	4 Tunable Constants
	4.1 Overview
	Figure�11: The Tunable Constants Window
	Figure�12: Tunable Constants Descriptions Window

	4.2 User Tunable Constants
	4.3 Developer Tunable Constants
	Figure�13: User-level Tunable Constants
	Figure�14: Developer-level Tunable Constants. Use at your own risk!

	5 Selecting resources
	5.1 Resources (The “Where” Axis)
	Figure�15: Where Axis window.
	“Whole Program” has three unexpanded subtrees and one expanded subtree (Code)
	Resources:
	Resource Hierarchy:
	Focus:

	5.2 The Where Axis display
	Figure�16: Showing all resources in the Where Axis display

	5.3 How to select foci using the Where Axis
	Figure�17: A single focus selected
	Figure�18: Multiple foci selection

	5.4 The Where Axis GUI
	Locating a resource
	Selecting a resource
	Listbox expansion
	The navigate menu
	Scrolling

	5.5 Call Graph display
	Figure�19: Callgraph display

	6 Selecting metrics
	6.1 How to select metrics
	Figure�20: Metrics dialog box
	Figure�21: Metrics dialog box with several metrics selected

	6.2 Metric Descriptions
	Figure�22: Metrics defined in Paradyn
	Figure�23: Developer Mode Metrics defined in Paradyn

	7 Controlling visis
	7.1 Starting
	Figure�24: Paradyn Main Control window
	Figure�25: Start A Visualization menu

	7.2 Stopping

	8 Phases
	8.1 Starting a new phase
	Figure�26: Phase Table Display

	8.2 Visualizations and Phases
	8.3 The Performance Consultant and phases
	Figure�27: Time Histogram: Global Phase
	Figure�28: Time Histogram: Local Phase (3)

	9 Performance Consultant
	9.1 The W3 search model
	9.1.1 The Why Axis
	Figure�29: The Why Axis

	9.1.2 The search strategy
	1. One step along the Why Axis:
	2. One step along the Code hierarchy: ��
	3. One step along the Machine hierarchy:

	9.2 Running the Performance Consultant
	9.2.1 The Performance Consultant window
	Figure�30: A sample Performance Consultant window

	9.2.2 Starting and stopping a search
	9.2.3 The Search History Graph display
	Figure�31: The Performance Consultant’s search begins
	Figure�32: The Performance Consultant refines bottleneck to CPUbound
	Figure�33: Search History Graph tunable constants for saving screen space

	9.3 Interpreting the results of callgraph-based search
	9.4 Interpreting the results of module-then-function search
	Figure�34: The Performance Consultant refines bottleneck beyond CPUbound
	Figure�35: The second set of Search History Graph refinements
	Figure�36: Final Search History Graph bottleneck refinement

	9.5 Customizing the search parameters

	10 Standard visi modules
	10.1 Time Histogram visi
	Figure�37: Time Histogram with selected curve
	10.1.1 File menu
	10.1.2 Curve menu
	Figure�38: Time Histogram with unsmoothed and hidden curves

	10.1.3 Panning and zooming
	Figure�39: Zoomed Time Histogram

	10.2 Barchart visi
	Figure�40: Barchart visualization window
	10.2.1 Changing metrics and foci being viewed
	10.2.2 Viewing data
	Figure�41: Barchart showing total values

	10.3 Table visi
	Figure�42: Table visualization window
	10.3.1 Actions menu
	10.3.2 View menu

	Long vs. short names
	Figure�43: Table visualization showing short focus names

	Current vs. average vs. total values
	Sorting metrics
	Sorting foci
	Significant digits
	Figure�44: Table visualization with values shown to two significant digits
	10.4 3D Terrain visi
	Figure�45: 3D Terrain visualization

	10.5 Viewing the application output display
	Figure�46: Application output window

	11 Exporting Paradyn Data
	Figure�47: Export dialog window
	11.1 Saving Performance Data
	11.1.1 Saving Performance Data From Front-End
	Figure�48: Performance Data File Header and Data Format
	Figure�49: The Paradyn Main Window after saving performance data.

	11.1.2 Saving Performance Data From the Visis
	Figure�50: Visi Menu to Export Paradyn Data

	11.2 Saving the Where Axis
	Figure�51: The Paradyn Main Window after saving resource names.

	11.3 Saving Performance Consultant Search Data
	Figure�52: Format for exported search data in shg.txt.
	Figure�53: Paradyn Main Window after saving Performance Consultant data.

	12 Paradyn Configuration Language
	1. a file named $PARADYN_ROOT/paradyn.rc, where PARADYN_ROOT is a shell environment variable defi...
	2. a file named $HOME/.paradynrc in the user’s home directory;
	3. a configuration file given as a command line argument to Paradyn with the ‘-f’ option (e.g. “p...
	12.1 Notation
	12.2 Lexical conventions
	Figure�54: List of MDL keywords

	12.3 Language structure
	12.4 Daemon definition
	12.5 Process definition
	12.6 Tunable constant definition
	12.7 Visi definition
	12.8 Exclude definition
	12.9 Metric Description Language
	12.9.1 Metric definition
	12.9.2 Variables
	12.9.3 Types
	Type: Point
	Type: Procedure
	Type: Module
	Type: List

	12.9.4 Predefined variables
	Figure�55: Predefined variables

	12.9.5 Resource lists
	12.9.6 Constraints
	12.9.7 Metric definitions
	Figure�56: Metric labels.

	12.9.8 Metric statements
	12.9.9 Metric expressions
	12.9.10 Function calls
	12.9.11 Instrumentation requests
	12.9.12 Instrumentation code
	12.9.13 Interaction of constraints and metrics
	12.9.14 A complete example

