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1 INTRODUCTION

The purpose of this document is to describe all the general issues related to the implementa
the instrumentation of threaded programs using Paradyn. Here, we will explain what the mo
what data structures are used, how the instrumentation actually works and what the curren
lems and limitations are.

Although most of the ideas described here are general, this design is based on the Solar
tithreaded Architecture (Figure 1). In this model, threads are user level structures that are
to light weight processes (LWPs). The LWPs are kernel threads and these are assign to
CPUs. The LWPs are also known as virtual CPUs. For more information, please look at the
mentation about Solaris threads.

2 PARADYN PROGRAM INSTRUMENTATION

In the single threaded version of Paradyn, we used to have instrumentation code an
(counters or timers) on a per process basis. Whenever we created a new metric, we would
instrumentation for a particular process and create the corresponding counter/timer.

With multithreaded applications, the situation is quite different. Every time we modify
program’s image, we know that all threads can execute this instrumentation so we need to
sure that this instrumentation computes the right thing on a per thread basis. In order to do th
use a modified version of the instrumentation code that is very similar to the single threade
but that uses the current thread id of the executing thread to know what data to access. In th
and having counter/timers per thread, we can compute metrics for any single thread withou
ing specific instrumentation for any special thread (see Figure 2)

Figure 1: Solaris Multithreaded Architecture
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3 DESIGN ISSUES

Some of the most important design issues are:

❏ Every thread shares the same program instrumentation.

❏ There is a vector of counter/timers per thread (more memory usage but better speed an
straight forward implementation).

❏ Two base application scenarios: few threads, few LWP (light weight processes); many th
created and destroyed dynamically (e.g. servers).

4 CURRENT DESIGN

The current design to support multithreaded applications with Paradyn can be seen in Figu

The main structure is theThread Table, which can be viewed as a matrix. The columns of th
metric represent threads and the rows metrics. Each cell in the matrix is a pointer to aVector of
Counteror Timers. These vectors contain a set of counter/timers (a fixed number actually)
since they are stored inside these vectors we don’t need any other level of indirection to acc
data. To clarify how we access data using this data structure, let’s give an example. If we w
access counter C4 for thread N, first we need to know the thread id of thread N. In this wa
will be able to access the column corresponding to thread N in the Thread Table. With this
mation, we can then access the right vector of counters for thread N (base address of the v
Now, we need to know the offset or position on this vector (in this example, C4). The offs
position in the vector is the same for every thread. This condition is very important becau

Figure 2: Instrumenting multithreaded applications. Single instrumentation code and
multiple data per thread.
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allow us to keep the same instrumentation code for every thread (i.e. all threadssharethis code).
In summary, to access a particular counter/timer we need three values: the thread id, the row
ber in the thread table (usually called level, which actually tell us what metric we are acce
and whether it is a counter or timer) and finally the offset or position in the vector.

This structure is represented inparadynd  by the following classes:
• superTable . ThesuperTable  class consists of an array ofbaseTable  elements (superVec-

tors ) and it represents theThread Table in paradynd. ThesuperTable  class is the class that
has contact with the outside world. Rows on this table are represented bysuperVectors .
EachsuperVector  has one entry for each thread (although we could have more entries 
threads, in which case we call these entries "reserved"). In order to know what entry co
spond to what thread, we use a hash table (which has a counter part in the application)
superTable  has also different "levels". Each level is used to store a different kind of
dataReqNode (i.e. counters, wall timers and process timers). When we add a new counte
need to find first on which level or levels are we storing counters. Then we need to find 
empty position in thefastInferiorHeap . Each entry of thesuperVector  has afastInfe-

riorHeap  associated with it. This structure has the mapping of data elements to location
the shared memory segment. This mapping is the same for every entry in thesuperVector

(i.e. for every thread), which means that when we add a new data element, we are addin
every thread. The reason for this is that having the same offset for counters of different th
will make the instrumentation code a lot easier and faster.

• baseTable . ThebaseTable  class consists of an array ofsuperVectors . ThebaseTable

class is a template class. It has alevelMap vector that keeps track of the levels (rows) that ha

Figure 3: Basic data structure for instrumenting threaded programs.
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been allocated (remember that we need not only an index but also a level in order to dete
the position of a counter or timer).

• superVector . ThesuperVector  is an array of vectors of counters and timers, orfastInfe-

riorHeap objects. Part of the functionality of thefastInferiorHeap class has been moved to
this new class.

Figure Figure 4, provides a general view of all these classes and how they are related.

4.1 Whole process vs. Threads

So far we have figured out how are we going to measure metrics for a particular thread, bu
are we going to handle metrics for the a particular process? We have several ways of doin
and some could be more efficient than others. One option is to compute these metrics in t
good way: having a single counter/timer for the whole process. In this way, we wouldn’t ne
aggregate values for all threads but we would have to put locks every time we updat
counter/timer since all threads are going to update the same variable. The other alternative,
is the one we choose because we think is the cheapest and more “natural” one, is to alway
pute counter/timers per thread and then aggregate all the values to get a per process metric
this approach, we don’t need locks but we do need to aggregate values all the time. If the n
of threads is large, this operation could be expensive plus we need to keep adding and d
threads to this metric every time a thread is actually created or deleted.

Figure 4: superTable, baseTable, superVector and fastInferiorHeap classes.
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4.2 Instrumentation Details

Some of the most important instrumentation issues are:

❏ Fixed size Thread Table indexed by thread-ids, points to vectors of counters or timers.

❏ Thread Table size directly related to maximum number of active threads at any given tim

❏ Separate sets of vectors of counters and timers per thread.

❏ Creation of vectors of counters/timers on demand, never removed.

❏ Counter/timers allocated by blocks (2 level memory allocation).

4.3 Base Trampoline

Figure 5 shows an updated version of the base trampoline to instrument multithreaded
cations. There are two new sections in the base trampoline. The first one is called “MT Prea
and its main function is to compute the position in the thread table for the thread that is curr
executing the code. Once we compute this value, we will store it in a special register (l7 more
cifically). In this way, we will guarantee that this value is going to be different for differe
threads since registers are kept per thread (and we don’t need any special thread local s
The second new section is located in the mini-trampolines and it computes the address
counter/timer based on the offset (we will discuss this in the following section).

Figure 5: Modified base trampoline.
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An example of the assembly code for a MT Preamble in a base trampoline (Sparc S
Architecture) can be found in Figure 6. The instructions that comprise MT Preamble are in

face. The call toDYNINSTthreadPos returns the column index of the calling thread in th
ThreadTable, andDYNINSTthreadPos returns -2 if the execution of the thread has alrea
passed the point where we have put instrumentation code to detect thread termination (i.e.,
has terminated from the tool’s perspective).

0x23090:        save  %sp, -120, %sp
0x23094:        nop
0x23098:        nop
0x2309c:        nop
0x230a0:        std  %g0, [ %fp + -8 ]
0x230a4:        std  %g2, [ %fp + -16 ]
0x230a8:        std  %g4, [ %fp + -24 ]
0x230ac:        std  %g6, [ %fp + -32 ]
0x230b0:        sethi  %hi(0xee40f800), %o5
0x230b4:        call  %o5 + 0x3e0       ! 0xee40fbe0 <DYNINSTthreadPos>
0x230b8:        nop
0x230bc:        cmp  %o0, -2
0x230c0:        mov  1, %l0
0x230c4:        bne,a   0x230cc
0x230c8:        clr  %l0
0x230cc:        cmp  %l0, 0
0x230d0:        be  0x230e0
0x230d4:        nop
0x230d8:        b,a   0x23124
0x230dc:        nop
0x230e0:        sll  %o0, 2, %l0
0x230e4:        sethi  %hi(0xeeb25800), %l1
0x230e8: or %l1, 0x13c, %l1 ! 0xeeb2593c <DYNINSTthreadTable>
0x230ec:        add  %l0, %l1, %l0
0x230f0:        mov  %l0, %l7
0x230f4:        nop
0x230f8:        nop
0x230fc:        nop
0x23100:        nop
0x23104:        nop
0x23108:        nop
0x2310c:        nop
0x23110:        nop
0x23114:        nop
0x23118:        nop
0x2311c:        b,a   0x23230
0x23120:        nop
0x23124:        ldd  [ %fp + -8 ], %g0
0x23128:        ldd  [ %fp + -16 ], %g2
0x2312c:        ldd  [ %fp + -24 ], %g4
0x23130:        ldd  [ %fp + -32 ], %g6
0x23134:        sethi  %hi(0xedc00000), %l0
0x23138:        ld  [ %l0 + 0xc ], %l1  ! 0xedc0000c
0x2313c:        add  %l1, 0x54, %l1
0x23140:        nop
0x23144:        nop
0x23148:        st  %l1, [ %l0 + 0xc ]
0x2314c:        restore

Figure 6: Example of Base Trampoline. MT Preamble, pre-instrumentation.
Instrumenting Multithreaded Applications March 14, 2001
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4.4 Mini-Trampolines

Mini-trampoline code is similar to the single threaded version, except that it needs to compu
address of the counter/timer before executing the desired operation (e.g. increment a co
This computation of the address also involves the computation of the address for the vec
counter/timers.

Figure 7 shows an example of mini-trampoline code that increments a counter. In Figu
counter is at level 0, with an offset 0 in the corresponding the vector of counters (implement
a fastInferiorHeap). The instruction at line 0x23230 computes the base address of the fast
orHeap, and the instructions at line 0x23234-0x23248 checks whether the base of the fas
orHeap is NULL. The instruction at line 0x23250 computes the address of the counter by a
the offset to the base of the fastInferiorHeap.

Figure 8 shows an example of mini-trampoline that starts a Thread timer. The mini-tramp
first checks if the thread has already terminated (from the perspective of Paradyn), and i
loads the base address of the vector of timers (see the instructions at lines 0x23288-0x232
in this case the timer is stored in a vector at level 2).

Paradyn allocates the vector of timers (implemented as fastInferiorHeaps) for a new t
asynchronously when it is notified the thread has been created. It is possible that before P
have the chance to allocate the fastInferiorHeaps for the new thread, the application could
already entered an instrumentation code. To deal with this, the mini-trampoline spins unt
base address of the corresponding fastInferiorHeap becomes non-NULL.

4.5 InferiorRPC

Paradyn uses an inferiorRPC to execute code that would have not been executed otherwi
starting a timer for the whole programafter the program has already started). The problem
doing this operation on a multithreaded program, is that we would need to execute this cod
particular thread (i.e. the thread that requires to start a timer, for example). One alternative
is that the main thread (or any other thread) executes the codeon behalfof the particular thread
that needs to run the inferiorRPC. We achieve this by forcing the use of a particular thread

0x23230:        ld  [ %l7 ], %l0
0x23234:        cmp  %l0, 0
0x23238:        mov  1, %l1
0x2323c:        be,a   0x23244
0x23240:        clr  %l1
0x23244:        cmp  %l1, 0
0x23248:        be  0x23260
0x2324c:        nop
0x23250:        add  %l0, 0, %l0
0x23254:        ld  [ %l0 ], %l1
0x23258:        inc  %l1
0x2325c:        st  %l1, [ %l0 ]
0x23260:        b,a   0x23270

Figure 7: Mini-trampoline code. Counter. Loads vector address (in this case level is 0, but
there could be some computation first), check that the value is not NULL, uses the offset to

compute counter address, loads counter, increments counter, saves counter and returns.
Instrumenting Multithreaded Applications March 14, 2001
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the base-trampoline (the place where we compute what thread is currently executing the
The following paragraph describes some of the details of the assembly code for an inferior

This is an example of the assembly code for the inferiorRPC (Figure 9). Remember that i
case, we need to execute this code on behalf of another thread.

A brief explanation of Figure 9 goes as follows:
The first instruction creates a new frame for the inferiorRPC. The call toDYNINSTthread-

PosTID takes the thread id, and the position of the thread in the ThreadTable and tests to
the thread has already terminated (from the perspective of Paradyn). It then executes ess
the same instructions as that would have been in a mini-trampoline, except that all calls ta
extra parameter, and it tests if a thread has terminated before every major operations, sin
thread that carries out the inferiorRPC may be different from the threads which the inferiorR
intended for. The complications of this code mainly result from the goal for generality.

0x23270:        sethi  %hi(0xee40fc00), %o5
0x23274:        call  %o5 + 0x9c        ! 0xee40fc9c <DYNINST_not_deleted>
0x23278:        nop
0x2327c:        cmp  %o0, 0
0x23280:        be  0x232f0
0x23284:        nop
0x23288:        sethi  %hi(0x1000), %l2
0x2328c:        mov  %l2, %l2   ! 0x1000
0x23290:        add  %l7, %l2, %l1
0x23294:        ld  [ %l1 ], %l0
0x23298:        cmp  %l0, 0
0x2329c:        mov  1, %l1
0x232a0:        bne,a   0x232a8
0x232a4:        clr  %l1
0x232a8:        cmp  %l1, 0
0x232ac:        be  0x232dc
0x232b0:        nop
0x232b4:        sethi  %hi(0xee40fc00), %o5
0x232b8:        call  %o5 + 0x8c        ! 0xee40fc8c <DYNINSTloop>
0x232bc:        nop
0x232c0:        cmp  %o0, 0
0x232c4:        be  0x232d4
0x232c8:        nop
0x232cc:        b,a   0x232f0
0x232d0:        nop
0x232d4:        b,a   0x23288
0x232d8:        nop
0x232dc:        add  %l0, 0, %l0
0x232e0:        mov  %l0, %o0
0x232e4:        sethi  %hi(0xee40a400), %o5
0x232e8: call %o5 + 0x368 ! 0xee40a768 <DYNINSTstartThreadTimer>
0x232ec:        nop
0x232f0:        b,a   0x23120

Figure 8: Mini-trampoline code. Timer. Loads vector address (in this case, the level is
different than 0, so we need to add some offset to the base address of the Thread Table)

check that the value is not NULL, uses the offset to compute timer address, calls
DYNINSTstopProcessTimer(timer_address)  and returns.
Instrumenting Multithreaded Applications March 14, 2001
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4.5.1 Problems with inferiorRPC

Executing inferiorRPC for threads could case a scenario we call self-deadlock when the t
that performs the inferiorRPC is the thread we intended for (this may seem to be counter int

0xefd9b180:     save  %sp, -112, %sp
0xefd9b184:     sethi  %hi(0), %l0
0xefd9b188:     or  %l0, 5, %l0 ! 0x5
0xefd9b18c:     sethi  %hi(0), %l1
0xefd9b190:     or  %l1, 5, %l1 ! 0x5
0xefd9b194:     mov  %l0, %o0
0xefd9b198:     mov  %l1, %o1
0xefd9b19c:     sethi  %hi(0xee408c00), %o5
0xefd9b1a0:     call  %o5 + 0x310       ! 0xee408f10 <DYNINSTthreadPosTID>
0xefd9b1a4:     nop
0xefd9b1a8:     cmp  %o0, -2
0xefd9b1ac:     mov  1, %l0
0xefd9b1b0:     bne,a   0xefd9b1b8
0xefd9b1b4:     clr  %l0
0xefd9b1b8:     cmp  %l0, 0
0xefd9b1bc:     be  0xefd9b1cc
0xefd9b1c0:     nop
0xefd9b1c4:     b,a   0xefd9b288
0xefd9b1c8:     nop
0xefd9b1cc:     sll  %o0, 2, %l0
0xefd9b1d0:     sethi  %hi(0xeeb25800), %l1
0xefd9b1d4:     or  %l1, 0x13c, %l1     ! 0xeeb2593c <DYNINSTthreadTable>
0xefd9b1d8:     add  %l0, %l1, %l0
0xefd9b1dc:     mov  %l0, %l7
0xefd9b1e0:     sethi  %hi(0), %l0
0xefd9b1e4:     or  %l0, 5, %l0 ! 0x5
0xefd9b1e8:     sethi  %hi(0), %l1
0xefd9b1ec:     or  %l1, 5, %l1 ! 0x5
0xefd9b1f0:     mov  %l0, %o0
0xefd9b1f4:     mov  %l1, %o1
0xefd9b1f8:     sethi  %hi(0xee408800), %o5
0xefd9b1fc:     call  %o5 + 0x3b8       ! 0xee408bb8 <DYNINST_not_deletedTID>
0xefd9b200:     nop
0xefd9b204:     cmp  %o0, 0
0xefd9b208:     be  0xefd9b288
0xefd9b20c:     nop
0xefd9b210:     sethi  %hi(0x1000), %l4
0xefd9b214:     mov  %l4, %l4   ! 0x1000
0xefd9b218:     add  %l7, %l4, %l3
0xefd9b21c:     ld  [ %l3 ], %l2
0xefd9b220:     cmp  %l2, 0
0xefd9b224:     mov  1, %l3
0xefd9b228:     bne,a   0xefd9b230
0xefd9b22c:     clr  %l3
0xefd9b230:     cmp  %l3, 0
0xefd9b234:     be  0xefd9b26c
0xefd9b238:     nop
0xefd9b23c:     mov  %l0, %o0
0xefd9b240:     mov  %l1, %o1
0xefd9b244:     sethi  %hi(0xee408c00), %o5
0xefd9b248:     call  %o5 + 0x3b0       ! 0xee408fb0 <DYNINSTloopTID>
0xefd9b24c:     nop
0xefd9b250:     cmp  %o0, 0
0xefd9b254:     be  0xefd9b264
0xefd9b258:     nop
0xefd9b25c:     b,a   0xefd9b280
0xefd9b260:     nop
0xefd9b264:     b,a   0xefd9b210
0xefd9b268:     nop
0xefd9b26c:     add  %l2, 0x30, %l2
0xefd9b270:     mov  %l2, %o0
0xefd9b274:     mov  %l0, %o1
0xefd9b278:     mov  %l1, %o2
0xefd9b27c:     sethi  %hi(0xee40ac00), %o5
0xefd9b280:     call  %o5 + 0x170       ! <DYNINSTstartThreadTimer_inferiorRPC>
0xefd9b284:     nop
0xefd9b288:     ta  1
0xefd9b28c:     ret
0xefd9b290:     restore

Figure 9: Assembly code for inferiorRPC (special trampoline code).
Instrumenting Multithreaded Applications March 14, 2001
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to some people). This happens when the thread has already acquired a lock, and then the i
RPC requests the same lock. This causes a deadlock because that these all happens in
thread of control. To solve this problem we have created an additional thread whose sole exi
is to carry out inferiorRPC on behalf of other threads. (Please note that for the current m
Paradyn supports, and the fact that we only launch an inferiorRPC if the corresponding i
mentation has not been installed, self-deadlock may not occur. The separate RPC threa
introduced for generality.)

4.6 Key Operations

❏ Add Thread:
Update corresponding Thread Table entry.
Create same number of vectors of counters and timers as for reminder threads.
Enable only those counter/timers that apply to the new thread.

❏ Delete Thread:
De-allocate all counter/timers + all vectors for this thread.
Update corresponding Thread Table entry.

❏ Add counter/timer:
Common case: there is space in a vector of counter/timers and we just add this new entryall
threads).
Special case: if there is no space available, then create new vector (for all threads) and a
new counter/timer entry.

❏ Delete counter/timer:
Just tag counter/timer asinvalid. It does not de-allocate memory.

Some of the advantages and disadvantages of this approach are:

Advantages:
• It allocates less memory than a similar option using an extra level of indirection.
• Execution of mini-tramp code should be fast since counter/timers are accessed directly

Disadvantages:
• New 2-level memory allocation procedure. Might create memory fragmentation.
• Could be wasting space if computing counter/timer for just one thread but need to add n

vector to every thread.
• Only de-allocate memory for counters, timers and vectors when a thread is deleted.

4.7 Timer Issues

Another challenge is to minimize instrumentation cost when measuring time-based metrics
per-thread basis. Threads are executed by LWPs. To measure the CPU (virtual) time of an in
ual thread, we must use the per-LWP timer kernel calls and instrument thread context switc
account for thread context switching and migration. To reduce the number of calls to expe
timer routines, we introduced per-thread virtual timers, one for each thread, and impleme
performance timers using the virtual timers.
Instrumenting Multithreaded Applications March 14, 2001
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The initial LWP ID of a newly created thread is recorded in a virtual timer and update
every thread context switch to account for any possible thread migration. We turn a virtual
off when a thread is de-scheduled (this stops all performance timers for this thread) and
back on when a thread resumes execution. Implementing per-thread virtual timers reduc
number of calls to expensive timer routines, and reduces the chance that a timer structu
accessed by interleaved instrumentation.

4.8 Thread Context Switch

We need to instrument thread context switch in order to properly compute timing metrics. F
this, we need to identify the appropriate functions in the thread package. For the Solaris th
package, these functions are:_resume (stop timer, thread context switch) and_resume_ret (start
timer, thread is about to resume execution).

This is a little messy because it requires internal knowledge of the thread package (we ac
had to look at the code in order to find what functions to instrument). However, this is only d
once per thread package.

4.9 Race conditions

1. Thread creation. In order to detect thread creation, If we instrument the routine
_thrp_create at the exit point (because this is the place when the thread id has been defi
However, at this point the new thread might be already running! (unless is created with 
THR_SUSPENDEDflag on). If this happens, this thread could try to execute instrumentation
is not ready to be executed for this particular thread (the thread table needs to be upda
point to the vector of counter/timers). If this is the case, the routineDYNINSTthreadPos  will
return -2 and we will keep looping untilDYNINSTthreadPos  returns a valid position in the
thread table. (We also instrument the routine_thr_start  which is called before it call the
start function of a thread to detect thread creation.)

2. Thread deletion. In order to detect when a thread is destroyed, we instrument the routine
_thr_exit_common at the entry point (it cannot be at the exit point because the current thr
is not valid anymore at that point!). The problem with this is that it is possible that since
are saying that a thread has been deleted at the beginning of_thr_exit_common , it could still
be the case that we try to execute instrumentation for that thread. Of course, the thread
exists for the application, but not for Paradyn. In this particular case,DYNINSTthreadPos will
return -2 and we will just skip the instrumentation (we can’t execute the instrumentation f
thread that has been already deleted). There are cases, however, where we are not com
neither counters nor timers. In these cases, we can execute the instrumentation withou
lems (e.g. calls toDYNINSTthreadCreate  or DYNINSTthreadDelete ).

4.10 New resource: Threads

We add threads under the process hierarchy. In this way in the where axis we would see, for
ple, that processjava_g{5143_grilled} has 13 threads labeled in terms of thread id and s
function of the thread. However, since resources in the where axis cannot be deleted (at le
now), threads don’t disappear from the where axis even if they have been deleted. This
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bring some confusion, specially if the user tries to enable a particular metric for a thread
doesn’t exist anymore. An example of the new whereAxis can be seen in Figure 10.

4.11 Cost of instrumentation

This section describes the cost of instrumenting threaded code through a few simple bench
and compares them with non-threaded Paradyn. Table 1 presents the cost of basic instrume
primitives, including the cost to execute the base-trampoline, increment a counter, and sta
stop a CPU timer. These costs are presented for the threaded and non-threaded Paradyn
mentations on two different systems: an UltraSPARC II with one 250 MHz processor, an
Enterprise 5000s with twelve 167-MHz processors.

As shown in Table 1, the cost of base-trampoline for threaded Paradyn is about 5 times o
of the non-threaded version. The extra costs are from code added to check for inferior RP
detect already running threads, and to calculate the column address in the Thread Table. C
primitives for the new version are 50% more expensive than the non-threaded Paradyn, and
code is about 30%-40% more expensive, mainly because the new version has to go through

Figure 10: Resource Hierarchy
Showing resource hierarchies for code, process and synchronization objects.

Machine

Base Trampoline Counter Start Timer Stop Timer

Non-
threaded

Threaded
Non-

threaded
Threaded

Non-
threaded

Threaded
Non-

threaded
Threaded

UltraSPARC II
Uniprocessor

125ns
552ns

(+342%)
28ns

41ns
(+46%)

1.09µs
1.53µs
(+40%)

1.15µs
1.47µs
(+28%)

Enterprise 5000s 186ns
815ns

(+338%)
42ns

65ns
(+55%)

1.53µs
2.15µs
(+41%)

1.55µs
2.03µs
(+31%)

Table 1: Micro Benchmarks
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of indirection. To get an idea of the costs of various components of a base-trampoline, Ta
lists the cost to check for pending inferior RPCs and cost to detect existing threads.

To get a feeling for the overall cost of the new instrumentation, we instrumented a simple
tithreaded application (matrix multiply with 150 lines of C code) and compared it with the co
instrumenting a sequential version of the same algorithm by the non-threaded Paradyn. T
shows elapsed times of the two versions repeatedly multiplying two 500x500 matrices of flo
point numbers. In Table 1, we measure CPU time (inclusive) for the whole program, proce
call frequency and CPU time (inclusive) for the functioninnerp . The procedure call frequency
of innerp is about 3,500 calls/second on the uniprocessor, and about 10,000 calls/second
multithreaded version on the multiprocessor. Note that the overhead for the threaded instrum
tion is about 2 to 8 times of that for the non-threaded instrumentation. Instrumentation cost i
portional to event frequency. In this example, we instrumented the most frequently c
procedure as a stress test.

4.12 Defining metrics for multithreaded programs

Measuring CPU time for the whole program:

Resource list definition (Figure 11). This figure describes the functions that we need to in

ment in order to catch thread context switches. Whenever_resume or _thr_exit_common are

Machine

Base Trampoline

Total
Checking
inferior

RPC

Detecting
Threads

UltraSPARC II
Uniprocessor

552ns
119ns
(22%)

69ns
(12%)

Enterprise
5000s

815ns
186ns
(23%)

102ns
(13%)

Table 2: Breakdown of Base-trampoline Cost

resourceList stopThread is procedure {

items {"_resume", "_thr_exit_common"};

flavor { unix };

library true;

}

resourceList resumeThread is procedure {

items {"_resume_ret"};

flavor { unix };

library true;

}

Figure 11: Example of MDL for CPU metric. Resource list definition.
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called, we need to stop the virtual CPU timer for that particular thread. Whenever_resume_ret is
called, we need to start that virtual timer for that particular thread again.

5 USING THE THREAD-AWARE PARADYN

The thread-aware Paradyn needs the thread-aware Paradyn daemonparadyndMT the thread-
aware Paradyn runtime librarylibdyninstRT_MT.so.1 , and the Paradyn resource fil
paradynMT.rc  must be included in the local Paradyn resource file$HOME/.paradynrc .

To choose the thread-aware Paradyn runtime library:
setenv PARADYN_LIB /p/paradyn/lib/sparc-sun-solaris2.6/libdyninstRT_MT.so.1

The following gives an example of the Paradyn PCL file to measuring a threaded applic

tunable_constant {

  "costLimit" 20.0;

  "PC_SyncThreshold" 0.0;

  "PC_CPUThreshold" 0.01;

  "PC_IOThreshold" 1.0;

}

exclude "/Code/libintl.so.1";

exclude "/Code/libm.so.1";

exclude "/Code/libw.so.1";

exclude "/Code/libmp.so.1";

process myproc {

        dir "/p/paradyn/applications/Test_dist/threads/matrix";

        command "matrix output";

        daemon mtd;

}

daemon mtd {

command "/p/paradyn/bin/sparc-sun-solaris2.6/paradyndMT";

flavor unix;

}

6 CURRENT LIMITATIONS AND PROBLEMS

This is a list of the current limitations and problems with the implementation of the instrume
tion of threaded applications:

6.1 Infrastructure-level issues

• New flavor for threadssyncWait  metrics.

• LocalAlteration (sparc-solaris). The LocalAlteration code for SPARC-solaris can not relo
some functions correctly, two such examples are libthreadwrite  and_exit
Instrumenting Multithreaded Applications March 14, 2001
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• Atomicity of instrumentation and instrumentability. For large applications, the instrume
tion could use up local heap. What is the appropriate action when this happens. The follo
functionality is desirable:

1. The ability to query the instrumentability of a function.
2. The ability to specifically ask for space within single word jump, or don’t care.
3. The ability to instrumentation without doing relocation (when instrumenting a instPoint t

can be done without relocation).
4. Delayed instrumentation. Cannot be done the same way as we are doing now for non-thr

applications.

• InferiorRPC: At what level should we provide ways to handle inferiorRPC, e.g., using a L
or Thread as provided a thread package. How to trigger an inferiorRPC. The current m
will always needed to do the initial inferiorRPC.

• Size of Thread Table is now fixed, can we make it extensible?

• Abstraction to deal with different thread packages.

• exec_time  metric [what is the right semantics of this metric for threads]

• DYNINSTstartThreadTimer /DYNINSTstopThreadTimer . How to deal with atom-
icity of the calls in the presence of thread context switch.

6.2 Problems under investigation

• Daemon never receive TRAP due to RPC

• Instrument all thread synchronizations correctly

• paradyndMT  asserts onsparc-sun-solaris2.7

• Spikes of CPU metric/ has to do with inferiorRPC?

6.3 Things that need to be more general

• How to deal with the recycling of thread id. Can our current implementation handle that

• In the thread-aware Paradyn runtime library, in several places we limit the number of e
we can handle, such as number of active threads, number of removed threads, and num
sync objects we can report.

• Eliminate the difference between the thread-aware and thread-unaware daemons.

7 NOTES

1. Applications. There are a couple of multithreaded applications for testing in
/p/paradyn/applications/threads . They are very easy to use and very good for testing
(they can create and destroy many threads).

2. Web sites. These are some interesting web sites worth looking at:
http://wwwwseast2.usec.sun.com/workshop/threads/
http://wwwwseast2.usec.sun.com/workshop/threads/usenix.html

■
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