Paradyn Parallel Performance Tools

Tutorial

Release 3.0
May 2000

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

Tutorial

4/13/00

Table of Contents

I o 1= 11 01 =T =S 4..

2 Common tutorial - BUbDa _SEQ........eii 5
2.1 RUNNING &N @PPIICALIONeiiiiiiiiiiiie et e e e e e e e e 5
2.2 Viewing performance Atcceeeioiiieieeeeie e e e e e e e e e e e e e e 9
2.3 Performance Consultant diagnOSIScccuuuiiiiiiiiiiiiie e e 11
A = LS o PP 16.........

3 MPI Tutorial - deCOMP _MPl...... it e e e e e e e e e e e e e e e eaeeeennne 18
3.1 Running the MPI appliCationcooooiiiiiiiiii e 18
3.2 Viewing PerformManCe QALAcceeiiiiiiiiiiiiiiiiii it e e e e e e e e e e e e e 21
3.3 Performance Consultant diagnOSISovvuuiiiiiiiiiiiee e e e e e 22

4 PVM Tutorial - POtAtO_PVMcooiiiiiiiiiiee et 27
4.1 Running thePVM appliCationuuuuiiiiiiiiii e e e e e e e e e e eeeaeaanens 27
4.2 Viewing performance dataoiiiiiiiiiiiiii e 29
4.3 Performance Consultant didgNOSIScoueiiiiiiiiiiiiiii e 31

5 FUurther iINfOrmMationo e e e e e e e 36....
5.1 Contacting the Paradyn deVEIOPEISciiiiiiiiiiiiiiiiiiieeiiier e 36

Tutorial April 13, 2000 Release 3.0

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Tutorial

List of Figures

Paradyn Main Control WINAOW.cooiiiiiiiiiiiiiiii et 5
Paradyn base WHEIE AXIS.cccoiiiiiiieeii ettt s s e e e e e e e e e e eeeeeeeeasannne 6
TheDefine A Process window specifying bubba application processcccc........ 7
Paradyn Main Control window with bubba loaded and ready to run 8
Where Axis after the bubba application process is loadedccccoeeeeiiiiiiiiiiiiiiiiininnn, 8
Selecting a Histogram VISUBIIZALIONcoeiiiiiiiiiiiii e 10
Metrics menu with “cpu” and “cpu_inclusive” selectedccccvvvvvviviiiiiiiiiiee e, 10
Histogram of global phase with “cpu” and “cpu_inclusive” for two foci 12
The Performance Consultant WiNAOWuueuuiiiiniiiiiee e 13
The Performance Consultant bubba exigency searchcccccciiiiiiiiiiiiiiiiiiiee, 14
The Search History Graph showing only exigent bubba nodescccccccceeeeeeennnn. 15
BarChart visi presenting selected bubba performance datacccoovviiiiiiininnnnnnn. 15
PhaseTable visi presenting phase durations.ooooiiiiiiiiiiiiiiiiieiieeeee e 16
Histogram for global PRASEccooiii oo 17
Histogram Of CUITENT PRASEcooieeeeeeeee e 17
TheDefine A Process dialog for MPI SSTWOAcoovviiiiiiiiiiiiiiiiiieeeeeee 19
Paradyn Main Control window after the MPI application process is started 20
Where Axis after the ssTwod MPI application process is startedcccccceeeeeeeennn. 20
MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected 22
Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive” 23
The Performace Consultant bottleneck search with MPl ssTwodccccvvvvvnnnee. 25
Search History Graph showing only exigent nodes for sSSTWodccccovvvvvviviinnnnnns 26
BarChart visi presenting the ssTwod performance bottleneck data 26
TheDefine A Process WiNndow for PVM POtatocccooveeiiiiiiiiiiiiiieiiiiiiiieee e 28
Paradyn Main Control window after PVM potato is startedccccccceeeeeeiiiiiiiiinnns 29
Where Axis after PVM potato iS Startedcccceeeiiiiiieeiiiiiiecceeeiice e 30
Metrics menu with “cpu” and “sync_wait” selectedccceeeiiiiiiiiieiiiiiiieeeeeiiiies 31
Histogram of global phase with “cpu” and “sync_wait” for two foci.ccceueueee. 32
Performace Consultant exigency search of PVM potatocccccceeeeeeeiiiiiiieeiiiiinnnns 33
Search History Graph showing only exigent PVM potato NOdescccccoeevveeeeeeennn. 34
BarChart visi presenting PVM potato performance dataccccceevveeeiieeeeeeevveeeeennnnn, 35

April 13, 2000 Release 3.0

Page 4

1 PRELIMINARIES

This documertt covers the basics for using Paradyn: how to start Paradyn, run an application,
view its performance data, and run the Performance Consultant to automatically find performance
bottlenecks in the application. Several simple example application programs come with the binary
distribution of Paradyn. You can obtain Paradyn and the test programs (binaries and sources) by
anonymous ftp tagrilled.cs.wisc.edu . For more information on obtaining and installing
Paradyn, including setting necessary environment variables, seartiayn Installation Guide

This tutorial is provided in three parts. The first part covers the basic use of Paradyn, its visu-
alizers and Performance Consultant using a simple sequential C applidaildrej. This is fol-
lowed by two additional tutorials for MPI and PVM applicationde¢omp and potato,
respectively, also provided in appropriate binary distributions), which may not be available on all
systems or relevant to all Paradyn users. While there is some redundancy between these tutorials
and the basic tutorial, they consider MPI- and PVM-specific functionality of Paradyn and addi-
tional examples of the use of Paradyn visualizers and Performance Consultant with message-pass-
ing programs.

1. Note that some of the color figures in this document may be unclear when printed in gray-scale.

Tutorial April 13, 2000 Release 3.0

Page 5

2 COMMON TUTORIAL - BUBBA_SEQ

This first tutorial section covers the basic use of Paradyn with a simple sequential application
(bubba) provided as part of the Paradyn binary distribution for every platform Paradyn supports.
This common tutorial section is an introduction to Paradyn and its capabilities, which will be

elaborated in following sections with additional functionality for MPI and PVM applications.

2.1 Running an application

2.1.1 Start Paradyn and define the application process

Paradyn can be started by entering the following command at a command forompt:

%paradyn
Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled

“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to load and run the subject application program.

Paradyn Main Control :
it
File Setup Phase Visi Help ‘

UIN status : ready

Figure 1: Paradyn Main Control window.

To describe an application to Paradyn, sel@efine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 3. To describe the appli-
cation and its environment to Paradyn, the following should be specified Deffiree A Process
dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left theJser field blank, which means that the login will have a value of the
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on

2. On Windows NT, the command prompt is accessible via the “Command Prompt” item in the Start menu.
Alternatively, the command may be issued from the “Run...” item in the Start menu. In both cases, the
PATH environment variable must include the Folder in which the Paradyn execpiialdyh.exg
resides in order for Paradyn to run.

Tutorial April 13, 2000 Release 3.0

Page 6

Selections MNavigate Abstraction

I Whole Program
Code [2
Machine b

SyncObject »

Vi= =

=earch:

Click to select; double—click to expand/un—expand

Shift—double—click to expand/un—expand all subtrees of a node
Ctri-double—click to select/un—select all subtrees of a node
Hold down Alt and mowve the mouse to scroll freely

Figure 2: Paradyn base Where Axis.

which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in thger entry. TheDirectory field allows you to spec-
ify a different working directory for the application process. In this example, Paradyn will

change tdp/paradyn/demo/Paradyn/bubba_seq/@PLATFORM before startinghubba 3 Note
that the path specified in this field is interpreted on the host specified adstefield, which
is not necessarily the host on which Paradyn is running.

4. Command: This entry takes the command that will start the application program. In this
example we have enterebubba ../dat/example5” , which specifies the executable file

(bubba) with one command line argumentgat/example5 , the input filet

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is a sequential application, tetdd daemon is selected. If the application is to be
run under Windows NT, the winntd daemon should be selected.
Once the fields of thBefine A Process window have been filled in, click on theccept but-
ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes as Paradyn examines and starts your application, depending on its size,
the load on the machine, network connection speed, etc.

3. To simplify this tutorial, the macr@ PLATFORM used as shorthand for the environment variable
PLATFORMpecifying the processor-vendor-OS tuple for this host/executable. Paradyn’s input parser
currently doesn’t make the appropriate environment variable substitutions itself, therefore, you must
manually substitute the appropriate information. (Alternatively, filesystems such as AFS may permit def-
inition of a symbolic link called@PLATFORM achieve this illusion.)

4. On Windows NT, the bubba executable is callagbba.exe” Also, note that if you choose to use back-
slashes instead of forward slashes, they must be escapedCiantrmand field on Windows NT. For
example, to run the bubba executable located one folder up from the folder specifiddinedtery
field, the command would be “..\\bubba.exe ..\\..\\dat\\example5”.

Tutorial April 13, 2000 Release 3.0

Page 7

Define A Process

User:
Host: |grilled
Directory: /p/paradyn/derno/Paradyn/bubba_seq/@FLATFORM

Daermon: jaggetel ¥ defd winmtd mpid

Command: [bubba .. /atfexampleq

ACCRPT CANCEL

Figure 3: The Define A Process window specifyingbubba application process

2.1.2 Starting an application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 4 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application progranuifba or bubba.exg, the name of
the machine (grilled), the name of the user (self), and the name of the daemon (defd)

2. Processes: A list of the process IDs of all the processes in the application. In this example,
there is one pid (18904) corresponding to the process started on host grilled.

3. Application status: The current status of the application program (either RUNNING,
PAUSED, or EXITED).

4. grilled: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited).

The new status line for the Paradyn processt4 Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to examine the program executable(s), it is able to add
entries to the Where Axis. The new entries in the Where Axis correspond to resources that can
only be obtained when the application process has been defined and started. These new entries
include modules and procedures in tbade hierarchy, and machine names in tachine hier-
archy. Figure 5 shows the Where Axis with these new resources added. The Machine hierarchy
contains the machinefilled.cs.wisc.edu " under which is the processtibba{18904} ”, and
the Code hierarchy contains several new entries corresponding to a source code modules. Double-
clicking on nodes with a triangle on their righthand edge expands them to show the nodes they
contain; double-clicking on a head-node folds it into its parent node. Single-clicking on nodes
(including head-nodes) will be used later to select (sets of) resources for metric foci. Locating

Tutorial April 13, 2000 Release 3.0

Page 8

Paradyn Main Control
aral
File Setup Phase Visi Help | _WT
UIH status : readp
Application name : program: bubba, machine: ¢local hosth, wser: (zelf), daemon: defd
Application status
Data Managexr : readp
Processes = PID=12404
.gr.i_l_l.ed : PID=184904, readn.
RUL | PALSE | EXPORT | EXIT |
Figure 4: Paradyn Main Control window with bubba loaded and ready to run
Selections Navigate Abstraction |
I ‘ Whole Program|
Code | Machine| ‘ Syn-::()bject|
T 1
| partition.-:| | grilled.cs.wisc.edu|
1 1
Doy
p_delmem |
p_hconst |
pnit |
prew |
poverlap |
p_printpart |
p_redosetmap |
p_whichset |
M= =
Search: |

Figure 5: Where Axis after thebubba application process is loaded

particular nodes can be achieved by typing a search string in the labeled field and then enter.

At this point, Paradyn is ready to start running the application. You can now seleRtitie
button from the Paradyn Main Control window to start executnpba, or alternatively first
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commencedPASE button can be used to temporarily
halt it andRUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

Tutorial April 13, 2000 Release 3.0

Page 9

2.1.3 Starting an application process automatically

Paradyn can also start an application using a PCL specification file. Below shows a command to
start thebubba application using a PCL file callédbba.pcl

%paradyn -f bubba.pcl
The contents of the PCL fileybba.pcl , are shown as follows:

/I Paradyn configuration file for bubba (generic)
process bubba

{

/lhost "localhost";

dir "/p/paradyn/demo/Paradyn/bubba_seq/@PLATFORM";
command "bubba ../dat/example5";

daemon defd;

}
In the PCL file, the (optional) host, the directory, the command, and the daemon are specified as
when starting an application manually, and on start-up Paradyn automatically loads and prepares
this process ready for execution and analysis.

2.2 Viewing performance data

Before you run the application process, you may want to start a visualizeis()ér For this appli-

cation, we will start a time-histogram visualization to view CPU utilization for the application. In
this section, we describe how to start a visualizer, and how to choose the set of metrics and parts
of the program that a visualizer will display.

2.2.1 Starting a visualizer

To start a visualizer, select thési option from the Paradyn main window menubar. This will
open theStart A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for the Glo-
bal Phase (Section 2.4 will discuss phases). Other visualizations allow metric data to be presented
in tabular and barchart form, etc., though all visualizers may not be available on all platforms.

Once the visualization selection has been made, click orstée button and Paradyn will
display a metrics dialog. This dialog, shown in Figure 7, allows you to select the set of metrics to

be displayed by the visualizatiénin this example, we have selectepu (CPU time) and
cpu_inclusivgCPU inclusive). Thepumetric if applied to a function will exclude time spent in
any function it calls, whereas tlopu_inclusivemetric includes time spent in the selected function
and the functions that are called by it.

To choose the parts of the program for which the metric will be collected, you select resources
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric
data can be collected. For example, if you select the hatdbka{18904} from the Machine hier-
archy, you limit data collection to the procebabba{18904} If you selectp_makeMG and
a_reversepmove from the Code hierarchy, you limit data collection to functipmakeMGand

5. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.
6. The metrics dialog shows all metrics defined for the current platform(s).

Tutorial April 13, 2000 Release 3.0

Page 10

Start A Visualization

Barchart
Histogram
PhaszeTable
Table
Terrain

|*0> Global Phase |v Current Phase

Start | Cancel |

Figure 6: Selecting a Histogram visualization

Salect Metrics and Focus(es) below

I number_of_cpus _| exec_time | m=g_bertes

_| pause_tme _| svmc_ops W cpu

_| active_processes _| msgs W cpu_inclusive

_| predicted_cost | smc_weait _| io_ssrait

_| ohzerved _cost | sme_wait_inclusive | io_wait_inclusiv

_| procedure_calls _| msg_btes sent _l io_ops

| procedure_called | msg_bwtes recv | io_bertes
ACCEPT CLEAR CANCEL

Figure 7: Metrics menu with “cpu” and “cpu_inclusive” selected

a_reversepmove . Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to cfeates @ach
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in the functipnsakeMG and
a_reversepmove Iin the procesdubba{18904} . This selection corresponds to two foci: the
first focus is when the process 18904 is running in funcpianakeMG the second focus is when
process 18904 is running in functianeversepmove

If no Where Axis nodes are selected then Paradyn uses the tidfaldtProgram .

Once you have made your selections, click onAleceept button on the metrics menu. Para-

Tutorial April 13, 2000 Release 3.0

Page 11

dyn will then try to enable data collection for your selection. The selection is expanded to be the
cross-product of metric-focus pairs from the list of metrics and foci selected. For example, if the
metrics CPU and CPU_INCLUSIVE, and the resource nodésibba{18904} and p_makeMG

were selected, then Paradyn would try to enable four metric-focus pairs:

» CPUtime for process 18904 when it is running in functiomakeMG
e CPUtime for process 18904 when it is running in functiomakeMG
e cpu_inclusivaime for process 18904 when it is running in funcpomakeMG

e cpu_inclusivdime for process 18904 when it is running in funcpomakeMG
If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization

process and start sending performance data values to the visualiz#titvere are any metric-

focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to
try enabling any other metric-focus pairs, you can chooseCeCEL button on the metrics
menu.

The time-histogram shown in Figure 8 is the result of selecting the metrics “cpu” and
“cpu_inclusive” from the metrics menu andubba{18904} and p_makeMG and
a_reversepmove from the Where Axis.

Once the time-histogram is created, click on BN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These
options are described in detail in tharadyn User’'s Guide

2.3 Performance Consultant diagnosis

The Performance Consultant is the part of Paradyn that performs an automated hierarchical search
for performance bottlenecks. It automatically enables and disables instrumentation for specific
metric-focus pairs as the search progresses. The Performance Consultant starts looking for
course-grained performance problems and then iteratively tries to refine the search to isolate the
performance bottleneck to a specific aspect of the application’s execution. This aspect is specified
as a point in a three dimensional search space defined by a Why Axis, Where Axis, and When
AXis.

2.3.1 The Performance Consultant window

The Performance Consultant is started by selectingéginermance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the Performance Consultant window.
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are
discussed later in Section 2.4.)

2. Status line: The status line at the top of the window indicates the phase for which the search is
defined (in this example, the search is defined foGthieal Phase).

7. Metric data isn’t sampled or displayed before the application starts running or while it is paused.

Tutorial April 13, 2000 Release 3.0

Page 12

Histogram Visualization
ara
File Curve | yn

CFUs

1
0.5 7 J

0.6 7

0.4 7

oo

0.2

e e e T e T e ——

T T
#40 BOO
Sec

—— cpux/Codelanneal .cfa_reverseprmove, (Machine/grilled .cs wisc.edu/bubba{18904)= (smoothed)
cpu=</Code/partition.c/p_rmakelG, /Machine/grilled cs wisc. edu/bubba{18904}> (smoothed)

—— cpu_inclusive</Codelanneal .cfa_reverseprmove, (Mdachine/grilled. . cs wisc.edu/bubba {18904} (smoothed)

cpu_inclusive</Code/partition. c/p_tmakeMG, /Machine/grilled ce wisc. eduw/bubbal1 8804} = (smmoothed)
Fan £

~ I et

Figure 8: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

3. Search Text Output: This area is used by the Performance Consultant to print status messages
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements
that have been made. Figure 9 shows only the initial negéevelHypothesis .

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the
color of the nodes and edges in the search history graph, and how to navigate around the win-
dow.

2.3.2 Starting the search

The search can be started by clicking on Sgarch button in the Performance Consultant win-
dow. As the Performance Consultant search proceeds, status information will be printed to the
window, and the search history graph will be updated to reflect the current state of the search. A
Performance Consultant search is either defined over the entire run of the application (the global
phase), or over a specific phase of the application’s execution. In this example we selected the
Search button in the Performance Consultant window to start a global phase search. Figure 10
shows the Performance Consultant window during the bottleneck search.

By watching the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search

Tutorial April 13, 2000 Release 3.0

Page 13

The Performance Consultant
ara
Yy

Searches |

Current Search: Global Phase

Callgraph-based search for Global Phase. J
7
I TopLevelHypothesis
Excessive3yncWaiting Time
ExcessivelOBlocking Time
CPUbound
AN |~
| Pause
Mewer Evaluated
Linknown uninstrumented
False yainstrmentad shadow nods
Withy Axis Befinement Wi'here Axis Refinement
Hold down Alt and mowve the mouse ta scroll freely
Click middle button on a node to obtain more info on it

Figure 9: The Performance Consultant window

process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 11 shows the hypothesis associated with the bottom-
most nodes in the graph.

Figure 10 shows the search history graph during the search for a bottlernewkan You can
see that there have been refinements on both the Why and Where axis (these are indicated by yel-
low and purple edges in the search history graph). Also, there are nodes representing hypotheses
that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 11 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue coloredTlopLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a cpu bottleneck in the applicatioGFthie
ound node is true). Next, the synchronization bottleneck was isolated to the function main and

Tutorial April 13, 2000 Release 3.0

Page 14

machine grilled.cs.wisc.edu. The fact that these two nodes are siblings indicates that these refine-
ments were done at the same time. These two nodes were then further refined concurrently. The
result after several such refinements is that the bottleneck is isolated to a specific procedure
(p_makeMQ@. This means that the Performance Consultant found that there is CPU bottleneck in
procedurep_makeMG At this point, the Performance Consultant was unable to further refine the
bottleneck. However, it will continue to evaluate true nodes in the graph.

The Performance Consultant
ara
VT

Searches |

Current Search: Global Phase

+76) CPLIbound tested true for /Codef/bubba.c/main,Machine /SyncCbject
+103) CPUbound tested true for /Code, Machinefgrilled.cs.wisc.edwbubbaf 18304} /SyncOhject
+103) CPUbound tested true for /Codefanneal.ofa_anneal /Machine,/SyncDbject
+134) CPUbound tested true for /Code/bubba.c/mainMdachinesgrilled.cs.wisc.eduwhubba{18304}/SyncOhbject
+134) CPUhound tested true for /Codefanneal.c/a_neighborMachine /SyncOhbject vl
CPUbound
grilled.cs.wisc.edu m
bubba{18904} c_getint
c_makechan
= c_roadpins | [outpur [+ nefghbor
c_makesnets a_cost
c©_makegraph a_accept
p_init p_copy
a_reversepmove
B _reVersepIneve
/=l =
| Pause
MNewer Evaluated
LInknown uninstrumented
False uninstrumentad; shadow node
Why Axis Refinement YWhere Axis Refinement

Hold down Alt and mowve the mouse to scroll freely
Click middle button on a node to obtain more info on it

Figure 10: The Performance Consultanbubba exigency search

2.3.3 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing BarChart from the&t{est A Visualization menu

(like Figure 6). The barchart is shown in Figure 12: it shows that almost all ofpld¢ime for

bubba can be attributed to procedurenakeMG

Tutorial April 13, 2000 Release 3.0

Page 15

The Performance Consultant

|
CPUbound

grilled.cs.wisc.edu main
bubba{18904} a_anneal
main a_neighbor
a_anneal p_isvalid
a_neighbor p_makehdG
p_isvalid grilled.cs.wisc.edu

p_makeldG EeDba{ T 89043

Figure 11: The Search History Graph showing only exigertbubba nodes

Barchart Visualization

Figure 12: BarChart visi presenting selectedubba performance data

Tutorial April 13, 2000 Release 3.0

Page 16

2.4 Phases

In this section we briefly discuss Paradyn’s notion of phases.

Phases are contiguous time-intervals within an application’s execution. There are two types of
phases: global phaseand zero or moréocal phasesThe global phase includes the entire period
of execution, from the start of the application program until the current time. This phase is the
default for the Performance Consultant or any visualization. A local phase restricts performance
information to a particular time interval. A local phase can be started at any time; the local phase
ends when a new local phase is started. This means that, at any given time, you can select perfor-
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collection after
the application process has been running for some time. Because Paradyn uses fixed-size data
structures to store performance data, the granularity of performance data becomes more coarse the
longer the application runs. For some applications, the interesting behavior may not occur until
several hours into its execution when the granularity of performance data is large. To obtain per-
formance data at a finer granularity, you can start a new local phase. The data collection at the
start of the new phase will be at the finest granularity supported by Paradyn.

To start a new phase, first create a phase table visualization by ch&bsisg Table from the
Start A Visualization menu. A phase table is shown in Figure 13. Next, click onStet A
Phase menu option from the phase table’s menu bar. This will cause the phase table to display an
end time for the previous phasghé@se_0 in the example), and a phase name and phase start time
for the newly created current phapedse_1 and1lm 54s in the example).

Phase Table
ala

File Phase it
Phase Name Start Time End Time
phase 0 0s M mids
phase 1 TTmads

Figure 13: PhaseTable visi presenting phase durations.

Once a new phase is started, you can create visualizations to display data from it by clicking
on theCurrent Phase button in the lower right corner of th8tart A Visualization window.
Figure 14 and Figure 15 are time-histograms for the global and current phases respectively..

Note that the current phase histogram starts at phase_1's start time (11:54) and displays data at
a finer granularity than the same performance data displayed by the global phase histogram.

Tutorial April 13, 2000 Release 3.0

Time Histogram Display ﬁ ra
File Actions View v
Phase: Global
CPUs
6
5 rfx%':ﬂ\"wx\ﬂzm T
4 4
3 - z
0
| O
¢ M
14
L
0 I I I I I I I I I I
0:00 2:40 5:20 8:00 10:40 13120 1600 1840 21:220 2400 26:40

Min:sec
sync wait <Whole Program= (smoothed)
cpu <Whole Program:= (smoothed)

PAN

Figure 14: Histogram for global phase

Time Histogram Display ﬁ -
File Actions View W
FPhase: phase_1
CPUs
B |l' & .
: | ’r\\wm_,-\wrl\ﬁq.-"\\ {-'\kwr'ﬁ_u-“"\mf’h\"\.ﬁvr \\L.’;I\P‘\LH" 1'\«-/-""'"1%'\:’_' e e
i
4 4
3 4 £
0
2] v
1 4
k
0 I I I I I I I I I I
12:00 12:20 12:40 13:00 13:20 13:40 14:00 14:20 14:40 15:00

Min:sec
sync wait <Whole Program= (smoothed)
cpu <\Whole Program: {smoothed}

PAH

Figure 15: Histogram of current phase

Tutorial April 13, 2000 Release 3.0

Page 18

3 MPI TUTORIAL - DECOMP_MPI

This tutorial section covers the use of Paradyn with a simple MPI applica&iwod provided
as part of the Paradyn binary distribution for platforms where MPI is supported. MPI is not yet
supported by Paradyn on all platforms: seeR@eadyn User Guiddor details.

3.1 Running the MPI application

3.1.1 Start Paradyn and define the MPI application process

The first step is to run Paradyn. This is done by entering the following command:
%paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to loaded and run the subject application program.

To describe an application to Paradyn se®@efine A Process from the Setup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 16. To describe the
application and its environment to Paradyn, the following should be specified iDefiree A
Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left theJser field blank, which means that the login will have a value of the
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in thser entry. TheDirectory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this example,
Paradyn will change teldecomp_MPI/@PLATFORMbefore startingsTwod .

4. Command: This entry takes the unix command that will start the application program. The
syntax for this command for launching MPI jobs will vary by platform. For IRIX, the entire
command-line including thepirun command and all of its appropriate arguments should be
entered. For AlX, the POE job launchese can be entered or omitted. In this example we
have enteretimpirun -np 4 ssTwod” , which specifies the executable fils{wod) with one
command line argument: the number of processes (

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is an MPI application, theid daemon is selected.

Once the fields of thBefine A Process window have been filled in, click on theccept but-
ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes, depending on the size of the application.

Tutorial April 13, 2000 Release 3.0

Page 19

Define A Process

User:
Host: leden
Directory: | ~/decornp_RFEPI/
Daernon: prerrd defd winntd ¥ mpid

Command: [mpirun —np 4 ssTwod)

ACCREPT CANCOREL

Figure 16: The Define A Process dialog for MPI ssTwod

3.1.2 Start the MPI application process manually

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 17 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application prograss{wod), the name of the machine
(eden), the name of the user (self), and the name of the daemon (mpid)

2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of IRIX
MPI, this field is used to indicate that paradyn has identified the job as an IRIX MPI job.

3. Application status: The current status of the application program (either READY, RUN-
NING, PAUSED, or EXITED).

4. Hosts: Status lines for each host. Once the application starts running these will display the
status of each host (running, paused, or exited). In Figure 17 only the hostname eden is shown
as we are running only on one host.

The new status line for the Paradyn procé3st§ Manager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entries to the
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained
when the application process has been defined and started. These new entries include modules and
procedures in th€ode hierarchy, and process IDs in thMachine hierarchy. Figure 18 shows the
new Where Axis with these new resources added. The Process hierarchy contains four new pro-
cesses (one for each MPI process).

At this point, Paradyn is ready to start running the application. You can now seleRtiie
button from the Paradyn Main Control window to start executisigvod, or alternatively first

Tutorial April 13, 2000 Release 3.0

Page 20

Paradyn Main Control
ard|

File Setup Phase Visi Help | ¥
rIH status : readp
Application name = program: ssTwod machine: eden wser: (=self) daemon: mpid
Application status
Data Manager : readp
PYOCesses : IRTX MPI
. eden = application pansed

BUN | PALISE | EXPORT | EXIT |

Figure 17: Paradyn Main Control window after the MPI application process is started

Selections Navigate — Abstraction |

j Whole Program

kMachine SyncObject

eden.cs.wisc.edu
[

¥l S ™~

Search: |

Figure 18: Where Axis after the ssTwod MPI application process is started

define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commencedPaSE button can be used to temporarily

halt it andRUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

Tutorial April 13, 2000 Release 3.0

Page 21

3.2 Viewing performance data

Before you run the application process, you may want to start a visualfzer this application,

we will start a time-histogram visualization to view CPU utilization and synchronization blocking
time for the application. In this section, we describe how to start a visualizer, and how to choose
the set of metrics and parts of the program that a visualizer will display.

3.2.1 Starting a visualizer

To start a visualizer, select thdsi option from the Paradyn main window menubar. This will
open theStart A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualizer selected for the Global
Phase (Section 2.4 discusses phases).

Once the visualization selection has been made, click oA¢bept button and Paradyn will
display a metrics menu appropriate for this MPI application. This menu, shown in Figure 19,
allows you to select the set of metrics to be displayed by the visualization. In this example, we
have selectedgync_wait_inclusivéinclusive synchronization blocking time) amgu_inclusive
(inclusive CPU time).

To choose the parts of the program for which the metric will be collected, select resources by
clicking on nodes in the Where Axis. A focus is a location in the application for which metric data
can be collected. For example, selecting the node$wod{298489 eden} and ssT-
wod{298574 eden} from the Process hierarchy, limits data collection to these two processes
(298489 and 298574). Selectingod.f from the Code hierarchy, limits data collection to module
twod.f . Figure 18 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to cfeates &ach
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in modwtel.f only in processes
298489 and 298574. This selection corresponds to two foci: the first focus is when process
298489 is running in modulevod.f ; the second focus is when process 298574 is running in
moduletwod.f

If no Where Axis nodes are selected then Paradyn uses the ti¢fialdtProgram .

Once you have made your selections, click on the Accept button on the metrics menu. Paradyn
will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics
CPU _inclusive andsync_wait_inclusive , and the resource nodsesTwod{298489 eden} , ssT-
wod{298754 eden} , andtwod.f were selected, then Paradyn would try to enable four metric-
focus pairs:

* CPU._inclusivetime for process 298489 when it is running in moduide. f
* CPU._inclusivetime for process 298574 when it is running in moduide. f
» sync_wait_inclusivéime for process 298489 when it is running in moduide.f
» sync_wait_inclusivéime for process 298574 when it is running in moduide.f

1. Visualizers do not have to be started now, but doing so before the program starts running will guarantee
that you will get data for the complete execution of the application.

Tutorial April 13, 2000 Release 3.0

Page 22

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization
process and start sending performance data values to the visualization. If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to
try enabling any other metric-focus pairs, you can chooseCthiRCEL button on the metrics
menu.

Select Metrics and Focus(es) below

number_of cpus W cpu_inclusive co_msgBstesBecr

pause_time SYNC_0ps msgs

active_processes sync_vwait mag_bytes_sent

predicted _cost B snc_walt_inclusive mzg_bytes_ recw
_| ohserved _cost pp_tnsgs io_ops

procedure_calls pp_msgEytesSent io_vwrait

procedure_called pp_msgBrtesRecy io_vwrait_inclusive

exec_time Cco_insgs io_lmrtes

cpu co_msgEytesSent

ACCEPT CLEAR CANCEL

Figure 19: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected

The time-histogram shown in Figure 20 is the result of selecting the metrics
“sync_wait_inclusive” and “cpu_inclusive” from the metrics menu without any selections from
the WhereAXxis (thus there are 2 WholeProgram results), plus an additional result displayed for
the “sync_wait_inclusive” metric and the exchng2_ function (selected from the Code hierarchy of
the WhereAxis).

Once the time-histogram is created, click on BN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These
options are described in detail in tharadyn User’'s Guide

3.3 Performance Consultant diagnosis

The Performance Consultant is the part of the Paradyn tool that performs a search for perfor-
mance bottlenecks. It automatically enables and disables instrumentation for specific metric-focus
pairs as the search progresses. The Performance Consultant starts looking for course-grained per-
formance problems and then iteratively tries to refine the search to isolate the performance bottle-
neck to a specific location in the application’s execution. This location is specified as a point in a
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

3.3.1 The Performance Consultant window

The Performance Consultant is started by selectingénermance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the initial Performance Consultant
window. We briefly discuss the parts of the Performance Consultant window below:

Tutorial April 13, 2000 Release 3.0

Page 23

Histogram Visualization
ara
File Curve | Vil

CFPUs
2.5
'
1.5 7
Z
17 0
0
Im
0.5 7
1] T T T T T T T T T
0 a0 40 &0 80 100 120 140 160 180
Sec
cpu_inclusive<Whole Programs (smoothed)
gync_wait_inclusive<Whole Programs (smoothed)
—— gync_wait_inclusive<!Codefexchng?. flexchng?_ > (smoothed)
Pan v |
I~ [

Figure 20: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

1. Searches Menu: Allows you to view search history graphs from different phases.

. Status line: The status line at the top of the window indicates the phase for which the search is
defined (in this example, the search is defined foGthieal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages
about the state of the search.

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements
that have been made.

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the
color of nodes and edges in the search history graph, and how to navigate around the window.

3.3.2 Starting the search

The search can be started by clicking on Sgarch button in the Performance Consultant win-

dow. As the Performance Consultant search proceeds, status information will be printed to the
window, and the search history graph will be updated to reflect the current state of the search. A
Performance Consultant search is either defined over the entire run of the application (the global

Tutorial April 13, 2000 Release 3.0

Page 24

phase), or over a specific phase of the application’s execution. In this example we selected the
Search button in the Performance Consultant window to start a global phase search. Figure 21
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 22 shows the hypothesis associated with the node
representing theync_wait_inclusivéime for functionfnd2ddecomp_ .

Figure 21 shows the search history graph during the search for a bottlensgkvist . You
can see that there have been refinements on both the Why and Where axis (these are indicated by
yellow and purple edges in the search history graph). Also, there are nodes representing hypothe-
ses that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 22 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue coloredrlopLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a synchronization bottleneck in the application
(the ExcessiveSyncWaitingTime node is true). Next, the synchronization bottleneck was iso-

lated to a specific function in the applicationAIN_)? and to a specific type of synchronization
object (Message). The fact that these two nodes are siblings indicates that these refinements were
done at the same time. These two nodes were then further refined in parallel. The result is that the
bottleneck is isolated to the specific procedewehng2_ , and to a specific message tag (graup
message tag). This means that the Performance Consultant found that there is excessive syn-
chronization waiting time associated with messageltagproceduresxchng2_ . At this point, the
Performance Consultant was unable to further refine the bottleneck. However, it will continue to
evaluate true nodes in the graph.

3.3.3 Verifying the Performance Consultant’s results

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing Barchart from thesiist A Visualization menu

(like Figure 6). The barchart is shown in Figure 23. It shows that a significant amount of the
sync_wait_inclusiveime for the whole program can be attributed to procedusdng2_ (the

2. The MIPSpro F90 compiler on Irix transforms Fortran routine names by making them entirely lowercase
and appending a trailing underscore. The program routine itself beddid$. Other Fortran compil-
ers make different name transformations.

Tutorial April 13, 2000 Release 3.0

Page 25

The Performance Consultant

—_I——_————____———_

_ ExcessiveSyncWaitingTime

SpinLock MAIN__ Message
Barrier
Semaphore fnd2dnbrs_ exchngz_ || [EIl
fnd2ddecomp_
twodinit_ Message
sweepzd_

Semaphore

instrumented

Figure 21: The Performace Consultant bottleneck search with MPI ssTwod

pink bars for each focus). It also shows that $yac_wait_inclusivéime is pretty evenly distrib-
uted across all processes, so it would be unlikely that the Performance Consultant would isolate
the synchronization bottleneck to a proper subset of the processes.

Tutorial April 13, 2000 Release 3.0

Page 26

The Performance Consultant

|
ExcessiveSyncWaitingTime

MAIM__ Message

exchng2 3

Message 0 1
MAIM__

exchngz

Figure 22: Search History Graph showing only exigent nodes for ssTwod

Barchart Visualization

=

Figure 23: BarChart visi presenting the ssTwod performance bottleneck data

Tutorial April 13, 2000 Release 3.0

Page 27

4 PVM TUTORIAL - POTATO_PVM

This section covers the basics of using Paradyn on PVM applications: how to prepare an applica-
tion for Paradyn (if necessary), run it, view its performance data, and run the Performance Con-
sultant to automatically find performance bottlenecks in the application. The simple PVM test
program used as an example in this sectmnato), is provided with the binary distribution of
Paradyn. Note that it requires that PVM be installed on your system.

4.1 Running thePVM application
You need to start PVM itself before running Paradyn.

4.1.1 Start PVM

An example of starting PVM on the hesbcolate is provided below:

%pvm
pvm>add cham
pvm> add beaufort
pvm> conf
3 hosts, 1 data format
HOST DTID ARCH SPEED

chocolate 40000 SUNMP 1000
cham 80000 SUNMP 1000
beaufort c0000 SUNMP 1000

The Paradyn daemoparadynd) and the binary of the applicatiopdtato) must also be cop-
ied to the directory where you keep your PVM binaries (UsUSH®ME/pvm3/bin/$PVM_ARCH Or
$PVM_ROOT/bin/$PVM_ARCH):

% cp paradynd $HOME/pvm3/bin/$PVM_ARCH
$ cp potato SHOME/pvm3/bin/$PVM_ARCH

4.1.2 Start Paradyn and define the PVMpotato application process

The next step is to run Paradyn. This is done by entering the following command:
Y%paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to loaded and run the subject application program.

To describe an application to Paradyn se®@efine A Process from the Setup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 24. To describe the
application and its environment to Paradyn, the following should be specified iDefiree A
Process dialog:

1. User: The login name on the host on which Paradyn will start the application process. In this
example we left theJser field blank, which means that the login will have a value of the
user’s current login name.

Tutorial April 13, 2000 Release 3.0

Page 28

2. Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in thger entry. TheDirectory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this example,
Paradyn will change te/pvm3/bin/lSUNMP before startingotato .

4. Command: This entry takes the unix command that will start the application program. In this
example we have enteregbtato 5 1000000 , which specifies the executable fijgfato)
with two command line arguments: the number of procesgesd the number of messages
each process will sendo0000).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is a PVM application, themd daemon is selected.

Once the fields of thBefine A Process window have been filled in, click on theccept but-
ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes, depending on the size of the application.

Define A Process

User:
Host: chocolate
Directory: |~pyma/bin/SUNMP

Daemon: % pvmd defd winntd mpid
Command: [potato 5 1000000
ACCEPT CANCEL

Figure 24: The Define A Process window for PVM potato

4.1.3 Start the PVMpotato application process

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 25 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application prograpofato), the name of the machine
(chocolate), the name of the user (self), and the name of the daemon (pvmd)

Tutorial April 13, 2000 Release 3.0

Page 29

2. Processes: A list of the process IDs of all the processes in the application. In this example,
there is one pid (7657) corresponding to the process started on host chocolatepdfsiteen
runs it will spawn processes on the other hosts (cham and beaufort).

3. Application status: The current status of the application program (either RUNNING,
PAUSED, or EXITED).

4. chocolate, beaufort, cham: Status lines for each host. Once the application starts running
these will display the status of each host (running, paused, or exited).

The new status line for the Paradyn proce3st§4 Manager) displays the state of Paradyn’s Data
Manager.

Paradyn hain Control
P
File Setup Phase Visi Help | ¥y

TIM status : ready
Application name : program: potato, machine: (local), usar: {(self], daemon: p
Application status : RUNNING
Data HManager = ready
Procassas : FID=191&4

boaufort = application runhning

chooolats = applircation runhning

: application running

chamn
| PATISE | SAVE | EXIT |

Figure 25: Paradyn Main Control window after PVM potato s started

Now that Paradyn has had a chance to look over your program, it is able to add entries to the
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained
when the application process has been defined and started. These new entries include modules and
procedures in th€ode hierarchy, and process IDs in tReocess hierarchy. Figure 26 shows the
new Where Axis with these new resources added. The Process hierarchy contains five new pro-
cesses (one for each PVM spawned process), and the Code hierarchy contains one new entry cor-
responding to a source code module.

At this point, Paradyn is ready to start running the application. You can now seleRtitkie
button from the Paradyn Main Control window to start execupibgto , or alternatively first
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commencedpPSE button can be used to temporarily
halt it andRUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

4.2 Viewing performance data

Before you run the application process, you may want to start a visualiggr For this applica-
tion, we will start a time-histogram visualization to view CPU utilization and synchronization
blocking time for the application.

Tutorial April 13, 2000 Release 3.0

Page 30

Selections Havigate HAbstraction |

K Whole Program

Code Machine Process syncObject
[[

[potato.c potalfZusds_chocate] MsgTag

/N

Search: |

Figure 26: Where Axis after PVM potato is started

4.2.1 Starting a visualizer

To start a visualizer, select thési option from the Paradyn main window menubar. This will
open theStart A Visualization dialog that allows you to choose a type of visualization and a
phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for the Glo-
bal Phase (Section 2.4 discusses phases).

Once the visualization selection has been made, click oA¢bept button and Paradyn will
display a metrics menu. This menu, shown in Figure 7, allows you to select the set of metrics to be
displayed by the visualization. In this example, we have selesy®d wait(synchronization
blocking time) anatpu (CPU time).

To choose the parts of the program for which the metric will be collected, you select resources
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric
data can be collected. For example, if you select the n@adeso{20948 chocolate} and
potato{29948 cham} from the Process hierarchy, you limit data collection to these two processes
(20948 and 29948). If you selepbtato.c from the Code hierarchy, you limit data collection to
modulepotato.c . Figure 26 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to cfeates &ach
selection further restricts the scope of data collection. If you had made the previous process and
module selections, then you limit data collection to activity in moguateto.c only in processes
20948 and 29948. This selection corresponds to two foci: the first focus is when the process
20948 is running in moduleotato.c ; the second focus is when process 29948 is running in
modulepotato.c

If no Where Axis nodes are selected then Paradyn uses the ti¢tialdtProgram .

Once you have made your selections, click on the Accept button on the metrics menu. Paradyn

Tutorial April 13, 2000 Release 3.0

Page 31

will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics
CPU andsync_wait , and the resource nodpstato{20948_chocolate} , potato{29948_cham} ,
andpotato.c were selected, then Paradyn would try to enable four metric-focus pairs:

* CPUtime for process 20948 when it is running in moghgteto.c
* CPUtime for process 29948 when it is running in moghgteto.c
» sync_waittime for process 20948 when it is running in modhateto.c

* sync_waittime for process 29948 when it is running in moghoteto.c

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization
process and start sending performance data values to the visualization. If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to
try enabling any other metric-focus pairs, you can chooseCthiRCEL button on the metrics
menu.

Select MMetrics and Focusies) below

number_of_cpus exec_time h_msgz_buyte=s
pause_time SYNC_Ops o cpu
active_processze=s m=gs cpu_inclu=sive
predicted_co=st B zync_wait io_wait
obzerved_cost m=g_bytes_=sent io_op=s
procedure_call=s m=g_bytes_recw io_bytes
procedure_called mz=g_bytes

ACCEFRT CLEAR CAMCEL

Figure 27: Metrics menu with “cpu” and “sync_wait” selected

The time-histogram shown in Figure 28 is the result of selecting the metrics “sync_wait” and
“cpu” from the metrics menu angotato{20948 chocolate} , potato{29948 cham} , and
potato.c from the Where Axis.

Once the time-histogram is created, click on BN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These
options are described in detail in tharadyn User’'s Guide

4.3 Performance Consultant diagnosis

The Performance Consultant is the part of Paradyn that performs a search for performance bottle-
necks. It automatically enables and disables instrumentation for specific metric-focus pairs as the
search progresses. The Performance Consultant starts looking for course-grained performance
problems and then iteratively tries to refine the search to isolate the performance bottleneck to a

Tutorial April 13, 2000 Release 3.0

Time Histogram Display ﬁ -
File Actions View "
Phase: Global
CPUs
1.0
0.8 -

I A Y LT)
0.2 m '\vaw\‘w"'\, \. “"M\f_ﬂ --‘uf‘

0.0 :

TOOMN

1} 20 4l] El] ﬁl] 1l]l] 12l] 140 1El] 1ﬂl] 2l]l]
Seconds
sync wait <fCodefpotato.c,/Processfpotato{Z0948 chocolate}> (smoothed})
sync wait <fCodefpotato.c,/Process/potato{29948 cham}= {smoothed)
cpu <fCodefpotato.c,/Processfpotato{20948 chocolate}> (smoothed})
cpu <fCodefpotato.c,/Process/potato{29948 cham}> {(smoothed)
PAHN

Figure 28: Histogram of global phase with “cpu” and “sync_wait” for two foci.

specific location in the application’s execution. This location is specified as a point in a three
dimensional search space defined by a Why Axis, Where Axis, and When Axis.

4.3.1 Starting the search

The search can be started by clicking on Sgarch button in the Performance Consultant win-

dow. As the Performance Consultant search proceeds, status information is printed to the window,
and the search history graph updated to reflect the current state of the search. A Performance Con-
sultant search is either defined over the entire run of the application (the global phase), or over a
specific phase of the application’s execution. In this example we select&ddheh button in the
Performance Consultant window to start a global phase search. Figure 29 shows the Performance
Consultant window during the bottleneck search with the Rébato application.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the right mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string
is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 30 shows the hypothesis associated with the bottom-
most nodet in the graph.

Figure 29 shows the search history graph during the search for a bottlengetktin . You

Tutorial April 13, 2000 Release 3.0

Page 33

can see that there have been refinements on both the Why and Where axis (these are indicated by
yellow and purple edges in the search history graph). Also, there are nodes representing hypothe-
ses that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 30 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue coloredlopLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a synchronization bottleneck in the application
(the ExcessiveSyncWaitingTime node is true). Next, the synchronization bottleneck was iso-
lated to a specific module in the applicatigotéto.c) and to a specific type of synchronization
object MsgTag). The fact that these two nodes are siblings indicates that these refinements were
done at the same time. These two nodes were then further refined in parallel. The result is that the
bottleneck is isolated to a specific procedwavork) in modulepotato.c , and to a specific mes-
sage tag (message tay This means that the Performance Consultant found that there is exces-
sive synchronization waiting time associated with messagel tagproceduredowork . At this
point, the Performance Consultant was unable to further refine the bottleneck. However, it will
continue to evaluate true nodes in the graph.

The Performance Consultant
ara

Searches | yﬂ

Current Search: Global Phase

Excessive3ynciaitingTime tested true for /Code fMachine /Process,/3ync Object/MsgTay

ExcessiveSynciaitingTime tested true for /Code/potato.c,/Machine,/Process,/SyncObjectfMsgTay

ExcessiveSyncialtingTime tested true for /Code,/Machine,/Process,/Sync Object/MsgTagld

Excessive SyncialtingTime tested true for /Code/potato.c/fdowork,/Machine,/Process,fSync Ohject J

‘ ExcessiveSyncWaitingTime

146_chocolate} ‘
147_chocolate} —————
1 crocote) | [mam E—
148_cham}]
149_chamj} E potatof{20947 _chocolate}
id_heaufort} potato{20948_chocolate}
potatof29948 cham}
potatof29949 cham}
B potatof{20948 chocolate} potato{6254 beaufort}
—= potatof29948_cham} 1
potato{29949 cham} 0
potato{6Z254 beaufort} 7
Sninl nrlk E
/N [=

| L

Figure 29: Performace Consultant exigency search of PVMotato

Tutorial April 13, 2000 Release 3.0

Page 34

The Performance Consultant

I
ExcessiveSyncyaitingTime

potato.c MsgTag
dowork kMsgTlTag PoIRfec
NS T dowork 4

P dowork

Figure 30: Search History Graph showing only exigent PVMpotato nodes

Tutorial April 13, 2000 Release 3.0

Page 35

4.3.2 Investigating the Performance Consultant’s diagnosis

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing BarChart from theS{ist A Visualization menu

(like Figure 6). The barchart is shown in Figure 31. It shows that most, if not all, cfythe wait

time for the whole program can be attributed to proceduaterk in modulepotato.c (the pink

bars for each focus). It also shows that #yac_waittime is pretty evenly distributed across all
processes, so it would be unlikely that the Performance Consultant would isolate the synchroniza-
tion bottleneck to a proper subset of the processes.

Barchart Yiszualization

Figure 31: BarChart visi presenting PVM potato performance data

Tutorial April 13, 2000 Release 3.0

Page 36

5 FURTHER INFORMATION

This tutorial has not covered all of the features in Paradyn. It was intended to guide you
through a few start-to-finish sessions with Paradyn, using the more common features. Note that
some of the functionality shown in this tutorial differs from earlier versions of Paradyn, which are
no longer supported. For a complete description of the features in Paradyn, and information on
how to prepare applications for use with Paradyn, seBatadyn User’'s Guide

5.1 Contacting the Paradyn developers

There are various ways to get in touch with the Paradyn developers. We are happy to try and
answer questions and appreciate feedback.

e-mail:

Web:

FTP:

FAX:

Postal:

paradyn@cs.wisc.edu

The project e-mail address. Use this address for technical questions or requests.

http://www.cs.wisc.edu/~paradyn

The project home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

ftp://grilled.cs.wisc.edu/paradyn/

The project ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

+1 (608) 262-9777

Paradyn Project

c/o Prof. Barton P. Miller
Computer Sciences Department
University of Wisconsin

1210 W. Dayton Street
Madison, WI 53706-1685
US.A.

Documentation Overview April 13, 2000 Release 2.1

	Tutorial
	1 Preliminaries
	2 Common tutorial - bubba_seq
	2.1 Running an application
	2.1.1 Start Paradyn and define the application process
	Figure�1: Paradyn Main Control window.
	Figure�2: Paradyn base Where Axis.
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the command that will start the application program. In this example...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...

	Figure�3: The Define A Process window specifying bubba application process

	2.1.2 Starting an application process manually
	1. Application name: The name of the application program (bubba or bubba.exe), the name of the ma...
	2. Processes: A list of the process IDs of all the processes in the application. In this example,...
	3. Application status: The current status of the application program (either RUNNING, PAUSED, or ...
	4. grilled: Status lines for each host. Once the application starts running these will display th...
	Figure�4: Paradyn Main Control window with bubba loaded and ready to run
	Figure�5: Where Axis after the bubba application process is loaded

	2.1.3 Starting an application process automatically

	2.2 Viewing performance data
	2.2.1 Starting a visualizer
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “cpu_inclusive” selected
	Figure�8: Histogram of global phase with “cpu” and “cpu_inclusive” for two foci

	2.3 Performance Consultant diagnosis
	2.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases. (Phases are dis...
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...
	Figure�9: The Performance Consultant window

	2.3.2 Starting the search
	Figure�10: The Performance Consultant bubba exigency search
	Figure�11: The Search History Graph showing only exigent bubba nodes

	2.3.3 Investigating the Performance Consultant’s diagnosis
	Figure�12: BarChart visi presenting selected bubba performance data

	2.4 Phases
	Figure�13: PhaseTable visi presenting phase durations.
	Figure�14: Histogram for global phase
	Figure�15: Histogram of current phase

	3 MPI Tutorial - decomp_MPI
	3.1 Running the MPI application
	3.1.1 Start Paradyn and define the MPI application process
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the unix command that will start the application program. The syntax...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...
	Figure�16: The Define A Process dialog for MPI ssTwod

	3.1.2 Start the MPI application process manually
	1. Application name: The name of the application program (ssTwod), the name of the machine (eden)...
	2. Processes: Typically Paradyn will indicate the process ids in this field. In the case of IRIX ...
	3. Application status: The current status of the application program (either READY, RUNNING, PAUS...
	4. Hosts: Status lines for each host. Once the application starts running these will display the ...
	Figure�17: Paradyn Main Control window after the MPI application process is started
	Figure�18: Where Axis after the ssTwod MPI application process is started

	3.2 Viewing performance data
	3.2.1 Starting a visualizer
	Figure�19: MPI metrics menu with “sync_wait_inclusive” and “cpu_inclusive” selected
	Figure�20: Histogram of global phase for “sync_wait_inclusive” and “cpu_inclusive”

	3.3 Performance Consultant diagnosis
	3.3.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search history graphs from different phases.
	2. Status line: The status line at the top of the window indicates the phase for which the search...
	3. Search Text Output: This area is used by the Performance Consultant to print status messages a...
	4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor...
	5. Buttons: These allow you to start or pause the search.
	6. Search History Graph Key: The bottom portion of the window describes how to interpret the colo...

	3.3.2 Starting the search
	Figure�21: The Performace Consultant bottleneck search with MPI ssTwod
	Figure�22: Search History Graph showing only exigent nodes for ssTwod

	3.3.3 Verifying the Performance Consultant’s results
	Figure�23: BarChart visi presenting the ssTwod performance bottleneck data

	4 PVM Tutorial - potato_PVM
	4.1 Running thePVM application
	4.1.1 Start PVM
	4.1.2 Start Paradyn and define the PVM potato application process
	1. User: The login name on the host on which Paradyn will start the application process. In this ...
	2. Host: The host on which Paradyn will start the application process. A blank value will default...
	3. Directory: If the host on which the application is to be started is different from the one on ...
	4. Command: This entry takes the unix command that will start the application program. In this ex...
	5. Daemon: This option allows you to specify which version of the Paradyn daemon to run. Since th...
	Figure�24: The Define A Process window for PVM potato

	4.1.3 Start the PVM potato application process
	1. Application name: The name of the application program (potato), the name of the machine (choco...
	2. Processes: A list of the process IDs of all the processes in the application. In this example,...
	3. Application status: The current status of the application program (either RUNNING, PAUSED, or ...
	4. chocolate, beaufort, cham: Status lines for each host. Once the application starts running the...
	Figure�25: Paradyn Main Control window after PVM potato is started
	Figure�26: Where Axis after PVM potato is started

	4.2 Viewing performance data
	4.2.1 Starting a visualizer
	Figure�27: Metrics menu with “cpu” and “sync_wait” selected
	Figure�28: Histogram of global phase with “cpu” and “sync_wait” for two foci.

	4.3 Performance Consultant diagnosis
	4.3.1 Starting the search
	Figure�29: Performace Consultant exigency search of PVM potato
	Figure�30: Search History Graph showing only exigent PVM potato nodes

	4.3.2 Investigating the Performance Consultant’s diagnosis
	Figure�31: BarChart visi presenting PVM potato performance data

	5 Further information
	5.1 Contacting the Paradyn developers

