
Security through Runtime Relocation
Function Relocation in Edited Binaries

Fully Relocatable Binaries

 Executables work as a whole

• Changing relative distances break execution

 Solution: Rewrite executables to be more relocatable

• Store the start address of function on stack

• Rewrite instructions to use that address and a

constant offset

 Create a table to store function locations

• Calls use stored address in the table

Secure Executables

 Attacks will fail even if return address can

be written

 Exact location of function is unknown

 Attacks may even fail when the address is

somehow obtained

 Target function might be relocated before

the attack

If I know where a critical

function is located, I can

exploit a vulnerability and

execute any code I want!

I will relocate functions

during execution, so

you will not be able to

find critical functions!

Return-to-libc Attack

 Purpose

• Jump (‘return’) to a critical function to execute

malicious code

 Requirements

 A vulnerability such as a possible buffer overflow

 Knowledge of the location of a critical function

 Method

• Overflow the buffer to overwrite the return address

stored on stack

• Execution will ‘return’ to address written to stack

foo() {

 prologue

 …

 …

 ip-based inst.

 …

 …

 function call

 …

 …

 table-based

jump

 …

 …

 epilogue

}

Save current function

address on stack

Use saved function

address and an offset

Call functions through

a function table

Use saved function

address and an offset

Reclaim used space,

adjust stack pointer

