Dyn Security through Runtime Relocation

INSt Function Relocation in Edited Binaries
4 ™
foo() { Save current function
= /
y N Return-to-libc Attack prologue—— || addressonstack
It | know where a critical > Purpose . R
. . Use saved function
fUﬂCtIF)n IS Iocated_,_l can « Jump (‘return’) to a critical function to execute Ip-based Inst.
exploit a vulnerability and malicious code _ address and an offset/
| | 4 A
execute any code | Waﬂt./ > Requirements function call | Call functions through
= Avulnerability such as a possible buffer overflow 5 a function table)
= Knowledge of the location of a critical function 4 h
) t%brl]e-basi\ Use saved function
> Method _J__ P address and an offset
» Overflow the buffer to overwrite the return address > <
stored on stack epilogue— | | Reclaim used space,
 Execution will ‘return’ to address written to stack } adjust stack pointer

a N / Fully Relocatable Binaries \ / Secure Executables \

| will relocate functions
during execution, SO

you will not be able to
find critical functions! » Solution: Rewrite executables to be more relocatable

_

> Executables work as a whole > Attacks will fail even iIf return address can

. . . . Iitten
* Changing relative distances break execution be writte

= Exact location of function i1s unknown

» Attacks may even fail when the address is

e Store the start address of function on stack .
somehow obtained

» Rewrite Instructions to use that address and a = Target function might be relocated before

W constant offset the attack

-~ > Create a table to store function locations
\\-Calls use stored address in the table / \ /

