
The StackwalkerAPI
 Is a cross-platform library for walking call

stacks.

Works through a debugger interface or in its

own process.

 Is customizable and extensible, easily

integrating into pre-existing tools.

The StackwalkerAPI
A Cross-Platform API for Collecting Accurate Stackwalks

Solution 2: Stack Value Inspection
 For each word in the stack, use a

heuristic to determine if it could be a

return address that was generated by a

call instruction.

 Useful if there is no other way to walk

through a stack frame, but prone to

false positives.

An Address Space

080483f5: call foo
080483f9: …

40000000: Heap
41000000: Heap End

bfe00000: Stack Top
c0000000: Stack Bottom

...

0x00000482

0x00000000

0x080483f9

0xbfed6b30

0x4010a7f0

0x0000000c

...

Words in the Stack

An address is likely the top of

a frame if …
 … it points to an instruction that

follows a call, and

 … the next word in the stack points

into the stack.

Handling Optimized Functions
Some Functions may not set up a stack frame.

Solution 1: Static analysis

 Analyze the function to

understand how the stack

changes as it executes.

 For each instruction, determine

the distance, , from the top of

the current frame to the bottom

of the current frame.

push $4
push $8
call foo
add $8,%esp

push %eax
push %edx
sub $0x20, %esp
cmp %ebx, $0
je ...

=0
=4
=8
=28
=28
=28

=32
=36
=36
=28

mov $8, %ecx
add %ecx, %eax
inc *(%eax)
jmp ...

=28
=28
=28
=28

pop %edx
pop %eax
add $20, %esp
ret

=24
=20
=0
=0

main
frame pointer

do_work
frame pointer

sqrt
frame pointer optimized away

saved program state

sighandler
frame pointer

write
frame pointer

instrumentation

frame pointer

tool data structures

system call
stackwalking data for debuggers

 Customizes how symbol

names are looked up for

each stack frame.

 Default uses SymtabAPI

 Customizes how StackwalkerAPI

reads from a process.

 Defaults use ProcControlAPI or

read from current process.

Frame Steppers:

 Describe how to walk through a type of frame.

 Find address ranges of code that this Frame Stepper

can be used over.

S
ta

c
k
w

a
lk

e
rA

P
I

Process Access (Current Process)

Symbol Name Lookup

Frame Stepper (Normal Functions)

Process Access (Via Debugger)

Frame Stepper (Optimized Functions)

Frame Stepper (Signal Handlers)

Frame Stepper (Instrumentation)

Frame Stepper (System Calls)

 Frame Stepper (Debug Information)

U
s
e
r T

o
o
l

Customizable Plug-in Interface
 Plug-ins allow StackwalkerAPI to be integrated easily into other

tools.

 Customizes how StackwalkerAPI looks up symbol names,

accesses a process, or walks through types of stack frames.

Example User Tool
std::vector<Frame> stackwalk;

string s;

Walker *walker = Walker::newWalker();

walker->walkStack(stackwalk);

for (int i=0; i<stackwalk.size(); i++) {

 stackwalk[i].getFuncName(s);

 cout << “Function “ << s << endl;

}

Version 8.0 available on Linux-x86/x86_64/PPC, BlueGene, Windows, Cray http://www.paradyn.org

