
What Are Race Conditions?
Some Issues and Formalization

ROBERT H. B. NETZER and BARTON P. MILLER

University of Wisconsin — Madison

In shared-memory parallel programs that use explicit synchronization, race conditions result

when accesses to shared memory are not properly synchronized. Race conditions are often

considered to be manifestations of bugs, since their presence can cause the program to behave

unexpectedly, Unfortunately, there has been little agreement in the literature as to precisely

what constitutes a race condition. Two different notions have been implicitly considered: one

pertaining to programs intended to be deterministic (which we call general races) and the other

to nondeterministic programs containing critical sections (which we call data races). However,

the differences between general races and data races have not yet been recognized. This paper

examines these differences by characterizing races using a formal model and exploring their

properties. We show that two variations of each type of race exist: feasible general races and

data races capture the intuitive notions desired for debugging and apparent races capture less

accurate notions implicitly assumed by most dynamic race detection methods. We also show that

locating feasible races is an NP-hard problem, implying that only the apparent races, which are

approximations to feasible races, can be detected in practice. The complexity of dynamically
locating apparent races depends on the type of synchronization used by the program, Apparent

races can be exhaustively located efficiently only for weak types of synchronization that are

incapable of implementing mutual exclusion. This result has important implications since we

argue that debugging general races requires exhaustive race detection and is inherently harder

than debugging data races (which requires only partial race detection) Programs containing

data races can therefore be efficiently debugged by locating certain easily identifiable races. In

contrast, programs containing general races require more complex debugging techniques.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging–

debugging atds; D.3, 3 [Programming Languages]: Language Constructs and Features—

concurrent programming structures; D.4. 1 [Operating Systems]: Process Management—
concurrency, mutual exclusion, synchronization

General Terms: Design, Languages

Additional Key Words and Phrases: Critical sections, data races, debugging, nondeterminacy,

parallel programs, race conditions

This research was supported in part by National Science Foundation grant CCR-8815928, Office

of Naval Research grant NOO014-89.J-lZZZ, and a Digital Equipment Corporation External

Research Grant,

Authors’ address: Computer Sciences Department, University of Wisconsin-Madison, 1210 W.

Dayton Street, Madison, WI 53706; e-mail: R. H. B. Netzer, Netzer@cs.wise.edu; B. P. Miller,

bart@cs.wise.edu,

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permwsion of the

Association for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or

specific permission.

@ 1992 ACM 1057-4514/92/0300-0074 $01.50

ACM Letters on Programming Languages and Systems, Vol. 1, No. 1, March 1992, Pages 74-88



What Are Race Conditions? . 75

1. INTRODUCTION

In shared-memory parallel programs, if accesses to shared memory are not

properly synchronized, time-dependent failuresl called race conditions can

result. Race conditions occur when different processes access shared data

without explicit synchronization. Because races can cause the program to

behave in ways unexpected by the programmer, detecting them is an impor-

tant aspect of debugging. However, in the literature, there seems to be little

agreement as to precisely what constitutes a race condition. Indeed, two

different notions have been used, but the distinction between them has not

been previously recognized. Because no consistent terminology has appeared,

several terms have been used with different intended meanings, such as

access anomaly [6–8, 12, 18], data race [1,4, 5, 11 , 16, 20, 22], critical race

[131, harmful shared-memory access [241, race condition [10, 26], or just race

[2, 9, 171. This paper explores the nature of race conditions and uncovers
some previously hidden issues regarding the accuracy and complexity of

dynamic race detection. We present the following results.

(1) Two fundamentally different types of races, that capture different kinds

of bugs in different classes of parallel programs, can occur. General races

cause nondeterministic execution and are failures in programs intended

to be deterministic. Data races cause nonatomic execution of critical

sections and are failures in (nondeterministic) programs that access and

update shared data in critical sections. 2

(2) To represent the sources of race conditions precisely, we formally charac-

terize the intuitive notion of a race we wish to detect for debugging

(which we call a feasible race). In contrast, we show that there is a

simpler to detect but less accurate notion of a race that most previously

proposed race detection methods locate (which we call an apparent race).

Feasible races are based on the possible behavior of the program; appar-

ent races, which are approximations to feasible races, are based on only

the behavior of the program’s explicit synchronization (and not the

semantics of the program’s computation).

(3) Exactly locating the feasible general races or data races is an NP-hard

problem. This result implies that the apparent races, which are simpler

to locate, must be detected for debugging in practice.

(4) Apparent races can be exhaustively located efficiently only for programs

that use synchronization incapable of implementing mutual exclusion

(such as fork/join or Post/Wait synchronization without Clear opera-

tions); detection is NP-hard for more powerful types of synchronization

(such as semaphores).

1 To be consistent with the fault tolerant research community [25], a failure occurs when a

program’s external behavior differs from its specification, and a fault is its algorithmic cause

(although we use the term bug).

2 There is some controversy over terminology that is the most descriptive. In place of data race

and general race, atomicity race and determinacy race have also been suggested.
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(5) Debugging race conditions in programs intended to be deterministic is

inherently more difficult than in nondeterministic programs. Races that

cause nonatomic execution of critical sections (data races) are “local”

properties of the execution and can be detected directly from an execution

trace. In contrast, races that cause nondeterministic execution (general

races) are “global” properties of the program whose detection requires

analyzing the entire execution to compute alternative event orderings

possibly exhibited by the program.

These results provide an understanding of race conditions important for

dynamic race detection. Previous work has not provided unambiguous char-

acterizations of the different types of race conditions or related races to

program bugs. For example, race conditions have only been defined as

occurring when two shared-memory references “can potentially execute con-

currently” [6] or have no “guaranteed run-time ordering” [101. Our work is

novel since we explicitly characterize two different types of race conditions

using a formal model and explore their properties. The distinction between

general races and data races is necessary because they are manifestations of

different types of program bugs and require different detection techniques.

Using a model has the advantage that issues regarding the accuracy and

complexity of dynamic race detection then become clear. The accuracy issues

have implications for debugging: accurate race detection means that races

that are direct manifestations of program bugs are pinpointed, while less

accurate detection can report spurious races that mislead a programmer. The

complexity issues show which types of races allow exact and efficient detec-

tion and which can be only approximately located.

Our results show that locating exactly the desired races (the feasible races)

is computationally intractable. Indeed, previously proposed race detection

methods take an easier approach and locate only a subset of the apparent

races. However, we argue that apparent races can often be spurious, and that

effective debugging requires more sophisticated techniques. Race conditions

can be debugged by attempting to determine which of these located (ap-

parent) races are of interest for debugging (i.e., are feasible). Our results

show that there is also a fundamental disparity between debugging race

conditions in deterministic and nondeterministic programs. Nondeterministic

programs that use critical sections can be safely debugged (to find data races)

because we can easily determine if an execution is data-race free; when data

races occur, the feasible races can be approximately located. However, debug-

ging programs intended to be deterministic (to find general races) is inher-
ently harder. We can be confident that execution was deterministic only if

exhaustive race detection shows an absence of general races (and this is

efficient only for programs using synchronization incapable of implementing

mutual exclusion).

2. EXAMPLES

Explicit synchronization is often added to shared-memory parallel programs

to coordinate accesses to shared data. Without proper coordination, different
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types of race conditions can result. To motivate these different types of races,

we present an example of each. In subsequent sections we will characterize

them in terms of a formal model and investigate their properties.

One purpose of adding explicit synchronization to shared-memory parallel

programs is to implement critical sections, which are blocks of code intended

to execute as if they were atomic. Atomic execution means that the final

state of variables read and written in the section depends only upon their

initial state at the start of the section and upon the operations performed by

the code (and not operations performed by another process). Bernstein’s

conditions state that atomic execution is guaranteed if shared variables that

are read and modified by the critical section are not modified by any other

concurrently executing section of code [3]. A violation of these conditions has

typically been called a data race [1, 4, 5, 11, 16, 17, 20, 221 or access anomaly

[6-8, 181. We prefer the term data race.
Figure 1 shows an example program for which a data race is considered a

failure. This program processes commands from bank tellers that make

deposits and withdrawals for a given bank account. Figure la shows a correct

version of the program. Since the variables balance and interest are shared,

operations that manipulate them are enclosed in critical sections. Because

critical sections can never execute concurrently, this version will exhibit no

data races. Figure lb shows an erroneous version that can exhibit data races;

the P and V operations that enforced mutual exclusion are missing. The

deposit and withdraw code can therefore execute concurrently, causing their

individual statements to effectiwdy interleave, possibly violating the atomic-

ity of one of the intended critical sections. The data races in this program are

considered failures because the intent was that the deposit and withdrawal

code execute atomically, without interference from other processes.

Even though programs like the one in Figure 1 may contain critical

sections, they are often intended to be nondeterministic (e.g., the order of

deposits and withdrawals may occur unpredictably, depending on how fast

the tellers type). However, other classes of programs are intended to be

completely deterministic, and a different type of race condition pertains to

such programs. In these programs, synchronization provides determinism by

forcing all accesses to the same shared resource to always execute (on a given

input) in a specific order. For a given input, all executions of such programs

always produce the same result, regardless of any random timing variations

among the processes in the program (e. g., due to unpredictable interrupts, or

other programs that may be executing on the same processors). Nondetermin-
ism is generally introduced when the order of two accesses to the same

resource is not enforced by the program’s synchronization. The existence of

two such unordered accesses has been called a race condition [9, 10, 261,

access anomaly [121, critical race [131, or harmful shared-memory access [241.

For a more consistent terminology, we propose the term general race, since

such a race is more general than a data race.

As an example of programs for which general races are manifestations of

bugs, consider parallel programs that are constructed from sequential pro-

grams by parallelizing loops. The sequential version of a program behaves
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Process 1 Process 2

/* DEPOSIT */ /* WITHDRAW */

amount = read_amounto ; amount = read_amounto ;
P(nmtex) ; P(mutex) ;

balance = balance + amount; if (balance < amount)

interest = interest + rate*balance; printf(’TNSF”) ;
V(mutex) ; else {

balance = balance - amount;

interest = interest + rate*balance;

1
V(mutex);

(a): no-data-race version

Process 1

/h DEpQS~~ k/

amount = read_amounto ;

P(mutex) ;

balance = balance + amount;

interest = interest + rate*balance;

V(mutex);

Process 2

/* ~~~HD~~ ,/

amount = read_amounto ;

if (balance < amount)

printf(’’NSF”) ;

else {

balance = balance - amount;

interest = interest + rate*balance;

)

(b): data-race version

Fig. 1. (a) C program fragment manipulating bank account. (b) Erroneous version exhibiting

data races.

deterministically, producing a particular result for any given input. Typi-

cally, the parallelized version is intended to have the same semantics.

Preserving these semantics canbe accomplishedby adding synchronization

to the program that ensures all ofthedata dependences ever exhibitedby the

sequential version are also exhibitedby the parallel version. Such programs

exhibit no general races, since preserving these dependences requires that all

operations on any specific location are performed in some specific order
(independentof external timing variations).

Both general races and data races are notions that are necessary for

debugging. Although they both occur when ~hared-memory aece~~esoecurin
an incorrector unexpected order, they are manifestations ofdifferent types of

bugs that occur indifferent classes ofparallel programs.

The notion ofa data race is neededto discover critical sections that were

not implemented properly (i.e., those whose atomicity may have failed). The

notion of a general race is needed to discover potential nondeterminism

anywhere in the program execution. Data races alone will not suffice for

these purposes, since a program can exhibit no data races but still be
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nondeterministic. General races alone will not suffice, since general races

that are not data races are not always failures. The preceding examples

illustrate these cases. For example, the no-data-race version of Figure 1

executes nondeterministically, depending on when commands are entered by

the tellers. This version correctly exhibits no data races (its critical sections

execute atomically), even though it is nondeterministic. However, even

though general races occur, they are not considered to be manifestations of

bugs.

General races and data races also pertain to different classes of parallel

programs. General races are typically of interest for programs in which

determinism is implemented by forcing all shared-memory accesses (to the

same location) to occur in a specific order. Many scientific programs fall into

this category (e.g., those constructed by many automatic parallelization

techniques). In contrast, data races are typically of interest for asynchronous

programs. Programs using shared work-pools fall into this category. They are

not intended to be deterministic, but critical sections (that access shared

data) are still expected to behave atomically.

Emrath and Padua have also characterized different types of race condi-

tions but have only addressed programs intended to be deterministic [91.
They considered four levels of nondeterminism of a program (on a given

input). Internally deterministic programs are those whose executions on the

given input exhibit no general races. Externally deterministic programs

exhibit general races, but they do not cause the final result of the program to

change from run to run. Associatively nondeterministic programs exhibit

general races only between associative arithmetic operations and are exter-

nally nondeterministic only because of roundoff errors (different runs can

produce different roundoff errors). Finally, completely nondeterministic pro-

grams are those exhibiting general races that do not fall into one of the above

categories. Our work complements these characterizations by also con-

sidering nondeterministic programs and data races, and by using a formal

framework.

3. FORMAL MODEL FOR REASONING ABOUT RACE CONDITIONS

Now that we have given examples illustrating different types of race condi-

tions, we next discuss how they can be characterized using a formal model.

Doing so not only provides unambiguous characterizations of each, but also

provides a mechanism with which to reason about their properties. In this

section, we briefly overview our model for reasoning about race conditions

that was first presented in an earlier paper [22] and that is based on

Lamport’s theory of concurrent systems [15]. Our model consists of two parts:

one to represent the actual behavior exhibited by the program and the other

to represent potential behaviors possibly exhibited by the program.

3.1 Actual Program Executions

The first part of our model is simply a notation for representing an execution

of a shared-memory parallel program on a sequentially consistent [14
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processor. 3 A program execution, P, is a triple, (E, ~ , ~), where E is a

finite set of events, and ~ (the temporal ordering relation) and ~ (the

shared-data dependence relation) are relations4 over those events. Intuitively,

E represents the actions performed by the execution, 3 represents the order

in which they are performed, and ~ shows how events affect one another

through accesses to shared memory. we refer to P as an actual program

execution when P represents an execution that the program at hand actually

performed.

Each event e e E represents both the execution instance of a set of program

statements and the sets of shared memory locations they read and write. A

synchronization event represents an instance of some synchronization opera-

tion; a computation event represents the execution instance of any group of

statements (belonging to the same process) that executed consecutively, none

of which are synchronization operations. A data conf?ict exists between two

events if one writes a shared memory location that the other reads or writes,

For two events, a and b, a ~ b means that a completes before b begins (in

the sense that the last action of a can affect the first action of b), and a $ b

means that a and b execute concurrently (i.e., neither completes before the

other begins). We should emphasize that ~ is defined to describe the actual

execution order between events in a particular execution; e.g., a ~ b means

that a and b actually execute concurrently; it does not mean that they could

have executed in any order. A shared-data dependence a ~ b exists if a

accesses a shared variable that b later accesses (where at least one access

modifies the variable), or if a precedes b in the same process (since data can

in general flow through nonshared variables local to the process). A depen-

dence also exists if there is a chain of dependence from a to b; e.g., if a

accesses a shared variable that another event, c, later accesses, and c then

references a variable that b later references.

3.2 Feasible Program Executions

An actual program execution is a convenient notation for describing the

behavior of a particular execution. However, to characterize race conditions,

it is necessary to also describe behavior that the program could have exhib-

ited. Most previous work has not explicitly considered this issue; race condi-

tions have typically been defined only as data-conflicting accesses “that can

execute in parallel” [6] or whose execution order is not “guaranteed” [10],

Such definitions implicitly refer to a set of alternative orderings that had the

potential of occurring. Our work is novel in that we explicitly define these

sets of orderings, The second part of our model characterizes sets of feasible

program executions, which represent other executions that had the potential

of occurring. We next discuss several possible ways in which these sets can be

3 Sequential consistency ensures that shared-memory accesses behave as if they were all per-

formed atomically and in some linear order. The model also contains axioms describing proper-

ties that any program execution must possess [22], We omit these axioms here as they are

unnecessary for simply characterizing race conditions.

4 Superscripted arrows denote relations, and a+ b is a shorthand for =( a ~ b) A 7( b + a).
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defined. Instead of simply intuitively reasoning about alternative orderings,

formally defining these sets uncovers issues important for debugging.

To characterize when a race condition exists between two events, a and b,

in an actual program execution P = (E, ~ , ~ ), we must consider other

program executions that also perform a and b. Characterizing such execu-

tions allows us to determine if a and b can potentially execute in an order

different than in P. We focus on program executions, P’ = (E’, ~ , ~ ),

that are prefixes of P and implicitly consider executions on the same input as

P. P’ is a prefix of P if each process in P’ performs the same events as some

initial part of the corresponding process in P. Focusing on prefixes allows us

to pinpoint where nondeterminacy is introduced. If P’ were not required to be

a prefix of P, we could not in general determine where or if a and b occur in

P’. When P’ contains a different number of execution instances of some

statement, we can not draw a correspondence between events in P and

events in P’ (because events are defined to represent the execution instance

of one or more statements).

We define three sets of program execution prefixes by considering succes-

sively fewer restrictions on the different ways in which P’s events could have

been performed. We will see that these different sets characterize races with

varying accuracy and complexity. The first two sets are restricted to contain

only program executions that are feasible (i.e., that could have actually

occurred); these sets characterize races most accurately. The first set, denoted

FsA ME, contains all feasible executions that exhibit the same shared-data

dependence as P; the second set, denoted F~I~~, contains feasible executions

with no restrictions on their shared-data dependence. F~I~~ includes all

executions that perform a prefix of the events performed by P regardless of

which shared-data dependence may result. FsA ME includes the executions

that perform exactly the same events and exhibit the same shared-data

dependences5 as P.

Definition 3.1. FsA~~ is the set of program executions, P’ = (E’, ~ ,

~ ), such that

(1) P’ represents an execution that the program could actually perform,

(2) E’ = E, and

(3) 3 =3.

Definition 3.2. FDI~~ is the set of program executions, P’ = (E’,
~ ), such that

(1) P’ represents an execution the program could actually perform,

(2) P’ is a prefix of P, and

(3) ~ represents any shared-data dependence that satisfy (1) and (2).

T’
+,

“ The structure of this set depends on the details of our definition of shared-data dependence.

Although different definitions are possible (e.g., that characterize only flow dependence), they

would not alter this structure in a significant way.
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The last set, denoted F~ ~Nc, also contains executions with arbitrary

shared-data dependence, but they are no longer required to be feasible; they

are only required to obey the semantics of the program’s explicit synchroniza-

tion. This simpler set characterizes races less accurately, but is a useful

approximation to F~Ir~ that involves only the semantics of explicit synchro-

nization (and not the program). Moreover, since previous race detection

methods analyze only explicit synchronization, F~ YNC is the set of alterna-

tive executions they implicitly assume.

Definition 3.3. F~ YNC is the set of program executions, P’ = (E’, ~ ,

~ ), such that

(1) ~ obeys the semantics of the program’s explicit synchronization,

(2) P’ is a prefix of P, and

(3) ~ represents any shared-data dependence that satisfy (1) and (2).

F~ YNC includes all executions that would have been possible had P not

exhibited any shared-data dependence (or any dependence that affect con-

trol flow). Since programs in general access shared-memory, F~ YNC may

include executions the program could never exhibit. For example, assume

that one process in P assigns to a shared variable S the value 1, and then

another process conditionally executes a procedure only if S equals 1. If no

explicit synchronization forces the assignment to occur before the procedure

call, then F~ YNC will contain an execution in which the procedure is called

before S is assigned 1. However, since the procedure can be called only if S

equals 1, such an execution is not feasible (assuming that S is not initialized

to 1). In general, for another execution to perform the same events as P, it

must also exhibit the same shared-data dependence as P; when general

races occur (whether or not they are considered failures), F~ y~c may contain

infeasible executions [19, 22]. As discussed later, the existence of such

infeasible executions impacts the accuracy of races reported by methods that)

analyze only explicit synchronization. Nevertheless, we will see that this

notion is useful because it allows a simple characterization of race conditions

that are easy to detect.

4. ISSUES IN CHARACTERIZING RACE CONDITIONS

We now characterize general races and data races in terms of our model and
explore some issue that arise, We ~how that two different types of each race

exist. One type, the feasible race, captures the intuitive notion that we wish

to express, but is NP-hard to locate exactly. The other type, the apparent

-race, captures a less accurate notion (assumed by most race detection meth-

ods) but can be more easily detected. Moreover, we argue that debugging

programs intended to be deterministic (to find general races) requires ex-

haustive race detection and is inherently harder than debugging nondeter-

ministic programs that use critical sections (to find data races), which

requires only partial race detection.
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4.1 General Races and Data Races

Intuitively, a general race potentially introduces nondeterminism and exists

in a program execution P if two events a and b have data conflicts and their

access order is not “guaranteed” by the execution’s synchronization. A data

race potentially causes the atomicity of critical sections to fail and exists if a

and b either execute concurrently or have the potential of doing so. To

explore the nature of races, we first formalize what it means to potentially

execute concurrently (or in a different order) by using the different sets of

program executions discussed above. For example, a general race exists if a

and b occur in some feasible program execution in an order different than in

P. Similarly, a data race exists if some feasible program execution exists in

which a and b execute concurrently. We first define the notion of a general

race or data race between a and b (denoted (a, b)) over some given set of

program executions, F, and then consider the implications of different choices

for the set F.

Definition 4.1. A general race (a, b) over F exists iff

(1) a data conflict exists in P between a and b, and

(2) there exists a program execution, P’ = (E’, ~ , ~ ) e F, such that

a, be.E’ and

(a) b~aifa~b, or

(b) a% bifb~a, or

(c) a X b.

Condition (2) is true if a and b can occur in an order opposite as in P or

concurrently; these cases capture the notion that the execution order among

a and b is not “guaranteed.”

Definition 4.2. A data race (a, b) over F exists iff

(1) a data conflict exists in P between a and b, and

(2) there exists a program execution, P’ = (E’, ~ , ~ ) e F, such that

a, b~Eanda%b.

4.2 Feasible Races

The most natural way to characterize a race (a, b) is to consider races over

FDIFF> Since FDIFF precisely Ca@UreS the Set Of possible executions that also
perform a and b. For general races, we have no choice: the smaller set

FsA ME is inadequate since, by definition, a general race exists between two
accesses only if they execute in an order different than in P (and therefore

the shared-data dependence between them is also different). In contrast, data

races could be reasonably viewed as occurring over either F~IFF or FsA ME.

Definition 4.3. A feasible general race (a, b) exists iff a general race (a, b)

over F~IFF exists.
A feasible data race (a, b) exists iff a data race (a, b) over F~lpR exists.

A feasible race locates precisely those portions of the execution that

allowed a race, and thus represents the intuitive notion of a race illustrated
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in Section 2. However, checking for the presence of a feasible general race or

data race (a, b) requires determining whether a feasible program execution

in which b ~ a (or a ~ b, or a % b) is a member of FDI~~. We have proven

that deciding these membership problems is NP-hard (no matter what type of

synchronization the program uses) and that locating feasible races is also

NP-hard [19, 21]. It is therefore an intractable problem to locate precisely

the race conditions exhibited by an execution of the program. This result

suggests that, in practice, we must settle for an approximation, discussed

next. Indeed, previously proposed race detection methods compute such an

approximation.

4.3 Apparent Races

In practice, locating the intuitive notion of a race (a feasible race) would

require analyzing the program’s semantics to determine if the execution

could have allowed b to precede a (or b to execute concurrently with a),

Previously proposed methods take a simpler approach and analyze only the

explicit synchronization performed by the execution. For example, a and b

are said to have potentially executed concurrently (or in some other order) if

no explicit synchronization prevented them from doing so. We can character-

ize the races detected by this approach by using F~ ~Nc, which is based only

on orderings that the program’s explicit synchronization might allow. Be-

cause the program may not be able to exhibit such orderings, these races

capture a less accurate notion than feasible races.

Definition 4.4. An apparent general race (a, b) exists iff a general race

(a, b) over F~Y~c exists.

An apparent data race (a, b) exists iff a data race (a, b) over F~ ~~c exists.

Because not all program executions in F~ YNC are feasible, some apparent

races may be spurious. Spurious races can occur whenever the values of

shared variables are used (directly or indirectly) in conditional expressions or

shared-array subscripts [20, 221. In such cases, the existence of one event may

depend on another event occurring first. For example, consider one process in

P that adds data to a shared buffer and then sets a flag BufEmpty to false,

and another process that first tests Bufi!?mpty and then removes data from

the buffer only if BufEmpty equals false. Such an execution has two appar-

ent general races, between the accesses to BufEmpty and between the

accesses to the buffer. However, the race involving the buffer is spurious— no

feasible execution exists in which data is removed from the buffer before the

buffer is filled (since Bufl?mpty is first tested before data is removed). If the
operations on the shared buffer were instead complex and involved many

shared-memory references, a large number of spurious races could be re -

ported. Spurious races pose a problem since they are not direct manifesta-

tions of any program bug [20, 22]. The programmer can be overwhelmed with

large amounts of misleading information, irrelevant for debugging, that

masks the location of actual failures. Nonetheless, apparent race detection

provides valuable information, since apparent races exist if and only if at

least one feasible race exists somewhere in the execution [22]. Moreover, we
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have proven results showing how to reason about the potential feasibility of

apparent races, and how a postmortem race detector can be extended to

conservatively determine which apparent races are feasible and of interest

for debugging [20-22].

We have also proven that, for program executions using synchronization

powerful enough to implement two-process mutual exclusion, determining

membership in F~ YNC and locating apparent races is NP-hard [19]. Member-

ship in F~ ~~c is efficiently computable only for weaker synchronization

incapable of implementing mutual exclusion (such as Post/Wait style syn-

chronization without Clear operations); all apparent races can thus be effi-

ciently detected in executions of such programs [23]. It is important to note

that data races are not of interest for such programs since weaker synchro-

nization cannot implement critical sections. Exhaustively locating all appar-

ent data races is therefore always NP-hard. In contrast, the complexity of

apparent general race detection depends on the type of synchronization used.

However, as we discuss next, it is sufficient for debugging data races to detect

only a certain subset of apparent races, while debugging general races

requires exhaustive detection.

4.4 Debugging with Race Condition Detection

An important aspect of debugging involves determining whether portions of

the execution are race-free in the sense that they are unaffected by incorrect

or inconsistent dats produced by a race [5, 20]. For example, a programmer

browsing an execution trace might focus only on portions of the trace

recorded before any races occurred. These portions of the trace contain events

that are guaranteed to be unaffected by the outcome of any race. Locating

such events is important because the program may exhibit meaningless

behavior after a race. In Figure lb, for example, a data race that results in a

negative balance might cause subsequent withdrawals to fail because of

insufficient funds when in fact more money has been deposited than with-

drawn. To locate events unaffected by a race, it is necessary to determine if

portions of the execution are race free. However, we now argue that making

this determination is inherently harder for general races (which introduce

nondeterminism) than for data races (which only cause critical sections to

fail). For executions containing data races, it suffices to detect the presence

(or absence) of only a certain subset of the apparent races. In contrast, to

debug executions containing general races, it is necessary to perform exhaus-

tive apparent general race detection.

Data races can be viewed as a local property of the execution which can be

determined directly from the actual program execution, P. Because an

intended critical section can execute nonatomically only when other data-

conflicting events are concurrently executing, an actual data race can be

detected directly from P.

Definition 4.5. An actual data race (a, b) exists iff a data race (a, b) in P
exists. 6

6 A data race in p ~xi~t~ iff a data race exists over {P}, the set containing OnlY p.
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An actual data race indicates the possibility that the atomicity of a critical

section may have actually failed. In contrast, general races are a global

property of the program which can be determined only by computing alterna-

tive event orderings. In general, determining if two events could have

occurred in a different order requires analyzing the synchronization over the

entire execution; there is no notion of an actual general race. Thus, unlike

general races, actual data races can be easily located if the temporal order-

ing, ~, is known; computing alternative orderings is unnecessary.

This difference has important implications for debugging. Apparent data

races that are not actual data races cannot produce inconsistent data (be-

cause no critical sections fail), but any apparent general race indicates such a

possibility (because two shared-memory accesses could have executed in the

incorrect order). The absence of an actual data race therefore indicates that

all intended critical sections in P executed atomically, and the location of an

actual race pinpoints places in the execution where inconsistent data should

be expected. Even though not all apparent data races can be efficiently

located, we can efficiently determine whether any actual data races occurred.

Thus, we can easily determine whether the observed execution contains

inconsistent data which cannot be relied upon for debugging. However,

because there is no notion of an actual general race, we must exhaustively

locate all apparent general races to make this determination. Only if no

apparent races exist can we be sure that all shared-memory references

occurred in the expected order (because no other order was possible).

These results suggest that we can efficiently debug programs containing

data races by locating all actual and some apparent data races. However, we

can only apply such an approach to programs containing general races if all

apparent races can be efficiently located. As discussed above, exhaustive

apparent general race detection is efficient only for programs that use

synchronization incapable of implementing mutual exclusion. However, for

more powerful types of synchronization (such as semaphores), conservative

approximations that locate a superset of the apparent general races have

been proposed [10, 11]. Such methods provide a means of debugging general

races in the programs using such synchronization, but have the potential of

misleading the programmer with potentially large numbers of spurious race

reports.

5. CONCLUSION

This paper explores the nature of race conditions that can arise in shared-
memory parallel programs. By employing a formal model we uncover previ-

ously hidden issues regarding the accuracy and complexity of dynamic race

detection. We show that two fundamentally different types of races can occur:

general races, pertaining to deterministic programs, and data races, pertain-

ing to nondeterministic programs that use critical sections. We formally

characterize these types of races. Previously, races have only been defined
intuitively as occurring between data-conflicting blocks of code that “can

potentially execute concurrently” or whose execution order is not “guaran-
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teed. ” Our work is novel in that we explicitly characterize sets of alternative

orderings that had the potential of occurring. Doing so is important because

properties of the defined races, such as the accuracy and complexity of

detecting them, depend upon which sets are considered. We uncover two

variations of each type of race: one describes the intuitive notion of a race

(the feasible race) and the other describes a less accurate notion (the appar-

ent race) assumed by most race detection methods. Since locating the feasible

races is NP-hard, the less accurate apparent races must be relied upon for

debugging in practice. Moreover, we uncover fundamental differences in the

complexity of debugging general races and data races. Debugging general

races requires exhaustively computing alternative orderings (to determine

whether the execution is nondeterministic), which is NP-hard for programs

using synchronization powerful enough to implement mutual exclusion. De-

bugging data races requires simpler analyses (to determine if critical sections

fail), which can be efficiently performed.
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