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Abstract-IPS is a performance measurement system for parallel and 
distributed programs. IPS’S model of parallel programs uses knowledge 
about the semantics of a program’s structure to provide two important 
features. First, IPS provides a large amount of performance data about 
the execution of a parallel program, and this information is organized so 
that access to it is easy and intuitive. Second, IPS provides performance 
analysis techniques that help to automatically guide the programmer to 
the location of program bottlenecks. 

IPS is currently running on its second implementation. The first 
implementation was a testbed for the basic design concepts, providing 
experience with a hierarchical program and measurement model, interac- 
tive program analysis, and automatic guidance techniques. This imple- 
mentation was built on the Charlotte Distributed Operating System. The 
second implementation, IPS-2, extends the basic system with new 
instrumentation techniques, an interactive and graphical user interface, 
and new automatic guidance analysis techniques. This implementation 
runs on 4.3BSD UNIX systems, on the VAX, DECstation, Sun 4, and 
Sequent Symmetry multiprocessor. 

Index Terms-Critical path analysis, instrumentation, message sys- 
tems, parallel and distributed programs, performance measurement, 
shared-memory systems, UNIX. 

I. INTRODUCTION 

PS is a performance measurement system for parallel and I distributed programs. IPS’S model of parallel programs uses 
knowledge about the semantics of a program’s structure to 
provide two important features. First, IPS provides a large 
amount of performance data about the execution of a parallel 
program, and this information is organized so that access to it 
is easy and intuitive. Second, IPS provides performance 
analysis techniques that help to automatically guide the 
programmer to the location of program bottlenecks. 

IPS is currently running on its second implementation. The 
first implementation [ 11-[3] was a testbed for the basic design 
concepts, providing experience with a hierarchical program 
and measurement model, interactive program analysis, and 
automatic guidance techniques. This implementation was built 
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on the Charlotte Distributed Operating System [4]. The second 
implementation, IPS-2, extends the basic system with new 
instrumentation techniques, a powerful interactive and graphi- 
cal user interface, and new automatic guidance analysis 
techniques. This implementation runs on 4.3BSD UNIX 
systems. 

The next section presents an overview of the IPS concepts 
and model. In this section, we describe the hierarchical 
program and measurement model of the IPS system. New 
techniques for instrumenting parallel programs are described 
in Section 111, including the overhead caused by using IPS- 
2. Section IV describes the graphical user interface. This 
interface is used to specify the program to be measured and to 
interactively inspect the performance results from the execu- 
tion of the program. Section V discusses two automatic 
guidance techniques. Critical Path Analysis [2] is reviewed 
and new features are described. A new guidance technique, 
call Phase Behavior Analysis, is presented. Section VI 
presents our conclusions and mentions ongoing research to 
develop new analysis techniques. 

11. IPS OVERVIEW 

IPS is based on a hierarchical model of parallel and 
distributed programs. A hierarchical model presents multiple 
levels of abstraction, provides multiple views of performance 
data, and has a regular structure. The objects in a hierarchical 
model are organized in well-defined layers separated by 
interfaces that insulate them from the internal details of other 
layers. Therefore, we can view a complex problem at various 
levels of abstraction. We can move vertically in the hierarchy, 
increasing or decreasing the amount of detail that we see. We 
can also move horizontally, viewing different components at 
the same level of abstraction. 

In this section, we review the sample hierarchy of IPS that is 
based on our initial target systems-the Charlotte Distributed 
Operating System and 4.3BSD UNIX. Charlotte is a distrib- 
uted operating system written at the University of Wisconsin, 
running on VAX 11/75O’s connected via an 80 megabit/s 
token ring. Both Charlotte and 4.3BSD systems consist of 
processes communicating via messages. These processes 
execute on machines connected via high-speed local networks. 
The hierarchy presented here served as a test example of our 
hierarchy model and reflects our current implementation. It is 
easy to extend these ideas to incorporate new features and 
other programming abstractions. For example, in our Sequent 
multiprocessor implementation, we include lightweight proc- 
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Fig. 1. IPS program hierarchy 

esses (processes in the same address space) to our hierarchy 
with little effort. Our hierarchical structure can be also applied 
to systems such as HPC [ 5 ] ,  which has a different notion of 
program structuring, or MIDAS [6], which has a three-level 
programming hierarchy. The IPS paradigm would work with 
most systems that have regular, hierarchical decomposition of 
components. 

A .  The Program Hierarchy 
An overview of our computation hierarchy is illustrated in 

Fig. 1. 
1) Program Level: This level is the top level of the 

hierarchy, and is the level in which the distributed system 
accounts for all the activities of the program on behalf of the 
user. At this level, we can view a distributed program as a 
black box running on a certain system to which a user feeds 
inputs and gets back outputs. The general behavior of the 
whole program, such as the total execution time, is visible at 
this level; the underlying details of the program are hidden. 

2)  Machine Level: At the machine level, the program 
consists of multiple threads that run simultaneously on the 
individual machines of the system. We can record summary 
information for each machine, and the interactions (communi- 
cations) between the different machines. The machine level 
provides no details about the structure of activities within each 
machine. 

3) Process Level: The process level represents a distributed 
program as a collection of communicating processes. At this 
level, we can view groups of processes that reside on the same 
machine, or we can ignore machine boundaries and view the 
computation as a single group of communicating processes. 

If we view a group of processes that reside on the same 
machine, we can study the effects of the processes competing 
for shared local resources (such as CPU’s and communication 
channels). We can compare intra- and intermachine communi- 
cation levels. We can also view the entire process population 
and abstract the process’s behavior away from a particular 
machine assignment. 

4) Procedure Level: At the procedure level, a distributed 
program is represented as a sequentially executed procedure- 
call chain for each process. Since the procedure is the basic 
unit supported by most high-level programming languages, 
this level can give us detailed information about the execution 
of the program. The step from the process to the procedure 
level represents a large increase in the rate of component 
interactions, and a corresponding increase in the amount of 
information needed to record these interactions. Procedure 
calls typically occur at a higher frequency than message 
transmissions. 

5 )  Primitive Activity Level: The lowest level of the 
hierarchy is the collection of primitive activities that are 
detected to support our measurements. Our primitive activities 
include process blocking and unblocking by the scheduler, 
message send and receive, process creation and destruction, 
procedure entry and exit. Each event is associated with a probe 
in the operating system or programming language run time 
that records the type of the event, machine, process, and 
procedure in which it occurred, a local time stamp, and event 
type dependent parameters. 

B. The Measurement Hierarchy 
The program hierarchy provides a uniform framework for 

viewing the various levels of abstraction in a distributed 
program. If we wish to understand the performance of a 
distributed computation, we can observe its behavior at 
different levels of detail. We chose a measurement hierarchy 
whose levels correspond to the levels in our hierarchy of 
distributed programs. At each level of the hierarchy, we define 
performance metrics to describe the program’s execution. For 
example, we may be interested in parallelism at the program 
level, or in message frequencies at the process level. We can 
look at message frequencies between processes or between 
groups of processes on the same machine. This selective 
observation permits a user to focus on areas of interest without 
being overwhelmed by all the details of other unrelated 
activities. The hierarchical structure matches the organization 
of a distributed computation and its associated performance 
data. 

C. The Structure of IPS 
There are four basic components of IPS: instrumentation 

probes, data pool, analyst, and user interface. The instru- 
mentation probes generate trace data when interesting events 
happen during the program execution. These probes are 
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Fig. 2. The basic structure of IPS. 

contained in the language run-time library and the operating 
system kernel. The data pool stores the trace data and caches 
intermediate results from the analysts. The data pool is 
resident in the memory of each machine. The analyst is a set of 
processes that summarizes and evaluates the measurement 
data. The user interface interacts with the user and presents the 
results. 

Each machine contains a slave analyst that analyzes the 
trace data generated by the processes on that machine. The 
master analyst performs the program level analysis and 
coordinates with the slave analysts to synthesize the measure- 
ment and analysis data. In addition, it provides an interface 
with the user for the display of performance results. Fig. 2 
shows the basic structure of IPS. 

111. INSTRUMENTATION TECHNIQUES 

The overriding consideration in collecting performance data 
is efficiency. To efficiently gather data we must minimize the 
overhead, both in time and space. Collecting the trace 
information should not require much extra time, and the trace 
records should not take up much extra space, when compared 
to running the same programs without tracing them. The 
current version of IPS is based on software instrumentation. 
Hardware instrumentation would allow less intrusive monitor- 
ing of parallel programs. Currently, no monitoring tools are 
generally available, and we are investigating building our own 
hardware monitoring facility. The problem of how to effi- 
ciently correlate hardware-level monitoring with program- 
level analyses must also be investigated. 

Programmers do not have to modify their programs to use 
IPS-2. Data are automatically collected from two sources: 1) 
modified’ procedure call hooks used by gprof [7], and 2) a 
modified run-time library. Instrumentation is selected by a 
compiler option. 

In this section, we first discuss the implementation of our 
new software instrumentation techniques, then present mea- 
surements on the performance overhead incurred when using 
IPS-2. 

I Gprof collects data only on procedure entry. We make an extra pass over a 
program’s assembly code to also monitor procedure exit. 

A .  Implementation Issues 
The initial version of IPS was limited in the type of 
performance data that it collected. Data for process, machine, 
and program level events were collected by tracing; that is, 
every important event was collected and recorded. Data for 
procedure level events was collected by periodic sampling. 
Events at the procedure level (specifically, procedure entry 
and exit events) occurred much more frequently than events at 
the other levels and sampling was used to keep the instrumen- 
tation space and time overhead manageable. The result of 
using sampling is that information at the procedure level was 
only approximate. 

IPS-2 has improved the efficiency of event tracing so that 
we now use traces at all levels. This has two benefits. First, we 
get exact performance results at all levels of the hierarchy. 
Performance results at the procedure level have the same 
precision as results at the other levels. Second, IPS-2 has been 
extended to shared-memory , multiprocessor machines. The 
process interactions on such systems occur at a higher 
frequency than on loosely-coupled systems. The techniques 
used to trace procedure level events are used in the shared- 
memory environment to trace process interaction events. 

We use several techniques to reduce both time and space 
requirements of event tracing. The most significant problem 
with the cost of tracing is the time needed to collect timestamps 
for each trace record. Each event that is traced by IPS requires 
the elapsed time (real time) and CPU time to be recorded. 
These times are typically accessed by using a operating system 
kernel call. Kernel calls are several orders of magnitude 
slower than procedure calls and add intolerable overhead if 
used for tracing procedure call events. All UNIX versions that 
we have examined require a kernel call to access at least one of 
these two types of time. 

The solution to this problem is to access clock values with 
simple memory references. The clock on most machines is 
stored either in the kernel’s address space as one or more 
integer values or is accessible via memory-mapped clock 
device registers. In our VAX implementation, we modify 
UNIX to provide a kernel facility to map the clocks (both the 
process’s CPU time and real time) into a process’s address 
space (read-only). Processes read the clock at memory access 
speed. In our implementation for the Sequent Symmetry 
multiprocessor we use an auxiliary clock provided by the 
Sequent architecture. This is a hardware 1 MHz clock that can 
be mapped into a process’s address space and read directly. A 
similar solution used CPU time, by directly (mapping and) 
reading the process’s process table entry. The performance 
benefit of using memory-mapped clocks is quantified in 
Section 111-B, where we compare the overhead of reading a 
clock from memory to the overhead of reading it with a kernel 
call. 

We use three methods to reduce the size of the traces. The 
first method addresses procedure calls and returns, which are 
usually the most frequently occurring traces. Process level 
traces (corresponding to kernal calls) generally need auxiliary 
information, such as return codes or message sizes, but 
procedure calls and returns need no information other than the 
timestamps and an identifier of the procedure that was called. 
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Therefore, procedure call traces are smaller than other types 
of traces. The second method is to shorten every trace record 
by encoding some of the information. To generate timestamps 
we read a two-word (64 bit) clock. We then compress the two 
words into a one-word timestamp for the trace records, and 
recreate the original timestamp at analysis time. No significant 
information is lost by this method, since the time between any 
two traces will not exceed the time represented in a single 
word. The third method is to encode multiple events in a single 
trace. For example, a “lock” synchronization operation on 
the Sequent has two events, one to try to acquire the lock (and 
possibly block), and another event to actually acquire it. For 
most cases, we can generate a single trace for these two events 
that includes the time difference between the two events. 

Directly reading clocks can cause anomalies. One problem 
involves reading a multiword clock. The clock might be 
updated between reads of the separate words. Detection and 
correction of this problem is straightforward, because the 
interval between a correct timestamp and a following incorrect 
timestamp appears to be negative. The incorrect value can be 
easily corrected. A second problem arises when different 
clocks have different resolutions. For example, in our Sequent 
implementation, the real time has a 1 ms resolution, while the 
process time has only a 10 ps resolution. This can cause a 
discrepancy when the process time is rounded to a value 
greater than was actually used. This problem is easy to detect, 
but hard to correct as the precise value of the process time is 
not known. Typically, computations must be based on the 
resolution of the least precise clock. 

Tracing shared-memory interprocess communication is 
difficult. In the most general case, we would need to trace 
every memory reference in any shared areas in the processes’ 
address spaces. This would be difficult and would require 
extensive hardware support. Instead we opted to trace only 
kernel calls relating to shared-memory synchronization mech- 
anisms. For example, the Sequent supports semaphore opera- 
tions. We trace semaphore blocking and restarting of blocked 
processes, but we do not trace memory references inside 
shared regions protected by semaphores. 

Operations that directly involve the operating system can 
cause problems when creating traces. For example, to trace 
the times when a process is blocked awaiting a free processor, 
the scheduler inside the operating system kernel will generate 
trace records. A potential race condition arises, as both the 
operating system and the process may be trying to write a trace 
record. This issue will be addressed in an upcoming version of 
IPS that includes scheduler blocking time measurements. 

B.  Performance 

This section presents measurements of the overhead on 
application programs caused by using IPS-2. The results 
presented were taken from Microvax-I1 workstations and from 
the Sequent Symmetry multiprocessor. 

Two programs were measured, a parallel sort program and 
a parallel solution to the traveling salesman problem [8]. The 
sort program was based on a divide-sort-merge algorithm. It 
was run on randomly generated lists, from 1000 to 8000 
records. Each run of the sort program was repeated 10 times 

(with a different randomly generated list of records), so actual 
sort times are 1/10 those reported. The traveling salesman 
program used a branch-and-bound algorithm. This program 
was run for a problem size (number of cities) of 16, over 
several input data sets. The sort program was run on the 
Microvax and the traveling salesman program was run on both 
the Microvax and Sequent. For each input/problem size, all 
programs were run three times: 1) without any tracing, 2) with 
IPS tracing, and 3) with UNIX “gprof” [7] procedure call 
profiler tracing. For each run of a program, elapsed time and 
CPU time were recorded. Procedure call rates and trace log 
sizes were also calculated from the IPS runs. These results are 
summarized in Figs. 3 and 4. 

The first result to examine is the percent overhead (as 
calculated from the elapsed times). The overhead for programs 
run under IPS-2 ranges from 10-45 % . This compares favor- 
ably to the overhead from the standard UNIX profiler, gprof. 
The percent overhead under IPS-2 increased, predictably, with 
the frequency of procedure calls. The two test programs that 
we measured consisted of relatively small procedures (average 
size, 25 lines, including white space and comments), so we 
should expect overhead results for other programs to be as 
good or better than those in the figures. 

Note the two sets of IPS-2 performance times in Fig. 4. 
Each program on the Sequent was run twice, one with 
instrumentation code using a memory-mapped clock to sample 
CPU time and once using a kernel call (“getrusage()”) to 
obtain CPU time information. We can see the substantial 
penalty in having to enter the operating system for timing 
information. 

Figs. 3 and 4 also show the size of the trace generated by the 
various program runs. Examples range from 206 kilobytes, to 
a relatively large trace of 1.4 megabytes in 25 s. The 
maximum rate at which traces were generated in these runs 
was about 56 kilobytes/s. At these rates, memory can hold a 
substantial part of the trace and the disk write operations 
needed to flush the trace buffer are infrequent. 

IV. USER INTERFACE 

The first version of IPS had a simple textual user interface. 
This interface provided access to the IPS facilities, but was 
limited in two ways. First, the interface did not allow the 
programmer to visualize the program model. The hierarchical 
model has an intuitive visual representation and the textual 
interface could not use this. Second, the textual interface did 
not allow for graphical display of performance results. The 
ability to graph performance metrics over time and to 
graphically compare performance results gives the program- 
mer valuable information. 

The IPS-2 interface allows the programmer to specify both 
the structure of the program to be measured and the 
performance results to be displayed. The programmer starts in 
a graphic editor mode. The editor allows the programmer to 
modify the structure of the program, save and reedit it, or 
execute the program. After the program has executed, the 
programmer interacts with a flexible user interface to display 
any combination of performance metrics for nodes in the 
program tree. The programmer can display performance 
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Fig. 3. Overhead measurements-parallel sort. All times in seconds; trace 
size in bytes. Program run on two Microvaxes, connected via an Ethernet. 
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Fig. 4. Overhead measurements-traveling salesman. All times in seconds, 
trace size in bytes. Microvax version run in 1 process, Sequent version run 
in 8 processes (on 8 CPU’s). Problem size of 16 cities. 

metrics in tabular or graphical form, or use the automatic 
guidance techniques, Critical Path Analysis and Phase Behav- 
ior Analysis. In addition, standard gprof-style profiling data 
are available at each level of the hierarchy. Figs. 5 and 6 show 
an example of a session with IPS-2. 

The programmer starts with a single window showing a 
program level node (the triangle node in the window with the 
tree in Fig. 5). To this program node, the programmer can add 
machine nodes. Each machine node represents a host machine 
on which the processes of the program will run. In the 
example, these machines are called “grilled” and “havarti.” 
The programmer can also specify parameters (using pop-up 
property sheets), such as account names and home directories, 
for these machines. Next, the programmer specifies the initial 
processes to run on each machine (“test2a.swb” and 
“test2b.swb”). For each process, the programmer can specify 
the executable file to be run in the process, parameters to the 
process, and input and output files. Fig. 5 shows the program 
tree with the property sheet for machine “havarti.” After the 
program specification is completed, it can be saved for later 
use. 

IPS-2 can now be used to run the program. IPS-2 will 
transfer (if necessary) each executable file to the correct host 
machine, start the processes, monitor them, and report back 
when they have completed. A new program tree will be 

displayed with additional information from the program 
execution. New process nodes may appear as a result of 
dynamic process creation and procedure level nodes will 
appear for each procedure executed in the program (nodes 
such as “getData” and “calcl” in Fig. 6). 

Large programs can spawn many processes and call many 
procedures. IPS-2 provides functionality to manage the dis- 
play complexity in the tree window. Single mouse-button and 
keyboard commands can be used to: 1) hide all descendants of 
a node, 2) hide a single node, or 3) show the immediate 
children of a node. There are also commands to show only 
those nodes that contribute more than a certain percentage to 
the total CPU time or critical path. In addition, a horizontal 
scroll bar is provided at the bottom of the window. 

The table at the bottom left corner of Fig. 6 shows a metric 
table for process “test2a.swb. ” Various performance metrics 
have been displayed for this process. Added to this table was a 
list of all child nodes, i.e., the procedures that ran in this 
process. Any combination of nodes and metrics can be 
displayed in a table. 

In the center of the screen is a graph of the “CPU Time” 
metric for the whole program (out of 200%, because there are 
two machines), and superimposed on this display is the graph 
of the same metric for machine “havarti.” The graphs can be 
zoomed to get more detail, panned to examine individual 
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Fig. 5. An IPS-2 measurement session: edit phase. 

portions of the program history, and enlarged to show more 
detail. The window on the bottom right-hand corner of the 
screen displays graphs of multiple metrics, message rate, and 
CPU time. Any combination of metrics and nodes can be 
displayed in single graph. 

An important aspect of this interface is its simplicity. There 
are few commands and menus, and the structure of the 
commands and displays matches a programmer’s notion of the 
structure of the program. 

This critical path identifies the parts of the program responsi- 
ble for its length of execution (based on traces of the 
program’s execution history). This information is more 
precise than just a profile of the execution times of each part of 
a program. The critical path identifies the parts of the program 
(including CPU times, synchronization and communication 
delays) that cause the execution time. If we speed up the events 
along the critical path, we speed up the whole program. 

Critical Path Analysis (CPA) can identify program parts that 
occur most frequently in the critical path, and can further 
identify the most frequent sequences of events along the 
critical path. The ability to locate frequent sequences allows us 

V. AUTOMATIC GUIDANCE TECHNIQUES 
A Of the Ips system is to provide program 

performance analysis techniques that guide the programmer in 
the search for performance problems’ We provide the pro- 

to detect bottlenecks spread across several procedures or 
across several processes or machines. The results of the 

gramer with information to locate performance 

guidance technique (Critical Path Analysis) and then describe 
new features for this analysis. We then describe a new 
technique called Phase Behavior Analysis, and show how it 
interacts with the metric table and Critical Path Analysis. 
A .  Critical Path Analysis 

Our first guidance technique was based on identifying the 
path through the program that consumed the most time [2]. 

Critical Path Analysis can be displayed at the different levels 

the path at the program, machine, process, and procedure 
levels. 

To perform CPA, we construct a graph of the program,s 
activities (a Program Activity Graph, or from the 
trace information generated during execution. This graph 
represents the time dependencies among the various parts of 
the program and is built from the program traces using only 

In this section* we briefly Outline Our first of abstraction: we can observe the most frequent elements of 
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Fig. 6. An IPS-2 measurement session: analysis phase. 

those records that show an interaction between two processes 
(interprocess communication and process creation events). 
Other records only appear in the PAG as elapsed time. Nodes 
in the PAG represent events (e.g., interprocess communica- 
tion and process creation) and arcs represent observed timings. 

A slave analyst handles the traces from the processes on its 
machine. It first builds one subgraph per process, and then 
uses the trace information to combine these subgraphs with the 
subgraphs for the other processes (on the same machine and on 
others). Slaves compute these results concurrently. Finally, 
we add global initial and final nodes to combine all the 
subgraphs into a single PAG for the whole program. 

After constructing the PAG, we find the critical path (the 
longest time-weighted path through the graph) using a distrib- 
uted algorithm based on one by Chandy and Misra [9] and 
adapted to our problem for the original version of IPS [ 11. The 
adaptation focused on two areas. First, Chandy and Misra 
represented each node with an analyst process. Since PAG’s 
can contain tens of thousands of nodes, that number of 
processes would be unworkable on current operating systems. 
In our implementation, a single slave analyst represents the 
PAG subgraph for all processes that ran on the slave’s 
machine. Second, Chandy and Misra designed their algorithm 

to find the shortest path through a (directed) graph. Since the 
PAG is acyclic (all arcs represent a forward progression of 
time), shortest path algorithms apply equally well to the 
problem of searching for the longest path through the PAG. 

Fig. 7 illustrates a simple PAG. In this figure, time 
progresses from top to bottom. Processes A and B ran on one 
machine, and Process C on another. Arcs are weighted with 
time values, and the critical path is marked with double lines. 

The master analyst is responsible for requesting that the 
Critical Path Analysis be performed, consolidating the infor- 
mation gathered from that analysis, and presenting it to the 
user. Since it is impractical to consider a graphical display of 
the thousands of nodes that can make up the critical path, we 
present critical path information to the user statistically. For 
example, at the process level, we present a table, sorted by 
percentage of total time, of how much of the critical path 
execution time was due to CPU time in each process, and how 
much was due to interprocess communication between each 
pair of processes. Similar presentations are available at the 
program, machine, and procedure levels. The windows at the 
top right corner of Fig. 6 show critical path results for the 
process and procedure levels of our test program. 

It is possible to have a PAG in which the longest and second 
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longest paths do not overlap (except at beginning and end). In 
this case, improving the critical path may have little affect on 
the program’s performance. Fortunately, experience has 
shown that the longest path and second longest path have 
substantial overlap. There is still the question: how much 
improvement will we really get by fixing something that lies 
on the critical path? 

While this question cannot be answered in general, the 
critical path analysis provides a feature that can help. For any 
element(s) on the critical path, we can change their weight to 
zero and recalculate the critical path. We can then compare the 
length of the new path to the original critical path. This is only 
an approximation of the affect of a change to the program, but 
it provides some insight about the change. 

For example, Fig. 8, top right corner, shows the critical 
path table for the procedure level. We have selected the 
procedure that contributes the largest time on the path (“calc2” 
in process “test2a.swb”) and assigned its weight to zero. This 
creates a new context (“Context 2’7, which is based on the 
original PAG, but with all of the weights for “calc2” event 
edges set to zero. To the left of the original critical path table 
in Fig. 8 is a window with a new critical path table, based on 
the modified PAG. We can see that eliminating “calc2” can 
substantially change the critical path. The length of the path 
has changed from 2.85 to 1.20, indicating that the execution 
time might be substantially improved if “calc2” could be 
made more efficient. The contents of the critical path have also 
changed-procedure “getdata’ ’ in process “test2b.swb” is 
now the major contributor to the critical path. 

B. Phase Behavior Analysis 
Programs go through different phases during the course of 

their executions. For example, a mastedslave parallel pro- 
gram might have the following phases: 1) the master process 

sets the initial problem, 2) the slave processes are initialized, 
3) the master distributes pieces of the problem to each slave, 4) 
the slaves compute their piece of the program, 5) the master 
reaps the partial results and combines them. Steps 3-5 are 
repeated until a solution is reached. Each of these phases has 
different execution characteristics. The goal of the Phase 
Behavior Analysis is to automatically identify phases in the 
program’s execution history. Once these phases are identified, 
we can then use our other analysis techniques, focusing on 
each phase as a separate problem. Each phase represents a 
simpler subproblem, which should be easier to evaluate and 
improve its execution. 

Intuitively, a phase is a period of time when the program is 
performing the same activity. For our performance tool, we 
define the phase as a period of time where some combination 
of performance metrics maintain consistent values. For 
example, in the graph in the center of Fig. 6, CPU time is 
displayed for an entire program. For this single metric, we can 
observe periods of low CPU usage and periods of high CPU 
usage. In the Phase Behavior Analysis, we take several such 
graphs (for different metrics, such as message frequency or 
procedure call frequency, or for different parts of the 
program) and identify common periods between these graphs. 

Our detection algorithm inputs raw metric curves that are 
derived from the trace data generated by the instrumented 
programs. Each metric curve is represented by a list of 
discrete values for a finite number of points in time, 
summarized from the total execution period of the program. 
The algorithm works in three steps: smoothing, segmenting, 
and combining. The smoothing step reduces spikes from the 
raw metric curves. The segmenting step determines the 
potential segment boundaries in the execution history graph 
for a single performance metric. The combining step identifies 
the phases in the overall program execution for the common 
segment boundaries in a list of metrics. 

1) Smoothing: The goal of the smoothing step is to simplify 
the segmenting step by reducing spikes in the performance 
data. The current smoothing function is a sliding window 
average, weighting the center point most and the edges of the 
window least. A window size of 9 (empirically determined) 
suppresses spikes that result from the fine granularity of the 
trace data collected. The smoothing function has the same 
effect as a low-pass filter. Increasing the window size 
effectively lowers the cutoff frequency. Each smoothed curve 
is normalized with respect to the maximum value of that 
metric (as constrained by physical and operating systems 
characteristics of the machines). The smoothed and normal- 
ized metric curve is then used to compute segment boundaries. 

2) Segmenting: An execution history graph G ,  for metric 
m can be divided into segments, S,, ; ,  where S,,i starts at time 
ti and ends at ti+ (ti < ti+ A new segment is started at time 
ti when values for the metric m during S,, ; -  differ signifi- 
cantly from the values immediately after time ti. 

To derive segments, we define a boundary curve B, for 
metric m that shows the likelihood that any given point on the 
metric curve is at the end of a segment. To calculate B,, we 

* The notations here are used to represent discrete data rather than some 
continuous function of time. 
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I ,/ \ I machine:proccss func n m e  time Xtlme I machine:process func n m e  time %time I 
TOTAL LENGTH 1.20 TOTAL LENGTH 2.85 
havarti:tert2b.rwb getData 1.12 93.33 
grilled:testZa.swb main 0.06 5.00 I grlllcd grillcd:tcst2a.rub atan2 0.02 1.67 grillcd:tcrt2a.n*b atan2 0.18 6.32 

grIlled:tcst2a.n*b m a i n  0.06 2.11 

sub Sgnc Wart (gctData) 2.76 39.26 
calc2 2.33 33.14 

hauartl:te+t2b.sub petData 1.12 15.93 
havartI:test2b.a*b Sqnc Wait (maln)  0.30 4.27 

rockstuff 0.18 2.56 grillcd:test2a.wb 
atan2 0.17 2.42 grIlled:tc+t2a.n*b 

grilled:test2a.%b main 0.07 *.*e 

havartl: test2b.swb main 0.06 0.0.  

grillcd:tcrt2a.srb calcl 0.04 *.e* 

I 3.5 4.0 4.5 I 

Fig. 8. An IPS-2 measurement session: zeroing elements on the critical 
path 

first calculate a step function to show the range of values for 
m. The step function h,,; for metric m at time ti is the 
difference in value of m between the previous minimum 
(maximum) and the following maximum (minimum). Fig. 9(a) 
shows the step function for the metric curve in Fig. 9(b). Next, 
we define two variables for computing the first derivative of 
the metric curve: time and value increments. The time 
increment A ti is the difference between the present time ti and 
the previous time ti- in which the metric was sampled. The 
value increment A V,,; is the difference in the value of the 
metric m at time ti and ti_ I ,  as shown in Fig. 9(b). Thus, the 
first derivative of the metric curve at time ti is approximated 

The boundary curve is derived by multiplying the absolute 
value of the first derivative of the metric curve with the step 
function hm,;. Thus, the boundary curve B,  at time ti is 
defined 

by A V,,;/At;.  

B,,;=abs (-) A Vn7.i x h , , ; .  
At ;  

The greater the value of Bm,;, the greater the probability that 
the corresponding point on the metric curve is at the end of a 

segment. We identify segment boundaries as the peaks of the 
boundary curve that are greater in value than some threshold. 

3) Combining: After the boundary curves for each metric 
have been computed, they must be combined. If B,,i is high at 
time ti for most of the metric curves, then there is a high 
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Fig. 11. Parallel join program: CPU time graph with two phases shown. 

probability that ti is an endpoint of a phase. The combining 
function identifies the most common boundaries and generates 
the program phases based on this combined list of metrics. The 
combining function sums up the boundary curves of each of 
the metric curves to compute the segment boundaries from the 
aggregate boundary curve. Hence, the aggregate boundary 
curve B at time ti is defined 

Bi= Bm,i= abs (-) Avm, i  x hm,i 
A t i  mEM m E M  

where M is the set of all the metrics used. 
There is a phase boundary for the program at time ti if the 

first derivative of the aggregate boundary curve is zero and Bi 
is greater than some threshold. The programmer interacts with 
the IPS-2 to determine a reasonable threshold value. If the 
threshold is too low, there will be too many phases and the 
results will not be useful. If the threshold is too high, there will 
be too few phases. Fig. 10 shows a closeup of the graph of the 
CPU time and message frequency metrics for the program, 
and the corresponding boundary curve. 

Note that the only manual step in identifying phases is 
setting the threshold. This is done by adjusting the slide bar on 
the left side of Fig. 10. We are currently experimenting with 
heuristics to set this value automatically. Once we have 

identified the phases, we use the performance metrics and 
Critical Path Analysis to study these phases. We are investi- 
gating the use of Phase Behavior Analysis to find patterns and 
periods in a program’s phases. 

4) Using Phases with Other Analyses: IPS-2 can automati- 
cally identify phases or they can be specified manually. Once a 
phase has been identified and selected, we can use the other 
facilities in IPS-2 to study the behavior of that specific phase. 
We can display metric tables for a phase, and display the 
portion of the critical path that lies within the phase. 

For example, we measured the execution of a shared- 
memory, parallel, database join program that runs on the 
Sequent Symmetry. The graph of total CPU time for one 
execution is shown in Fig. 11. Note that there is a startup 
interval of low CPU use. We identify two phases, phase “A” 
representing the startup and phase “B” for the main computa- 
tion. Fig. 12 shows the procedure-level critical path table for 
the entire program (top right window), and below it, critical 
path tables for phases “A” and “B.” We have resized these 
tables to show only the top eight entries; a scroll bar is used to 
see the others. We can see that the start-up phase (“A”) is 
dominated by procedure “random-shuffle” (used for initiali- 
zation), but this procedure is not an important part of phase 
“B.” Other changes in the critical path reflect the different 
type of work done in the different phases. 

11 
~ 
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Fig. 12. Parallel join program: critical path for separate phases. 

VI. CONCLUSIONS 
IPS-2 is a running system [lo] whose design and features 

benefited from the experience gathered in the first (Charlotte 
Distributed Operating System) implementation. The first 
implementation of IPS provided useful insights in how to 
design a parallel program performance measurement tool. 
Using the semantic structure of the program produces a 
hierarchical model for the program and performance data. 
This model resulted in a system that was intuitive to use and 
provided large amounts of information. The model also 
allowed for the construction of analysis techniques that help 
guide the programmer to the cause of program bottlenecks. 

IPS-2 uses this foundation to make several new advances. 
The new instrumentation techniques provide more detailed and 
precise information about the program. The implementation 
now includes both distributed and shared-memory systems. 
The graphical user interface simplifies the use of the system 
and significantly improves the presentation of performance 
results. The Phase Behavior Analysis presents a new type of 
guidance technique: a focusing technique that allows more 
precise use of other analyses. 

IPS-2 has been used in several performance studies, and we 
are gaining experience with several larger numerical applica- 

tions. The Critical Path Analysis seems to have a real benefit, 
reducing the need to look through piles of statistics. We are 
just beginning to get experience with the Phase Behavior 
Analysis. To date, IPS-2 has been used to 1) gather data to 
parameterize analytical performance models of parallel sys- 
tems, 2) measure parallel database join algorithms, 3) evaluate 
code generated by parallelizing compiler algorithms, and 4) 
measure parallel search programs and network flow programs. 
The feedback that we have received from these studies has 
helped to improve the quality of the analyses and interface. 

The strengths of IPS-2 are shown in the comments that we 
commonly receive. First, IPS-2 does not require modification 
of the user's program. All instrumentation is automatically 
inserted at compile/link time. Second, IPS-2 has exposed 
performance problems in places not expected by the program- 
mer. Third, IPS-2 seems to be easy to use; learning the basic 
features takes about 15 min. 

IPS-2 is an evolving system. We are currently working on 
Critical Path Analysis advances, hardware instrumentation, 
browsing tools, refining Phase Behavior Analysis, kernel 
instrumentation, and new guidance techniques. 

1) The Critical Path work is to investigate second-longest, 
third-longest, etc., critical paths, and comparing and correlat- 
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ing information from these paths. We would like to compute 
these multiple paths efficiently. 

2) Hardware instrumentation has the potential to greatly 
reduce execution time overhead. We are currently instrument- 
ing our instrumentation to better understand the type of data 
that we gather. This information will be used in the design of a 
hardware data collection facility. 

3) IPS-2 currently provides no way to browse through the 
raw trace data or critical path. We are currently designing 
browser functions to allow the programmer to intelligently 
select and display parts of the (potentially huge) trace files. 

measure application programs, but not the 
operating system kernel. Instrumenting the kernel is more 
difficult than applications, but it will allow us to get system- 
level performance data. We will also be able to study an 
application along with its effect on the operating system. 

5) We are investigating new analyses for studying the 
contention for such resources as the CPU, memory, and 
communication channels. 

4) IPS-2 c; 
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