
206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. I , NO. 2, APRIL 1990

IPS-2: The Second Generation of a Parallel
Program Measurement System

BARTON P. MILLER, MEMBER, IEEE, MORGAN CLARK, JEFF HOLLINGSWORTH, STEVEN KIERSTEAD,
SEK-SEE LIM, AND TIMOTHY TORZEWSKI

Abstract-IPS is a performance measurement system for parallel and
distributed programs. IPS’S model of parallel programs uses knowledge
about the semantics of a program’s structure to provide two important
features. First, IPS provides a large amount of performance data about
the execution of a parallel program, and this information is organized so
that access to it is easy and intuitive. Second, IPS provides performance
analysis techniques that help to automatically guide the programmer to
the location of program bottlenecks.

IPS is currently running on its second implementation. The first
implementation was a testbed for the basic design concepts, providing
experience with a hierarchical program and measurement model, interac-
tive program analysis, and automatic guidance techniques. This imple-
mentation was built on the Charlotte Distributed Operating System. The
second implementation, IPS-2, extends the basic system with new
instrumentation techniques, an interactive and graphical user interface,
and new automatic guidance analysis techniques. This implementation
runs on 4.3BSD UNIX systems, on the VAX, DECstation, Sun 4, and
Sequent Symmetry multiprocessor.

Index Terms-Critical path analysis, instrumentation, message sys-
tems, parallel and distributed programs, performance measurement,
shared-memory systems, UNIX.

I. INTRODUCTION

PS is a performance measurement system for parallel and I distributed programs. IPS’S model of parallel programs uses
knowledge about the semantics of a program’s structure to
provide two important features. First, IPS provides a large
amount of performance data about the execution of a parallel
program, and this information is organized so that access to it
is easy and intuitive. Second, IPS provides performance
analysis techniques that help to automatically guide the
programmer to the location of program bottlenecks.

IPS is currently running on its second implementation. The
first implementation [11-[3] was a testbed for the basic design
concepts, providing experience with a hierarchical program
and measurement model, interactive program analysis, and
automatic guidance techniques. This implementation was built

Manuscript received May 11, 1989; revised December 9, 1989. This work
was supported in part by the National Science Foundation under Grant CCR-
8815928, Office of Naval Research Grant “14-89-J-1222, and a Digital
Equipment Corporation External Research Grant.

B. P. Miller, J . Hollingsworth, and S.-S. Lim are with the Computer
Sciences Department, University of Wisconsin-Madison, Madison, WI
53706.

M. Clark is with AT&T Bell Laboratories, UNIX Software Operation,
Summit, NJ 07901.

S. Kierstead is with AT&T Bell Laboratories, Skokie, 1L 60077.
T . Torzewski is with Digital Equipment Corporation, Colorado Springs,

IEEE Log Number 8934122.
CO 80919.

on the Charlotte Distributed Operating System [4]. The second
implementation, IPS-2, extends the basic system with new
instrumentation techniques, a powerful interactive and graphi-
cal user interface, and new automatic guidance analysis
techniques. This implementation runs on 4.3BSD UNIX
systems.

The next section presents an overview of the IPS concepts
and model. In this section, we describe the hierarchical
program and measurement model of the IPS system. New
techniques for instrumenting parallel programs are described
in Section 111, including the overhead caused by using IPS-
2. Section IV describes the graphical user interface. This
interface is used to specify the program to be measured and to
interactively inspect the performance results from the execu-
tion of the program. Section V discusses two automatic
guidance techniques. Critical Path Analysis [2] is reviewed
and new features are described. A new guidance technique,
call Phase Behavior Analysis, is presented. Section VI
presents our conclusions and mentions ongoing research to
develop new analysis techniques.

11. IPS OVERVIEW

IPS is based on a hierarchical model of parallel and
distributed programs. A hierarchical model presents multiple
levels of abstraction, provides multiple views of performance
data, and has a regular structure. The objects in a hierarchical
model are organized in well-defined layers separated by
interfaces that insulate them from the internal details of other
layers. Therefore, we can view a complex problem at various
levels of abstraction. We can move vertically in the hierarchy,
increasing or decreasing the amount of detail that we see. We
can also move horizontally, viewing different components at
the same level of abstraction.

In this section, we review the sample hierarchy of IPS that is
based on our initial target systems-the Charlotte Distributed
Operating System and 4.3BSD UNIX. Charlotte is a distrib-
uted operating system written at the University of Wisconsin,
running on VAX 11/75O’s connected via an 80 megabit/s
token ring. Both Charlotte and 4.3BSD systems consist of
processes communicating via messages. These processes
execute on machines connected via high-speed local networks.
The hierarchy presented here served as a test example of our
hierarchy model and reflects our current implementation. It is
easy to extend these ideas to incorporate new features and
other programming abstractions. For example, in our Sequent
multiprocessor implementation, we include lightweight proc-

1045-9219/90/0400-0206$01 .00 0 1990 IEEE

MILLER et al.: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM 207

Whole program level

Machine level

Process level

Procedure level

I , I .

L I . __ . . _ - - - - . - - - - - j / ,

Fig. 1. IPS program hierarchy

esses (processes in the same address space) to our hierarchy
with little effort. Our hierarchical structure can be also applied
to systems such as HPC [5] , which has a different notion of
program structuring, or MIDAS [6], which has a three-level
programming hierarchy. The IPS paradigm would work with
most systems that have regular, hierarchical decomposition of
components.

A . The Program Hierarchy
An overview of our computation hierarchy is illustrated in

Fig. 1.
1) Program Level: This level is the top level of the

hierarchy, and is the level in which the distributed system
accounts for all the activities of the program on behalf of the
user. At this level, we can view a distributed program as a
black box running on a certain system to which a user feeds
inputs and gets back outputs. The general behavior of the
whole program, such as the total execution time, is visible at
this level; the underlying details of the program are hidden.

2) Machine Level: At the machine level, the program
consists of multiple threads that run simultaneously on the
individual machines of the system. We can record summary
information for each machine, and the interactions (communi-
cations) between the different machines. The machine level
provides no details about the structure of activities within each
machine.

3) Process Level: The process level represents a distributed
program as a collection of communicating processes. At this
level, we can view groups of processes that reside on the same
machine, or we can ignore machine boundaries and view the
computation as a single group of communicating processes.

If we view a group of processes that reside on the same
machine, we can study the effects of the processes competing
for shared local resources (such as CPU’s and communication
channels). We can compare intra- and intermachine communi-
cation levels. We can also view the entire process population
and abstract the process’s behavior away from a particular
machine assignment.

4) Procedure Level: At the procedure level, a distributed
program is represented as a sequentially executed procedure-
call chain for each process. Since the procedure is the basic
unit supported by most high-level programming languages,
this level can give us detailed information about the execution
of the program. The step from the process to the procedure
level represents a large increase in the rate of component
interactions, and a corresponding increase in the amount of
information needed to record these interactions. Procedure
calls typically occur at a higher frequency than message
transmissions.

5) Primitive Activity Level: The lowest level of the
hierarchy is the collection of primitive activities that are
detected to support our measurements. Our primitive activities
include process blocking and unblocking by the scheduler,
message send and receive, process creation and destruction,
procedure entry and exit. Each event is associated with a probe
in the operating system or programming language run time
that records the type of the event, machine, process, and
procedure in which it occurred, a local time stamp, and event
type dependent parameters.

B. The Measurement Hierarchy
The program hierarchy provides a uniform framework for

viewing the various levels of abstraction in a distributed
program. If we wish to understand the performance of a
distributed computation, we can observe its behavior at
different levels of detail. We chose a measurement hierarchy
whose levels correspond to the levels in our hierarchy of
distributed programs. At each level of the hierarchy, we define
performance metrics to describe the program’s execution. For
example, we may be interested in parallelism at the program
level, or in message frequencies at the process level. We can
look at message frequencies between processes or between
groups of processes on the same machine. This selective
observation permits a user to focus on areas of interest without
being overwhelmed by all the details of other unrelated
activities. The hierarchical structure matches the organization
of a distributed computation and its associated performance
data.

C. The Structure of IPS
There are four basic components of IPS: instrumentation

probes, data pool, analyst, and user interface. The instru-
mentation probes generate trace data when interesting events
happen during the program execution. These probes are

11

208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1 , NO. 2 , APRIL 1990

Slave Machine Slave Machine

I
USER

Fig. 2. The basic structure of IPS.

contained in the language run-time library and the operating
system kernel. The data pool stores the trace data and caches
intermediate results from the analysts. The data pool is
resident in the memory of each machine. The analyst is a set of
processes that summarizes and evaluates the measurement
data. The user interface interacts with the user and presents the
results.

Each machine contains a slave analyst that analyzes the
trace data generated by the processes on that machine. The
master analyst performs the program level analysis and
coordinates with the slave analysts to synthesize the measure-
ment and analysis data. In addition, it provides an interface
with the user for the display of performance results. Fig. 2
shows the basic structure of IPS.

111. INSTRUMENTATION TECHNIQUES

The overriding consideration in collecting performance data
is efficiency. To efficiently gather data we must minimize the
overhead, both in time and space. Collecting the trace
information should not require much extra time, and the trace
records should not take up much extra space, when compared
to running the same programs without tracing them. The
current version of IPS is based on software instrumentation.
Hardware instrumentation would allow less intrusive monitor-
ing of parallel programs. Currently, no monitoring tools are
generally available, and we are investigating building our own
hardware monitoring facility. The problem of how to effi-
ciently correlate hardware-level monitoring with program-
level analyses must also be investigated.

Programmers do not have to modify their programs to use
IPS-2. Data are automatically collected from two sources: 1)
modified’ procedure call hooks used by gprof [7], and 2) a
modified run-time library. Instrumentation is selected by a
compiler option.

In this section, we first discuss the implementation of our
new software instrumentation techniques, then present mea-
surements on the performance overhead incurred when using
IPS-2.

I Gprof collects data only on procedure entry. We make an extra pass over a
program’s assembly code to also monitor procedure exit.

A . Implementation Issues
The initial version of IPS was limited in the type of
performance data that it collected. Data for process, machine,
and program level events were collected by tracing; that is,
every important event was collected and recorded. Data for
procedure level events was collected by periodic sampling.
Events at the procedure level (specifically, procedure entry
and exit events) occurred much more frequently than events at
the other levels and sampling was used to keep the instrumen-
tation space and time overhead manageable. The result of
using sampling is that information at the procedure level was
only approximate.

IPS-2 has improved the efficiency of event tracing so that
we now use traces at all levels. This has two benefits. First, we
get exact performance results at all levels of the hierarchy.
Performance results at the procedure level have the same
precision as results at the other levels. Second, IPS-2 has been
extended to shared-memory , multiprocessor machines. The
process interactions on such systems occur at a higher
frequency than on loosely-coupled systems. The techniques
used to trace procedure level events are used in the shared-
memory environment to trace process interaction events.

We use several techniques to reduce both time and space
requirements of event tracing. The most significant problem
with the cost of tracing is the time needed to collect timestamps
for each trace record. Each event that is traced by IPS requires
the elapsed time (real time) and CPU time to be recorded.
These times are typically accessed by using a operating system
kernel call. Kernel calls are several orders of magnitude
slower than procedure calls and add intolerable overhead if
used for tracing procedure call events. All UNIX versions that
we have examined require a kernel call to access at least one of
these two types of time.

The solution to this problem is to access clock values with
simple memory references. The clock on most machines is
stored either in the kernel’s address space as one or more
integer values or is accessible via memory-mapped clock
device registers. In our VAX implementation, we modify
UNIX to provide a kernel facility to map the clocks (both the
process’s CPU time and real time) into a process’s address
space (read-only). Processes read the clock at memory access
speed. In our implementation for the Sequent Symmetry
multiprocessor we use an auxiliary clock provided by the
Sequent architecture. This is a hardware 1 MHz clock that can
be mapped into a process’s address space and read directly. A
similar solution used CPU time, by directly (mapping and)
reading the process’s process table entry. The performance
benefit of using memory-mapped clocks is quantified in
Section 111-B, where we compare the overhead of reading a
clock from memory to the overhead of reading it with a kernel
call.

We use three methods to reduce the size of the traces. The
first method addresses procedure calls and returns, which are
usually the most frequently occurring traces. Process level
traces (corresponding to kernal calls) generally need auxiliary
information, such as return codes or message sizes, but
procedure calls and returns need no information other than the
timestamps and an identifier of the procedure that was called.

MILLER ef ai.: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM

209

Therefore, procedure call traces are smaller than other types
of traces. The second method is to shorten every trace record
by encoding some of the information. To generate timestamps
we read a two-word (64 bit) clock. We then compress the two
words into a one-word timestamp for the trace records, and
recreate the original timestamp at analysis time. No significant
information is lost by this method, since the time between any
two traces will not exceed the time represented in a single
word. The third method is to encode multiple events in a single
trace. For example, a “lock” synchronization operation on
the Sequent has two events, one to try to acquire the lock (and
possibly block), and another event to actually acquire it. For
most cases, we can generate a single trace for these two events
that includes the time difference between the two events.

Directly reading clocks can cause anomalies. One problem
involves reading a multiword clock. The clock might be
updated between reads of the separate words. Detection and
correction of this problem is straightforward, because the
interval between a correct timestamp and a following incorrect
timestamp appears to be negative. The incorrect value can be
easily corrected. A second problem arises when different
clocks have different resolutions. For example, in our Sequent
implementation, the real time has a 1 ms resolution, while the
process time has only a 10 ps resolution. This can cause a
discrepancy when the process time is rounded to a value
greater than was actually used. This problem is easy to detect,
but hard to correct as the precise value of the process time is
not known. Typically, computations must be based on the
resolution of the least precise clock.

Tracing shared-memory interprocess communication is
difficult. In the most general case, we would need to trace
every memory reference in any shared areas in the processes’
address spaces. This would be difficult and would require
extensive hardware support. Instead we opted to trace only
kernel calls relating to shared-memory synchronization mech-
anisms. For example, the Sequent supports semaphore opera-
tions. We trace semaphore blocking and restarting of blocked
processes, but we do not trace memory references inside
shared regions protected by semaphores.

Operations that directly involve the operating system can
cause problems when creating traces. For example, to trace
the times when a process is blocked awaiting a free processor,
the scheduler inside the operating system kernel will generate
trace records. A potential race condition arises, as both the
operating system and the process may be trying to write a trace
record. This issue will be addressed in an upcoming version of
IPS that includes scheduler blocking time measurements.

B. Performance

This section presents measurements of the overhead on
application programs caused by using IPS-2. The results
presented were taken from Microvax-I1 workstations and from
the Sequent Symmetry multiprocessor.

Two programs were measured, a parallel sort program and
a parallel solution to the traveling salesman problem [8]. The
sort program was based on a divide-sort-merge algorithm. It
was run on randomly generated lists, from 1000 to 8000
records. Each run of the sort program was repeated 10 times

(with a different randomly generated list of records), so actual
sort times are 1/10 those reported. The traveling salesman
program used a branch-and-bound algorithm. This program
was run for a problem size (number of cities) of 16, over
several input data sets. The sort program was run on the
Microvax and the traveling salesman program was run on both
the Microvax and Sequent. For each input/problem size, all
programs were run three times: 1) without any tracing, 2) with
IPS tracing, and 3) with UNIX “gprof” [7] procedure call
profiler tracing. For each run of a program, elapsed time and
CPU time were recorded. Procedure call rates and trace log
sizes were also calculated from the IPS runs. These results are
summarized in Figs. 3 and 4.

The first result to examine is the percent overhead (as
calculated from the elapsed times). The overhead for programs
run under IPS-2 ranges from 10-45 % . This compares favor-
ably to the overhead from the standard UNIX profiler, gprof.
The percent overhead under IPS-2 increased, predictably, with
the frequency of procedure calls. The two test programs that
we measured consisted of relatively small procedures (average
size, 25 lines, including white space and comments), so we
should expect overhead results for other programs to be as
good or better than those in the figures.

Note the two sets of IPS-2 performance times in Fig. 4.
Each program on the Sequent was run twice, one with
instrumentation code using a memory-mapped clock to sample
CPU time and once using a kernel call (“getrusage()”) to
obtain CPU time information. We can see the substantial
penalty in having to enter the operating system for timing
information.

Figs. 3 and 4 also show the size of the trace generated by the
various program runs. Examples range from 206 kilobytes, to
a relatively large trace of 1.4 megabytes in 25 s. The
maximum rate at which traces were generated in these runs
was about 56 kilobytes/s. At these rates, memory can hold a
substantial part of the trace and the disk write operations
needed to flush the trace buffer are infrequent.

IV. USER INTERFACE

The first version of IPS had a simple textual user interface.
This interface provided access to the IPS facilities, but was
limited in two ways. First, the interface did not allow the
programmer to visualize the program model. The hierarchical
model has an intuitive visual representation and the textual
interface could not use this. Second, the textual interface did
not allow for graphical display of performance results. The
ability to graph performance metrics over time and to
graphically compare performance results gives the program-
mer valuable information.

The IPS-2 interface allows the programmer to specify both
the structure of the program to be measured and the
performance results to be displayed. The programmer starts in
a graphic editor mode. The editor allows the programmer to
modify the structure of the program, save and reedit it, or
execute the program. After the program has executed, the
programmer interacts with a flexible user interface to display
any combination of performance metrics for nodes in the
program tree. The programmer can display performance

210

Untraced

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

IPS gprof

Records

loo0

3000

4000

5000

6OOO

7000

8000

Elapsed
Time

3.95

7.34

9.39

11.61

13.27

15.61

17.87

CPU
Time

4.84

12.40

16.25

20.02

23.82

27.56

32.00

Second

3764

Overhead

24%

41%

43%

37%

45%

41%

41%

67% 3811

66% 3750

67% 3955

69% 3911

CPU Overhead
rime

10.54 6%

1.52 4%

Fig. 3. Overhead measurements-parallel sort. All times in seconds; trace
size in bytes. Program run on two Microvaxes, connected via an Ethernet.

Proc. Calls/
Second

142

906

Elapsed
Config Time

VAX 50.60

Sequent w/ 7.91
mem-map

Sequent w/o
mem-map

clock

11.16

Fig. 4. Overhead measurements-traveling salesman. All times in seconds,
trace size in bytes. Microvax version run in 1 process, Sequent version run
in 8 processes (on 8 CPU’s). Problem size of 16 cities.

metrics in tabular or graphical form, or use the automatic
guidance techniques, Critical Path Analysis and Phase Behav-
ior Analysis. In addition, standard gprof-style profiling data
are available at each level of the hierarchy. Figs. 5 and 6 show
an example of a session with IPS-2.

The programmer starts with a single window showing a
program level node (the triangle node in the window with the
tree in Fig. 5). To this program node, the programmer can add
machine nodes. Each machine node represents a host machine
on which the processes of the program will run. In the
example, these machines are called “grilled” and “havarti.”
The programmer can also specify parameters (using pop-up
property sheets), such as account names and home directories,
for these machines. Next, the programmer specifies the initial
processes to run on each machine (“test2a.swb” and
“test2b.swb”). For each process, the programmer can specify
the executable file to be run in the process, parameters to the
process, and input and output files. Fig. 5 shows the program
tree with the property sheet for machine “havarti.” After the
program specification is completed, it can be saved for later
use.

IPS-2 can now be used to run the program. IPS-2 will
transfer (if necessary) each executable file to the correct host
machine, start the processes, monitor them, and report back
when they have completed. A new program tree will be

displayed with additional information from the program
execution. New process nodes may appear as a result of
dynamic process creation and procedure level nodes will
appear for each procedure executed in the program (nodes
such as “getData” and “calcl” in Fig. 6).

Large programs can spawn many processes and call many
procedures. IPS-2 provides functionality to manage the dis-
play complexity in the tree window. Single mouse-button and
keyboard commands can be used to: 1) hide all descendants of
a node, 2) hide a single node, or 3) show the immediate
children of a node. There are also commands to show only
those nodes that contribute more than a certain percentage to
the total CPU time or critical path. In addition, a horizontal
scroll bar is provided at the bottom of the window.

The table at the bottom left corner of Fig. 6 shows a metric
table for process “test2a.swb. ” Various performance metrics
have been displayed for this process. Added to this table was a
list of all child nodes, i.e., the procedures that ran in this
process. Any combination of nodes and metrics can be
displayed in a table.

In the center of the screen is a graph of the “CPU Time”
metric for the whole program (out of 200%, because there are
two machines), and superimposed on this display is the graph
of the same metric for machine “havarti.” The graphs can be
zoomed to get more detail, panned to examine individual

MILLER et al.: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM 21 1

Fig. 5. An IPS-2 measurement session: edit phase.

portions of the program history, and enlarged to show more
detail. The window on the bottom right-hand corner of the
screen displays graphs of multiple metrics, message rate, and
CPU time. Any combination of metrics and nodes can be
displayed in single graph.

An important aspect of this interface is its simplicity. There
are few commands and menus, and the structure of the
commands and displays matches a programmer’s notion of the
structure of the program.

This critical path identifies the parts of the program responsi-
ble for its length of execution (based on traces of the
program’s execution history). This information is more
precise than just a profile of the execution times of each part of
a program. The critical path identifies the parts of the program
(including CPU times, synchronization and communication
delays) that cause the execution time. If we speed up the events
along the critical path, we speed up the whole program.

Critical Path Analysis (CPA) can identify program parts that
occur most frequently in the critical path, and can further
identify the most frequent sequences of events along the
critical path. The ability to locate frequent sequences allows us

V. AUTOMATIC GUIDANCE TECHNIQUES
A Of the Ips system is to provide program

performance analysis techniques that guide the programmer in
the search for performance problems’ We provide the pro-

to detect bottlenecks spread across several procedures or
across several processes or machines. The results of the

gramer with information to locate performance

guidance technique (Critical Path Analysis) and then describe
new features for this analysis. We then describe a new
technique called Phase Behavior Analysis, and show how it
interacts with the metric table and Critical Path Analysis.
A . Critical Path Analysis

Our first guidance technique was based on identifying the
path through the program that consumed the most time [2].

Critical Path Analysis can be displayed at the different levels

the path at the program, machine, process, and procedure
levels.

To perform CPA, we construct a graph of the program,s
activities (a Program Activity Graph, or from the
trace information generated during execution. This graph
represents the time dependencies among the various parts of
the program and is built from the program traces using only

In this section* we briefly Outline Our first of abstraction: we can observe the most frequent elements of

II

212 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1 , NO. 2, APRIL 1990 - P r o c e s s - l e v e l Critical Path

StdtlStlC

TDTQL LENGTH
CPU: prilled:test2a.rwb
CPU: havarti:testZb.wb

time rtrme

2.86
2.79 97.69
0.06 2.10

Msg: grillcd:test2a.a*b->havartr:testZb.+wb 0.01 I...

Fig. 6. An IPS-2 measurement session: analysis phase.

those records that show an interaction between two processes
(interprocess communication and process creation events).
Other records only appear in the PAG as elapsed time. Nodes
in the PAG represent events (e.g., interprocess communica-
tion and process creation) and arcs represent observed timings.

A slave analyst handles the traces from the processes on its
machine. It first builds one subgraph per process, and then
uses the trace information to combine these subgraphs with the
subgraphs for the other processes (on the same machine and on
others). Slaves compute these results concurrently. Finally,
we add global initial and final nodes to combine all the
subgraphs into a single PAG for the whole program.

After constructing the PAG, we find the critical path (the
longest time-weighted path through the graph) using a distrib-
uted algorithm based on one by Chandy and Misra [9] and
adapted to our problem for the original version of IPS [11. The
adaptation focused on two areas. First, Chandy and Misra
represented each node with an analyst process. Since PAG’s
can contain tens of thousands of nodes, that number of
processes would be unworkable on current operating systems.
In our implementation, a single slave analyst represents the
PAG subgraph for all processes that ran on the slave’s
machine. Second, Chandy and Misra designed their algorithm

to find the shortest path through a (directed) graph. Since the
PAG is acyclic (all arcs represent a forward progression of
time), shortest path algorithms apply equally well to the
problem of searching for the longest path through the PAG.

Fig. 7 illustrates a simple PAG. In this figure, time
progresses from top to bottom. Processes A and B ran on one
machine, and Process C on another. Arcs are weighted with
time values, and the critical path is marked with double lines.

The master analyst is responsible for requesting that the
Critical Path Analysis be performed, consolidating the infor-
mation gathered from that analysis, and presenting it to the
user. Since it is impractical to consider a graphical display of
the thousands of nodes that can make up the critical path, we
present critical path information to the user statistically. For
example, at the process level, we present a table, sorted by
percentage of total time, of how much of the critical path
execution time was due to CPU time in each process, and how
much was due to interprocess communication between each
pair of processes. Similar presentations are available at the
program, machine, and procedure levels. The windows at the
top right corner of Fig. 6 show critical path results for the
process and procedure levels of our test program.

It is possible to have a PAG in which the longest and second

213 MILLER e? al.: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM

[nit

Process B
Create

I x , .
t

I

I l2
I

II . I

Recv

Exit

Fig. 7. Sample program activity graph.

longest paths do not overlap (except at beginning and end). In
this case, improving the critical path may have little affect on
the program’s performance. Fortunately, experience has
shown that the longest path and second longest path have
substantial overlap. There is still the question: how much
improvement will we really get by fixing something that lies
on the critical path?

While this question cannot be answered in general, the
critical path analysis provides a feature that can help. For any
element(s) on the critical path, we can change their weight to
zero and recalculate the critical path. We can then compare the
length of the new path to the original critical path. This is only
an approximation of the affect of a change to the program, but
it provides some insight about the change.

For example, Fig. 8, top right corner, shows the critical
path table for the procedure level. We have selected the
procedure that contributes the largest time on the path (“calc2”
in process “test2a.swb”) and assigned its weight to zero. This
creates a new context (“Context 2’7, which is based on the
original PAG, but with all of the weights for “calc2” event
edges set to zero. To the left of the original critical path table
in Fig. 8 is a window with a new critical path table, based on
the modified PAG. We can see that eliminating “calc2” can
substantially change the critical path. The length of the path
has changed from 2.85 to 1.20, indicating that the execution
time might be substantially improved if “calc2” could be
made more efficient. The contents of the critical path have also
changed-procedure “getdata’ ’ in process “test2b.swb” is
now the major contributor to the critical path.

B. Phase Behavior Analysis
Programs go through different phases during the course of

their executions. For example, a mastedslave parallel pro-
gram might have the following phases: 1) the master process

sets the initial problem, 2) the slave processes are initialized,
3) the master distributes pieces of the problem to each slave, 4)
the slaves compute their piece of the program, 5) the master
reaps the partial results and combines them. Steps 3-5 are
repeated until a solution is reached. Each of these phases has
different execution characteristics. The goal of the Phase
Behavior Analysis is to automatically identify phases in the
program’s execution history. Once these phases are identified,
we can then use our other analysis techniques, focusing on
each phase as a separate problem. Each phase represents a
simpler subproblem, which should be easier to evaluate and
improve its execution.

Intuitively, a phase is a period of time when the program is
performing the same activity. For our performance tool, we
define the phase as a period of time where some combination
of performance metrics maintain consistent values. For
example, in the graph in the center of Fig. 6, CPU time is
displayed for an entire program. For this single metric, we can
observe periods of low CPU usage and periods of high CPU
usage. In the Phase Behavior Analysis, we take several such
graphs (for different metrics, such as message frequency or
procedure call frequency, or for different parts of the
program) and identify common periods between these graphs.

Our detection algorithm inputs raw metric curves that are
derived from the trace data generated by the instrumented
programs. Each metric curve is represented by a list of
discrete values for a finite number of points in time,
summarized from the total execution period of the program.
The algorithm works in three steps: smoothing, segmenting,
and combining. The smoothing step reduces spikes from the
raw metric curves. The segmenting step determines the
potential segment boundaries in the execution history graph
for a single performance metric. The combining step identifies
the phases in the overall program execution for the common
segment boundaries in a list of metrics.

1) Smoothing: The goal of the smoothing step is to simplify
the segmenting step by reducing spikes in the performance
data. The current smoothing function is a sliding window
average, weighting the center point most and the edges of the
window least. A window size of 9 (empirically determined)
suppresses spikes that result from the fine granularity of the
trace data collected. The smoothing function has the same
effect as a low-pass filter. Increasing the window size
effectively lowers the cutoff frequency. Each smoothed curve
is normalized with respect to the maximum value of that
metric (as constrained by physical and operating systems
characteristics of the machines). The smoothed and normal-
ized metric curve is then used to compute segment boundaries.

2) Segmenting: An execution history graph G , for metric
m can be divided into segments, S,, ; , where S,,i starts at time
ti and ends at ti+ (ti < ti+ A new segment is started at time
ti when values for the metric m during S,, ; - differ signifi-
cantly from the values immediately after time ti.

To derive segments, we define a boundary curve B, for
metric m that shows the likelihood that any given point on the
metric curve is at the end of a segment. To calculate B,, we

* The notations here are used to represent discrete data rather than some
continuous function of time.

214 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1 , NO. 2, APRIL 1990

I ,/ \ I machine:proccss func n m e time Xtlme I machine:process func n m e time %time I
TOTAL LENGTH 1.20 TOTAL LENGTH 2.85
havarti:tert2b.rwb getData 1.12 93.33
grilled:testZa.swb main 0.06 5.00 I grlllcd grillcd:tcst2a.rub atan2 0.02 1.67 grillcd:tcrt2a.n*b atan2 0.18 6.32

grIlled:tcst2a.n*b m a i n 0.06 2.11

sub Sgnc Wart (gctData) 2.76 39.26
calc2 2.33 33.14

hauartl:te+t2b.sub petData 1.12 15.93
havartI:test2b.a*b Sqnc Wait (maln) 0.30 4.27

rockstuff 0.18 2.56 grillcd:test2a.wb
atan2 0.17 2.42 grIlled:tc+t2a.n*b

grilled:test2a.%b main 0.07 *.*e

havartl: test2b.swb main 0.06 0.0.

grillcd:tcrt2a.srb calcl 0.04 *.e*

I 3.5 4.0 4.5 I

Fig. 8. An IPS-2 measurement session: zeroing elements on the critical
path

first calculate a step function to show the range of values for
m. The step function h,,; for metric m at time ti is the
difference in value of m between the previous minimum
(maximum) and the following maximum (minimum). Fig. 9(a)
shows the step function for the metric curve in Fig. 9(b). Next,
we define two variables for computing the first derivative of
the metric curve: time and value increments. The time
increment A ti is the difference between the present time ti and
the previous time ti- in which the metric was sampled. The
value increment A V,,; is the difference in the value of the
metric m at time ti and ti_ I , as shown in Fig. 9(b). Thus, the
first derivative of the metric curve at time ti is approximated

The boundary curve is derived by multiplying the absolute
value of the first derivative of the metric curve with the step
function hm,;. Thus, the boundary curve B, at time ti is
defined

by A V,,;/At;.

B,,;=abs (-) A Vn7.i x h , , ; .
At ;

The greater the value of Bm,;, the greater the probability that
the corresponding point on the metric curve is at the end of a

segment. We identify segment boundaries as the peaks of the
boundary curve that are greater in value than some threshold.

3) Combining: After the boundary curves for each metric
have been computed, they must be combined. If B,,i is high at
time ti for most of the metric curves, then there is a high

MILLER et al .: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM 215

100 -

80 -

60 -

40 -
20 -

0-

- CPU Time ~

%CPU B y t e d s e c

U
2.6 2.8 3.0 3.2 3.4

Seconds -. .test2ab:grilled (CPU Time)
._ :test2ab:grilled (Msg b y t e d s e c) Boundary Curve

PRN

I- CPU T m e

I %CPU

350

300

250

200

150

100

50

0
1 2 3 4

Seconds . prog: topaz (CPU Time) I -O*

Fig. 11. Parallel join program: CPU time graph with two phases shown.

probability that ti is an endpoint of a phase. The combining
function identifies the most common boundaries and generates
the program phases based on this combined list of metrics. The
combining function sums up the boundary curves of each of
the metric curves to compute the segment boundaries from the
aggregate boundary curve. Hence, the aggregate boundary
curve B at time ti is defined

Bi= Bm,i= abs (-) Avm, i x hm,i
A t i mEM m E M

where M is the set of all the metrics used.
There is a phase boundary for the program at time ti if the

first derivative of the aggregate boundary curve is zero and Bi
is greater than some threshold. The programmer interacts with
the IPS-2 to determine a reasonable threshold value. If the
threshold is too low, there will be too many phases and the
results will not be useful. If the threshold is too high, there will
be too few phases. Fig. 10 shows a closeup of the graph of the
CPU time and message frequency metrics for the program,
and the corresponding boundary curve.

Note that the only manual step in identifying phases is
setting the threshold. This is done by adjusting the slide bar on
the left side of Fig. 10. We are currently experimenting with
heuristics to set this value automatically. Once we have

identified the phases, we use the performance metrics and
Critical Path Analysis to study these phases. We are investi-
gating the use of Phase Behavior Analysis to find patterns and
periods in a program’s phases.

4) Using Phases with Other Analyses: IPS-2 can automati-
cally identify phases or they can be specified manually. Once a
phase has been identified and selected, we can use the other
facilities in IPS-2 to study the behavior of that specific phase.
We can display metric tables for a phase, and display the
portion of the critical path that lies within the phase.

For example, we measured the execution of a shared-
memory, parallel, database join program that runs on the
Sequent Symmetry. The graph of total CPU time for one
execution is shown in Fig. 11. Note that there is a startup
interval of low CPU use. We identify two phases, phase “A”
representing the startup and phase “B” for the main computa-
tion. Fig. 12 shows the procedure-level critical path table for
the entire program (top right window), and below it, critical
path tables for phases “A” and “B.” We have resized these
tables to show only the top eight entries; a scroll bar is used to
see the others. We can see that the start-up phase (“A”) is
dominated by procedure “random-shuffle” (used for initiali-
zation), but this procedure is not an important part of phase
“B.” Other changes in the critical path reflect the different
type of work done in the different phases.

11
~

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

I- Prog~am Tree BP-- -~ - Proceoure-level Critical Path -
1 8 topaz

machine:proccss func name time %time

TOTAL LENGTH 2 .81
tOpaz:shm-JOln WO effect-join 0.54 19.22
topaz:shm-join W1 random-shuffle 0.36 12.81
topaz:shm-join w 1 Sync Wait (synch-initialization) 0.27 9.61
topaz:shm-join WO partition 0.22 7.83

partition 0.19 6.76
init-relation 0.14 4.98 1 I

partition 0.13 4.63 topaz:dn-join W2

time %time machine:process func n a e

TOTAL LENGTH
topaz:shmaoin Wl
topaz:shm-Join WO
topaz:shmjoin W l

topaz:thmjoin WO
topaz:shndoin W l

topaz:rhmdoin MO

random-shuffle
0.34 1 0.13 39.82 n init-db 0.07 20.87

init-relation 0.07 20.03
create-queues 0.02 5.96

wrlteblk 0.01 4.22
init-buf-queues 0.01 2.98

allocate-datablocks 0.01 2.88 I I I %CPU
topaz:shnJoin W 1 init-IO 0.01 2.78

machine:procc+r func name time %time

TOTAL LENGTH

400

350

300

250

200 topaz:Shm-Joln *o effect-join 0.54 21.98 I/ I l l " I I topaz:stm-join *I Sync Wait (synch-initialization) 0.27 10.99 PI
topaz:shm-join *1

topaz:shm-Join W 1

topaz:rh_)oin W2
topaz:shmdoin W3

Seconds topaz:shmaoin M1

tOpaz:shm-JOln MO

1 2 3

randa-shuffle 0.23 9.22
partition 0.22 8.96
partition 0.19 7.74
partition 0.13 5.29
partition 0.11 4.48

init-relation 0.07 2.97

- -

Fig. 12. Parallel join program: critical path for separate phases.

VI. CONCLUSIONS
IPS-2 is a running system [lo] whose design and features

benefited from the experience gathered in the first (Charlotte
Distributed Operating System) implementation. The first
implementation of IPS provided useful insights in how to
design a parallel program performance measurement tool.
Using the semantic structure of the program produces a
hierarchical model for the program and performance data.
This model resulted in a system that was intuitive to use and
provided large amounts of information. The model also
allowed for the construction of analysis techniques that help
guide the programmer to the cause of program bottlenecks.

IPS-2 uses this foundation to make several new advances.
The new instrumentation techniques provide more detailed and
precise information about the program. The implementation
now includes both distributed and shared-memory systems.
The graphical user interface simplifies the use of the system
and significantly improves the presentation of performance
results. The Phase Behavior Analysis presents a new type of
guidance technique: a focusing technique that allows more
precise use of other analyses.

IPS-2 has been used in several performance studies, and we
are gaining experience with several larger numerical applica-

tions. The Critical Path Analysis seems to have a real benefit,
reducing the need to look through piles of statistics. We are
just beginning to get experience with the Phase Behavior
Analysis. To date, IPS-2 has been used to 1) gather data to
parameterize analytical performance models of parallel sys-
tems, 2) measure parallel database join algorithms, 3) evaluate
code generated by parallelizing compiler algorithms, and 4)
measure parallel search programs and network flow programs.
The feedback that we have received from these studies has
helped to improve the quality of the analyses and interface.

The strengths of IPS-2 are shown in the comments that we
commonly receive. First, IPS-2 does not require modification
of the user's program. All instrumentation is automatically
inserted at compile/link time. Second, IPS-2 has exposed
performance problems in places not expected by the program-
mer. Third, IPS-2 seems to be easy to use; learning the basic
features takes about 15 min.

IPS-2 is an evolving system. We are currently working on
Critical Path Analysis advances, hardware instrumentation,
browsing tools, refining Phase Behavior Analysis, kernel
instrumentation, and new guidance techniques.

1) The Critical Path work is to investigate second-longest,
third-longest, etc., critical paths, and comparing and correlat-

MILLER er al.: IPS-2: SECOND GENERATION PARALLEL PROGRAM MEASUREMENT SYSTEM 217

ing information from these paths. We would like to compute
these multiple paths efficiently.

2) Hardware instrumentation has the potential to greatly
reduce execution time overhead. We are currently instrument-
ing our instrumentation to better understand the type of data
that we gather. This information will be used in the design of a
hardware data collection facility.

3) IPS-2 currently provides no way to browse through the
raw trace data or critical path. We are currently designing
browser functions to allow the programmer to intelligently
select and display parts of the (potentially huge) trace files.

measure application programs, but not the
operating system kernel. Instrumenting the kernel is more
difficult than applications, but it will allow us to get system-
level performance data. We will also be able to study an
application along with its effect on the operating system.

5) We are investigating new analyses for studying the
contention for such resources as the CPU, memory, and
communication channels.

4) IPS-2 c;

ACKNOWLEDGMENT

We are grateful to B. Irvin for his work on the DECstation
implementation of IPS-2, to J. Ordille for her shared-memory
parallel join program used in Section V, and to D. DeGroot for
his helpful comments on preparing the final version of this
paper.

REFERENCES
B. P. Miller and C.-Q. Yang, “IPS: An interactive and automatic
performance measurement tool for parallel and distributed programs,”
in Proc. 7th Int. Conf. Distribut. Comput. Syst., Berlin, Sept. 1987,
pp. 482-489.
C.-Q. Yang and B. P. Miller, “Critical path analysis for the execution
of parallel and distributed programs,” in Proc. 8th Int. Conf.
Distributed Comput. Syst., San Jose, CA, June 1988, pp. 366-375.
-, “Performance measurement of parallel and distributed pro-
grams: A structured and automatic approach,” IEEE Trans. Software
Eng., vol. 12, pp. 1615-1629, Dec. 1989.
Y. Artsy, H.-Y. Chang, and R. Finkel, “Interprocess communication
in Charlotte,” IEEE Software, 1987.
T. J. LeBlanc and S. A. Friedberg, “Hierarchical process composition
in distributed operating systems,” in Proc. 5th Int. Conf. Distributed
Comput., Syst., May 1985, pp. 26-34.
C. Maples, “Analyzing software performance in a multiprocessor
environment,” ZEEE Software, pp. 50-63, July 1985.
S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof a call
graph execution profiler,” in Proc. SIGPLAN’82 Symp. Compiler
Construction, 1982, pp. 120-126.
N. Lai and B. P. Miller, “The traveling salesman problem: The
development of a distributed computation,” in Proc. 1986 Int. Conf.
Parallel Processing, St. Charles, IL, Aug. 1986, pp. 417-420.
K. M. Chandy and J. Misra, “Distributed computation on graphs:
Shortest path algorithms,” Commun. ACM, vol. 25, pp. 833-837,
Nov. 1982.
J. Hollingsworth, B. P. Miller, and R. B. Irvin, “IPS user’s guide,”
Comput. Sci. Tech. Rep., University of Wisconsin-Madison, Dec.
1989.

Barton P. Miller (M’85) received the B.A. degree
in computer science from the University of Califor-
nia, San Diego, in 1977, and the M.S. and Ph.D.
degrees in computer science from the University of
California, Berkeley, in 1979 and 1984, respec-
tively.

Since 1984, he has been an Assistant Professor in
the Computer Sciences Department of the Univer-
sity of Wisconsin-Madison. His research interests
include parallel and distributed debugging, parallel
and distributed program measurement, network

management and naming services, distributed operating systems, and user
interfaces.

Morgan Clark received the B.A. degree in physics and computer science
from Cornell University, Ithaca, NY, in 1986, and the M.S. degree in
computer science from the University of Wisconsin in 1988.

He is currently employed by AT&T Bell Laboratories-Unix Software
Operation as a member of the Technical Staff. His professional interests
include networks and networked applications.

Jeff Hollingsworth is a graduate student at the
University of Wisconsin-Madison and received the
B.S. degree in electrical engineering and computer
science from the University of California, Berkeley,
in 1988. He expects to receive his masters degree in
May, and plans to continue workmg towards the
Ph.D.

His research interests include parallel program-
ming environments, operating systems, and com-
puter networks.

Mr. Hollingsworth is a member of the Associa-
tion for Computing Machinery.

Sek-See Lim received the M.S. degree in computer
science from Indiana University, Bloomington, and
the B.E. degree in electrical engineering from the
University of Malaya in Malaysia.

He is a doctoral student in the Department of
Computer Science, University of Wisconsin-Madi-
son. His research interests include distributed oper-
ating systems, dynamic reconfiguration, automated
manufacturing, parallel programming environ-
ments, computer networks, and real-time systems.

Mr. Lim is a student member of the Association
for Computing Machinery and the IEEE Computer Society.

Timothy Torzewski received the B.S. and M.S.
degrees in computer sciences from the University of
Wisconsin-Madison in 1986 and 1987, respec-
tively.

He has been an Engineer at Digital Equipment
Corporation, Colorado Springs, CO, since 1988.
His work includes design and implementation of
distributed and parallel database systems.

