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Flowback analysis is a powerful technique for debugging programs. It allows the programmer to

examine dynamic dependence in a program’s execution history without having to reexecute the
program. The goal is to present to the programmer a graphical view of the dynamic program

dependence. We are building a system, called PPD, that performs flowback analysis while
keeping the execution time overhead low. We also extend the semantics of flowback analysis to

parallel programs. This paper describes details of the graphs and algorithms needed to imple-
ment efficient flowback analysis for parallel programs. Execution-time overhead is kept low by
recording only a small amount of trace during a program’s execution. We use semantic analysis

and a technique called incremental tracing to keep the time and space overhead low. As part of
the semantic analysis, PPD uses a static program dependence graph structure that reduces the
amount of work done at compile time and takes advantage of the dynamic information produced

during execution time. Parallel programs have been accommodated in two ways. First, the

flowback dependence can span process boundaries; that is, the most recent modification to a

variable might be traced to a different process than that one that contains the current reference.
The static dynamic program dependence graphs of the individual processes are tied together

with synchronization and data dependence information to form complete graphs that represent
the entire program. Second, our algorithms will detect potential data-race conditions in the

access to shared variables. The programmer can be directed to the cause of the race condition.
PPD is currently being implemented for the C programming language on a Sequent Symmetry

shared-memory multiprocessor.
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“In solving a problem of this sort, the grand thing is to be able to reason backward This is a

very useful accomplishment, and a very easy one, but people do not practise it much In the

everyday affairs of life it is more useful to reason forward, and so the other comes to be
neglected. There are fifty who can reason synthetically for one who can reason analytically,

“Let me see if I can make It clearer. Most people, if you describe a train of events to them, will
tell you what the result would be, They can put those events together in their mmds, and argue

from them that something will come to pass. There are few people, however, who, if told them a
result, would be able to evolve from their own inner consciousness what the steps were which led

up to that result. This power is what I mean when I talk of reasoning backward, or analytically. ”
Sherlock Holmes in “A Study rn Scarlet”

Arthur Conan Doyle

1. INTRODUCTION

Debugging is a major step in developing a program, since it is rare that a

program initially behaves the way the programmer intends. Whereas most

programmers have experience debugging sequential programs and have de-

veloped satisfactory debugging strategies, debugging parallel programs has

proved more difficult. The Parallel Program Debugger ( PPD) [31] is a debug-

ging system for parallel programs running on shared-memory multiproces-

sors (hereafter, called “multiprocessors”). PPD efficiently implements a tech-

nique called flowback analysis [7], which provides information on the data

and control flow between events in a program’s execution. PPD provides this

information while keeping both the execution-time and debug-time overhead

low. By using a method called incremental tracing, only a small amount of

trace is generated during execution and is supplemented during debugging

by detailed information obtained by reexecuting only selected parts of the

program. PPD is also capable of performing flowback analysis on parallel

programs and detecting data races in the interactions between processes.

This paper describes the mechanisms used by PPD to implement efficient

flowback analysis for parallel programs. These mechanisms include program

dependence graphs and semantic analysis techniques such as interprocedural

analysis [2, 12] and data-flow analysis [22].

The goal of PPD is to aid debugging by displaying dynamic program

dependence. These dependence should guide the programmer from manifes-
tations of erroneous program behavior (the failure) to the corresponding

erroneous program state (the error) to the cause of the problem (the bug).

Debugging is a difficult job because the programmer has little guidance in

locating bugs. To locate a bug that caused an error, the programmer must

reason about the causal relationships between events in the program’s execu-

tion. There is usually an interval between when a bug first affects the
program behavior and when the programmer notices an error caused by the

bug. This interval makes it difficult to locate the bug precisely. The usual

method for locating a bug is to execute the program repeatedly, each time
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placing breakpoints closer to the location of the bug. An easier way to locate

a bug is to track the events backward from the error to the point at which the

bug caused the error. Flowback analysis tracks events in such a way. The

programmer sees, either forward or backward, how information flowed

through the program to produce events of interest. Using flo whack analysis,

the programmer can more easily locate the bugs that led to the observed

errors.

Parallel programming offers challenges beyond sequential programming

that complicate the problem of debugging. First, it is difficult to order events

occurring in parallel programs. The ordering of the events during program

execution is crucial for seeing causal relationships between the events (and,

therefore, the cause of errors). Second, parallel programs are often nondeter -

ministic. Such nondeterminism often makes it difficult to reexecut e the

program for debugging purposes. Third, interactions between cooperating

processes in a multiprocessor system are frequent, and these accesses to

shared variables can occur without the proper synchronization. PPD not only

performs efficient flowback analysis for sequential programs, but also helps

address the problems of debugging parallel programs.

In this paper we address the class of parallel programs that use explicit

synchronization primitives (such as semaphores, monitors, or Ada ren-

dezvous) and explicit (and dynamic) process creation. Although we are not

addressing automatic parallelism, many of our techniques might be extended

to such systems. Our current algorithms assume that the underlying

machine architecture has a sequentially consistent memory system [28]

(as is the case on the Sequent Symmetry). The techniques in this paper

are described in terms of the C programming language [23], but they

should generalize to other imperative languages. We address a large part

of the C language, including primitives for synchronization. We also discuss

a simple approach to pointer variables, but this is a topic that needs further

investigation.

This paper is organized as follows: Section 2 presents an overview of the

design of PPD. Sections 3 and 4 describe the graph structures and tools used

by PPD to perform flowback analysis. Section 3 describes the static program

dependence graph, built at compile time, which shows potential dependence

between events in the program’s execution. Section 4 describes the dynamic

program dependence graph, built at debug time, which shows the actual

dependence between events in the execution. Section 4 also describes how

dynamic graphs are built by augmenting the static graphs with traces

generated during execution and debugging. Section 5 presents the details of

incremental tracing. Section 6 describes how flowback analysis is extended to

parallel programs and how data races are detected. Section 7 presents some

initial performance overhead results. We conclude with Section 8.

2. STRUCTURAL AND FUNCTIONAL OVERVIEW

Flowback analysis would be straightforward if we were to trace every event

during the execution of a program. However, doing so is expensive in time

and space. The user needs traces for only those events that may lead to the
ACM l’ransactlom on Programming Languages and Systems,Vol 13 No. 4, Octobl~r1991.
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detected error. The problem is that there is a no way to know what errors

will be detected before the execution of the program; either the user has to

generate a trace of every event so that the traces will not lack anything

important when an error is detected, or the user has to reexecute a modified

program that generates the necessary traces after an error is detected.

Tracing every event is expensive because of unacceptable overhead and is

most often impractical for parallel programs because of the distortions that

the debugger would introduce in the interaction pattern between processes.

Reexecution is impractical for programs that lack reproducibility, as is often

the case with parallel programs.

we use incremental tracing to reduce the above difficulties. The main idea

of incremental tracing is to generate coarse-grained traces, called the log,

during program execution. Then, during the interactive portion of the debug-

ging session, we use the coarse traces and other compiler-generated informa-

tion to produce incrementally the fine-grained traces needed to do flowback

analysis. This method transfers execution-time costs into compile time and

debug time. At compile time we use semantic analyses, such as int,erprocedu -

ral analysis and data-flow analysis, to help reduce the amount of information

that needs to be generated during program execution. At debug time we

amortize the cost of generating the fine traces over the interactive debugging

session. The traces are generated as the programmer asks about dependence

in the program.

we divide debugging into three phases: preparatory phase, execution phase,

and debugging phase. There are two major components in our debugging

system: the Compiler /Linker and the PPD Controller. During the prepara-

tory phase, the Compiler/Linker produces the object code and the files to be

used in the debugging phase. While the object code is running in the

execution phase, it generates a log to be used in the following debugging

phase. When the program halts, due to either an error or user intervention,

the debugging phase begins. The PPD Controller oversees the debugging

phase, responding to the programmer’s requests.

2.1 Preparatory Phase

Figure 1 shows the preparatory phase, during which the Compiler/Linker

produces, along with the object code, the following:

(1) the emulation package that will generate fine traces during the debug-

ging phase to fill the gap between the information contained in the log

generated during the execution phase and the information needed to do

flowback analysis;

(2) the static program dependence graph that shows the static (possible) data

and control dependence among components of the program; and

(3) the program database that contains information on the program text,

such as the places where a variable is defined or used.

2.2 Execution Phase

The object code plays the major role in the execution phase. Figure 2 shows

the execution phase, during which the object code generates the normal
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Fig. 2. Execution phase.

program output and a log that contains dynamic information about program

execution. The log is used, along with the emulation package, during the

debugging phase to generate fine traces for the flowback analysis. The log

entries include prelogs, which record the values of the variables that might

be read before the next logging point, and postlogs, which record the changes

in the program state since the last logging point. The log entries and tracing

are described in more detail in Section 5.

2.3 Debugging Phase

The goal of the debugging phase (see Figure 3) is to build a graph of the

dynamic dependence in a program. The debugging phase assembles informa-

tion from the previous phases: the static graph and program database ~gener -

ated by the compiler during the preparation phase, and the log generated by

the object code during the execution phase. This information is used together

with the emulation package to generate the detailed traces needed to bluild a

graph of the dynamic dependence. The PPD Controller oversees the debug-

ging phase. It responds to requests from the programmer, locating the

necessary data from the log and static graph, and then executing parts of the

emulation package to generate the fine traces.

3. STATIC PROGRAM DEPENDENCE GRAPH

The static program dependence graph (static graph) shows the potential

dependence between program components, such as data dependence.s [241
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deperzclence.s (similar to control dependence [151). The static

graph is also the basic building block of the dy~amic program dependence

graph (dynamic graph).

The static graph is a variation of the program dependence graph intro-

duced by Kuck et al. [251. Since then, there have been numerous variations

that can be categorized into two classes, according to their applications. First,

the program dependence graph is used as an intermediate program represen-

tation for the purpose of optimizing, vectorizing, and parallelizing transfor-

mations of the program [15, 24–26, 361. The main concern in this class is to

decide whether there exists any potential dependence between two sets of

statements.

Second, the program dependence graph is used to extract slices from a

program. A slice of a program with respect to variable v and program point p

is the set of all the statements that might affect the value of u at p [38]. Such
slices can be used for integrating program variants [211 and for program

debugging [15, 34, 37, 381. One common attribute of the two classes of

applications is that they do not use the dynamic information obtained during

program execution. However, in PPD, we augment the static graph with the

dynamic information obtained during execution and debugging in building

the dynamic graph. The dynamic graph in PPD can be viewed as a dynamic

slice of the program at an execution point based on the actual dependence

between statements.
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Accordingly, the static graph structure in PPD differs in several ways from

previous systems. The structure of the static graph is motivated by the

following observations: First, the static graph should contain enough infor-

mation to build the dynamic graph with only a small amount of trace

generated at execution time. A small amount of trace means low execution-

time overhead. Second, compile-time efficiency should not be compromised to

identify dependence that can be easily determined with dynamic informa-

tion obtained at execution and debugging times. Since the dynamic trace

information effectively unrolls all loops, computing data dependence direction

vectors [39], which are approximate compile-time characterizations of depend-

ence, is unnecessary to show execution-time dependence. Although co input -

ing data dependence direction vectors is essential for automatic loop ]paral -

lelization [3], it is unnecessary because we can reconstruct this information at

execution time. Moreover, because we require the actual paths of controd flow

taken at run time (obtained from the dynamic trace), we need not approxi-

mate such information at compile time. We, therefore, do not construct a

precise static control flow graph. Finally, for each subroutine, we want to

identify the sets of variables that might be used or defined by the execution

of that subroutine. Such identification allows us to decide whether to sh~ow or

to skip the execution details of a subroutine when showing the depend~ences

requested by the user.

In this section we describe a static graph consisting of two layers. The

outer layer, called the branch dependence graph, shows the branch depend-

ence, and the inner layer, called the data dependence graph, shows the data

dependence within the blocks of the branch dependence graph. We discuss

the two layers in detail. Interprocedural analysis is used in building the data

dependence graph. With separate compilation, interprocedural analysis also

allows us to avoid rebuilding the entire static graph from scratch when one or

more modules of the program are modified. The separate compilation issue is

described in detail in Section 3.5, where we describe how we use interproce-

dural analysis in building the static graphs.

3.1 Branch Dependence Graph

The outer layer of the static graph is the branch dependence graph. This

(static) branch dependence graph, which is always a tree, is developed from

syntactic program analysis (i. e., at parse time). In Section 4.3 we compare

this graph with the control dependence graph [15]. The static branch d~epen -

dence graph consists of nodes called control blocks and branch dependence

edges between these nodes. Figure 4 shows an example branch dependence

graph. Such a graph is constructed for each subroutine in the program. A

control block is identical to a basic block, except that labels (which are

potential targets of branching statements such as goto) always delimit the

start of a new control block. For example, to handle switch statements in C,

we also treat a case statement as a label, since an implicit branch occurs

when a case does not end with a break and is allowed to fall through to the
following case. A leaf control block represents a block of statements in which

the flow of control always enters at the beginning and exits at the end, and
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extern int gl, c32, g3;

extern int A[1OO], B[1O()];

wolf ( ) (

int i, j, k, 1, a, b:

SI :

r

if (gl > O) {

S2:
7

a - Add2(gl, g2); C

I ,

S3:

S4:

S5:

s6: *

S7:

s8:

S9:

Slo:

Sll:

S12:

S13:

} else {

[

gl = o;
F SubY ( ) ;

a = gl;

L1 :

r a = (A[i] = b);

G b= A[j];

A[k] -B[l]+a+b;

L2 :

[

a = gl;

g2 = a;

H gl - g2;

SubX(a) ;

g2 = g2 + g3;

}:

S14: I while (a > 1) (
I

S15:

s16: B

D

a=a- 1; E
g2 = g2 * a;

1;

0wolf

/.
/\ \

/’ \

IUSE IMOD

USE MOD

POINTERTODATA
DEPENDENCEGRAPH

Fig.4 Sample static graph,

that is devoid of conditional or loop control statements. For programs without

labels that are potential targets of branching statements such as goto, the

branch dependence graph is identical to the abstract syntax tree [1] of the

program, with the basic blocks being the leaf nodes of the tree. Thus, the

branch dependence graphs can be built at compile time without control-flow

analysis.

Since we do not perform control-flow analysis of the program, we simply

assume at compile time that every label will be a target of at least one.

branching statement. This assumption sometimes results in overly fine-

grained basic blocks, such as blocks F, G, and H in Figure 4, However, the

benefit from not performing control-flow analysis easily offsets the small,

additional overhead incurred by such pessimistic assumptions. Branching

statements, such as goto, can affect the structure of dynamic graphs.

In Section 4.3 we describe how the simple structure of the branch depend-

ence graphs, combined with run-time traces, can handle these branching

statements.
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There are four nonleaf block types needed for C programs. The first type

represents conditional statements, such as if or switch statements. 1n the

absence of gotos (including implicit gotos, which occur when one case of a

switch statement falls through to the following case), only one child of a

conditional node in the static graph will execute. Block A in Figure 4 is of

this type. During execution, either block C or block D will be executecl. The

second nonleaf block type represents loop control statements such as while or

for. Execution of the descendant blocks may be repeated zero or more times

depending on the loop control statement. Block B in Figure 4 is of this second

type.

The third and fourth nonleaf block types do not correspond to any state-

ment. The third type acts as a summarizing block for its descendant blocks

and is used when its descendants constitute an e-block; an e-block is the unit

of incremental tracing during debugging (described in Section 5.1). All of the

descendants of a summarizing block execute in left-to-right order. Also, the

root block of a static graph is a summarizing block, even if we do not

construct an e-block out of the subroutine.

The fourth type of nonleaf block is a dummy block. This block exista only

as a descendant of a conditional block to group together the blocks (if there

are more than one) dependent on the conditional. The dummy block satisfies

the condition that only one of the descendants of a conditional block will be

executed. All of the descendants of a dummy block will also be executed in

left-to-right order. Control block D in Figure 4 is a dummy block with three

descendants. Leaf blocks G and H are defined because of labels “L1” and

“L2”; flow of control can potentially enter at these points. (We introduce

these labels to show how labels affect the static graph, although there is no

goto statement in the example program.)

Associated with each control block (except dummy blocks) are four sets of

variables—the IUSE, IMOD, USE, and MOD sets—and a data dependence

graph. The IUSE set is the set of variables that might be referenced before

they are defined by a statement in this block; it is the set of upward-exposed

used variables [1] of this block. The IMOD set is the set of variables whose

values might be defined by statements in this block. The USE set is the set of

variables that might be used before they are defined in this block or any

block in a subroutine called from this block (following the transitive cllosure

of calls). The MOD set is similarly defined. Whereas the IUSE and IMOD

sets are determined locally by inspecting the statements belonging to a block,

the USE and MOD sets can only be determined by interprocedural anallysis. 1

The USE and MOD sets are described in more detail in Section 3,5, on

interprocedural analysis.

The branch dependence graph for a subroutine can have several summariz-

ing blocks, one for each e-block in the subroutine. The four sets (the IIUSE,

IMOD, USE, and MOD sets) for a summarizing block are the unions of the

lIn previous papers [31] we used different terminology for these sets as follows: IMC)D was

previously referred to as DEFINED, IUSE as USED, MOD as GDEFINED, and USE as GUSED.

We now use terminology from Banning [8].
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same sets of all of the descendants’ blocks that constitute the e-block.

However, they do not contain variables that cannot be accessed outside the

corresponding e-block, except for upward-exposed static variables. For exam-

ple, those four sets for a subroutine do not contain variables local to the

subroutine, although static variables are treated the same way as global

variables. The program database [31] contains the scope information of each

variable, telling whether a given variable is a global variable, a variable

local to a subroutine, a static variable (in C), or a formal parameter of a

subroutine. It also tells whether a given global variable of a parallel program

is a shared variable. (Sequent C has two additional key words to support

parallel programming [351: shared and private.) The variables in the IUSE

and IMOD set of the summarizing block are the variables that will be written

to the log (described in Section 5) at execution time.

The structure of the branch dependence graph and the four sets of used and

defined variables allows for easy identification of the sets of variables that

might be used and defined during the execution of an e-block. They also allow

for easy identification of which e-blocks might use or modify a given variable.

Section 5 discusses how these data structures work together with the log and

incremental tracing.

3.2 Data Dependence Graph

Each control block (except for summarizing and dummy blocks) has a data

dependence graph that shows only the dependence between statements

belonging to that block. Data dependence between different blocks are

resolved at debug time and appear in the dynamic graph. Figure 5 shows a

sample control block and its data dependence graph. The (static) data depend-

ence graph has two node types: singular and subgraph nodes. The singular

node represents an assignment statement, a control predicate in a statement

such as an if or a switch, or a branch statement such as goto or exit. For a

constant used on the right-hand side of a statement, we create a constant

node, which is a subtype of the singular node. The subgraph node represents

the call site of a subroutine and is a way of encapsulating the inside details of

such subroutines. There is one static graph for each subroutine. Each node of

the data dependence graph is labeled with the statement number and either

an identifier or an expression.
The data dependence graph has three edge types: data dependence, flow,

and linking edges. The data dependence edge represents a true dependence

[4, 24]. (A statement Sz has a true dependence on another statement SI if S’z

uses output of S1. ) A flow edge from n, to nJ is defined when the event
represented by n~ immediately follows the event represented by n, during

execution; it shows the control flow of the program. The linking edge helps

resolve the dependence that can only be determined at execution time, for

example, deciding which array element is actually accessed when the array

index is a variable. Linking edges are described in more detail in Section 3.4.

The top of the control block shows the variables in the IUSE set of the

block, and the bottom of the block shows the variables in the IMOD set of the

block. The IUSE set of a block is the set of upward-exposed used variables of

ACM Transactions on Programming Languages and Systems, Vol. 13 No. 4, October 1991
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S15: a= a-l;

S16: g2=g2 *a;

IU : RJSE

lM: IMOD

_ : data dependence edge

o
: singular node

Fig. 5. Basic block and its data dependence graph

—
IU a gz

—

—

VU a g2
—

(control block E in Figure 4).

the block. A data dependence edge from the IUSE entry for a variable into a

node N shows a dangling data dependence in this block, meaning that the

value of the variable has not been defined in this block before the statement

represented by node N. A data dependence edge into the IMOD entry for a

variable shows the last statement in the block that modifies the variable. All

of the nodes in a data dependence graph are totally ordered according to the

corresponding statements in the control block, because statements in a

control block are sequential. This total ordering shows the execution order of

events represented by the nodes and is represented by the flow edges connect-

ing the nodes, so we can say that a node is after or before another nodle in a

control block. Ordering events belonging to different processes is important

in debugging parallel programs, which is described in Section 6. We will not

explicitly show the flow edges in the figures in this section.

Interlock dependence (dependence between two statements belonging to

different control blocks) are not resolved at compile time; they are not

recorded in the static graph. Interlock dependence are resolved during

debugging and are recorded in the dynamic graph (described in Section 4).

3.3 Parameters to Subroutines

To map between formal parameters and actual parameters of a subroutine

call during debugging, we create a parameter node (a variant of the singular

node) for each actual parameter passed to a subroutine. Each parameter node

is labeled with “%” followed by the parameter position (%0 represents

a function return value). Figure 6 shows the static graph of control block C

in Figure 4 and shows how actual parameters are mapped to the formal

parameters of a called subroutine.

3.4 Arrays and Linking Edges

Array index values are usually unknown at compile time, so it is not possible

to identify the array elements that will actually be accessed. Our apprc)ach is

ACM Transactions on Programming Languages and Systems, Vol. 13 No. 4, October 1991.
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S2: a = Add2(gl, g2);

III: RJSE

lM: IMOD

O : singular node

I I : subgmph node

E
IU gl cj2

%1 %2

s2: Add2

8

%0

s2: a

E
Fig. 6. Data dependence graphs for parameter mapping (control block C in Figure 4)

to supply enough information in the static graph so that array reference

dependence can be quickly determined at debug time. We use a new edge

type, the linking edge, and two variants of the singular node, the index and

select nodes. Index nodes show the indexes used in array accesses, and select

nodes represent read-accesses of an array. Linking edges represent potential

data dependence and are used during debugging to locate the actual

dependence quickly.

To represent an assignment to an array element, a singular node is

created. Nodes “ s6:A” and “ s8:A” in Figure 7 are examples of such nodes. As

with assignments to scalar variables, this node contains data dependence

edges from the nodes representing the variables used in the right-hand side

of the assignment. However, for array assignments, a linking edge is then

added, from the most recent node in the control block that writes the same

array, to the assignment node. If there are no previous writes to the same

array in the control block, then a special IUSE set entry is made for the

array, and a linking edge is added from this entry. Finally, an index node is

created for each array index and is labeled with “70” followed by the index

position (similar to a parameter node). A data dependence edge is added from

each index node to the assignment node. For example, node “ s6:A” in Figure

7 contains three incoming edges: one data dependence edge for the index

value, one data dependence edge for the variable used in the right-hand side

of the assignment, and a linking edge from the IUSE set entry for the array

being modified (since there were no previous modifications of array “A” in

the control block).

Because a definition of an array element is a preserving definition [1],
which fails to prevent any uses reached by the definition from being upward-

exposed, a use of an array element always creates an entry in the IUSE set of
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s6: a - (A[i] - b);

S7: b - A[j];

s8: A[k] -B[l]+a+b;

[u: IUSE

IM: IMOD

~ : data dependence edge
------------

● : linking edge

ru i A b j 1 B k

L i 1

IM a b A

Fig. 7. Data dependence graph with array and linking edges (control block Gin Figure 4).

the control block. We also insert an entry if the first reference to the array in

the control block is a definition of an element, in anticipation of a subsequent

use of the array.

A read from an array element is handled identically except that a select

node is created to represent the read. For example, the select node above

node “ S7 :B” in Figure 7 represents the array access “Aljl” on the right-hand

side of statement s7. This select node has an incoming data dependence edge

from the index node and an incoming linking edge from node “s6:A”, the

most recent modification of array “A” in the control block. The above mech-

anisms are similar to the ideas used for array-related dependence in 1341.

The actual data dependence for each array read are determined during

debugging and are reflected in the dynamic graph. Once the fine traces for

the e-block containing an array read are generated, the index values of all

array accesses in that e-block will be known. The linking edges are followed

backward, from the select node, until an assignment to the same array

Iocation is found. A data dependence edge can then be added in the dynamic

graph from this assignment to the select node. If no such assignment is found
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(the IUSE set entry for the array was reached), then a dangling dependence

exists for the array read. The dangling dependence can then be resolved as

described in Section 5.

3.5 Interprocedural Analysis and Data Dependence Graph

USE and MOD sets, computed by interprocedural analysis, allow us to

identify more precise (potential) dependence information than the worst-case

assumption that every global variable in the program is possibly used and

defined by each call to a subroutine. In this section we describe the use of the

USE and MOD sets.

Building the data dependence graphs with interprocedural analysis is done

in two steps. The first step is done at compile time without interprocedural

information, building the pregraph form of the data dependence graphs. The

graphs in Figures 5-7 are all pregraphs. The second step is done at link time,

producing the postgraphs by modifying (if necessary) the pregraphs with

interprocedural summary information. When several modules of a program

are recompiled with separate compilation, we need to rebuild only the

pregraphs of the recompiled modules. Only those postgraphs that contain

calls to subroutines whose USE or MOD set has changed need to be built

again. Figure 8 shows the pregraph and the postgraph for control block H in

Figure 4. We outline how to build the pregraph and the postgraph in this

section. Detailed algorithms for building these graphs appear in [101.

Our approach (heuristics) to include interprocedural information is as

follows: When we meet a subroutine call in building the pregraph of a control

block, we assume that all of the global variables written so far in the control

block might be written by the subroutine. Then, we create a linking edge for

each such global variable out of the most recent node that wrote the variable

and into the subgraph node representing the subroutine call. We use the

linking edges to identify the parts of the pregraph that might need to be

modified to produce the corresponding postgraph. Our approach is certainly

more pessimistic than approaches that use the MOD set of a procedure,

computed interprocedurally, as the basis of determining what might be

modified by a subroutine call [21. However, our approach is simple to imple-

ment and not overly pessimistic, in that we do not assume that all of the

global variables, but only those that are used or defined in a control block,

might be modified during the execution of a subroutine called in the control

block. We need more experiments with the working prototype under con-

struction before we can evaluate the effectiveness and efficiency of this

approach.
When building the postgraph, the interprocedural summary information is

reflected in each subgraph node in the following ways: First, we create a data

dependence edge into the subgraph node for each global variable that is in

the USE set of the subgraph node. Second, we create a data dependence edge

out of the subgraph node for each global variable that is in the MOD set of

the subgraph node. Finally, we create a linking edge into the subgraph node

for each global variable that is in the MOD set but is not in the USE set of

the subgraph node.
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S9: a = gl:

Slo: g2 = a;

Sll: gl = g2;

S12: SubX(a) ;

S13: g2 = g2 + g3;

rf.f gl g3

*

s12: SubX

EM a gl g2

PRE-GRAPH

IIU: IUSE fJ(SubX) = {g2)

IW IMOD M(SubX) = (gl, g3)

u: USE

M MOD

\

—————$ : dats depmdence edge

--------- ...● ✚linking edge

f.1 gl g3 —

—
M a gl g2 g3 —

POST-GRAPH

Fig. 8. Data dependence graph before and after interprocedural analysis (control block H in

Figure 4).

The linking edge is needed because USE and MOD are sets of variables

that might be accessed during the procedure call. For example, if during

debugging we discover that “SubX>’ (see Figure 8) does not actually modify

“gl”, we need to locate the most recent node before “SubX’> that modifies (or

might modify) “gI”, which in this example is “.s11 :gl”. The linking edge

from “s11 :gl” to “ s12 :SubX” serves this purpose. (Note that the linking edge

was similarly used for arrays in the previous subsection.)

Figure 8 shows how the postgraph is constructed from the pregraph and

information from interprocedural analysis. First, the linking edge of “g2”

into the subgraph node in the pregraph is changed into a data dependence

edge, because “g2” is in USE(SubX). Second, the data dependence edge of

“g2” out of the subgraph node into the node “s13:g2” is disconnected from
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the subgraph node and reconnected into the node “s10 :g2”, because “g2” is

not in MOD(SubX). The reconnection is done by following the ‘ ‘g2” depend-

ence through the subgraph node. Third, there are two additional edges out

of the subgraph node: one into the MOD entry for ‘ ‘g3” and the other into

node “s13:g2”. These edges are added because “g3” turned out to be in

MOD(SubX). Last, the data dependence edge from the IUSE entry for “g3”

into node “s13:g2” is deleted. The linking edge out of ‘<sll :gl” into the

subgraph node is intact because “gl” is in MOD(SubX) but is not in

USE(SubX).

3.6 Pointers and Parameters Abases

Pointers and aliases make the semantic analysis of the program difficult.

Currently, we do not detect dependence involving pointers at compile time.

Instead, we simply trace all uses of pointers in the log and establish such

dependence during debugging. This approach will be viable if the dynamic

frequency of pointer references is low. For example, tracing a pointer access

requires approximately 20 assembly language instructions, and if 1 out of

every 10 instructions is a pointer reference [301, the tracing will slow execu-

tion by a factor of three. However, we are investigating ways to reduce

the potentially large amount of execution-time traces due to pointers and

dynamic objects by using a method similar to [201 and [291.

Our methods can be extended to handle the special case of aliases resulting

from reference parameters in languages like Pascal or FORTRAN. Our

approach is to identify, at compile time, potential aliases resulting from

reference parameters [8, 9]. In the static data dependence graphs, we link

together (with linking edges) all nodes representing writes to variables that

are potential aliases. In the prelog for a subroutine containing reference

parameters that are potential aliases, the address of each such reference

parameter is recorded. Then, during debugging, aliases can be detected by

comparing these addresses. Parameters whose addresses are the same are

aliases. In addition, a parameter whose address is identical to the address of

a global variable is an alias for that variable. Once aliases are known,
incremental tracing can be employed, and actual data dependence can be

established in the dynamic graph (by following linking edges back, as was

done for arrays).

4. DYNAMIC PROGRAM DEPENDENCE GRAPH

The dynamic program dependence graph (dynamic graph) is constructed

during debugging to show the causal relations between events in a program’s

execution. This graph shows the dynamic data and branch dependence

exhibited by the execution. In this section we describe how the dynamic

graph is constructed from the static graphs (generated at compile time) and

the fine traces (generated by incremental tracing during debugging), and

illustrate its construction with an example.
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4.1 Dynamic Program Dependence Graph

A dynamic graph is constructed for each e-block executed during the pro-

gram’s execution and shows the actual dependence that occurred among

events belonging to that e-block. The dynamic graph is constructed by

splicing together the data dependence graphs for each control block that was

executed in the e-block. Data dependence edges are added between the

graphs to show the dynamic data dependence that actually occurred, and

branch dependence edges are added to show how control flow was transferred

from one control block to another. In addition, ENTRY and EXIT nodes are

added to show the entry and exit points of the e-block.

Singular nodes are augmented with values (when appropriate) indicating

the value computed by the statement represented by the node. Subgraph

nodes, which encapsulate the execution details of a subroutine call, can be

expanded to uncover a nested dynamic graph showing the details of the call.

A flow edge from ni to nj is defined when the event represented by nj

immediately follows the event represented by n ~ during execution; it shows

the control flow of the program. A data dependence edge shows a true data

dependence between two nodes.

A branch dependence edge from ni to nj is defined when the event

represented by ni is the most recent branch statement, such as an if or goto

statement, that caused the program control to flow to nj in a given execution

instance. The branch dependence is concerned about the actual program

control flow in an execution instance of a program, whereas control depend-

ence in Program Dependence Graphs ( PDG) [151 is concerned about the

potential program control flow in a program. Details on branch dependence

and their relationship to control dependence are presented in Section 4.3.

A synchronization edge shows the initiation and termination of synchro-

nization events between processes, such as semaphore operations or sending

and receiving messages. Synchronization edges are used in debugging paral-

lel programs and are described in more detail in Section 6.

4.2 Building the Dynamic Graph

We use subroutine “Wolf’ to illustrate how the dynamic graph is built from

the static graph and fine traces. The data dependence graphs for blocks A

and B are given in Figure 9, and the graphs for the remaining blocks were

given in Figures 5-8. We assume that, of the choice between blocks C and D,

block C is executed. We also assume, for this execution instance, that the

execution sequence of blocks is A, C, B, E, B, E, B; that is, we assume that

the body of the while statement (blocks B and E) is executed twice.

Figure 10 shows the resulting dynamic graph of this execution. (Dotted

boxes showing blocks are not part of the dynamic graph.) Notice that, for

simplicity, parameter nodes for simple variable parameters are replaced in

the figure with labeled edges. Also, flow and synchronization edges are not

shown. The graph was constructed by combining the data dependence graphs
in the order that their control blocks were executed and by inserting branch
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A: A B

:s:’’’’”H E
M: MOD

Fig. 9, Data dependence graphs for control blocks A and B of Figure 4
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Fig. 10. Dynamic graph for an instance of subroutine “Wolf”.
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and data dependence edges between them. To insert the data dependence

edges, we connect each variable in the USE set to the variable in the most

recent MOD set that contains the variable. The branch dependence edges are

obtained from the branch dependence graph.

The linking edges in the static graphs are the means of representing data

dependence unresolved at compile/link time. The linking edges that connect

nodes that write to the same array will not be included in the dynamic

graphs. Also, a linking edge going into a select node for a read from an array

element will be replaced with a data dependence edge coming out of the most

recent node for a write to that same array element.

A linking edge coming out of a variable and going into a subgraph node is

deleted or replaced with a data dependence edge, depending on the execution

of the subgraph node. If the variable is actually written by the subgraph

node, we simply delete the linking edge. If it is not written, we delete the

linking edge and make the data dependence edges of the variable that are

coming out of the subgraph node bypass the subgraph node in the dynamic

graph. These data dependence edges will now be coming from the node from

which the deleted linking edge originally came (note that if the variable is

read in the subgraph node before it is written there would have never been a

linking edge; it would be a data dependence edge). In addition, as more is

learned as the debugging session proceeds about which variables are actually

read and written inside subgraph nodes, data dependence edges may have to

be rerouted to keep the dynamic graph up-to-date. For example, if it is

discovered that the execution represented by a subgraph node did not actu-

ally modify a variable that is in its MOD set, then the data dependence edge

for that variable would be rerouted around the subgraph node.

For example, in the postgraph of Figure 8, if the execution of “SubX”

actually wrote “gl”, linking edge coming out of node “S11 :gl” and going into

the subgraph node would be deleted in the dynamic graph. If the execution of

“SubX)’ did not write “gl”, the linking edge would be replaced with a data

dependence edge that bypasses the subgraph node and goes into the MOD

entry for “gl”. The data dependence edge coming out of “ s12:SubX” and

going into the MOD entry for “gl” would also be deleted in this case.

4.3 Dynamic Branch Dependence Graph

The dynamic branch dependence graph provides information about the actual

control flow taken during execution. The graph contains one node for each

execution instance of a control block, and branch dependence edges that

connect the nodes. Intuitively, each block contains an incoming branch

dependence edge from the most recent branch statement (either conditional

or unconditional) that caused control flow to reach the block. We use the

example program segment in Figure 11 to illustrate how to construct the

dynamic branch dependence graph. We first give an intuitive description of

how dynamic branch dependence edges are constructed given static branch

dependence graphs and trace information. We then provide a formal descrip-
tion of the mechanism. Finally, we compare branch dependence to control

dependence used in the PDG by Ferrante et al. [15].
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if (CO) {

if (Cl) {

if (C2) {

1 B1
~=~;

Fig. 11. Sample program segment with goto

statements.

goto Ll;

A
} else {

if (c3) {

1

b=c; B2

goto Ll;

else {

L1 :

1

B3

~=d;

I

d=e; --- B’f

}
} else {

~=~;
}:

d=c;

):

1 ES

There are two cases when we add branch dependence edges, reflecting the

two ways program control can flow from one basic block (source block) to

another basic block (target block ). First, the source block can contain a

(conditional or unconditional) branch statement that transfers control to the

target. In this case, the target block is reached only because of the branch

statement, and a branch dependence edge is constructed from the source to

the target block. Second, the source block can contain no branch statements,

and control passes through the source block into the target. In this case, the

branch dependence edge into the target is constructed from the block contain-

ing the most recent branch statement. 2

Figure 12a shows the static and dynamic branch dependence graphs for the

program segment in Figure 11 in which the execution sequence of blocks is

CO, Cl, C2, Bl, B3, B4, B6. Note that B3 has a dynamic branch dependence

edge from the goto statement of B1, whereas B3 has a static branch

dependence edge from C3. B4 also has a dynamic branch dependence edge

from this goto statement, but a static branch dependence edge from C2.

These dynamic branch dependence edges show that blocks B3 and B4 were

reached because of the goto in Bl; they were not reached because of the

conditionals in which they are nested (C3 was bypassed altogether, and C2

evaluated to true). However, B6 has a dynamic branch dependence edge from

‘This is actually a slight oversimplification If the target is one child of a conditional node and

the most recent branch is a goto, then a branch dependence edge is constructed from the block

containing this goto only if the goto caused control flow to either bypass the conditional or jump

into the conditional from outside.
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Fig. 12. Branch and control dependence graphs. (a) Branch dependence graph. (b) Control

dependence graph.

CO, because B6 is a child of CO, which evaluated to true, causing B6 to be

reached.

We now formally describe how to identify dynamic branch dependence

edges with static branch dependence graphs and dynamic traces.

Definition 4.1. The conditional stream of a program execution is the

sequence of control block instances representing the conditional statements

executed, in the order that they executed.

The instances of conditional blocks CO, Cl, and C2 in Figure 12a belong

to the conditional stream, although C3 does not, since its execution was

bypassed.

Definition 4.2. For a control block instance C, in the conditional stream,

the dynamic children of Ci are the instances of those executed control blocks

that are reachable from C, in the static branch dependence graph, by

following the edge from C’i corresponding to the branch that was actually

taken and without passing through another conditional node.

For example, CO has two dynamic children, Cl and B6; Cl has one dynamic

child, C2, which has one dynamic child, B 1. Now, we formally describe how

to construct the dynamic branch dependence.

Definition 4.3. For each block B in the dynamic branch dependence

graph, an incoming dynamic branch dependence edge is constructed from
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block S if

(1) S contains a (conditional or unconditional) branch for which B was the

target, or

(2) B is a dynamic child of S, and S is the most recent ancestor of B in the

static branch dependence graph that is a conditional node, or

(3) neither (1) nor (2) holds and S contains the unconditional branch most

recently executed before B.

If none of the above conditions are true (e.g., because B is nested within no

conditional statement), then no incoming edge is constructed for B.

Recall that for programs without either explicit or implicit goto state-

ments (such as a breakless case statement falling through to the following

case) our notion of branch dependence is identical to control dependence used

by Ferrante et al. [15]. However, for programs containing goto statements,

branch dependence are different from control dependence. A major objec-

tive of flowback analysis is to show the flow of a particular execution

instance and not to speculate on possible control flows in the execution. A

control dependence from block S to block T means that the value of the

conditional expression at S determines, in all cases, whether control flow will

reach T. In contrast, static branch dependence are designed so that a

dynamic branch dependence from block S to block T shows how control flow

actually reached T. Figure 12b shows the (static) control dependence sub-

graph for their PDG (of the program segment in Figure II) and the corre-

sponding (possible) dynamic control dependence sub graph. 3 Note that B3 is

control dependent on C 1 (and not C3), meaning that the value computed by

Cl determines whether B3 is reached, and B3 will be reached regardless of

the value computed by C3. In contrast, B3 is branch dependent on Bl,

meaning that B3 was reached because of the goto in B1. This branch

dependence shows how control flow actually reached B3 even though C3 was

bypassed. The control dependence only shows that the execution of B3

depends on Cl (and not C3); it does not show how C3 was bypassed in this

particular execution, allowing control to reach B3. However, the dynamic

control dependence subgraph in Figure 12b combined with that in Figure 12a

might be used to show the possible behavior of the program in some other

execution instances.

5. INCREMENTAL TRACING

We use incremental tracing to reduce the execution overhead associated with

flowback analysis. In incremental tracing, we divide the program into blocks,

called emulation blocks (e-blocks) and generate coarse execution-time traces

(logs) based on these blocks. For parallel programs, there is one log file for

each process created during the execution. During the interactive portion of

the debugging session, we use these traces and other compiler-generated

information to produce incrementally the fine-grained traces needed to do

3They do not actually build a dynamic graph.
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flowback analysis. In this section, we first describe the compile-time issues

associated with dividing the program into e-blocks. We also describe the

debugging-time issues associated with how to locate quickly the coarse traces

generated by a particular execution instance of an e-block. Accesses to large

arrays pose a special problem in controlling execution overhead, since gener-

ating traces that contain the entire contents of an array could substantially

slow a program’s execution. Section 5.5 addresses this issue and presents

heuristics to deal with the problem. Section 7 discusses the effectiveness of

these heuristics.

5.1 Emulation Blocks and Logs

As described in Section 2, the traces generated during program execution

include prelogs and postlogs. The object code generated by the compiler/lin-

ker during the preparation phase contains code to generate the prelogs and

postlogs. By using semantic analysis, we divide the program into numerous

segments of code called e-blocks. Each e-block starts with code to generate a

prelog and ends with code to generate a postlog. The IUSE and IMOD sets of

an e-block correspond to its prelog and postlog. An e-block is also the unit of

incremental tracing during debugging. As will be described in more detail

later in this section, a subroutine is a good example of an e-block.

The ith prelog and the corresponding postlog generated by an e-block

during program execution are called prelog( i) and postlog(i), respectively.

The time interval between a prelog and its matching postlog is called a log

interval and is denoted as 1, for the log interval between prelog(i) and

postlog(i). Programs usually contain loops, so a given e-block in a program

may have several corresponding log intervals during execution. Figure 13

shows example log intervals.

Prelog(i) consists of the values of the variables belonging to the IUSE set

(of the e-block that generated the prelog) at the beginning of Ii, and postlog(i)

consists of the values of the variables belonging to the IMOD set (of the same

e-block) at the end of 1,. Each log entry also carries the e-block identifier that

generated the log entry. To reproduce the same program behavior for log

interval 1, during the debugging phase, we use the program code for the

e-block that generated prelog(i) and postlog(i), the log entries generated
during I,, and the same input as originally fed to the program during that log

interval.

Log intervals nest when one subroutine calls another, For example, in

Figure 13 we assume that log interval 13 corresponds to the execution of a

subroutine named Sub3. We also assume that 1A corresponds to the execution

of a subroutine named Sub4, which is called from within Sub3. Prelog(3) and

postlog(3) are made at the start and end of 13, respectively; prelog(4) and

postlog(4) are made at the start and end of Id, respectively. In this case, we

say log interval 1A is nested inside log interval Is. When we need to generate

fine traces at debugging time for log interval 13, we can use postlog(4) to
avoid generating fine traces for 14; we update the program state with

postlog(4) when the call to Sub4 is reached, and skip over the execution of
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Fig, 13. Log intervals

Sub4. Details on the fine trace generation and debugging time activities are

given in [31].

52 Trade-offs for Constructing E-Blocks

In this section we describe how to divide the program into e-blocks. The only

condition for several consecutive lines of code to form an e-block is that there

is a single entry point. Whenever control is transferred from one e-block to

another, the control must be transferred to the entry point of the second

e-block, where the prelog is made. The postlog is made at the exit point

where the control is transferred out of an e-block. One natural candidate for

constructing an e-block is the subroutine, since the entry and the exit points

are well defined. (Actually, an e-block could be any node of the control

dependence graph in PDG [15], since the entry and exit points of each node in

PDG are well defined.)

The size of e-blocks is crucial to the performance of the system during the

execution and debugging phases. In general, if we make the size of the

e-blocks large in favor of the execution phase, the debugging phase perform-

ance will suffer. On the other hand, if we make the size of the e-blocks small

in favor of the debugging phase, execution phase performance will suffer.

Although the number of logging points should be small enough so as not to

introduce unacceptable performance degradation during the execution phase,

it should also be large enough so as not to introduce unacceptable time delay

in generating fine traces during the debugging phase. Consider, for example,

the case in which the size of a subroutine is very large. Though the size of a

subroutine has no direct relationship to the time needed to execute it, we

can act conservatively to construct several e-blocks out of such a large

subroutine.

Loop constructs, even though small in size, may require long execution

time and, thus, introduce unacceptable time delay in generating fine traces.
Currently, the PPD compiler constructs one e-block from each loop. However,

the compiler constructs only one e-block from the outermost of multiply

nested loops. Defining e-blocks for loops allows the debugging phase to

proceed without excessive time spent in reexecuting the loops. Still, if the

user is interested in the execution details inside such loops, we can reexecute

the e-blocks corresponding to the loops.

Three elements can affect the program behavior of an e-block: the initial

state as recorded by the prelog, the code of the e-block, and input statements
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in the e-block. We need to accommodate input statements in an e-block to

make the behavior of the e-block during debugging the same as that during

execution. We can make each input statement an e-block, whose IMOD set

consists of the variables affected by the input statement.

5.3 Log Optimization

Small and frequently called subroutines can be a problem. If we make an

e-block out of each small subroutine, the amount of logging done during the

execution phase may be large enough to introduce unacceptable performance

degradation. To avoid this problem, it may be better not to make e-blocks out

of subroutines that do not contain subroutine calls (i. e., subroutines that

correspond to leaf nodes in the call graph). If an e-block is not formed from

such a subroutine, then the subroutine itself does not perform any logging.

Instead, the e-blocks that call this routine (its parent e-blocks in the call

graph) perform its logging. However, a subroutine that either contains a loop

or contains accesses to a static variable (in the C language) is not eligible for

such optimization. This process can be applied recursively to the parent

e-blocks and can continue any number of levels up the call graph (as specified

by the user) until an e-block is reached that is ineligible for optimization.

5.4 Locating Log Intervals for Incremental Tracing

When the debugging phase starts, we generate fine debugging-time traces for

the last log interval, that is, the log interval that contained the last state-

ment executed. (The last log interval usually lacks the postlog when the

execution halted due to an error or to user intervention.) This allows the

initial dynamic graph to be constructed. From then on, there are three cases

when we need to generate fine traces for a new log interval: (1) when the user

wants to know the details of the dependence of a parameter passed from a

calling subroutine, (2) when the user wants to know the details of a hidden

dependence edge, that is, a dependence edge that either terminates into or

comes out of a subgraph node, or (3) when the user wants to know the details

of a dangling dependence (a dependence for a variable that is read in an

e-block before it is written).

When the user wants to know the detailed dependence of a parameter, we

can easily locate the log interval needed to generate fine traces; the log

intervals are nested as in Figure 14, and the caller’s log interval is the one

enclosing the current log interval. When the user wants to know the detailed

dependence of a function return value, we can also easily locate the needed

log interval; the callee’s log interval is one of those intervals nested in the

current log interval, and log intervals at the same nesting level are gener-

ated in the execution order of the called subroutines.

When the user wants to know the details of a hidden or dangling depend-

ence, we need to identify the log interval needed to generate fine traces to

show the details. To facilitate identifying such log intervals, we obtain the
IMOD set of each e-block at compile time and keep it as part of the program

database [311. We also keep in the program database, for each variable that
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Fig. 14, LOG with a back pointer for each e-block type

might be accessed by more than one e-block, the list of e-blocks that contain

the variable in their IMOD sets. We call the list the e-block table. The e-block

table in Figure 14 shows the list of e-blocks for three variables: “gI”, “gZ”,

and “g3”.
Figure 14 also shows an example log file. Log entries generated by the

same e-block form a linked list; each postlog has two pointers: one pointing to

its corresponding prelog, and the other pointing to the most recent postlog

made by the same e-block. E-pointers are an array of pointers to the last log

entry made by each e-block and are updated during program execution.

To locate the most recent log interval that contains a modification to a

variable, we first retrieve the list of e-blocks that contain the variable in

their IMOD sets. The list of e-blocks is stored in the e-block table. We then

locate either the most recent postlog produced by any of these e-blocks in the

case of hidden dependence, or the most recent prelog in the case of dangling

dependence. We finally generate the fine traces by using the emulation

package for that e-block and the log entries for that log interval. This process

may need to be repeated if the e-block did not actually modify the variable or

if the last modification of the variable in the e-block occurred before a nested

e-block that also potentially modifies the variable [10].
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When we construct more than one e-block out of subroutine because of

debugging-time efficiency considerations, we sometimes need to locate an

e-block that might write a local variable. Unlike global variables, a variable

local to a subroutine has an instance in each execution instance of the

subroutine, and we should not use log entries generated by different execu-

tion instances of the subroutine for the detailed dependence of a local

variable.

5.5 Arrays and the Log

For an e-block with array accesses, it is not possible to compute IUSE and

IMOD sets that contain only those array elements that are actually accessed

in the e-block. One approach is to generate a log entry for the entire array

even if only a few array elements are accessed. A second approach is simply

to trace every array access. However, both approaches can potentially gener-

ate a large amount of traces during execution.

Our solution to this problem is as follows: We distinguish two types of

array accesses: systematic accesses and random accesses. We say there is a

systematic access to an array if the array is accessed in a loop and the array

index has a possibly transitive data dependence on the loop control variable.

With a systematic access, we regard the entire array as accessed and gener-

ate a log entry (as usual) for the entire array. We regard all of the other

types of accesses to arrays as random accesses and generate a special log

entry for the array index and the accessed value (read or updated value) of

the array element at the time the access is made.

6. PARALLEL PROGRAMS AND FLOWBACK ANALYSIS

The discussion so far has described mechanisms to implement efficient flow-

back analysis for sequential programs. In this section we discuss the mecha-

nisms for extending flowback analysis to parallel programs. For parallel

pro~ams, data dependence may exist across process boundaries. Locating

such data dependence involves constructing an abstraction of the dynamic

graph that contains the events belonging to all processes and then ordering

the events in this graph. With additional logging of shared variables, the

incremental tracing scheme described in Section 5 can then be used to

establish dependence between processes. In addition, potential data races in

the program execution can be detected.

6.1 Parallel Dynamic Graph and Ordering Concurrent Events

To apply flowback analysis to parallel programs, we construct an abstraction

of the dynamic graph, called the parallel dynamic graph, that contains the

events belonging to all processes in the program execution. To this graph we

add edges that allow us to determine the order in which these events

executed. From this ordering, data dependence can be established across

process boundaries, and data races can be detected. We now describe how

to construct the parallel dynamic graph and what run-time information must

be recorded to do so. We then show how this graph orders the events
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belonging to different processes, and how this ordering allows interprocess

data dependence, and data races, to be detected.

6.1.1 Parallel Dynamic Graph. The parallel dynamic program depen-

dence graph (or parallel dynamic graph) is an abstraction of the dynamic

graph that shows the interactions between processes while hiding the de-

tailed dependence of local events. This graph contains only one node type,

the synchronization node, and two edge types, the synchronization edge and

internal edge (Figure 15 shows an example of a parallel dynamic graph). A

synchronization node is constructed for each synchronization operation in the

program execution. A synchronization edge from one node to another indi-

cates that the first synchronization operation executed before the second. An

internal edge abstracts out all events (belonging to the same process) that

executed between the synchronization operations connected by the edge. For

example, in Figure 15 all of the events of process PI that executed before

event nl, ~ also executed before all those events of process Pz that executed

after event nz, ~. The synchronization edge between nl, ~ and nz, ~ can be

viewed as a generalized flow edge that spans the two processes.

We now describe how to construct synchronization edges for programs that

use semaphores. Other synchronization primitives (such as messages, ren-

dezvous, etc.) can also be handled [10]. In general, we construct a synchro-

nization edge between two nodes if we can identify the temporal ordering

between them. We say that the source node of an edge is the node connected

to the tail of the edge, and the sink node of an edge is the node connected to

the head of the edge.

Semaphore operations, such as P and V, are used in controlling accesses to

shared resources by either acquiring resources (through a P operation) or

releasing resources (through a V operation). We construct a synchronization

edge from the node representing each V operation to the node repre-

senting some P operation on the same semaphore. Each V operation, which

releases resources, is paired with the P operation that acquires those

released resources.

There are two cases to be considered. The first case is where the second

process tries to acquire the resources before the first process releases them;

the second process thus blocks on the P operation until the V operation of the

first process. The second case is where the first process releases the resources

before the second process tries to acquire them; the second process does not

block on the P operation in this case. In both cases, we define a source node

for the V operation and a sink node for the corresponding P operation. The

operations on a semaphore variable are serialized by the system that actually

implements semaphore operations, and identifying a pair of related semaphore

operations is done by matching the nth V operation to the (n + i)th P

operation on the same semaphore variable, where i( z O) is the initial value

of the semaphore variable.

Additional logging is necessary to record the information required to

determine this semaphore pairing. Each semaphore operation generates a log

entry (for the process it belongs to) containing a counter that indicates how
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PI P2 P3

nl,l H n2,1

synchronization edge

n2,2

n2,3

h n2,4

nl,2

/
internal edge

Fig. 15. Example parallel dynamic graph.

many operations on the given semaphore have previously been issued. The

semaphore operations can easily be paired and the synchronization edges

constructed from these log entries.

6.1.2 Ordering Events. In the parallel dynamic graph, each internal edge

represents the set of events bounded by the surrounding synchronization

operations. The order in which two events executed can be determined if

there is a path between the two internal edges that represent those events (if

no such path exists, then the actual execution order cannot always be

determined). We partially order the nodes and edges of the parallel dynamic

graph by defining the happened-before relation [27], + , as follows:

(1) For any two nodes nl and nz of the parallel dynamic graph, nl - nz is

true if nz is reachable from nl by following any sequence of internal and

synchronization edges.

(2) For two edges el and ez, el + ez is true if nl + nz is true where nl is the

sink node of the edge el, and nz is the source node of the edge ez.

There are several approaches to ordering events in a parallel program

execution [10, 14, 16, 17, 27, 32]. Although the ordering between two events

can be determined by searching for a path in the graph, a more efficient

representation of the happened-before relation can be constructed that allows

the order between any two events to be determined in constant time. Such a

representation is constructed by scanning the graph and computing, for each

node, vectors that show the latest (or earliest) nodes in all processes that

happened before (or after) that node [10].
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6.1.3 Data Races. Once the events in the execution of a parallel program

have been ordered, flowback analysis can be performed. Dependence that

span process boundaries can be successfully located when the execution is

data-race free. Once these dependence are located, the incremental tracing

scheme described in Section 5 can be extended to reexecute e-blocks belong-

ing to different processes, allowing the dynamic graph to be constructed. We

now show how to determine when the execution contains data races. In the

subsequent subsections, we show how to locate dependence that span

processes and how to extend incremental tracing to parallel programs.

When the user requests to see the dependence for a read of a shared

variable, “SV”, we must locate the event that assigned the value to “SV’>

that was read. Locating this event involves finding all events that wrote

“SV” and determining their order relative to the read event. However, when

two events both access “SV” and are unordered by the happened-before

relation, not enough information is available to determine which access

occurred first. If at least one of the accesses is a write, then a potential data

race is said to exist. A data race is usually a program bug, and exists when

two events both access a common shared variable (that at least one modifies)

and either did execute concurrently or had the potential of doing so.

Definition 6.1. Two edges el and ez are simultaneous edges if ~ ( el - e2)

A ~ (e2 + cl).

Definition 6.2. READ-SET (e,) is the set of the shared variables read in
edge e,. WRITE_SET( e,) is the set of the shared variables written in edge e,.

Definition 6.3. Two simultaneous edges el and ez are data-race free if all

the following conditions are true:

(1) WRITE_ SET(el) fl WRITE_ SET(e,) = @.

(2) WRITE. SET(el) (l READ. SET(e,) = @.

(3) READ_ SET(el) (1 WRITE _SET(e,) = @.

Definition 6.4. A program execution is said to be data-race free if all pairs

of simultaneous edges in the execution are data-race free.

To determine when the program execution is data-race free, additional

tracing must be performed to record the shared variables that are read and

written by the events represented by each internal edge. For this purpose we
maintain bit-vectors (representing basic blocks) during execution and set a

bit every time execution enters a basic block [5]. The size of these bit-vectors

is computed at compile time (by inspecting the simplified static graph,

described in the next subsection). From the run-time trace of these bit-vec-

tors, the sets of scalar shared variables that were read and written can be

determined. To determine which shared array elements are accessed, we

trace each array access. Our mechanism for logging randomly accessed

arrays (described in Section 5.5), which must be employed anyway for

flowback analysis, will provide the necessary information. However, for
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systematic accesses, we must additionally trace each shared array access.

Since only the access type (either read or write) must be recorded, and not the

value, optimizations can be performed to reduce the associated execution-time

overhead. For example, instead of writing a trace record for each access,

regions of the array that were accessed can sometimes be summarized [61 by a

single record, resulting in a trace whose length is proportional to a small

fraction of the number of array elements accessed.

The execution can be analyzed for the presence of data races in one of two

ways. Either the entire execution can be checked for data races at one time,

or data races can be detected only when the user follows back dependence.

In either case, we can only detect when a program execution is data-race free.

When an execution is not data-race free, a set of potential data races

(between edges that are not data-race free) is reported. Only potential data

races are reported because when two edges are simultaneous it does not

necessarily mean that all of the events comprising the edges executed concur-

rently or had the potential of doing so. Rather, it means that the program’s

explicit synchronization did not prevent the events from executing concur-

rently; accidental synchronization (through the use of shared variables) can

still prevent them from executing concurrently. However, this approach

always detects data races when they exist and only reports a data race when

at least one occurs [32, 331.

This data-race detection scheme is similar to other methods [5, 13, 18, 32,

33], with the exception of pairing the P and V operations.

6.1.4 Data Dependence for Parallel Programs. When the user requests to

see a dependence for a read of a shared variable, “SV”, we must locate the

most recent modification to that variable. This dependence is located by

finding the event that assigned the value to “SV” that was read. This event

is the one that wrote “SV” that is most recently ordered before the read by

the happened-before relation. To locate this write event, the latest edge in

each process that happened before the edge containing the read is located.

These edges give a boundary beyond which all events executed concurrently

with or after the read event. Each process in the parallel graph is then

scanned backward from this boundary to find an edge that modified “SV”.

The ordering of all such write events is examined to determine which one

executed last. A data dependence can then be drawn from this last event to

the read event. A unique write event is guaranteed to be found if no data

races involving “SV” exist (unless, of course, “SV” was uninitialized).

Figure 16 shows an example of a parallel graph in which a shared variable

“SV” is read by process p~ and is modified by processes PI and Pz. TO

establish the data dependence edge for “SV”, the most recent modification of

“SV” that occurred before the read must be located. If events belonging to

edges ez ~ (the edge emanating from node n2, 1) and el, o (the topmost edge of

process ‘pl) are the only modifications of “SV”, then a data dependence is

established between the event ez, ~ that modified “SV” and the event in e3, 1

that read “SV>’. If, for example, there exists another event that modified

“SV” in any of the edges el, ~, el, z, ez,2, e2,~, or ez,A (i.e., edges simultaneous
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to ea, ~), then we cannot tell which event actually modified “SV” last, and a

data race is reported to the user.

6.2 Incremental Tracing for Parallel Programs

Our implementation of incremental tracing described in Section 5 relied on

the reproducibility of the debugged program. We now discuss applying incre-

mental tracing to shared-memory parallel programs that lack reproducibil-

ity. Our solution uses a graph called the simplified static graph, which is a

subset of the static graph that abstracts out everything except the synchro-

nization operations between processes. From this graph we determine what

additional logging is required to support incremental tracing.

6.2.1 Simplified Static Graph. To motivate the construction of the simpli-

fied static graph, consider the example shovvn in Figure 17, which contains a

subroutine that accesses a global variable named “SV”. The subroutine also

constitutes an e-block. The statement indicated by the arrow is the first

statement that accesses the variable “SV’> in this subroutine. In the case of a

sequential program, we construct a prelog that saves the value of “SV” at the

beginning of the subroutine. The value of “SV’> will not be changed until it is

first accessed in the statement indicated by the arrow. Hence, one prelog and

one postlog are sufficient to obtain reproducible behavior when reexecuting

parts of sequential programs during debugging.

However, now consider the case of a parallel program. If “SV)’ is a shared

variable, we cannot guarantee that the value of “SV” saved in the prelog at

the beginning of the subroutine will be the same as when “SV” is first read;

other processes may have changed the value of “SV>’ between these two

moments. Reexecution of this e-block may therefore perform a different
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SubB ()

{

int a, b, c, p, q;

if (p==. ..)

if (q==. ..) {
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} llse { /’ q */
.
.
.

Subc ( ) ;

}/* q*/

else { /* P */
+ SV=a+b+SV;

SubA() ;

.

.

.

}/* p*/
) /* SubB */

ENTRY
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❑ : branching node

O :non-branching node

EXIT

7 Thisnode corresponds tothesubroutine callof SubA

o This nodecomesponds totiesubroutine cdlof SubC

Fig. 17. Subroutine and its simplified static graph

computation than was originally performed during execution. In general,

more run-time information must be recorded to ensure reproducibility of

parallel programs. Such additional information is used to restore the pro-

gram state for read-accessed shared variables. The simplified static graph

allows us to determine which shared variables must be recorded and where in

the program they should be logged. In our examples we only consider

semaphore operations; however, this approach can be generalized to other

synchronization primitives.

The simplified static graph is a subset of the static graph that contains

only flow edges and nodes that represent either possible control transfers

(such as if or case statements) or semaphore operations (Figure 17 also

shows the simplified static graph for subroutine SubB). Any subgraph node

representing a subroutine that may perform a semaphore operation during

its execution (or during the execution of any subroutine that may be transi-

tively called by it) is treated as a semaphore operation. The simplified static

graph therefore contains only branching nodes, which represent possible

control’ transfers, and non branching nodes, which represent possible

semaphore operations.

6.2.2 Synchronization Units and Additional Logging. To generate

the additional logging for shared variables, the simplified static graph is
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partitioned into synchronization units, which identify which shared variables

to record and where in the program they should be logged.

Definition 6.5. A synchronization unit consists of all the edges that are

reachable from a given nonbranching node in the simplified static graph

without passing through another nonbranching node.

The sets {el, e2, e3, e5, efj, ‘a, eg ,} {e., e,}, and {e,, e,, e,} in Figure 17
each constitute a synchronization unit.

The object code generates an additional prelog at the beginning of each

synchronization unit for those shared variables that are potentially read-

accessed inside the synchronization unit. There is no corresponding postlog

generated for the write-accessed shared variables at the end of a synchroniza-

tion unit, as the regular logs generated at the beginning and end of the

e-block contain the values of both shared and nonshared variables. The

additional prelog of the read-accessed shared variables is used to ensure

repeatable reexecution of the events in the synchronization unit. As long as

there were no data races during execution, the additional prelog will suffice

for ensuring repeatable execution behavior during debugging.

7. PERFORMANCE MEASUREMENTS

This section presents measurements of the overhead caused by PPD on the

execution time of application programs. We compare the execution time of

the object code generated by the PPD compiler with that generated by the

Sequent Symmetry C Compiler. We also present measurements of execution-

time trace size. There is a trade-off between the amount of trace generated

during execution time and the amount generated during debug time. The

trade-off is based on selecting the size and location of e-blocks. Our current

heuristics for making this selection are quite simple, so the performance

numbers give only an initial indication of the cost of using PPD.

We present measurement results of five test programs: SORT, MATRIX,

SH.PATH - 1, SH-PATH-2, and CLASS. SORT sorts a vector of 100 integers

using an Insertion Sort algorithm, whose time complexity is 0( nz ). MATRIX

multiplies two square matrices of integers into a third matrix. The size of

each matrix, for our tests, is 100 by 100. MATRIX uses a subroutine in

multiplying two scalar elements of the two matrices. The subroutine does not

contain a loop or accesses to a static variable, making that subroutine a

target of log optimization (see Section 5.3). SH.PATH. 1 computes the

shortest paths from a city to 99 other cities using an algorithm described by
Horowitz and Sahni [19]. SH–PATH-2 is the same as SH_PATH - 1 except

that it computes the shortest paths from all of the 100 cities to all of the other

cities. CLASS is a program that emulates course registration for students,

such as registering for courses and dropping from courses. CLASS also can

run as an interactive program.

7.1 Execution Time

The goal of the PPD design is to minimize execution-time overhead without

unduly burdening the other phases of program execution. Table I shows the
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Table I. Test Program Execution Time Measurements (time in seconds)

PPD compiler PPD compiler

Sequent without log optimization with log optimization

compiler (overhead in%) (overhead in%)

SORT 5.5 5.7 (3.6%) 5.7 (3.6%)

CPU Elapsed 5.6 6.1 (8.9%) 6.1 (8.9%)

MATRIX 12.7 52.5 (313.4%) 13.4 (5.5%)

CPU Elapsed 12.7 54.7 (330.7%) 13.7 (7.9%)

SH.PATH.1 1.1 1.8 (63.6%) 1.8 (63.6%)

CPU Elapsed 1.3 2.2 (69.2%) 2.2 (69.2%)

sH_PATH_2 107.0 105.5 (-2.4%) 105.5 (–2,4%)

CPU Elapsed 107.0 107.3 (2.8%) 107.3 (2.8%)

CLASS 0.3 0.4 (33.3%) 0.4

CPU Elapsed

(33.3%)

0.4 0.7 (75.0%) 0.7 (75.0%)

execution-time overhead of the tested programs. Execution-time overhead

ranges from O to 330 percent for object code that is not log-optimized and from

O to 75 percent for object code that is log-optimized. MATRIX has the largest

performance improvement from log optimization. The execution-time over-

head of MATRIX is reduced from 330.7 to 7.9 percent. MATRIX has a

subroutine that is called one million (100 by 100 by 100) times by another

subroutine. Without log optimization, each call to this subroutine generates a

prelog-postlog pair, resulting in a large execution-time overhead (due to the

one million prelog–postlog pairs). However, this subroutine does not have a

loop or accesses to static variables; with log optimization, this subroutine

becomes a non-eblock subroutine, and the caller becomes the parent e-block.

The non-eblock subroutine does not generate log entries, yielding a much

smaller execution time, Accordingly, log optimization also causes MATRIX to

have a large reduction in the size of execution-time traces.

Log optimization might actually produce a higher execution-time overhead

if the non-eblock subroutine is never invoked due to conditional statements

in the program; parent e-blocks of these non-eblock subroutines may generate

additional log information for the non-eblock subroutines that are never

invoked. However, we expect that such cases of losing by log optimization

should be rare.

We also see that copying the contents of an entire array (for a log entry) at

the beginning or at the end of a loop is inexpensive in terms of execution-time

overhead if most of the array elements are actually accessed in the loop. Such

is the case with program SH–PATH–2. However, if only a fraction of the

array elements are accessed in a loop, dumping out an entire array can be

expensive, as seen in test program SH–PATH– 1. One possible way to reduce

this overhead is to generate a smaller log entry containing only the particu-
lar row (or other part) of the matrix that is actually accessed by employing

techniques for succinctly summarizing data accesses in arrays [6].
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Array logging can also cause some interesting performance anomalies.

Notice that test program SH.PATH-2 shows a slight improvement in CPU

time (the sum of user and system time) with the code generated by the PPD

compiler. The PPD compiler generates logging code immediately before the

loop that accesses a large array; the logging code accesses the entire array.

This extra access seems to affect the paging behavior @ossibly at the archi-

tecture level) of the program, resulting in less execution time. We are

currently investigating this anomaly.

Program CLASS can also run as an interactive program, Whereas there is

a 33 percent increase in CPU time and a 75 percent increase in elapsed time

when CLASS ran using an input file, there was no noticeable difference in

the response times when CLASS ran interactively.

7.2 Execution-Time Trace Size

Table II shows the sizes of execution-time traces (log) generated by the test

programs. As described before, pro~am MATRIX has a substantial decrease

in trace size from log optimization. Program CLASS has a slight increase in

trace size from log optimization because of the reason described previously.

7.3 Trade-off Between Run Time and Debug Time

As described in Section 3, there is a trade-off between efficiency during

execution and response time during debugging. If we construct an e-block in

favor of the execution phase, debugging phase performance will suffer. On

the other hand, if we construct an e-block in favor of the debugging phase,

execution phase performance will suffer.

Table III shows the reexecution times and debug-time trace sizes of various

e-blocks of the tested programs. The e-block from SORT consists of a singly

nested loop that sorts the list of numbers once. The e-block of MATRIX is

made of a triply nested loop. By constructing a single e-block out of the triply

nested loop of MATRIX, we were able to reduce the execution phase over-

head, but with a large debug-time overhead: 166 seconds in reexecution time

and about 58 Mbytes of debug-time trace. For a comparison, the execution

time of MATRIX itself is about 13 seconds, and execution-time trace size is

0.12 Mbytes, with log optimization. The e-block of SH-PATH. 1 in Table III

is constructed out of a singly nested loop that computes the shortest paths

from a city to 99 other cities, while the e-block of SH-PATH-2 is constructed

out of a doubly nested loop that computes the shortest paths from 100 cities

to all of the other cities. The e-block of SH-PATH - 1 took about 5 seconds to

execute with 1.3 Mbytes of trace, while the e-block of SH– PATH–2 termi-

nated because the file system was full. At that time, the e-block of SH_

PATH-2 lasted more than 7 minutes with more than 100 Mbytes of trace.

These two results suggest that it might sometimes be better to construct

more than one e-block out of a nested loop. One alternative might be to

generate more than one prelog-postlog pair for an e-block with long execu-

tion time (such as an e-block made out of a nested loop). In this case, the

decision whether to generate another prelog-postlog pair during the execu-

tion of an e-block could be made dynamically at execution time.
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Table II. Execution-Time Trace Size Measurements (sizes in bytes)

Without With

log optimization log optimization

SORT 18,209 18,209

MATRIX 40,120,221 120,217

SH.PATH. 1 825,517 825,517

sH_PATH.2 417,129 417,129

CLASS 104,508 104,892

Table III. Reexecution Times and Trace Sizes (time in seconds)

Original Reexecution

CPU CPU Elapsed

e-block 1 (SORT) <0.1 0.1 1.7
e-block 2 (MATRIX) 8.6 160.5 165.5
e-block 3 (SH_PATH_ 1) 0.1 3.8 4.8
e-block 4 (SH_PATH_2) 10.5 >364.8 >422.8

Debug-time

trace size

(Mbytes)

0.37

57.76

1.24

>117,79

7.4 Summary of Measurements

In this section we have provided performance measurements of the various

parts of PPD. The measurements show that increases in the execution time

vary significantly (O to 86 percent) among the test programs. However, larger

increases in the execution time come from test programs that access only part

of arrays in loops. One possible way to reduce this overhead is to employ

techniques for succinctly summarizing data accesses in arrays [6]. With a

more sophisticated dependence analysis for such complex objects, we expect a

reduction in the execution-time overhead.

Execution-time trace sizes are generally small (less than 1 Mbyte in all

cases). However, the measurements show that we need more experiments

and research to achieve a better balance between the trace size during

execution and the response time during debugging.

The test programs used in the performance measurements of PPD are, in

general, small in size. However, we think that the results obtained with

these programs will scale up proportionally well with larger size programs.

In general, the performance measurements of PPD described in this section

have demonstrated the feasibility of the ideas and directions proposed in our

approach for debugging parallel programs.

8. CONCLUSION

Debugging parallel programs with flowback analysis has several advantages.

First, dependence can be followed backward, allowing the programmer to
see causal relationships directly. In parallel programs, the ordering of events

allows dependence to be followed that span process boundaries. Focusing

the programmer on the cause of the errors allows parts of the execution
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irrelevant to debugging to be easily ignored. Flowback analysis should,

therefore, scale well to large parallel programs. Second, repeated execution of

the program is not required. The overhead associated with repeatedly reexe -

cuting long-running (and possibly nondeterministic) programs is avoided.

Finally, data-race detection allows us to deal with one of the more difficult

synchronization errors encountered in parallel programs.

The graphs and algorithms presented in this paper provide the foundation

for the construction of the system that will perform efficient flowback analy-

sis for parallel programs. Several ideas make efficient flowback analysis

possible. The use of semantic analysis allows us to identify at compile time

only those variables that are necessary to trace at execution time. The

incremental generation of the detailed traces at debugging time further

amortizes the cost of tracing over the interactive debugging session. The

fragmented static graph structure used in PPD is easily built and is tailored

to be the building block of the dynamic graph. With the inclusion of synchro-

nization dependence, these graph structures generalize nicely to parallel

programs.

There are several issues that must be addressed in the PPD design. The

most immediate issue is the handling of pointers and dynamic data struc-

tures. The methods described in Section 3 form a starting point, and we are

currently working on this problem. The user-interface design is another area

that must be investigated. A graphical representation of program depen-

dence can offer quick access to complex structures. But, as the body of

displayed information increases, these displays can quickly overwhelm the

viewer. A careful trade-off between graphical and textual information using

multiple views and supporting information will be necessary to provide an

intuitive interface.

We believe that PPD can be a platform for more than interactive debug-

ging. Currently, the decision about which variable’s dependence to examine

is made by the programmer. Flowback analysis could be integrated with a

more automated decision-making process. This might be a verification sys-

tem based on formal specifications or an expert system based on debugging

knowledge.

Many of the design decisions and heuristics in PPD must be evaluated in

practice. A working prototype is under construction to test our decisions on

real programs. These tests will allow us to evaluate overall effectiveness and

to tune the algorithms for such things as the selection of e-block sizes and the

handling of large arrays. An initial implementation of PPD (including all of

the facilities described in this paper) is running, using the C programming

language, on a Sequent Symmetry shared-memory multiprocessor.
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