
From Continuous Integration to Continuous
Assurance

James A. Kupsch, Barton P. Miller, Vamshi Basupalli, and Josef Burger
Computer Sciences Department, University of Wisconsin, Madison, WI 53706

Software Assurance Marketplace (SWAMP), 330 N. Orchard St., Madison, WI 53715

Abstract—Continuous assurance extends the concept of contin-
uous integration into the software assurance space. The goal is
to naturally integrate the security assessment of software into
the software development workflow. The Software Assurance
Marketplace (SWAMP) [1] was established to support continuous
assurance, helping to simplify and automate the process of
running code analysis tools, especially static code analysis (SCA)
tools. We describe how the SWAMP can be integrated easily into
the continuous assurance workflow, providing direct access from
integrated development environments (IDEs) such as Eclipse,
source code management systems such as git and Subversion,
and continuous integration systems such as Jenkins.

I. INTRODUCTION

The software development process takes us from the spec-
ification and design phase through deployment. Continuous
integration systems, such as Jenkins [2] or Travis CI [3] try to
capture much of the workflow of the development process into
a tool that allows the developers to control and monitor the
process. Each time a programmer commits changes to a com-
mon code repository, there must be corresponding merging,
building and testing of the code. Given the increased awareness
and importance of developing safe and secure software, this
continuous integration process must also include running tools
that analyze the code for security properties; adding such tools
to the continuous integration process introduces the concept of
continuous assurance.

Software assurance (SwA) defines the steps that we use
during the development process to increase the confidence that
the software is safe and correct. With a SwA process in place,
a software system is more likely to operate as intended and
have fewer vulnerabilities. SwA takes many different forms,
from manual reviews and practices to automated tools. SwA
processes should be used during all phases of the software
development, and the more that is done, the greater will be
the level of SwA. Unfortunately, SwA is not used as much as
it should be, often because the cost to perform SwA, in both
time and money, often exceeds the perceived benefits.

The Software Assurance Marketplace (SWAMP) [1] was
established in 2012 to support continuous assurance, helping
to simplify and automate the process of running software
assurance tools, especially static code analysis (SCA) tools.
SCA tools inspect the source code of the software for weak-
nesses without executing the code, and supports SwA during
the implementation and testing phase. The ability to easily
apply multiple analysis tools to a software system and view
integrated results has been a strong point of using the SWAMP

for software development. In its initial stages, interactions with
the SWAMP were solely through a web-based user interface.
While this interface is effective, it is separate from normal
tasks of the programmer, including edits and compiles (often
in an integrated development environment (IDE)), commits to
a code repository, and control of workflow using a continuous
integration tool. In this paper, we describe how the SWAMP’s
new web APIs and tool plug-ins provide direct access for
submitting assessment runs and fetching results from the
assessments. These APIs have been used to integrate IDEs
(Eclipse), CI tools (Jenkins), and source code management
systems (git and Subversion) into the SWAMP. Such integra-
tion allows the natural incorporation of continuous assurance
without changing the developer’s workflow.

We first present an overview of common software devel-
opment methodologies, then describe the SWAMP services.
Next, we present how we used the new SWAMP APIs in
current tool integration and describe our plans for future inte-
grations. Last, we discuss how the SWAMP’s integration with
software development systems compares to other available
mechanisms to run SCA tools from software development
systems.

II. SOFTWARE DEVELOPMENT PRACTICES

Software development is a human activity that can be
performed using a variety of processes. At its core, developing
software is the process of writing source code in a computer
programming language that is translated into a software system
that functions correctly. The software system can be a single
program, or multiple programs that are dependent on each
other and possibly other software systems. Depending on the
size and complexity of the software system, the development
may be performed by a single developer or a team of devel-
opers. To organize this process, developers use methodologies
and tools during the software development process.

The rest of this section briefly discusses software develop-
ment methodologies and commonly used implementation and
testing practices of these methodologies. The discussion is to
illustrate where such assurance tools can be integrated; it is
not meant to be an exhaustive description of these topics.

A. Software Development Methodologies

Software methodologies are the processes that a developer
or team follows when producing a software system. For
small projects and small teams, the process may be ad-hoc



Requirements	
Analysis	 Design	 Implementa#on	 Tes#ng	 Integra#on	 Deployment	 Maintenance	

Fig. 1. The Waterfall Model of software development. In this methodology each stage is completed before proceeding to the next stage. The SWAMP supports
the implementation, testing and maintenance stages.

and informal, but will often share characteristics of formal
methodologies. As projects and teams become larger, a formal
methodology is often used to impose structure on the develop-
ment process. This allows the team to more efficiently work
towards the goal of creating a correctly functioning system
integrated from the individually developed components.

Software development processes have evolved over time,
producing methodologies with different philosophies and char-
acteristics. The type of methodology used to develop a soft-
ware system is ultimately selected by the development team
and organization based on team member’s experience, philoso-
phy, the type of software, and budget. Although there are many
practiced methodologies, there are inherent tasks to produce a
correctly functioning software system – such as designing the
system, writing code, and testing – that are present in some
form in all software development methodologies.

Figure 1 shows the Waterfall model [4], [5], one of the
earliest documented methodologies dates from 1970. This
methodology largely has developers complete each stage in
order. The stages with short descriptions are:

1) Requirements. Gather and document how the system
should operate.

2) Design. Design the system at a high level from the overall
system to individual components.

3) Implementation. Implement the software system by cre-
ating the source code.

4) Testing. Test the source code produced to verify that it
meets the requirements.

5) Integration. Integrate the system with other systems.
6) Deployment. Deploy the system to computers to make it

available for use.
7) Maintenance. Maintain the software system to fix issues

discovered after deployment, and to enhance the system
as needed. The maintenance stage is typically accom-
plished using the Waterfall Model stages on a smaller
scale.

In practice, developers use a more robust model than the
Waterfall model as it is too simple. Most other software devel-
opment methodologies have roughly similar stages, although
the order and exact stages may differ slightly. Other differences
include iteration of the stages, and how each stage is car-
ried out. All methodologies include both implementation and
testing steps. Other commonly used methodologies include:
Prototyping [6], Incremental, Iterative and Incremental [7],
Spiral [8], Extreme Programming (XP) [9], Rapid Application

Development (RAD) [10], Agile [11], [12], Test Driven De-
velopment (TDD) [13], Continuous Integration (CI) [14], [15],
Multistage CI, Continuous Delivery [16] and Dev Ops [17]. A
book with a brief overview of these models is available [18].

B. Implementation Practices

The implementation step involves creating or modifying
source code written in a programming language, and trans-
forming the source code into a program or set of programs
that form the software system (also known as building the
software). Development teams also need to manage source
code changes over time and between team members. Develop-
ment tools assist in these activities, and most of them can be
extended to perform other tasks through the use of plug-ins.

Text Editors and IDEs are used to create the source code.
IDEs such as Eclipse [19], [20], [21] and IntelliJ [22], [23]
provide the functionality of a text editor, plus allow a developer
to perform most of the development tasks, including testing,
all within a common graphical user interface.

Build Automation Systems such as make [24] ant [25] and
maven [26] automate the often complex task of transforming
the source code into executable programs.

Source Code Management System (SCMSs) such as
git [27] and subversion [28] allow development teams to
manage revisions to the source code. They also allow teams
to easily merge changes created by different team members
together to allow concurrent development of the source code.

C. Testing Practices

The testing step verifies that the software system functions
as intended (correctness) and has no unintended functionality
(lacks security weaknesses). As software is complex and
difficult to create without errors, testing is an essential step
in developing software. Here, we concentrate on testing for
weaknesses. Testing can be categorized as static or dynamic.
These approaches differ in the types of problems they can
discover and the amount of effort that developers must expend
to create the tests.

Static Analysis tools inspect the software’s source, byte, or
binary code without actually running the software. Compilers
are our first line of defense, as they determine if the source
is valid and produce warnings about questionable constructs.
The quality of checking in compilers has radically improved
over the last several years.

Static analysis tools may require modification to the build
system or development process to run the tool in a way that



assures the code that is being assessed is the same as the code
being built. There are some subtle traps here, as we must insure
that we account for the language version, compiler options,
and which files to assess [29]. While many commercial tools
help automate this process, open source tools do not have
such support. However, assessment runs in the SWAMP benefit
from its automation support for all tools, commercial and open
source.

Static analysis tools can find many type of flaws in the
code, however are limited by the sophistication of the tool’s
semantic analysis algorithms, the time it takes to analyze the
code, and the complexity of the code. There are several code
features that can make the code too complex to be analyzed
precisely. Such features include the use of pointers, both
data and code, and inter-procedural and inter-compilation-unit
behaviors. As a result, tools will often quietly ignore behaviors
they do not understand (leading to false negatives) or make
conservative assumptions about the code behavior (leading to
false positives).

Dynamic Analysis tools test the software by running the
code. Such tools will find actual weaknesses in the program
(there are no false alarms), but the results are only as complete
as the coverage generated by the test input. An additional chal-
lenge with dynamic tools is that the software must build, be
installed and configured (along with other necessary software
such as a database or web server), and have a test suite that
executes the software. The drawback of dynamic analysis is
that it is only as good as the test suite developed, or in the case
of randomly generated test cases [30] having the randomly
generated data uncover the flaw.

Continuous Integration (CI) Systems are used to automate
the building and testing of a software system. A typical CI
system allows the user to specify how to get the source code
(from an SCMS or local files), when to build and test the
package (each SCMS revision, periodically, or manually trig-
gered), how to build the software package, and what tests and
other actions to perform. By frequently integrating, building
and testing the project’s source code, developers can discover
problems early and identify the revision that caused the build
or tests to fail. CI tools provide a dashboard to view the current
state of the software. To support new SCMS systems and new
testing tools, CI system support a plug-in mechanism. Example
CI systems include Jenkins SonarQube [31], and Travis CI.

III. THE SOFTWARE ASSURANCE MARKETPLACE

The SWAMP is a resource that automates the assessing of
software with more than 30 available software assurance tools,
both open source and commercial. The SWAMP comes in
two versions, the SWAMP cloud service, called MIR-SWAMP,
and a downloadable local version, called SWAMP-in-a-Box,
(SiB). Users of the MIR-SWAMP upload their software to the
SWAMP, and have the software analysis tools applied without
further interaction. The MIR-SWAMP currently supports static
code analysis tools for software written in C, C++, Java,
Python, Ruby, PHP, JavaScript, CSS, HTML and XML; and
static binary analysis tools for Java Bytecode and Android

APKs. When an analysis completes, users can review the
merged results of multiple static analysis tools together in one
of the result viewers. Access to the MIR-SWAMP is free and
openly available (though some restrictions apply to the use of
the commercial tools) at https://www.mir-swamp.org.

For organizations that do no want to (or can not) upload
their software to the SWAMP service, SWAMP-in-a-Box is
available for download and installation at a user’s site from
https://continuousassurance.org/swamp-in-a-box. This local
version allows access to the functionality of the SWAMP while
keeping the user’s source code on-site. To use commercial
tools with SWAMP-in-a-Box, the tools must be licensed from
their provider (a bring your own license (BYOL)) model.

To use either version of the SWAMP, a user loads their
package’s source code along with a description of how to build
it, selects operating system platform(s) and assurance tool(s);
the SWAMP then builds the code and runs the assessment
producing results to view. Once the source code and build
description are uploaded all applicable tools can be used
with no other user input or modifications to the software to
build [29].

Users can interact with the SWAMP using a web browser
to upload packages and their configuration, configure and
perform assessments, and view results using an integrated
version of Secure Decisions’ Code Dx [32]. Denim Group’s
ThreadFix [33], or the basic SWAMP Native Viewer. The
SWAMP can also be accessed using a web API.

Using the web-based interface, the SWAMP supports CI as
the software is built and assessed using one or more static
analysis tools. The status of the build and the results of static
analysis are accessible from the web-based user interface.
The next section describes how SWAMP assessment runs can
easily be integrated with the software development workflow
described in the Section II.

IV. SWAMP INTEGRATION WITH SOFTWARE
DEVELOPMENT METHODOLOGIES

The SWAMP has been designed to integrate its assessment
functionality with tools that support the software development
process. While many users directly access SWAMP functional-
ity via the standard web interfaces, the SWAMP also supports
web APIs that can be used by plug-in modules for various
software development tools.

The standard web interfaces allow the user to:
• Sign in, either with a local SWAMP identity or one from a

federate identity management system such as inCommon,
github or Google.

• Create a new project and upload the software to be
assessed.

• Start an assessment, choosing from the large variety of
tools provided in SWAMP.

• View the assessment results in the default results view or
more sophisticated ones such as Secure Decisions’ Code
DX and Denim Group’s ThreadFix.

The SWAMP web APIs provide programmatic interfaces to
conduct these same basic functions. Using these web APIs,



Na#ve	Viewer	

ThreadFix	

De
ve
lo
pm

en
t	T

as
ks
	

Te
ch
no

lo
gy
	

SW
AM

P	

Commit	
to	SCM	

Edit	
Code	

Build	
Code	 Test	

Integrated	Development	Environments	

Eclipse	 IntelliJ	

Source	Code	Management	Systems	

git	 svn	

Con@nuous	Integra@on	Systems	

Jenkins	 SonarQube

Technology	

Exis@ng	 Future	

Review	
Results	

Send	Applica@on	to	SWAMP	
for	build	and	assess	

Supports	Task	 Send	applica@on	to	SWAMP	for	build	
and	assess,	and	return	results	

Implementa@on	 Tes@ng	

SWAMP	
(Build	&	SCA	Tes#ng)	

Code	Dx	

SWAMP	Result	Viewers	

Send	results	

Fig. 2. Software development workflow, development tools and SWAMP integration points. Shows the workflow of tasks common to the typical implementation
and testing steps of software development methodologies such as the Waterfall methodology shown in Figure 1, development tool technology commonly used
by developers to perform the task, and current and future support to easily integrate this technology with the SWAMP to perform builds, run static assessment
tools, and view results.

we have developed plug-ins and command line line tools that
integrate the SWAMP with IDEs, SCMS, and CI systems.
These plug-ins allow developers to gain the benefits of the
SWAMP without disrupting their current workflow.

Figure 2 shows common development tasks within the
implementation and testing steps, common types of technology
used to perform these tasks, along with specific development
technology where integration with the SWAMP is complete or
planned, and how the SWAMP can integrate with the tasks or
technology. The (blue) connections from Development Tasks
to Technology indicate that the given technology is used to
perform the corresponding task. The (green) arrows from the
Technology to the SWAMP indicate a pathway to trigger builds
and SCA assessments in the SWAMP, and potentially return
the results. Lines with double-headed arrows indicate that the
technology directly displays results produced by the SWAMP
to the user. For all assessments performed, results can also
be inspected using one of the SWAMP result viewers, which
currently include Code Dx, ThreadFix, and the basic SWAMP

Native Viewer.
Common to all the plug-ins is a one-time common con-

figuration task for each plug-in to specify the URL to the
SWAMP instance to use, the user’s credential, the SWAMP
project, the SWAMP package, and the tools and platforms to
use for assessments.

The remainder of this section describes the integration
available for existing software development tools to easily
perform assessments in the SWAMP and to view results where
applicable.

A. Integrated Development Environments

The ability to trigger assessments and view results directly
in an IDE is advantageous as the developer stays within their
work environment, and sees results directly in the interface
where they can fix the reported problems. Figure 3 shows the
user interface presented to view results after an assessment has
been triggered.

A SWAMP plug-in for the Eclipse IDE is available. The
plug-in currently supports software written in Java, C, or C++.



➊
➋

➍

➌ ➎

Fi
g.

3.
Sc

re
en

sh
ot

of
E

cl
ip

se
w

ith
th

e
SW

A
M

P
pl

ug
-i

n
di

sp
la

yi
ng

th
e

SW
A

M
P

pe
rs

pe
ct

iv
e

(s
et

of
pa

ne
ls

)
af

te
r

an
as

se
ss

m
en

t
ha

s
be

en
ru

n:
Ê

th
e

SW
A

M
P

L
og

o
bu

tto
n

an
d

m
en

u
us

ed
to

tr
ig

ge
r

an
as

se
ss

m
en

t
in

th
e

SW
A

M
P

of
th

e
cu

rr
en

t
E

cl
ip

se
pr

oj
ec

t
an

d
to

ac
ce

ss
SW

A
M

P
se

tti
ng

an
d

fu
nc

tio
ns

,
Ë

SW
A

M
P

pe
rs

pe
ct

iv
e

bu
tto

n
us

ed
to

sw
itc

h
to

th
e

se
t

of
SW

A
M

P
pa

ne
ls

,
Ì

ci
rc

ul
ar

m
ar

ke
rs

in
di

ca
tin

g
lin

es
w

he
re

w
ea

kn
es

se
s

w
er

e
fo

un
d

in
th

e
pr

oj
ec

t
by

SW
A

M
P

SC
A

to
ol

s
w

ith
co

lo
rs

in
di

ca
tin

g
to

ol
ty

pe
s,

Í
th

e
W

ea
kn

es
s

D
et

ai
ls

pa
ne

l
di

sp
la

yi
ng

th
e

cu
rr

en
tly

se
le

ct
ed

w
ea

kn
es

s,
an

d
Î

th
e

W
ea

kn
es

s
ta

b
co

nt
ai

ni
ng

a
ta

bu
la

r
vi

ew
of

th
e

w
ea

kn
es

se
s

fo
un

d.



The SWAMP Eclipse plug-in supports assessing the source
code with any or all of the tools available in the SWAMP
on any or all of the operating system platforms available, and
directly viewing results within Eclipse. The plug-in supports
any of the platforms that Eclipse runs on, but the assessment
platforms available in the SWAMP are currently all Linux
based operating systems.

Besides the common configuration items, no other informa-
tion is required. SWAMP assessments are performed by simply
clicking the SWAMP button in the IDE or selecting a menu
item. The software then is uploaded, assessed in the SWAMP,
and the results are retrieved for display within the IDE.

The combined results of all the configured tools are dis-
played in the IDE with markers alongside lines with weak-
nesses, a table view, and a view that displays the details of a
weakness.

Support for other IDEs such as IntelliJ are planned for the
future.

B. Source Code Management Systems

The ability to trigger SWAMP assessments from an SCMS
when an update occurs allows assessments to be performed on
every commit, directly supporting one of the core tenants of
continuous integration and continuous assurance. From this it
is possible to determine when a broken build was introduced
or a particular weakness was introduced.

SWAMP plug-ins for both git and Subversion are available.
The plug-ins support any of the languages supported by
the SWAMP. Since there is no user interface available for
displaying results in an SCMS, viewing results must be done
using the SWAMP’s user interface.

As an SCMS is generic with respect to its contents, it
is not possible to automatically configure the package to
be built in the SWAMP as is done with IDEs. The user
must create a small package configuration file that describes
how to build the package in the SWAMP, in addition to the
common configuration. Once the configuration file is created it
rarely needs to be modified unless the package’s build process
changes. As large projects have a high volume of SCMS
commits, fine grained control of the commits that trigger an
assessment is necessary. Use cases include a developer wanting
assessments for all commits to their SCMS repository, or a
development team wanting assessments for merges to a set
of development branches of their shared team repository. The
plug-in supports triggering based on branch names, and on
selecting between a commit that is local versus being pushed
from another SCMS repository.

C. Continuous Integration Systems

The ability to trigger SWAMP assessments from a CI system
allows users of a CI system to take advantage of tools and
platforms available within the SWAMP. It also allows the
source code assessed in the SWAMP to use the CI system to
acquire the source code and to determine when assessments
are performed. If a development team is already using a CI

system, they can continue to use it and easily gain access to
the analysis provided by the SWAMP.

A SWAMP plug-in for Jenkins that can upload source
code and perform assessments is currently available. When
assessments complete, Jenkins displays trend graphs of the
discovered weaknesses, and allows the user to view the results
from the tools including seeing the source code context of
individual weaknesses. Figure 4 shows three aspects of the
user interface provided by Jenkins with the SWAMP plug-in
after the assessment of ten versions of the project.

Besides the common configuration, users also need to
specify how to build the package in the SWAMP. This infor-
mation should rarely change unless the packages build process
changes.

Support for other CI systems such as SonarQube and Travis
CI are planned for the future.

D. Command Line Interface (CLI) for Other Systems

Besides the plug-ins above, the underlying technology for
the plug-ins is available as a command line interface. The
SWAMP CLI allows developers to interact with the SWAMP
from scripts or systems that are not already directly supported
by an existing plug-in.

To use the SWAMP CLI, users need to provide the common
configuration along with a specification of how to build the
package, and an archive of the package’s source code. The
configuration information should rarely change unless the
packages build process changes.

V. RELATED TECHNIQUES

IDEs, SCMSs, and CI systems also provide a means to
directly run SCA tools (as opposed to using the SWAMP
cloud service or a locally-installed SWAMP-in-a-Box). In this
section, we contrast the direct running of an SCA tool with
the use of the SWAMP as an integrated assessment service.

The first, and most obvious benefit of using the SWAMP is
the direct access to an extensive collection of SCA tools (as
described in Section III). The SWAMP supports the assessment
of a large variety of programming languages and multiple tools
for each language. Good software assurance practice encour-
ages that we run multiple tools to get the most comprehensive
results and coverage of potential weaknesses that may expose
vulnerabilities.

Along with the benefit of having access to multiple tools in
the SWAMP, comes ease of use. In the SWAMP, there is no
need for a user to download, install, or configure a tool.

One minor disadvantage of running on the SWAMP cloud
service is an assessment will take a longer than locally running
the same tool on a user’s computer due to SWAMP’s overhead.
When assessing an application with multiple SCA tools, this
cost differential is reduced or eliminated due to the SWAMP’s
ability to concurrently run many simultaneous assessments.
This performance difference is less of an issue when running
on the locally-installed SWAMP-in-a-Box.

The Eclipse and IntelliJ IDEs both support a limited number
of static analysis tools to be run locally within the IDE.



� �

�

Fig. 4. Three screenshots of Jenkin with the SWAMP plug-in after ten versions of the project have been assessed. Ê The weaknesses trend graph, displayed
on Jenkins’ project status page, showing the developer reducing weaknesses with each successive commit. The weaknesses are categorized from bottom to
top as Low, Normal and High priority weaknesses shown in blue, yellow and red respectively. Ë The SWAMP Assessment view of weaknesses by category
showing the results of the tenth assessment. The colors are the same as above. Ì Whole Jenkins screenshot showing the SWAMP Assessment view as a
individual warnings (all 59 warnings are viewable by scrolling the web browser). The table is sortable and clicking on a individual rows shows the source
code or warnings filtered by directory.

Both IDEs provide the best support for Java, with plug-ins
for the FindBugs and PMD SCA tools. Eclipse also provides
support for cppcheck and SonarQube’s analysis tool. For other
languages, the number of static analysis tools supported is
smaller or nonexistent.

The git and Subversion SCMSs both provide hooks for in-
voking a program when an event such as a new commit occurs.
The commit could be made to a developer’s working branch or
when merging to an integration branch. The SWAMP provides
hooks for both git and Subversion to automatically upload
the source code to the SWAMP and start an assessment run.
While there are a few readily available recipes and scripts to
add hooks to git and Subversion to directly trigger an SCA
tool to run, the user must still install and configure these tools
themselves.

Both Github and GitLab, widely used repository services
based on git, can trigger an HTTP request to a remote server

when a version is committed or merged. Since most CI systems
(such as Jenkins or SonarQube) can accept the github HTTP
request, this request can be used to trigger an assessment (as
we describe below). SWAMP support for handling such HTTP
requests is currently in the release process.

Jenkins supports many of the SCA tools provided by the
SWAMP for Java, C and C++. There are three aspects to
running an SCA tool assessment from Jenkins. First, the user
must configure the build system to include a new target for
running an assessment. Such a configuration is simple for
maven but more complex for other build systems. Second, the
user must install a plug-in from the Jenkins marketplace for
each SCA tool that they want to run. The plug-in translates the
tool output into a format that Jenkins can process and display.
Third, each SCA tool must be locally installed.

SonarQube is a CI system that offers a no-cost community
edition and a for-purchase professional edition. SonarQube



supports more than twenty languages with about half of them
being available at no cost. For all the languages, SonarQube
provides their own SCA tool that looks for weaknesses and
collects metrics. For four of the languages, additional add-on
tools are available from the SonarQube marketplace with some
incurring an additional fee. Unlike Jenkins, the software is not
built and assessed on the SonarQube server. Instead Sonar-
Qube requires the user to run a language specific SonarQube
Scanner on another host. The Scanner installs (for most tools)
and runs the SCA tool, and afterwards uploads the results to
the SonarQube server for viewing. The Scanner manages much
of the complexity of installing and running an SCA tool.

Ready-to-use support for running SCA tools in Travis CI is
limited. The only tool is Coverity Scan [34], and only if your
software meets Coverity’s eligibility requirements.

VI. CONCLUSION

Since 2012, the SWAMP has been promoting the inclusion
of software assurance as an intrinsic part of the software
development process. We introduced the idea of continuous
assurance as a natural extension of the continuous integration
process. The key has been to not only integrate the use of
assessment tools into the development process, but to do so in
a way that reduce the obstacles faced by the programmer. By
doing so, we reward the programmer for using such tools and
create an environment where software assurance is considered
natural and essential. Note that all the software components
produced by the SWAMP project are open source, so as to
encourage the broadest adoption of these practices in both
the commercial and research communities. This is an ongoing
process and we (and many other groups) continue to strive
to develop new ways to streamline the inclusion of software
assurance into the development process.

ACKNOWLEDGMENTS

This work was supported in by U.S. Department of Home-
land Security under AFRL Contract FA8750-12-2-0289. We
are grateful to Miron Livny, James Basney, and Von Welch
for their feedback and comments, and for the efforts and
support of the entire SWAMP team at the Computer Sciences
Department at the University of Wisconsin, the University
of Illinois, the Morgridge Institute of Research, and Indiana
University.

We appreciate the thoughtful comments and suggestions
on our early manuscript from Kevin Greene (SWAMP DHS
Project Sponsor).

REFERENCES

[1] Software Assurance Marketplace (SWAMP) Web Site, Software Assur-
ance Marketplace, https://www.continuousassurance.org/.

[2] J. F. Smart, Jenkins A definitive Guide: Continuous Integration for the
Masses. O’Reilly Media, July 2011, http://shop.oreilly.com/product/
0636920010326.do.

[3] Travis CI, Travis CI, GmbH, http://travis-ci.org/.
[4] W. W. Royce, “Managing the development of large software systems:

Concepts and techniques,” in Proceedings of the 9th International
Conference on Software Engineering, ser. ICSE ’87. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1987, pp. 328–338. [Online].
Available: http://dl.acm.org/citation.cfm?id=41765.41801

[5] T. E. Bell and T. A. Thayer, “Software requirements: Are they really
a problem?” in Proceedings of the 2Nd International Conference
on Software Engineering, ser. ICSE ’76. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1976, pp. 61–68. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800253.807650

[6] F. P. Brooks, Jr., The Mythical Man-month, anniversary ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[7] C. Larman and V. R. Basili, “Iterative and incremental development: A
brief history,” Computer, vol. 36, no. 6, pp. 47–56, Jun. 2003. [Online].
Available: http://dx.doi.org/10.1109/MC.2003.1204375

[8] B. W. Boehm, “A spiral model of software development and
enhancement,” Computer, vol. 21, no. 5, pp. 61–72, May 1988.
[Online]. Available: http://dx.doi.org/10.1109/2.59

[9] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Addison-Wesley Professional, 2004.

[10] J. Martin, Rapid Application Development. Indianapolis, IN, USA:
Macmillan Publishing Co., Inc., 1991.

[11] J. Shore and S. Warden, The Art of Agile Development, 1st ed. O’Reilly,
2007.

[12] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[13] Beck, Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[14] G. Booch, Object-Oriented Analysis and Design with Applications,
3rd ed. Redwood City, CA, USA: Addison Wesley Longman Publishing
Co., Inc., 2004.

[15] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[16] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[17] J. Davis and K. Daniels, Effective DevOps: Building a Culture of
Collaboration, Affinity, and Tooling at Scale, 1st ed. O’Reilly Media,
Inc., 2016.

[18] B. K. Jayaswal and P. C. Patton, Design for Trustworthy Software: Tools,
Techniques, and Methodology of Developing Robust Software. Prentice
Hall PTR, 2006.

[19] Eclipse IDE, The Eclipse Foundation, http://eclipse.org/.
[20] Eclipse Platform Technical Overview, International Business

Machines Corp., http://eclipse.org/articles/Whitepaper-Platform-3.
1/eclipse-platform-whitepaper.pdf.

[21] S. Holzner, Eclipse: Programming Java Applications. O’Reilly Media,
2004, http://shop.oreilly.com/product/9780596006419.do.

[22] IntelliJ IDEA, Jet Brains, https://www.jetbrains.com/idea/.
[23] J. Krochmalski, IntelliJ IDEA Essentials. Packt Publishing,

December 2014, https://www.packtpub.com/application-development/
intellij-idea-essentials.

[24] R. M. Stallman, R. McGrath, and P. D. Smith, GNU Make Reference
Manual, 2nd ed. Free Software Foundation, May 2016, https://www.
gnu.org/software/make/manual/make.pdf.

[25] Apache Ant Project, Apache Software Foundation, http://ant.apache.org/.
[26] Apache Maven, Apache Software Foundation, http://maven.apache.org/.
[27] J. Loeliger and M. McCullough, Version Control with Git: Pow-

erful tools and techniques for collaborative software development,
2nd ed. O’Reilly Media, August 2012, http://shop.oreilly.com/product/
0636920022862.do.

[28] C. M. Pilato and B. Collins-Sussman, Version Control with Subversion:
Next Generation Open Source Version Control. O’Reilly Media, June
2004, http://shop.oreilly.com/product/9780596004484.do.

[29] J. A. Kupsch, E. Heymann, B. Miller, and V. Basupalli, “Bad and
good news about using software assurance tools,” Software: Practice
and Experience, pp. n/a–n/a, 2016, spe.2401. [Online]. Available:
http://dx.doi.org/10.1002/spe.2401

[30] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
Dec. 1990. [Online]. Available: http://doi.acm.org/10.1145/96267.96279

[31] G. A. Campbell and P. P. Papapetrou, SonarQube in Action, November
2013, https://www.manning.com/books/sonarqube-in-action.

[32] Code Dx, Secure Decisions, https://codedx.com/.
[33] ThreadFix, Denim Group, https://www.threadfix.it/.
[34] Coverity Scan, Synopsis, https://scan.coverity.com/.


