Special Notices

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents.

The information contained in this document is distributed AS IS. Accordingly, the use of this information or the
implementation of any techniques described herein or any attempt to adapt these techniques to your own products
is done at your own risk.

This document contains information relating to technology that is still under development. IBM may or may not
decide to incorporate some or all of the information contained herein into future IBM products.

Dynamic Probe Class Library (DPCL):
Class Reference Manual

Version 0.3

March 25, 1999

Dr. Douglas M. Pase

email:pase@us.ibm.com

IBM Corporation
RS/6000 Development
522 South Road, MS P-963
Poughkeepsie, New York 12601

Copyright 1998 by IBM Corp.

Draft Document

Table of Contents

1.0 Function Group AisHandler 1
1.1 Supporting Data TYPESttt 1
1.1.1 AisHandlerType.o 1
L1.2Ais add fd. 2
1.3 AIs add _signal.o 3
LA AIS next fd 4
1.5 Ais_override_default_callback 5
1.6 AIs remove fd. 6
1.7 Ais_query signal. 7
1.8 Ais_remove signal e 8
2.0 Class AISStatUSot 9
2.1 Supporting Data TYPeS e 9
2.1.1 AISStatusCode 9
2.1.2 AISSeVerityCode 15
2.2 CONSIIUCIONS oot e e e e e 16
2.3 add data. e 17
2.4 data _COUNt 18
25 data value 19
2.6data value length e 20
2. P A0 = . . 21
2.8 operator AisStatusCode 22
2.9 operator INt. . .. 23
2. 00 SBVEIIY . . . ottt 24
2. 00 StatUS 5..... 2
2.12 StatuUS _NAME . . .o e 26
3.0 class Application 27
3.l CONSITUCIONS oot e e 27
3.2activate_probe 28
3.3 add_phase. 30
3.4 a0dd PrOCESS . v v ittt e 32
3.5alloc_mem 33
36attach 35.....
3.7 bactivate_probe 36
3.8badd_phase. 37
3.9 balloc_mem 39
30 battach 41
3. AL DCONNECT. . .o 42
3.12 bdeactivate_probe 43
3. A3 bAESIIOY . . .o 44
3.4 bdetach. 45

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

3.5 bdiSCONNECE e 46

3. 1B DEXECULEot 47
3.7 bfree _mem 48
3.18 binstall_probe. 49
3.19bload_module. 51
3.20bremove_phase 52
3.2l bremove _probe 53
3 22 BrESUME . . oo 55
3.23 bset_ phase_exXit 56
3.24 bset_phase period 58
3.25 bsignal - LY . ..o 59
326 bstart. 60.
327 bsuspend. 61
3.28 bunload_module. 62
3.20 CONNECT. . . . oo 63
3.30 deactivate_probe 64
3. 8L eSOy . . vttt 66
3.32detach. 67
3.33 dISCONNECEo 68
.34 BXECULE . . . o 69
335 e MemM . .. 71
3.36 gt COUNL e 72
.37 QBL _PIrOCESS. . . o ittt 73
3.38install_probe. 74
3.391oad_module. 76
.40 OPEIAIOr = . . 77
3.4l remove_phase 78
342 remoOVve_Probe 80
343 TEMOVE_PIOCESS . . . o o ettt et e e e e e e e e e 82
BAA TESUME . . . ot 83
345 send_Stdin 84
346 set_phase exit 85
3.47 set_phase_period e 88
348 signal - LY . oo 90
340 Start. . .. 91 ...
350 Status 2..... 9
3. 5L SUSPENd. . . .o 93
3.52 unload_module. 94
4.0class GenCallBack 95
4.1 Supporting Data TYPESo it 95
4.0.0 GCBSYSTYPE . . oottt 95
4.1.2 GCBTagTYPe. . oot 95

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

£.1.3 GCBODITYPE . . e o oot e e e e e 95

4.1.4 GCBMSOTYPE . o o 96
4.1.5 GCBFRUNCTYPE. . .ttt e e 96
5.0 class INStPoINt 97
5.1 Supporting Data TYPesSttt 97
5.1.1INStPLLOCALION 97
5.1 2 INStPtTYPe . . o 98
5.2 CONSHIUCIONSttt e e e 99
5.3get actuals 100
5.4 get Container e 101
5.5get_demangled_name 102
5.6 get demangled_name_length 103
D7 get liNe. ... 104
5.8 get_location 105
5.9get mangled name 106
5.10 get_ mangled name_length 107
0. 1L get tYPe . . . 108
5.2 O P aAIOr = . oo e 109
6.0 Function Group LOgSystem 110
6.1 Supporting Data TYPesSt 110
6.1.1 LoggingDest. 110
6.1.2 LoggingLevel. 110
6.2 Ais_blog Off 111
6.3 AIS Dlog ON. ... e 112
6.4 Ais_log Off 113
6.5 AIS 100 ON. 114
7.0 Class Phase 115
7.1 CONSHIUCIONS oo e e e e e e 116
7 2 OPIAlOr = o o 118
S T 0] 1= = 0 119
.4 Operalor 1= L 120
8.0 class PoeAppl : public Application 121
8.1 CONSIIUCIONS oot e 121
8.2 bCreate 122
8.3 DINIt_ProCs 125
B.A Create 7/....12
8.5 NIt _PrOCS . . . oo 131
8.6 send_Stdin 133
9.0class ProbeEXp e 134
9.1 Supporting Data TYPeS 134
9.1.1 Primitive Data TYPES e e 134
9.1.2 CodeEXpPNOdeTYPEo 135

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

0.2 CONSITUCIONS o o e e e e e e e e 138

0.3 addrESS . . .o 139
0.4 ASSIgN . . ot 0....14
9.5 call ..o 141. ..

9.6 get_data _type. 142
0.7 get_NOde _tyPe . .o e 143
0.8 NaS _* .. 144
9.01felse. 45...1
.10 1S _SAME _BS . . . ittt ettt 146
9.11 operator + (binary) 147
9.12 operator + (UNAIY) ov ittt e e e 148
0.8 0P aAlOr o, L o e 149
9.14 operator ++ (pPrefix) o 150
9.15 operator ++ (POSEiiX)ot 151
9.16 operator - (binary) e 152
.17 operator - (UNArY)ttt et e e e e 153
0.1 OPeIaAIOr = . . o o 154
9.19 operator -- (Prefix) 155
9.20 operator -- (POSfIX) 156
9.21 operator * (DINANY) oot e 157
9.22 operator * (UNAY)ttt e e ettt 158
0,23 OPeralOr . L . 159
0.24 0PEIatOr / . . o o 160
0.2 OperatOr /= . o o 161
0.26 0perator 00 . . .ot e 162
0.27 OPEeratOr J0= 163
0,28 OPEraAlOr =, . . e 164
0.2 OPEralOr ==, . . e 165
0.30 0Operator | . .. 166
0.3l 0perator 1= . o 167
0,32 OPeraAlOr <. . it e 168
0.33 0P eraAlOr <=, . oot 169
0.34 OPEraAlOr <. L ittt 170
0,30 OperatOr <<= L 171
0.36 OPBIaAtOr >. . . . 172
0. 37 O P A0l >, L 173
0.38 OperatOr >>. 174
0.30 OperatOr >>= 175
9.40 operator & (binary) 176
9.41 operator & (UNArY) . . . o oottt e e e e e e e 177
0.42 OPeIAtOr &= . . . 178
0. 43 0pPerator && oot e 179

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

vi

.44 OPeIatOr | . .ottt 180

0.45 OPEIAIOr [= . o ottt 181
.46 Operator ||ot 182
0.4 7 OPEralOr M . L 183
0.48 OperalOr A= 184
0,40 OPEIaAIOr ~ . . oot e 185
9.50 0perator [|. . . oo v 186
.51 SEQUENCE. ittt ettt 187
0. 52 value *. . . . 188
0,53 value teXt. 189
9.54 value text length. 190
10.0 class ProbeHandle 191
10.1 CONSHIUCTIOISottt e e e 191
10.2 get_eXPreSSION . . o ottt e 192
10.3 gt POINt 193
10.4 OperalOr =. . .o 194
11.0class ProbeModule 195
11.1 CONSHIUCIONS et e e e e e e e 195
11,2 get COUNt . ..o e 197
11.3 gt NAME 198
11.4get name length 199
10 S OperalOr =, . o e 200
11,6 OPeralOr ==, . . o 201
10,7 Operator 1= L 202
11.8t0 _probe exp 203
12.0 class ProbeType e 204
12.1 Supporting Data TYPeS 204
12.1.1 DataExXpNodeType.o e 204
12.2 CONSHIUCIONSottt e e e e e e 206
12.3child . .. 7...20
124 child_count. e 208
12, 5 fUNCHON LY P . . o ot 209
12.6 g€t NOde tYPe . ..o 210
12, 7 N3 Y P . oot 211
12,8 OperalOr =. . . o 212
12,0 OPEraAlOr =, L e 213
12,00 operator 1= 214
12,00 POINtEr By P . . o e ettt 215
12,02 Stack-LY . .. 216
12.13 unspecified_type 217
13.0 Class ProCeSSo 218
13.1 Supporting Data TYPeSot 218

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc vii

13.1.1 CoNNECESTAate o 218

13.2 CONSHIUCIONS et e e 218
13.3 activate_probe 220
134 add _phase. o 222
13.5alloc mem 224
136 attach 226
13.7 bactivate_probe 227
13.8 badd_phase. 228
139 balloc_ mem 230
13. 10 battach 231
13. 11 BCONNECT.o 232
13,12 DCreate . . . oottt 233
13.13 bdeactivate_probe 236
13,14 DAESIIOY . . . oo 237
13,05 bdetach. 238
13.16 bdiSCONNECT 239
13,17 DEXECULE . . . ot 240
13.18 bfree_mem e 241
13.19 binstall_probe. 242
13.20 bload_module. 244
13.21 breadmem - LY 245

13.22 bremove _phase e 246
13.23 bremove_probe 247
13,24 DreSUME . . o oot 248
13.25 bset_ phase exit e 249
13.26 bset_phase_period 251
13,27 bsignal - LY 252

13,28 bstart.o 253
13.29 bSUSPEN. e 254
13.30 bunload_module. 255
13.31 bwritemem -LY 256

13.32 CONNECE. . ..ot 257
13.33 Create 258
13.34 deactivate_probe 262
13,35 deStrOY . . o oo 264
13,36 detach. 265
13.37 diSCONNECTt 266
13,38 BXECULE i 267
13,39 free _MemM 269
13.40 get_ hoSt_ Name. oo 271
13.41 get host name length. 272
13.42 get pid oo 273

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc viii

13.43 get_phase _period. ... 274

13.44 get_program_oODbject. 275
1345 get task 276
1346 install_probe. 277
1347 load_module. 279
1348 OPeralOr =. . oo e e 281
1349 query State. 282
13.50 readmem - LY 283
13,51 remove _Phaset 285
13.52remove_probe 287
13 53 rBSUME . . 289
13.54 send _Stdin 290
13.55set phase exit e 291
13.56 set_phase_period 294
13,57 signal - LY 296
1358 start. e do 00029
13.59 SUSPEN.o 298
13.60 unload_module. 299
13,61 writemem - LY. . .. 301
14.0 class SourceObj 303
14.1 Supporting Data TYPeS 303
14,00 ACCESS . . ittt 303
14.2.2 BINdiNG. . . . oot 303
14.2.3LPMOdEL ..o 304
14,04 SOUICETY P . ittt 304
14.2 CONSHIUCIONS . . o . it e e e e e e 305
14.3address_end 306
144 address_Start. e 307
145 bexpand 308
14.6child 9...30
147 child_count. e 310
14.8 exCIUSIVE_POINt 311
14.9 exclusive_point_CoUNt.t e 312
14.10 eXpando 313
14,11 gL _ACCESS . . .ottt e 314
14.12 get binding 315
14.13 get_data type. . .. oo 316
14.14 get_demangled_name 317
14.15 get_ demangled_name_length 318
14.16 get_mangled_name 319
14.17 get_mangled_name_length 320
14.18 get_program _tyPet 321

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

14.19 get variable_ name. 322

14.20 get_variable_name_length. L. 323
14.210nClusSiVe_PoiNt.ot 324
14.22 inclusive_point_Ccount 325
14.23 library_name 326
14.24 library_ name length 327
14.25line_end 328
14.26 liNe_Start.o 329
14.27 module_Name. 330
14.28 module_name _length. 331
14.29 Ob)_parento 332
14,30 OPeralOr =. . oot 333
14, 3L OPeralOr ==, L o 334
14,32 operator 1= . . . 335
14.33 Program_NaAME . . .o oottt e e e e e 336
14.34 program_name_length. 337
14.35ref o probe _eXp. 338
14,36 SIC IYPE . o 339
15.0 Miscellaneous FUNCLIONS e 340
I5.1AIs dnitializeo 340
15.2 Ais_end_main_loop. . ..o oo ittt 341
153 AIS Main_l0o0p. . . oot 342
15.4 Ais_override_default_callback 343
16.0 Predefined Global Variables 344
16.1 AIS DEFAULT _CB ... oot 344
16.2 AIS ERROR_MSG. e 344
16.3AIS EXIT _MSG . .. 345
16.4 Ais_msg_handle. 346
16.5 AiS _SENd. 346
16.6 AIS_OUTPUT_MSG.t e e 347
16.7 AIS_PROC_TERMINATE_MSG. e 347
INdEX . 9...34

3/25/99 Draft, Copyright 1998 by IBM Corp. refTOC.doc

Function Group AisHandler Draft

1.0 Function Group AisHandler

1.1 Supporting Data Types

1.1.1AisHandlerType

Synopsis

#include <AisHandler.h>

typedef int (*AisHandlerType)(int fd_or_sig)
Description

This data type represents a function pointer that points to an event handler that is called when
a noteworthy event takes place. Noteworthy events occur when a file descriptor managed by
the instrumentation system receives input, clears space for output, or a signal managed by the
instrumentation system has been raised.

The function returns an integer value with the following meaning. If the mechanism that gen-
erated the event is a file descriptor and the file descriptor reaches an end-of-file condition, the
handler function is to return a value of -1. This indicates to the system that the file descriptor is
to be closed and removed from the list of watched file descriptors. If the returned value is any
other value than -1 or the event that occured was a signal, the return value is ignored.

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 1

Function Group AisHandler Draft

1.2 Ais add fd

Synopsis

#include <AisHandler.h>
AisStatus Ais_add_fd(int fd, AisHandlerType handler)

Parameters

fd file descriptor

handler function handler for this socket
Description

Add a file descriptor and input handler to the list of file descriptors managed by the instrumen-
tation system. When input is received by the file descriptor, the handler is called to handle the
input. The handler is expected to accept the file descriptor as its input parameter.

Return value

ASC_success request successful
ASC_operation_failed request failed
See Also

Ais_add_signal, Ais_next_fd, Ais_remove_fd, Ais_remove_signal

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 2

Function Group AisHandler Draft

1.3 Ais add signal

Synopsis

#include <AisHandler.h>
AisStatus Ais_add_signal(int signal, AisHandlerType handler)

Parameters

signal signal to be caught

handler function handler for this signal
Description

Add a signal and signal handler to the list of signals managed by the instrumentation system.
When a signal is received, the handler is called to handle the signal. The handler is expected to
accept the signal as its input parameter. The instrumentation system ensures that signals regis-
tered with the instrumentation system will not interfere with its system calls. Signal handlers
executed by the instrumentation system are executed on the normal application stack. In the
event that multiple signals occur while a signal handler is being executed, the executing han-
dler is completed before the next handler is begun. This provides a measure of safety for oper-
ations that are normally considered unsafe for signal handlers, such as memory allocation.

Return value

ASC_success request successful
ASC_duplicate_signal attempt to add a handler for a signal that already has a han-
dler
ASC_invalid_operand attempt to add a handler for a signal which does not exist
ASC_operation_failed system call to add a signal failed
See Also

Ais_add_fd, Ais_next_fd, Ais_remove_fd, Ais_remove_signal

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 3

Function Group AisHandler Draft

1.4 Ais next fd

Synopsis

#include <AisHandler.h>
void Ais_next_fd(int &fd_or_sig, AisHandlerType &handler)

Parameters

fd_or_sig file descriptor or signal number

handler file descriptor or signal handler function
Description

Return the file descriptor or signal number and associated handler of the next event to occur.
See Also

Ais_add_fd, Ais_add_signal, Ais_remove_fd, Ais_remove_signal

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 4

Function Group AisHandler Draft

1.5Ais override default callback

Synopsis
#include <AisHandler.h>

AisStatus Ais_override_default_callback(unsigned msg_type,
GCBFuncType fp_arg, GCBTagType tag_arg, GCBFuncType *prev_fp,
GCBTagType *prev_tag)

Parameters
msg_type message key
fp_arg new callback function
tag_arg new callback tag
prev_fp previous callback function
prev_tag previous callback tag
Description

Replace the system callback associated with an event and replace with a new, user-specified
callback. Candidate events for replacement in this fashion are AIS_EXIT_MSG,
AlIS_ERROR_MSG, and AIS_DEFAULT_CB. The callback and tag values that were associ-
ated with the specified event are returned to the user.

Return value

ASC_success request successful
ASC_operation_failed request failed
See Also

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 5

Function Group AisHandler Draft

1.6 Ais remove fd

Synopsis

#include <AisHandler.h>

AisStatus Ais_remove_fd(int fd)
Parameters

fd file descriptor
Description

Remove a file descriptor from the list of descriptors the instrumentation system manages. The
file descriptor is unaffected by this operation, that is, it is neither closed nor flushed.

Return value

ASC_success request successful
ASC_operation_failed request failed
See Also

Ais_add_fd, Ais_add_signal, Ais_remove_fd, Ais_remove_signal

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 6

Function Group AisHandler Draft

1.7 Ais gquery signal

Synopsis

#include <AisHandler.h>

AisHandlerType Ais_query_signal(int signal)
Parameters

signal signal for which handling is to be removed
Description

This function returns a pointer to the signal handler function for the specified signal, or O if
there is none.

Return value

A pointer to the signal handler function for the specified signal if there is one. Otherwise O if
there is no handler or the signal parameter does not represent a valid signal.

See Also

Ais_add_fd, Ais_add_signal, Ais_next_fd, Ais_remove_fd

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 7

Function Group AisHandler Draft

1.8 Ais remove signal

Synopsis

#include <AisHandler.h>

AisStatus Ais_remove_signal(int signal)
Parameters

signal signal for which handling is to be removed
Description

Remove a signal and signal handler from the list of signals the instrumentation system man-
ages. A previous handlernstrestored for this signal.

Return value

ASC_success signal handler was successfully removed, or there was no
handler to be removed
ASC _invalid_operand attempt to remove a handler for a signal that does not exist
ASC_operation_failed system call to delete a signal failed
See Also

Ais_add_fd, Ais_add_signal, Ais_next_fd, Ais_remove_fd

3/25/99 Copyright 1998 by IBM Corp. AisHandler.chp 8

class AisStatus Draft

2.0 class AisStatus

2.1 Supporting Data Types

2.1.1AisStatusCode

Synopsis

#include <AisStatus.h>

AisStatusCode {
ASC_success, Il success
ASC failure, /[failure

ASC _insufficient._memory, // insufficient memory
ASC_invalid_expression, // invalid expression

ASC invalid_value_ref, // invalid value reference
ASC invalid_internal_tree, // invalid internal tree

ASC _invalid_src_code_tree, // invalid source code tree
ASC _invalid_constructor, // invalid constructor

ASC _invalid_operator, // invalid operator
ASC_invalid_operand, // invalid operand
ASC_operation_failed, /I operation failed
ASC_empty_ object, /I empty object

ASC_actual_point_mismatch, // probe containing one-shot
installed at

// wrong point

ASC_contains_actual, I/l one-shot must not contain
actual param

ASC_contains_data_ref, // one-shot must not contain

data refs
ASC _unknown_status, // unknown status
I
ASC internal_error, Il internal error
I

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp

class AisStatus Draft

ASC _exist_pid, I exist pid

ASC _invalid_pid, /l invalid pid
ASC_terminated_pid, /l terminated pid
ASC_no_procsinfo, /I no procsinfo available

ASC_not_runnable_pid, /[not a runnable pid
ASC_authorization_failed, // authorization failed
ASC _dead_code, /l dead code
ASC_duplicate_signal, /l duplicate signal

ASC_signal_not_found, /l signal not found
ASC_null_pointer, I/ null pointer

ASC _install_failed, /I install failed
ASC_remove_failed, /I remove failed
ASC _activate_failed, /[activate failed

ASC_deactivate_failed, // deactivate failed
ASC_communication_failure, // communication failure

ASC _uninitialized_process, // uninitialized process
ASC_uninitialized_daemon, // uninitialized daemon
ASC_non_positive_value, // non-positive value
ASC_missing_phase_str, // missing Phase_Str object
ASC_remove_msgh_failed, // remove message handle failed
ASC_missing_pmod, /I missing PModEntry object

ASC_missing_bp_func, /I missing BPatch_function
object

ASC create_msgh_failed, // create message handle failed
ASC_missing_predef_func, // missing predefined function
ASC_create _phase_failed, // create PhaseEntry failed

ASC_missing_phase, // missing PhaseEntry object

ASC_phase_exit_done, // PhaseEntry’s exit funcs are
done

ASC_bad_processd, // bad ProcessD object

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 10

class AisStatus

Draft

ASC invalid_phase, /[invalid phase
ASC_duplicate_shm_init, // duplicate shm init
ASC_shm_init_failed, // shm init failed

ASC_shmat_failed, // shmat failed
ASC_shmget _failed, /I shmget failed
ASC_shmdt_failed, // shmdt failed
ASC_shmctl_failed, /I shmctl failed

ASC_shm_object_alloc_failed,// shm object alloc failed
ASC_shm_block_alloc_failed, // shm block alloc failed
ASC_mismatch_pid, / mismatched pid

ASC _shm_attach _failed, // shm attach failed
ASC_msg_init_failed, // *msg init failed
ASC_msg_read_failed, /l msg read failed
ASC_shm_verify_failed, // shm verify failed

ASC invalid_client, // invalid client
ASC_duplicate_phase, /l duplicate phase

ASC _irpc_failed, /I IRPC failed
ASC_phase_null_data_func, // phase has a null data_func

ASC phase_malloc_data_failed, // malloc data for a phase
failed

I/l process related
ASC_missing_aout, // missing a.out file
ASC_destroyed_process, // process has been destroyed
ASC_disconnecting_process, // process is disconnecting
ASC_duplicate_create, /I duplicate create
ASC_duplicate_connect, // duplicate connect
ASC_duplicate_attach, // duplicate attach

ASC_duplicate_start, // start can only be issued once
after create

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp

11

class AisStatus Draft

ASC initialized_process, /I create does not want process
initialized with pid

ASC _bad_path, /l path parm NULL, empty or too
long

ASC bad_remote_stdin_filename, // remote_stdin_filename
has length 0 or is too long

ASC _bad_remote_stdout filename, // remote_stdout_filename
has length 0O or is too long

ASC_bad_remote_stderr_filename, // remote_stderr_filename
has length 0 or is too long

ASC_no_daemon_fd, / daemon could not get an fd to
talk with created app

ASC _bad_rem_infile_open, // daemon could not open remote
stdin filename

ASC_bad_rem_outfile_open, // daemon could not open remote
stdout filename

ASC_bad_rem_errfile_open, // daemon could not open remote
stderr filename

ASC_process_nhot_created, //this process was not created
using Process::create

ASC_process_not_attached, // this process is not
currently attached

ASC remote_stdin_file, // cannot send_stdin(), remote
stdin filename was specified

ASC_no_destroy_from_connected, // cannotissue destroy
when in connected state

ASC_no_suspend_when_not_running, // cannot suspend
process that is not running

ASC_no_resume_when_running, // cannot resume process
that is running

ASC_no_sus_res_from_created, /[cannot suspend or
resume process from created state

ASC_no_sus_res_from_connected, // cannot suspend or
resume process from created state

3/25/99

Copyright 1998 by IBM Corp. AisStatus.chp 12

class AisStatus Draft

ASC _no_connect_from_created, /I cannot create
existing connected process

ASC_no_disconnect_from_created, // can issue start,
attach, destroy from created state

ASC_no_detach_from_created, /I can issue start,
attach, destroy from created state

ASC _no_detach_from_connected, // can issue attach,
disconnect from connected state

ASC_no_create_from_connected, // cannot create process
from connected state

ASC_no_create_from_attached, // cannot create process
from attached state

ASC _no_start_from_connected, /l cannot start process
from connected state

ASC_no_start_from_attached, /l cannot start process
from attached state

/I PoeAppl related

ASC_appl_has_no_procs, /l the application
contains no processies

ASC_empty_att_cfg_file, // found an empty attach
config file

ASC_bad_att cfg_version, /[error parsing version

in attach config file

ASC_bad_att cfg_numtask, /[error parsing number
of taks in attach config file

ASC _bad_att cfg_task, Il error parsing a task
number in attach config file

ASC_bad_att cfg_ipaddr, /I error parsing hte ip
address in the attach config file

ASC_bad_att cfg_hostname, /I error parsing the
hostname in attach config file

ASC_bad_att _cfg_pid, Il error parsing the pid
in attach config file

3/25/99

Copyright 1998 by IBM Corp. AisStatus.chp 13

class AisStatus Draft

ASC bad_att cfg_sid, /l error parsing the sid
in the attach config file

ASC_bad_att cfg_progname, /Il error parsing the
progname in the attach config file

/I module related
ASC_module_not_found, /l module not found
ASC_module_already_loaded, // module already loaded
ASC_module_already unloaded,// module already unloaded

ASC_module_invalid, /l module invalid
ASC_not_expansible, /I source object not expansible
ASC_expand_failed, /I source object expand failed

/I SD-Daemon

ASC_daemon_communication_error, // daemon
communication error

ASC _daemon_create_error, // daemon create error

ASC_child_failed, /I child failed
ASC _child_fork_failed, // child fork failed
ASC_exec_failed, Il exec failed

ASC_failed_rhost_check, // failed rhost check
ASC invalid_security_string, // invalid security string

ASC bad_userid, /l bad userid

ASC_bad_groupid, // bad groupid

ASC root_not_allowed, /I root not allowed

ASC_identd_failed, // identd failed

ASC_security_init_failed, // security initialization
failed

ASC_security_failure, /I security failure
ASC_no_access_allowed, // no access allowed

ASC_no_credentials, // no credentials

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 14

class AisStatus

Draft

ASC_LAST_STATUS_VALUE
|

Description

2.1.2 AisSeverityCode

Synopsis
#include <AisStatus.h>
enum AisSeverityCode {

ASC_information, Il
ASC_attention, /l
ASC error, I
ASC_severe, Il
ASC LAST SEVERITY_VALUE
}
Description

3/25/99 Copyright 1998 by IBM Corp.

AisStatus.chp

15

class AisStatus Draft

2.2 Constructors

Synopsis
#include <AisStatus.h>
AisStatus(
AisStatusCode status = ASC_success,
AisSeverity severity = ASC_information)
AisStatus(const AisStatus ©)

Parameters
status Valid values are 0 codeASC _LAST _STATUS VALUE
severity Valid values are 0 codeASC _LAST_SEVERITY_VALUE
Description

Class constructor. This constructor initializes the object to reflect the specific status and sever-
ity codes.

Exceptions

An exception of typdisStatus with valueASC _invalid_constructor and severity
ASC_attention s raised if the code is not a valkisStatusCode value or the severity
is not a validAisSeverityCode

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 16

class AisStatus Draft

2.3add data

Synopsis

#include <AisStatus.h>

void add_data(const char *data) const
Parameters

data a pointer to a character string representation of the data.
Description

This function adds one data value to the list of data associated with this condition.
See Also

data_count, data_value, data_value_length

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 17

class AisStatus Draft

2.4data count

Synopsis

#include <AisStatus.h>

int data_count(void) const
Description

This function returns the number of data values associated with this condition.
Return value

The count of data values reflected in the object.

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp

18

class AisStatus Draft

2.5data wvalue

Synopsis
#include <AisStatus.h>
char *data_value(int i, char *buffer, unsigned int len) const

Parameters
[index value
buffer caller-allocated buffer to hold the data value
len maximum number of bytes the function will placebirffer . The
len parameter should include enough space for a terminatihg
byte.
Description

A null-terminated string representation of tHB data value will be placed at the location
specified bybuffer . The value may be truncated if tlee@ parameter is smaller than the
length of the data value.

Return value

If the index is valid, that is, ® <data_count (), then a pointer tbuffer , which will
contain at mosen bytes of the data value.

0 if the index is not valid.
See Also

data_count, data_value_length

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 19

class AisStatus Draft

2.6data wvalue length

Synopsis

#include <AisStatus.h>

unsigned int data_value_length(int i) const
Parameters

i index value
Description

This function returns the length, including the terminatintj byte, of the string representa-
tion of thei ™ data value.

Return value

If the index is valid, that is, ® <data_count (), then the length of thie" data value.
0 if the index is not valid.

See Also

data_count, data_value

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 20

class AisStatus Draft

2.7 operator =

Synopsis
#include <AisStatus.h>
AisStatus &operator = (const AisStatus ©) const
Parameters
copy object to be copied in the assignment
Description
This function copies the right hand side of the assignment expression over the left hand side.
Return value

A reference to the copied object, which is the left hand side of the assignment or the invoking
object, depending upon the perspective.

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 21

class AisStatus Draft

2.8 operator AisStatusCode

Synopsis

#include <AisStatus.h>

operator AisStatusCode(void) const
Description

Cast function. This function returns the status code reflected in the object.
Return value

The status code in the object, of data tymStatusCode

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp

22

class AisStatus Draft

2.9 operator int

Synopsis
#include <AisStatus.h>
operator int(void) const
Description

Cast function. This function returns the integer equivalent of the status code reflected in the
object. A status value of zero reflects a “normal” status.

Return value

Integer equivalent of the status valdisStatusCode , and zero reflects “normal” status.

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 23

class AisStatus Draft

2.10severity

Synopsis

#include <AisStatus.h>

AisSeverityCode severity(void) const
Description

Explicit severity function. This function returns the severity code reflected in the object.
Return value

The severity code in the object, of data t¥eSeverityCode

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 24

class AisStatus Draft

2.11status
Synopsis
#include <AisStatus.h>
AisStatusCode status(void) const
Description
Explicit status function. This function returns the status code reflected in the object.
Return value

The status code in the object, of data tymStatusCode

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 25

class AisStatus Draft

2.12status name

Synopsis

#include <AisStatus.h>

const char *status_name(void) const
Description

This function returns the name of the status code reflected in the object. The name is in Amer-
ican English, and the string is stored in a constant array within the function. This function is
intended only for limited diagnostic use during tool development.

Return value

The name of the status code in the object, of datactype*

3/25/99 Copyright 1998 by IBM Corp. AisStatus.chp 26

class Application Draft

3.0 class Application

The Application class allows grouping a set of processies so that they can be acted upon together.
This class contains a similar set of functions to the process class. Executing an application class func-
tion is generally the same as exuction the same function for each of the processies grouped within the
Application class.

3.1 Constructors

Synopsis

#include <Application.h>

Application(void)

Application(const Application ©)
Parameters

copy object to be copied into the né\pplication object
Description

Default constructor.

The copy constructor uses the values contained iodpye argument to initialize the new
(constructed) object.

Note: What functions in this base class should be virtual? All of them? None?
Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.
AisStatus ??7?

3/25/99 Copyright 1998 by IBM Corp. Application.chp 27

class Application Draft

3.2 activate probe

Synopsis

#include <Application.h>
AisStatus activate probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probe expressions in the list to be activated
phandle array of probe handles, one for each probe expression to be activated
ack cb fp acknowledgement callback function to be invoked each aiharobe
expressions in the array have been activated (or activation fails) within
a process
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function activates a list of probes that have been installed within an application. The acti-
vation is atomic in the sense that all probes are activated or all probes fail to be activated for
any given process within the application. Some processes within the application may success-
fully activate the probes while other processes fail, but within a process either all probes are
successfully activated or none are activated. Probes are activated independently across pro-
cesses, that is, there is no synchronization to ensure that the probes are activated in all pro-
cesses at the same time.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thél element of the
array is a handle, or identifier, that identifies fA@iobe expression.

To activate a set of probes the processes must have been previously connected, and the probes
must have been previously installed in those processes.

Note thatactivate probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the probes have been activated or failed to be
activated in all processes within the application. The acknowledgement callback function
receives notification of the success or failure of the activation. The callback is activated once
for each process within the application.

3/25/99

Copyright 1998 by IBM Corp. Application.chp 28

class Application Draft

Return value

The return value indicates whether the requests for activation were successfully submitted, but
indicates nothing about whether the requests themselves were successfully executed.
ASC_success all activations were successfully submitted
ASC_?7??

Callback Data

The callback function is invoked once for each process for which a probe activation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisStgtes

which contains one of the following status values:

ASC_success probes were successfully activated on this process
ASC_operation_failed attempt to activate these probes in this process failed
See Also

bactivate probe, bconnect, bdisconnect, bprobe deactivate,
bprobe_install, class Process, connect, disconnect,
GCBFuncType, probe_deactivate, probe_install.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 29

class Application Draft

3.3add phase

Synopsis

#include <Application.h>
AisStatus add_phase(
Phase ps,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

AisStatus add_phase(
Phase ps,
ProbeExp init_func,
GCBFuncType init_cb_fp,
GCBTagType init_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
ps data structure local to the client containing the characteristics of the
phase to be created
init_func initialization function that is executed once within the application when
the phase is installed
init_cb_fp callback function to handle messages from the initialization function
init_cb_tag tag to be used with the initialization callback function
ack cb fp acknowledgement callback function to be invoked each time the phase
has been created within a process
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function adds a new phase structure to each connected process within the application. A
processnustbe connected in order to add a new phase. The phase does not execute for the
first time until the amount of time indicated by the phase period has elapsed, starting from the
time the phase is added to the process.

Note thatadd_phase returns control to the caller immediately upon submitting all requests
to the daemons. It does not wait until the phase has been installed or failed to be installed in all

3/25/99 Copyright 1998 by IBM Corp. Application.chp 30

class Application Draft

processes within the application. The acknowledgement callback function receives notifica-
tion of the success or failure of the installation. The callback is activated once for each process

within the application.
The initialization function must be loaded into the application before this operation may take
place. The function prototype for the initialization function is:

void init_func(void *msg_handle)
Return value

The return value indicates whether the requests for phase addition were successfully submit-
ted, but indicates nothing about whether the requests themselves were successfully executed.

ASC_success all phase additions were successfully submitted
ASC_operation_failed attempt to add a phase to some process failed, perhaps
because the process is not connected

Callback Data

init_cb_fp . This callback function is invoked each time the corresponding function in the
process instrumentationinit_func -- sends a message to the client. The message format

is determined by the function that sends the message.

ack _cb_fp . The callback function is invoked once for each process for which a phase addi-
tion is requested. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request statug\isStgpe

tus , which contains one of the following status values:

ASC_success phase was successfully added to this process
ASC_operation_failed attempt to add a phase to this process failed, perhaps
because the phase is already added to the process

See Also

badd_phase, bconnect, bdisconnect, class GenCallBack, class
ProbeMod, class Process, connect, disconnect, GCBFuncType,
GCBTagType, Process::alloc_mem, Process::free_mem.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 31

class Application Draft

3.4add_process

Synopsis

#include <Application.h>

AisStatus add_process(const Process *p)
Parameters

p process to be added to the application
Description

This function adds a process to the set of processes managed by the application. This opera-
tion acts locally within the end-user tool. It does not attempt to connect to the process. The
process state (e.g. connected or attached) is not required to match the state of all other pro-
cesses within the application.

The index of a process is not guaranteed to remain invariant when new processes are added to
or removed from an application. The index does remain invariant otherwise.

Return value

The return value indicates whether the process addition was successful.

ASC_success process was successfully added
ASC_operation_failed attempt to add this process to this application failed
See Also

connect, bconnect, bdisconnect, disconnect, remove_process.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 32

class Application

Draft

3.5alloc mem

Synopsis

#include <Application.h>

ProbeExp alloc_mem(

ProbeType pt,

void *init_val,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag,
AisStatus &stat)

ProbeExp alloc_mem(

ProbeType pt,

void *init_val,

Phase ps,

GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag,
AisStatus &stat)

Parameters

pt
init_val

ps
ack cb_fp
ack cb_tag

stat

Description

data type of the allocated data

pointer to the initial value of the allocated data, or O if no initial value is
desired

phase that will contain the allocated data
callback function to process acknowledgement messages

tag to be used as an argument to the acknowledgement callback when it
is invoked

output value indicating the completion status of the function

This function allocates a block of probe data in each process in the application. It returns a
single probe expression that may be used to reference the allocated data. The data may be ref-
erenced in a probe expression that may be installed in any or all of the application processes
where the data is allocated.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 33

class Application Draft

Note thatalloc_mem returns control to the caller immediately and does not wait until it has
either succeeded or failed on all of the processes within the application. The probe expression
representing the allocation is returned immediately whether or not the allocations succeed.

The returned probe expression may be used as a data reference on any process where the allg
cation succeeds. If the data reference is used in another probe expression and the client
attempts to install that probe expression in a process where the allocation failed, that probe
expression will fail to install. Similarly, installation will fail if one attempts to install the probe

in a process where the data was not allocated.

Stat indicates whether all requests for allocation were successfully submitted. If all requests
are successfully submittetiat is given the valuASC_success . If some request cannot

be submitted thestat is given the valuASC_operation_failed . It reflects the high-

est severity encountered.

Return value

A probe expression that may be used as a valid reference to the data on any process in which
the data has been successfully allocated.

Callback Data

The callback function is invoked once for each process for which data allocation is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éis@tatus , which con-

tains one of the following status values:

ASC_success data was successfully allocated in this process
ASC_operation_failed attempt to allocate data in this process failed
See Also

bfree_mem, balloc_mem, free_mem, status

3/25/99

Copyright 1998 by IBM Corp. Application.chp 34

class Application Draft

3.6 attach

Synopsis

#include <Application.h>
AisStatus attach(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with each successful or failed attach-
ment to a process listed within the application.
tag callback tag to be used as a parameter to the callback each time the call-
back function is invoked.
Description

Attach to all processes within an application. When multiple tools are connected to a process
or application, only one tool can be attached at a time. Attaching to a process or application
allows the tool to control the execution directly such as, suspending and resuming execution.
Processes must first be connected or created before they can be attached.

Note thatattach returns control to the caller immediately upon submitting all requests to

the daemons. It does not wait until all processes within the application have attached or failed
to attach. The acknowledgement callback function receives notification of the success or fail-
ure of the activation. The callback is activated once for each process within the application.

Return value

The return value foattach indicates whether the requests were successfully submitted, but
indicates nothing about whether the requests themselves were successfully executed.

ASC_success all requests to attach were successfully submitted

ASC_operation_failed attempt to request attachment to some process failed, per-
haps because the process is not connected

Callback Data

The callback function is invoked once for each process for which an attach is requested. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtypwatus , which contains one

of the following status values:

ASC_success process was successfully attached
ASC_operation_failed attempt to attach to this process failed
ASC_duplicate_attach already attached

See Also

battach, bdetach, detach

3/25/99

Copyright 1998 by IBM Corp. Application.chp 35

class Application Draft

3.7 bactivate probe

Synopsis

#include <Application.h>

AisStatus bactivate probe(short count, ProbeHandle *phandle)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated
Description

This function activates a list of probes that have been installed within an application. The acti-
vation is atomic in the sense that all probes are activated or all probes fail to be activated for
any given process within the application. Some processes within the application may success-
fully activate the probes while other processes fail, but within a process either all probes are
successfully activated or none are activated. Probes are activated independently across pro-
cesses, that is, there is no synchronization to ensure that the probes are activated in all pro-
cesses at the same time.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thél element of the
array is a handle, or identifier, that identifies fA@iobe expression.

To activate a set of probes the processes must have been previously connected, and the probes
must have been previously installed in those processes.

Note that the function submits the requests to activate the probes and waits until the requests
have completed. The functidpplication::status(intindex) may be queried to
determine whether the operation succeeded or failed on any given process.

Return value

The return value indicates whettad of the requests for activation were successfully exe-
cuted. The return value reflects the highest severity encountered across all processes.

ASC_success all activations were successfully completed
ASC_operation_failed one or more of the activations failed
See Also

activate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, connect, disconnect, probe_deactivate,
probe_install.

3/25/99

Copyright 1998 by IBM Corp. Application.chp 36

class Application Draft

3.8badd phase

Synopsis

#include <Application.h>
AisStatus badd_phase(Phase ps)
AisStatus badd_phase(
Phase ps,
ProbeExp init_func,
GCBFuncType init_cb_fp,
GCBTagType init_cb_tag)

Parameters
ps data structure local to the client containing the characteristics of the
phase to be created
init_func initialization function that is executed once within the application when
the phase is installed
init_cb_fp callback function to handle messages from the initialization function
init_cb_tag tag to be used with the initialization callback function
Description

This function adds a new phase structure to each connected process within the application. A
processnustbe connected in order to add a new phase. The phase does not execute for the
first time until the amount of time indicated by the phase period has elapsed, starting from the
time the phase is added to the process.

Note that the function submits the requests to add the phase and waits until the requests have
completed. The return value indicates whe#ikeof the requests were successfully executed.

The functionApplication::status(int index) may be queried to determine

whether the operation succeeded or failed on any given process.

The initialization function must be loaded into the application before this operation may take
place. The function prototype for the initialization function is:

void init_func(void *msg_handle)

Return value

The return value indicates whether requests to all processes for phase addition were success-
fully executed. The return value reflects the highest severity encountered across all processes.

ASC_success phase was successfully added to all processes
ASC_operation_failed one or more of the phase additions failed

3/25/99

Copyright 1998 by IBM Corp. Application.chp 37

class Application Draft

Callback Data

The callback function is invoked each time the corresponding function in the process instru-
mentation -4init_func -- sends a message to the client. The message format is determined
by the function that sends the message.

See Also

add_phase, bconnect, bdisconnect, class ProbeMod, connect,
disconnect, Process::alloc_mem, Process::free_mem.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 38

class Application Draft

3.9balloc mem

Synopsis
#include <Application.h>

ProbeExp balloc_mem(ProbeType pt, void *init_val, AisStatus
&stat)

ProbeExp balloc_mem(
ProbeType pt,

void *init_val,
Phase ps,
AisStatus &stat)
Parameters
pt data type of the allocated data
init_val pointer to the initial value of the allocated data, or O if no initial value is
desired
ps phase that will contain the allocated data
stat output value indicating the completion status of the function
Description

This function allocates a block of probe data in each process in the application. It returns a
single probe expression that may be used to reference the allocated data. The data may be ref-
erenced in a probe expression that may be installed in any or all of the application processes
where the data is allocated. The initial value of the data is as specified, or zero if not specified.

Note thatballoc_mem does not return control to the caller until it has either succeeded or
failed on all of the processes within the application. If the allocation succeeds it returns a valid
probe expression data reference stad is given the valuASC_success . If the alloca-

tion fails on some process thstat is given the valuASC_operation_failed and

any probe that references the returned valumtdc _mem will fail to install on that pro-

cess.

The functionApplication::status(int index) may be queried to determine
whether the operation succeeded or failed on any given process.

Return value

A probe expression that may be used as a valid reference to the data on any process in which
the data has been successfully allocated.

3/25/99 Copyright 1998 by IBM Corp. Application.chp 39

class Application

Draft

See Also

bfree_mem, free_mem, alloc_mem, status

3/25/99 Copyright 1998 by IBM Corp.

Application.chp

40

class Application Draft

3.10battach

Synopsis

#include <Application.h>
AisStatus battach(void)

Description

Attach to all processes within an application. When multiple tools are connected to a process
or application, only one tool can be attached at a time. Attaching to a process or application
allows the tool to control the execution directly, setting break points, starting, suspending and
resuming executiorgtc Processes must first be connected or created before they can be
attached.

Note thatbattach does not return control to the caller until all attachments have either suc-
ceeded or failed. The return value indicates whether all succeeded or some succeeded and
some failed. The functioApplication::status(int index) may be queried to
determine whether the operation succeeded or failed on any given process.

Return value

The return value fdpattach indicates whether the individual attachments themselves were
successfully established. The return value reflects the highest severity encountered across all
processes.

ASC_success all processes were successfully attached as expected.
ASC_operation_failed one or more of the processes failed to attach
ASC_duplicate_attach already attached

See Also

attach, bdetach, detach

3/25/99

Copyright 1998 by IBM Corp. Application.chp 41

class Application Draft

3.11bconnect

Synopsis
#include <Application.h>
AisStatus bconnect(void)

Description

Connect to all processes within an application. Connection to a process establishes a commu-
nication channel to the CPU where the process resides and creates the environment within that
process that allows the client to insert and remove instrumentation, alter its contretdlow,

Connections from multiple DPCL based tools to the same processies within the application
are allowed.

Note thatoconnect does not return control to the caller until all connections have either
succeeded or failed. The return value indicates whether all connections succeeded or some
succeeded and some failed. The funcApplication::status(int index) may

be queried to determine whether the operation succeeded or failed on any given process.

Return value

The return value fdbconnect indicates whether the connections themselves were success-
fully established. The return value reflects the highest severity encountered across all pro-

cesses.

ASC_success all connections were successfully established as expected.

ASC_operation_failed one or more of the connections failed to be established.
See Also

bdisconnect, connect, disconnect, PoeAppl::binit_procs,
PoeAppl::init_procs

3/25/99 Copyright 1998 by IBM Corp. Application.chp 42

class Application Draft

3.12bdeactvate probe

Synopsis
#include <Application.h>
AisStatus bdeactivate probe(short count, ProbeHandle *phandle)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated
Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdl element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Note thatbdeactivate probe does not return control to the caller until all probes in the
array have been deactivated on all processes in the application. The return value indicates
whether all connections succeeded or some succeeded and some failed. TheAppttion
cation::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value fopdeactivate probe indicates whether the deactivations were suc-
cessfully completed. The return value reflects the highest severity encountered across all pro-
cesses.
ASC_success all probe deactivations completed as expected
ASC_operation_failed one or more of the probe deactivations failed

See Also

3/25/99 Copyright 1998 by IBM Corp. Application.chp 43

class Application Draft

3.13bdestroy

Synopsis

#include <Application.h>
AisStatus bdestroy(void)

Description

This function destroys or terminates all processes within the application.
If this is called from a PoeAppl object, the poe process itself is also destroyed.

Note thatbdestroy does not return control to the caller until all processes within the appli-
cation have been destroyed. The return value indicates whether all terminations succeeded or
some succeeded and some failed. The funétmplication::status(int index)

may be queried to determine whether the operation succeeded or failed on any given process.

Return value

The return value fopdestroy indicates whether the terminations were successfully com-
pleted. The return value reflects the highest severity encountered across all processes.

ASC_success all terminations were successfully completed, as expected
ASC_no_destroy_from_connected process must be in attached state to call destory
ASC_operation_failed one or more of the terminations failed

See Also
destroy

3/25/99

Copyright 1998 by IBM Corp. Application.chp 44

class Application Draft

3.14bdetach

Synopsis

#include <Application.h>
AisStatus bdetach(void)

Description

This function detaches all processes in the application. Process control flow, such suspending
and resuming processies, can only be done while a process is in an attached state. Detaching a
process removes the level of process control available to the client or tool when the process is
attached, but retains the process connection so probe installation, activation, retaaaat,

still take place.

Note thatodetach does not return control to the caller until all processes within the applica-
tion have been detached. The return value indicates whether all processes successfully
detached or some succeeded and some failed. The fuApiiination::status(int

index) may be queried to determine whether the operation succeeded or failed on any given
process.

Return value

The return value fopdetach indicates whether all processes were successfully detached.
The return value reflects the highest severity encountered across all processes.

ASC_success all processes were successfully detached, as expected
ASC_no_detach_from_created currently created, must attach before detaching
ASC_no_detach_from_connectedcurrently connected, must attach before detaching
ASC_operation_failed one or more processes failed to detach

See Also

attach, battach, detach

3/25/99

Copyright 1998 by IBM Corp. Application.chp 45

class Application Draft

3.15bdisconnect

Synopsis

#include <Application.h>
AisStatus bdisconnect(void)
Description

Disconnect from all processes within an application. Disconnecting from an application pro-
cess removes the application environment created by a connection. All instrumentation and
data are removed from the application process.

Note thatbdisconnect does not return control to the caller until all processes within the
application have either succeeded or failed in disconnecting. The fuAgixica-
tion::status(int index) may be queried to determine whether the operation suc-

ceeded or failed on any given process.

Return value

The return value fobdisconnect indicates whether the connections were successfully ter-
minated. The return value reflects the highest severity encountered across all processes.

ASC_success all connections were successfully terminated as expected
ASC_operation_failed one or more of the connections failed to terminate
See Also

disconnect, connect, bconnect

3/25/99 Copyright 1998 by IBM Corp. Application.chp 46

class Application Draft

3.16bexecute

Synopsis
#include <Application.h>
AisStatus bexecute(
ProbeExp pexp,
GCBFuncType data_cb_fp,
GCBTagType data_cb_tag)

Parameters
pexp probe expression to be executed in the application process
data _cb_fp callback function to be invoked when data from the probe is received
data_cb_tag callback tag to be used when the data callback function is invoked
Description

This function executes a probe expression in each process within an application. The expres-
sion is executed once in each process, then removed. The application process is interrupted,
the expression is executed, then the process resumes execution as before the interruption.

Note thatbexecute does not return control to the caller until the probe expression has either
succeeded or failed to execute within all processes in an application. The fépgilma-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value fobexecute indicates whether the execution succeeded or failed.

ASC_success probe expression was successfully executed

ASC_operation_failed attempt to execute the probe expression failed
See Also

execute

3/25/99 Copyright 1998 by IBM Corp. Application.chp 47

class Application Draft

3.17bfree mem

Synopsis

#include <Application.h>
AisStatus bfree_mem(ProbeExp pexp)

Parameters

pexp dynamically allocated block of probe memory

Description

This function deallocates a block of dynamically allocated probe memory for every process in
the application. The probe expression must contain only a single reference to a block of data
allocated by thalloc_mem orballoc_mem functions.

Note thatbfree _mem does not return control to the caller until all processes within the
application have either succeeded or failed in deallocating the block of memory. The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value fobfree_mem indicates whether all requests for deallocation were suc-
cessfully executed. The return value reflects the highest severity encountered across all pro-
cesses.

See Also

free_mem, balloc_mem, alloc_mem

3/25/99

Copyright 1998 by IBM Corp. Application.chp 48

class Application Draft

3.18binstall probe

Synopsis

#include <Application.h>

AisStatus binstall_probe(
short count,
ProbeExp *probe_exp,
InstPoint *point,
GCBFuncType *data_cb_fp,
GCBTagType *data_cb_tag,

ProbeHandle *phandle)
Parameters
count number of probe expressions to be installed
probe_exp probe expressions to be installed
point instrumentation points where the probe expressions are to be installed
data _cb_fp callback functions to process data received from the probe expression
data_cb_tag tags to be used as an argument to the data callback when it is invoked
phandle probe handles that represent the installed probe expressions
Description

This function installs probe expressions as instrumentation at specific locations within each
process in the application. Probe expressions are installed atomically, in the sense that within
each process either all probe expressions in the request are installed into the process, or none
of the expressions are installed. There is no synchronization across processes to assure that all
processes install all probes. The return value indicates whether all probes were installed, or
whether one or more processes were unable to install the expressions as requested.

Data_cb fp is an input array supplied by the caller that must contain atdeast ele-

ments. The'f element of the array is a pointer to a callback function that is invoked each time
the P probe inphandle sends data via theisSendMsg function.Data _cb tag isa

similar array that contains the callback tag used when callbadkgancb fp are

invoked. The'" callback tag is used with th® tallback.

Phandle is an output array supplied by the caller that must contain atmast elements.

The f" element of the array is a handle, or identifier, to be used in subsequent references to the
™ probe expression. For example, it is needed when the client activates, deactivates or

removes a probe expression from an application or pradéekasdle does not contain valid

information if the installation fails.

3/25/99

Copyright 1998 by IBM Corp. Application.chp 49

class Application Draft

Note thatbinstall_probe does not return control to the caller until all probe expressions
have been installed or failed to install within all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value fobinstall_probe indicates whether the probe installations were suc-
cessful. The return value reflects the highest severity encountered across all processes.

ASC_success all probes were successfully installed, as expected
ASC_operation_failed one or more of the probes could not be installed as
requested, so none of the probes were installed

Callback Data

The callback function is invoked once for each message sent from the probe. When the call-
back is invoked the callback function is passed a pointer to the process as the callback object.
The callback tag is given in tliata_cb_tag array. The callback message is the data send

by the probe using th&is_send() function call.

See Also

AisSendMsg, install_probe, ...

3/25/99 Copyright 1998 by IBM Corp. Application.chp 50

class Application Draft

3.19bload module

Synopsis

#include <Application.h>

AisStatus bload_module(ProbeModule* module)

Parameters

module the probe module to be loaded.

Description

This function sends and loads the module from the client side to all the processes within the
Application class. Once loaded, the probe expressions available in this probe module can be
installed and activated as if those are native in the application.

Note thatbload_module does not return control to the caller until the probe module has
been installed or failed to install in all processes within the application.The fuAqiA
cation::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value fopload_module indicates whether the probe module installations were
successful. The return value reflects the highest severity encountered across all processes.

ASC_success module was successfully installed on all processes
ASC_operation_failed module could not be installed as requested on one or more
processes
See Also

bunload_module, load_module, unload_module

3/25/99

Copyright 1998 by IBM Corp. Application.chp 51

class Application Draft

3.20bremove phase

Synopsis

#include <Application.h>

AisStatus bremove_phase(Phase ps)

Parameters

ps phase description to be removed from the application

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase.

Note thatoremove_phase does not return control to the caller until the phase has been
removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value fodbremove_phase indicates whether the phase was successfully
removed from all processes. The return value reflects the highest severity encountered across
all processes.

ASC_success all phases were successfully removed, as expected
ASC_operation_failed phase could not be removed from one or more processes
See Also

add_phase, badd_phase, class Phase, remove_phase

3/25/99

Copyright 1998 by IBM Corp. Application.chp 52

class Application Draft

3.21bremove probe

Synopsis

#include <Application.h>

AisStatus bremove_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed
Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed, and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and as many probes as
can be are removed. If one or more processes are not connected, probe removal takes place
within those that are connected, and a warning is issued.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdli element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is tempo-
rarily stopped, all indicated probes are removed, and the process is resumed. Probe expres-
sions are removed in a process by process basis. There is no synchronization between
processes to guarantee that all expressions are removed from all processes. One process may
succeed while another one fails.

Note thatoremove probe does not return control to the caller until the probes have been
removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value fobremove_probe indicates whether all probes in the list were success-
fully removed from all processes. The return value reflects the highest severity encountered
across all processes.

ASC_success all probes were successfully removed, as expected
ASC_operation_failed none of the probes were removed

3/25/99

Copyright 1998 by IBM Corp. Application.chp 53

class Application

Draft

See Also

bactivate_probe, bdeactivate probe, binstall_probe,
activate_probe, deactivate_probe, install_probe, remove_probe

3/25/99 Copyright 1998 by IBM Corp. Application.chp

54

class Application Draft

3.22bresume

Synopsis

#include <Application.h>
AisStatus bresume(void)

Description

This function resumes execution of an application that has been temporarily suspended by a
suspend orbsuspend function. Execution resumption occurs on a process by process

basis. A process must be attached for it to be resumed. A resume issued against a process tha
is not attached will result in a warning return code.

Note thatoresume does not return control to the caller until the all processes within the
application have resumed or failed to resume.The funéjphication::status(int

index) may be queried to determine whether the operation succeeded or failed on any given
process.

Return value

The return value fobresume indicates whether all processes were successfully resumed.
The return value reflects the highest severity encountered across all processes.

ASC_success all processes were resumed, as expected
ASC_operation_failed some processes failed to be resumed
ASC _no_sus_res_from_created must be attached to call bresume
ASC _no_sus_res_from_connectedmust be attached to call bresume

See Also

attach, battach, bconnect, bdetach, bdisconnect, bsuspend,
connect, detach, disconnect, resume, suspend

3/25/99

Copyright 1998 by IBM Corp. Application.chp 55

class Application Draft

3.23bset_phase_exit

Synopsis

#include <Application.h>

AisStatus bset_phase_exit(
Phase ps,
ProbeExp begin_func,
GCBFuncType begin_cb_fp,
GCBTagType begin_cb_tag,
ProbeExp iter_func,
GCBFuncType iter_cb_fp,
GCBTagType iter_cb_tag,
ProbeExp end_func,
GCBFuncType end_cb_fp,
GCBTagType end_cb_tag)

Parameters
ps phase description to be removed from the application
begin_func initialization function that is executed once within the application when
the phase is removed
begin_cb_fp callback function to handle messages from the initialization function
begin_cb_tag tag to be used with the initialization callback function
iter_func iteration function that is executed within the application on each piece
of data associated with the phase when the phase is removed
iter_cb_fp callback function to handle messages from the iteration function
iter_cb_tag tag to be used with the iteration callback function
end_func termination function that is executed once within the application when
the phase is removed
end _cb_fp callback function to handle messages from the termination function
end_cb_tag tag to be used with the termination callback function
Description

This function specifies a set of exit functions to be executed when any of the following three
events occur.

3/25/99

Copyright 1998 by IBM Corp. Application.chp 56

class Application Draft

when the indicated phase is removed using either the remove_phase or bremove_phase
function call

when diconnecting from the target application (without calling remove_phase or
bremove_phase first)

when the target application has finished execution while the indicated phase is still active

Note thatset_phase_exit returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the exit functions have been placed in the indi-
cated phase or the operation failed to complete.

Each of the phase functions must be loaded into the application before this operation may take
place. The function prototypes for the functions are:

void begin_func(void *msg_handle)
void iter_func(void *msg_handle, void *data)
void end_func(void *msg_handle)

Return value

The return value faremove_phase indicates whether the requests to remove the indicated
phase on all processes in the application were successfully submitted. It gives no indication of
whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed remove operation failed to be requested to some process

Callback Data

begin_cb_fpiter_cb_fp, end_cb_fp These callback functions are invoked each time the
corresponding function in the process instrumentatitwegin_func ,iter func , or

end_func -- sends a message to the client. The message format is determined by the func-
tion that sends the message.

See Also

set_phase_exit, add_phase, badd_phase, remove_phase,
bremove_phase

3/25/99

Copyright 1998 by IBM Corp. Application.chp 57

class Application Draft

3.24bset phase period

Synopsis
#include <Application.h>
AisStatus bset_phase_period(Phase ps, float period)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds
Description

This function changes the time interval between successive activations of a phase. The inter-
val change occurs on a process by process basis for all processes within the application. Pro-
cesses which do not have the phase installed result in an informational return code. Processes
that are not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation delay time. In both cases the phase
is activated immediately before setting the new interval. If the value is less than zero the phase
is disabled immediately, but left in place for possible future reactivation.

Note thatoset phase_period does not return control to the caller until the phase period
has been set or failed to be set in all processes within the application.The fApgtica-
tion::status(int index) may be queried to determine whether the operation suc-
ceeded or failed on any given process.

Return value

The return value fobbset_phase_period indicates whether the phase period was suc-
cessfully set on all processes. The return value reflects the highest severity encountered across
all processes.

ASC_success phase period was successfully set on all processes
ASC_operation_failed some processes failed to set the phase period
See Also

add_phase, badd_phase, bremove_phase, get_phase_period,
remove_phase, set_phase_period

3/25/99 Copyright 1998 by IBM Corp. Application.chp 58

class Application Draft

3.25bsignal - LY

Synopsis

#include <Application.h>

AisStatus bsignal(int unix_signal)
Parameters

unix_signal Unix™ signal to be sent to every process in the application
Description

This function sends the specified signal to every process in the application. The process must
be both connected and attached to receive the signal. The function does not return until all
processes in the application have received the signal.

A signal is sent only to those processes that are connected and attached.

Note thatosignal does not return control to the caller until each process within the applica-
tion has been signalled or failed to be signalled.The funégoptication::sta-

tus(int index) may be queried to determine whether the operation succeeded or failed
on any given process.

Return value

The return value fapsignal indicates whether the AIX signal was successfully sent to all
processes. The return value reflects the highest severity encountered across all processes.

ASC_success signal was successfully sent to all processes

ASC_operation_failed signal failed to be sent to one or more processes
See Also

signal

3/25/99 Copyright 1998 by IBM Corp. Application.chp 59

class Application Draft

3.26bstart

Synopsis

#include <Application.h>
AisStatus bstart(void)

Description

This function starts the execution of an application that has been created but not yet begun
execution. It does this by issueing a start to each process contained in the application.

To get a created application running, it is required to issue one start. Subsequent starts cannot
be issued.

Note thatbstart does not return control to the caller until the application has started or
failed to start. The functioApplication::status(int index) may be queried to
determine whether the operation succeeded or failed on any given process.

Return value

The return value fobstart indicates whether the application was successfully started.

ASC_success application was started

ASC_operation_failed application failed to be started

ASC_destroyed_process a process has been destroyed

ASC_disconnecting_process a process is disconnecting

ASC_duplicate_start start can only be issued once after create
See Also

Process::bcreate, bdestroy, Process::create, destroy, start,
PoeAppl class

3/25/99

Copyright 1998 by IBM Corp. Application.chp 60

class Application Draft

3.27bsuspend

Synopsis

#include <Application.h>
AisStatus bsuspend(void)
Description

This function suspends an application that is executing. Application suspension occurs on a
process by process basis. A tool must be attached to a process in order to suspend process exe
cution.

Note thatbsuspend does not return control to the caller until each process within the appli-
cation has been suspended or failed to be suspended.The fukpptiaration::sta-

tus(int index) may be queried to determine whether the operation succeeded or failed
on any given process.

Return value

The return value fopsuspend indicates whether all processes within the application were
successfully suspended. The return value reflects the highest severity encountered across all

processes.
ASC_success all processes were successfully suspended
ASC_operation_failed one or more processes failed to be suspended

ASC _no_sus_res_from_created must be attached to call bsuspend
ASC _no_sus_res_from_connectedmust be attached to call bsuspend

See Also

bresume, resume, suspend

3/25/99 Copyright 1998 by IBM Corp. Application.chp 61

class Application Draft

3.28bunload module

Synopsis

#include <Application.h>

AisStatus bunload_module(ProbeModule *module)

Parameters

module probe module to be removed from each application process

Description

This function unloads the module from all the processes within the Application class. Once
unloaded, All the probe handles that refer to this probe module are automatically removed.

Note thatbounload_module does not return control to the caller until the probe module has
been removed or failed to be removed from all processes within the application.The function
Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

Return value

The return value fobunload_module indicates whether the probe module was success-
fully removed from all processes. The return value reflects the highest severity encountered
across all processes.

ASC_success module was successfully removed from all processes
ASC_operation_failed module could not be removed from one or more processes
See Also

bload_module, load_module, unload_module

3/25/99

Copyright 1998 by IBM Corp. Application.chp 62

class Application Draft

3.29connect

Synopsis
#include <Application.h>
AisStatus connect(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with each successful or failed connec-
tion to a process listed within the application
tag callback tag to be used each time the callback function is invoked
Description

Connect to all processes within an application. Connection to a process establishes a commu-
nication channel to the machine where the process resides and creates the environment within
that process that allows the client to insert and remove instrumentation, alter its control flow,
etc

Connections from multiple DPCL based tools to the same processies within the application
are allowed.

Note that the function submits the requests to connect the processes and returns immediately.
The callback function receives notification of each connection’s success or failure.

Return value

The return value fotonnect indicates whether the requests for connection were success-
fully submitted, but indicates nothing about whether the requests themselves were success-
fully executed.

ASC_success request for connection was successfully sent
ASC_operation_failed attempt to send request to connect to this process failed

Callback Data

The callback function is invoked once for each process for which a connection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, #is@tatus , which con-

tains one of the following status values:

ASC_success connection was successfully established on this process
ASC_operation_failed attempt to connect to this process failed
See Also

bconnect, bdisconnect, disconnect, PoeAppl::init_procs,
PoeAppl::binit_procs

3/25/99 Copyright 1998 by IBM Corp. Application.chp 63

class Application Draft

3.30deactvate probe

Synopsis

#include <Application.h>
AisStatus deactivate probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probes to be deactivated
phandle array of probe handles, representing the probes, to be deactivated
ack cb fp acknowledgement callback function to be invoked each aiharobe
expressions in the array have been deactivated (or deactivation fails)
within a process
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily suspended, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdl element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Note thatdeactivate probe returns control immediately to the caller. It does not wait
until all probes in the array have been deactivated on all processes in the application. The
return value indicates whether all requests were successfully submitted and gives no indica-
tion whatever about the success or failure of the execution of those requests.

Return value

The return value fodeactivate probe indicates whether the deactivations were suc-
cessfully submitted.

ASC_success all probe deactivations were submitted, as expected
ASC_operation_failed one or more of the probe deactivations were not submitted

3/25/99

Copyright 1998 by IBM Corp. Application.chp 64

class Application Draft

Callback Data

The callback function is invoked once for each process for which a probe deactivation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisSigtes

which contains one of the following status values:

ASC_success probes were successfully deactivated on this process
ASC_operation_failed attempt to deactivate probes on this process failed
See Also

3/25/99

Copyright 1998 by IBM Corp. Application.chp 65

class Application Draft

3.31destroy

Synopsis

#include <Application.h>
AisStatus destroy(GCBFuncType fp, GCBTagType tag)

Parameters
fp acknowledgement callback function to be invoked for each process that
is destroyed (or not destroyed)
tag tag to be used with the acknowledgement callback function
Description

This function destroys or terminates all processes within the application.
If this is called from a PoeAppl object, the poe process itself is also destroyed.

Note thatdestroy returns control to the caller immediately. It does not wait until all pro-
cesses within the application have been destroyed. The return value indicates whether the
requests were successfully submitted, but gives no indication of whether the requests them-
selves were successfully executed.

Return value

The return value fodestroy indicates whether the terminations were successfully

requested.
ASC_success all terminations were successfully requested, as expected
ASC_operation_failed one or more of the terminations were not requested

Callback Data

The callback function is invoked once for each process for which destruction is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, #is@tatus , which con-

tains one of the following status values:

ASC_success process was successfully destroyed
ASC_no_destroy_from_connected process must be in attached state to call destory
ASC_operation_failed attempt to destroy this process failed

See Also
bdestroy

3/25/99 Copyright 1998 by IBM Corp. Application.chp 66

class Application Draft

3.32detach
Synopsis
#include <Application.h>
AisStatus detach(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with each successful or failed detach-
ment from a process listed within the application.
tag callback tag to be used each time the callback function is invoked.
Description

This function detaches all processes in the application. Process control flow, such as suspend-
ing and resuming processies, can only be done while a process is in an attached state. Detach:-
ing a process removes the level of process control available to the client or tool when the
process is attached, but retains the process connection so probe installation, activation,
removal,etc can still take place.

Note thatdetach returns control to the caller immediately upon issuing all requests to
detach from the processes. The return value indicates whether all requests were successfully
submitted.

Return value

The return value fodetach indicates whether all requests were successfully submitted.
ASC_success all detach requests were successfully submitted, as expected
ASC_operation_failed one or more requests were not submitted

Callback Data

The callback function is invoked once for each process for which detachment is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éfis@iatus , which con-

tains one of the following status values:

ASC_success process was successfully detached
ASC_no_detach_from_created currently created, must attach before detaching
ASC_no_detach_from_connectedcurrently connected, must attach before detaching
ASC_operation_failed attempt to detach this process failed

See Also

attach, battach, bdetach

3/25/99 Copyright 1998 by IBM Corp. Application.chp 67

class Application Draft

3.33disconnect

Synopsis
#include <Application.h>
AisStatus disconnect(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with each successful or failed discon-
nection from a process listed within the application.
tag callback tag to be used each time the callback function is invoked.
Description

Disconnect from all processes within an application. Disconnecting from an application pro-
cess removes the application environment created by a connection. All instrumentation and
data are removed from the application process.

Note that the function submits the requests to disconnect the processes and returns immedi-
ately. The callback function receives notification of each disconnection’s success or failure.

Return value

The return value fodisconnect indicates whether the requests for disconnection were
successfully submitted, but indicates nothing about whether the requests themselves were suc-
cessfully executed.

Callback Data

The callback function is invoked once for each process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éis@tatus , which con-

tains one of the following status values:

ASC_success process was successfully disconnected
ASC_operation_failed attempt to disconnect this process failed
See Also

bconnect, bdisconnect, connect

3/25/99 Copyright 1998 by IBM Corp. Application.chp 68

class Application Draft

3.34 execute

Synopsis

#include <Application.h>
AisStatus execute(
ProbeExp pexp,
GCBFuncType data_cb_fp,
GCBTagType data_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
pexp probe expression to be executed in the application process
data_cb_fp callback function to be invoked when data from the probe is received
data_cb_tag callback tag to be used when the data callback function is invoked
ack cb_fp callback function to be invoked when execution succeeds or fails
ack cb_tag callback tag to be used when the callback function is invoked
Description

This function executes a probe expression within all application processes within an applica-
tion. The expression is executed once, then removed. The application process is interrupted,
the expression is executed, then the process resumes execution as before the interruption.

Note thatexecute returns control to the caller immediately upon submitting its request to
the daemons. It does not wait until the probe expression has been executed or failed to exe-
cute. The acknowledgement callback function receives notification of the success or failure of
the execution. The callback is executed once for each process within the application.

Return value

The return value foexecute indicates whether the request for deallocation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

ASC_success probe expression execution was successfully submitted
ASC_?7??

Callback Data

The callback function is invoked when execution succeeds or fails. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, ofAygfetatus , which contains one of the fol-
lowing status values:

3/25/99

Copyright 1998 by IBM Corp. Application.chp 69

class Application

Draft

ASC_success
ASC_operation_failed

See Also

bexecute

probe expression was successfully executed
attempt to execute the probe expression failed

3/25/99 Copyright 1998 by IBM Corp.

Application.chp

70

class Application Draft

3.35free mem

Synopsis
#include <Application.h>
AisStatus free_mem(
ProbeExp pexp,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
pexp dynamically allocated block of probe memory
ack cb_fp callback function to be invoked when deallocating the block of mem-
ory succeeds or fails
ack cb tag callback tag to be used when the callback function is invoked
Description

This function deallocates a block of dynamically allocated probe memory for every process in
the application. The probe expression must contain only a single reference to a block of data
allocated by thalloc_mem orballoc_mem functions.

Note thatfree_mem returns control to the caller immediately upon submitting its request to
free the data. It does not wait until the data has been deallocated or failed to deallocate. The
acknowledgement callback function receives notification of the success or failure of the deal-
location. The callback is executed once for each process within the application.

Return value

The return value foiree_mem indicates whether the requests for deallocation were success-
fully submitted, but indicates nothing about whether the requests themselves were success-
fully executed.

Callback Data

The callback function is invoked once for each process for which deallocation is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, #is@tatus , which con-

tains one of the following status values:

ASC_success block of probe memory was successfully deallocated
ASC_operation_failed attempt to deallocate memory on this process failed
See Also

bfree_mem, balloc_mem, alloc_mem

3/25/99 Copyright 1998 by IBM Corp. Application.chp 71

class Application Draft

3.360et count

Synopsis
#include <Application.h>
int get_count(void) const
Description
This function returns the number of processes currently included in the application.
Return value
The number oProcess objects in the application.
See Also

get_process, status

3/25/99 Copyright 1998 by IBM Corp. Application.chp 72

class Application Draft

3.37Qget process

Synopsis
#include <Application.h>
Process get_process(int i) const
Parameters

i the position or index into the process table whose entry is to be
retrieved.

Description
Returns the'f Process object of the application.
Return value

The " Process object if the index is valid, that ig, & get_count () or an invalid process
if the index is not valid.

See Also

get_count

3/25/99 Copyright 1998 by IBM Corp. Application.chp 73

class Application

Draft

3.38install probe

Synopsis

#include <Application.h>

AisStatus install_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,
GCBFuncType *data_cb_fp,
GCBTagType *data_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag,

ProbeHandle *phandle)

Parameters

count

probe_exp
point

data _cb_fp
data_cb_tag
ack cb_fp
ack cb_tag

phandle

Description

number of probe expressions to be installed, instrumentation points,
data callback functions, data callback tags, and probe handles

probe expressions to be installed

instrumentation points where the probe expressions are to be installed
callback function to process data received from the probe expression
tag to be used as an argument to the data callback when it is invoked
callback function to process installation acknowledgments

tag to be used as an argument to the acknowledgement callback when it
is invoked

probe handles that represent the installed probe expressions

This function installs probe expressions as instrumentation at specific locations within each
process in the application. Probe expressions are installed atomically, in the sense that within
each process either all probe expressions in the request are installed into the process, or none
of the expressions are installed. There is no synchronization across processes to assure that all
processes install all probes. The return value indicates whether all requests to have probes
installed were successfully submitted.

Phandle is an output array supplied by the caller that must contain atmast elements.
The f" element of the array is a handle, or identifier, to be used in subsequent references to the
i probe expression. For example, it is needed when the client activates, deactivates or

3/25/99

Copyright 1998 by IBM Corp. Application.chp 74

class Application Draft

removes a probe expression from an application or pradékasdle does not contain valid
information if the installation fails.

Note thatnstall_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until all probe expressions have been installed or
failed to install within all processes within the application.

Return value

The return value foinstall_probe indicates whether the requests for probes to be
installed were successfully submitted. It gives no indication of whether those requests were
successfully executed.

ASC_success all probe expression installation requests were successfully
submitted
ASC_operation_failed one or more of the probe expression installations failed to

be requested
Callback Data

ack _cb_fp The callback function is invoked once for each process for which probe installa-
tion is requested. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request statug\isStgpe

tus , which contains one of the following status values:

ASC_success all probes were successfully installed in this process
ASC_operation_failed attempt to install probes in this process failed

data_cb_fp The callback function is invoked once for each message sent from the probe.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback tag is given indla¢a_cb_tag array. The callback message

is the data sent by the probe usingAle send function call.

See Also

activate_probe, bactivate_probe, bdeactivate probe,
bremove_probe, deactivate _probe, remove_probe

3/25/99 Copyright 1998 by IBM Corp. Application.chp 75

class Application Draft

3.39load module

Synopsis

#include <Application.h>

AisStatus load_module(
ProbeMod *module,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters

module probe module to be loaded

ack cb_fp callback functin to process load module acknowledgements.

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends and loads the module from the client side to all the processes within the
Application class. Once loaded, the probe expressions available in this probe module can be
installed and activated as if those are native in the application.

Note thatoad_module returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the module has been loaded or failed to load
within all processes within the application.

Return value

The return value foload_module indicates whether the requests to load the indicated
module on all processes were successfully submitted. It gives no indication of whether those
requests were successfully executed.

ASC_success all load requests were successfully submitted
ASC_operation_failed one or more of the load operations failed to be requested

Callback Data

The callback function is invoked once for each process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éis@tatus , which con-

tains one of the following status values:

ASC_success objects were successfully loaded into this process
ASC_operation_failed attempt to load objects on this process failed
See Also

3/25/99 Copyright 1998 by IBM Corp. Application.chp 76

class Application Draft

3.400perator =

Synopsis

#include <Application.h>

Application &operator = (const Application &rhs)
Parameters

rhs right operand
Description

This function assigns the value of the right operand to the invoking object. The Ieft operand is
the invoking object. For exampleApplication rhs, Ihs; ... Ihs = rhs;
assigns the value ofis tolhs . Both values would then refer to the same application.

Return value
A reference to the invoking object (i.e., the left operand).

See Also

3/25/99 Copyright 1998 by IBM Corp. Application.chp 77

class Application Draft

3.41remove phase

Synopsis

#include <Application.h>
AisStatus remove_phase(
Phase ps,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
ps phase description to be removed from the application
ack cb_fp callback function to process phase removal acknowledgments
ack cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked
Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatremove_phase returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the phase has been removed or failed to be
removed from all processes within the application.

Return value

The return value faremove_phase indicates whether the requests to remove the indicated
phase on all processes in the application were successfully submitted. It gives no indication of
whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed remove operation failed to be requested to some process

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

ack_cb_fp The callback function is invoked once for each process for which phase removal

is requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisSigtes

which contains one of the following status values:

ASC_success phase was successfully removed from this process

3/25/99

Copyright 1998 by IBM Corp. Application.chp 78

class Application

Draft

ASC_operation_failed

See Also

attempt to remove phase from this process failed

add_phase, badd_phase, bremove_phase

3/25/99 Copyright 1998 by IBM Corp.

Application.chp

79

class Application Draft

3.42remove probe

Synopsis

#include <Application.h>
AisStatus remove_probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probe handles in the accompanying array
phandle array of probe handles representing probe expressions to be removed
ack cb fp callback function to process probe removal acknowledgments
ack cb tag tag to be used as an argument to the callback when it is invoked
Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If one or more processes are not connected, probe removal takes
place within those that are connected, and a warning is issued.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thél element of the
array is a handle, or identifier, that identifies fA@iobe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is tempo-
rarily suspended, all indicated probes are removed, and the process is resumed. Probe expres-
sions are removed in a process by process basis. There is no synchronization between
processes to guarantee that all indicated expressions are removed from all processes. One pro:
cess may succeed while another one fails.

Note thatremove_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the probes have been removed or failed to be
removed from all processes within the application.

3/25/99

Copyright 1998 by IBM Corp. Application.chp 80

class Application Draft

Return value

The return value faremove_probe indicates whether the requests to remove the indicated
probes on all processes in the application were successfully submitted. It gives no indication
of whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed remove operation failed to be requested to some process

Callback Data

The callback function is invoked once for each process for which probe removal is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éfis@iatus , which con-

tains one of the following status values:

ASC_success probes were successfully removed from this process
ASC_operation_failed attempt to remove probes from this process failed
See Also

activate_probe, bactivate_probe, bdeactivate_probe,
binstall_probe, bremove_probe, deactivate_probe, install_probe

3/25/99

Copyright 1998 by IBM Corp. Application.chp 81

class Application Draft

3.43remove process

Synopsis

#include <Application.h>

AisStatus remove_process(int i)
Parameters

i position or index into the process table whose entry is to be removed.
Description

This function removes th&'iProcess object of the application. Paramieterust reflect a
valid index, that is, that is, 0 <get_count (). The process itself is not altered or affected
in any way.

The index of a process is not guaranteed to remain invariant when new processes are added to
or removed from an application. The index does remain invariant otherwise.

Return value

The return value foremove_process indicates whether the process was successfully
removed. The return value reflects the highest severity encountered across all processes.

ASC_success process was removed
ASC_operation_failed index was out of bounds
See Also

add_process, bconnect, bdisconnect, connect, disconnect,
get_count

3/25/99 Copyright 1998 by IBM Corp. Application.chp 82

class Application Draft

3.44resume
Synopsis
#include <Application.h>
AisStatus resume(GCBFuncType ack_cb_fp, GCBTagType ack cb_tag)

Parameters
ack cb_fp callback function to process process resumption acknowledgments
ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function resumes execution of an application that has been temporarily suspended by a
suspend orbsuspend function. Execution resumption occurs on a process by process
basis. A process must be connected, attached and suspended for it to be resumed. A process
that is not connected or not attached will result in a warning return code. A process that is not
suspended will result in an informational return code.

Note thatresume returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until the processes have resumed or failed to resume.

Return value

The return value foresume indicates whether all requests to resume process execution were
successfully submitted. It gives no indication of whether the requests were successfully exe-

cuted.
ASC_success all request to resume execution were successfully submitted
ASC_operation_failed resume operation failed to be requested for some process

Callback Data

The callback function is invoked once for each process to be resumed. When the callback is
invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, ofAygfetatus , which contains one of the fol-
lowing status values:

ASC_success process was successfully resumed
ASC_operation_failed attempt to resume this process failed
ASC _no_sus_res_from_created must be attached to call resume
ASC _no_sus_res_from_connectedmust be attached to call resume

See Also

attach, battach, bdetach, bresume, bsuspend, detach, suspend

3/25/99 Copyright 1998 by IBM Corp. Application.chp 83

class Application Draft

3.45send stdin

Synopsis

#include <Application.h>

AisStatus send_stdin(char *buffer, int size)

Parameters
buffer character array that contains text to be fed to the application stdin
size number of bytes in the buffer to be given to the application
Description

This function provides text to be used as input to the processies of the application for the
stdin device, that is, file descriptor O.

In order for send_stdin to be used, the containted Process objects within the Application must
have been created using the create function.

Note thatsend_stdin returns control to the caller immediately upon submitting the request
to the daemon. It does not wait until the application has received the input.

Return value

The return value fasend_stdin indicates whether the request to provide application input
was successfully submitted. It gives no indication of whether the request was successfully

executed.
ASC_success request to provide input was successfully submitted
ASC_operation_failed request to provide input failed

Callback Data

The acknowlegement callback function is invoked once for each process in the application
when the buffer has been sent to the process. When the callback is invoked, the callback func-
tion is passed a pointer to the Process as the callback object. The callback message is the
request status, of tygdsStatus , which may contain one of the status values values that

follow.

ASC_success the buffer was successfully sent to poe

ASC_operation_failed attempt to send the buffer to poe failed
See Also

Process::bcreate, Process:.create, PoeAppl::bcreate,
PoeAppl::create

3/25/99 Copyright 1998 by IBM Corp. Application.chp 84

class Application Draft

3.46set_phase_exit

Synopsis

#include <Application.h>

AisStatus set_phase_exit(
Phase ps,
ProbeExp begin_func,
GCBFuncType begin_cb_fp,
GCBTagType begin_cb_tag,
ProbeExp iter_func,
GCBFuncType iter_cb_fp,
GCBTagType iter_cb_tag,
ProbeExp end_func,
GCBFuncType end_cb_fp,
GCBTagType end_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters

ps phase description to be removed from the application

begin_func initialization function that is executed once within the application when
the phase is removed

begin_cb_fp callback function to handle messages from the initialization function

begin_cb_tag tag to be used with the initialization callback function

iter_func iteration function that is executed within the application on each piece
of data associated with the phase when the phase is removed

iter_cb_fp callback function to handle messages from the iteration function

iter_cb_tag tag to be used with the iteration callback function

end_func termination function that is executed once within the application when
the phase is removed

end_cb_fp callback function to handle messages from the termination function

end_cb_tag tag to be used with the termination callback function

ack cb_fp callback function to process phase removal acknowledgments

3/25/99 Copyright 1998 by IBM Corp. Application.chp 85

class Application Draft

ack cb tag tag to be used as an argument to the acknowledgement callback when it
is invoked

Description

This function specifies a set of exit functions to be executed when any of the following three
events occur.

when the indicated phase is removed using either the remove_phase or bremove_phase
function call

when diconnecting from the target application (without calling remove_phase or
bremove_phase first)

when the target application has finished execution while the indicated phase is still active

Note thatset_phase_exit returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the exit functions have been placed in the indi-
cated phase or the operation failed to complete.

Each of the phase functions must be loaded into the application before this operation may take
place. The function prototypes for the functions are:

void begin_func(void *msg_handle)
void iter_func(void *msg_handle, void *data)
void end_func(void *msg_handle)

Return value

The return value faremove_phase indicates whether the requests to remove the indicated
phase on all processes in the application were successfully submitted. It gives no indication of
whether the requests were successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed remove operation failed to be requested to some process

Callback Data

begin_cb _fpiter_cb_fp, end_cb_fp These callback functions are invoked each time the
corresponding function in the process instrumentatitiegin_func ,iter_func , or

end_func -- sends a message to the client. The message format is determined by the func-
tion that sends the message.

ack cb_fp The callback function is invoked once for each process for which phase removal

is requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisStgbes

which contains one of the following status values:

3/25/99

Copyright 1998 by IBM Corp. Application.chp 86

class Application

Draft

ASC_success
ASC_operation_failed

See Also

phase was successfully removed from this process
attempt to remove phase from this process failed

bset _phase_exit, add_phase, badd_phase, remove_phase,

bremove_phase

3/25/99 Copyright 1998 by IBM Corp.

Application.chp 87

class Application Draft

3.47set phase period

Synopsis

#include <Application.h>
AisStatus set_phase_period(
Phase ps,
float period,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
ps phase to be modified
period new time interval between successive phase activations, in seconds
ack cb fp callback function to process phase acknowledgments
ack cb tag tag to be used as an argument to the callback when it is invoked
Description

This function changes the time interval between successive activations of a phase. The inter-
val change occurs on a process by process basis for all processes within the application. Pro-
cesses which do not have the phase installed result in an informational return code. Processes
that are not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation time interval. In both cases the
phase is activated immediately upon setting the new interval. If the value is less than zero the
phase is disabled immediately, but left in place for possible future reactivation.

Note thatset_phase_period returns control to the caller immediately upon submitting
all requests to the daemons. It does not wait until the phase period has been set or failed to be
set within all processes within the application.

Return value

The return value foset_phase_period indicates whether all requests to set the phase
period were successfully submitted. It gives no indication of whether the requests were suc-
cessfully executed.

ASC_success all requests to set the phase period were submitted
ASC_operation_failed set phase period failed to be requested for some process

3/25/99

Copyright 1998 by IBM Corp. Application.chp 88

class Application Draft

Callback Data

The callback function is invoked once for each process for which setting the new period for a
phase is requested. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request statudjof type
Status , which contains one of the following status values:

ASC_success phase period was successfully set
ASC_operation_failed attempt to set the phase period on this process failed
See Also

add_phase, badd_phase, bremove_phase, bset_phase_period,
get_phase_period, remove_phase

3/25/99

Copyright 1998 by IBM Corp. Application.chp 89

class Application Draft

3.48signal - LY

Synopsis

#include <Application.h>
AisStatus signal(
int unix_signal,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters

unix_signal Unix™ signal to be sent to every process in the application

ack cb_fp callback function to process signal acknowledgments

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends the specified signal to every process in the application. The process must
be both connected and attached to receive the signal.

A signal is sent only to those processes that are connected and attached.

Note thatsignal returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until processes within the application have been signaled or
failed to be signalled.

Return value

The return value fosignal indicates whether all requests to signal processes were success-
fully submitted. It gives no indication of whether the requests were successfully executed.

ASC_success all requests to signal the processes were submitted
ASC_operation_failed signalling failed to be requested for some process

Callback Data

The callback function is invoked once for each process for which signalling is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éfis@iatus , which con-

tains one of the following status values:

ASC_success process was successfully signaled
ASC_operation_failed attempt to signal this process failed
See Also

3/25/99 Copyright 1998 by IBM Corp. Application.chp 90

class Application Draft

3.49start
Synopsis
#include <Application.h>
AisStatus start(GCBFuncType ack_cb_fp, GCBTagType ack _cb_tag)

Parameters

ack cb_fp callback function to process start acknowledgments

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function is currently being designed. This function starts the execution of an application
that has been created but not yet begun execution.

Note thatstart returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the application has been started or failed to be started.

Return value
The return value fostart indicates whether the request to start the application was success-
fully submitted. It gives no indication of whether the request was successfully executed.
ASC_success request to start the application was submitted
ASC_operation_failed start failed to be requested

Callback Data

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuajsaf type
Status , which contains one of the following status values:

ASC_success application was successfully started
ASC_operation_failed attempt to start this application failed
See Also

bstart, PoeAppl::bcreate, PoeAppl::.create

3/25/99 Copyright 1998 by IBM Corp. Application.chp 91

class Application Draft

3.50status
Synopsis
#include <Application.h>
AisStatus status(int i)
Parameters
i position or index into the process table whose status is to be queried.
Description

This function returns status for tHB Process object of the application. Paramieterust
reflect a valid index, that is, D <get_count (). The returned value reflects the status
value of the most recently executed blocking call.

Return value

Interpretation of the return value fstatus is determined by the most recent blocking call
that was executed.

ASC invalid_index index does not reflect a valid index
See Also

get_count

3/25/99 Copyright 1998 by IBM Corp. Application.chp 92

class Application Draft

3.51suspend

Synopsis
#include <Application.h>
AisStatus suspend(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to process suspend acknowledgments

tag tag to be used as an argument to the callback when it is invoked
Description

This function suspends an application that is executing. Application suspension occurs on a
process by process basis. A tool must be both connected and attached to a process in order to
suspend process execution.

Note thatsuspend returns control to the caller immediately upon submitting all requests to
the daemons. It does not wait until processes within the application have been suspended or
failed to be suspended.

Return value

The return value fosuspend indicates whether all requests to suspend processes were suc-
cessfully submitted. It gives no indication of whether the requests were successfully executed.

ASC_success all requests to signal the processes were submitted
ASC_operation_failed signalling failed to be requested for some process

Callback Data

The callback function is invoked once for each process for which suspension is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, #is@tatus , which con-

tains one of the following status values:

ASC_success process was successfully suspended
ASC_operation_failed attempt to suspend this process failed
ASC_no_sus_res_from_created must be attached to call suspend
ASC_no_sus_res_from_connectedmust be attached to call suspend

See Also

attach, battach, bdetach, bresume, bsuspend, detach, resume

3/25/99 Copyright 1998 by IBM Corp. Application.chp 93

class Application Draft

3.52unload module

Synopsis
#include <Application.h>
AisStatus unload_module(
ProbeModule *module,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
module probe module to be unloaded.
ack cb_fp callback function to process module removal acknowledgments
ack cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked
Description

This function unloads the module from all the processes within the Application class. Once
unloaded, All the probe handles that refer to this probe module are automatically removed.

Note thatunload_module returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until the module has been removed or failed to be
removed from all processes within the application.

Return value

The return value founload_module indicates whether the requests to remove the indi-
cated module on all processes were successfully submitted. It gives no indication of whether
those requests were successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed one or more of the remove operations failed to be requested

Callback Data

The callback function is invoked once for each process for which object removal is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éis@tatus , which con-

tains one of the following status values:

ASC_success module was successfully removed from this process
ASC_operation_failed attempt to remove module from this process failed
See Also

bload_module, bunload_module, load_module

3/25/99 Copyright 1998 by IBM Corp. Application.chp 94

class GenCallBack Draft

4.0 class GenCallBack

4.1 Supporting Data Types

4.1.1GCBSysType

Synopsis
struct GCBSysType {
int msg_socket; // socket over which msg was received
int msg_type; // message type
int msg_size; /I size of the message sent
}
Description

This structure is provided as the data type of an input parameter to each callback function as it
is invoked. The structure is filled in by the system each time a callback is invoked as the sys-
tem prepares to invoke the callback.

4.1.2GCBTagType

Synopsis
typedef void *GCBTagType
Description

This data type is used by the tag parameter of a callback function. The tag parameter is sup-
plied by the user at the time the callback is registered. Tags are declaremdhs a to pro-

vide adequate space for the tag to be a pointer. The tag itself only has meaning to the callback
function and is neither read nor written by the callback system.

4.1.3GCBODbjType

Synopsis
typedef void *GCBObjType
Description

This data type is used by the object parameter of a callback function. The object parameter is
supplied by the system at the time the callback is registered. The object parameter represents a
pointer to the object that invokes the asynchronous operation that causes the callback to be
invoked. The callback function must know the actual data type of the invoking object and
explicitly cast the pointer to be of that type.

3/25/99 Copyright 1998 by IBM Corp. GencCallBack.chp 95

class GenCallBack Draft

4.1.4GCBMsgType

Synopsis
typedef void *GCBMsgType
Description

This data type is used by the message parameter of a callback function. The message parame-
ter is supplied by the system at the time the callback is invoked. It is the arrival of this message
that causes the callback function to be invoked. The callback function must know the actual
data type of the message and explicitly cast the pointer to be of that type.

4.1.5GCBFuncType

Synopsis
typedef void (*GCBFuncType)(
GCBSysType sys, Il system data structure
GCBTagType tag, /I user-supplied tag value
GCBODbjType obj, /Il object that registers the callback
GCBMsgType msQ) /[activating or invoking message
Description

This data type represents a pointer to the callback function. Explicit, user-supplied callback
functions are used in all asynchronous function calls.

3/25/99 Copyright 1998 by IBM Corp. GenCallBack.chp 96

class InstPoint

5.0 class InstPoint

5.1 Supporting Data Types

5.1.1InstPtLocation

Synopsis

#include <InstPoint.h>

enum InstPtLocation {
IPL_invalid,
IPL_before,
IPL_after,
IPL_replace,
IPL_LAST_LOCATION

}

Description

This enumeration type is used to describe the location of instrumentation relative to the
instruction being instrumented. Not all locations are valid with all instrumentation point types.
Instrumentation may be placed before the instruction, after the instruction, or the requested
code may in some cases replace the instruction in question. Instrumentation points that are not
attached to a location within an application or process, perhaps because they were created by a
default constructor, are invalid.

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 97

class InstPoint Draft

5.1.2InstPtType

Synopsis
#include <InstPoint.h>
enum InstPtType {
IPT_invalid,
IPT_function_entry,
IPT_function_exit,
IPT_function_call,
IPT_loop_entry,
IPT_loop_exit,
IPT_block_entry,
IPT_block_exit,
IPT_statement_entry,
IPT_statement_exit,
IPT_instruction,
IPT_LAST_TYPE
}
Description

This enumeration type describes the type of location that may be instrumented. Not all will be
available within a given source object. Availability depends on source object type and options
used when compiling the application process.

See Also

class SourceObj

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 98

class InstPoint

5.2 Constructors

Synopsis

#include <InstPoint.h>

InstPoint(void)

InstPoint(const InstPoint ©)
Parameters

copy object to be duplicated in the copy constructor
Description

Two constructors are provided with this class -- a default constructor and a copy constructor.
The default constructor is able to create storage, marked as containing invalid instrumentation
points, that may later be assigned through an assignment from a valid instrumentation point.

The copy constructor performs a similar operation to assignment, but operates on an uninitial-
ized object.

Exceptions
ASC _insufficient_memory insufficient memory to create a new node

See Also

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 99

class InstPoint Draft

5.3get actuals

Synopsis

#include <InstPoint.h>

ProbeExp get_actuals(int i) const
Parameters

i index of the parameter value to be used
Description

When the instrumentation point refers to a subroutine or function call site, this function
returns a reference to the value of fﬁeparameter of the function being called. When the
instrumentation point does not refer to a call site, this function returns an invalid probe expres-
sion.

This function returns a reference to the value of the parameter in the call, also known as the
actual parameterThis is opposed to tifermal parametershat are given as part of the func-
tion definition.

In most cases DPCL cannot know the number or data types of function arguments, so it is
incumbent upon the user to be sure the request for a function argument is valid.

Return value
Probe expression referencing the function parameter or marked as invalid.

See Also

get_type

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 100

class InstPoint

5.4 get container

Synopsis

#include <InstPoint.h>

SourceObj get_container(void) const
Description

This function returns the source object that contains the instrumentation point. This allows a
tool to start with an instrumentation point and explore the context in which it occurs, such as
the function and module in which the instrumentation point resides.

Return value

Source object that contains the instrumentation point.

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 101

class InstPoint Draft

5.5g0et demangled name

Synopsis
#include <InstPoint.h>

char *get_demangled_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the demangled function name
len maximum number of bytes that will be placed in buffer. [EBmgaram-
eter should include enough space for a terminatuiigoyte.
Description

When the instrumentation point refers to a subroutine or function call site, this function places
the anull-terminated string representing the demangled name of the function being called at
the location specified dyuffer . The name may be truncated if tee parameter is

smaller than the length of the function name.

Return value

Pointer tobuffer, containing the demangled name of the function
0 if this instrumentation point does not refer to a call site..

See Also

get_type, get_demangled_name_length

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 102

class InstPoint

5.6get demangled name length

Synopsis

#include <InstPoint.h>

unsigned int get_demangled_name_length(void) const
Description

This function returns the length, including the terminatiotj byte, of the demangled name
of the function being called at this point.

Return value

If this point refers to a function call site, then the length of the demangled name of the func-
tion being called.

0 if this point is not a function call site.
See Also

get_type, get_demangled_name

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 103

class InstPoint Draft

5.7get_line
Synopsis

#include <InstPoint.h>
int get_line(void) const
Description

This function returns the approximate line number in source where the instrumentation point
occurs. If the instrumentation point is invalid, this function returns a value of -1.

Return value
Approximate line number in source or -1.

See Also

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 104

class InstPoint

5.8get location

Synopsis

#include <InstPoint.h>

InstPtLocation get_location(void) const
Description

This function returns the location of the instrumentation relative to the instrumentation point.
Possible locations arbefore after, replace andinvalid. If the location idefore then instru-
mentation installed using this instrumentation point will occur immediately before the instruc-
tion is executed. lafter, then instrumentation will be installed immediately after the
instruction. Ifreplace the instrumentation will replace the instruction. When the instrumenta-
tion point is not attached to a valid location within a process, the return vaiwvalid.

Return value

IPL_invalid instrumentation point is not attached to a valid location
IPL_before instrumentation is placed before the indicated instruction
IPL_after instrumentation is placed after the indicated instruction
IPL_replace instrumentation replaced the indicated instruction

See Also

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 105

class InstPoint Draft

5.9get mangled name

Synopsis
#include <InstPoint.h>

char *get_mangled_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the mangled function name
len maximum number of bytes that will be placed in buffer. [EBmgaram-
eter should include enough space for a terminatuiigoyte.
Description

When the instrumentation point refers to a subroutine or function call site, this function places
the anull-terminated string representing the mangled name (function name with the data type
encoded) of the function being called at the location specifibditbgr . The name may be
truncated if théen parameter is smaller than the length of the function name.

Return value

Pointer tobuffer, containing the mangled name of the function
0 if this instrumentation point does not refer to a call site..

See Also

get_type, get_mangled _name_length

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 106

class InstPoint

5.10get mangled name length

Synopsis

#include <InstPoint.h>

unsigned int get_mangled_name_length(void) const
Description

This function returns the length, including the terminatintj byte, of the mangled name of
the function being called at this point.

Return value

If this point refers to a function call site, then the length of the mangled name of the function
being called.

0 if this point is not a function call site.
See Also

get_type, get_mangled_name

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 107

class InstPoint Draft

5.11get type

Synopsis
#include <InstPoint.h>
InstPtType get_type(void) const
Description

This function returns the type of this instrumentation point, such as beginning or end of a sub-
routine, at a function call sitefc.

Return value
Type of instrumentation point.

See Also

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 108

class InstPoint

5.12operator =

Synopsis

#include <InstPoint.h>

InstPoint &operator = (const InstPoint ©)
Parameters

copy object to be duplicated in the assignment operator
Description

This function copies the argument over the top of the invoking object.
Return value

Reference to the invoking object.

See Also

3/25/99 Copyright 1998 by IBM Corp. InstPoint.chp 109

Function Group LogSystem Draft

6.0 Function Group LogSystem

6.1 Supporting Data Types

6.1.11L oggingDest

Synopsis
#include <LogSystem.h>
enum LoggingDest {

LGD_client, /[info sent to client only
LGD_daemon, // info sent to daemon only
LGD_both, // info sent to daemon & client
LGD_neither, /Il info is not sent anywhere
}
Description

This data type represents ...

6.1.2LogginglLevel

Synopsis
#include <LogSystem.h>
enum LoggingLevel {

LGL_fatal /l next action is to crash
LGL_severe I/l something is seriously wrong
LGL_warning /I 'a warning
LGL _trace /Il function entry/exit
LGL_detail /I other, more general, info
}
Description

This data type represents ...

3/25/99 Copyright 1998 by IBM Corp. LogSystem.chp 110

Function Group LogSystem Draft

6.2 Ais blog off

Synopsis

#include <LogSystem.h>
AisStatus Ais_blog_off(
const char *hostname)
Parameters
Description

Return value

3/25/99 Copyright 1998 by IBM Corp. LogSystem.chp 111

Function Group LogSystem Draft

6.3 Ais blog on

Synopsis

#include <LogSystem.h>
AisStatus Ais_blog_on(
const char *hostname)

AisStatus Ais_blog_on(
const char *hostname,
LoggingLevel level,
LoggingDest dest,
GCBFuncType log_cb_fp,
GCBTagType log_cb_tag)

Parameters
Description

Return value

3/25/99 Copyright 1998 by IBM Corp. LogSystem.chp 112

Function Group LogSystem Draft

6.4Ais log off

Synopsis

#include <LogSystem.h>
AisStatus Ais_log_off(
const char *hostname,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)
Parameters
Description

Return value

3/25/99 Copyright 1998 by IBM Corp. LogSystem.chp 113

Function Group LogSystem Draft

6.5Ais log on

Synopsis
#include <LogSystem.h>
AisStatus Ais_log_on(
const char *hostname,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

AisStatus Ais_log_on(
const char *hostname,
LoggingLevel level,
LoggingDest dest,
GCBFuncType log_cb_fp,
GCBTagType log_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)
Parameters
Description

Return value

3/25/99 Copyright 1998 by IBM Corp. LogSystem.chp 114

class Phase Draft

7.0 class Phase

Phases represent the client visible control mechanism for time-initiated instrumentation. In other
words, phases are used to control time-sampled instrumentation. Phases are activated, or invoked,
when an interval timer expires. The interval timer uses the SIGPROF signal to activate the phase, so
applications that use SIGPROF cannot be instrumented with phases.

When a phase is activated it executes its begin function to initialize any data that may be used during
the rest of the phase. If the begin function sends any messages back to the client those messages
invoke the begin callback function. The begin callback function is invoked once per message sent.
After the begin function has completed the data function is then executed, once per datum of probe
data associated with the phase. Data is associated with a phase thra\gtiitation::mal-

loc orProcess::malloc functions. Any messages sent to the client by the data function are
handled on the client by the data callback function. When the data function finishes execution for the
last datum, the end function is then executed to perform any necessary clean-up operations. Messages
sent by the end function are handled by the end callback.

To fully understand phases it is important to understand th&tthge object on the client is a data
structure that represents the actual phase. The actual phase resides within the instrumented applica-
tion process. Certain operations, sucimafioc , can alter the actual phase in ways that are not
reflected within the client data structure. This affects the behavior of the client data structure in subtle
ways. In order to provide the most useful abstraction for phases, the default constructor and the copy
constructor create new client data structures but they do not create unique phases. As a result,

“Phase pl, p2; " creates a situation wherel == p2 ”is regarded as true. Similarly, the
sequencePhase p1(f1, f2, t); Phase p2 = p1; " also results inpl == p2 ” evalu-
ating to true. Similar behavior results when the assignment opena¢oator = , is used.

In contrast, the standard constructors create unique phases even when the parameters used in the co
structors are identical. ThuPhase pl(f1, 2, t), p2(f1, f2, t); " results in a situa-

tion where p1 == p2 " would evaluate tdalserather tharirue. This possibly counter-intuitive

behavior is necessary to allow end-user tools to manage separate groups of data on separate timers.

3/25/99 Copyright 1998 by IBM Corp. Phase.chp 115

class Phase Draft

7.1 Constructors

Synopsis
#include <Phase.h>
Phase(void)
Phase(const Phase ©)

Phase(float period,
ProbeExp data_func,
GCBFuncType data_cb,
GCBTagType data_tg)

Phase(float period,
ProbeExp begin_func,
GCBFuncType begin_cb,
GCBTagType begin_tg,
ProbeExp data_func,
GCBFuncType data_cb,
GCBTagType data_tg,
ProbeExp end_func,
GCBFuncType end_cb,
GCBTagType end_tg)

Parameters
copy phase that will be duplicated in a copy constructor
period time interval, in seconds, between successive invocations of the phase
begin_func begin function, executed once upon invocation of the phase
begin_cb begin callback, to which any begin function messages are addressed
begin_tag callback tag for the begin callbabkgin_cb
data_func function that, each time the phase is invoked, is executed once for each

datum associated with the phase

data cb callback function to which any data function messages are addressed
data_tag callback tag for the data function callbatdta cb

3/25/99 Copyright 1998 by IBM Corp. Phase.chp 116

class Phase Draft

end_func end function, executed once per invocation of the phase after the data
function has completed its series of executions
end_cb end callback, to which any end function messages are addressed
end_tag callback tag for the end callbaekd_cb
Description

The default constructor creates an empty phase whose period, functions, callbacks and tags
are all set to 0. The default constructor is invoked when uninitialized phases are created, such
as in arrays of phases. Objects within the array can be overwritten using an assignment opera-
tor (operator =).

The copy constructor is used to transfer the contents of an initialized objex§ihgaram-
eter) to an uninitialized object.

The standard constructors create a new phase and new phase data structure, and initialize the
data structure according to the parameters that are provided. The function prototypes are:

void begin_func(void *msg_handle)
void data_func(void *msg_handle, void *data)
void end_func(void *msg_handle)

Exceptions

ASC _insufficient_memory not enough memory to create a new node

See Also

3/25/99 Copyright 1998 by IBM Corp. Phase.chp 117

class Phase Draft

7.2 operator =

Synopsis

#include <Phase.h>

Phase &operator = (const Phase &rhs)

Parameters

rhs right operand

Description

This function assigns the value of the right operand to the invoking object. The left operand is
the invoking object. For examplePhase rhs, lhs; ... Inhs = rhs; " assigns the
value ofrhs tolhs . Then one can be used interchangeably with the other.

Note that assignment is different from creating two phases using the same input values. For
example, Phase p1(X,y,z), p2(X,Y,2); " gives two independent phases even

though they have exactly the same arguments. Logdingto a process and later unloading

pl from the same process is, of course, a valid operation. Lopdlingo a process and later
unloadingp2 from the same process as if they were the same phase is invaligySireg@e-
sents a different phase with coincidentally the same values.

Return value

A reference to the invoking object (i.e., the left operand).

See Also

3/25/99

Copyright 1998 by IBM Corp. Phase.chp 118

class Phase Draft

7.3 operator ==

Synopsis

#include <Phase.h>

int operator == (const Phase &compare)
Parameters

compare phase to be compared against the invoking object
Description

This function compares two phases for equivalence. If the two objects represent the same
phase, this function returns 1. Otherwise it returns 0. For exanfflasé rhs, |hs;

... Ins = rhs; " gives a situation wheratis ==lhs " is true, andoperator ==

returns 1. ButPhase p1(x,y,z), p2(X,y,2); " gives a situation where the value of
“pl ==p2 ”is nottrue, even though they were both constructed with the same values, and
operator == returns 0.

Return value
This function returns 1 if the two objects are equivalent, O otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. Phase.chp 119

class Phase Draft

7.4 operator =

Synopsis

#include <Phase.h>

int operator != (const Phase &compare)
Parameters

compare phase to be compared against the invoking object
Description

This function compares two phases for equivalence. If the two objects represent the same
phase, this function returns 0. Otherwise it returns 1. For exanfflasé rhs, |hs;

... Ihs = rhs; " gives a situation wherehis != |hs " is false, andbperator !=
returns 0. But Phase p1(x,y,z), p2(X,y,2); " gives a situation where the value of
“pl!=p2 "istrue, even though they were both constructed with the same values, and
operator = returns 1.

Return value
This function returns O if the two objects are equivalent, 1 otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. Phase.chp 120

class PoeAppl : public Application Draft

8.0 class PoeAppl : public Application

The PoeAppl class is derived from the Application class and provides additional convenience func-
tions to provide easier access to poe jobs (MPI programs). These functions can be used to initialize
your Application object with the Process objects associated with your MPI program. MPI programs
can also be created using the PoeAppl class so that the entire run of the program is available to other
DPCL functions.

8.1 Constructors

Synopsis
#include <PoeAppl.h>
PoeAppl(void)
Description

Default constructor.

The copy constructor uses the values contained in the copy argument to initialize the new
(constructed) object.

Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 121

class PoeAppl

: public Application

Draft

8.2 bcreate

Synopsis

#include <PoeAppl.h>

const char *host,

const char *path,

const char *args],

const char *envp[],

char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename,
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag)

AisStatus bcreate(

const char *host,

const char *path,

const char *args],

const char *envp(],
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag)

AisStatus bcreate(

const char *host,
const char *path,
const char *args][],
const char *envp(],

3/25/99

Copyright 1998 by IBM Corp. PoeAppl.chp

122

class PoeAppl : public Application Draft

char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename)

AisStatus bcreate(
const char *host,
const char *path,
const char *argv[],

const char *envpl[])

Parameters
host host name or IP address of the host machine where the poe application
is to be created. This will be the home node for poe.
path complete path to poe, including relative or absolute directory, when
appropriate
argv null terminated array of arguments to be provided to poe
envp null terminated array of environment variables to be provided for poe

remote_stdin_filenameremote file to use for stdin
remote_stdout_filenameremote file to use for stdout
remote_stderr_filenameremote file to use for stderr

stdout_cb_fp callback function to handle stdout from the application

stdout_cb_tag tag to be used with the stdout callback function

stderr_cb_fp callback function to handle stderr from the application

stderr_cb_tag tag to be used with the stderr callback function
Description

This function creates an MPI program in a suspended state. All of the processies get created
but are suspended at the first executable instruction. Use the start function to allow the MPI
program to run.

The poe executable specified in the path parameter is run with the argv and envp provided on
the host specified by the host parameter. This will create the MPI program, which will be set
up but not run. The configuration of the MPI program will be found and a Process class will
be added ro the PoeAppl for each task in the MPI program.

After the create has completed, probe installation, activation, removal, etc. may take place.

3/25/99

Copyright 1998 by IBM Corp. PoeAppl.chp 123

class PoeAppl : public Application Draft

To find the number of Processie classes that are now contained in PoeAppl, use Applica
tion::get_count. To access a particular process within the PoeAppl, use Applica
tion::get_process.

Stdio for the MPI program will be handled by poe depending on the options and environment
variables specified for poe. In other words the stdin, stdout and stderr all get funneled through
the poe process. The input, output filenames, output callbacks and PoeAppl::send_stdin can
be used to access the stdio from and to the poe process.

If you pass callback functions in to the stdout_cb_fp and stderr_cb_fp parameters, the output
from poe will be available in these callbacks. Input to poe can be sent using send_stdin().

Another way to access Stdio to poe is to specify the remote filename parameters. In this case
stdin, stdout and stderr can be set to use files on the host where poe is running. It is expected
that the remote_stdin_filename specified will already exist. The files for the
remote_stdin_filename and remote_stdin_filename will created or overwritten if they already
exist. If one of the remote file parameters is specified, it takes precedence over the corre-
sponding callback or send_stdin() method of handling Stdio.

Note thatocreate does not return control to the caller until the new application has been
created or failed to be created. The return value indicates whether the operation succeeded or
failed.

Return value

The return value fobcreate indicates whether the application was successfully created.

PoeAppl:.create is impememted using the existing dpcl interface including calls to Pro-
cess:create, Process::start to initiate poe on the home node, and PoeAppl::init_procs to initial-
ize the PoeAppl class with contained Process classes. Because of this, return values other than
the following may be encountered due to errors in the contained dpcl calls.

ASC_success application was successfully created, as expected
ASC_operation_failed application failed to be created

Callback Data
stgout_cb_fp . This callback function is invoked each time the process sends data to
stdout

stderr_cb_fp . This callback function is invoked each time the process sends data to
stderr

The output will be contained in the message parameter of the callback. The size of the output
will be contained in the msg_size field of the sys callback parameter. The output from the
application may be recieved in different size blocks than were actually sent by the program.

See Also

bdestroy, bstart, create, destroy, class GenCallback,
get_count, get_process, send_stdin, start

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 124

class PoeAppl : public Application Draft

8.3 binit procs

Synopsis
#include <PoeAppl.h>

AisStatus binit_procs(const char *hostname, int poe_pid)

Parameters
hostname A string representing the hostname or ip address where poe was
invoked to start the MPI program. This host is referred to as the home
node in the poe documentation.
poe_pid The process identifier (pid) of the poe invocation on its home node.
Description

This call initializes the PoeAppl class to contain the set of processies used by the MPI pro-
gram. The process and node configuration of the MPI program is read and a corresponding set
of Process classes are created containing the pid and hostname of the individual tasks of the
MPI program. These Process classes are then added to the PoeAppl.

To find the number of Processie classes that are now contained in PoeAppl, use Applica-
tion::get_count. To access a particular process within the PoeAppl, use Applica-
tion::get_process.

A subsequent connect must be issued in order to insert instrumentation into the application.

Note thatbinit_procs does not return control to the caller until either a failure obtaining
the MPI program configuration information occurs or all of the Process classes have
attempted to be created.

Return value

If the MPI program configuration information is succesfully found and parsed, the return
value indicates whether all succeeded or some succeeded and some failed. The function

Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.

ASC_success processies have been added to PoeAppl class
ASC_bad_att_cfg_version unrecognized poe version

ASC_bad_att cfg _numtask attach config file error parsing number of tasks

ASC _bad_att cfg_task attach config file error parsing task number
ASC_bad_att cfg_ipaddr attach config file error parsing ip address

ASC _bad_att cfg_hostname attach config file error parsing hostname

ASC_bad_att cfg_pid attach config file error parsing pid

ASC_bad_att cfg_sid attach config file error parsing session id

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 125

class PoeAppl : public Application Draft

ASC bad_att cfg_progname attach config file error parsing program name
ASC_operation_failed attempt to connect to this process failed

See Also

bconnect, connect, get_count, get_process, init_procs

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 126

class PoeAppl : public Application Draft

8.4 create
Synopsis
#include <PoeAppl.h>
AisStatus create(
const char *host,
const char *path,
const char *args]],
const char *envp(],
char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename,
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

AisStatus create(
const char *host,
const char *path,
const char *args]],
const char *envp(],
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)
AisStatus create(

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 127

class PoeAppl : public Application Draft

const char *host,

const char *path,

const char *args]],

const char *envp(],

char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename,
GCBFuncType ack _cb_fp,
GCBTagType ack_ch_tag)

AisStatus create(
const char *host,
const char *path,
const char *args][],
const char *envp][],
GCBFuncType ack cb_fp,
GCBTagType ack cb_tag)

Parameters
host host name or IP address of the poe process. This will be the hostname
sometimes referred to as the home node in the poe documentation.
path complete path to the poe executable, including relative or absolute
directory, as appropriate
args null terminated array of arguments to be provided to poe
envp null terminated array of environment variables to be provided to poe

remote_stdin_filenameremote file to use for stdin
remote_stdout_filenameremote file to use for stdout
remote_stderr_filenameremote file to use for stderr

stdout_cb_fp callback function to handle stdout from the application
stdout_cb_tag tag to be used with the stdout callback function
stderr_cb_fp callback function to handle stderr from the application
stderr_cb_tag tag to be used with the stderr callback function

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 128

class PoeAppl : public Application Draft

ack cb fp callback function to be invoked with a successful or failed creation
ack cb tag callback tag to be used when the callback function is invoked
Description

This function creates an MPI program in a suspended state. All of the processies get created
but are suspended at the first executable instruction. Use the start function to allow the MPI
program to run.

The poe executable specified in the path parameter is run with the argv and envp provided on
the host specified by the host parameter. This will create the MPI program, which will be set
up but not run. The configuration of the MPI program will be found and a Process class will
be added ro the PoeAppl for each task in the MPI program.

After the create has completed, probe installation, activation, removal, etc. may take place.

To find the number of Processie classes that are now contained in PoeAppl, use Applica
tion::get_count. To access a particular process within the PoeAppl, use Applica
tion::get_process.

Stdio for the MPI program will be handled by poe depending on the options and environment
variables specified for poe. In other words the stdin, stdout and stderr all get funneled through
the poe process. The input, output filenames, output callbacks and PoeAppl::send_stdin can
be used to access the stdio from and to the poe process.

If you pass callback functions in to the stdout_cb_fp and stderr_cb_fp parameters, the output
from poe will be available in these callbacks. Input to poe can be sent using send_stdin().

Another way to access Stdio to poe is to specify the remote filename parameters. In this case
stdin, stdout and stderr can be set to use files on the host where poe is running. It is expected
that the remote_stdin_filename specified will already exist. The files for the
remote_stdin_filename and remote_stdin_filename will created or overwritten if they already
exist. If one of the remote file parameters is specified, it takes precedence over the corre-
sponding callback or send_stdin() method of handling Stdio.

Note thatcreate returns control immediately to the caller. It does not wait until the applica-
tion has been created. The return value indicates whether the request was successfully submit-
ted and gives no indication whatever about the success or failure of the execution of the
request.

Return value

The return value focreate indicates whether the request to create an application was suc-
cessfully submitted, but indicates nothing about whether the request was successfully exe-
cuted.

ASC_success connection was successfully established on this process
ASC_operation_failed attempt to connect to this process failed

3/25/99

Copyright 1998 by IBM Corp. PoeAppl.chp 129

class PoeAppl : public Application Draft

Callback Data

The acknowlegement callback function is invoked once when the new application is created.
When the callback is invoked the callback function is passed a pointer to the PoeAppl as the
callback object. The callback message is the request status, diisgtatus , which may
contain one of the status values values that follow.

PoeAppl:.create is impememted using the existing dpcl interface including calls to Pro-
cess:create, Process::start to initiate poe on the home node, and PoeAppl::init_procs to initial-
ize the PoeAppl class with contained Process classes. Because of this, return values other than
the following may be encountered due to errors in the contained dpcl calls.

ASC_success connection was successfully established on this process
ASC_operation_failed attempt to connect to this process failed

stdout_cb_fp . This callback function is invoked each time the process sends data to
stdout

stderr_cb_fp . This callback function is invoked each time the process sends data to
stderr

The output will be contained in the message parameter of the callback. The size of the output
will be contained in the msg_size field of the sys callback parameter. The output from the
application may be recieved in different size blocks than were actually sent by the program.

See Also

bdestroy, bstart, bcreate, destroy, class GenCallback,
get_count, get_process, send_stdin, start

3/25/99

Copyright 1998 by IBM Corp. PoeAppl.chp 130

class PoeAppl : public Application Draft

8.5init procs

Synopsis
#include <PoeAppl.h>
AisStatus init_procs(

const char *hostname,

int poe_pid,
GCBFuncType fp,
GCBTagType tag)
Parameters
hostname A string representing the hostname or ip address where poe was
invoked to start the MPI program. This host is referred to as the home
node in the poe documentation.
poe_pid The process identifier (pid) of the poe invocation on its home node.
fp callback function to be invoked with a successful or failed initialization
of the PoeAppl class.
tag callback tag to be used as a parameter to the callback when the callback
function is invoked.
Description

This call initializes the PoeAppl class to contain the set of processies used by the MPI pro-
gram. The process and node configuration of the MPI program is read and a corresponding set
of Process classes are created containing the pid and hostname of the individual tasks of the
MPI program. These Process classes are then added to the PoeAppl.

To find the number of Processie classes that are now contained in PoeAppl, use Applica-
tion::get_count. To access a particular process within the PoeAppl, use Applica-
tion::get_process

A subsequent connect must be issued in order to insert instrumentation into the application.

Note thatinit_procs returns control to the caller immediately upon submitting the

request to the daemon. It does not wait until the configuration has been obtained or for the
Process classes to be initialized. The acknowledgement callback function receives notification
of the success or failure of the PoeAppl initialization.

Return value

The return value fainit_procs indicates whether the requests were successfully submit-
ted, but indicates nothing about whether the requests themselves were successfully executed.

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 131

class PoeAppl : public Application Draft

ASC_success request to initialize the PoeAppl class was successfully sub-
mitted
ASC_operation_failed attempt to submit the request for the MPI program configu-

ration data failed

Callback Data

If the MPI program configuration information is succesfully found and parsed, the return
value indicates whether all succeeded or some succeeded and some failed. The function

Application::status(int index) may be queried to determine whether the opera-
tion succeeded or failed on any given process.
ASC_success processies have been added to PoeAppl class
ASC_bad_att_cfg_version unrecognized poe version
ASC _bad_att cfg _numtask attach config file error parsing number of tasks
ASC _bad_att cfg_task attach config file error parsing task number
ASC_bad_att cfg_ipaddr attach config file error parsing ip address
ASC _bad_att cfg_hostname attach config file error parsing hostname
ASC_bad_att cfg_pid attach config file error parsing pid
ASC_bad_att cfg_sid attach config file error parsing session id
ASC _bad_att cfg_progname attach config file error parsing program name
ASC_operation_failed attempt to connect to this process failed

See Also

bconnect, connect, get_count, get_process, binit_procs

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 132

class PoeAppl : public Application Draft

8.6send stdin

Synopsis
#include <PoeAppl.h>

AisStatus send_stdin(char *buffer, int size)

Parameters
buffer character array that contains text to be fed to the application through
the controlling poe process
size number of bytes in the buffer to be sent
Description

This function provides text to be used as input to the poe processs statithe device, that
is, file descriptor O.

In order for send_stdin to be used, the poe application must have been created using the create
function.

Note thatsend_stdin returns control to the caller immediately upon submitting the request
to the daemon. It does not wait until the application has received the input.

Return value

The return value fosend_stdin indicates whether the request to provide application input
was successfully submitted. It gives no indication of whether the request was successfully

executed.
ASC_success request to provide input was successfully submitted
ASC_operation_failed request to provide input failed

Callback Data

The acknowlegement callback function is invoked once when the buffer has been sent to poe.
When the callback is invoked the callback function is passed a pointer to the PoeAppl as the
callback object. The callback message is the request status, disgtatus , which may

contain one of the status values values that follow.

ASC_success the buffer was successfully sent to poe
ASC_operation_failed attempt to send the buffer to poe failed
See Also

bcreate, create

3/25/99 Copyright 1998 by IBM Corp. PoeAppl.chp 133

class ProbeExp Draft

9.0 class ProbeExp

Objects of type ProbeExp can be created using the various ProbeExp constructors. Also, there are a
few other DPCL objects that can be converted into ProbeExp’s.

A SourceObj which represents a variable or a function can be converted to a ProbeExp which repre-
sents a reference to the function or variable by using SourceObj::ref_to_probe_exp. A function within
a ProbeModule can be converted to a ProbeExp which represents a reference to the function by using
ProbeModule::to_probe_exp. An actual parameter of a function being called at the call site of an Inst-
Point can be converted to a ProbeExp which represents a reference to the parameter by using Inst-
Point::get_actuals.

9.1 Supporting Data Types

9.1.1Primiti ve Data Types

Synopsis
typedef char int8 t
typedef short intl6 t
typedef int int32_t
typedef long long int64_t
typedef unsigned char uint8_t
typedef unsigned short uintl6_t
typedef unsigned int uint32_t
typedef unsigned long long uint64 _t
typedef float float32_t
typedef double float64 t

Description

This collection of data types represents the primitive data types supported at some level by
probe expressions. These are client data types that represent entities used in a probe expres-
sion inside an application process. Not all data types are given the same level of support. 32-
bit integers are given the greatest level of support, with arithmetic, logical, bitwise, relational
and assignment operators. Although pointer values can be manipulated in probe expressions,
they are not given a separate data type on the client, but are themselves represented by probe
expressions. More complex data types may be allocated for use in probe expressions, but
operators that make use of such values are quite limited.

3/25/99

Copyright 1998 by IBM Corp. ProbeExp.chp 134

class ProbeExp Draft
9.1.2CodeExpNodelype
Synopsis
enum CodeExpNodeType {

CEN_address_op, /l the address of -- &x
CEN_and_op, /I bitwise “and” ~-X&Yy
CEN_andand_op, //'logical “and” - X&&Yy
CEN_andeq_op, /I bitwise “and” -X&=Yy
CEN_array_ref_op, Il array reference -- X[y]
CEN_call_op, I function call -- f(...)
CEN_div_op, /1 division -Xxly
CEN_diveqg_op, /Il divide assign -XIl=y
CEN_eq_op, Il assignment -X=Yy
CEN_eqeq_op, I/l value equality --x==y
CEN_ge_op, /[value greater eq --x>=y
CEN_gt_op, Il value greater —-X>y
CEN_le_op, /l value lessoreq --x<=y
CEN_lIseq_op, /Il left shiftasgn --x <<=y
CEN_Ishift_op, /1 left shift - X <<y
CEN_It_op, /' less than - X<y
CEN_minus_op, // binary minus ~-X-Yy
CEN_minuseq_op, /l minus assignment -- x -=y
CEN_mod_op, / modulus -X%y
CEN_modeq_op, // modulus asgn - X %=y
CEN_mult_op, /[multiplication --x*y
CEN_multeq_op, /l multiply asgn - X*=y
CEN_ne_op, /I not equal -Xl=y
CEN_not_op, /I logical not --1Ix
CEN_or_op, /I bitwise or -X|y
CEN_oreqg_op, /] bitwise or asgn --x|=Yy
CEN_oror_op, /' logical or - Xy

3/25/99

Copyright 1998 by IBM Corp.

ProbeExp.chp

135

class ProbeExp

Draft

CEN_plus_op,
CEN_pluseq_op,

CEN_pointer_deref_op,
CEN_ postfix_minus_op,

CEN_postfix_plus_op,

CEN_prefix_minus_op,

CEN_prefix_plus_op,
CEN_rseq_op,
CEN_rshift_op,

CEN _tilde_op,
CEN_umin_op,
CEN_uplus_op,
CEN_xor_op,
CEN_xoreq_op,
CEN_float32_value,
CEN_float64 value,
CEN_int16_value,
CEN_int32_value,
CEN_int64 value,
CEN _int8 value,
CEN_string_value,
CEN_uintl6_value,
CEN_uint32_value,
CEN_uint64_value,
CEN_uint8 value,
CEN _if else_stmt,
CEN_if_stmt,
CEN_null_stmt,
CEN_stmt_list,
CEN_undef_node,

I/ addition —-X+y
// addition asgn —-X+=y
/I pointer deref -- *X
Il postfix decr - X --
I postfix incr - X ++
I prefix decrement -- -- X

Il prefix increment -- ++ X
Il right shift asgn -- x >>=y

/I right shift - X>>y
// bitwise negation -- ~ X
/[unary minus - -X
/[unary plus - +X
/I exclusive or - XNy

Il exclusive or asgn-- X A=y
/I float32 value
/Il float64 value
// int16 value
// int32 value
//int64 value
// int8 value
/I string value
// uint16 value
// uint32 value
// uint64 value
/[uint8 value
I'if else -if (X) y else z
/] if stmt —-if(x)y
/I null/empty stmt -
/I statment list -- X ; y
// undefined node

Copyright 1998 by IBM Corp.

ProbeExp.chp

136

class ProbeExp Draft

CEN_stack_ref, /I stack variable
CEN_heap_ref, /Il heap (malloc’d) variable
CEN_global_variable, Il predefined global variable
CEN_global_function, /I predefined global function
CEN_function_ref, Il reference to function
CEN_actual_param, Il actual parameter
CEN_LAST _TYPE /I last node type marker
}
Description

TheCodeExpNodeType enumeration data type represents the various operators and oper-
ands that may be found in probe expressions. Probe expressions are structnstdetssyn-

tax trees Expressions are represented with binary operators as a typed node with the left as
the left sub-tree, and the right as the right sub-tree.

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 137

class ProbeExp Draft

9.2 Constructors

Synopsis
ProbeExp(void)
ProbeExp(int8_t scalar)
ProbeExp(intl6_t scalar)
ProbeExp(int32_t scalar)
ProbeExp(int64 _t scalar)
ProbeExp(uint8_t scalar)
ProbeExp(uint16_t scalar)
ProbeExp(uint32_t scalar)
ProbeExp(uint64 _t scalar)
ProbeExp(float32_t scalar)
ProbeExp(float64 _t scalar)
ProbeExp(const char *string)
ProbeExp(const ProbeExp ©)

Parameters

scalar single value of some primitive data type

string null terminated array of signed 8-bit integers, or characters

copy probe expression object that will be duplicated in a copy constructor
Description

All of the above constructors create a new node that may be used as a sub-tree in a larger
probe expression. Each of the public constructors, with the exception of the copy constructor,
create terminal nodes. To create an expression containing operators one musugeethe

Exp operator that corresponds to the desired actionPTbleeExp operator constructs the

probe expression and performs a validity check. The probe expression may then be installed
and activated in an application, at which time additional checks are made to ensure data refer-
ences are valid within the process.

The copy constructor duplicates the argument, but copies argument children by reference. In
other words, it does not duplicate sub-expressions contained as childogyofinstead it
duplicates a pointer to the sub-expression and updates the appropriate reference counter.

Exceptions

ASC _insufficient_memory not enough memory to create a new node

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 138

class ProbeExp Draft

9.3 address

Synopsis
#include <ProbeExp.h>
ProbeExp address(void) const

Description

This function creates a probe expression that represents taking the address of the object in
application memory represented by the invoking object. The operand must be an object in
application memory. For exampld2rbbeExp exp = obj.address(); " would create

an expressioaxp that represents the addressbjf . The expressioaxp could then be used

as a sub-expression in an assignment or other type of statement or expression.

Computing the address is valid for any object regardless of data type, but the expression must
represent an object in memory. The data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the address of the object represented by the operand.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression invoking object does not represent an object in memory
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 139

class ProbeExp Draft

9.4assign
Synopsis
#include <ProbeExp.h>
ProbeExp assign(const ProbeExp &rhs) const
Parameters
rhs right, or value expression, of the assignment
Description

This function creates an expression where the right operand is evaluated and stored in the
location indicated by the left operand. The left operand is represented by the invoking object.
For example, ProbeExp exp = lhs.assign(rhs); " would create an expression

exp that represents evaluatirtgs and storing its value in the location representelthdy. It

is essential thdhs represent an object in memory.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the assignment of a value to an object.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type ofhs (the value assigned) did not match the
data type of the invoking object (location assigned to)
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 140

class ProbeExp Draft

9.5call
Synopsis
#include <ProbeExp.h>
ProbeExp call(short count, ProbeExp *args) const

Parameters
count count of arguments or parameters passed to the function being called
args array of arguments or parameters passed to the function being called
Description

This function creates a probe expression that represents a function call. The invoking object
represents the function to be called in the application process. For example, the expression
“ProbeExp exp = foo.call(count, args); " would create an expressiexp

that represents calling a function representefibby. This expression may be executed on the
application process only after it has been installed and activated.

Return value

Probe expression representing a call to a function.

Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression one or more arguments to the function does not repre-
sent valid a probe expression, either because the expres-
sion is ill formed, the expression data type does not
match the function argument data type, or data refer-
enced in the expression does not reside on the process
See Also

ProbeModule::to_probe_exp, SourceObj::ref_to_probe_exp

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 141

class ProbeExp Draft

9.6get data type

Synopsis

#include <ProbeExp.h>

ProbeType get _data_type(void) const
Description

This function returns the data type of the probe expression.
Return value

Data type of the probe expression.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 142

class ProbeExp Draft

9.7qget node type

Synopsis

#include <ProbeExp.h>

CodeExpNodeType get_node_type(void) const
Description

This function returns the type of node at the root of the probe expression tree. Nodes in a tree
represent operators or operands in an executable expression.

Return value
Type of operator or operand at the root of the probe expression tree.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 143

class ProbeExp Draft

9.8has_*

Synopsis
int has_int8(void) const
int has_int16(void) const
int has_int32(void) const
int has_int64(void) const
int has_int(void) const
int has_uint8(void) const
int has_uint16(void) const
int has_uint32(void) const
int has_uint64(void) const
int has_uint(void) const
int has_float32(void) const
int has_float64(void) const
int has_float(void) const
int has_string(void) const
int has_name(void) const
int has_text(void) const
int has_children(void) const
int has_left(void) const
int has_right(void) const
int has_center(void) const

Description

This family of functions returns a boolean indicator of whether the node being queried repre-
sents a datum with the data type in question. Hagsint32 will return 1 if the node rep-
resents a constant of data typt32_t

Return value

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 144

class ProbeExp Draft

9.9ifelse
Synopsis
#include <ProbeExp.h>
ProbeExp ifelse(const ProbeExp &te) const

ProbeExp ifelse(const ProbeExp &te, const ProbeExp &ee) const

Parameters
te “then” expression, or expression executed when condition is true
ee “else” expression, or expression executed when condition is false
Description

This function creates a probe expression that represents a conditional statement. The invoking
object represents the condition to be tested. It must be of type integer or pointer. If the test
evaluates to a non-zero value, the expression representedibgxecuted. If the test evalu-

ates to zero anee is not supplied, execution continues past the conditional. If the test evalu-
ates to zero aneke is supplied, then the expression representegehbig executed. For

example, ProbeExp exp = ce.ifelse(te); ” would create an expressiexp that
represents a conditional statement. The conditional expression to be tested is represented by
ce, and the expression to be executed should that condition be evaluated to true (any non-zero
integer value) is represented tey.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a conditional statement.

Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression data type of the invoking object is not an integer or
pointer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 145

class ProbeExp Draft

9.10is same as

Synopsis

#include <ProbeExp.h>

int is_same_as(const ProbeExp &compare) const
Parameters

compare right hand side of comparison
Description

This function compares two probe expressions for equivalence. If the invoking object has the
same structure as the probe expression it is compared against, this function returns 1. If the
structure is different in some way, or the expressions are similar in structure but have different
values at corresponding nodes, it returns O.

Return value
This function returns 1 when the expressions are equivalent, otherwise 0.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 146

class ProbeExp Draft

9.11 operator + (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator + (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the addition of two operands. The
invoking object represents the left operand, while the argurhentepresents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = Ihs + rhs; " would create an expressiexp that repre-
sents the addition of two valugss andrhs . The expressioaxp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Addition is only valid when both operands are integers, or one operand is an integer and one is
a pointer. Any other combination of operand data types is invalid. When both operands are
integers it has the usual meaning associated with computer arithmetic of signed integers and
the data type of the result of executing the expression is an integer. When one operand is a
pointer, it has the usual meaning associated with pointer arithmetic as defined in C/C++, and
the data type associated with the result is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of two operands.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 147

class ProbeExp Draft

9.12operator + (unary)

Synopsis
#include <ProbeExp.h>
ProbeExp operator + (void) const
Description
This function is effectively a no-op. It simply returns the value of its operand.
Return value
Probe expression representing the left operand.
Exceptions
ASC _insufficient_memory insufficient memory to create a new node

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 148

class ProbeExp Draft

9.130operator +=

Synopsis

#include <ProbeExp.h>

ProbeExp operator += (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the addition of two operands, and its
subsequent storage of the result into the invoking object. The invoking object represents the
left operand, while the argumaethis represents the right operand. The operands may be
objects in memory or expressions that evaluate to values. For example, the expression
“ProbeExp exp = lhs +=rhs; " would create an expressienxp that represents the
addition of two valuedhs andrhs , and its assignment ths . The expressioaxp could

then be used as a sub-expression in an assignment or other type of statement or expression.

Addition is only valid when both operands are integers, or the left operand is a pointer and the

right operand is an integer. Any other combination of operand data types is invalid. When both

operands are integers it has the usual meaning associated with computer arithmetic of signed
integers and the data type of the result of executing the expression is an integdhs/Nigen

a pointer, it has the usual meaning associated with pointer arithmetic as defined in C/C++ and
the data type of the result of executing the expression is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of two operands and assignment of the result.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 149

class ProbeExp Draft

9.14 0operator ++ (prefix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator ++ (void) const
Description

This function creates a probe expression that represents the increment of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand after the increment
takes place. For exampldRrobeExp exp = ++rhs; ” would create an expressiexp

that represents incrementirtygs by one. The expressi@xp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Increment is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whas is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of one to an operand and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 150

class ProbeExp Draft

9.150perator ++ (postfix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator ++ (int zero) const

Parameters

Zero constant integer Zero

Description

This function creates a probe expression that represents the increment of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand before the increment
takes place. For exampldRrobeExp exp = lhs++; ” would create an expressiexp

that represents incrementilits by one. The expressi@xp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Increment is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whdhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the addition of one to an operand and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of the operand is inappropriate
See Also

3/25/99

Copyright 1998 by IBM Corp. ProbeExp.chp 151

class ProbeExp Draft

9.16 0perator - (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator - (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the subtraction of two operands. The
invoking object represents the left operand, while the argurhentepresents the right oper-

and. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = |hs - rhs; " would create an expressiexp that repre-

sents the subtraction dis fromlhs . The expressioaxp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Subtraction is only valid when both operands are integers, or the left operand is a pointer and
the right operand is an integer, or both operands are pointers of the same type. Any other com-
bination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer. When one or both operand is a pointer, it has the
usual meaning associated with pointer arithmetic as defined in C/C++, and the data type asso-
ciated with the result is a pointer. When both operands are pointers, it has the usual meaning
associated with pointer subtraction as defined in C/C++, and the data type associated with the
result is a signed integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of two operands.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 152

class ProbeExp Draft

9.17 operator - (unary)

Synopsis
#include <ProbeExp.h>
ProbeExp operator - (void) const
Description

This function creates a probe expression that represents the arithmetic negation of an operand.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For exanifriehbéExp exp = - rhs; " would

create an expressi@xp that represents the negatiorrio . The expressioaxp could then

be used as a sub-expression in an assignment or other type of statement or expression.

Negation is only valid when the operand is a signed integer. Any other operand data type is
invalid. When the operand is an integer it has the usual meaning associated with computer
arithmetic of signed integers and the data type of the result of executing the expression is an
integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the arithmetic negation of an operand.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 153

class ProbeExp Draft

9.180perator -=

Synopsis

#include <ProbeExp.h>

ProbeExp operator -= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the subtraction of two operands, and
its subsequent storage of the result into the invoking object. The left operand represents the
invoking object, while the argumeriis represents the right operand. The left operand must

be an object in memory, while the right operand may be an object in memory or an expression
that evaluate to a value. For examplrdbeExp exp = Ihs -=rhs; " would create

an expressioexp that represents the subtraction of two valiles, andrhs , and its assign-

ment tolhs . The expressioaxp could then be used as a sub-expression in an assignment or
other type of statement or expression.

Subtraction is only valid when both operands are integers, or the left operand is pointer and
the right operand is an integer. Any other combination of operand data types is invalid. When
both operands are integers it has the usual meaning associated with computer arithmetic of
signed integers and the data type of the result of executing the expression is an integer. When
Ihs is a pointer, it has the usual meaning associated with pointer arithmetic as defined in C/
C++ and the data type of the result of executing the expression is a pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of two operands and assignment of the result.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 154

class ProbeExp Draft

9.190perator -- (prefix)

Synopsis
#include <ProbeExp.h>
ProbeExp operator -- (void) const
Description

This function creates a probe expression that represents the decrement of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand after the decrement
takes place. For examplé?robeExp exp = --rhs; ” would create an expressiexp

that represents decrementiing by one. The expressi@xp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Decrement is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whais is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of one from an operand and assignment of the

result.
Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 155

class ProbeExp Draft

9.200perator -- (postfix)

Synopsis

#include <ProbeExp.h>

ProbeExp operator -- (int zero) const
Parameters

zero constant integer zero
Description

This function creates a probe expression that represents the decrement of an integer operand.
The operand is the invoking object. The operand must be an expression that represents an
object in memory. The result of the operation is the value of the operand before the decrement
takes place. For examplé?robeExp exp = lhs--; ” would create an expressiexp

that represents decrementihg by one. The expressi@xp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Decrement is only valid when the operand is a signed integer or a pointer. Any other operand
data type is invalid. When the operand is an integer it has the usual meaning associated with
computer arithmetic of signed integers and the data type of the result of executing the expres-
sion is an integer. Whdhs is a pointer, it has the usual meaning associated with pointer
arithmetic as defined in C/C++ and the data type of the result of executing the expression is a
pointer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the subtraction of one from an operand and assignment of the

result.
Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 156

class ProbeExp Draft

9.21 operator * (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator * (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the multiplication of two operands.
The invoking object represents the left operand, while the arguhmentepresents the right
operand. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = lhs * rhs; " would create an expressiexp that repre-

sents the multiplication ohs bylhs . The expressioaxp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Multiplication is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with computer arithmetic of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the multiplication of two operands.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 157

class ProbeExp Draft

9.22operator * (unary)

Synopsis
#include <ProbeExp.h>
ProbeExp operator * (void) const
Description

This function creates a probe expression that represents the dereferencing of a pointer oper-
and. The right operand represents the invoking object. The operand may be an object in mem-
ory or an expression that evaluates to a value. For exarRptheExp exp = * rhs; 7

would create an expressierp that represents the object pointed to by the pointer value

rhs . The expressioaxp could then be used as a sub-expression in an assignment or other
type of statement or expression.

Pointer dereferenceing is only valid when the operand is a pointer. Any other operand data
type is invalid. When the operand is a pointer it has the usual meaning associated with derefer-
encing pointers and the data type of the result of executing the expression is the data type of
the pointee.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the dereferencing of a pointer operand.

Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 158

class ProbeExp Draft

9.23operator *=

Synopsis

#include <ProbeExp.h>

ProbeExp operator *= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the multiplication of two operands,
and its subsequent storage of the result into the invoking object. The left operand represents
the invoking object, while the argumehs represents the right operand. The left operand
must be an object in memory, while the right operand may be an object in memory or an
expression that evaluates to a value. For examplepeExp exp = lhs *= rhs; ?

would create an expressierp that represents the multiplication of two valdbs, and

rhs , and its assignment ths . The expressioaxp could then be used as a sub-expression

in an assignment or other type of statement or expression.

Multiplication is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with computer arithmetic of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the multiplication of two operands and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 159

class ProbeExp Draft

9.24 operator /

Synopsis

#include <ProbeExp.h>

ProbeExp operator / (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the division of two operands. The
invoking object represents the left operand, while the argurhentepresents the right oper-
and. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = lhs / rhs; " would create an expressiexp that repre-
sents the division ahs bylhs . The expressioaxp could then be used as a sub-expression
in an assignment or other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 160

class ProbeExp Draft

9.250perator /=

Synopsis

#include <ProbeExp.h>

ProbeExp operator /= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the division of two operands, and its
subsequent storage of the result into the invoking object. The left operand represents the
invoking object, while the argumeriis represents the right operand. The left operand must

be an object in memory, while the right operand may be an object in memory or an expression
that evaluates to a value. For exampRrobeExp exp = lhs /=rhs; " would create

an expressioexp that represents the division of two valués, andrhs , and its assign-

ment tolhs . The expressioaxp could then be used as a sub-expression in an assignment or
other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 161

class ProbeExp Draft

9.260perator %

Synopsis

#include <ProbeExp.h>

ProbeExp operator % (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the division of two operands, where
the remainder rather than the dividend is returned. The invoking object represents the left
operand, while the argumernhits represents the right operand. The operands may be objects

in memory or expressions that evaluate to values. For exarRptdeExp exp =lhs %

rhs; ” would create an expressiexp that represents the divisionrbis bylhs . The
expressiorexp could then be used as a sub-expression in an assignment or other type of state-
ment or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the remainder of the division of two operands.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 162

class ProbeExp Draft

9.270perator %=

Synopsis

#include <ProbeExp.h>

ProbeExp operator %= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents the division of two operands, where
the remainder rather than the dividend is returned, and its subsequent storage of the result into
the invoking object. The left operand represents the invoking object, while the arghment
represents the right operand. The left operand must be an object in memory, while the right
operand may be an object in memory or an expression that evaluates to a value. For example,
“ProbeExp exp = Ihs %= rhs; " would create an expressiexp that represents the
division of two valueslhs andrhs , and its assignment ths . The expressioaxp could

then be used as a sub-expression in an assignment or other type of statement or expression.

Division is only valid when both operands are integers, and the divisor is non-zero. Any other
combination of operand data types is invalid. When both operands are integers it has the usual
meaning associated with computer arithmetic of signed integers and the data type of the result
of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the division of two operands and assignment of the remainder.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 163

class ProbeExp Draft

9.280perator =

Synopsis

#include <ProbeExp.h>

ProbeExp &operator = (const ProbeExp &rhs)
Parameters

rhs right operand
Description

This function doesot create a node in a probe expression tree. Rather, it performs a local
assignment on the client, of the value in the right operand to the object represented by the left
operand. For examplePYobeExp lhs; lhs = rhs; " would assign the value con-

tained inrhs to the variabléhs . Notice that the above examplaifferentfrom “Probe-

Exp lhs =rhs; " in that the first example invokes the assignment operatperator

=", while the second example invokes the copy constructor. But though different functions are
called the end result is the same, that is, the probe expression represented by the right operand
is assigned to the object represented by the left operand.

Return value
A reference to the invoking object (i.e., the left operand).

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 164

class ProbeExp Draft

9.290perator ==

Synopsis

#include <ProbeExp.h>

ProbeExp operator == (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison for equality of two
operands, where 1 is returned if they are equal, and O is returned if they are not. The invoking
object represents the left operand, while the argunhentrepresents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs == rhs; " would create an expressiexp that represents a
comparison for equality ohs andlhs . The expressioaxp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Comparison for equality is only valid when both operands are integers. Any other combina-
tion of operand data types is invalid. When both operands are integers it has the usual meaning
associated with comparison of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for equality.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 165

class ProbeExp Draft

9.300perator !

Synopsis
#include <ProbeExp.h>
ProbeExp operator ! (void) const
Description

This function creates a probe expression that represents the logical negation of an operand,
where 0 is returned if the operand is a non-zero value, and 1 is returned if the operand is O.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For exaniriehbéExp exp =! rhs; ” would

create an expressi@xp that represents the negatiorrlod . The expressioaxp could then

be used as a sub-expression in an assignment or other type of statement or expression.

Logical negation is only valid when the operand is an integer, a pointer, or an actual parame-
ter. Any other operand data type is invalid. The operator has the usual meaning associated
with computer logic, and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the negation of an operand.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 166

class ProbeExp Draft

9.31operator !=

Synopsis

#include <ProbeExp.h>

ProbeExp operator != (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison for inequality of two
operands, where 0 is returned if they are equal, and 1 is returned if they are not. The invoking
object represents the left operand, while the argunhentrepresents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs !=rhs; " would create an expressiexp that represents a
comparison for equality ohs andlhs . The expressioaxp could then be used as a sub-
expression in an assignment or other type of statement or expression.

Comparison for equality is only valid when both operands are integers. Any other combina-
tion of operand data types is invalid. When both operands are integers it has the usual meaning
associated with comparison of signed integers and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for inequality.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 167

class ProbeExp Draft

9.320perator <

Synopsis

#include <ProbeExp.h>

ProbeExp operator < (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left operand is less than the right operand, and 0 is returned otherwise. The
invoking object represents the left operand, while the argurhentepresents the right oper-

and. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = lhs <rhs; " would create an expressiexp that repre-

sents a comparison dis andlhs . The expressioaxp could then be used as a sub-expres-

sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 168

class ProbeExp Draft

9.330perator <=

Synopsis

#include <ProbeExp.h>

ProbeExp operator <= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left is less than or equal to the right, and 0 is returned otherwise. The invok-
ing object represents the left operand, while the argurhentepresents the right operand.

The operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs <=rhs; " would create an expressiexp that represents a
comparison ofhs andlhs . The expressioaxp could then be used as a sub-expression in

an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 169

class ProbeExp Draft

9.34operator <<

Synopsis

#include <ProbeExp.h>

ProbeExp operator << (const ProbeExp &rhs) const
Parameters

rhs right operand

Description

This function creates a probe expression that represents a bit-wise left shift of the left operand.
When the right operand is positive, the value returned is the left operand shifted that many
places to the left. When the right operand is zero, the value returned is the value of the left
operand. When the right operand is negative, the shift operation is not defined, and the value
returned is unpredicatable. The invoking object represents the left operand, while the argu-
mentrhs represents the right operand. The operands may be objects in memory or expres-
sions that evaluate to values. For exam@PeobeExp exp = Ihs << rhs; ” would

create an expressi@xp that represents a left shiftlbs . The expressioaxp could then be

used as a sub-expression in an assignment or other type of statement or expression.

Left shift is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wise shift operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the left shift of the left operator.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 170

class ProbeExp Draft

9.350perator <<=

Synopsis

#include <ProbeExp.h>

ProbeExp operator <<= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a bit-wise left shift of the left operand.
When the right operand is positive, the value returned is left operand shifted that many places
to the left. When the right operand is zero, the value returned is the value of the left operand.
When the right operand is negative, the shift operation is not defined, and the value returned is
unpredicatable. The result is subsequently stored into the invoking object. The left operand
represents the invoking object, while the argumlest represents the right operand. The left
operand must be an object in memory, while the right operand may be an object in memory or
an expression that evaluates to a value. For exaniiebéExp exp = lhs <<=

rhs; " would create an expressiexp that represents the left shiftlok byrhs , and its
assignment tths . The expressioaxp could then be used as a sub-expression in an assign-
ment or other type of statement or expression.

Shift operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wise shift operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a left bit-wise shift and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 171

class ProbeExp Draft

9.360perator >

Synopsis

#include <ProbeExp.h>

ProbeExp operator > (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left operand is greater than the right operand, and 0 is returned otherwise.
The invoking object represents the left operand, while the argutmentepresents the right
operand. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = lhs > rhs; " would create an expressiexp that repre-

sents a comparison dis andlhs . The expressioaxp could then be used as a sub-expres-

sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 172

class ProbeExp Draft

9.37operator >=

Synopsis

#include <ProbeExp.h>

ProbeExp operator >= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a comparison of two operands, where
1 is returned if the left is greater than or equal to the right, and O is returned otherwise. The
invoking object represents the left operand, while the argurhentepresents the right oper-

and. The operands may be objects in memory or expressions that evaluate to values. For
example, ProbeExp exp = |hs >=rhs; " would create an expressienp that repre-

sents a comparison dis andlhs . The expressioaxp could then be used as a sub-expres-

sion in an assignment or other type of statement or expression.

Comparison is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
relational operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the comparison of two operands for relative size.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 173

class ProbeExp Draft

9.38operator >>

Synopsis

#include <ProbeExp.h>

ProbeExp operator >> (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a bit-wise right shift of the left oper-
and. When the right operand is positive, the value returned is the left operand shifted that
many places to the right. When the right operand is zero, the value returned is the value of the
left operand. When the right operand is negative, the shift operation is not defined, and the
value returned is unpredicatable. The invoking object represents the left operand, while the
argumenths represents the right operand. The operands may be objects in memory or
expressions that evaluate to values. For examplepeExp exp = lhs >> rhs; ”

would create an expressierp that represents a left shiftibs . The expressioaxp could

then be used as a sub-expression in an assignment or other type of statement or expression.

Right shift is only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wise shift operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the right shift of the left operator.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 174

class ProbeExp Draft

9.390perator >>=

Synopsis

#include <ProbeExp.h>

ProbeExp operator >>= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a bit-wise right shift of the left oper-
and. When the right operand is positive, the value returned is left operand shifted that many
places to the right. When the right operand is zero, the value returned is the value of the left
operand. When the right operand is negative, the shift operation is not defined, and the value
returned is unpredicatable. The result is subsequently stored into the invoking object. The left
operand represents the invoking object, while the argurhentepresents the right operand.

The left operand must be an object in memory, while the right operand may be an object in
memory or an expression that evaluates to a value. For exafpmbeExp exp = lhs

>>=rhs; " would create an expressiexp that represents the right shiftloé byrhs ,

and its assignment ths . The expressioaxp could then be used as a sub-expression in an
assignment or other type of statement or expression.

Shift operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wise shift operations and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a right bit-wise shift and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 175

class ProbeExp Draft

9.400perator & (binary)

Synopsis

#include <ProbeExp.h>

ProbeExp operator & (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a baMzef the left and right
operands. The invoking object represents the left operand, while the arghsesfpresents

the right operand. The operands may be objects in memory or expressions that evaluate to val-
ues. For example ProbeExp exp = lhs & rhs; ” would create an expressiexp

that represents a bit-wigeND of Ins andrhs . The expressioaxp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Bit-wise AND is only valid when both operands are integers. Any other combination of oper-
and data types is invalid. When both operands are integers it has the usual meaning associated
with bit-wise AND operators and the data type of the result of executing the expression is an
integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wAisiD of the left and right operands..

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 176

class ProbeExp Draft

9.41operator & (unary)

Synopsis
#include <ProbeExp.h>
ProbeExp *operator & (void)
Description

This function doesot create a node in a probe expression tree. Rather, it computes and
returns the address of the invoking object on the client. For example, the probe expression
“ProbeExp *ptr = &obj; " would store a pointer to the objeatj in the pointeptr .

It is necessary that the function work in this mannematdreate an expression tree, to allow
C++ to pass objects by reference.

Return value
A pointer to the invoking object on the client.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 177

class ProbeExp Draft

9.42operator &=

Synopsis

#include <ProbeExp.h>

ProbeExp operator &= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a baMIxef the operands. The

result is subsequently stored into the invoking object. The left operand represents the invoking
object, while the argumentis represents the right operand. The left operand must be an
object in memory, while the right operand may be an object in memory or an expression that
evaluates to a value. For examplerdbeExp exp = lhs &= rhs; " would create an
expressiorexp that represents the bit-wigé\D of Ihs andrhs , and its assignment tios .

The expressioaxp could then be used as a sub-expression in an assignment or other type of
statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wiseAND operations and the data type of the result of executing the expression

is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-vASD and assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 178

class ProbeExp Draft

9.430perator &&

Synopsis

#include <ProbeExp.h>

ProbeExp operator && (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a lsiyioalf two operands, where

1 is returned both operands are non-zero, and O is returned if one or more are not. The invok-
ing object represents the left operand, while the argurhentepresents the right operand.

The operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = lhs && rhs; " would create an expressiexp that represents a

logical AND of rhs andlhs . The expressioaxp could then be used as a sub-expression in

an assignment or other type of statement or expression.

Logical AND is only valid when each operands is an integer, a pointer, or an actual parameter.
Any other combination of operand data types is invalid. The operator has the usual meaning
associated with logical expressions, and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the loghddD of two operands.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 179

class ProbeExp Draft

9.44 operator |

Synopsis

#include <ProbeExp.h>

ProbeExp operator | (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a biDRiskthe left and right

operands. The invoking object represents the left operand, while the arghsewfpresents

the right operand. The operands may be objects in memory or expressions that evaluate to val-
ues. For example ProbeExp exp = |hs | rhs; ” would create an expressiexp

that represents a bit-wisgR of lns andrhs . The expressioaxp could then be used as a
sub-expression in an assignment or other type of statement or expression.

Bit-wise ORis only valid when both operands are integers. Any other combination of operand
data types is invalid. When both operands are integers it has the usual meaning associated with
bit-wise OR operators and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-vid$eof the left and right operands..

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 180

class ProbeExp Draft

9.45operator |=

Synopsis

#include <ProbeExp.h>

ProbeExp operator |= (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a biDRisiethe operands. The

result is subsequently stored into the invoking object. The left operand represents the invoking
object, while the argumentis represents the right operand. The left operand must be an
object in memory, while the right operand may be an object in memory or an expression that
evaluates to a value. For examplerdbeExp exp = lhs |=rhs; " would create an
expressiorexp that represents the bit-wiSR of [hs andrhs , and its assignment ths .

The expressioaxp could then be used as a sub-expression in an assignment or other type of
statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wis€OR operations and the data type of the result of executing the expression

is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-viddeand assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 181

class ProbeExp Draft

9.46 0perator ||

Synopsis

#include <ProbeExp.h>

ProbeExp operator || (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a [Ogo&two operands, where 1

is returned at least one operand is non-zero, and 0 is returned if both are zero. The invoking
object represents the left operand, while the argunhentrepresents the right operand. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = Ihs || rhs; " would create an expressiexp that represents a
logical ORofrhs andlhs . The expressioaxp could then be used as a sub-expression in an
assignment or other type of statement or expression.

Logical ORis only valid when each operands is an integer, a pointer, or an actual parameter.
Any other combination of operand data types is invalid. The operator has the usual meaning
associated with logical expressions, and the data type of the result of executing the expression
is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the logi2Rlof two operands.

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 182

class ProbeExp Draft

9.47 operator N

Synopsis

#include <ProbeExp.h>

ProbeExp operator ~ (const ProbeExp &rhs) const
Parameters

rhs right operand

Description

This function creates a probe expression that represents a béxeigsive-ORf the left and

right operands. The invoking object represents the left operand, while the arghsneep-

resents the right operand. The operands may be objects in memory or expressions that evalu-
ate to values. For exampld2robeExp exp = lhs " rhs; " would create an expression

exp that represents a bit-wisgclusive-ORf Ihs andrhs . The expressioaxp could then

be used as a sub-expression in an assignment or other type of statement or expression.

Bit-wise exclusive-ORs only valid when both operands are integers. Any other combination
of operand data types is invalid. When both operands are integers it has the usual meaning
associated with bit-wisexclusive-ORoperators and the data type of the result of executing
the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-veiselusive-ORf the left and right operands..

Exceptions

ASC _insufficient_memory insufficient memory to create a new node

ASC _invalid_espression data type of one or both operands is not an integer
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 183

class ProbeExp Draft

9.48operator M=

Synopsis

#include <ProbeExp.h>

ProbeExp operator = (const ProbeExp &rhs) const
Parameters

rhs right operand
Description

This function creates a probe expression that represents a baxeiasive-ORf the oper-

ands. The result is subsequently stored into the invoking object. The left operand represents
the invoking object, while the argumehs represents the right operand. The left operand
must be an object in memory, while the right operand may be an object in memory or an
expression that evaluates to a value. For examplepeExp exp = lhs "= rhs; ?

would create an expressierp that represents the bit-wisgclusive-ORf lhs andrhs ,

and its assignment ths . The expressioaxp could then be used as a sub-expression in an
assignment or other type of statement or expression.

Bit-wise operations are only valid when both operands are integers. Any other combination of
operand data types is invalid. When both operands are integers it has the usual meaning asso-
ciated with bit-wiseexclusive-ORoperations and the data type of the result of executing the
expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing a bit-vagelusive-ORand assignment of the result.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 184

class ProbeExp Draft

9.49operator ~

Synopsis
#include <ProbeExp.h>
ProbeExp operator ~ (void) const
Description

This function creates a probe expression that represents the bit-wise inversion of an operand.
The right operand represents the invoking object. The operand may be an object in memory or
an expression that evaluates to a value. For exanifriehéExp exp = ~ rhs; " would

create an expressi@xp that represents the inversiorrb$. The expressioaxp could then

be used as a sub-expression in an assignment or other type of statement or expression.

Bit-wise inversion is only valid when the operand is a signed integer. Any other operand data
type is invalid. When the operand is an integer it has the usual meaning associated with com-
puter logic and the data type of the result of executing the expression is an integer.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the bit-wise inversion of an operand.

Exceptions
ASC _insufficient_memory insufficient memory to create a new node
ASC _invalid_espression data type of the operand is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 185

class ProbeExp Draft

9.500perator []

Synopsis

#include <ProbeExp.h>

ProbeExp operator [] (int index) const

ProbeExp operator [] (ProbeExp index) const
Parameters

index index into the array or pointer offset
Description

This function creates a probe expression that represents the indexing and dereference of a
pointer operand. The invoking object represents the left (pointer) operand, while the argument
index represents the right (index) operand. The operands may be objects in memory or
expressions that evaluate to values. For examplepbeExp exp = lhs [rhs]; ”

would create an expressierp that represents addimgs tolhs and dereferencing the

result. The expressiaxp could then be used as a sub-expression in an assignment or other
type of statement or expression.

Index and dereference is only valid when the left operand is a pointer and the right operand is
an integer. Any other combination of operand data types is invalid. When both operands are of
appropriate data types it has the usual meaning associated with index and dereferencing and
the data type of the result of executing the expression matches the pointee.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the index and dereference of the left and right operands.

Exceptions
ASC_insufficient_memory insufficient memory to create a new node
ASC_invalid_espression data type of one or both operands is inappropriate
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 186

class ProbeExp Draft

9.51sequence

Synopsis

#include <ProbeExp.h>

ProbeExp sequence(const ProbeExp &second) const

Parameters

second second expression in the sequence

Description

This function creates a probe expression that represents the joining of two probe expressions
into a sequence. The invoking object represents the first expression in the sequence to be exe-
cuted, while the argumesecond represents the second expression to be executed. The
operands may be objects in memory or expressions that evaluate to values. For example,
“ProbeExp exp = first.sequence(second); " would create an expressiexp

that represents the executiorficdt followed bysecond . The expressioaxp could then

be used as a sub-expression in a conditional expression, a sequence, or other type of statement
or expression.

This expression may be executed on the application process only after it has been installed and
activated.

Return value

Probe expression representing the sequencing of two expressions.

Exceptions

ASC_insufficient_memory insufficient memory to create a new node

See Also

3/25/99

Copyright 1998 by IBM Corp. ProbeExp.chp 187

class ProbeExp Draft

9.52value *

Synopsis

int8_t value_int8(void) const

intl6_t value_int16(void) const

int32_t value_int32(void) const

int64_t value_int64(void) const

uint8_t value_uint8(void) const

uintl6_tvalue uintl6(void) const

uint32_t value_uint32(void) const

uint64_t value_uint64(void) const

float32_t value_float32(void) const

float64_t value_float64(void) const

ProbeExp value_left(void) const

ProbeExp value_right(void) const

ProbeExp value_center(void) const
Description

Returns the value contained in the node.
Return value

The value, of the indicated type, contained within the node.
Exceptions

ASC _invalid_value_ref node does not contain a value of the indicated type
See Also

value_text, value_text_length

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 188

class ProbeExp Draft

9.53value text

Synopsis

char *value_text(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the text value
len maximum number of bytes the function will placebuifer . The
len parameter should include enough space for a terminatihg
byte.
Description

Copies intdoufferanull-terminated string representing the value contained within the node.
The value may be truncated if tlem parameter is smaller than the length of the text value.

Return value

A pointer tobuffer , which will contain at moden bytes of the text value contained within
the node.

Exceptions
ASC invalid_value_ref node does not contain a value of the indicated type
See Also

value_*, value_text_length

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 189

class ProbeExp Draft

9.54value text length

Synopsis
unsigned int value_text_length(void) const
Description

Returns the length, including the terminatmgl byte, of the text value contained within the
node.

Return value

The length of the text value contained within the node.
Exceptions

ASC invalid_value_ref node does not contain a value of the indicated type
See Also

value_*, value_text

3/25/99 Copyright 1998 by IBM Corp. ProbeExp.chp 190

class ProbeHandle Draft

10.0 class ProbeHandle

10.1 Constructors

Synopsis

#include <ProbeHandle.h>

ProbeHandle(void)

ProbeHandle(const ProbeHandle ©)
Parameters

copy object to be duplicated in the copy constructor
Description

Two constructors are provided with this class -- a default constructor and a copy constructor.
The default constructor is able to create storage, marked initially as containing invalid probe
handles, that may later be assigned or initialized through a probe installation.

The copy constructor performs a similar operation to assignment, but operates on an uninitial-

ized object.
Exceptions

ASC _insufficient_memory insufficient memory to create a new node
See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeHandle.chp 191

class ProbeHandle Draft

10.2get _expession

Synopsis
#include <ProbeHandle.h>
ProbeExp get_expression(void)
Description

This function returns the original probe expression installed in the application process. Note
that the expression returned is the original and not a copy, so alterations to the original after it
has been installed will be reflected in the the expression returned by this function.

Return value
Original probe expression installed in the application process.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeHandle.chp 192

class ProbeHandle Draft

10.3get point

Synopsis
#include <ProbeHandle.h>
InstPoint get_point(void)
Description

This function returns the original instrumentation point where the probe expression was
installed in the application process.

Return value
Instrumentation point where the probe expression was installed in the application process.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeHandle.chp 193

class ProbeHandle Draft

10.4operator =

Synopsis

#include <ProbeHandle.h>

ProbeHandle &operator = (const ProbeHandle ©)
Parameters

copy object to be duplicated in the assignment operator
Description

This function copies the argument over the top of the invoking object.
Return value

Reference to the invoking object.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeHandle.chp 194

class ProbeModule Draft

11.0 class ProbeModule

ProbeModule is an object file resides on the client side that can be dynamically loaded into the appli-
cation process. One can build a complex probe expression from this module but the probe module
must be loaded before one can install and activate this probe expression.

UnderAlX, one can write a ProbeModule using C language (C++ is not supported). The source file

needs to be compiled and only those exported functions are visible from the ProbeModule. That is,
those function names are put in an exported file and invoke linker with -bE: flag.. A complete make-
file example can be found in /usr/lpp/ppe.dpcl/samples/probe _module

11.1 Constructors

Synopsis
#include <ProbeModule.h>
ProbeModule(void)
ProbeModule(const ProbeModule ©)
ProbeModule(const char *filename)

Parameters
copy probe module that will be duplicated in a copy constructor
filename name and path of an object file (*.0) that contains functions to be
loaded into the application process
Description

The default constructor creates an empty probe module structure, in other words, a structure
that contains no objects. The default constructor is invoked when uninitialized probe modules
are created, such as in arrays. Objects within the array can be overwritten using an assignment
operator gperator =).

The copy constructor is used to transfer the contents of an initialized objembgthgparam-
eter) to an uninitialized object.

The standard constructor reads the object file (*.0) that contains functions to be loaded into
the application process. It reads the file to determine what functions are available and the data
type signature of each.

Exceptions
ASC_insufficient_memory not enough memory to create a new node
ASC_module_invalid invalid probe module
ASC_module_not_found the module cannot be found

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 195

class ProbeModule Draft

See Also

load_module, bload _module, unload_module, bunload_module

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 196

class ProbeModule Draft

11.2qget count

Synopsis
#include <ProbeModule.h>
int get_count(void) const
Description

This function returns the number of functions in the module. If the module was initialized by a
default constructor or its value was copied from a default constructor, this function returns O.

Return value
Number of functions in the module, or 0 if the module was initialized by a default constructor.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 197

class ProbeModule Draft

11.3get name

Synopsis
#include <ProbeModule.h>
char *get_name(int index, char *buffer, unsigned int len) const

Parameters
index index of the desired function, equal to or greater than zero, and less
thanget_count()
buffer caller-allocated buffer to hold the module name
len maximum number of bytes the function will place in buffer. Teme
parameter should include enough space for a terminatith@yte.
Description

This function copies intbufferanull-terminated string representing the name of the desired
function. The name may be truncated if ixreparameter is smaller than the length of the
name. If the index is out of range, that is, if it is less than zero or equal to or greater than
get_count() ,itreturnsO.

Return value

A pointer tobuffer, which will contain at moden bytes of the name of the desired function, or
0 if the index is out of range.

See Also

get_name_length

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 198

class ProbeModule Draft

11.4get name length

Synopsis
#include <ProbeModule.h>
unsigned int get_name_length(int index) const

Parameters
index index of the desired function, equal to or greater than zero, and less
thanget_count()
Description

This function returns the length, including the terminatinly byte, of the (mangled) name of
the desired function. If the index is out of range, that is, if it is less than zero or equal to or
greater thamget_count() , it returns O.

Return value
The length of the name of the desired function, or 0O if the index is out of range.
See Also

get_name

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 199

class ProbeModule Draft

11.50perator =

Synopsis

#include <ProbeModule.h>

ProbeModule &operator = (const ProbeModule &rhs)
Parameters

rhs right operand
Description

This function assigns the value of the right operand to the invoking object. The Ieft operand is
the invoking object. For exampleRfobeModule rhs, Ihs; ... hs = rhs;
assigns the value ofis tolhs . Then one can be used mterchangeably with the other.

Return value
A reference to the invoking object (i.e., the left operand).

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 200

class ProbeModule Draft

11.60perator ==

Synopsis

#include <ProbeModule.h>

int operator == (const ProbeModule &compare) const
Parameters

compare probe module to be compared against the invoking object
Description

This function compares two probe modules for equivalence. If the two objects represent the
same probe module, this function returns 1. Otherwise it returns O.

Return value
This function returns 1 if the two objects are equivalent, O otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 201

class ProbeModule Draft

11.7operator !=

Synopsis

#include <ProbeModule.h>

int operator !'= (const ProbeModule &compare) const
Parameters

compare probe module to be compared against the invoking object
Description

This function compares two probe modules for equivalence. If the two objects represent the
same probe module, this function returns 0. Otherwise it returns 1.

Return value
This function returns O if the two objects are equivalent, 1 otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 202

class ProbeModule Draft

11.8to probe exp

Synopsis
#include <ProbeModule.h>
ProbeExp to_probe_exp(int index) const

Parameters
index index of the desired function , equal to or greater than zero, and less
thanget_count()
Description

This function returns a probe expression that represents a reference to the desired function.
The probe expression may be used to form a call to that function. If the index is out of range,
that is, if it is less than zero or equal to or greater ¢lgncount() , it returns an “unde-

fined” probe expression.

Return value

A probe expression that represents a referenct to the desired function, or “undefined” if the
index is out of range.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeModule.chp 203

class ProbeType Draft

12.0 class ProbeType

12.1 Supporting Data Types

12.1.1DataExpNodeType

Synopsis
enum DataExpNodeType {

DEN_array_type, Il array type decl -- x[y]
DEN_class_type, I
DEN_enum_type, /l enum type decl -- enum x {y}

DEN_float32_type, Il float32 type decl
DEN_float64 type, /I float64 type decl
DEN_function_type, /I

DEN_intl16_type, //int16 type declaration
DEN_int32_type, //'int32 type declaration
DEN_int64_type, I/ int64 type declaration
DEN_int8_type, // int8 type declaration

DEN_pointer_type, /Il pointer type exp -- * X
DEN_reference_type, // reference type -- & X
DEN_struct_type, /l

DEN_uintl16_type, /[uint16 type declaration
DEN_uint32_type, // uint32 type declaration
DEN_uint64 _type, // uint64 type declaration

DEN_uint8_type, [/ uint8 type declaration
DEN_union_type, I

DEN_user_type, /l user defined type name
DEN_void_type, // void data type

DEN_default_type, /I default constructor type
DEN_unspecified_type,// has size but no structure
DEN_error_type, /I result of failed operation

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 204

class ProbeType Draft

DEN_LAST_TYPE
}

Description

Values of typeProbeType are expression trees that represent the data type of an object

within an application process. The object may be an application object, that is, it may be a part
of the application program, or it may be a probe object, that is, an object allocated and used by
the instrumentation system. This data structure reflects all of the possible enumeration values
used by the expression tree to represent the data type of the object. It is a combination of the
enumeration value of each node, and the placement of nodes within the tree, that describes the
data type of the object.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 205

class ProbeType Draft

12.2 Constructors

Synopsis
#include <ProbeType.h>
ProbeType(void)
Description
The default constructor creates an object with data typedf_default_type

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 206

class ProbeType Draft

12.3child

Synopsis
#include <ProbeType.h>
ProbeType child(int index) const

Parameters
index index of the sub-type, which must be greater than or equal to zero, and
less tharchild_count()
Description

This function returns the sub-type of a data type. For example, if the invoking object repre-
sents a pointer to an objechild(0) returns the data type of the pointee. For data types
representing functionshild(0) returns the data type of the return valtlgld(1)

returns the data type of the first argument, if ahyid(2) returns the data type of the sec-
ond argument, if angtc.If theindex is less than zero or greater than or equal to
child_count() , a data type dDEN_error_type s returned.

Return value
The data type of the indicated sub-type or an undefined data type.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 207

class ProbeType Draft

12.4child count

Synopsis

#include <ProbeType.h>
int child_count(void) const
Description

This function returns the number of sub-types associated with this data type. Undefined data
types, created by the default constructor, return zero. Children can be the data type of a poin-
tee, function return types, function argument data tygtes,

Return value
Number of child sub-types associated with this data type.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 208

class ProbeType Draft

12.5function type

Synopsis
#include <ProbeType.h>
friend ProbeType function_type(
ProbeType return_type,

int count,
ProbeType *args)
Parameters
return_type data type of the function return value
count number of function arguments
args array of argument data types
Description

This function creates a data type that represents the prototype or type signature of a function.
Return value
Data type that represents the prototype of a function.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 209

class ProbeType Draft

12.6get node type

Synopsis

#include <ProbeType.h>

DataExpNodeType get_node_type(void) const
Description

This function returns the enumeration value, or node type, of this node in the data type expres-
sion tree.

Return value
Node type of this node in the data type expression tree.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 210

class ProbeType Draft

12.7int32 type

Synopsis

#include <ProbeType.h>

friend ProbeType int32_type(void)
Description

This function creates an object that represents a 32-bit integer data type.
Return value

Data type that represents a 32-bit integer.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 211

class ProbeType Draft

12.8operator =

Synopsis
#include <ProbeType.h>
ProbeType &operator = (const ProbeType ©)
Parameters
copy probe type to be duplicated
Description
This function transfers the contents of topy parameter to the object.
Return value
Reference to the object.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 212

class ProbeType Draft

12.90operator ==

Synopsis

#include <ProbeType.h>

int operator == (const ProbeType &compare)
Parameters

compare probe type to be compared
Description

This function compares two probe types for equivalence. If the two data types are equivalent,
this function returns 1. Otherwise it returns O.

Return value
This function returns 1 if the two data types are equivalent, O otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 213

class ProbeType Draft

12.100perator !=

Synopsis

#include <ProbeType.h>

int operator != (const ProbeType &compare)
Parameters

compare probe type to be compared
Description

This function compares two probe types for equivalence. If the two data types are equivalent,
this function returns 0. Otherwise it returns 1.

Return value
This function returns O if the two types are equivalent, 1 otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 214

class ProbeType Draft

12.11pointer type

Synopsis
#include <ProbeType.h>
friend ProbeType pointer_type(const ProbeType &pointee)
Parameters
pointee data type the pointer will point to
Description
This function creates an object that represents the data type of a pointer to a pointee.
Return value
Data type that represents a pointer to a pointee.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 215

class ProbeType Draft

12.12stackLY

Synopsis

#include <ProbeType.h>
ProbeExp stack(void *init_val)

Parameters
init_val initial value to be given to the stack reference when the reference is
allocated on the stack
Description

This function converts a data type into a probe expression that represents a stack reference.
Return value
A probe expression that represents a stack reference.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 216

class ProbeType Draft

12.13unspecified type

Synopsis

#include <ProbeType.h>

friend ProbeType unspecified_type(int size)
Parameters

size number of bytes objects of this data type require
Description

This function creates an object that represents an unspecified data type, and has a type value of
DEN_unspecified_type . The data type must be given a size greater than zero.

Return value
Data type that represents an unspecified data type.

See Also

3/25/99 Copyright 1998 by IBM Corp. ProbeType.chp 217

class Process Draft

13.0 class Process

13.1Supporting Data Types

13.1.1ConnectState

Synopsis
#include <Process.h>
enum ConnectState {
PRC_connected,
PRC _attached,
PRC_created,
PRC_unknown_state
PRC_unconnected
PRC_destroyed
PRC_pre_create,
PRC_LAST_CONNECT_STATE
}
Description

This enumeration type is used to describe the state of DPCL Processes [need figure showing
states]. The state a Process governs the actions that the user can perform.

13.2 Constructors

Synopsis
#include <Process.h>
Process(void)
Process(const Process ©)

Process(const char *host_name, int task_pid, int task_num = 0)

Parameters
copy object to be copied into the new Process object
host_name host name or IP address where the process is located. If 0 then the pro-

cess is considered local

3/25/99 Copyright 1998 by IBM Corp. Process.chp 218

class Process Draft

task_pid process id for the task
task_num task number for the given process
Description

The default constructor creates a Process object in an “unused” state. Specifically, the task
number and process ID are both -1, and the host name is O.

The copy constructor uses the values contained iadpye argument to initialize the new
(constructed) object. No attempt is made to connect to the process representambpy the
argument, whether or not it is already connected.

The standard constructor uses the arguments provided to initialize the object. No attempt is
made to connect to the procefask_num is a value that is used only by queries on the cli-
ent and does not affect the connection in any way.

Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.
AisStatus ???

See Also

connect, bconnect, bdisconnect, disconnect, remove_process.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 219

class Process Draft

13.3activate probe

Synopsis

#include <Process.h>

AisStatus activate probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probe expressions in the list to be activated
phandle array of probe handles, one for each probe expression to be activated
ack cb fp acknowledgement callback function to be invoked wdléprobe
expressions in the array have been activated (or activation fails)
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function activates a list of probes that have been installed within a process. The activa-
tion is atomic in the sense that all probes are activated or all probes fail to be activated for the
process.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdf element of the
array is a handle, or identifier, that identifies fH@riobe expression.

To activate a set of probes the process must have been previously connected, and the probes
must have been previously installed in that process.

Note that the function submits the request to activate the probes and returns immediately. The
acknowledgement callback function receives notification of the success or failure of the acti-
vation.

Return value

The return value indicates whether the request for activation was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.

ASC_success all activations were successfully submitted
ASC_?7?

3/25/99

Copyright 1998 by IBM Corp. Process.chp 220

class Process Draft

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each process for which a probe activation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisStgtes

which contains one of the following status values:

ASC_success probes were successfully activated on this process
ASC_operation_failed attempt to activate these probes in this process failed
See Also

bactivate_probe, bconnect, bdisconnect, bprobe deactivate,
bprobe_install, class Process, connect, disconnect,
GCBFuncType, probe_deactivate, probe_install,
ProbeHandle::activate

3/25/99

Copyright 1998 by IBM Corp. Process.chp 221

class Process Draft

13.4add phase

Synopsis

#include <Process.h>

AisStatus add_phase(
const Phase &ps,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

AisStatus add_phase(
const Phase &ps,
ProbeExp init_func,
GCBFuncType init_cb_fp,
GCBTagType init_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
ps data structure local to the client containing the characteristics of the
phase to be created
init_func initialization function that is executed once within the application when
the phase is installed
init_cb_fp callback function to handle messages from the initialization function
init_cb_tag tag to be used with the initialization callback function
ack cb fp acknowledgement callback function to be invoked each time the phase
has been created within a process
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function adds a new phase structure to the process. A pnogstie connected in order
to add a new phase. The phase does not execute for the first time until the amount of time indi-
cated by the phase period has elapsed, starting from the time the phase is added to the process

The return value indicates whether the request for phase addition was successfully submitted,
but indicates nothing about whether the request itself was successfully executed.

3/25/99

Copyright 1998 by IBM Corp. Process.chp 222

class Process Draft

The initialization function must be loaded into the application before this operation may take
place. The function prototype for the initialization function is:

void init_func(void *msg_handle)
Return value
ASC_success phase addition request was successfully submitted
ASC ??7?
Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

init_cb_fp . This callback function is invoked each time the corresponding function in the
process instrumentationinit_func -- sends a message to the client. The message format
is determined by the function that sends the message.

ack _cb_fp . This callback function is invoked once for each process for which a phase addi-
tion is requested. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request statug\isStgpe

tus , which contains one of the following status values:

ASC_success phase was successfully added to this process
ASC_operation_failed attempt to add a phase to this process failed
See Also

badd_phase, bconnect, bdisconnect, class GenCallBack, class
ProbeModule, class Process, connect, disconnect, GCBFuncType,
GCBTagType, alloc_mem, free_mem.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 223

class Process

Draft

13.5alloc mem

Synopsis

#include <Process.h>

ProbeExp alloc_mem(

ProbeType pt,

void *init_val,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag,
AisStatus &stat)

ProbeExp alloc_mem(

ProbeType pt,

void *init_val,

const Phase &ps,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag,
AisStatus &stat)

Parameters

pt
init_val

ps
ack cb_fp
ack cb_tag

stat

Description

data type of the allocated data

pointer to the initial value of the allocated data, or O if no initial value is
desired

phase that will contain the allocated data
callback function to process the acknowledgement message

tag to be used as an argument to the acknowledgement callback when it
is invoked

output value indicating the completion status of the function

This function allocates a block of probe data in a process. It returns a single probe expression
that may be used to reference the allocated data. The data may be referenced in a probe
expression that may be installed in the process.

Note thatalloc_mem

returns control to the caller immediately and does not wait until it has

either succeeded or failed on the process. The probe expression representing the allocation is

3/25/99 Copyright 1998 by IBM Corp. Process.chp 224

class Process Draft

returned immediately whether or not allocation succeeds. The returned probe expression may
be used as a data reference on the process if the allocation succeeds. If the data reference is
used in another probe expression and the client attempts to install that probe expression in a
process where the allocation failed, that probe expression will fail to install. Similarly, instal-
lation will fail if one attempts to install the probe in a process where the data was not allo-
cated.

Stat indicates whether all requests for allocation were successfully submitted. If all requests
are successfully submittetiat is given the valuASC_success . If some request cannot

be submitted thestat is given the valuASC_operation_failed . It reflects the high-

est severity encountered.

Return value

A probe expression that may be used as a valid reference to the data on this process if the data
is allocated

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement message is received, and
then removed. When the callback is invoked the callback function is passed a pointer to the
process as the callback object. The callback message is the request statug\isStgpe

tus , which contains one of the following status values:

ASC_success data was successfully allocated in this process
ASC_operation_failed attempt to allocate data in this process failed
See Also

free_mem, balloc_mem, bfree_mem

3/25/99

Copyright 1998 by IBM Corp. Process.chp 225

class Process Draft

13.6attach
Synopsis
#include <Process.h>
AisStatus attach(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with a successful or failed attachment
to this process.
tag callback tag to be used as a parameter to the callback when the callback
function is invoked.
Description

Attach to this process. When multiple tools are connected to a process or application, only one
tool can be attached at a time. Attaching to a process allows the tool to control the execution
directly, such as suspending and resuming execution. Processes must first be connected or cre-
ated before they can be attached.

Note that the function submits the request to attach to a process and returns immediately. The
callback function receives notification of the success or failure of attachment.

Return value
The return value foattach indicates whether the request was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.
ASC_success request to attach was successfully submitted
ASC_operation_failed attempt to request attachment to the process failed, perhaps

because the process is not connected

Callback Data
When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each process for which an attach is requested. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtypratus , which contains one

of the following status values:

ASC_success process was successfully attached
ASC_operation_failed attempt to attach to this process failed
ASC_duplicate_attach already attached

See Also

battach, bdetach, detach

3/25/99 Copyright 1998 by IBM Corp. Process.chp 226

class Process Draft

13.7bactivate probe

Synopsis
#include <Process.h>

AisStatus bactivate probe(short count, ProbeHandle *phandle)

Parameters

count number of probe expressions in the list to be activated

phandle array of probe handles, one for each probe expression to be activated
Description

This function activates a list of probes that have been installed within a process. The activa-
tion is atomic in the sense that all probes are activated or all probes fail to be activated for any
given process.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdli element of the
array is a handle, or identifier, that identifies fH@riobe expression.

To activate a set of probes the process must have been previously connected, and the probes
must have been previously installed in the process.

Note that the function submits the request to activate the probes and waits until the request has
completed.

Return value

The return value indicates whether the request for activation was successfully executed.

ASC_success all activations were successfully completed
ASC_operation_failed all activations failed
Exceptions

Exceptions that could be raised as a result of calling this function are unknown at this time.
AisStatus ???

See Also

activate_probe, bconnect, bdisconnect, bprobe_deactivate,
bprobe_install, connect, disconnect, probe_deactivate,
probe_install.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 227

class Process Draft

13.8badd phase

Synopsis

#include <Process.h>
AisStatus badd_phase(const Phase &ps)
AisStatus badd_phase(
const Phase &ps,
ProbeExp init_func,
GCBFuncType init_cb_fp,
GCBTagType init_cb_tag)

Parameters
ps data structure local to the client containing the characteristics of the
phase to be created
init_func initialization function that is executed once within the application when
the phase is installed
init_cb_fp callback function to handle messages from the initialization function
init_cb_tag tag to be used with the initialization callback function
Description

This function adds a new phase structure to a connected process. A prostgsconnected

in order to add a new phase. The phase does not execute for the first time until the amount of
time indicated by the phase period has elapsed, starting from the time the phase is added to the
process.

Note that the function submits a request to add the phase and waits until the request has com-
pleted. The return value indicates whether the request was successfully executed.

The initialization function must be loaded into the application before this operation may take
place. The function prototype for the initialization function is:

void init_func(void *msg_handle)
Return value
The return value indicates whether the request for phase addition was successfully executed.

ASC_success phase was successfully added to the process
ASC_operation_failed phase addition failed

3/25/99 Copyright 1998 by IBM Corp. Process.chp 228

class Process Draft

Callback Data
When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked each time the corresponding function in the process instru-

mentation -4init_func -- sends a message to the client. The message format is determined
by the function that sends the message.

See Also

add_phase, bconnect, bdisconnect, class ProbeModule, connect,
disconnect, alloc_mem, free_mem.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 229

class Process Draft

13.9balloc mem

Synopsis
#include <Process.h>

ProbeExp balloc_mem(ProbeType pt, void *init_val, AisStatus
&stat)

ProbeExp balloc_mem(
ProbeType pt,
void *init_val,
const Phase &ps,
AisStatus &stat)

Parameters
pt data type of the allocated data
init_val pointer to the initial value of the allocated data, or O if no initial value is
desired
ps phase that will contain the allocated data
stat output value indicating the completion status of the function
Description

This function allocates a block of probe data in a process. It returns a single probe expression
that may be used to reference the allocated data. The data may be referenced in a probe
expression that may be installed in the process.

Note thatballoc_mem does not return control to the caller until it has either succeeded or
failed on the process. If the allocation succeeds it returns a valid probe expression data refer-
ence andtat is given the valuASC_success . If the allocation fails thestat is given

the valueASC_operation_failed and any probe that references the returned value of
balloc_mem will fail to install.

Return value
A probe expression that may be used as a valid reference to the data on this process.
See Also

bfree_mem, free_mem, alloc_mem

3/25/99 Copyright 1998 by IBM Corp. Process.chp 230

class Process Draft

13.10battach

Synopsis

#include <Process.h>
AisStatus battach(void)

Description

Attach to a process. When multiple tools are connected to a process or application, only one
tool can be attached at a time. Attaching to a process or application allows the tool to control
the execution directly, such as suspending and resuming the process. Processes must first be
connected or created before they can be attached.

Note thatbattach does not return control to the caller until the attachment has either suc-
ceeded or failed. The return value indicates whether the attachment succeeded or failed.

Return value

The return value fdpattach indicates whether the attachment was successfully established.

ASC_success process was successfully attached as expected.
ASC_operation_failed the process failed to attach
ASC_duplicate_attach already attached

See Also

attach, bdetach, detach

3/25/99 Copyright 1998 by IBM Corp. Process.chp 231

class Process Draft

13.11bconnect

Synopsis
#include <Process.h>
AisStatus bconnect(void)
Description

Connect to a process. Connection to a process establishes a communication channel to the
CPU where the process resides and creates the environment within that process that allows the
client to insert and remove instrumentatietg

Connections from multiple DPCL based tools to the same process are allowed.

Note thatbconnect does not return control to the caller until the connection has either suc-
ceeded or failed. The return value indicates whether the connection succeeded or failed.

Return value

The return value fopconnect indicates whether the connection was successfully estab-

lished.
ASC_success connection was successfully established as expected.
ASC_operation_failed connection failed to be established.

See Also

bdisconnect, connect, disconnect

3/25/99 Copyright 1998 by IBM Corp. Process.chp 232

class Process

Draft

13.12bcreate

Synopsis

#include <Process.h>

AisStatus bcreate(

const char *host,

const char *path,

const char *args]],

const char *envp(],

char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename,
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag)

AisStatus bcreate(

const char *host,

const char *path,

const char *args]],

const char *envp[],
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_ch_tag)

AisStatus bcreate(

const char *host,
const char *path,
const char *args],

3/25/99

Copyright 1998 by IBM Corp. Process.chp

233

class Process

Draft

const char *envp[],

char *remote_stdin_filename,

char *remote_stdout_filename,

char *remote_stderr_filename)

AisStatus bcreate(

const char *host,

const char *path,

const char *argv([],

const char *envp[])

Parameters

host
path

argv
envp

host name or IP address of the host machine where the process is to be
created

complete path to the executable program, including executable name
and relative or absolute directory, when appropriate

null terminated array of arguments to be provided to the executable

null terminated array of environment variables to be provided to the
executable

remote_stdin_filenameremote file to use for stdin

remote_stdout_filenameremote file to use for stdout

remote_stderr_filenameremote file to use for stderr

stdout_cb _fp
stdout_cb_tag
stderr_cb_fp
stderr_cb_tag

Description

callback function to handkstdoutfrom the process
tag to be used with thedoutcallback function
callback function to handkstderrfrom the process
tag to be used with thetderrcallback function

This function creates a process on the specified host. The process is created in a stopped state,
and a connection is established that allows the client to insert instrumentation into the created
process. The process must be started to begin execution.

The input, output filenames, output callbacks and PoeAppl::send_stdin can be used to access
the stdio from and to the process.

3/25/99

Copyright 1998 by IBM Corp. Process.chp 234

class Process Draft

If you pass callback functions in to the stdout_cb_fp and stderr_cb_fp parameters, the output
from the process will be available in these callbacks. Input to the process can be sent using
send_stdin().

Another way to access Stdio to the process is to specify the remote filename parameters. In
this case stdin, stdout and stderr can be set to use files on the host where process is running. It
is expected that the remote_stdin_filename specified will already exist. The files for the
remote_stdin_filename and remote_stdin_filename will created or overwritten if they already
exist. If one of the remote file parameters is specified, it takes precedence over the corre-
sponding callback or send_stdin() method of handling Stdio.

Note thatbcreate does not return control to the caller until the new process has been cre-
ated or failed to be created. The return value indicates whether the operation succeeded or
failed.

Return value

The return value fobbcreate indicates whether the process was successfully created.
ASC_success process was successfully created, as expected
ASC_operation_failed process failed to be created

Callback Data

stdout_cb _fp . This callback function is invoked each time the process sends data to
stdout

stderr_cb_fp . This callback function is invoked each time the process sends data to
stderr

The output will be contained in the message parameter of the callback. The size of the output
will be contained in the msg_size field of the sys callback parameter. The output from the pro-
cess may be recieved in different size blocks than were actually sent by the program.

See Also

bdestroy, bstart, create, destroy, send_stdin, start

3/25/99 Copyright 1998 by IBM Corp. Process.chp 235

class Process Draft

13.13bdeactivate probe

Synopsis
#include <Process.h>

AisStatus bdeactivate probe(short count, ProbeHandle *phandle)

Parameters

count number of probes to be deactivated

phandle array of probe handles, representing the probes, to be deactivated
Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
resumed. None of the probes in the array are left active.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdl element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Note thatbdeactivate probe does not return control to the caller until all probes in the
array have been deactivated on the process. The return value indicates whether all probes in
the list were deactivated or one or more probes were left intact.

Return value

The return value fobdeactivate probe indicates whether the deactivations were suc-
cessfully completed.
ASC_success all probe deactivations completed as expected
ASC_operation_failed all probe deactivations failed

See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 236

class Process Draft

13.14bdestroy

Synopsis

#include <Process.h>
AisStatus bdestroy(void)

Description

This function destroys or terminates the processes.

Note thatodestroy does not return control to the caller until the process has been destroyed
or has failed to be destroyed. The return value indicates whether the termination succeeded or
failed.

Return value

The return value fopdestroy indicates whether the termination successfully completed.

ASC_success process was successfully terminated, as expected
ASC_no_destroy_from_connected process must be in attached state to call destory
ASC_operation_failed termination failed

See Also
destroy

3/25/99 Copyright 1998 by IBM Corp. Process.chp 237

class Process Draft

13.15bdetach

Synopsis

#include <Process.h>
AisStatus bdetach(void)

Description

This function detaches the process. Process control flow, such as suspending and resuming the
process, can only be done while a process is in an attached state. Detaching a process removes
the level of process control available to the client or tool when the process is attached, but

retains the process connection so probe installation, activation, reetavegn still take
place.

Note thatbdetach does not return control to the caller until the process has been detached or

failed to do so. The return value indicates whether the process successfully detached or failed
to detach.

Return value
The return value fopdetach indicates whether the process was successfully detached.
ASC_success process was successfully detached, as expected
ASC_no_detach_from_created currently created, must attach before detaching

ASC_no_detach_from_connectedcurrently connected, must attach before detaching
ASC_operation_failed process failed to detach

See Also

attach, battach, detach

3/25/99 Copyright 1998 by IBM Corp. Process.chp 238

class Process Draft

13.16bdisconnect

Synopsis

#include <Process.h>
AisStatus bdisconnect(void)

Description

Disconnect from the process. Disconnecting from an application process removes the applica-
tion environment created by a connection. All instrumentation and data are removed from the
application process.

Note thatodisconnect does not return control to the caller until the process has either suc-
ceeded or failed in disconnecting.

Return value

The return value fopdisconnect indicates whether the connection was successfully ter-

minated.
ASC_success connection was successfully terminated as expected
ASC_operation_failed connection failed to terminate

See Also

bconnect, connect, disconnect

3/25/99 Copyright 1998 by IBM Corp. Process.chp 239

class Process Draft

13.17bexecute

Synopsis
#include <Process.h>
AisStatus bexecute(
ProbeExp pexp,
GCBFuncType data_cb_fp,
GCBTagType data_cb_tag)

Parameters
pexp probe expression to be executed in the application process
data _cb_fp callback function to be invoked when data from the probe is received
data_cb_tag callback tag to be used when the data callback function is invoked
Description

This function executes a probe expression within the application process. The expression is
executed once, then removed. The application process is interrupted, the expression is exe-
cuted, then the process resumes execution as before the interruption.

Note thatbexecute does not return control to the caller until the probe expression has either
succeeded or failed to execute.

Return value

The return value fopexecute indicates whether the request for execution succeeded or

failed.
ASC_success probe expression was successfully executed
ASC_operation_failed attempt to execute the probe expression failed

Callback Data
When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each message sent from the probe. When the call-
back is invoked the callback function is passed a pointer to the process as the callback object.
The callback tag is given in tlilata_cb_tag variable. The callback message is the data

send by the probe using tAes_send() function call.

See Also

execute, Ais_send

3/25/99 Copyright 1998 by IBM Corp. Process.chp 240

class Process Draft

13.18bfree mem

Synopsis

#include <Process.h>

AisStatus bfree_mem(ProbeExp pexp)
Parameters

pexp dynamically allocated block of probe memory
Description

This function deallocates a block of dynamically allocated probe memory in an application
process. The probe expression must contain only a single reference to a block of data allocated
by thealloc_mem orballoc_mem functions.

Note thatbfree does not return control to the caller until deallocating the block of memory
has either succeeded or failed.

Return value

The return value fobfree_mem indicates whether the requests for deallocation were suc-
cessfully executed.

See Also

free_mem, bfree_mem, balloc_mem

3/25/99 Copyright 1998 by IBM Corp. Process.chp 241

class Process Draft

13.19binstall probe

Synopsis

#include <Process.h>

AisStatus binstall_probe(
short count,
ProbeExp *probe_exp,
InstPoint *point,
GCBFuncType *data_cb_fp,
GCBTagType *data_cb_tag,

ProbeHandle *phandle)
Parameters
count number of probe expressions to be installed
probe_exp probe expressions to be installed
point instrumentation points where the probe expressions are to be installed
data _cb_fp callback functions to process data received from the probe expression
data_cb_tag tags to be used as an argument to the data callback when it is invoked
phandle probe handles that represent the installed probe expressions
Description

This function installs probe expressions as instrumentation at specific locations within the
process. Probe expressions are installed atomically, in the sense that within a process either all
probe expressions in the request are installed into the process, or none of the expressions are
installed. The return value indicates whether all probes were installed, or whether the process
was unable to install the expressions as requested.

Data_cb_fp is an input array supplied by the caller that must contain atdeast ele-

ments. The'l element of the array is a pointer to a callback function that is invoked each time
the N probe inphandle sends data via theisSendMsg function.Data_cb_tag isa

similar array that contains the callback tag used when callbadksancb _fp are

invoked. The!" callback tag is used with th® tallback.

Phandle is an output array supplied by the caller that must contain atmast elements.

The f" element of the array is a handle, or identifier, to be used in subsequent references to the
ith probe expression. For example, it is needed when the client activates, deactivates or
removes a probe expression from an application or pradékasdle does not contain valid
information if the installation fails.

3/25/99

Copyright 1998 by IBM Corp. Process.chp 242

class Process Draft

Note thatbinstall_probe does not return control to the caller until all probe expressions
have been installed or failed to install within the process.

Return value

The return value fobpinstall_probe indicates whether the probe installations were suc-
cessful.

ASC_success all probes were successfully installed, as expected
ASC_operation_failed one or more of the probes could not be installed as

requested, so none of the probes were installed

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each message sent from the probe. When the call-
back is invoked the callback function is passed a pointer to the process as the callback object.
The callback tag is given in tlilata_cb _tag array. The callback message is the data send

by the probe using th&is_send function call.

See Also

Ais_send, install_probe, ...

3/25/99

Copyright 1998 by IBM Corp. Process.chp 243

class Process Draft

13.20bload module

Synopsis

#include <Process.h>

AisStatus bload_module(ProbeModule *module)

Parameters

module the probe module to be loaded.

Description

This function sends and loads the module from the client side to the user application. Once
loaded, the probe expressions available in this probe module can be installed and activated as
if those are native in the application.

Note thatbload_module does not return control to the caller until the probe module has
been installed or failed to install in the process.

Return value

The return value fapload_module indicates whether the probe module installation was
successful.

ASC_success module was successfully installed on all processes
ASC_operation_failed module could not be installed as requested on one or more
processes
See Also

bunload_module, load_module, unload_module

3/25/99

Copyright 1998 by IBM Corp. Process.chp 244

class Process Draft

13.21breadmem - LY

Synopsis

#include <Process.h>

AisStatus breadmem(char *location, char *buffer, int size)

Parameters
location address in the application process where reading is to begin
buffer address in the client process where data is to be placed
size size, in bytes, of both the buffer and the memory block to be read
Description

This function sends a request to the daemon managing this process to read the indicated block
of memory within the process. The block of memory is then returned to the client and stored
in the indicated buffer.

Note thatbreadmem does not return control to the caller until the memory has been read or
failed to be read from the process.

Return value

The return value fopreadmem indicates whether the block of memory was successfully
read from the application process.

ASC_success memory was successfully read, as expected
ASC_operation_failed memory could not be read
See Also

bwritemem, readmem, writemem

3/25/99 Copyright 1998 by IBM Corp. Process.chp 245

class Process Draft

13.22bremove phase

Synopsis

#include <Process.h>

AisStatus bremove_phase(const Phase &ps)

Parameters

ps phase description to be removed from the application

Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatoremove_phase does not return control to the caller until the phase has been
removed or failed to be removed from the process.

Return value

The return value fodbremove_phase indicates whether the phase was successfully
removed from the process.

ASC_success phase was successfully removed, as expected
ASC_operation_failed phase could not be removed from the process
See Also

remove_phase, add_phase, badd_phase, set_phase_exit,
bset_phase_exit, set_phase_period, bset_phase_period,
get_phase_period

3/25/99

Copyright 1998 by IBM Corp. Process.chp 246

class Process Draft

13.23bremove probe

#include <Process.h>

AisStatus bremove_probe(short count, ProbeHandle *phandle)

Parameters

count number of probe handles in the accompanying array

phandle array of probe handles representing probe expressions to be removed
Description

This function deletes or removes probe expressions that have been installed in a process. If all
probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed, and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If the process is not connected a warning is returned.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdli element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is tempo-
rarily stopped, all indicated probes are removed, and the process is resumed.

Note thatoremove _probe does not return control to the caller until the probes have been
removed or failed to be removed from the process. If one or more probes cannot be removed
for any reason, as many as can are removed and status indicates the condition.

Return value

The return value fooremove_probe indicates whether all probes in the list were success-
fully removed from the process.

ASC_success all probes were successfully removed, as expected
ASC_operation_failed one or more of the probes were not removed
See Also

bactivate_probe, bdeactivate probe, binstall_probe,
activate_probe, deactivate_probe, install _probe, remove_probe

3/25/99 Copyright 1998 by IBM Corp. Process.chp 247

class Process Draft

13.24bresume

Synopsis

#include <Process.h>
AisStatus bresume(void)

Description

This function resumes execution of a process that has been temporarily suspended by a sus-
pend oibsuspend function call. A process must be attached for it to be resumed. A process
that is not attached will result in a error return code.

Note thatbresume does not return control to the caller until the process has resumed or
failed to resume.

Return value

The return value fabresume indicates whether the process was successfully resumed.
ASC_success process was resumed, as expected
ASC_operation_failed process failed to be resumed

ASC _no_sus_res_from_created must be attached to call bresume
ASC_no_sus_res_from_connectedmust be attached to call bresume

See Also

attach, battach, bconnect, bdetach, bdisconnect, bsuspend,
connect, detach, disconnect, resume, suspend

3/25/99

Copyright 1998 by IBM Corp. Process.chp 248

class Process Draft

| 13.25bset_phase_exit

Synopsis

#include <Process.h>

AisStatus bset_phase_exit(
const Phase &ps,
ProbeExp begin_func,
GCBFuncType begin_cb_fp,
GCBTagType begin_cb_tag,
ProbeExp iter_func,
GCBFuncType iter_cb_fp,
GCBTagType iter_cb_tag,
ProbeExp end_func,
GCBFuncType end_cb_fp,
GCBTagType end_cb_tag)

Parameters
ps phase description to be removed from the application
begin_func initialization function that is executed once within the application when
the phase is removed
begin_cb_fp callback function to handle messages from the initialization function
begin_cb_tag tag to be used with the initialization callback function
iter_func iteration function that is executed within the application on each piece
of data associated with the phase when the phase is removed
iter_cb_fp callback function to handle messages from the iteration function
iter_cb_tag tag to be used with the iteration callback function
end_func termination function that is executed once within the application when
the phase is removed
end _cb_fp callback function to handle messages from the termination function
end_cb_tag tag to be used with the termination callback function
Description

This function specifies a set of exit functions to be executed when any of the following three
events occur.

3/25/99

Copyright 1998 by IBM Corp. Process.chp 249

class Process Draft

when the indicated phase is removed using either the remove_phase or bremove_phase
function call

when diconnecting from the target process (without calling remove_phase or
bremove_phase first)

when the target process has finished execution while the indicated phase is still active

Note thatset_phase_exit returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the exit functions have been placed in the indi-
cated phase or the operation failed to complete.

Each of the phase functions must be loaded into the application before this operation may take
place. The function prototypes for the functions are:

void begin_func(void *msg_handle)
void iter_func(void *msg_handle, void *data)
void end_func(void *msg_handle)

Return value

The return value foset_phase_exit indicates whether the request to set exit functions
for the indicated phase on the process was successfully submitted. It gives no indication of
whether the request was successfully executed.

ASC_success remove request was successfully submitted
ASC_operation_failed remove operation failed to be requested

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

begin_cb_fpiter_cb_fp, end_cb_fp These callback functions are invoked each time the
corresponding function in the process instrumentatibbegin_func ,iter_func , or

end_func -- sends a message to the client. The message format is determined by the func-
tion that sends the message.

See Also

set_phase_exit, add_phase, badd_phase, remove_phase,
bremove_ phase, set_phase period, bset _phase_period,
get_phase_period

3/25/99 Copyright 1998 by IBM Corp. Process.chp 250

class Process Draft

13.26bset_phase_period

Synopsis
#include <Process.h>

AisStatus bset_phase_period(const Phase &ps, float period)

Parameters

ps phase to be modified

period new time interval between successive phase activations, in seconds
Description

This function changes the time interval between successive activations of a phase within the
process. Processes which do not have the phase installed result in an informational return
code. Processes that are not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation delay time. In both cases the phase
is activated immediately before setting the new interval. If the value is less than zero the phase
is disabled immediately, but left in place for possible future reactivation.

Note thatoset _phase_period does not return control to the caller until the phase period
has been set or failed to be set in the process.

Return value

The return value fobbset_phase_period indicates whether the phase period was suc-
cessfully set on this process.
ASC_success phase period was successfully set
ASC_operation_failed phase period failed to be set

See Also

add_phase, badd_phase, bremove_phase, get_phase_period,
remove_phase, set_phase_period

3/25/99 Copyright 1998 by IBM Corp. Process.chp 251

class Process Draft

13.27bsignal - LY

Synopsis

#include <Process.h>

AisStatus bsignal(int unix_signal)
Parameters

unix_signal Unix™ signal to be sent to every process in the application
Description

This function sends the specified signal to the process. The process must be both connected
and attached to receive the signal. The function does not return until the process receives and
acknowledges receiving the signal.

A signal is sent only to those processes that are connected and attached.

Note thatbsignal does not return control to the caller until the process has been signalled
or failed to be signalled.

Return value

The return value fabsignal indicates whether the AIX signal was successfully sent to the

process.
ASC_success signal was successfully sent to the process
ASC_operation_failed signal failed to be sent to the process

See Also
signal

3/25/99 Copyright 1998 by IBM Corp. Process.chp 252

class Process Draft

13.28Dbstart
Synopsis
#include <Process.h>
AisStatus bstart(void)
Description

This function starts the execution of a process that has been created but not yet begun execu-
tion. When applied to a process that has begun execution it causes the process to terminate and
restart.

Note thatostart does not return control to the caller until the process has started or failed to
start.

Return value

The return value fobstart indicates whether the process was successfully started.

ASC_success process was started
ASC_operation_failed process failed to be started
See Also

bcreate, bdestroy, create, destroy, start

3/25/99 Copyright 1998 by IBM Corp. Process.chp 253

class Process Draft

13.29bsuspend

Synopsis

#include <Process.h>
AisStatus bsuspend(void)
Description

This function suspends a process that is executing. A tool must be attached to a process in
order to suspend process execution.

Note thatosuspend does not return control to the caller until the process has been sus-
pended or failed to be suspended.

Return value

The return value fopsuspend indicates whether all processes within the application were
successfully suspended.

ASC_success process was successfully suspended
ASC_operation_failed process failed to be suspended
ASC_no_sus_res_from_created must be attached to be suspended
ASC_no_sus_res_from_connectedmust be attached to be suspended

See Also

battach, bresume, attach, resume, suspend

3/25/99 Copyright 1998 by IBM Corp. Process.chp 254

class Process Draft

13.30bunload module

Synopsis

#include <Process.h>

AisStatus bunload_module(ProbeModule* module)
Parameters

module probe module to be removed from the application process
Description

This function unloads the module from process. Once unloaded, All the probe handles that
refer to this probe module are automatically removed.

Note thatbounload_module does not return control to the caller until the probe module has
been removed or failed to be removed from the application process.

Return value

The return value fopunload_module indicates whether the probe module was success-
fully removed from the process.

ASC_success module was successfully removed from the process
ASC_operation_failed module could not be removed from the process
See Also

bload_module, load_module, unload_module

3/25/99 Copyright 1998 by IBM Corp. Process.chp 255

class Process Draft

13.31bwritemem -LY

Synopsis

AisStatus bwritemem(char *location, char *buffer, int size)

Parameters

location address in the application process where writing is to begin

buffer address in the client process from which data is to be taken

size size, in bytes, of both the buffer and the memory block to be written
Description

This function sends a request to the daemon managing this process to write the indicated
block of memory within the process. Data to write the block of memory is taken from the indi-
cated client buffer.

Note thatowritemem does not return control to the caller until the memory has been written
or failed to be written on the process.

Return value

The return value fabwritemem indicates whether the block of memory was successfully
written to the application process.

ASC_success memory was successfully written, as expected
ASC_operation_failed memory could not be written
See Also

breadmem, readmem, writemem

3/25/99 Copyright 1998 by IBM Corp. Process.chp 256

class Process Draft

13.32connect

Synopsis
#include <Process.h>
AisStatus connect(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked with each successful or failed connec-
tion to a process listed within the application
tag callback tag to be used each time the callback function is invoked
Description

Connection to a process establishes a communication channel to the CPU where the process
resides (the host CPU) and creates the environment within that process that allows the client
to insert and remove instrumentation, alter its control fta,

Connections from multiple DPCL based tools to the same process are allowed.
Note that the function submits the requests to connect the process and returns immediately.
The callback function receives notification of a connection’s success or failure.

Return value
The return value foconnect indicates whether the request for connection was successfully
submitted, but indicates nothing about whether the request was successfully executed.
ASC_success connection request was successfully submitted
ASC_operation_failed request could not be submitted

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each process for which a connection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éis@tatus , which con-

tains one of the following status values:

ASC_success connection was successfully established on this process
ASC_operation_failed attempt to connect to this process failed
See Also

bconnect, bdisconnect, disconnect

3/25/99 Copyright 1998 by IBM Corp. Process.chp 257

class Process Draft

13.33create
Synopsis

#include <Process.h>

AisStatus create(
const char *host,
const char *path,
const char *args]],
const char *envp(],
char *remote_stdin_filename,
char *remote_stdout_filename,
char *remote_stderr_filename,
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

AisStatus create(
const char *host,
const char *path,
const char *args],
const char *envp[],
GCBFuncType stdout_cb_fp,
GCBTagType stdout_cb_tag,
GCBFuncType stderr_cb_fp,
GCBTagType stderr_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack_ch_tag)

AisStatus create(
const char *host,

3/25/99 Copyright 1998 by IBM Corp. Process.chp 258

class Process Draft

const char *path,

const char *args],

const char *envp[],

char *remote_stdin_filename,

char *remote_stdout_filename,

char *remote_stderr_filename,

GCBFuncType ack_cb_fp,

GCBTagType ack_cb_tag)
AisStatus create(

const char *host,

const char *path,

const char *args]],

const char *envp(],

GCBFuncType ack_cb_fp,

GCBTagType ack_ch_tag)

Parameters

host host name or IP address of the host machine where the process is to be
created

path complete path to the executable program, including file name and rela-
tive or absolute directory, when appropriate

args null terminated array of arguments to be provided to the executable

envp null terminated array of environment variables to be provided to the
executable

remote_stdin_filenameremote file to use for stdin
remote_stdout_filenameremote file to use for stdout
remote_stderr_filenameremote file to use for stderr

stdout_cb_fp callback function to handktdoutfrom the process

stdout_cb_tag tag to be used with thedoutcallback function

stderr_cb_fp callback function to handktderrfrom the process

stderr_cb_tag tag to be used with thetderr callback function

ack cb_fp callback function to be invoked with a successful or failed creation
ack cb_tag callback tag to be used when the callback function is invoked

3/25/99 Copyright 1998 by IBM Corp. Process.chp 259

class Process Draft

Description

This function creates a process on the specified host. The process is created in a stopped state,
and a connection is established that allows the client to insert instrumentation into the created
process. The process must be started to begin execution.

The input, output filenames, output callbacks and PoeAppl::send_stdin can be used to access
the stdio from and to the process.

If you pass callback functions in to the stdout_cb_fp and stderr_cb_fp parameters, the output
from the process will be available in these callbacks. Input to the process can be sent using
send_stdin().

Another way to access Stdio to the process is to specify the remote filename parameters. In
this case stdin, stdout and stderr can be set to use files on the host where process is running. It
is expected that the remote_stdin_filename specified will already exist. The files for the
remote_stdin_filename and remote_stdin_filename will created or overwritten if they already
exist. If one of the remote file parameters is specified, it takes precedence over the corre-
sponding callback or send_stdin() method of handling Stdio.

Note thatcreate returns control immediately to the caller. It does not wait until the process
has been created. The return value indicates whether the request was successfully submitted
and gives no indication whatever about the success or failure of the execution of the request.

Return value
The return value focreate indicates whether the request for process creation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.
ASC_success process creation request was successfully submitted
ASC_operation_failed request could not be submitted

Callback Data
When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

ack _cb_fp . This callback function is invoked once when the new process is created. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtypwatus , which contains one

of the following status values:

ASC_success connection was successfully established on this process
ASC_operation_failed attempt to connect to this process failed

stdout_cb_fp . This callback function is invoked each time the process sends data to
stdout

3/25/99 Copyright 1998 by IBM Corp. Process.chp 260

class Process Draft

stderr_cb_fp . This callback function is invoked each time the process sends data to
stderr

The output will be contained in the message parameter of the callback. The size of the output
will be contained in the msg_size field of the sys callback parameter. The output from the pro-
cess may be recieved in different size blocks than were actually sent by the program.

See Also

bcreate, bdestroy, bstart, destroy, start

3/25/99

Copyright 1998 by IBM Corp. Process.chp 261

class Process Draft

13.34deactivate probe

Synopsis

#include <Process.h>

AisStatus deactivate probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probes to be deactivated
phandle array of probe handles, representing the probes, to be deactivated
ack cb fp acknowledgement callback function to be invoked wdléprobe
expressions in the array have been deactivated (or deactivation fails)
ack cb_tag tag to be used with the acknowledgement callback function
Description

This function accepts an array of probe handles as an input parameter. Each probe handle in
the array represents a probe that has been installed in the application. The client sends a
request to each of the processes within the application to deactivate the list of probes repre-
sented by the array. Probes are deactivated atomically for each process in the sense that the
process is temporarily stopped, all probes on the list are deactivated, then the process is
restarted. None of the probes in the array are left active. If one or more probes cannot be deac-
tivated, for whatever reason, all that can be deactivated are deactivated.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thdl element of the
array is a handle, or identifier, that identifies fH@riobe expression.

Note thatdeactivate probe returns control immediately to the caller. It does not wait

until all probes in the array have been deactivated on all processes in the application. The
return value indicates whether the request was successfully submitted and gives no indication
whatever about the success or failure of the execution of the request.

Return value

The return value fodeactivate probe indicates whether the deactivations were suc-
cessfully submitted.

ASC_success all probe deactivations were submitted, as expected
ASC_operation_failed one or more of the probe deactivations were not submitted

3/25/99

Copyright 1998 by IBM Corp. Process.chp 262

class Process Draft

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each process for which a probe deactivation is
requested. When the callback is invoked the callback function is passed a pointer to the pro-
cess as the callback object. The callback message is the request statushisStgtes

which contains one of the following status values:

ASC_success probes were successfully deactivated on this process
ASC_operation_failed attempt to deactivate probes on this process failed
See Also

3/25/99

Copyright 1998 by IBM Corp. Process.chp 263

class Process Draft

13.35destroy

Synopsis

#include <Process.h>
AisStatus destroy(GCBFuncType fp, GCBTagType tag)

Parameters
fp acknowledgement callback function to be invoked for each process that
is destroyed (or not destroyed)
tag tag to be used with the acknowledgement callback function
Description

This function destroys or terminates all processes within the application.

Note thatdestroy returns control to the caller immediately. It does not wait until all pro-
cesses within the application have been destroyed. The return value indicates whether the
requests were successfully submitted, but give not indication of whether the requests them-
selves were successfully executed.

Return value

The return value fodestroy indicates whether the terminations were successfully

requested.
ASC_success all terminations were successfully requested, as expected
ASC_operation_failed one or more of the terminations were not requested

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once when the process destruction is attempted. When the
callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtypratus , which contains one

of the following status values:

ASC_success process was successfully destroyed
ASC_no_destroy_from_connected process must be in attached state to call destory
ASC_operation_failed attempt to destroy this process failed

See Also
bdestroy

3/25/99 Copyright 1998 by IBM Corp. Process.chp 264

class Process Draft

13.36detach

Synopsis

#include <Process.h>
AisStatus detach(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked when detaching from a process suc-
ceeds or fails.
tag callback tag to be used when the callback function is invoked.
Description

This function detaches the client from this process. Process control flow, such as suspending
and resuming a process, can only be done while a process is in an attached state. Detaching a
process removes the level of process control available to the client or tool when the process is
attached, but retains the process connection so probe installation, activation, retaaaat,

still take place.

Note thatdetach returns control to the caller immediately upon issuing a request to detach
from a process. The return value indicates whether the request was successfully submitted.

Return value

The return value fodetach indicates whether the request was successfully submitted.
ASC_success detach request was successfully submitted, as expected
ASC_operation_failed request was not submitted

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for each process for which detachment is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éfis@tatus , which con-

tains one of the following status values:

ASC_success process was successfully detached
ASC_no_detach_from_created currently created, must attach before detaching
ASC_no_detach_from_connectedcurrently connected, must attach before detaching
ASC_operation_failed attempt to detach this process failed

See Also

attach, battach, bdetach

3/25/99 Copyright 1998 by IBM Corp. Process.chp 265

class Process Draft

13.37disconnect

Synopsis

#include <Process.h>
AisStatus disconnect(GCBFuncType fp, GCBTagType tag)

Parameters
fp callback function to be invoked when disconnection from a process
succeeds or fails.
tag callback tag to be used when the callback function is invoked.
Description

Disconnecting from an application process removes the application environment created by a
connection. All instrumentation and data are removed from the application process.

Note that the function submits the request to disconnect the process and returns immediately.
The callback function receives notification of a disconnection’s success or failure.

Return value

The return value fodisconnect indicates whether the request for disconnection was suc-
cessfully submitted, but indicates nothing about whether the request was successfully exe-
cuted.

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once when the process is (or fails to be) disconnected. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtypratus , which contains one

of the following status values:

ASC_success process was successfully disconnected
ASC_operation_failed attempt to disconnect this process failed
See Also

bconnect, bdisconnect, connect

3/25/99 Copyright 1998 by IBM Corp. Process.chp 266

class Process Draft

13.38execute

Synopsis

#include <Process.h>

AisStatus execute(
ProbeExp probe_exp,
GCBFuncType data_cb_fp,
GCBTagType data_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
probe_exp probe expression to be executed in the application process
data_cb_fp callback function to be invoked when data from the probe is received
data_cb_tag callback tag to be used when the data callback function is invoked
ack cb_fp callback function to be invoked when execution succeeds or fails
ack cb_tag callback tag to be used when the callback function is invoked
Description

This function executes a probe expression within the application process. The expression is
executed once, then removed. The application process is interrupted, the expression is exe-
cuted, then the process resumes execution as before the interruption.

Note thatexecute returns control to the caller immediately upon submitting its request to

the daemon. It does not wait until the probe expression has been executed or failed to execute.
The acknowledgement callback function receives notification of the success or failure of the
execution.

Return value

The return value foexecute indicates whether the request for deallocation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

ASC_success probe expression execution was successfully submitted
ASC_?7??
Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 267

class Process Draft

data_cb_fp This callback function is invoked once for each message sent from the probe.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback tag is given indla¢a_cb _tag array. The callback message

is the data send by the probe usingAle send() function call.

ack _cb _fp . This callback function is invoked once when execution succeeds or fails. When
the callback is invoked the callback function is passed a pointer to the process as the callback
object. The callback message is the request status, oAtgpwatus , which contains one

of the following status values:

ASC_success probe expression was successfully executed
ASC_operation_failed attempt to execute the probe expression failed
See Also

bexecute, Ais_send

3/25/99

Copyright 1998 by IBM Corp. Process.chp 268

class Process Draft

13.39free mem

Synopsis
#include <Process.h>
AisStatus free_mem(
ProbeExp pexp,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
pexp dynamically allocated block of probe memory
ack cb_fp callback function to be invoked when deallocating the block of mem-
ory succeeds or fails
ack cb tag callback tag to be used when the callback function is invoked
Description

This function deallocates a block of dynamically allocated probe memory for this process.
The probe expression must contain only a single reference to a block of data allocated by the
alloc_mem orballoc_mem functions.

Note thatfree_mem

returns control to the caller immediately upon submitting its request to free the data. It does
not wait until the data has been deallocated or failed to deallocate. The acknowledgement call-
back function receives notification of the success or failure of the deallocation.

Return value

The return value foiree_mem indicates whether the request for deallocation was success-
fully submitted, but indicates nothing about whether the request was successfully executed.

Callback Data
When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once when deallocation succeeds or fails. When the callback
is invoked the callback function is passed a pointer to the process as the callback object. The
callback message is the request status, ofAygfetatus , which contains one of the fol-

lowing status values:

ASC_success block of probe memory was successfully deallocated
ASC_operation_failed attempt to deallocate memory on this process failed

3/25/99 Copyright 1998 by IBM Corp. Process.chp 269

class Process Draft

See Also

bfree_mem, balloc_mem, alloc_mem

3/25/99 Copyright 1998 by IBM Corp. Process.chp 270

class Process Draft

13.40get host name

Synopsis
#include <Process.h>
char *get_host_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the host name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the name of the host
machine for the indicated process. The name may be truncatedeih frewameter is smaller
than the length of the host name

Return value
A pointer tobuffer, which will contain at moden bytes of the AlIX host machine name.
See Also

get_host_name_length

3/25/99 Copyright 1998 by IBM Corp. Process.chp 271

class Process Draft

13.41get host name length

Synopsis

#include <Process.h>

unsigned int get_host_name_length(void) const
Description

This function returns the length, including the terminating null byte, of the name of the host
machine for the indicated process. If there is no host name associated with the process, then a
value of zero is returned.

Return value
The length of the the AIX host machine name.
See Also

get_host_name

3/25/99 Copyright 1998 by IBM Corp. Process.chp 272

class Process Draft

13.42get_pid

Synopsis

#include <Process.h>

int get_pid(void) const
Description

This function returns the AIX process identification number for the indicated process.
Return value

AlX process ID.

See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 273

class Process Draft

13.43get phase period

Synopsis
#include <Process.h>

float get_phase_period(const Phase &ps, AisStatus &stat) const

Parameters

ps phase being queried on this process

stat output variable that indicates the success or failure of the call
Description

This function returns the time duration, in seconds, between successive activations of this
phase. If the return value is greater than zero, the value represents the minimum time between
successive activations of the phase. Due to scheduling conflicts with other processes and
resources on the system the actual time between phase activations may be greater than the
stated value. If the return value is zero it represents the fastest rate of phase activation possi-
ble. If the return value is less than zero, it indicates an error.

Stat indicates whether the query was successful. To be successful the process must be con-
nected and the phase must exist on the process.

Return value
Minimum time duration, in seconds, between successive activations of this phase.

See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 274

class Process Draft

13.449et program object

Synopsis

#include <Process.h>

SourceObj get_program_object(void) const
Description

This function retrieves the top-level source object from the process. Source objects are a
coarse source-level view of the program structure. Program objects represent the top level of a
tree structure. Below a program object are modules, then data and furettidhse process

is not connected or some other error occurs, the source object returned will be invalid. The
source object may be queried to determine its validity.

Return value
Program object for this process.
See Also

class SourceObj

3/25/99 Copyright 1998 by IBM Corp. Process.chp 275

class Process Draft

13.45¢get task

Synopsis

#include <Process.h>

int get_task(void) const
Description

This function returns the task identifier associated with this process.
Return value

Task ID for this process.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 276

class Process

Draft

13.46install probe

Synopsis

#include <Process.h>

AisStatus install_probe(

short count,

ProbeExp *probe_exp,

InstPoint *point,
GCBFuncType *data_cb_fp,
GCBTagType *data_cb_tag,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag,

ProbeHandle *phandle)

Parameters

count

probe_exp
point
data _cb_fp

data_cb _tag

ack cb_fp
ack cb_tag
phandle

Description

number of probe expressions to be installed, instrumentation points,
data callback functions, data callback tags, and probe handles

probe expressions to be installed
instrumentation points where the probe expressions are to be installed

array of callback functions to process data received from the probe
expression

array of tags to be used as an argument to the data callback when it is
invoked

callback function to process data received from the probe expression
tag to be used as an argument to the data callback when it is invoked
probe handles that represent the installed probe expressions

This function installs probe expressions as instrumentation at specific locations within a pro-

cess. Probe expressions are installed atomically, in the sense that within each process either all
probe expressions in the request are installed into the process, or none of the expressions are
installed. The return value indicates whether the request to have probes installed was success-

fully submitted.

Phandle is an output array supplied by the caller that must contain atmast elements.
The f" element of the array is a handle, or identifier, to be used in subsequent references to the
i probe expression. For example, it is needed when the client activates, deactivates or

3/25/99 Copyright 1998 by IBM Corp. Process.chp 277

class Process Draft

removes a probe expression from an application or pradékasdle does not contain valid
information if the installation fails.

Note thatnstall_probe returns control to the caller immediately upon submitting all
requests to the daemons. It does not wait until all probe expressions have been installed or
failed to install within all processes within the application.

Return value

The return value foinstall_probe indicates whether the request for probes to be
installed was successfully submitted. It gives no indication of whether the requests was suc-
cessfully executed.

ASC_success probe expression installation request was successfully sub-
mitted
ASC_operation_failed probe expression installations failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

ack_cb_fp The callback function is invoked once and removed. It is called when the status
message for this request is received. When the callback is invoked the callback function is
passed a pointer to the process as the callback object. The callback message is the request ste
tus, of typeAisStatus , which contains one of the following status values:

ASC_success all probes were successfully installed in this process
ASC_operation_failed attempt to install probes in this process failed

data_cb_fp The callback function is invoked once for each message sent from the probe.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback tag is given indla¢a_cb_tag array. The callback message

is the data send by the probe usingAi® send() function call.

See Also

activate_probe, bactivate_probe, bdeactivate probe,
bremove_probe, deactivate _probe, remove_probe

3/25/99

Copyright 1998 by IBM Corp. Process.chp 278

class Process Draft

13.47load module

Synopsis

#include <Process.h>

AisStatus load_module(
ProbeModule *module,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters

module probe module to be loaded

ack cb_fp callback functin to process load module acknowledgements.

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends and loads the module from the client side to the process. Once loaded, the
probe expressions available in this probe module can be installed and activated as if those are
native in the application.

Note thatoad_module returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the module has been loaded or failed to load
within the process.

Return value

The return value foload_module indicates whether the request to load the indicated mod-
ule was successfully submitted. It gives no indication of whether the request was successfully

executed.
ASC_success load requests was successfully submitted
ASC_operation_failed load operation failed to be requested

Callback Data
When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once for the process for which disconnection is requested.
When the callback is invoked the callback function is passed a pointer to the process as the
callback object. The callback message is the request status, éfis@iatus , which con-

tains one of the following status values:

ASC_success objects were successfully loaded into this process
ASC_operation_failed attempt to load objects on this process failed

3/25/99 Copyright 1998 by IBM Corp. Process.chp 279

class Process Draft

See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 280

class Process Draft

13.480operator =

Synopsis

#include <Process.h>

Process &operator = (const Process &rhs)
Parameters

rhs right operand
Description

This function assigns the value of the right operand to the invoking object. The left operand is
the invoking object. For exampleRfocess rhs, Ihs; ... Ihs = rhs; " assigns
the value ofhs tolhs . Both values would then refer to the same process, if any.

Note that Process x(“host”, 123), y(“host”, 123); " creates two separate
“process” data objects, or logical processes, that manipulate the same physical process, but the
data objects are managed separately. Thusfinect(); " does not cause the logical pro-

cess Y to be connected.

Return value
A reference to the invoking object (i.e., the left operand).

See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 281

class Process Draft

13.49query state

Synopsis

#include <Process.h>

AisStatus query_state(ConnectState *state)
Parameters

state state of the Process object

Description

This function returns the state of the Process. See Figure ? [need figure]. If this state can be
determined locally, the function returns immediately. Otherwise, a blocking request is sent to
retrieve the state information.

Return value

If the state information cannot be determined locally, the return valugiéoy_state
indicates whether the request was successfully submitted. It gives no indication of whether the
request was successfully executed.

ASC_success guery request was successfully submitted
ASC_operation_failed guery operation failed to be requested
See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 282

class Process Draft

13.50readmem - LY

Synopsis

#include <Process.h>
AisStatus readmem(
char *location,
char *buffer,
int size,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
location address in the application process where reading is to begin
buffer address in the client process where data is to be placed
size size, in bytes, of both the buffer and the memory block to be read
ack cb_fp callback function to process data read from the process
ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends a request to the daemon managing this process to read the indicated block
of memory within the process. The block of memory is then returned to the client in the indi-
cated buffer.

Note thatreadmem returns control to the caller immediately. It does not wait until the mem-
ory has been read or failed to be read from the process.

Return value

The return value farradmem indicates whether the request to read the block of memory was
successfully submitted. It gives no indication whether the request was successfully executed.

ASC_success request was successfully submitted, as expected
ASC_operation_failed request could not be submitted

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the data is received. The data is written to the
buffer indicated in theeadmem function call. When the callback is invoked the callback

3/25/99

Copyright 1998 by IBM Corp. Process.chp 283

class Process Draft

function is passed a pointer to the process as the callback object. The callback message is the
request status, of tygdsStatus , which contains one of the following status values:

ASC_success memory was successfully read in this process
ASC_operation_failed attempt to read memory in this process failed
See Also

bwritemem, readmem, writemem

3/25/99

Copyright 1998 by IBM Corp. Process.chp 284

class Process Draft

13.51remove phase

Synopsis

#include <Process.h>

AisStatus remove_phase(
const Phase &ps,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
ps phase description to be removed from the application
ack cb_fp callback function to process phase removal acknowledgments
ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function removes a phase from the application. Data and functions associated with the
phase are unaffected by removing the phase. Existing probe data cannot become associated
with a phase except at the time of data allocation, so deleting a phase has the effect of perma-
nently disassociating data from any phase.

Note thatremove_phase returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the phase has been removed or failed to be
removed from the process.

Return value

The return value foremove_phase indicates whether the request to remove the indicated
phase on the process was successfully submitted. It gives no indication of whether the request
was successfully executed.

ASC_success remove request was successfully submitted
ASC_operation_failed remove operation failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

ack _cb_fp The callback function is invoked once, when the acknowledgement of the com-
pletion of this operation is received. When the callback is invoked the callback function is
passed a pointer to the process as the callback object. The callback message is the request ste
tus, of typeAisStatus , which contains one of the following status values:

ASC_success phase was successfully removed from this process

3/25/99

Copyright 1998 by IBM Corp. Process.chp 285

class Process Draft

ASC_operation_failed attempt to remove phase from this process failed
See Also

bremove_ phase, add_phase, badd_phase, set_phase_exit,
bset_phase_exit, set_phase_period, bset_phase_period,
get_phase_period

3/25/99 Copyright 1998 by IBM Corp. Process.chp 286

class Process Draft

13.52remove probe

Synopsis

#include <Process.h>

AisStatus remove_probe(
short count,
ProbeHandle *phandle,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
count number of probe handles in the accompanying array
phandle array of probe handles representing probe expressions to be removed
ack cb fp callback function to process probe removal acknowledgments
ack cb tag tag to be used as an argument to the callback when it is invoked
Description

This function deletes or removes probe expressions that have been installed in an application.
If all probe expressions are installed and deactivated, the probe expressions are removed and a
“normal” return status results. If one or more of the probe expressions are currently active, the
expressions are deactivated and removed and the return status indicates there were active
probes at the time of their removal. If one or more of the probes do not exist, all existing
probes are removed and the return status indicates an appropriate warning. If one or more of
the probe expressions exists but cannot be removed, an error results and none of the probe
expressions is removed. If one or more processes are not connected, probe removal takes
place within those that are connected, and a warning is issued.

Phandle is an input array generated byiastall_probe or binstall_probe call.
It is supplied by the caller and must contain at leaght elements. Thél element of the
array is a handle, or identifier, that identifies fA@iobe expression.

Probe expression removal is atomic in the sense that all probe expressions are removed from a
given process or none are. When probes are removed from a process the process is tempo-
rarily stopped, all indicated probes are removed, and the process is resumed.

Note thatremove_probe returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the probes have been removed or failed to be
removed from the process.

3/25/99

Copyright 1998 by IBM Corp. Process.chp 287

class Process Draft

Return value

The return value foremove_probe indicates whether the request to remove the indicated
probes on the process was successfully submitted. It gives no indication of whether the
request was successfully executed.

ASC_success all remove requests were successfully submitted
ASC_operation_failed remove operation failed to be requested to some process

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuajssf type
Status , which contains one of the following status values:

ASC_success probes were successfully removed from this process
ASC_operation_failed attempt to remove probes from this process failed
See Also

activate_probe, bactivate_probe, bdeactivate probe,
binstall_probe, bremove_probe, deactivate probe, install_probe

3/25/99

Copyright 1998 by IBM Corp. Process.chp 288

class Process Draft

13.53resume

Synopsis
#include <Process.h>
AisStatus resume(GCBFuncType ack_cb_fp, GCBTagType ack cb_tag)

Parameters
ack cb_fp callback function to process process resumption acknowledgments
ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function resumes execution of an application that has been temporarily suspended by a
stop orbstop function. Execution resumption occurs on a process by process basis. A pro-
cess must be connected, attached and stopped for it to be resumed. A process that is not con-
nected or not attached will result in a warning return code. A process that is not stopped will
result in an informational return code.

Note thatesume returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the process has resumed or failed to resume.

Return value

The return value foresume indicates whether the request to resume process execution was
successfully submitted. It gives no indication of whether the request was successfully exe-

cuted.
ASC_success request to resume execution was successfully submitted
ASC_operation_failed resume operation failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuiisef type
Status , which contains one of the following status values:

ASC_success process was successfully resumed
ASC_operation_failed attempt to resume this process failed
See Also

attach, battach, bconnect, bdetach, bdisconnect, bresume,
bsuspend, connect, detach, disconnect, suspend

3/25/99 Copyright 1998 by IBM Corp. Process.chp 289

class Process Draft

13.54send stdin

Synopsis

#include <Process.h>

AisStatus send_stdin(char *buffer, int size)

Parameters
buffer character array that contains text to be fed to the process stdin
size number of bytes in the buffer to be given to the process
Description

This function provides text to be used as input to the process fsidihe device, that is,
file descriptor 0. This function is only appropriate for processes that are created using the
create orbcreate member functions.

In order for send_stdin to be used, the Process must have been created using the create func-
tion. If a file

Note thatsend_stdin returns control to the caller immediately upon submitting the request
to the daemon. It does not wait until the process has received the input.

Return value

The return value fosend_stdin indicates whether the request to provide process input
was successfully submitted. It gives no indication of whether the request was successfully

executed.
ASC_success request to provide input was successfully submitted
ASC_operation_failed request to provide input failed

Callback Data

The acknowlegement callback function is invoked once when the buffer has been sent to the
process. When the callback is invoked the callback function is passed a pointer to the Process
as the callback object. The callback message is the request status Ao 8tpeus , which

may contain one of the status values values that follow.

ASC_success the buffer was successfully sent to poe
ASC_operation_failed attempt to send the buffer to poe failed
See Also

bcreate, create

3/25/99 Copyright 1998 by IBM Corp. Process.chp 290

class Process

Draft

13.55set_phase_exit

Synopsis

#include <Process.h>

AisStatus set_phase_exit(

const Phase &ps,

ProbeExp begin_func,

GCBFuncType begin_cb_fp,

GCBTagType begin_cb_tag,

ProbeExp iter_func,
GCBFuncType iter_cb_fp,
GCBTagType iter_cb_tag,

ProbeExp end_func,

GCBFuncType end_cb_fp,
GCBTagType end_cb_tag,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters

ps
begin_func

begin_cb_fp
begin_cb_tag
iter_func

iter_cb_fp
iter_cb_tag
end_func

end_cb_fp
end_cb_tag
ack cb_fp
ack cb_tag

phase description to be removed from the application

initialization function that is executed once within the application when
the phase is removed

callback function to handle messages from the initialization function
tag to be used with the initialization callback function

iteration function that is executed within the application on each piece
of data associated with the phase when the phase is removed

callback function to handle messages from the iteration function
tag to be used with the iteration callback function

termination function that is executed once within the application when
the phase is removed

callback function to handle messages from the termination function
tag to be used with the termination callback function

callback function to process phase removal acknowledgments

tag to be used as an argument to the callback when it is invoked

3/25/99 Copyright 1998 by IBM Corp. Process.chp 291

class Process Draft

Description
This function specifies a set of exit functions to be executed when any of the following three
events occur.

when the indicated phase is removed using either the remove_phase or bremove_phase
function call

when diconnecting from the target process (without calling remove_phase or
bremove_phase first)

when the target process has finished execution while the indicated phase is still active

Note thatset_phase_exit returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the exit functions have been placed in the indi-
cated phase or the operation failed to complete.

Each of the phase functions must be loaded into the application before this operation may take
place. The function prototypes for the functions are:

void begin_func(void *msg_handle)
void iter_func(void *msg_handle, void *data)
void end_func(void *msg_handle)

Return value

The return value foset_phase_exit indicates whether the request to set exit functions
for the indicated phase on the process was successfully submitted. It gives no indication of
whether the request was successfully executed.

ASC_success remove request was successfully submitted
ASC_operation_failed remove operation failed to be requested

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

begin_cb_fpiter_cb_fp, end_cb_fp These callback functions are invoked each time the
corresponding function in the process instrumentatitwegin_func ,iter func , or

end_func -- sends a message to the client. The message format is determined by the func-
tion that sends the message.

ack _cb_fp The callback function is invoked once, when the acknowledgement of the com-
pletion of this operation is received. When the callback is invoked the callback function is
passed a pointer to the process as the callback object. The callback message is the request ste
tus, of typeAisStatus , which contains one of the following status values:

ASC_success phase was successfully removed from this process
ASC_operation_failed attempt to remove phase from this process failed

3/25/99 Copyright 1998 by IBM Corp. Process.chp 292

class Process Draft

See Also

bset_phase_exit, add_phase, badd_phase, remove_phase,
bremove_phase, set_phase_period, bset_phase_period,
get_phase_period

3/25/99 Copyright 1998 by IBM Corp. Process.chp 293

class Process Draft

13.56set phase period

Synopsis

#include <Process.h>

AisStatus set_phase_period(
const Phase &ps,
float period,
GCBFuncType ack _cb_fp,
GCBTagType ack cb_tag)

Parameters
ps phase to be modified
period new time interval between successive phase activations, in seconds
ack cb fp callback function to process phase acknowledgments
ack cb tag tag to be used as an argument to the callback when it is invoked
Description

This function changes the time interval between successive activations of a phase. The inter-
val change occurs on a process by process basis for all processes within the application. Pro-
cesses which do not have the phase installed result in an informational return code. Processes
that are not connected result in a warning return code.

The new period is represented by a floating-point value. If the value is positive it represents
the time interval in seconds. If the value is zero or positive and smaller than the minimum acti-
vation time interval, it represents the minimum activation time interval. In both cases the
phase is activated immediately upon setting the new interval. If the value is less than zero the
phase is disabled immediately, but left in place for possible future reactivation.

Note thatset_phase_period returns control to the caller immediately upon submitting
the request to the daemon. It does not wait until the phase period has been set or failed to be
set within the process.

Return value

The return value foset_phase_period indicates whether the request to set the phase
period was successfully submitted. It gives no indication of whether the request was success-
fully executed.

ASC_success request to set the phase period was successfully submitted
ASC_operation_failed set phase period failed to be requested

3/25/99

Copyright 1998 by IBM Corp. Process.chp 294

class Process Draft

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuaisaf type
Status , which contains one of the following status values:

ASC_success phase period was successfully set
ASC_operation_failed attempt to set the phase period on this process failed
See Also

bset_phase_period, add_phase, badd_phase, remove_phase,
bremove_phase, set_phase_exit, bset_phase_exit,
get_phase_period

3/25/99 Copyright 1998 by IBM Corp. Process.chp 295

class Process Draft

13.57signal - LY

Synopsis

#include <Process.h>
AisStatus signal(
int unix_signal,
GCBFuncType fp,
GCBTagType tag)
Parameters
unix_signal Unix™ signal to be sent to this process

ack cb_fp callback function to process the signal acknowledgment

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends the specified signal to the process. The process must be both connected

and attached to receive the signal.

A signal is sent to a process if it is connected and attached.

Note thatsignal returns control to the caller immediately upon submitting the request to the

daemon. It does not wait until the process has been signaled or failed to be signalled.

Return value

The return value fosignal indicates whether the request to signal the process was success-
fully submitted. It gives no indication of whether the request was successfully executed.

ASC_success request to signal the processes was submitted
ASC_operation_failed signalling failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuaisaf type
Status , which contains one of the following status values:

ASC_success process was successfully signaled
ASC_operation_failed attempt to signal this process failed
See Also

3/25/99 Copyright 1998 by IBM Corp. Process.chp 296

class Process Draft

13.58start
Synopsis
#include <Process.h>
AisStatus start(GCBFuncType ack_cb_fp, GCBTagType ack _cb_tag)

Parameters

ack cb_fp callback function to process a start acknowledgement

ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function is currently being designed. This function starts the execution of a process that
has been created but has not yet begun execution.

Note thatstart returns control to the caller immediately upon submitting the request to the
daemon. It does not wait until the application has been started or failed to be started.

Return value

The return value fostart indicates whether the request to start the process was successfully
submitted. It gives no indication of whether the request was successfully executed.

ASC_success request to start the application was submitted
ASC_operation_failed start failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuaisaf type
Status , which contains one of the following status values:

ASC_success process was successfully started
ASC_operation_failed attempt to start this process failed
See Also

bcreate, bstart, create

3/25/99 Copyright 1998 by IBM Corp. Process.chp 297

class Process Draft

13.59suspend

Synopsis

#include <Process.h>
AisStatus suspend(GCBFuncType fp, GCBTagType tag)

Parameters

fp callback function to process the suspend acknowledgement

tag tag to be used as an argument to the callback when it is invoked
Description

This function suspends a process that is executing. A tool must be both connected and
attached to a process in order to suspend process execution.

Note thatsuspend returns control to the caller immediately upon submitting the request to
the daemon. It does not wait until the application has been suspended or failed to be sus-
pended.

Return value

The return value fosuspend indicates whether the request to suspend execution of the pro-
cess was successfully submitted. It gives no indication of whether the request was success-
fully executed.

ASC_success request to suspend the process was submitted
ASC_operation_failed suspend failed to be requested

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer
to the process as the callback object. The callback message is the request statuajsaf type
Status , which contains one of the following status values:

ASC_success process was successfully suspended
ASC_operation_failed attempt to suspend this process failed
See Also

bresume, bsuspend, resume

3/25/99 Copyright 1998 by IBM Corp. Process.chp 298

class Process Draft

13.60unload module

Synopsis
#include <Process.h>
AisStatus unload_module(
ProbeModule *module,
GCBFuncType ack_cb_fp,
GCBTagType ack_ch_tag)

Parameters
module probe module to be unloaded.
ack cb_fp callback function to process module removal acknowledgments
ack cb_tag tag to be used as an argument to the acknowledgement callback when it
is invoked
Description

This function unloads the module from all the processes within the Application class. Onc
unloaded, All the probe handles that refer to this probe module are automatically removed.

Note thatunload_module returns control to the caller immediately upon submitting the
request to the daemon. It does not wait until the module has been removed or failed to be
removed from the process.

Return value

The return value founload_module indicates whether the request to remove the indicated
module on the process was successfully submitted. It gives no indication of whether the
request was successfully executed.

ASC_success remove request was successfully submitted
ASC_operation_failed remove operation failed to be requested

Callback Data

When no callback function is provided, that is, when a value of 0 is used as the value for the
callback function, the operation is still executed but no callback is called.

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request statudjof type
Status , which contains one of the following status values:

ASC_success module was successfully removed from this process
ASC_operation_failed attempt to remove module from this process failed

3/25/99 Copyright 1998 by IBM Corp. Process.chp 299

class Process Draft

See Also

bload _module, bunload_module, load_module

3/25/99 Copyright 1998 by IBM Corp. Process.chp 300

class Process Draft

13.61writemem - LY

Synopsis

#include <Process.h>

AisStatus writemem(
char *location,
char *buffer,
int size,
GCBFuncType ack_cb_fp,
GCBTagType ack_cb_tag)

Parameters
location address in the application process where writing is to begin
buffer address in the client process from which data is to be taken
size size, in bytes, of both the buffer and the memory block to be written
ack cb_fp callback function to process a start acknowledgement
ack cb_tag tag to be used as an argument to the callback when it is invoked
Description

This function sends a request to the daemon managing this process to write the indicated
block of memory within the process. Data to write the block of memory is taken from the indi-
cated client buffer.

Note thatwritemem returns control to the caller immediately upon submitting the request to
the daemon. It does not wait until the application has been suspended or failed to be sus-
pended.

Return value

The return value fowritemem indicates whether the request to write data into the memory
of the process was successfully submitted. It gives no indication of whether the request was
successfully executed.

ASC_success request to write data was submitted
ASC_operation_failed write failed to be requested

Callback Data

When no callback function is provided, that is, when a value of O is used as the value for the
callback function, the operation is still executed but no callback is called.

3/25/99 Copyright 1998 by IBM Corp. Process.chp 301

class Process Draft

The callback function is invoked once, when the acknowledgement of the completion of this
operation is received. When the callback is invoked the callback function is passed a pointer to
the process as the callback object. The callback message is the request statudjof type
Status , which contains one of the following status values:

ASC_success data was successfully written to process memory
ASC_operation_failed attempt to write data to this process failed
See Also

breadmem, readmem, writemem

3/25/99

Copyright 1998 by IBM Corp. Process.chp 302

class SourceObj Draft

14.0 class SourceObj

14.1 Supporting Data Types

14.1.1Access
Synopsis
#include <SourceObj.h>
enum Access {
SOA_unknown_access,
SOA shared,
SOA_exclusive,
SOA_LAST_ACCESS
}
Description
This enumeration type describes whether the source object to which it applies is part of a
shared library or part of a non-shared library.

14.1.2Binding

Synopsis
#include <SourceObj.h>
enum Binding {
SOB_unknown_binding,

SOB_static,
SOB_dynamic,
SOB_LAST_BINDING
}
Description

This enumeration type describes whether the source object to which it applies was bound stat-
ically or dynamically by the linker when references to external functions and data were
resolved.

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 303

class SourceObj Draft

14.1.3LpModel

Synopsis
#include <SourceObj.h>
enum LpModel {

SOL_unknown_model,

SOL_Ip32,
SOL_Ip64,
SOL_LAST_MODEL
}
Description

This enumeration type describes whether the source object to which it applies was compiled
and linked with the 32-bit address memory model or the 64-bit address memory model
enabled. All objects within a program are compiled and linked with the same model.

14.1.4SourceType

Synopsis
#include <SourceObj.h>
enum SourceType {
SOT_unknown_type,
SOT_program,
SOT_module,
SOT_function,
SOT _data,
SOT _loop,
SOT_block,
SOT _statement,
SOT_LAST_TYPE
}
Description

This enumeration type describes whether the source object to which it applies represents a
whole program, module, function, data objett,

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 304

class SourceObj Draft

14.2 Constructors

Synopsis

#include <SourceObj.h>

SourceObj(void)

SourceObj(const SourceObj ©)
Parameters

copy source object that will be duplicated in a copy constructor
Description

The default constructor creates an empty source object whose access, binding, LP model and
source type are each set to “unknown”. The default constructor is invoked when uninitialized
source objects are created, such as in arrays of source objects. Objects within the array can be
overwritten using an assignment operatgregfator =).

The copy constructor is used to transfer the contents of an initialized objexgthgoaram-
eter) to an uninitialized object.

Exceptions
ASC_insufficient_memory not enough memory to create a new node

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 305

class SourceObj Draft

14.3address end

Synopsis

#include <SourceObj.h>
void *address_end(void) const
Description

This function returns the virtual address of the last element associated with this source object.
If the source object represents a scalar data objectstaenaddress and

end_address return the same value. If the source object represents an array, then it returns
the virtual address of the last element in the array. If the source object represents a function,
then it returns the approximate address of the last instruction in the function.

Return value
Virtual address of the last element associated with this source object

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 306

class SourceObj Draft

14.4address start

Synopsis

#include <SourceObj.h>

void *address_start(void) const
Description

This function returns the virtual address of the first element associated with this source object.
If the source object represents a scalar data objectstaenaddress and

end_address return the same value. If the source object represents an array, then it returns
the virtual address of the first element in the array. If the source object represents a function,
then it returns the approximate address of the first instruction in the function.

Return value
Virtual address of the first element associated with this source object

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 307

class SourceObj Draft

14.5bexpand

Synopsis

#include <SourceObj.h>

AisStatus bexpand(const Process &proc)

Parameters

proc process to which the “expand” request applies

Description

This function applies only to source objects v@tburceType of SOT_module. The func-

tion requests that the details of an unexpanded module be supplied. Modules are not expanded
when the client initially connects with a process. Modules that are not expanded cannot be
examined for additional structure, such as data, functions, and instrumentation points. Recom-
mended use is to establish a connection to a process, then expand those modules where one
wishes to place instrumentation.

If the SourceType is notSOT_module, the function immediately returns with a status of
ASC_operation_failed

Note that the function submits the request to expand the source object and waits until the
request has completed.

Return value

The return value indicates whether the request for expansion was successfully executed.

ASC_success expansion was successfully completed
ASC_operation_failed expansion failed
See Also

3/25/99

Copyright 1998 by IBM Corp. SourceObj.chp 308

class SourceObj Draft

14.6child

Synopsis
#include <SourceObj.h>
SourceObj child(int index) const

Parameters
index index into the source object child table, which must be greater than or
equal to zero, and less thelmld_count()
Description

This function returns the child indicated by the paramatix . Index must be greater

than or equal to zero, and less tlehild_count() . Whenchild() is given an index

value that is outside of this range, it returns an empty source object, as created by the default
constructor. Children can be variables, functions, modetes,

Return value
Child source object indicated by the paramatdex .

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 309

class SourceObj Draft

14.7child count

Synopsis

#include <SourceObj.h>
int child_count(void) const
Description

This function returns the number of child source objects associated with this source object.
Empty source objects, created by the default constructor, return zero. Children can be vari-
ables, functions, modulesic

Return value
Number of child source objects associated with this source object.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 310

class SourceObj Draft

14.8exclusve point

Synopsis
#include <SourceObj.h>
InstPoint exclusive_point(int index) const

Parameters
index index into the instrumentation point table, which must be greater than
or equal to zero, and less thexclusive_point_count()
Description

This function returns the instrumentation point indicated by the paramessr . Instrumen-
tation points contained only within this source object are arranged in a table whose smallest
index is 0 and whose largest indexiglusive _point_count()-1

Return value
Instrumentation point indicated by the parametdex .
See Also

exclusive_point_count

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 311

class SourceObj Draft

14.9exclusve point count

Synopsis

#include <SourceObj.h>

int exclusive_point_count(void) const
Description

This function returns the number of instrumentation points associated with only this source
object.

Return value
Number of instrumentation points associated with this source object.
See Also

exclusive_point

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 312

class SourceObj Draft

14.10expand

Synopsis

#include <SourceObj.h>

AisStatus expand(Process proc, GCBFuncType fp, GCBTagType tag)
Parameters

proc process to which the “expand” request applies
Description

This function applies only to source objects v@tburceType of SOT_module. The func-

tion requests that the details of an unexpanded module be supplied. Modules are not expanded
when the client initially connects with a process. Modules that are not expanded cannot be
examined for additional structure, such as data, functions, and instrumentation points. Recom-
mended use is to establish a connection to a process, then expand those modules where one
wishes to place instrumentation.

If the SourceType is notSOT_module, the function immediately returns with a status of
ASC_operation_failed

Note that the function submits the request to expand the source object and returns immedi-
ately. It doesiot wait until the request has completed.

Return value

The return value foexpand indicates whether the request was successfully submitted, but
indicates nothing about whether the request itself was successfully executed.

Callback Data

The callback function is invoked once for each expansion request. When the callback is
invoked the callback function is passed a pointer to the source object as the callback object.
The callback message is the request status, ofAigstatus , which contains one of the
following status values:

ASC_success process was successfully attached
ASC_operation_failed attempt to attach to this process failed
See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 313

class SourceObj Draft

14.11get access

Synopsis
#include <SourceObj.h>
Access get_access(void) const
Description

This function returns the access type of the source object, that is, whether it is part of a shared
library or not. Functions within a shared library are marke®@4&_shared . All others are
designatedOA_exclusive . All variables are private to a program, even those in shared
libraries, and are therefore marke@A _exclusive

Return value

SOA _shared object is a function from a shared library
SOA_exclusive object is not from a shared library, or it is data
SOA_unknown uninitialized object

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 314

class SourceObj Draft

14.12get binding

Synopsis

#include <SourceObj.h>
Binding get_binding(void) const
Description

This function returns the binding type of the object. The binding type refers to whether the
function or module is part of a dynamically loaded library. When it is part of a dynamic
library get_binding returnsSOB_dynamic . Otherwise it returnSOB_ static

Return value

SOB_dynamic object is from a dynamically loaded library
SOB_static object is not from a dynamically loaded library
SOB_unknown uninitialized object

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 315

class SourceObj Draft

14.13qget data type

Synopsis

#include <SourceObj.h>
ProbeType get _data_type(void) const
Description

This function returns the data type of the object when the object represents a function or a
variable. When the object represents something that is neither a function nor a variable, it
returns a data type tagged as “unknown”.

Return value
Data type of the object, or “unknown”.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 316

class SourceObj Draft

14.14get demangled name

Synopsis
#include <SourceObj.h>
char *get_demangled_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the demangled name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the demangled name of

an object when that object is a function. The name may be truncateden fregameter is

smaller than the length of the demangled name. A function’s demangled name is the name of
a function as it appears in the original source code of a program as seen by a compiler.

Return value

Pointer tobuffer, which will contain at moden bytes of the demangled function name when
the object is a function; O otherwise.

See Also

get_mangled_name, get_demangled_name_length

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 317

class SourceObj Draft

14.15¢get_demangled_name_length

Synopsis

#include <SourceObj.h>

unsigned int get_demangled_name_length(void) const
Description

This function returns the length, including the terminatiotj byte, of the demangled name
of a function.

Return value
When the object is a function, the length of the object's demangled name; 0 otherwise.
See Also

get_demangled_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 318

class SourceObj Draft

14.16get mangled name

Synopsis
#include <SourceObj.h>

char *get_demangled_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the demangled name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the mangled name of an
object when that object is a function. The name may be truncatedehtharameter is

smaller than the length of the mangled name. A function’s mangled name is the name of a
function as it appears to the linker and loader. Name mangling is supported by compilers and
linkers to resolve overloaded function names in object-oriented programming languages. In
order to distinguish between two functions that have the same programmer-visible name,
compilers encode parameter type information into the actual function name as it is seen by the
linker and loader.

Mangled names include parameter data type information for some languages, notably C++
and Fortran 90, but not necessarily for all languages.

Return value

Pointer tabuffer, which will contain at moden bytes of the mangled function name when the
object is a function; O otherwise.

See Also

get_demangled_name, get_mangled_name_length

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 319

class SourceObj Draft

14.17get mangled name length

Synopsis

#include <SourceObj.h>

unsigned int get_demangled_name(void) const
Description

This function returns the length, including the terminatinly byte, of the mangled name of a
function.

Return value
When the object is a function, the length of the object’'s mangled name; 0 otherwise.
See Also

get_mangled_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 320

class SourceObj Draft

14.18get program type

Synopsis

#include <SourceObj.h>

LpModel get_program_type(void) const
Description

This function returns an indicator of whether the program is using the 32-bit address memory
model, or the 64-bit address memory model. All functions within a program must use the
same memory model. AlX does not support mixed address models.

Return value

SOL_Ip32 program uses the 32-bit address memory model
SOL_Ip64 program uses the 64-bit address memory model
SOL_unknown uninitialized object

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 321

class SourceObj Draft

14.19qget \ariable name

Synopsis
#include <SourceObj.h>
char *get_variable_name(char *buffer, int len) const

Parameters
buffer caller-allocated buffer to hold the variable name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the name of the object
when the object is a data variable. To check if an object is a data variable, look for a return
type of SOT_data from src_type(). The name may be truncatedéitparameter is smaller
than the length of the variable name.

Return value

If the object is a data variable, a pointebtdfer, which will contain at moden bytes of the
name.

0 if the object is not a data variable..
See Also

get_variable_name_length, src_type

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 322

class SourceObj Draft

14.20get \ariable name length

Synopsis

#include <SourceObj.h>

unsigned int get_variable_name_length(void) const
Description

This function returns the length, including the terminatiotj byte, of the name of the object
when the object is a data variable.

Return value

If the object is a data variable, the length of the name.
0 if the object is not a data variable..

See Also

get_variable_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 323

class SourceObj Draft

14.21inclusive point

Synopsis
#include <SourceObj.h>
InstPoint inclusive_point(int index) const

Parameters
index index into the instrumentation point table, which must be greater than
or equal to zero, and less thanlusive_point_count()
Description

This function returns the instrumentation point indicated by the parameéér . All instru-
mentation points contained within this source object and its children are arranged in a table
whose smallest index is 0 and whose largest indexligsive_point_count()-1

Return value
Instrumentation point indicated by the parametdex .
See Also

inclusive_point_count

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 324

class SourceObj Draft

14.22inclusive point count

Synopsis

#include <SourceObj.h>

int inclusive_point_count(void) const
Description

This function returns the number of instrumentation points associated with this source object
and all of its children.

Return value
Number of instrumentation points associated with this source object and all of its children.
See Also

inclusive_point

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 325

class SourceObj Draft

14.23library name

Synopsis
#include <SourceObj.h>
char *library_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the library name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the name of the library
that contains the object. The name may be truncated léthmarameter is smaller than the
length of the library name.

Return value

A pointer tobuffer, which will contain at moden bytes of the library name.

0 if the object is not contained within a library or when the information has been removed
from the executable.

See Also

library _name_length

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 326

class SourceObj Draft

14.24library name length

Synopsis

#include <SourceObj.h>

unsigned int library_name_length(void) const
Description

This function returns the length, including the terminatinth byte, of the string representing
the name of the library that contains the object.

Return value

The length of the library name.

0 if the object is not contained within a library or when the information has been removed
from the executable.

See Also

library_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 327

class SourceObj Draft

14.25line end

Synopsis

#include <SourceObj.h>
int line_end(void) const
Description

This function returns the approximate line number of the last line in the object. When the line
number is unknown or undefined, the function returns -1.

Return value
Approximate line number of the last line in the object, or -1.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 328

class SourceObj Draft

14.26line start

Synopsis

#include <SourceObj.h>
int line_start(void) const
Description

This function returns the approximate line number of the first line in the object. When the line
number is unknown or undefined, the function returns -1.

Return value
Approximate line number of the first line in the object, or -1.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 329

class SourceObj Draft

14.27module name

Synopsis
#include <SourceObj.h>
char *module_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the module name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representation of the file name and
path of the module that contains the object. The name may be truncatddnfgheameter is
smaller than the length of the module name..

Return value

A pointer to buffer, which will contain the file name and path of the module that contains this
object.

0 if the object is the program object, which.is not contained within any module
See Also

module_name_length

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 330

class SourceObj Draft

14.28module name length

Synopsis

#include <SourceObj.h>

unsigned int module_name(void) const
Description

This function returns the length, including the terminatintj byte, of the file name and path
of the module that contains the object.

Return value

The length of the file name and path of the module that contains this object.
0 if the object is the program object, which.is not contained within any module

See Also

module_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 331

class SourceObj Draft

14.290bj_parent

Synopsis

#include <SourceObj.h>
SourceObj obj_parent(void) const
Description

This function returns the parent object of this object. For example, the parent object of a func-
tion object is a module object. The parent object of a program object is itself.

Return value
Parent object of the object.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 332

class SourceObj Draft

14.300perator =

Synopsis
#include <SourceObj.h>
SourceObj &operator = (const SourceObj ©)
Parameters
copy source object to be duplicated
Description
This function transfers the contents of topy parameter to the object.
Return value
Reference to the object.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 333

class SourceObj Draft

14.31operator ==

Synopsis

#include <SourceObj.h>

int operator == (const SourceObj &compare)
Parameters

compare source object to be compared
Description

This function compares two source objects for equivalence. If the two objects represent the
same portion of the program or application, this function returns 1. Otherwise it returns 0.

Return value
This function returns 1 if the two objects are equivalent, O otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 334

class SourceObj Draft

14.320perator =

Synopsis

#include <SourceObj.h>

int operator != (const SourceObj &compare)
Parameters

compare source object to be compared
Description

This function compares two source objects for equivalence. If the two objects represent the
same portion of the program or application, this function returns 0. Otherwise it returns 1.

Return value
This function returns O if the two objects are equivalent, 1 otherwise.

See Also

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 335

class SourceObj Draft

14.33program name

Synopsis
#include <SourceObj.h>
char *program_name(char *buffer, unsigned int len) const

Parameters
buffer caller-allocated buffer to hold the program name
len maximum number of bytes the function will placebirffer Thelen
parameter should include enough space for a terminadith@yte.
Description

This function copies intbufferanull-terminated string representing the file name and path of
the executable prograra.put). The name may be truncated if tea parameter is smaller
than the length of the program name.

Return value

A pointer to buffer, which will contain the file name and path of the executable.
0 if this information is not available.

See Also

program_name_length

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 336

class SourceObj Draft

14.34program name length

Synopsis

#include <SourceObj.h>

unsigned int program_name_length(void) const
Description

This function returns the length of the file name and path of the executable pragrain).
Return value

The length of the file name and path of the executable.
0 if this information is not available.

See Also

program_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 337

class SourceObj Draft

14.35ref to probe exp

Synopsis

#include <SourceObj.h>

ProbeExp ref to_probe_exp(void) const
Description

This function creates a reference to a program function or variable that may be used in a probe
expression. References to program functions may be used in creating calls to those functions,
while references to program variables may be used to read, modify, or write those variables.
When the object does not represent a program function or variable, an “undefined” probe
expression is returned. To see if a SourceObj is a program function or variable, use src_type()
and check for return types of SOT_function or SOT_data.

Return value
Reference to the program function or data, or an “undefined” probe expression.
See Also

src_type

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 338

class SourceObj Draft

14.36src type

Synopsis

#include <SourceObj.h>
SourceType src_type(void) const
Description

This function returns the type of source object represented by the object. The source object
type corresponds to various objects within a program, such as modules, functions, variables,
etc. If the source object does not correspond to a program or part of a program, the source
object type is “unknown”.

Return value
Type of this source object.
See Also

get_variable_name

3/25/99 Copyright 1998 by IBM Corp. SourceObj.chp 339

Miscellaneous Functions Draft

15.0 Miscellaneous Functions

15.1Ais_initialize

Synopsis
#include <AisInit.h>
void Ais_initialize(void)
Description

This function is used to control the initialization and re-initialization of certain sub-systems,
such as the registration of internal callbacks, within the instrumentation system. It must be
called once before entering the main event loop.

See Also

3/25/99 Copyright 1998 by IBM Corp. Misc.chp 340

Miscellaneous Functions Draft

15.2Ais end main loop

Synopsis
#include <AisMainLoop.h>
void Ais_end_main_loop(void)
Description

This function is used to indicate to the main event loop that processing is to be terminated, and
no more events are to be consumed. It does not cause any connections to be lost, nor to be
closed. It only terminates the event processing loop that gathers event messages from all con-
nected daemons.

See Also

Ais_main_loop

3/25/99 Copyright 1998 by IBM Corp. Misc.chp 341

Miscellaneous Functions Draft

15.3Ais main loop

Synopsis
#include <AisMainLoop.h>
void Ais_main_loop(void)
Description

This function is the main event loop for the instrumentation system. This loop processes
events in the form of special messages from daemons and instrumented processes. It must be
called after the initialization function. It must be called in order for the instrumentation system

to process events and messages from the application processes. This function does not return
control to the caller untihis_end_main_loop() is called.

See Also

Ais_end_main_loop

3/25/99 Copyright 1998 by IBM Corp. Misc.chp 342

Miscellaneous Functions Draft

15.4Ais override default callback

Synopsis

#include <AisHandler.h>

AisStatus Ais_override_default_callback(
unsigned msg_type,
GCBFuncType new_cb_fp,
GCBTagType new_cb_tag,
GCBFuncType &old_cb_fp,
GCBTagType &old_cb_tag)

Parameters
msg_type message type for which the callbacks are to be overridden
new_cb_fp callback function to be invoked when messages of the specified type
are received
new_cb_tag tag to be used with the new callback function
old_cb_fp callback function previously registered for this message type
old_cb _tag tag previously registered for this message type
Description

This function allows the caller to replace the callback chain associated with the specified mes-
sage type with a new callback function. When the client receives a message from a daemon or
other message source that uses the messaging/callback system there is a message type identi
fier associated with the message. This message type identifier is used as a key for looking up a
callback chain to be executed as a result of receiving that message. The message itself, infor-
mation contained within the message envelope, the tag, and other information are passed to
each function in the callback chain.

Return value

The return value indicates whether the attempt to override the callback chain was successful.

ASC_success message type is registered and the callback chain was
updated
ASC_?7? message type is not registered
See Also

AIS_EXIT_MSG, AIS_ERROR_MSG, AIS_OUTPUT_MSG, AIS_DEFAULT_CB

3/25/99 Copyright 1998 by IBM Corp. Misc.chp 343

Predefined Global Variables Draft

16.0 Predefined Global Variables

16.1AIS_DEFAULT_CB
Synopsis

#include <AisMsgType.h>
extern const int AIS_DEFAULT_CB
Description

This constant represents a callback identifier key. This callback chain is used when a message
is received that has no callback chain for the message type. A tool may alter the callback func-
tion associated with this key with tidés override _default_callback function.

See Also

16.2AIS_ERROR_MSG
Synopsis

#include <AisMsgType.h>
extern const int AIS_ ERROR_MSG
Description

This constant represents a callback identifier key. It may be used by daemon processes to send
an error message to the end user. A tool may alter the callback function associated with this
key with theAis_override_default_callback function.

See Also

3/25/99 Copyright 1998 by IBM Corp. PreDefVars.chp 344

Predefined Global Variables Draft

16.3AIS_EXIT_MSG

Synopsis

#include <AisMsgType.h>
extern const int AIS_EXIT_MSG
Description

This constant represents a callback identifier key. It may be used by daemon processes to send
an exit message to the end user. A tool may alter the callback function associated with this key
with theAis_override_default_callback function.

See Also

3/25/99 Copyright 1998 by IBM Corp. PreDefVars.chp 345

Predefined Global Variables Draft

16.4Ais msg handle
Synopsis
#include <AisGlobal.h>

extern const ProbeExp Ais_msg_handle

Description

This constant represents a probe-specific value that is used to send messages from the probe tc
the client. Each probe is able to send messages to the client any time the probe is invoked. The
client is able to distinguish between messages from one probe and messages from another.
Furthermore, more than one client can be connected to an application process, and the probe
must maintain some record of the client to whom it belongs. All the necessary information to
accomplish these things is stored in the probe message handle. The probe message handle is
used as the first argument to this_send function, that sends a message to the client, to be
processed by a client data callback function.

See Also

16.5Ais_send
Synopsis
#include <AisGlobal.h>
extern const ProbeExp Ais_send

Description

This constant represents a function that allows probes to send messages to the client. The
function may be executed directly by the probe as any other function. The type signature for
the send function is:

void Ais_send(void *msg_handle, char *buffer, int size)

wheremsg_handle is the constardis_msg_handle ,buffer isthe message to be sent,
andsize is the number of bytes in the message.

See Also

ProbeExp::call

3/25/99 Copyright 1998 by IBM Corp. PreDefVars.chp 346

Predefined Global Variables Draft

16.6AIS_OUTPUT_MSG

Synopsis

#include <AisMsgType.h>
extern const int AIS_ OUTPUT_MSG
Description

This constant represents a callback identifier key. It may be used by daemon processes to send
a message to the end user. A tool may alter the callback function associated with this key with
theAis_override_default_callback function.

See Also

16.7AIS_PROC_TERMIN ATE_MSG

Synopsis

#include <AisMsgType.h>
extern const int AIS_ PROC_TERMINATE_MSG

Description

This constant represents a callback identifier key. It may be used by daemon processes to send
a message to the end user indicating an application process has terminated. A tool may alter
the callback associated with this key with &is_override_default_callback

function.

See Also

3/25/99 Copyright 1998 by IBM Corp. PreDefVars.chp 347

Predefined Global Variables Draft

3/25/99 Copyright 1998 by IBM Corp. PreDefVars.chp 348

Index

A

AisAddFD 2, 3

AisFD 1

AisNextFD 4
AisRemoveFD 5, 6, 7, 8

3/25/99 Draft, Copyright 1998 by IBM Corp. reflX.doc 349

