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Abstract

We discuss the use of Condor, a distributed resource management system, as a
provider of computational resources for NEOS, an environment for solving optimization
problems over the Internet. We also describe how problems are submitted and processed
by NEOS, and then scheduled and solved by Condor on available (idle) workstations.

1 Introduction

The NEOS Server [8] is a novel environment for solving optimization problems over the
Internet. There is no need to download an optimization solver, write code to call the
optimization solver, or compute derivatives for nonlinear problems. NEOS provides the
user with the input format and a list of solvers for the optimization problem. Given an
optimization problem, NEOS solvers compute derivatives and sparsity patterns of nonlin-
ear problems with automatic differentiation tools, link with the appropriate libraries, and
execute the resulting binary. The user is provided with a solution and runtime statistics.

Each solver in the NEOS optimization library is maintained by a software administrator
that is responsible for providing computing resources and for answering questions related
to the solver. Registering the solver [8] on a few workstations provides adequate resources
in most cases, but for large problems, however, we need a different approach. The obvious
difficulty is that the owner of a workstation is reluctant to provide large amounts of com-
puting cycles and memory. We use Condor [15, 11], a distributed resource management
system, as a provider of computational resources for a NEOS solver. The resources that
are managed by Condor are typically large clusters of workstations, many of which would
otherwise be idle for long periods of time.

We discuss the connection between NEOS and Condor in the context of a single but
important optimization problem: mixed complementarity problems. Our discussion shows

that this approach can be extended to other problems as well.
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Many different applications can be formulated as mixed complementarity problems; ex-
amples are given in [9, 13]. If the nonlinear function F' : R* — R" describes the interactions
of a nonlinear process as a function of the variables x € R", then the mixed complementar-
ity problem is to find a vector z, with components between lower and upper bounds ¢ and
u (with £ < u), such that

Fi(x)=0 if 4 <z <wuy,

Fi(x) >0 if z;=4¢;, (1.1)

Fi(x) <0 if z; =u,.
Solving a mixed complementarity problem in the typical computational environment re-
quires that the user first develop code for the evaluation of F. The user must then decide
on an appropriate solver, retrieve the solver, develop code to evaluate the Jacobian matrix
F'(z) and sparsity pattern of F'(z), link their code with the necessary libraries, and finally
execute the solver locally. With NEOS, the user need only specify the mixed complemen-
tarity problem by providing code to evaluate the function F', the lower and upper bounds
¢ and u, and a starting point. The NEOS solver then generates code to compute the Jaco-
bian matrix and sparsity pattern, compiles the user subroutines, links with the appropriate
libraries, executes the solver on a NEOS machine, and returns a solution to the user.

NEOS uses the Condor pool at the University of Wisconsin for solving complementarity
problems. The pairing of NEOS with Condor is an ideal combination. NEOS provides
an interface that is problem oriented and independent of the computing resources. Users
need only provide a specification of the problem; all other information needed to solve the
problem is determined by the NEOS solver. Condor provides the computational resources
to solve the problem.

Condor acts as a matchmaker, pairing computational resources with jobs that require
processing. The job executes on the allocated workstation until completion or until the
workstation becomes unavailable. In the latter case, the job is frozen in its current state and
the workstation is returned to the owner. Condor is then contacted once again for pairing
and the job is restarted from its frozen state on the newly allocated resource. Condor
pays special attention to the needs of the workstation owner by allowing the owner to
define the conditions under which the workstation can be allocated. This policy encourages
workstation owners to place their resources in the Condor pool, and as a consequence, the
Wisconsin pool currently has over 400 workstations.

In Section 2 we describe the three interfaces that are currently available to submit
problems to NEOS: e-mail, the NEOS Submission Tool (neos-submit), and the NEOS
Web interface. These interfaces are designed so that problem submission is intuitive and
requires only essential information. Parameters that affect the progress of the solver are
not required but can be specified, for example, by an auxiliary file. We concentrate on the
NEOS Submission Tool. The NEOS Web interface can be sampled by visiting the URL



http://www.mcs.anl.gov/otc/Server/

for the NEOS Server. We emphasize mixed complementarity problems, but NEOS handles
a wide variety of linear and nonlinearly constrained optimization problems; solvers for
optimization problems subject to integer variables are being added. We do not discuss
the design and implementation of the Server because these issues are covered by Czyzyk,
Mesnier, and Moré [8]. Extensions to the NEOS Server and the network computing issues
that arise from the emerging style of computing used by NEOS are discussed by Gropp and
Moré [14].

Mixed complementarity problems submitted to the NEOS Server are currently solved
by the PATH [10, 12] solver, which implements a Newton-type method for solving systems
of non-differentiable equations. Sparse matrix techniques are used for large problems. The
process used to solve a nonlinear complementarity problem by this NEOS solver includes
the generation of derivative and sparsity information with the ADIFOR [4, 5] automatic
differentiation tool and the solution of the problem with Condor. The process is governed by
a solver script that must check the user data and provide appropriate messages in the case
of errors. In Section 3 we describe the various issues that must be addressed by the solver
script. These issues are important to the development of reliable optimization software and
problem-solving environments.

The automatic differentiation techniques used to generate derivatives and sparsity pat-
terns for nonlinear complementarity problems are described in Section 4. In particular, we
explain how to obtain a sparse representation of the Jacobian matrix that is suitable for
PATH. The Jacobian matrix generated by ADIFOR is accurate to full machine precision,
while the Jacobian matrix generated by differences of function values suffers from trunca-
tion errors. Moreover, the code produced by ADIFOR for the computation of the sparse
Jacobian matrix is typically more efficient than the code produced by differences. On the
other hand, the code produced by ADIFOR may not be as efficient as a hand-coded Jacobian
matrix. See [1] for a full comparison (in terms of memory and speed) of ADIFOR-generated
Jacobian matrices with both hand-coded and difference approximations, and [2] and [7] for
performance issues related to the automatic computation of gradients.

The automatic generation of the Jacobian matrix and sparsity pattern in the NEOS
version of PATH makes the code more accessible and useful than requiring the hand-coding
of the Jacobian matrix. Indeed, all nonlinear solvers in NEOS use automatic differentiation
tools to compute gradients, Jacobians, and sparsity patterns. We intend to incorporate
ADIC [6] into most of the nonlinear NEOS solvers to allow problems to be specified in C,
as well as Fortran.

The final section of the paper describes how the Condor system at the University of
Wisconsin is used to process the submitted jobs. Only large jobs are scheduled on Condor

because there may be a delay in execution while waiting for an idle workstation. Small



jobs are executed immediately on non-clustered workstations. No computational results are
given here. Users are encouraged either to submit one of the supplied sample problems or

to generate new mixed complementarity problems to test the system.

2 The NEOS Server

The NEOS Server provides Internet access to a library of optimization solvers with user in-
terfaces that abstract the user from the details of the optimization software. The user needs
only to describe the optimization problem in a particular format; all additional information
required by the optimization solver is determined automatically. This abstraction is similar
to that provided by modeling languages. The NEOS solvers provide several different input
formats to allow users to specify optimization problems in a convenient manner without
necessarily rewriting their problem in a modeling language.

The NEOS approach offers considerable advantages over a conventional environment for
solving optimization problems. Consider, for example, mixed complementarity problems. A
NEOS solver for mixed complementarity problems requires that the user specify the number
of variables n, a subroutine initpt(n,x) that defines the starting point, a subroutine
xbound (n,x1,xu) that sets the lower and upper bounds, and a subroutine fcn(n,x,f)
that evaluates the function F. Since there is no need to provide the Jacobian matrix or
the sparsity pattern of the Jacobian matrix, the user can concentrate on the specification
of the problem. Changes to the fcn subroutine can be made and tested immediately; the
advantages in terms of ease of use are considerable.

Other optimization problems can be specified in a similar manner. For example, the
nonlinearly constrained optimization problem

min{f(z) : z; <z < xy, ¢ <c(z) < ey}

can be specified by four subroutines. The bounds z; and x, are specified with the sub-
routine xbound(n,x1,xu), the constraint bounds ¢; and ¢, are specified with the subrou-
tine cbound(m,cl,cu), the objective function f : R* +— R is defined by the subroutine
fen(n,x,f), and the nonlinear function ¢ : R* — R™ is defined by cfen(m,x,c).

We have mentioned nonlinear optimization solvers, but NEOS contains solvers in other

areas. A complete listing is available at the NEOS Server homepage:
http://www.mcs.anl.gov/otc/Server/

The addition of solvers is not difficult. Indeed, as discussed in [8], NEOS was designed so
that solvers in a wide variety of optimization areas can be added easily.

We provide Internet users the choice of three interfaces for submitting problems: e-mail,
the NEOS Submission Tool, and the NEOS Web interface. These interfaces are designed

so that problem submission is intuitive and requires the minimal amount of information.
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Figure 2.1: The NEOS submission form for PATH

The interfaces differ only in the way that information is specified and passed to the NEOS
Server.

The e-mail interface is relatively primitive, but useful because most users have easy
access to e-mail. Information on the available solvers and on the format used to submit

problems via e-mail can be obtained by sending the mail message help to
neos@mcs.anl.gov

Users interested in the Web interface should visit the homepage for the NEOS Server, which
has links to all the solvers in the library, as well as pointers to other NEOS information,
in particular, the NEOS Guide. In the remainder of this section we examine the NEOS
Submission Tool.

The NEOS Submission Tool provides a high-speed link to the NEOS Server via TCP/IP
sockets. Once this tool is installed (only Perl [17] is required), the user has access to all
solvers offered by NEOS. Additional information on the NEOS Submission Tool, including
installation instructions, can be obtained from the NEOS Server homepage.

Submission of problems via the NEOS Submission Tool is simple. The user must first
choose the type of optimization problem and then select the desired solver. Once the solver
is selected, the user is given a submission form specific to the solver.

The PATH submission form, shown in Figure 2.1, requires that the user specify the
number of variables, the files for the initial point, bounds on the variables, and function
evaluation subroutines.

Figure 2.1 shows the NEOS Submission form for a model of oligopolistic pricing [16]



with 63 variables. The model is defined by the file op_fcn, while the initial point and the
bounds on the problem are defined by the files op_initpt and op xbound. Note that in
this case two PATH options are set and that we have requested the use of Condor for the
solution of this problem.

The user has the option of using a Condor pool of workstations for solving the submitted
problem. Since Condor is essentially a batch processing mechanism, the user is also allowed
to specify a timeout for Condor. After this period of time, the Web browser or Submission
Tool is released from its busy state and returned to the user. The job, however, continues
to process, and the results are returned to the user at a later date via e-mail. The default
timeout is 5 minutes; Condor is used by default on all problems that are larger than 500
variables.

The PATH submission form allows the user to provide a specification file that can be
used to set tolerances and other parameters that govern the algorithm. For most problems
the defaults provided are adequate. Figure 2.1 shows two options in use for this submission.
The first provides a listing of the current settings of all the available options for this run;
the second just turns off the default crash technique. The form also has room for comments,
which can be used to identify the problem submission.

Once specified, the problem is submitted to NEOS where it is then scheduled for execu-
tion. A variety of computers, even a massively parallel processor, could be used to solve the
problem. At present these computers are workstations that reside at Argonne National Lab-
oratory, Northwestern University, the University of Wisconsin, Lawrence Berkeley National

Laboratory, the Technical University of [lmenau in Germany, and Arizona State University.

3 Solving Complementarity Problems: PATH

The process used to solve a nonlinear complementarity problem by NEOS is illustrated
in Figure 3.1. This process includes the generation of derivative and sparsity information
with the ADIFOR [5, 4] automatic differentiation tool and the solution of the problem with
the Condor [15, 11] distributed resource management system. We discuss ADIFOR further
in Section 4, while Condor is discussed in Section 5. In this section we discuss issues in
the solution process that are pertinent to the development of optimization software and
problem-solving environments. Although the discussion is specific to PATH [10, 12], most
of the issues are applicable to all the solvers of nonlinear optimization problems in NEOS.

Submitting a problem to the NEOS Server does not guarantee success, but NEOS users
are able to solve difficult optimization problems without worrying about many of the details
that are typical in a conventional computing environment. Even if the user has suitable op-
timization software, the user would need to read the documentation, write code to interface
his problem with the optimization software, and then debug this code. The user would also

have to write code to evaluate the Jacobian matrix and sparsity pattern, and debug that
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Figure 3.1: PATH and Condor

code—a nontrivial undertaking in most cases.

For a typical submission, the user receives information on the progress, and the solution.
Figure 3.2 shows part of the output received when the problem in Figure 2.1 is submitted
to NEOS via the NEOS Submission Tool. In particular, we see the NEOS server selecting
an available workstation, transferring all user data to the workstation, and then invoking
the solver remotely. The solver (in this case PATH) checks the data and compiles the user’s
code. If any errors are found at this stage, the compiler error messages are returned to the
user, and execution terminates.

If the user’s code compiles correctly, the automatic differentiation tool ADIFOR [5, 4]
is used to generate the Jacobian matrix and the sparsity pattern. Additional details on
this part of the process are discussed in Section 4. Once the Jacobian matrix and sparsity
pattern are obtained, the user’s code is linked with the optimization libraries, and execution
begins. Results are returned in the window generated by the NEOS Submission Tool.

The solver script that handles the solution process must check the input data to make
sure that the job submission is valid. A typical error at this stage of the solution process is
for the user to interchange files and to send, for example, subroutine initpt where NEOS is
expecting subroutine xbound. A similar error is to neglect to send one of the files required
for the job submission. These errors are detected by the solver script by checking that the
files that specify fcn, initpt, and xbound exist and that they reference the appropriate
subroutine. The solver script also checks that the problem dimensions are positive.

Even if the supplied subroutines compile correctly, ADIFOR may find an error during
the generation of the fcn subroutine. The most common error here is for the submission to
contain an improper calling sequence. For example, if the calling sequence of the submitted

fenis fen(n,x,y), ADIFOR generates an error because it is assuming that the independent
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Figure 3.2: Output from the NEOS Submission tool

variables are £f. On the other hand, ADIFOR does not generate an error if the calling
sequence is fcn(n,x,f,w) because now there is a dependence on f. All error messages
generated by ADIFOR are sent back to the user.

If the derivative and sparsity information is generated, this information is sent to PATH.
Errors may also occur during this part of the solution process, and it is again important
to send appropriate messages back to the user. At present, we check only that the user
function does not create any system exceptions during the evaluation of the function at the
starting point or at any of the iterates. Although simple, this test catches many user errors.
In particular, this test does not allow a calling sequence of the form fen(n,x,f,w).

Additional checks on the function would be desirable, but seem to be difficult to imple-
ment. For example, we would like to check that the function provided is indeed differen-
tiable. If the user provides a function that is discontinuous, automatic differentiation tools

will generate the Jacobian matrix but will not be able to detect this situation.

4 ADIFOR

Figure 3.1 shows that given the function F' that defines the mixed complementarity problem,
the automatic differentiator tool ADIFOR/SparsLinc [3, 5] is used to produce the Jacobian
matrix of F' and the sparsity structure of the Jacobian matrix. This information is then
fed to PATH. In this section we describe the process for generating a representation of the
sparse Jacobian matrix of the function F' that is submitted to the PATH solver. This process
is of interest to any researcher who wishes to use automatic differentiation tools.

The first step in using ADIFOR is to create a script file that defines the dependent and
independent variables, the name of the subroutine that needs to be differentiated, and a

composition file.



AD_PROG = fcn.comp
AD_TOP = fcn
AD_IVARS = X
AD_DVARS = f

AD_SEP = _
AD_OUTPUT DIR =

AD_FLAVOR = sparse

Figure 4.1: Script file fcn.script for ADIFOR

Figure 4.1 shows the script file that is used with PATH. This file tells ADIFOR that the
subroutine that needs to be differentiated is called fcn, that the independent variables are
x, and that the dependent variables are £f. The composition file is specified with AD_PROG,
so in this case the composition file is fcn. comp.

The composition file contains a list of all the files that are required to compute the
function, and also a sample program that specifies the calling sequence for the subroutine
fcn. The composition file used with PATH is shown below:

fen. f

fcn_sample.f
This file tells ADIFOR that file fcn.f contains the subroutine fcn and that the sample
program is contained in file fcn_sample. f.

All subroutines that are required to evaluate the function must be in the file fcn.f.
If other subroutines are needed (for example, some blas subroutines), they also must be
included in fen.f.

The sample file fcn sample.f is not strictly needed because we already know that the
subroutine to be differentiated is called fcn. However, in older versions of ADIFOR, this file
is needed. Figure 4.2 shows the sample file that is used with PATH. The only information
specified by this file is the calling sequence used by fcn.

program fcn_sample

integer n
double precision x(n), f(n)

call fen(n,x,f)

end

Figure 4.2: Sample file fcn_comp for ADIFOR

Given the information in the script and composition files, ADIFOR can be used to
generate a subroutine that computes the Jacobian matrix. Since we are interested in com-
puting sparse Jacobian matrices, the subroutine that ADIFOR generates uses special data

structures (called objects) to define the Jacobian matrix.



The command Adifor2.0 AD_SCRIPT=fcn.script instructs ADIFOR to generate a sub-
routine of the form

gfcn(n,x,gx,f,gf)

where g_x is a gradient object for the independent variable x and g_£ is a gradient object for
the function F'. These objects are manipulated and accessed by PATH as described below.
Further details on how to invoke ADIFOR can be found in [3, 5].

We compute the Jacobian of F' by manipulating the gradient object with subroutines
provided by ADIFOR in the SparsLinc [4] library. We first set the gradient object g_x for
the independent variable x to the identity matrix with the code segment

do j=1, n

call dspsd(g_x(j),j,1.d0,1)
end do

Once g_x is defined, we use the ADIFOR-supplied subroutine dspxsq to compute the Jaco-
bian matrix. The call

call dspxsq(ind col,val,n,g f(i),lenrow,info)

extracts the ith row of the Jacobian matrix. On exit from this call to dspxsq, the array
ind col contains the column indices of the ith row of the Jacobian matrix, the array val
contains the values of the ith row, and the variable lenrow is the number of nonzeros.

Two key difficulties arise when using the derivative information provided by ADIFOR in
PATH. The first difficulty is that PATH, like most optimization software for sparse problems,
assumes that the sparsity structure is known for all values of the independent variables x.
This information is needed in order to preallocate enough storage for the Jacobian matrix
and to minimize the cost of preprocessing the Jacobian matrix. For example, orderings
that reduce the fill in an elimination algorithm use the sparsity structure, so if the sparsity
structure changes at each iteration, then the ordering will have to be recomputed at each
iteration. Dynamic storage allocation schemes could be used, but these schemes tend to
increase the overall computing time significantly.

We determine a sparsity structure that is valid for all values of the independent variables
x by evaluating the Jacobian matrix at a random perturbation of the initial point provided
by the user. We cannot use the initial point provided by the user to determine a sparsity
structure that is valid for all values of the independent variables x because the initial
starting point tends to be special (for example, the vector of all zeros or all ones), and
thus the resulting sparsity structure is not representative. This heuristic was also used by
Bouaricha and Moré [7] in a similar situation.

If the sparsity pattern changes as the iteration proceeds then the heuristic that we are
using may fail. However, this situation seems to be rare. Heuristics that detect changes in

sparsity patterns are the subject of current research.
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The second difficulty is that PATH uses a pivotal method to compute the step between
iterates, and this method requires that the Jacobian matrix be stored by columns. On the
other hand, ADIFOR computes the Jacobian matrix by rows. Storing the Jacobian matrix
in a compressed column format specified by an array ind_row of row indices and an array
col ptr that points to the start of each column is not difficult. We use an additional array
col_start that initially agrees with col_ptr. As we run through the rows of the Jacobian
matrix generated by using dspxsq, the entries from val are immediately put into their
correct location (as determined by ind row), and the corresponding entry of col_start is
incremented. Note that the resulting column-wise storage is sorted by row indices, even
though this is not required by PATH. A final check to determine whether the allocated

storage is sufficient is carried out after all rows have been processed.

5 Condor

Condor [11, 15] is a distributed resource management system, developed at the Univer-
sity of Wisconsin, that manages large heterogeneous clusters of workstations. Due to the
ever decreasing cost of low-end workstations, such resources are becoming prevalent in
many workplaces. The Condor design was motivated by the needs of users who would like
to take advantage of the underutilized capacity of these clusters for their long-running,
computationally-intensive jobs. Condor has been ported to most UNIX platforms and has
been used in production mode for more than eight years in the Computer Sciences De-
partment of the University of Wisconsin and many other sites. A version that runs under
Windows NT is under development. The system is publicly available under the GNU copy-

left restrictions and can be downloaded from
http://www.cs.wisc.edu/condor/

In order to generate vast amounts of computational resources, such a system must use
any kind of resource whenever it is made available. Condor acts like a matchmaker, pairing
these computational resources with jobs that require processing. The job executes on the
allocated machine until it completes or the resource disappears. In the latter case, the job
is checkpointed, the machine is returned to the owner, and Condor is contacted once again
for pairing. Checkpointing a job is the process of saving the current state of the job in a
way that allows restarting from precisely the same point of execution.

Condor preserves a large measure of the originating machine’s environment on the exe-
cution machine, even if the originating and execution machines do not share a common file
system. Condor jobs that consist of a single process (it is possible to run PVM on a Condor
cluster) are automatically checkpointed and migrated between workstations as needed to
ensure eventual completion. Condor is flexible and fault-tolerant: the design features ensure

the eventual completion of the job. This feature is important for our application.
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A key design feature of the Condor system is that the owner of the resource should have
as little interference from the resource allocation server as possible; in this way, more owners
will make their resources available to the pool. Condor pays special attention to the needs
of the interactive user of the workstation by allowing the user to define the conditions under
which the workstation can be allocated by Condor to a batch user. As a consequence, there
are currently over 400 workstations in the Wisconsin pool.

The use of Condor for solving complementarity problems generated from NEOS is in-
tended to be an example, showing how a wide variety of software tools can be interfaced
and used in a practical operations research environment. The development of software
tools is extremely important, but frequently there are few examples demonstrating how the
developer envisioned these tools being used. Such examples serve as a prototype for new
applications and show potential users how to develop their applications and problems for
network solution.

Figure 3.1 shows all the steps used by NEOS to solve a mixed nonlinear complementarity
problem. We have already discussed the generation of derivative and sparsity patterns
in Section 4. We now outline how Condor schedules job submissions on an appropriate
workstation from the Wisconsin pool.

Using Condor-managed resources is easy. Fortran or C code that runs under one of the
supported systems can be relinked by using libraries from the Condor system without any
changes to the source code. The solver script schedules only large jobs for this facility, since
there may be a delay in execution while waiting for an appropriate idle workstation. Small
jobs are executed directly on a non-clustered machine at Wisconsin.

The first step in preparing a code for solution using Condor is to ensure that the code
compiles and runs on the native machine of that class. Since the PATH solver is already
tested and available in library form, this amounts to checking that the submitted routines
and ADIFOR-generated routines can be compiled, exactly as is done for a submission that
is to run on a local machine. The second step links these objects to the PATH objects,
replacing some of the standard libraries with Condor-supplied replacements. Our interface

replaces a single line in the standalone makefile, namely,
£77 -o pathsol $(0BJECTS) $(LIBS)
with the following line
condor _compile f77 -o pathsol $(0OBJECTS) $(LIBS)

Both of these makefiles use precisely the same library of routines that implement PATH as
described in [12]. The only difference is that different system libraries are linked into the

executable in order to facilitate the checkpointing that was mentioned above.
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Instead of executing pathsol on the machine where it was compiled, the solver script
generates a job description file that details the location of the executable, the requirements
of the job, and all input and output files. For NEOS, the job description file jdf is

Executable = pathsol

Log = condor.dir/condor.log
Coresize = 0

Notification = never

Queue

This file specifies, in particular, that condor.log, in directory condor_dir, is the Condor
log file. The purpose of the log file is discussed below.

The job is submitted to Condor by using the command condor_submit -v jdf. At
this stage, Condor takes over control of the job. For security purposes, the job runs as user
nobody, thereby limiting the access of the submitted job to files that it owns.

In the remainder of this section, we outline how we allow NEOS to timeout from the
Condor job and how we guarantee that the job results are returned to the NEOS user -
even if the machine that submitted the job to Condor dies during the execution of the job,
or communication between NEOS and Condor dies. Note that the Condor job is detached
from the submitting machine and is guaranteed to continue to execute to completion.

We first create a persistent directory, condor_dir, on the machine that submits the
Condor job. All files related to Condor jobs are located in condor dir. When a job is
submitted, we create a symbolic link into condor_dir the job directory created by the
NEOS Communications Package - the facility enabling communication between a solver
and the NEOS Server. This job directory serves as the repository for both incoming job
submissions and outgoing results.

The Condor log file, condor.log, resides in condor dir and shows where each job from
NEOS was submitted and executed. We have created a program for monitoring this log
with the UserLogAPI that is part of the Condor distribution. The monitoring program,
watchlog, is regularly invoked by the system utility cron and immediately exits if it finds
another version of watchlog running.

The purpose of watchlog is to ensure that the results of any job submitted to Condor
are written to the appropriate job directory and to signal that the Condor job is finished.
Condor writes to condor.log every time the status of the job changes. The watchlog
monitoring program acts upon two events that are written into condor.log, namely, EXE-
CUTE and TERMINATE. If the job in question starts executing on a machine, watchlog
adds the IP address of this machine to the list of machines that have been used for this job.
At the end of processing, this list is appended to the job results; an example of such a list

is given below:
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<128.105.40.8:32776>
<128.105.41.104:32839>
<128.105.76.12:36651>
<128.105.5.11:56558>
The second event that triggers the watchlog program is the fact that the job in question
is terminating. In this case, watchlog writes the status of the Condor job to a file called
CONDOR_DONE in the job directory. Once the job completes, the results are returned to the
NEOS user by the mechanism we now describe.

First note that even if a job was executed under Condor, the solver creates exactly the
same solution files and writes these files in the job directory as before. To guarantee that the
results are returned to the NEOS user we have to deal with two cases. Firstly, the submitting
machine may die while the job is being executed under Condor and secondly, the NEOS
user may not be willing to wait more than 5 minutes for the job results to be returned. To
deal with both these cases, we have created another cron program, job-checker, to ensure
that the job results are returned either to NEOS or directly to the user via e-mail.

This program simply monitors the job directory, checking for the existence of the files
CONDOR and CONDOR_DONE (signifying that Condor was used and that Condor had completed
the job) and that the file DONE does not exist. The solver script creates the file DONE once
the user has been notified of the job results. Thus if this file is not present, and the job was
a Condor job that had timed-out, we return the job results to the user via e-mail. There
is a slight race condition here: it is possible that a (Condor) timeout can occur while the
job is being returned to NEOS. In this case, the user may get notified of the results both
in the NEOS submission tool or WEB browser and via email. We believe this strategy is

preferable to the possibility of losing some results.
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