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Abstract

The memory consistency model (or memory model) of a shared-memory multiprocessor system influences
both the performance and the programmability of the system. The simplest and most intuitive model for program-
mers, sequential consistency, restricts the use of many performance-enhancing optimizations exploited by unipro-
cessors. For higher performance, several aternative models have been proposed. However, many of these are
hardware-centric in nature and difficult to program. Further, the multitude of many seemingly unrelated memory
models inhibits portability. We use a 3P criteria of programmability, portability, and performance to assess
memory models, and find current models lacking in one or more of these criteria. This thesis establishes a unify-
ing framework for reasoning about memory models that |eads to models that adequately satisfy the 3P criteria.

The first contribution of this thesisis a programmer-centric methodology, called sequential consistency nor-
mal form (SCNF), for specifying memory models. This methodology is based on the observation that perfor-
mance enhancing optimizations can be allowed without violating sequential consistency if the system is given
some information about the program. An SCNF model is a contract between the system and the programmer,
where the system guarantees both high performance and sequential consistency only if the programmer provides
certain information about the program. Insufficient information gives lower performance, but incorrect informa-
tion violates sequential consistency. This methodology adequately satisfies the 3P criteria of programmability (by
providing sequential consistency), portability (by providing a common interface of sequential consistency across
al models), and performance (by only requiring the appearance of sequential consistency for correct programs).

The second contribution demonstrates the effectiveness of the SCNF approach by applying it to the optimi-
zations of severa previous hardware-centric models. We propose four SCNF models that unify many hardware-
centric models. Although based on intuition similar to the hardware-centric models, the SCNF models are easier
to program, enhance portability, and allow more implementations (and potentially higher performance) than the
corresponding hardware-centric models.

The third contribution culminates the above work by exposing a large part of the design space of SCNF
models. The SCNF models satisfy the 3P criteria well, but are difficult to design. The complexity arises because
the relationship between system optimizations and programmer-provided information that allows system optimi-
zations without violating sequential consistency is complex. We simplify this relationship and use the smplerela-
tionship to characterize and explore the design space of SCNF models. In doing so, we show the unexploited
potential in the design space, leading to several new memory models.

The fina contribution concerns debugging programs on SCNF models. While debugging, the programmer
may unknowingly provide incorrect information, leading to a violation of sequential consistency. We apply
debugging techniques for sequential consistency to two of the SCNF modelsto aleviate this problem.



Acknowledgements

Many people have contributed to thiswork. Here, | can only mention afew.

Mark Hill, my advisor, has provided invaluable technical and professional advice, which has guided me
throughout my graduate school years and will continue to guide me in the future. Also, his constant support and
encouragement made the Ph.D. process so much less overwhelming.

| am indebted to Jm Goodman for the support and encouragement he provided, especialy in my initia
years at Wisconsin. | have also enjoyed many stimulating discussions with him on memory consistency modelsin
particular, and computer architecture in general.

| am specialy grateful to Guri Sohi for raising many incisive questions on this work, and then for his pati-
ence in many long discussions to address those questions.

Jim Larus and David Wood have on many occasions provided valuable feedback on thiswork.

| have enjoyed many, many hours of discussion on memory consistency models with Kourosh Gharachor-
loo. Some parts of thisthesis have evolved from our joint work.

| have often looked towards Mary Vernon for professional advice, and am grateful to her for always making
thetime for me.

The support and encouragement | have received from my parents, Vikram's parents, and our brothers and
sistersisimmeasurable. Their pride in our work made each little achievement so much more pleasurable, and the
final goal even more desirable.

Finally, my husband, Vikram, has been both colleague and companion. | have been ableto rely on his frank
appraisals of my work, and his technical advice and support have come to my rescue umpteen times. His constant
presence through all the ups and downs of graduate school has made the ride so much smoother.



Table of Contents

o 01~

N 011 -
ACKNOWIEAGEMENTS ettt ettt eb e b e beeh e e b e s b se et e bese et e e et et eneenenaeene
I 111 0o [0 o o SO ST TR P
L1 MOUIVBLION ettt et bRt r et r b e

1.2. SUMmary of CONLITDULIONS .ot

RS A 0TS EY @ (o= g 11 (o] [T

2. REEIEI WOIK et e Rttt e e et
2.1, Sequential CONSISLENCY .ooeiireeerieie ettt ettt b b e b b e se e b ettt eae e bt eaesb e b e
2250 5t R = 12111 o o R

2.1.2. Sequential Consistency vs. Cache CONBIENCE ...ooeoiiieiieieire e

2.1.3. Implementations That Disobey Sequential CONSISLENCY  ..vvoeveeveevieieereeeeee e

2.1.4. Implementations that Obey Sequential CONSISENCY ~ ..voeeeiririreeeee e

2.1.5. Why Relaxed Memory MOAEIS? .ottt ene

2.2. Relaxed Memory MOTEIS et

2.2.1. Weak Ordering And Related MOdEIS ..o

2.2.2. Processor Consistency And Related MOdelS ..o

2.2.3. Release Consistency And Related MOGEIS ..o

2.2.4. Other Relaxed MOGEIS ..o

2.3. Formalisms For Specifying Memory MOGEIS ..o

2.4. Performance Benefits of Relaxed Memory SYStEMS ..o

2.5. Correctness Criteria Stronger Than or Similar to Sequential Consistency

3. A Programmer-Centric Methodology for Specifying Memory Models  ............
3.1. Motivation for a Programmer-Centric Methodology — ..eccoveevecricenee
3.2. Sequential Consistency Normal Form (SCNF) .o
3.3. Concepts and Terminology for Defining SCNF Models ...

3.3.1. Dichotomy Between Static and Dynamic Aspects of a System

3.3.2. Terminology for Defining SCNF Models ..o

4. An SCNF Memory Model: Data-Race-Free-0 ..o
4.1. Definition of the Data-Race-Free-0 Memory Model ..o
4.1.1. Motivation for Data-Race-Free-0  ...ooooiieiieeeeeeces

4.1.2. Definition of Data-Race-Free-0  ..ooooveeveeneeeeee e

4.1.3. Distinguishing Memory Operations  ......coceveeveeneeeneeneeee

4.2. Programming With Data-Race-Free-0 ..o,

© © ©O© o

10
11
13
15
15
16
18
20
21
22
23

25
25
26
28
28
29

G RRE

38
41



4.3. Implementations of DatarRaCe-Free-0 ..o
4.4, Comparison of Data-Race-Free-O with Weak Ordering ..o

5. A Formalism To Describe System Implementations and Implementations of Data-Race-Free-0

5.1. A Formalism for Shared-Memory System DESIgNErS  .ooevveevirenireeereereeeree s
5.1.1. A Formalism for Shared-Memory Systems and Executions — .......ccccccceeeenene
5.1.2. Using The Formalism to Describe System Implementations — ......c.ccccceeveeeeene
5.1.3. An Assumption and Terminology for System-Centric Specifications  ............
5.2. A High-Level System-Centric Specification for Data-Race-Free-0  .....ccooceevvveeveennns

5.3. Low-Level System-Centric Specifications and |mplementations of Data-Race-Free-0

5.3.1. The Data REQUITEMENT oot
5.3.2. The Synchronization REQUIrEMENT ..o
5.3.3. The Control REQUITEMENE ..o
5.4. Implementations for COMPIlErS ..o
5.5. All Implementations of Weak Ordering Obey Data-Race-Free-0 ...,

6. Three More SCNF Models: Data-Race-Free-1, PLpcl, and PLPC2  .oieiiveeeeeeeeeeeee
6.1. The DatarRace-Free-1 Memory Model .o
6.1.1. Motivation of DatarRaCe-Free-1 ..o s

6.1.2. Definition of Data-RaCe-Free-1 .o

6.1.3. Programming with DataRace-Free-1 ...

6.1.4. Implementing DatarRace-Free-1 ..o

6.1.5. Comparison of Data-Race-Free-1 with Release Consistency (RCsc) ...

6.2. The PLPCL Memory MOEl oottt
6.2.1. Motivation Of PLPCL oottt

6.2.2. DEfiNition Of PLPCL oot e

6.2.3. Programming With PLPCL oo e

6.2.4. Implementing PLPCL oot et e

6.2.5. Comparison of PLpcl with SPARC V8 and Data-Race-Free Systems  ..........

6.3. The PLPC2 Memory MOOEl .o
6.3.1. MOtivation Of PLPC2 oottt st s

6.3.2. DEfiNitioN Of PLPC2 oo e

6.3.3. Programming With PLPC2 .o

6.3.4. IMplementing PLPC2 oottt s

6.3.5. Comparison of PLpc2 with Processor Consistency, RCpc, and PLpcl Systems

6.4. The PLPC MemMOry MOCEl oot
6.5. Comparison of PLpc Modelswith IBM 370 and Alpha ..o
B.6. DISCUSSION  .oeiiiiitiitiste ettt ettt h e bbbt b b e e et e b e s e et et et et e e e bt e aeeneeb e b e

7. The Design Space of SCNF Memory MOGElS .o
7.1. A Condition for Sequential CONSISLENCY  .ooeeeeereiecese e

46

49
49
49
51
52
53
55
56
63

65
67

68
68
68
69
72
73
74
76
76
77
79
82
83
85
85
85
87
87
89
90
91
93

94
95



48 S oo =X @ o 11T o TR 95

7.1.2. Modifications to the Condition for Sequential CONSIStENCY  .vvcevevccicceceeecer e 98

7.2. Designing An SCNF Memory MOl .o 102
7.3. New SCNF MemOry MOGEIS ..ottt sttt st sreens 103
7.3.1. Models Motivated by Optimizations on Base System ..o 103

7.3. 1.1 OUt-Of-Order ISSUE  oioieereeerieesteee ettt sttt et et e 104

7.3.1.2. Pipelining Operations (With In-Order ISSUE)  .ovvvveve v 107

7.3.1.3. Single Phase Update ProtOCOIS  ...c.ooviiiieieereeie et 108

7.3.1.4. Eliminating ACKnowledgements ..o 110

7.3.2. Models Motivated by Common Programming CONSITUCES  ....oveevecevieicneeseeeieseeie s 110
7.3.2.1. Producer-Consumer Synchronization .....ccoceiireiinene e 111

A 2 T 1= = 113

7.3.2.3. LOCkS @and UNIOCKS oottt 114

7.3.2.4. Constructs to Decrease Lock COntention — .....coveeveeveenieeneeseesesese e 118

7.4. Characterization of the Design Space of SCNF Memory Models .o 121
7.5. Implementing AN SCNF Memory Model .o 123
7.5.1. Motivation for the Control REQUITEMENE ..o 123

7.5.2. Low-Level System-Centric Specifications and Hardware Implementations  .............. 126

7.5.3. Compiler IMplementationS  ...ocooeceererecee e s 132

7.6. Relation With PrevioUSWOrK oot 133
7.6.1. Relation with Work by Shashaand Snir ..o 133

7.6.2. Relation With WOrk Dy COllIEr oo 134

7.6.3. Relation With Work Dy Bitar ..o 134

7.6.4. Relation with Data-Race-Freeand PLPC MOdElS  ..oeciiiciiceee e 134

7.6.5. Relation with a Framework for Specifying System-Centric Requirements  ................ 135

7.6.6. Relation of New Modelswith Other MOdElS  ..oiiiici e 136

28 o 3 o 11 o gL 137
8. Detecting Data Races On DatarRace-Free SYSIEMS .o 139
8.1. Problemsin Applying Dynamic Techniquesto Data-Race-Free Systems ..., 140
8.2. A System-Centric Specification for Dynamic Data Race Detection  ......cccoceveveveececeeccceceenn, 142
8.3. Data-Race-Free Systems Often Obey Condition for Dynamic Data Race Detection  .............. 144
8.4. Detecting Data Races on Data-Race-Free SyStems .ot 145
T = = (=0 VLYo G 146
8.6. CONCIUSIONS ottt et ettt h e bt bt eb e s b e s bt s e e b e s e se e s et et et eneeneenesbeneas 146
9. CONCIUSIONS oottt et e b e s b e e bt s e bt s et s b e st s b et b et b et e b e st e b e neebe s e e besaene st enentne 148
0.1 TRESIS SUMIMAIY oottt et et ae et e s ae e s aeeaeesaeeaeesaeeneesaeeneesreentenreensenreenes 148
LS VY g = 150
L = 1= o= SRS 152

\Y



Appendix A: Equivalence of Definitions of Race for Data-Race-Free-0 Programs  .....cccoevecenccneneenne,
Appendix B: Modified Uniprocessor Correctness Condition  .....ccoceeeeeriecenieve e seeee e
Appendix C: Correctness of Condition 7.12 for Sequential CONSISIENCY  .oecvevecevecencerereere e
Appendix D: A Constructive Form of the Control REIGtion ..o
Appendix E: Correctness of Low-Level System-Centric Specification of Control Requirement  .............
Appendix F: Correctness of Low-Level System-Centric Specification of Data-Race-Free-0  .................
Appendix G: System-Centric Specifications of PLPCL AN PLPC2 oo
Appendix H: Porting PLpcl and PLpc2 Programs to Hardware-Centric Models ..o

Appendix |: Correctness of Theorem 8.5 for Detecting Data RaCeS  ...cvevevveve s

Vii

159

160

162

165

171

198

199

208

214



Chapter 1

I ntroduction

1.1. Motivation

Parallel systems can potentially use multiple uniprocessors to provide orders of magnitude higher perfor-
mance than state-of-the-art uniprocessor systems at comparable cost. Parallel systems that provide an abstraction
of a single address space (or shared-memory systems) simplify many aspects of programming, compared to the
aternative of message passing systems. For example, the shared-memory abstraction facilitates load balancing
through processor independent data structures, allows pointer-based data structures, and alows the effective use
of the entire system memory [LCW93, LeM92]. Shared-memory also permits decoupling the correctness of a pro-
gram from its performance, allowing incremental tuning of programs for higher performance.

The shared-memory abstraction can be provided either by hardware, software, or a combination of both.
Pure hardware configurations include uniform [GGK83] and non-uniform access machines [ReT86]. Most
configurations employ caches to reduce memory latency, and either use snooping [Bel85] or directory-based pro-
tocols [ASH88, Gus92, LLG90] to keep the caches up-to-date. Runtime software based systems typically use vir-
tual memory hardware to trap on non-local references, and then invoke system software to handle the references
[CBZ91,Li88]. Other software-based systems depend on compilers that detect non-local shared memory accesses
in high-level code, and convert them into appropriate messages for the underlying message passing machine
[HKT92]. Severa systemsemploy a combination of hardware and software techniques. For example, in systems
using software-based cache coherence [BMW85, ChV 88, PBG85], hardware provides a globally addressable
memory, but the compiler is responsible for ensuring that shared data in a cache is up-to-date when required by its
processor. The Alewife system [ALK90] and the Cooperative Shared Memory scheme [HLR92] manage cache-
able shared-data in hardware for the common cases, but invoke runtime software for the less frequent cases.

Building scalable, high-performance shared-memory systems that are also easy to program, however, has
remained an elusive goal. This thesis examines one aspect of shared-memory system design that affects both the
performance and programmability of al of the above types of shared-memory systems. This aspect is called the
memory consistency model or memory model.

A memory model for a shared-memory system is an architectural specification of how memory operations
of a program will appear to execute to the programmer. The memory model, therefore, specifies the values that
read operations of a program executed on a shared-memory system may return. The terms system, program and
programmer can be used at several levels. At the lowest level, the system is the machine hardware, a program is
the machine code, and a programmer is any person that writes or reasons about such machine code. At a higher
level, the system may be the machine hardware along with the software that converts high-level language code
into machine-level code, a program may be the high-level language code, and a programmer may be the writer of
such programs. A memory model specification is required for every level of the system, and affects the programs
and programmers of that level.

The memory model affects the ease of programming since programmers must use the model to reason about
the results their programs will produce. The memory model also affects the performance of the system because it
determines when a processor can execute two memory operations in paralel or out of program order, when a
value written by one processor can be made visible to other processors, and how much communication a memory
operation will incur. Thus, the memory model forms an integral part of the entire system design (including the
processor, interconnection network, compiler, and programming language) and the process of writing parallel pro-
grams.



Most uniprocessor systems provide a simple memory model to the programmer that ensures that memory
operations will appear to execute one at atime, and in the order specified by the program (program order). Thus,
a read returns the value of the last write to the same location that is before it by program order. However, to
improve performance, uniprocessor hardware often allows memory operations to be overlapped with other
memory operations, and to be issued and executed out of program order. Nevertheless, it maintains the
programmer’s model of memory by maintaining uniprocessor data and control dependences (e.g., by using inter-
lock logic), which ensures that memory operations appear to execute one at a time in program order. Similarly,
uniprocessor compilers often reorder memory operations but preserve the memory model by preserving unipro-
cessor dependences. Thus, the programmer’s model for uniprocessor memory is simple and yet allows for high
performance through several hardware and compiler optimizations.

The goal of thiswork isto establish a framework for specifying shared-memory models that retain the attri-
butes of simplicity and high performance found in the uniprocessor model, and to design useful models within this
framework.

The most commonly (and often implicitly) assumed programmer’s model of memory for shared-memory
systemsis sequential consistency. This model was first formalized by Lamport [Lam79] and is a natural extension
of the uniprocessor model. A system is sequentially consistent if (1) all memory operations appear to execute one
at atime in some total order (i.e., memory operations appear atomic), and (2) al memory operations of a given
processor appear to execute in program order. This definition allows the programmer to view the system as in
Figure 1.1. A system is simply a set of processors and a single shared-memory module with a central switch; after
an arbitrary number of time steps, the switch connects the memory to an arbitrary processor and the processor
executes the next memory operation specified by the program. Alternatively, the system appears like a multipro-
grammed uniprocessor [Pat83-86].

MEMORY

Figure1.1. A sequentially consistent system.

Figure 1.2 shows two program fragments that illustrate how programmers use sequential consistency. Vari-
ables X, Y, and flag in the figure are shared variables, and rl and r2 are local registers. The code in part (a) shows
a producer-consumer interaction where processor P, writes X and Y, and then sets a flag to indicate that it has
completed its writes. Processor P, waits for flag to get updated and then reads X and Y, expecting to get the new
values of X and Y. The code relies on the assumption that after P, returns the updated value of flag, it will return
the updated values of X and Y. Sequential consistency allows programmers to make this assumption. The code in
part(b) is the core of Dekker's agorithm for implementing critical sections. Processors P, and P, respectively
write X and Y and then read the variable written by the other processor. The agorithm relies on the intuitive
assumption that if P,'s read happens before P,’s write of Y (i.e., the read returns 0), then P,’s write of X will
happen before P, sread (i.e., P,'sread will return 1). Similarly, if P,’sread returns 0, then P’ s read will return
1. Thus, it cannot be that both P4 and P, return 0. Again, sequential consistency allows programmers to make
the above intuitive assumption by ensuring that operations of a single processor will appear to execute in program
order.



Initially X =Y =flag=0 Initially X =Y =0
P1 P2 P1 P2
X =14  while(flag!=1){;} X=1 Yy=1
Y=26 r1=X ri=y r2=x
flag=1 r2=Y

€Y (b)
Figure 1.2. Programming with sequential consistency.

For part (a), sequential consistency ensures that rl = 14, r2 = 26, and for part (b), sequential consistency ensures
that both r1 and r2 cannot be 0.

The view of the system provided by sequential consistency retains the simplicity of the uniprocessor model
for programmers; however, implementing systems to provide this view often involves serious compromises in per-
formance [DSB86, Lam79, MPC89]. Consider the code in part(b) of figure 1.2. Consider a system that uses write
buffers to allow aread to bypass a write that precedes it in the program. On such a system, processors P, and P,
could both complete their reads while their writes are still in the write buffer. Both reads would return the initial
value of 0O, violating sequential consistency. Similarly, in a system where processors can reorder their instruc-
tions, P1 could issue itsread of Y before its write of X, again allowing both P1 and P2 to read the old values of Y
and X respectively [DSB86,Lam79]. Note that neither processor has data dependencies among its instructions
(because X and Y are different locations); therefore, simple interlock logic will not preclude either processor from
issuing its second instruction before the first. The above violations of sequential consistency take place irrespec-
tive of whether the system is bus-based or has a general interconnection network, and irrespective of whether the
system has caches or not. For the code in part (a) of figure 1.2, consider a system that issues its instructions in
program order and does not employ write buffers. Suppose, however, that the system has multiple memory
modules and a general interconnection network that provides different paths to the different memory modules. If
processors are allowed to overlap their memory operations on the interconnection network, it is possible that P,’s
write of flag reaches its memory module before P,’swrites of X and Y. Thus, it is possible for P, to return the
new value of flag but the old values of X and Y, violating sequential consistency [Lam79]. Analogoudly, if the
compiler reorders memory operations or allocates memory locations in registers (e.g., allocates Y in aregister in
P, infigure 1.2(b)), then again the non-sequentially consistent executions described above can occur [MPC89].

Chapter 2 will show that to implement sequential consistency on a general system and with a reasonable
level of complexity, a processor must often execute its shared-memory operations one at atime and in the order
specified by the program. This prohibits the use of many performance enhancing hardware features commonly
used in uniprocessors such as write buffers, out-of-order issue, pipelining (or overlapping) memory operations,
and lockup-free caches [Kro81]. Anaogously, in the absence of extensive data dependence analysis, compilers
cannot reorder instructions that generate shared-memory operations and cannot allocate shared-memory locations
to registers, again sacrificing performance enhancing techniques from uniprocessors. Furthermore, to ensure that
writes appear atomic on a cache-based system, practically, a newly written value cannot be made visible to any
processor until all caches with an old value have been invalidated or updated, possibly incurring additional
memory latency and network traffic.

Henceforth, for the hardware and runtime system, we use the term optimization to refer to features (such as
described above) that allow a memory operation to execute before the completion of operations that precede it by
program order, or features that allow writes to be executed non-atomically (i.e., a processor can read a new vaue
even if another processor can still read an old value). Similarly, for the compiler, we use the term optimization to
refer to the reordering of instructions that access shared-memory, and register alocation of shared-memory loca-
tions.



To improve the performance of shared-memory systems, researchers have proposed alternative memory
models that impose constraints weaker than sequential consistency. Many of these models have been motivated
by hardware optimizations and are specified in terms of these hardware optimizations. This hardware-centric
nature of the models leads to substantial performance increases [GGH91a, GGH92, ZuB92], but at the cost of los-
ing significant advantages of sequential consistency for the programmer.

The first disadvantage for programmers of hardware-centric models is that the programmer’s view of the
system is more complex than with sequential consistency. For example, write buffers and caches are effective
hardware features for reducing and tolerating memory latency. However, a side effect of using these features
aggressively is that writes can appear to execute non-atomically. Thus, many of the models that allow the aggres-
sive use of write buffers and caches also allow writes to appear non-atomic; and reasoning with such models
requires programmers to be explicitly aware of the underlying write buffers and caches that result in such non-
atomicity. Parallel programming assuming atomic writes is already complex enough; reasoning with non-atomic
memory further increases this complexity.

The second, perhaps more serious, disadvantage for programmers of current hardware-centric models is that
the absence of any unifying framework for designing memory models has led to several seemingly unrelated
models, sometimes with subtle differences in specification that lead to significantly different program behavior.
Thus, programmers must reason with many different (and fairly complex) interfaces, making porting programs
between different models difficult. Figure 1.3 captures some of this variety of interfaces by showing severa
currently implemented hardware-centric models (to be defined further in Chapter 2) and their relationships with
each other [AGG91]. Thus, while for the first disadvantage, it may be argued that programmers may be willing to
tolerate a more complex interface to get higher performance, the presence of a multitude of complex interfaces
significantly exacerbates the problem.

Sequential Consistency

— T

Other New Models? Weak Ordering Total Store Ordering

/ Processor Consistency J
Release Consistency (RCsc) . .
/ Partial Store Ordering

Release Consistency (RCpc)

Figure 1.3. Some hardware-centric models.

An arrow from one model to another indicates that the second model allows for more optimizations than the first
and hence the second model provides higher performance but a possibly more complex interface than the first.
Two models not connected with arrows cannot be compared in terms of performance or programmability. Chapter
2 discusses these models and their relationships in more detail. The dotted arrows exist only if a recent, subtle re-
vision to processor consistency and release consistency (RCpc) [GGH93] is assumed (see Chapter 2), an additional
testimony to the complexity of reasoning with hardware-centric memory models.

Finally, even from the system designer’s viewpoint, the absence of a unifying framework for designing
memory models makes it difficult to determine new, useful memory models that might allow new optimizations.

This thesis establishes a unifying framework for designing memory models and develops memory models
within this framework that alleviate the above problems while still allowing the optimizations of the hardware-
centric models. Specifically, we use a 3P criteria of programmability, portability, and performance for evaluating
memory models, and show how to design memory models that adequately satisfy all three criteria.

1. Wehaverecently, in ajoint effort, proposed a uniform methodology for expressing the system constraints of various
hardware-centric models [GAG93]. This methodology is meant to aid system implementors and does not have the proper-



The memory models and theoretical framework of this thesis apply to all levels of the system; however, the
formal definitions of the memory models and the various concepts involved are mostly provided for the lowest
level (usually the hardware). While programmers can use the low-level specifications directly, it would be more
convenient to convert them to a higher-level. This thesis illustrates how such conversions can be made, but often
leaves the formalization of appropriate high-level specifications to future language designers.

This thesis also does not provide any quantitative figures on the performance of the proposed memory
models. Other researchers have already demonstrated that alternative memory models can give high performance
[DKC93, GGH91a, GGH92, KCZ92, ZuB92]. Thisthesis addresses the problem of how to make the available per-
formance potential usable for programmers and how to reason about models in away that can result in better per-
formance than that of previous models.

1.2. Summary of Contributions

The contributions of thisthesis are as follows.

(1) A programmer-centric approach for specifying memory models.

The first contribution of this thesis is a programmer-centric approach for specifying memory models, and is
based on the following observations. To adequately satisfy the first two of the 3P criteria of programmability and
portability, a simple, uniform interface should be provided to programmers of al shared-memory systems.
Sequential consistency is a desirable candidate for such a uniform interface, but is inadequate for the third criteria
of performance. |s there a way to get both high performance and sequential consistency? We have illustrated
example program fragments for which the use of common performance-enhancing optimizations violates sequen-
tial consistency. Nevertheless, there are other program fragments where applying various optimizations does not
violate sequentia consistency and provides significant performance benefits. Thus, away to get high performance
with sequential consistency is for the system to selectively apply optimizations to only those parts of the program
where the optimization would not violate sequential consistency. Unfortunately, for general programs, it is
difficult for currently practical systems to determine which parts of the program are safe for applying a given
optimization. This thesis, therefore, proposes that the programmer identify to the system the safe parts of a pro-
gram that can alow different optimizations.

Specifically, we propose that a memory model be specified as a contract between the system and the pro-
grammer where the programmer provides some information about the program to the system, and the system uses
the information to provide both sequential consistency and high performance. If the programmer provides
incorrect information, then the system may violate sequential consistency. If the programmer does not provide
enough information, then the system cannot provide high performance. We call this method of specification as the
sequential consistency normal form (SCNF) method.

It follows that an SCNF memory model is simply a specification of the information that the system can use
to provide high performance without violating sequential consistency. Different SCNF models differ in the infor-
mation they can exploit (and consequently in the optimizations they can employ). Thus, rather than viewing dif-
ferent SCNF specifications as different models of memory, an SCNF specification may be viewed as the layer of
abstraction that specifies how the programmer can get both high performance and sequential consistency on
modern systems.

When viewed as a method of specifying memory models, the SCNF method improves upon the hardware-
centric method with respect to the 3-P criteria as follows. First, the SCNF specification allows programmers to
continue reasoning with sequential consistency, the most intuitive model. Second, it allows a uniform interface
(i.e. sequentia consistency) for the programmer across al shared-memory systems, enhancing portability.
Finally, the information provided by programmers allows optimizations that lead to high performance (without a
violation of sequential consistency). Note that the SCNF models allow optimizations similar to those for the
hardware-centric models, including the optimization of non-atomic writes. Unlike many hardware-centric
models, however, programmers of SCNF models need never be aware of these optimizations and can always

ties of the framework described above. Specificaly, it is not recommended for programmers and does not provide insight
for new, useful memory models.



program with the view of figure 1.1.
(2) New programmer-centric models that allow more implementations than old hardware-centric models.

The second contribution of this thesis demonstrates the effectiveness of the SCNF approach by applying it
to the optimizations of several commercially implemented and several academic models. We develop four SCNF
models that unify the IBM 370 model [IBM83], the SPARC V8 models of total store ordering and partial store
ordering [SUN91], the Alpha model [Sit92], weak ordering [DSB86], processor consistency [GLL90], two flavors
of release consistency (RCsc and RCpc) [GLL90], and lazy release consistency [KCZ92]. The four SCNF models
— data-race-free-0, data-race-free-1, PLpcl, and PLpc2 — exploit strictly increasing amounts of information
from the programmer regarding the behavior of memory operations in the program. They use this information to
alow increasingly many optimizations, including those of the above hardware-centric models, without violating
sequentia consistency. The intuition that motivates the SCNF models is similar to that of the hardware-centric
models; however, their programmer-centric nature allows programmers to continue reasoning with sequential con-
sistency and at the same time allows for a superset of the optimizations of the hardware-centric models. The
SCNF models a so enhance portahility by unifying several hardware-centric models and other not-yet-defined sys-
tems; a program written for an SCNF model can be run on al of the unified systems without violating sequential
consistency. Figure 1.4 shows some of the systems unified by the different SCNF models. A rectangle labeled
with an SCNF model encloses the systems unified by the SCNF model. Specifically, programs written for PLpc2
can be run on all of the commercialy implemented hardware-centric models and the academic models mentioned
above without violating sequential consistency, and usually exploiting the full performance potential of the
hardware-centric models.

Since the four SCNF models exploit strictly increasing amounts of information, any program written for a
more aggressive model can clearly run on a system implementing a less aggressive model; the less aggressive sys-
tem can simply ignore the extra information in the program for the more aggressive model. Furthermore, a key
feature of the above SCNF models is that they do not require perfect information, but allow programmers to be
conservative in their specifications. This allows a program written for aless aggressive model to be run on amore
aggressive system (potentially with the performance of the less aggressive model) by simply specifying the con-
servative options for the additional information exploited by the more aggressive model. Thus, the four models
provide a spectrum of exploitable information and performance; the programmer can choose to be at any point on
the spectrum irrespective of the specific system the program is written for.

The new models require the programmer to distinguish certain memory operations on which optimizations
can be applied without violating sequential consistency. The data-race-free-0 model, for example, requires distin-
guishing operations that are never involved in arace (called data operations) from those that may be involved in a
race (caled synchronization operations). The other models additionally require distinguishing different race
operations based on certain characteristics. As discussed above, an important aspect of these models is that they
do not require perfect information and allow the programmer to be conservative in distinguishing a memory
operation. For data-race-free-0, for example, if the programmer does not know whether an operation will be
involved in a race, the operation can be conservatively distinguished as a synchronization operation. The more
accurate the information, the higher the performance potential.

(3) Aframework to characterize and explore the design space of memory models.

The third contribution is a framework that formally characterizes and exposes the design space of SCNF
memory models, and its use to explore the design space.

The framework.

With the SCNF approach, a memory model is simply a method of procuring information from the program-
mer to allow optimizations without violating sequential consistency. Thus, the key to determining the design space
is to determine the nature of useful information and corresponding optimizations that can be exploited while till
retaining sequential consistency. The framework formalizes this relationship between information and optimiza-
tions, thereby characterizing and exposing the design space of memory models. This largely eliminates the com-
plexity and ad hoc nature formerly present in the design process of memory models.

The development of the framework involves identifying an aggressive, sufficient condition for sequential
consistency and then using it to characterize when an optimization will not violate sequential consistency. The
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Figure 1.4. SCNF models unify hardware-centric systems.

condition used constrains certain paths called the ordering paths in a graph derived from an execution. It requires
a certain subset of these paths called the critical paths to be executed ‘‘safely’’ by the system. We deduce that an
optimization will not violate sequential consistency if it will not affect the safe execution of the critical paths.
Thus, useful information is that which identifies the non-critical paths and useful optimizations are those that can
exploit such information to execute non-critical paths aggressively.

A major part of the complexity of thiswork isto ensure that information about non-critical paths from only
sequentially consistent executions is sufficient; this is important since we do not want the programmer to reason
about executions that are not sequentially consistent. For this purpose, we develop a pre-condition, called the con-
trol requirement, that is obeyed by most current systems. We prove that for systems that obey the control require-
ment, information from sequentially consistent executions is indeed sufficient. The control reguirement is an
important contribution of this work since much previous work addressing aggressive optimizations does not ade-
quately address this requirement, and is therefore incomplete. Although the requirement is obeyed by most
currently practical systems, formalizing it is essential to determine the correctness of any system (and specifically,



future, more aggressive systems).
Exploring the design space.

We use our framework to develop several new models by examining severa different optimizations and
information about program behavior. In particular, we examine the optimizations of out-of-order execution of
memory operations, in-order execution with pipelining in the interconnection network, eliminating one phase of
update protocols required by sequential consistency, and eliminating acknowledgement messages. We show that
each of these optimizations can be applied safely to more cases than allowed by previous models, and determine
the information that will alow this, thereby leading to new models. We consider specific synchronization con-
structs such as locking, producer-consumer synchronization, and barriers and show that for many common uses of
these synchronization constructs, the above optimizations can be applied more aggressively than before. We
characterize these common usages, again resulting in new and more aggressive memory models.

Characterizing the design space.

We finally use the relationship between optimizations and information to deduce the key characterization of
a memory model that determines its performance and programmability. The key to a memory model is the order-
ing paths that it executes safely. We call such ordering paths the valid paths of the model. We define a generic
memory model in terms of its valid paths, and define the programmer and system constraints for such a model in
terms of these paths.

(4) Atechniqueto detect data races on data-race-free systems

The fourth contribution concerns detecting data races in a program with the data-race-free-0 and data-race-
free-1 models. These models guarantee sequential consistency only if the program does not contain data races
(i.e., al operations that may be involved in arace are distinguished as synchronization). It is possible, however,
that due to the presence of a bug, a program may contain some data races. It is desirable that even while debug-
ging such a program, the programmer be able to reason with the interface of sequential consistency. We show
how current techniques for detecting data races in sequentially consistent systems can be extended to data-race-
free systems in a manner that allows programmers to continue reasoning with sequential consistency even while
debugging programs that are not yet data-race-free.

Static techniques for data race detection in sequentially consistent systems can be directly applied to data-
race-free systems as well. Dynamic techniques, on the other hand, may report data races that could never occur
on sequentially consistent systems. This can complicate debugging because programmers can no longer assume
the model of sequential consistency. We show how a post-mortem dynamic approach can be used to detect data
races effectively even on data-race-free systems. The key observation we make is that many practical systems
preserve sequential consistency at least until the first data races (those not affected by any others). We formalize
this condition and show that for an execution on a system that obeys this condition, we can either (1) correctly
report no data races and conclude the execution to be sequentially consistent or (2) report the first data races that
also occur on a sequentialy consistent execution (within a few limitations). Our condition is met by many
currently practical implementations of the data-race-free models, and so our technique can exploit the full perfor-
mance of these systems.

1.3. ThesisOrganization

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 describes the
SCNF approach for specifying memory models, and also develops terminology used throughout the thesis for
defining SCNF memory models. Chapter 4 describes the data-race-free-0 memory model. Chapter 5 describes
implementations of the data-race-free-0 memory model, and also develops a methodology for describing imple-
mentations of SCNF models. Chapter 6 discusses the data-race-free-1, PLpcl, and PLpc2 models. Chapter 7
develops the framework to explore the design space of SCNF memory models, and uses the framework to define
several new models and to characterize the design space. Chapter 8 describes the technique to identify data races
in data-race-free systems. Chapter 9 gives conclusions. The appendices formalize certain concepts introduced in
the above chapters and provide correctness proofs for the results of the above chapters.



Chapter 2

Related Work

This chapter briefly describes related work on memory models, and also motivates models that impose
weaker system constraints than sequential consistency (referred to as relaxed memory models). Section 2.1
discusses sequential consistency and motivates relaxed memory models. Section 2.2 discusses relaxed memory
models. Section 2.3 discusses various formalisms used to define relaxed memory models. Section 2.4 summar-
izes performance studies of relaxed models. Section 2.5 describes other correctness criteria that are stronger than
or similar to sequential consistency.

For our work on debugging on relaxed models (Chapter 8), the only other related work is by Gharachorloo
and Gibbons [GhG91]. Since thiswork isrelated only to Chapter 8, we postpone its discussion to that chapter.

This chapter uses the terms preceding and following to indicate program order.

2.1. Sequential Consistency

Section 2.1.1 gives the origina definition of sequential consistency by Lamport, Section 2.1.2 illustrates
how this definition differs from cache coherence, Section 2.1.3 illustrates optimizations restricted by sequential
consistency, Section 2.1.4 discusses various implementations of sequential consistency, and Section 2.1.5 exam-
ines why high performance implementations of sequential consistency are practically difficult and motivates
relaxed memory models.

2.1.1. Definition
Sequential consistency was first defined by Lamport [Lam79] as follows.

Definition 2.1: [A system is sequentially consistent if] the result of any execution isthe same asif the
operations of all the processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program.

Application of the definition requires a specific interpretation of the terms operations and result. Chapter 3
will formalize these notions; for now, we assume that operations refer to reads and writes of individual memory
locations, and result refers to the values returned by al the read operations in the execution and possibly the final
state of memory. Thus, sequential consistency requires that all memory operations should appear to have exe-
cuted atomically in some total order, where (1) the total order is consistent with the program order of each process
and (2) aread returns the value of the last write to the same location ordered before it by this total order.?

2.1.2. Sequential Consistency vs. Cache Coherence

Early bus-based systems with caches used cache coherence (or cache consistency) as the notion of correct-
ness [CeF78, RuS84]. The definition, given by Censier and Feautrier, requires that a read should return the value
deposited by the latest write to the same address [CeF78]. However, in systems with write buffers and general
interconnection networks, the latest write to a location is not well-defined [DSB86]. Sequential consistency makes
the notion of the latest write more precise; further, it also explicitly requires that operations of a single process
appear to execute in the program order of the process. Similar to sequentia consistency, Rudolph and Segall
independently formalized the notion of returning the value of the latest write as requiring a total order on memory

2. To model the final state of memory, a program can be considered to include reads of al memory locations after the
rest of its execution.
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operations where a read returns the value of the last write to the same location ordered before it by this total order
[RuS84]. They do not, however, explicitly mention the requirement of program order.

For general interconnection networks, an often accepted definition of cache coherence requires that only
writes to the same location appear to be seen by all processors in the same order [GLL90]. This thesis uses the
term cache coherence, or simply coherence, to imply the above notion (a formal definition appears in Section
5.1.3).3 This notion of coherence does not ensure sequential consistency since (informally) sequential consistency
(a) requires all processors to see all writes to all locations in the same order [Col84-92, DuS90], and (b) requires
all operations of a single process to be seen in program order. Figure 2.1 shows two program fragments that illus-
trate the difference between cache coherence and sequential consistency due to (a) above. In both programs, pro-
cessors P4 and P, update two locations and processors P4 and P, read the values of those locations. In the exe-
cutions depicted, P5; and P, see the updates in opposite order for both programs. However, in the first program,
the updates are to the same location and so the depicted execution is prohibited by cache coherence. In the second
program, the updates are to different locations, and so the depicted execution does not violate cache coherence.
Both executions, however, violate sequential consistency. The non-sequentially consistent executions of the pro-
grams in Figure 1.2 discussed in Chapter 1 (also repeated in figure 2.2 below) are examples where the program
order requirement (condition (b) above) of sequential consistency is violated, but cache coherence is maintained.
Thus, sequential consistency implies cache coherence, but cache coherence does not imply sequential consistency.

Initilly X =Y =0
P, P, Ps P4 P, P, Ps P4
X=1 X=2 r1=X 1r3=X X=1 Y=2 r1=X 1r3=Y
r2=X r4=X r2=Y r4=X
Result:r1=1,r2=2,r3=2,14=1 Result:r1=1,r2=0,r3=2,14=0

€Y (b)

Figure2.1. Sequential consistency vs. cache coherence.

Cache coherence does not alow the result in part (a), but allows the result in part (b). Sequential consistency does
not allow either result.

2.1.3. Implementations That Disobey Sequential Consistency

Chapter 1 illustrated some of the implementation restrictions imposed by sequential consistency. We con-
tinue to use the examples of Chapter 1, repeated in figure 2.2, to illustrate more restrictions. As discussed in
Chapter 1, systems that allow processors to reorder memory operations, or use write buffers to allow reads to
bypass preceding writes, or overlap memory requests on the interconnection network can result in either or both of
the non-sequentially consistent executions represented in figure 2.2 [DSB86,Lam79]. Anaogously, compilers
that reorder memory operations or alocate shared-memory locations in registers can violate sequential con-
sistency [MPCB89]. These violations are possible irrespective of whether systems have caches. In the presence of
caches and a general interconnection network, sequential consistency imposes further constraints on hardware as
follows.

Consider a cache-based system with a general interconnection network where there are no write buffers,
processors issue memory operations in program order, and a processor waits for its memory request to be serviced

3. Thereis a subtle issue concerning whether awrite should be seen at al by a processor; the formal definition of Sec-
tion 5.1.3 clarifies thisissue.
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by memory (or its cache) before issuing the following operation. Such a system can violate sequential consistency
if a processor issues a memory operation before the effects of a preceding write have propagated to the caches of
other processors. For example, for the code in part (a), assume that P, has X and Y initially in its cache. If P,
returns the new value of flag while it till retains the old values of X and Y in its cache, then it is possible that P,
will return these old values when it reads X and Y. Thus, typically, after a processor P; executes a write to aline
that may be present in other processor caches, the memory system needs to send invalidation or update messages
to those caches and the caches need to acknowledge the receipt of these messages. Processor P; can proceed with
its subsequent operations only after the acknowledgements have been received (the acknowledgements may be
collected directly by P; or by the memory system). Thus, sequential consistency with a general interconnection
network typically incurs additional network traffic and longer write latencies.

Initially X =Y =flag=0 Initially X =Y =0
Py P> Py P>
X =14  while(flag!=1){;} X=1 Yy=1
Y=26 rl=X ri=yY r2=X
flag=1 r2=Y
Result: r1=r2=0 Result: r1=r2=0

@ (b)

Figure2.2. Violations of sequential consistency.

The program fragment in figure 2.1(b) illustrates even more network traffic due to sequential consistency as
follows. Consider a cache-based system using an update-based coherence protocol [ArB86]. Assume all proces-
sors execute their memory operations in program order and one-at-a-time (waiting for acknowledgements as
described above). It is still possible to violate sequential consistency if P,’s update reaches P before P,’s update
and P,’s update reaches P, before P’ s update. The violation in this case occurs because writes in the system are
executed non-atomically: P is allowed to return the value of the write of X before P, has seen the write, and P,
is allowed to return the value of the write of Y before P5; has seen the write. Sequential consistency requires
writes to appear to execute atomically; i.e., no processor should see the value of a write until all processors have
seen it. This typically forces update-based cache coherence protocols to employ two phases when updating
caches due to awrite. The first phase of the protocol (as also required for the previous examples) involves send-
ing updates to the processor caches and receiving acknowledgements for these updates. In this phase, however,
no processor can return the value of the updated location. The second phase begins when all the acknowledge-
ment messages of the first phase have been received (by either the memory system or the writing processor), and
involves sending back an acknowledgement to all the updated processor caches. A processor can use the updated
value from its cache only after receiving an acknowledgement of the second phase. (For a system employing such
aprotocol, see [WiL92].)

Thus, sequential consistency, in general, restricts the use of several optimizations that can hide and tolerate
memory latency and involves additiona network traffic.

2.1.4. Implementationsthat Obey Sequential Consistency

In their seminal work, Dubois, Scheurich, and Briggs have analyzed the problem of imposing sequential
consistency in many different types of hardware systems[DSB86, DSB88, DuS90, ScD87, Sch89]. To reason with
non-atomic memory operations in a cache-based system, they define the notion of an operation being performed
with respect to a processor, performed, and globally performed. Informally, a write operation is performed with
respect to a processor when it has been observed by the processor, i.e., no future read of the processor to the same
location can return the value of a previous write. A read operation is performed with respect to a processor when
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no future write of the processor can affect the value returned by the read. A write or aread operation is performed
when it is performed with respect to all processors. A write is globally performed when it is performed. A read is
globally performed when it is performed and when the write whose value it reads is performed. Thus, awrite or a
read is globally performed when the value written or read is observed by all processors.

Scheurich and Dubois state a sufficient condition for sequential consistency [ScD87, Sch89] for general sys-
tems (including systems with caches and systems with general interconnection networks that do not guarantee the
ordering of any message pairs). The condition is satisfied if al processors issue their memory operations in pro-
gram order, and no memory operation is issued by a processor until the preceding operation in program order has
been globally performed. We note that for cache-based systems, the above condition is sufficient only if cache-
coherence is also maintained (otherwise, the execution in figure 2.1(a) is possible). Thus, this condition requires a
processor to execute its memory operations one-at-a-time, and writes to appear atomic.

Other researchers have proposed conditions for more restricted systems, which also obey the condition by
Scheurich and Dubois. Lamport gives conditions for shared-memory systems with general interconnection net-
works, but no caches [Lam79]. Rudolph and Segall have developed two cache coherence protocols for bus-based
systems. They formally prove the protocols obey their correctness criteria mentioned in Section 2.1.2; if we
assume they implicitly considered processors that execute operations in program order, the protocols guarantee
sequential consistency [RuS84]. The RP3 system [BMW85, PBG85] is a cache-based system, where processor
memory communication is via an Omega network, but the management of cache coherence for shared writable
variables is entrusted to the software. For sequential consistency, a process must wait for an acknowledgement
from memory for its preceding miss on a shared variable before it can issue the following operation to another
shared variable.

Several conditions for implementing sequential consistency that allow a processor to issue a shared-memory
operation without waiting for its preceding operation to be globally performed have also been proposed. Shasha
and Snir have proposed a scheme that uses static software support [ShS88]. Their scheme statically identifies a
minimal set of pairs of memory operations within a process (called critical pairs), such that the only delays
required are for the second element in each pair to wait for the first to complete. Although this work assumes that
individual memory operations are atomic, we believe that if the term ‘‘complete’’ above is interpreted to mean
‘‘globally performed’’ and if cache coherence is maintained, then the results also extend to general systems where
writes are not executed atomically. However, the algorithm used depends on detecting conflicting data operations
(by the same processor and by different processors) at compile time and so its success depends on global data
dependence analysis techniques, which may be pessimistic. Nevertheless, thiswork serves as a foundation for our
framework to explore the design space of SCNF memory models (Chapter 7), and is discussed in more detail in
Section 7.6.

Several implementations have been proposed that do not depend on software support to alow a processor to
issue a memory operation while its preceding operation is not yet globally performed. Collier has proved that a
system where al writes are performed with respect to all processors in the same order is (in most cases)
equivalent to a system where al writes are executed atomically [Col84-92]. Thus, a system where writes obey the
above condition and where all operations of a single processor are performed with respect to other processors in
program order is sequentially consistent [Col84-92, DuS90]. Severa researchers have proposed implementations
that allow multiple outstanding writes of a processor, and essentially exploit Collier’ s result as follows.

Collier himself proposes an implementation using a ring network where one processor in the network is
used to serialize all writes [Col84-92]. In this system, a writing processor sends a write request to the serializing
processor which then sends an update message along the ring. The writing processor can proceed with another
operation as soon as it gets this update message, athough the processors between the writing processor and the
serializer have not yet seen the update. Landin et a. propose a scheme that employs the same principle for race-
free (or acyclic) networks. Such a network preserves the ordering of certain transactions, much like the ring net-
work in Collier’swork. Landin et al. identify a root node for every data item such that the sub-tree at the node
contains all the copies of the data [LHH91]. They show that it is sufficient for a writing processor to wait only
until the root node receives its request and sends an acknowledgement. Afek et al. propose a scheme called lazy
caching for a cache-coherent bus-based system [ABM89, ABM93]. They show how a processor can proceed with
a memory operation even if preceding writes are only buffered at the queues of other processors, but not neces-
sarily performed with respect to those processors. Again, this scheme preserves sequentia consistency by
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ensuring that all writes are seen in the same order by all processors. Scheurich proposes a similar scheme, but
more informally, in histhesis [Sch89].

Other schemes that allow overlapping or reordering a processor’s memory operations, but do not depend on
specific network properties are as follows. Adve and Hill allow a writing processor to proceed once ownership of
the requested line is obtained (other processors could still have a stale copy of the line); sequential consistency is
maintained by ensuring that the effects of the subsequent operations of the writing processor are not made visible
to any other processor until the write is globally performed [AdH90a]. Gharachorloo et al. describe the use of
non-binding hardware prefetching and speculative execution for overlapped memory accesses with sequential
consistency in cache-based systems [GGH91b].

All of the above schemes that allow a processor to overlap or reorder its memory accesses without software
support, however, either require complex or restricted hardware (e.g., hardware prefetching and rollback for
[GGH91b] and restricted networks for [Col84-92,LHH91]) or the gains are expected to be smal (eg.,
[AdH90a, LHH91]). Further, the optimizations of these schemes can be exploited by hardware (or the runtime
system software), but cannot be exploited by compilers.

A relevant scheme from distributed message passing systems is Jefferson’s virtual time scheme using the
time warp mechanism [Jef85]. This approach allows a processor to execute its operations optimistically; the run-
time environment detects any consistency violations and rolls back the relevant processes to a consistent state.
The optimistic scheduling in [Jef85] has parallels with the speculative execution scheme of [GGH91b]; however,
rollbacks in [GGH91b] are local while those in [Jef85] may have global effects. Similar ideas have also been used
for parallelizing sequential programs written in mostly functional languages [Kni86, TiK88]. The paralld tasks are
executed optimistically, using runtime (hardware or software) support to detect dependence violations and effect
rollbacks.

Work related to compiler optimizations includes that by Shasha and Snir [ShS88] and Midkiff et al.
[MPC89]. Although Shasha and Snir motivate their work for hardware optimizations (as discussed above), they
suggest that compilers can apply optimizations that reorder memory operations to non-critical pairs of memory
operations. The origina algorithm given in [ShS88], however, is for straightline code that does not include
branch operations. The paper suggests extensions, but no detailed algorithm is given for more general programs.
Midkiff et a. have developed the work by Shasha and Snir to determine when a compiler can reorder program-
ordered operations or schedule them in parallel without violating sequentia consistency. While this work is appli-
cable to general programs, it aso depends on agloba data dependence analysis.

Attiya and Welch [ACF93] and Lipton and Sandberg [LiS88] have derived bounds for the response time of
memory operations on sequentialy consistent implementations. (Attiya and Welch also derive bounds for the
model of linearizability discussed in Section 2.5.)

Finally, Collier [Col84-92], Shasha and Snir [ShS88], and Landin et al. [LHH91] describe a sufficient sys-
tem condition for sequential consistency in graph theoretic terms that we will use for the framework of Chapter 7.

2.1.5. Why Relaxed Memory Models?

We have seen that using uniprocessor optimizations such as write buffers and overlapped execution can
violate sequential consistency. Therefore, general implementations of sequential consistency require a processor
to execute its memory operations one at atime in program order, and writes are executed atomically. Sequential
consistency, however, does not require memory operations to be executed as above; it simply requires that the
execution appear as if operations were executed in program order and atomically. As discussed in Section 2.1.4,
many schemes appear in the literature where memory operations of a processor are not executed one at a time or
atomically. However, as also discussed in Section 2.1.4, these schemes either require restricting the network, or
using complex hardware, or aggressive compiler technology. Even so, the performance gains possible are not
known. For these reasons, there seems to be an emerging consensus in the industry to support relaxed memory
models. Some commercia systems that support such models are the SPARC V8 and V9 architectures, the DEC
Alpha, the Cray XMP, the CRAY T3D, and the Sequent Balance and Symmetry systems. However, before we
discuss relaxed memory models, let us try to informally examine why it is difficult to exploit common optimiza-
tions with sequential consistency.
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Although Section 2.1.3 showed examples where common optimizations viol ate sequential consistency, there
are many other examples where such optimizations do not violate sequential consistency. Thus, it would be possi-
ble to implement sequential consistency with high performance if the system could determine the parts of the pro-
gram where performance enhancing optimizations are safe and apply the optimizations selectively to only the safe
parts. The reason that general, high performance sequentially consistent implementations have been difficult is
that determining when it is safe to apply an optimization involves considering several interactions that are difficult
to ascertain statically or track dynamically, asillustrated below.

Let usfirst focus on hardware. Consider, for example, the code fragment in figure 2.3. 1t shows processor
P, executing two writes to locations A and B. When can P,’s second operation be executed before its first write
completes (assuming a general interconnection network that does not preserve ordering of operations)? Clearly,
there is a danger of violating sequential consistency if another processor reads A and B in the opposite order, as
P, does in the figure. Thus, this indicates that to execute two operations in parallel, the system needs to keep
track of any other processor that might access the same two locations while the two parallel operations are incom-
plete. However, thisis not sufficient. Consider processors P; and P, in the figure. Processor P writes to a third
location C and then reads the initial value of A. Processor P, reads the new value of B and then reads C. For
sequential consistency, P, should return the new value of C. However, if P5 executed its read before the write to
C completed, it is possible for P, to return the initial value of C. To prohibit this, the system needs to keep track
of the interaction between three processors (P, P3, and P,) involving three memory locations (A, B, and C).
Analogous code fragments that involve interactions between all processors in the system are possible.

Initially A=B=C=0
P, P, Ps P,

A=1 rl=B c=1 r4=B
B=1 1r2=A r3=A r15=C

Assumer3=0,r4=1

Figure 2.3. Interactionsto consider for sequential consistency.

Thus, to exploit the full parallelism present in the code of a single processor and yet retain sequential con-
sistency, an implementation needs to keep track of several interactions, which is practically difficult. Aswe will
see, relaxed models have the potential to exploit more parallelism with more practical hardware than sequential
consistency. Our methodology for specifying relaxed memory models exploits the intra-process parallelism by
requiring the programmer to give information to the system that alows the system to focus on fewer interactions,
and give both sequentia consistency and high performance with simpler hardware.

We aso note that researchers have suggested techniques to tolerate the long memory latencies that are
incurred with sequential consistency. These techniques include software or hardware based prefetching
[GGH91b, M0oG91] and the use of multiple contexts [ALK90, WeG89]. While these techniques help to improve
the performance of sequentially consistent systems, they can also be used to aid the performance of relaxed sys-
tems [GHG91].

Observations similar to the above also apply to the compiler. Compilers need to perform a globa data
dependence analysis to determine when it might be safe to reorder memory operations without violating sequential
consistency. Such analysis is often too conservative; the presence of procedures and pointers makes the analysis
more difficult.
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2.2. Relaxed Memory Models

This section briefly describes relaxed memory models proposed by other researchers. As indicated by
figure 1.3 in Chapter 1, there are several such models that are related to each other in various ways. Conse-
quently, determining a satisfactory classification to present all of these models and their relationships in a coherent
manner has been difficult. We (somewhat arbitrarily) identify three memory models — weak ordering, processor
consistency, and release consistency — that represent the keys ideas of many of the other models. We classify all
the remaining models based on how close they are (in terms of optimizations they allow) to the above models.
Each of the first three sub-sections below discusses one of the above three models and the other models that are
closest to it. The fourth and final sub-section discusses the models that are considerably different from the above
three models.

Our classification is sometimes arbitrary because many models combine ideas from others in different
categories. For example, release consistency itself combines the optimizations of weak ordering and processor
consistency.

This section presents the definitions of the various models in their original form. Subsequently, we have
(jointly with others) proposed a uniform terminology and framework to express these models [GAG93]; this
methodology is discussed briefly in Section 2.3 and in more detail in Chapter 7.

A goal of this section is to demonstrate the hardware-centric nature of many of the current models and the
large variety of interfaces they present to the programmer. The rest of the thesis will show how a programmer-
centric view can be used to specify and unify several of the following models, and return the programmer back to
the familiar world of sequential consistency.

2.2.1. Weak Ordering And Related M odels

The weak ordering model was proposed by Dubois, Scheurich and Briggs [DSB86, DuS90, Sch89]. It is
based on the intuition that the ordering of memory operations isimportant only with respect to synchronization (as
opposed to data) operations. It requires programmers to distinguish between data and synchronization operations,
and requires the system to recognize this distinction. The model is defined as follows [DuS90]. (The definition
implicitly assumes that uniprocessor dependences are obeyed.)

Definition 2.2: In a multiprocessor system, memory accesses are weakly ordered if (1) accesses to
global synchronizing variables are strongly ordered, (2) no access to a synchronizing variable is
issued by a processor before all its [preceding] global data accesses have been globally performed,
and (3) no access to global dataisissued by a processor before its [preceding] access to a synchroniz-
ing variable has been globally performed.

Strong ordering referred to in (1) is defined as the hardware quality that guarantees sequential consistency
without software aid [DuS90] (see Section 2.2.4). Weak ordering potentially provides higher performance than
sequential consistency by allowing memory operations between consecutive synchronization operations of a pro-
cessor to be executed in parallel and non-atomically. Synchronization operations act like local barriers that ensure
all operations preceding the synchronization will globally perform before any operation following the synchroni-
zation isissued. Analogously, compilers can reorder memory operations between two consecutive synchronization
operations, and can also alocate such locations in registers (with alittle care [GAG93]). Thisisin contrast to the
processor consistency based models of the next sub-section, where most of the allowed optimizations can be
exploited only by the hardware (or runtime system software). The authors of weak ordering also give informal
constraints for programmers. For example, in [DuS90], they state *‘if a shared variable is modified by one process
and is accessed by other processes, then the access to the variable must be protected, and it is the responsibility of
the programmer to ensure mutual exclusion of each access to the variable by using high-level language constructs
such as critical sections.”” Further, they state that critical sections should be implemented using hardware recog-
nizable synchronization primitives.

The Alpha memory model is specified in terms of partial orders on memory operations and constraints on
those partial orders [Sit92]. Although the specification methodology for the Alpha model is very different from
that of weak ordering, the two models are semantically similar. The Alpha processor provides memory barrier
(MB) instructions, and effectively ensures that two memory operations of a processor separated by an MB
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instruction appear to execute in program order. The MB instruction could be viewed as a synchronization
memory operation of weak ordering; however, there is one important difference. As an example, a synchroniza-
tion write operation of weak ordering to location S can be used to communicate the completion of its preceding
operations to other processors that later read the location S The MB instruction does not access a memory loca-
tion and so by itself cannot be used for the above purpose; instead, it must always be used in conjunction with
another memory operation. The semantics of a synchronization operation of weak ordering can be simulated by
the Alpha by a memory operation that isimmediately preceded and immediately followed by MB instructions.

The RP3 system (described in Section 2.1.4) [BMW85, PBG85] provides a fence instruction similar to the
MB instruction of Alpha, and can aso be viewed as an implementation of weak ordering. The CRAY XMP aso
provides asimilar instruction called the complete memory reference or CMR instruction [CRA82].

Bisiani, Nowatzyk, and Ravishankar propose a slightly relaxed version of weak ordering for the PLUS sys-
tem [BNR89, BiR90]. The system allows a processor to proceed on read-modify-write synchronization operations
before the requested value is returned, if it is known that the returned value does not *‘affect’’ the subsequent
operations, or if the subsequent operations can be undone if the returned value necessitates it.

Attiya et al. describe the hybrid consistency model as a formalization of models such as weak ordering
[AtF92]. They use the formalism of a simplified 1/O automaton to define their models [LyT88] (briefly described
in Section 2.3). The model classifies memory operations as strong and weak. Informally, the model requires that
‘() strong operations appear to be executed in some sequential order at all processes, and (b) if two operations
are invoked by the same process and one of them is strong, then they appear to be executed in the order they were
invoked'’ [AtF92]. Thus, strong operations are anal ogous to the synchronization operations of weak ordering, and
weak operations are analogous to the data operations of weak ordering. However, as the authors point out in
another paper, the formalism used above does not easily express aggressive optimizations such as non-blocking
reads, out-of-order issue, and speculative execution [ACF93]. The authors have also proposed implementations of
hybrid consistency, assuming each processor has a copy of the entire memory and that all writes can be broadcast
atomically [AtF92, Fri93]. They aso prove lower bounds on response times in hybrid consistent systems
[AtF92, Frio3].*

2.2.2. Processor Consistency And Related Models

The processor consistency model was originally identified by Goodman [Goo89]. The model ensures that
write operations of a given processor are observed in the same order by all processors in the system; however,
writes by different processors may be seen in different orders by different processors. For example, processor
consistency allows the execution of figure 2.1(b) where processors P; and P, observe the writes of P, and P, in
different order. Goodman cites the VAX 8800 as an example of acommercial processor that guarantees processor
consistency, but not sequential consistency. Goodman also hypothesizes that processor consistency is adequate for
most programs.

Processor consistency was later refined by Gharachorloo et al. to explicitly specify the constraints on read
operations as follows [GLL90]. (The definition implicitly assumes uniprocessor dependences and cache coher-
ence.)

Definition 2.3: [A system is processor consistent if] (1) before a load is alowed to perform with
respect to any other processor, all [preceding] load accesses must be performed, and (2) before a store
is allowed to perform with respect to any other processor, all [preceding] accesses (loads and stores)
must be performed.

4. To dlow some of the optimizations disallowed by the original formalism of hybrid consistency, Attiya et a. have ex-
tended the formalism and redefined hybrid consistency [ACF93]. However, their new conditions seem to imply that all
operations of a processor must appear to occur in ‘‘amost’’ program order, and so seem much stronger than the original
definition. As one example, consider a program where a processor executes two strong writes to different locations, and
another processor reads the same locations in opposite order using weak accesses. Overlapping or reordering weak (i.e.,
data) accessesfor this program seemsto violate the new definition of hybrid consistency.
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Processor consistency can potentially provide higher performance than sequential consistency because it
alows all reads to bypass all preceding writes of a processor (as long as the read and write are not to the same
location), thereby allowing the aggressive use of write buffers in a system. Processor consistency also does not
reguire writes to be atomic.

It was recently discovered that definition 2.3 does not allow aread to return the value of its own processor’s
preceding write from the write buffer until the write is serialized at memory, and a revision that eliminates the
above constraint has been published [GGH93]. This revision involves modifying the definition of ‘‘perform,”’
and allows certain executions not allowed by definition 2.3. The relevant results of the rest of this thesis are appli-
cable to both the above definition and the revised version of the processor consistency model.

The SPARC V8 architecture defined the total store ordering and partial store ordering models using a
partial-order based formalism [SUN91]. These models are best understood when the system is viewed as a set of
processors with a common memory module (as in figure 1.1), but where each processor has a write buffer. The
following first describes the key features of total store ordering using the original formalism, and then compares it
to processor consistency. The model ensures the existence of a partial order on all memory operations, where the
partial order obeys a set of axioms. This partia order reflects the ordering of the operations at the common
memory module and has the following key properties: (1) the order istotal on al writes, (2) if aread precedes an
operation in program order, then it also does so in the above partial order, (3) two program-ordered writes appear
in program order in the above partial order, and (4) a read returns the value of the latest write that is either before
it by the above partial order or that is before it by program order. The partial order also obeys uniprocessor
dependencies, and does not order any write between the read and write of a read-modify-write.

Total store ordering is similar to definition 2.3 of processor consistency with the following exceptions con-
cerning the atomicity of writes. Total store ordering requires that a write by a processor P; should appear to be
performed with respect to all other processors in the system at the same time (this is implied by (1) above); this
makes total store ordering more strict than definition 2.3 (and the revised definition of processor consistency
[GGH93]). Tota store ordering allows a processor to read the value of its own write from its write buffer before
the write is sent out to the memory system (implied by (4)). This makestotal store ordering less strict than proces-
sor consistency when compared to definition 2.3, but not when compared to the revised definition [GGH93].

The partial store ordering model is similar to total store ordering except that it ensures two writes of the
same processor to different locations will appear in program order only if they are separated by a special STBAR
(store barrier) instruction [SUN91]. Thus, partial store ordering allows writes of a processor to be executed in
paralel.

The authors of the SPARC V8 models state that programs that use single-writer-multiple-readers locks to
protect all accesses to writable shared data will be portable across systems that obey total store ordering, partial
store ordegi ng, and sequential consistency (the lock routines need to be written to run correctly for partial store
ordering).

The SPARC V9 architecture introduces an additional model called relaxed memory order [SUN93]. This
model guarantees uniprocessor dependencies. To enforce any other program order, it provides a range of barrier
instructions (like STBAR) that order various pairs of memory operations. The model ensures that two memory

5. The SPARC V8 manual also states that programs that use write locks to protect write operations but read without
locking are portable across total store ordering, partial store ordering, and sequential consistency if writes of a processor are
separated by the STBAR instruction. However, without further interpretation, this seemsincorrect, asillustrated by the fol-
lowing program.

Initially X =Y =0
Py P,
lock L1 lock L2
A=1 B=1
r1=B r2=A

unlock L1 unlock L2

The above program seems to obey the specified constraint; however, it is possible for the reads of A and B to return O on a
total store ordering system, while such aresult is not possible on a sequentially consistent system.
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operations of a processor will appear to execute in program order if the operations are separated by the appropri-
ate barrier instruction.

The IBM 370 memory model [IBM83] can be viewed as a combination of a restricted total store ordering
and the weak ordering models, although it was defined before either. Like the other models in this section, the
370 guarantees that operations of a single processor will appear to execute in program order except for awrite fol-
lowed by a read to a different location. Additionally, the 370 also seems to guarantee that writes will appear to
execute atomically; thus, a read cannot return a value from its processor’s write buffer until the write has been
performed.6 The 370 also provides serialization instructions similar to the MB instruction of Alpha. Before exe-
cuting a serialization operation, a processor completes all operations that precede the serialization operation.
Before executing any nonserialization operation, a processor completes all serialization operations that precede
that non-serialization operation. Some of the serialization instructions also access memory; therefore, memory
operations from such instructions are equivalent to synchronization operations of weak ordering.

Landin et a. propose various schemes for race-free interconnection networks that exploit the transaction
orderings preserved by the network [LHH91]. One of the schemes is more aggressive than definition 2.3 of pro-
cessor consistency, but preserves the semantics of definition 2.3 [GAG93]. Other schemes are variants of proces-
Sor consistency.

Lipton and Sandberg have proposed the pipelined RAM model [LiS88, San90]. The definition assumes that
each processor is associated with a copy of its memory. It states that a read returns the value of the accessed loca-
tion in its processor’s copy, and a write updates its processor’s copy and sends out update messages for all other
memory copies. (Thisis similar to Collier's system abstraction described in Section 2.3). The above definition
does not place any constraints on the order in which memory operations are seen by different processors, and
seems too weak for programmers (in the absence of hardware primitives more powerful than simple reads, writes,
and read-modify-writes). However, discussions of the pipelined RAM system seem to imply that writes by the
same processor are intended to be seen in the same order by all other processors, and each processor must execute
its operations in program order [San90]. This seems to obey the aggressive version of processor consistency pro-
posed by Landin et al. [LHH91], but is more aggressive than definition 2.3 since it allows writes of a single pro-
cessor to be pipelined.

Ahamad et al. describe a formalization of Goodman'’s definition of processor consistency and the pipelined
RAM using the formalism of execution histories (see Section 2.3), and discuss certain programming properties of
processor consistency [ABJ93]. Some of the authors of this work have subsequently developed the work to
include other models aso, but do not provide formal proofs of equivalence between their formalizations and the
original definitions of the models [KNA93].

2.2.3. Release Consistency And Related Models

The release consistency model combines and extends weak ordering and processor consistency [GLL90].7
The model exploits differences between different types of synchronization operations to provide higher perfor-
mance potential than either weak ordering or processor consistency [GLL90]. The model classifies all shared-
memory operations into special and ordinary, all special operations into syncs and nsyncs, and all sync operations
into releases and acquires. This classification of memory operations will be discussed in more detail in Chapter 6.
Intuitively, ordinary accesses refer to synchronized data accesses, special accesses refer to synchronization or
asynchronous data accesses; releases are write synchronizations used to order ordinary data operations (e.g., write
due to an unlock); acquires are read synchronizations used to order ordinary data operations (e.g., read due to a
lock); nsyncs are asynchronous data accesses or synchronization accesses not used to order ordinary data opera-
tions (e.g., set operation of atest& set). The model is defined as follows.

6. We say the 370 seems to guarantee atomicity because the manual does not discuss non-atomic writes, but also does
not explicitly mention that it enforces writes to be atomic. If writesin the 370 are intended to be non-atomic, then the 370
model can be viewed as a combination of processor consistency and weak ordering.

7. The remarks about the revision of processor consistency in Section 2.2.2 apply to release consistency as well;
specifically, the revised version uses the new definition of perform, but the revision does not affect our results.
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Definition 2.4: [A system is release consistent if] (1) before an ordinary load or store access is
alowed to perform with respect to any other processor, al [preceding] acquire accesses must be per-
formed, and (2) before a release access is allowed to perform with respect to any other processor, all
[preceding] ordinary load and store accesses must be performed, and (3) special accesses are proces-
sor consistent with respect to one another.

Compared to weak ordering, release consistency provides a higher performance potential mainly by allow-
ing memory operations following a release synchronization to be overlapped with the operations that precede the
release and the release itself, by allowing memory operations preceding synchronization to be overlapped with
operations following the acquire and the acquire itself, by allowing a read synchronization operation to bypass
previous write synchronization operations, and by alowing a write synchronization operation to be non-atomic.
Compared to processor consistency, release consistency provides higher performance potential mainly by allow-
ing all operations between consecutive synchronization operations to be overlapped.

A variant of release consistency where special accesses are sequentially consistent is also proposed
[GLL9Q]. Thismodel is abbreviated as RCsc, while the model with processor consistent special accesses is abbre-
viated as RCpc. Gharachorloo et al. identify a set of software constraints for which a system that obeys RCsc
appears sequentially consistent. Programs that obey these constraints are called properly labeled (PL) programs.

Keleher et a. have proposed an implementation of release consistency, called lazy release consistency, for
software-based shared virtual memory systems [KCZ92]. However, the implementation is a relaxation of release
consistency since it does not require performing a memory access before the following release. Instead, it requires
performing the access only at the next acquire to the same location as a following release, and only with respect to
the acquiring processor. Petersen and Li have proposed alternative implementations of lazy release consistency
using virtual memory support [Pel.92a, PeL 92b].

Bershad et a. [BeZ91] have proposed a relaxation of release consistency for the Midway software-based
shared virtual memory system [BeZ91]. This model, called entry consistency, requires programmers to associate
each data operation with a lock variable that should protect the operation. Like lazy release consistency, entry
consistency does not perform an operation at the following release of a lock; instead, it postpones it to the time
when another processor acquires the same lock and then performs the operation only with respect to the acquiring
processor. In addition, entry consistency only guarantees that operations associated with the lock variable will be
performed (with respect to the acquiring processor) at the time of the acquire. Bershad et al. have also proposed a
combination of release consistency and entry consistency for Midway [BZS92]. The specification of entry con-
sistency, however, seemsto be incomplete; Chapter 7 discusses this issue further.

Gibbons and Merritt have proposed a relaxation of release consistency (RCsc) that is a generalization of
entry consistency [GiM92]. This relaxation allows a programmer to associate a release with a subset of the
preceding operations. A release now needs to wait for only its associated data operations (and all preceding syn-
chronization operations) to be performed. Gibbons and Merritt state and prove the correctness of a formal set of
constraints on programs for which such a system appears sequentially consistent. Further, this work also alows
program order to be specified as a partial order per process, which can simplify expressing certain types of paral-
lelism for the programmer. The specification in this work also seems to be incomplete and is discussed further in
Chapter 7.

Dubois et a. propose delayed consistency for a release consistent system where an invalidation is buffered
at the receiving processor until a subsequent acquire is executed by the processor [DWB91]. This scheme alevi-
ates the problem of false sharing; however, it does not strictly implement rel ease consistency since a processor can
execute a release before its preceding operations are performed at all other processors. Another form of delayed
consistency, referred to as loose coherence for Munin [BCZ90] and also discussed in [DWB91], buffers updates
of aprocessor until the following synchronization operation of the same processor. This retains the memory model
of release consistency.

Zucker proposes implementations for systems using software cache coherence [Zuc92]. He shows how
these implementations do not obey the release consistency model, but obey the related programmer-centric model
of data-race-free-1 that will be developed later in thisthesis.
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The buffer consistency model for the Beehive system differs from release consistency mainly by not requir-
ing reads to be performed before the following release [LeR91, ShR91].

Note that the Alpha simulates the different types of operations of release consistency (RCpc) more
efficiently than those of weak ordering. A write immediately preceded by an MB is arelease, aread immediately
followed by an MB is an acquire, and al other operations are data operations. Analogous observations hold for
the RP3 system.

The VAX memory model differs from the above models by avoiding explicit restrictions on the order of exe-
cution of specific memory operations. Instead, the VAX architecture handbook states the following [Dec81]:
“* Accesses to explicitly shared data that may be written must be synchronized. Before accessing shared writable
data, the programmer must acquire control of the data structure. Seven instructions are provided to permit inter-
locked access to a control variable.”” We have adopted the VAX approach for our work, as described in Chapter 3.

2.2.4. Other Relaxed Models

Collier has developed a general framework to express a variety of memory consistency models [Col84-92].
He uses an abstraction of a shared-memory system where each processor is associated with a copy of the shared-
memory, a write consists of multiple sub-operations where each sub-operation updates one memory copy, and a
read consists of a sub-operation that returns the value of the location in the memory copy of the reading processor.
We adopt this abstraction for specifying system requirements for our work (Chapter 5). Based on the above
abstraction, Collier defines architectures as sets of rules, where each rule is arestriction on the order in which cer-
tain memory sub-operations will appear to execute [Col84-92]. Using graph theoretic results, he has proved
equivalences and inequivalences of several of these sets of rules or architectures. Examples of the rules include
program order which states that all sub-operations of an operation will appear to execute before any sub-operation
of the following operation by program order. The rule of write order imposes the above restriction only on pairs
of program-ordered writes. The rule of write order by store imposes the above restriction only on sub-operations
of program-ordered writes that occur in the issuing processor’s memory copy. Different combinations of the vari-
ous rules represent different memory models, many of which are weaker than sequential consistency. The issue of
programming most of these models, however, has not been addressed.

Scheurich proposes a model called concurrent consistency [Sch89], which is defined to behave like a
sequentially consistent system for all programs except those that explicitly test for sequential consistency or take
access timings into consideration. The programs have not been further characterized. Scheurich states sufficient
conditions for obeying concurrent consistency. Informally, these are (1) memory operations of a given processor
are issued and performed in program order and (2) when a write operation of processor P; is observed by proces-
sor Pj, al memory operations previously observed by processor P; should also have been observed by processor
P;. No practical implementations of concurrent consistency that are not sequentially consistent are given. The
above sufficient conditions were originally stated as the definition of strong ordering and claimed to be sufficient
for sequential consistency [DSB86]. However, there are programs for which the conditions violate sequentia con-
sistency [AdH904] and strong ordering was later redefined as the hardware quality of a multiprocessor which
guarantees sequential consistency without further software aid [DuS90, Sch89].

Hutto and Ahamad have hierarchically characterized various weak models [HUA90]. They introduce a
model called slow memory that only ensures that (1) aread will aways return a value that has been written to the
same location, (2) once a processor reads the value of a write by another processor, it cannot read values of older
writes to the same location by the same processor, and (3) local writes are immediately visible. Thus, slow
memory is weaker than all the models discussed so far. Although the solutions of some problems have been
demonstrated on slow memory, programming general problems on such a model seems difficult. Hutto et a. also
introduce the model of causal memory [AHJ90, HUA90] which ensures that any write that causally precedes a
read is observed by the read. Causal precedence is a transitive relation established by program order or due to a
read that returns the value of awrite.

Bitar has proposed the weakest memory access order [Bit92]. He proposes a weakest order for the proces-
sor to issue memory operations and for the memory modules to execute memory operations. However, the order
proposed by Bitar cannot be the ‘ ‘weakest’’ order because Chapter 7 shows weaker sufficient constraints. For the
memory module, Bitar uses the theory of Shasha and Snir to theoretically identify the minimal operations that
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memory needs to execute in a specific order. However, he does not say how hardware can identify these opera-
tions. Chapter 7 discusses hiswork in more detail.

The memory model problem of shared-memory systems has analogues in distributed message passing sys-
tems. The approach taken by the ISIS distributed system is particularly relevant to our work [BiJ87, Mul89]. The
analogous term for sequential consistency in this context is synchronous behavior, which imposes strict con-
straints on the ordering of message deliveries. Instead of imposing such constraints al the time, the 1SIS system
provides the programmer with a variety of primitives that guarantee different ordering constraints. It is the
responsibility of the programmer to use those primitives in the parts of the program where their use will not
violate the appearance of synchrony. Such a systemis called a virtually synchronous system.

2.3. Formalisms For Specifying Memory Models

This section briefly summarizes the various formalisms used to specify the memory models discussed in the
previous section.

Dubois et al. developed the notions of *‘ perform with respect to,”” *‘perform,”’ and ‘‘globally perform’” to
capture the non-atomicity of memory as described in Section 2.1.4 [DSB86]. Several memory models have been
described using this terminology including weak ordering, processor consistency, and release consistency. One
disadvantage of this terminology is that it prescribes constraints in real time and so is more restrictive than the
other models described below. The other formalisms overcome this disadvantage by requiring that the real time
order of operations only appear to meet some constraints. The second disadvantage of this terminology is that it
seems inadequate to capture a subtle interaction between reads returning values from writes in their write buffers
and cache coherence. This interaction prompted the revisions in processor consistency and release consistency
(Section 2.2) [GGH93], and is discussed in detail in Chapter 7.

The formalism used by Collier isrelated to that of Dubois et al., but is not time-based. Collier uses a system
abstraction where each processor is associated with a copy of shared-memory, a write consists of sub-operations
that each update one copy of memory, and aread consists of a sub-operation that returns the value of the location
in its processor's memory copy. Collier defines various rules (or memory models) that constrain the order in
which various sub-operations should appear to execute. We adopt Collier's approach to describe system con-
straints, and explain it further in Chapter 5. The advantage of Collier's approach is that it is not time-based. It,
however, suffers from the disadvantage of not being able to easily capture the interactions discussed for the ‘* per-
forms’ formalism of Dubois et a. above. Chapter 7 explains, however, how Collier’s formalism is more attrac-
tive to reason about implementations of programmer-centric models than other formalisms that eliminate the
above problem.

The formalism developed for the SPARC V8 architecture was illustrated in the description of the total store
ordering model in the previous section. This formalism requires that there be a partial order on all memory opera-
tions, where the order obeys certain axioms [SUN91, SFC91]. The advantage of this formalism is that it captures
the write buffer interaction described above; the disadvantage, however, is that it does not adequately model the
non-atomicity of writes.

Gibbons et al. and Afek et al. [ABM89, ABM93, GMG91, GiM92] use the formalism of an |/O automaton
developed by Lynch and Tuttle [LyT88]. This formalism expresses the system in terms of a non-deterministic
automaton. The formalism is powerful and precise, and does not suffer from the disadvantages of the above for-
malisms. However, compared to other formalisms, it is less straightforward to translate a model in this formalism
into an implementation, or to use such amodel to verify the correctness of programs.

Others have used 1/0 automata, but express the model as constraints on the *‘ execution histories of proces-
sors’ generated by the automaton, rather than as the transition functions of the automaton itself
[ABJ93, AtF92, KNA93]. The historiesin the cited works indicate the state of memory as viewed by a processor,
and thus represent systems similar to Collier's abstraction. Consequently, they suffer from the same limitation as
Collier’s abstraction.

The Alpha memory model is described in terms of constraints on a partial order which is composed of pro-
gram order, and an order between operation pairs to the same location where at least one of the pair is a write.
Hutto et al. describe causal memory using similar partial orders. These methods do not adequately model non-
atomicity and can be considered to be special cases of Collier’s formalism.
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We have, jointly with others, proposed a uniform methodology to describe many of the models of Section
2.2 [GAG93]. The formalism used is a combination of Collier’s formalism and the formalism developed for the
SPARC V8 models, and eliminates the disadvantages of the above formalisms. The advantages of our formalism
are that it is not time-based, it captures the write buffer interaction indicated above, and it captures non-atomicity
of writes. Using this formalism, we develop a uniform specification methodology for specifying many of the
above memory models. The key advantage of the methodology is that it eliminates some unnecessary constraints
for many of the models without changing the semantics of the model, thereby allowing more aggressive imple-
mentations. Further, it translates many models into a common framework making it easier to compare them and
tranglate them into implementations. We use a similar specification methodology in Chapter 7, and postpone a
further discussion of thiswork until that chapter.

2.4. Performance Benefits of Relaxed Memory Systems

This section discusses studies that analyze the performance benefits of relaxed memory systems. We focus
on studies that examine systems with non-bus interconnection networks and that use real programs as workloads.
All of the following studies evaluate runtime optimizations. To the best of our knowledge, there have not been
any studies evaluating performance gains for the relaxed models due to compiler optimizations.

Gharachorloo et a. compared the models of sequential consistency, processor consistency, weak ordering,
and release consistency (RCpc) for a DASH-like architecture [LLG90] using an execution-driven instruction-level
simulator [GGH914a]. The study assumed an invalidation-based cache coherence protocol and blocking reads. It
showed that the relaxed models can hide most of the write latency and can perform upto 41% better than sequen-
tial consistency. It also showed that with blocking reads, processor consistency performed as well as weak order-
ing and release consistency for most cases. This result is surprising because processor consistency only allows
reads to bypass writes, whereas weak ordering and release consistency also allow writes to be pipelined. Thus,
potentially with processor consistency, the write buffer could get full faster and the processor could have to block
often on writes. However, with blocking reads, much of the latency of writes is hidden behind the reads, and the
write buffer does not block often. In one case, processor consistency even does better than weak ordering because
weak ordering requires its synchronization reads to stall for previous write operations, whereas in processor con-
sistency, reads are never stalled for previous writes.

Zucker and Baer have studied sequential consistency, weak ordering, and release consistency (RCpc) with
non-blocking reads, but where a processor is stalled when the value of an outstanding read is needed
[Zuc92,ZuB92]. Again an execution-driven instruction-level simulator was used. The architecture studied was a
dance-hall system with processors connected to memory through an omega network. The study involved examin-
ing the benefits of the relaxed models with varying cache and line sizes. It showed gains of upto 35% over SC,
which were highly correlated with the hit rate, which in turn was highly correlated with the cache and line size.

Neither of the above studies fully exploited the non-blocking reads allowed by weak ordering and release
consistency. Gharachorloo et al. [GGH92] examine non-blocking reads on a dynamically scheduled processor
with atrace-driven simulation. The results indicate that weak ordering and release consistency can hide most of
the read latency, but only with large window sizes (from 64 to 256).

Researchers at Rice University have performed two studies to compare release consistency and lazy release
consistency implementations on a software-based shared virtual memory system [DKC93, KCZ92]. A key deter-
minant of performance for such systems is the number of messages and amount of data exchanged. The first study
is a trace-based simulation that examines the above metrics using invalidation and update based protocols
[KCZ92]. The study shows that the number of messages and data transferred in the lazy release consistency
schemes is consistently lower than for release consistency, especially for programs that show false sharing and
frequent synchronization. The comparison between update and invalidate protocols is dependent on the type of
sharing. The second study is a more detailed, execution-driven simulation that additionally examines a hybrid
protocol for lazy release consistency that combines the advantages of the invalidate and update protocols. The
study shows that the lazy hybrid protocol outperforms the other lazy protocols, and shows significant improve-
ment for medium-grained applications. However, the results suggest that lock acquisition time is a serious limita-
tion for shared virtual memory systems.
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The above studies were for relatively large systems with non-bus interconnection, and used parallel pro-
grams as workloads. The following studies examine smaller bus-based systems and/or use probabilistic work-
loads.

Baer and Zucker have compared sequential consistency and weak ordering on a bus-based system [BaZ91]
using simulation. Torellas and Hennessy use analytical models to compare the same models on a DASH-like sys-
tem [ToH90]. Both studiesfind little improvement with weak ordering.

Petersen and Li use trace-based simulation to study sequential consistency and lazy release consistency
implemented using virtual memory hardware support and compare it with a snooping protocol on a bus-based sys-
tem (they also give a few results for a crossbar system) [Pel92a, Pel 92b]. They show that the lazy release con-
sistency scheme is competitive with the snooping scheme in terms of performance, and recommend it because of
itsimplementation simplicity and flexibility.

Lee and Ramachandran use a probabilistic workload to compare buffer consistency with sequential con-
sistency [LeR91]. Their study does not show significant performance gains with buffer consistency.

2.5. Correctness Criteria Stronger Than or Similar to Sequential Consistency
This section discusses correctness criteria that are stronger than, or similar to, sequential consistency.

A common correctness criteria for concurrent databases is serializability [BeG81, Pap86], which requires
that transactions should appear as if they are executed one at atime in some sequential order. Thisisvery similar
to sequential consistency. However, database systems serialize the effects of entire transactions (which may be
several reads and writes), while this thesis is concerned with the atomicity of individual reads and writes. The
concept of atransaction may be extended to our case as well and database algorithms applied, but practical rea-
sons limit the feasibility of this application. In particular, since database transactions may involve multiple disk
accesses, and hence take much longer than simple memory operations, database systems can afford to incur a
much larger overhead for concurrency control.

Herlihy and Wing propose a model of correctness, called linearizability, for systems with general con-
current objects [HeW90]. This model is proposed using the formalism of execution histories, where a history con-
sists of invocation and response events for each operation (which may be a high-level operation involving several
reads and writes of a concurrent object). The model assumes well-formed histories where each processor’s opera-
tions are serialized (i.e., the response of an operation appears before the invocation of the next operation). Analo-
gous to sequential consistency, linearizability requires all (possibly high-level) operations to appear to executein a
total order. It further requires that if an operation completely precedes another in the execution history, then that
precedence should be preserved in the equivalent total order. A key difference between linearizability and sequen-
tial consistency is that linearizability is alocal property; i.e., if al objectsin the system are individually lineariz-
able, then the system is linearizable. However, the practical difference between sequential consistency and linear-
izability is unclear. Specifically, we are mainly interested in aggressive processors that can overlap and reorder
their memory operar[ions8 For such a processor, a well-formed history does not correspond to the real time order
of execution of the processor’'s memory operations; therefore, the significance of preserving the precedences of
the processor’s operations in the history is unclear. For processors that do not overlap or reorder their memory
operations, we are not aware of any sequentially consistent implementations that are not also linearizable (assum-
ing individual memory locations are the concurrent objects and the reads and writes of such locations are the
operations).

Many theoretical models of shared-memory have been proposed to simplify the design and analysis of
paralel agorithms. The parallel random access machine (PRAM) model is one of the most well-known
[FOW78]. The PRAM model assumes that processors proceed in lockstep, executing a read, compute, and write
function of their next instruction in every cycle. A PRAM obeys sequential consistency because all memory
operations of a PRAM execution can be serialized consistent with program order. A sequentialy consistent sys-
tem, however, need not be a PRAM since it can alow its processors to execute asynchronously at different rates,

8. We say a processor overlaps its operations if it issues an operation before its preceding operation is performed (ac-
cording to the definition of Duboiset al.).
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possibly resulting in executions that would not occur if processors proceeded in lockstep. Alternatively, the possi-
ble total orderings of memory operations corresponding to PRAM executions of a program are a subset of the pos-
sible total orderings for sequentially consistent executions. The PRAM model simplifies performance analysis of
parallel algorithms. However, it is not a satisfactory model of correctness since requiring real machines to exhibit
such synchronous behavior is far too expensive. Various, increasingly asynchronous relaxations of the PRAM
have been proposed, but they still do not describe practical systems well enough to be considered as the model of
correctness.
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Chapter 3

A Programmer-Centric M ethodology for Specifying
Memory Models

Section 3.1 motivates the need for a uniform, programmer-centric methodology for specifying shared-
memory models. Section 3.2 proposes one such methodology called the sequential consistency normal form
(SCNF). Section 3.3 discusses some common concepts and terminology that will be used to define SCNF memory
modelsin therest of thisthesis.

3.1. Motivation for a Programmer-Centric M ethodology

Chapter 2 discussed several relaxed memory models that have been proposed. These models are specified
using various methodologies and present a large variety of system constraints. To determine which model to use
for a system and how to specify a memory model, we need to evaluate the various models and specification
methodol ogies based on three criteria — programmability, performance, and portability — as follows. The first
criterion of programmability determines the ease with which programmers can reason with the model. The second
criterion of performance determines how fast programs can execute on practical implementations allowed by the
model. In general, there is a trade-off between ease-of-programming and performance. For example, sequential
consistency presents a simpler interface to programmers than the other models; however, sequential consistency is
less amenable to high performance implementations than the other models. Since there is a tradeoff, it is likely
that there is no ideal model and there will aways exist a range of desirable models in the future. In such a
scenario, it isimportant that the models be specified in a manner that makes it simple to port programs written for
one model to another model. The third criterion, portability, for evaluating a memory model and its specification
methodology determines the ease of porting programs between models specified with the given methodology. We
refer to the three criteria of programmability, portability, and performance as the 3P criteria for evaluating
memory models.

An ideal specification methodology for memory models should satisfy the 3P criteria as follows. For the
first criterion of programmability, the specification should present a simple and familiar interface to the program-
mer. For the second criterion of performance, the specification should not impose any constraints on the system
that are not necessary to meet the intended semantics of the model. For the third criterion of portability, the
specification should camouflage the underlying system optimizations in a manner that presents a uniform interface
to the programmer across a wide range of systems.

Most models and their specification methodologies discussed in the previous chapter lack many of the
above properties. First, many of these models have been motivated by uniprocessor hardware optimizations and
are defined amost in terms of those optimizations. This hardware-centric nature of the models makes them
difficult to reason with for programmers. For example, processor consistency requires programmers to be aware
that writes may not be executed atomically, effectively requiring programmers to be aware of caches in the under-
lying hardware. Second, as we will see later, some of the specifications prohibit implementations that would not
otherwise violate the intended semantics of the model. For example, the authors of weak ordering mention that
programmers should *‘ ensure mutual exclusion for each access to [a shared writable] variable by using high-level
language constructs such as critical sections,’’ where critical sections are implemented using hardware-
recognizable synchronization primitives [DuS90]. There are potentialy higher performance implementations not
alowed by weak ordering that would also allow correct execution of such programs. Finally, in general, the rela-
tionships between the different models are not clear and so in many cases, porting a program written for one
model to another model requires reasoning about the program again with the optimizations of the new model. For
example, although total store ordering and processor consistency are very similar, the subtle differences between
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them can result in different behavior for certain programs. Thus, when moving a program written from total store
ordering to processor consistency, determining whether the program will give acceptable results on processor con-
sistency requires reasoning about the program again with the different semantics of processor consistency. Thus,
the current models and their specification methodol ogies do not meet the 3P criteria adequately and there is a need
for amore uniform and less hardware-centric methodol ogy to specify memory models.

The rationale behind many of the models in Chapter 2 is that their optimizations allow most common pro-
grams to work correctly (at most with a few modifications to the program). For example, the authors of weak ord-
ering informally cite the programs that use mutual exclusion through constructs such as critical sections [DuS90]
and the authors of total store ordering and partial store ordering cite programs that use locks as described in Sec-
tion 2.2.2 [SUN91]. In general, however, to formally ensure that a program is correct, further interpretation of the
above informal statements may be required and the programmer has to reason with the specific optimizations of
the model.

Given that many models informally state how programs can be written to ensure *‘ correct’’ behavior, and
given that these models are defined so that they appear ‘‘correct’’ to common programs, these models motivate
the following potentially better approach for defining memory models. System designers could fix a uniform base
model that captures the programmer’s notion of ‘‘correctness’ and then define memory models entirely in terms
of programs for which the model will appear like the base model. With this approach, programmers can aways
reason with the base model, and system designers are free to perform any optimizations that do not appear to
violate the base model for the specified set of programs. An obvious choice for the base model is that of sequen-
tial consistency since it is a natural extension of the uniprocessor model and the most commonly assumed notion
of correctness in multiprocessors. These observations lead to a specification methodology called the sequential
consistency normal form or SCNF described below.

3.2. Sequential Consistency Normal Form (SCNF)

The sequentia consistency normal form (SCNF) method of specifying memory models (earlier called weak
ordering with respect to a synchronization model [AdH90b]) is as follows.

Definition 3.1: A memory model is in sequential consistency normal form (SCNF) iff it guarantees
sequentia consistency to a set of formally-characterized programs. Further, the program characteriza-
tion should not consider non-sequentially consistent executions.

Note that a memory model in SCNF does not provide any guarantees for programs that do not obey the described
characterization. This property may be a disadvantage for programmers when debugging programs that do not yet
obey the characterization; Chapter 8 addresses this issue. This property is an advantage for system designers
because it alows them to give higher performance by fully exploiting the known characteristics of the allowed
programs, irrespective of the effect on any other programs. The following chapters illustrate this advantage.

A memory model specification in SCNF implies a contract between programmers and system designers by
which programmers are expected to adhere to certain rules and system designers are expected to give sequential
consistency to programs that obey those rules. The rules for the SCNF models proposed in this thesis allow the
use of all algorithms and programming paradigms developed for sequential consistency; the rules ssmply require
programmers to provide certain information about the memory accesses in the program. This information helps
the system determine whether an optimization is safe to apply to a certain memory operation. Consequently, pro-
grammers are free to provide conservative information; this simply prohibits the system from applying aggressive
optimizations but preserves correctness. The programmer, however, may not specify incorrect information. This
is because in the presence of incorrect information, the system may apply optimizations to unsafe parts of the pro-
gram and violate sequential consistency.

Thus, an SCNF memory model is ssimply a method for the system to get help from the programmer to iden-
tify parts of the program where optimizations may be applied without violating sequential consistency. For the
specific models in this thesis, the programmer always has the choice of not providing any help to the system: the
cost is only in performance, not correctness. Therefore, rather than viewing this thesis as proposing different
memory models, programmers can view this work as demonstrating how to get sequential consistency with high
performance on different systems.
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When viewed as different memory models, SCNF specifications address the 3P criteria discussed earlier as
follows. For programmability, SCNF keeps the programmer’s model simple by expressing it in terms of sequen-
tial consistency, the most frequently assumed model. For performance, SCNF provides tremendous flexibility to
system designers by requiring only that the system appear sequentially consistent to all programs that obey the
given characterization; no unnecessary conditions on how the system should create this appearance are given. For
portability, SCNF models allow programmers to always program to a single interface (sequential consistency). If
the program requirements of the models are easy to obey (as for the models in the subsequent chapters), then port-
ing programs across different modelsis straightforward.

Besides addressing the 3P criteria adequately, the SCNF method of specification also provides a unified
scheme for specifying and comparing memory models. A new memory model is useful only if the requirements it
imposes on programs are easier to obey than previous models, or if it gives sequential consistency with higher per-
formance than previous models. As we shall see later, the SCNF method does not make any distinction between
implementations of RCsc (without nsyncs), lazy release consistency, the VAX, and weak ordering since the infor-
mation for which these implementations are known to provide sequential consistency is the same. Such a
unification is desirable because for many programmers (those that want sequential consistency), these systems are
similar.

A few other models have used approaches similar to that of SCNF. The closest isthe VAX model [Dec81].
The VAX model does not explicitly impose any system constraints. Instead, the following restriction is mentioned
for programmers [Dec81]. ‘*Accesses to explicitly shared data that may be written must be synchronized. Before
accessing shared writable data, the programmer must acquire control of the data structure [through seven interlock
instructions].”” The SCNF method generalizes the VAX approach and makes it more formal by explicitly stating
how the system will behave when the programs obey the required constraints (i.e., sequentially consistent). The
concurrent consistency model [Sch89] ensures sequential consistency to all programs except those *‘which expli-
citly test for sequential consistency or take access timingsinto consideration.”” The SCNF method also generalizes
the concurrent consistency approach, but requires that the constraints on programs be formally verifiable by rea-
soning about the behavior of the program on sequentialy consistent systems (the constraints of concurrent con-
sistency seem ambiguous and do not seem to fulfill this condition). Finally, the RCsc model, which was
developed in parallel with the SCNF approach, is accompanied by a formal characterization of programs, caled
properly labeled or PL programs, for which RCsc gives sequential consistency [GLL90]. Thus, like the SCNF
methodology, RCsc does not require programmers to deal with the system constraints of RCsc. However, in con-
trast to the SCNF methodology, RCsc imposes constraints on the system that are not necessary to guarantee
sequential consistency to PL programs (Chapter 6).

The following discusses some potentia disadvantages of specifying a memory model in SCNF and argues
that these are more than offset by the advantages discussed above. First, the SCNF specification does not provide
agood model for programmers of asynchronous algorithms that do not rely on sequential consistency for correct-
ness [DeM88]. This is because the only guarantee given by SCNF models is that of sequential consistency and
only when the program obeys the specified characterization. Enforcing sequential consistency for asynchronous
algorithms could result in lower performance than is possible with other hardware-centric models. With the other
models, the programmer has the option of reasoning directly with a lower-level system specification. However,
our belief is that reasoning with such specifications is difficult and not likely to be used by many programmers.
Restricting system flexibility so that it can be used by a few programmers seems undesirable. Furthermore,
although SCNF models do not give any guarantees for programs that do not obey the relevant constraints, indivi-
dual implementations will be reasonably well-behaved for such programs. We recommend that for maximum per-
formance, programmers of asynchronous algorithms deal directly with low-level (hardware-centric) specifications
of the system implementation. Thiswould entail some risk of portability across other implementations, but would
enable future faster implementations for the other, more common programs.

A second disadvantage of SCNF is regarding debugging of programs that do not yet obey the required con-
straints. SCNF models do not provide any guarantees for such programs. Again, individua implementations
would be well-behaved for such programs and programmers could debug using the low-level (hardware-centric)
specifications of the individual implementations. Although this is no worse than debugging with the hardware-
centric models, it defeats the goal of providing a simple interface to the programmer. Possible aternatives are to
either provide a sequentially consistent mode for debugging, or to specify models so that it is possible to provide
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compile time or runtime support to determine whether and where a program violates the specified constraints.
Chapter 8 addresses thisissue for two SCNF models.

A third possible disadvantage of the SCNF specification is that the software characterization for which a
model guarantees sequential consistency may be complex, and it may be difficult to verify if a program obeys the
characterization. However, if our hypothesis that programmers prefer to reason with sequential consistency istrue,
then this complexity is actually a limitation of the proposed model, rather than of the SCNF approach. Requiring
that the model be specified in SCNF explicitly exposes thislimitation.

Finally, it may be difficult for system designers to trandate the SCNF specification to an implementation.
The specifications of the hardware-centric models allow easier trandations. However this disadvantage is offset
by the design flexibility afforded by the SCNF specification. Further, an SCNF specification can aways be
accompanied by a more hardware-centric (and probably more restrictive) specification that is easier to trandate
into an implementation, although system designers will not be restricted to obeying that specification.

3.3. Conceptsand Terminology For Defining SCNF Models

This section clarifies some intuitive concepts and terminology needed for defining SCNF models. Section
3.3.1 clarifies the dichotomy between the static and dynamic aspects of a system and Section 3.3.2 formalizes
several key concepts.

3.3.1. Dichotomy Between Static and Dynamic Aspects of a System

Figure 3.1 illustrates a typical system consisting of a static compile —time system and a dynamic runtime sys-
tem. Typically, a programmer writes a high-level language program that is transformed by the compile-time sys-
tem (consisting of software such as the compiler) into a low-level language program that can be run by the run-
time system. The runtime system (usually consisting of hardware and possibly some software) runs the low-level
language program for some input data, performing the specified state changes in the program, and resulting in one
of several possible executions of the program. To ensure that a program produces correct results on a system, pro-
grammers need to reason about all executions of their program that are possible on the system for the relevant
inputs, the compile-time software designers need to reason about all possible executions of the high-level and
low-level programs for all possible inputs, and the runtime system designers need only consider the current execu-
tion of the low-level program with the current input.

The SCNF memory models of this thesis require the programmer to reason about the behavior of memory
operations of all sequentially consistent executions of a program (for relevant inputs). More specifically, many of
the memory models we propose require that the dynamic memory operations in a sequentially consistent execution
of the program be distinguished from one another on the basis of certain rules. The programmer, however, can
only distinguish the static memory operations specified by the program. To use the models directly, programmers
must be able to determine how to distinguish the static operations so that the dynamic operations will obey the
required rules. It is possible to make this task easier by converting our low-level specifications into higher-level
specifications that explicitly determine the above mapping for the programmer. We give a few examples of such
high-level specifications, but mainly focus at the lowest level.

Requiring the programmer to provide information about the behavior of all possible sequentially consistent
executions of a program may sound complex. However, writing a correct program in any case requires (at least
conceptually) reasoning about all executions of the program possible on the given system; restricting this reason-
ing to sequentially consistent executions only decreases the number of executions that the programmer is required
to reason about (compared to other hardware-centric models).

Finally, the static part of the system may itself consist of several sub-components resulting in several system
levels. As mentioned in Chapter 1, each level needs to assume a memory model, and these models can be dif-
ferent. The software system at any static level needs to ensure that a program Prog that is correct for the model at
its level gets transformed into a program that is correct for the model at the next level and that will produce the
same results as the input program Prog.
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Figure 3.1. Dichotomy Between Static and Dynamic Aspects of a System.

Assume Input 1 and Input 2 are the only two inputs that the programmer will use.

3.3.2. Terminology for Defining SCNF Models

This section gives formal abstractions for the common concepts of a system, a program, a sequentially con-
sistent execution of a program, and a sequentially consistent system. These concepts are fairly intuitive. Some of
the forma definitions, however, are complex, but necessary for the formal interpretation and proofs of other
definitions and results. Figures 3.2, 3.3, and 3.4 give the formal definitions. For the casual reader, the following
provides a sufficient, informal summary.

A system is modeled as consisting of n processes, a set of atomically accessible shared-memory locations,
and external input and output interfaces. The only externally alterable and observable states of a system are those
of the external input and output interfaces respectively. A program specifies the initial state of a system and a
sequence of (static) instructions that modify the state of the system. An instruction also specifies (static) shared-
memory read and write operations, a partial ordering on these operations, and a partition of these operations into
atomic subsets. Thiswork allows an atomic subset to consist of either asingle read, or asingle write, or an atomic
read-modify-write, where the read-modify-write consists of aread and awrite to the same location and the read is
ordered before the write. A program is run on a system, and the result of arun isthe set of states acquired by the
output interfaces during the run.

A system is sequentially consistent if the result of every run of a program on the system is the result of a
sequentially consistent execution of the program, where a sequentially consistent execution and its result are
defined asfollows. A sequentially consistent execution of a multiprocessor program consists of a partially ordered
set of (dynamic) instances of the instructions in the program, where the instances specify changes to the state of
the system, and (dynamic) read and write operations on shared-memory. The partial order on the instances (and

the corresponding order on the shared-memory operations) is called the program order (denoted *). We
adopt the approach of Gibbons and Merritt [GiIM92] and allow the program order to be partial even over instruc-
tion instances of the same process. We will use the terms preceding and following to indicate program order. A
sequentialy consistent execution must satisfy two properties formalized in figure 3.4 and informally discussed
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Definition 3.2: A system consists of n (n = 1) processes with a set of state variables associated with
each process that can be read and changed only by a run of a program (defined below), a set of
shared-memory locations where each location can be atomically read and written only by a run of a
program, a set of external input interfaces whose state can be read only by a run of a program and
changed only by an external observer, and a set of external output interfaces whose state can be
changed only by arun of a program and observed only by an external observer. The result of arun of
a program on a system is the set of states of the external output interfaces during the run of the pro-
gram.

Definition 3.3: A program specifies the initial state of a system and an ordered set of (static) instruc-
tions per process.

Each (static) instruction specifies zero or more of the following components:

(1) reads of the current state of some state variables of its process, reads of the states of some of the
external input interfaces, and reads of the values of some shared-memory locations,

(2) changes to some of the state variables of its process and some of the external output interfaces,
and writes to some shared-memory locations,

(3) one or more sets of next instructions of its process, or amerge instruction of its process, and

(4) a partia ordering for its shared-memory reads and writes, and a partition of its shared-memory
reads and writes into atomic subsets. An atomic subset can be either a single read, or a single write,
or an atomic read-modify-write, where the read-modify-write consists of a read and a write to the
same location and the read is ordered before the write.

All of the above specifications (e.g., the shared-memory locations to be accessed) are functions of the
values returned by various reads in (1), assuming no cyclic dependences within the functions (e.g.,
the location to be read cannot be afunction of the value returned by the read.

Every process has at least one initial instruction and obeys Condition 3.7 in figure 3.3.

Definition 3.4: A (dynamic) instance i’ of an instruction i specifies the reads of some fixed state vari-
ables of its process, the writes of some fixed state variables of its process, and zero or more of the fol-
lowing components. states for some fixed external output interfaces, reads of some fixed external in-
put interfaces and their values, reads of some fixed shared-memory locations and their values, and
writes to some fixed shared-memory locations and the values, instances of one set of next instructions
of i or an instance of a merge instruction of i, a partial ordering of its shared-memory reads and
writes, and a partition of its shared-memory reads and writes into atomic subsets as specified in part
(4) of definition 3.3.

Figure 3.2. Definition of a sequentially consistent execution and system (Cont.).

below.

In a sequentially consistent execution (informally), (1) the instruction instances of a single process must
represent an execution from a correct uniprocessor given the values returned by the shared-memory reads of the
sequentially consistent execution, and (2) shared-memory operations are executed in program order, and each
read-modify-write is executed without any intervening writes to the same location. Property (1) is formalized as
Condition 3.11 in figure 3.4. Property (2) is formalized by Condition 3.12 in figure 3.4. Specifically, Condition
3.12 requires a total order on al memory operations of a sequentially consistent execution, called the execution

order (denoted by *>>), such that it is consistent with program order, a write to the same location as aread R and
write W of a read-modify-write cannot be ordered between R and W, and a read returns the value of the last write
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Definition 3.5: Satic operations, operations, or memory operations refer to shared-memory reads
and writes specified by instructions of a program; these terms include the specification of the shared-
memory location to be accessed and the specification of the value to be written (if the operation is a
write).

Dynamic operations refer to shared-memory reads and writes specified by instances of instructions;
these terms include the shared-memory location accessed and the value written (if the operation isa
write). The terms operations and memory operations are overloaded to also refer to dynamic opera-
tions.

Definition 3.6: A sequentially consistent execution of a program Prog consists of the following com-
ponents.

(1D A (possibly infinite) set, |, of instances of the instructions of program Prog that obeys the unipro-
cessor correctness condition given in Condition 3.11 in figure 3.4.

(2) A set, O, of the memory operations specified by the instruction instancesin I.
(3) A st, V, of the values returned by the read operationsin O.

(4) A total order on the operationsin O, called the execution order, denoted >, that obeys the exe-
cution order condition given in Condition 3.12 in figure 3.4.

Definition 3.7: Program Order ( *>): For instruction instances i, and i, in an execution, i; *>
i, for the execution iff (1) i, isthe next instruction instance or merge instruction instance specified by
i1, 0r (2 thereexistsig suchthati; => igandiz 2> i,. For memory operations O, and O,, O,
5 0, iff 0, and O, are from instruction instances i ; and i, respectively, and either (1) i; =
ipoor(2) i =i,andO isordered before O, by i;. The terms preceding and following will denote
program order.

Condition 3.8: For any program, if i ; and i, are instruction instances of the same process, and i, and
i, are not related by program order, then i, or i, cannot read a state variable or memory location
changed by the other instruction instance.

Definition 3.9: The result of an execution is the set of states of the external output interface specified
by the instruction instances that specify such states.

Definition 3.10: A systemis sequentially consistent if the result of every run of every program on the
system isthe result of a sequentially consistent execution of the program.

Figure 3.3. Definition of a sequentially consistent execution and system (Cont.).
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Condition 3.11: Uniprocessor correctness condition: The set of instruction instances | of an execu-
tion must obey the following conditions.

(D Aninstruction instance i is present in | iff either (a) i isthe next instruction instance of another in-
struction instance present in I, or (b) i is an instance of an initia instruction of its process and i isthe
only instance of that initial instruction that is not the next instruction instance of another instruction
instancein|. If i satisfies (b), thenitiscalled an initial instruction instance.

(2) The program order relation is acyclic. Specifically, an instruction instance is the next instruction
instance of at most one instruction instance, an initial instruction instance cannot be a next instruction
instance of any instruction instance, and a merge instruction instance for an instruction instance i
must be after i by program order.

(3) If i isaninitia instruction instance, then the value returned by i for its read of a state variable of
its processisthe initial value of that state variable as specified by the program. If i isnot aninitial in-
struction instance, then the value returned by i for its read of a state variable of its process isthe value
specified by the last instruction instance ordered before i by program order that modified that state
variable.

(4) The components other than the values of the state variables and memory locations read by an in-
struction instance i are determined by applying the functions specified by the instruction of i to the
values of the state variables read by i and the values returned by the various reads of i.

(5) The value read from an external input interface by an instruction i’ must be a value written by the
external observer or an initia value.

Condition 3.12; Execution order condition for sequentially consistent executions;

The execution order, denoted =, of a sequentially consistent execution, E, is a total order on the
set of memory operations, O, of E that obeys the following.

(1) A read in O returns the value of the write in O that is to the same location as the read and is the
last such write ordered before the read by the execution order, if such a write exists. If there is no
such write, then the read returns theinitial value of the location.

(2) If two operations O, and O, in O are from an atomic read-modify-write, then there is no write to
the same location as O, and O, ordered between O, and O, by the execution order.

(3) The number of operations ordered before any given operation by the execution order isfinite.

(4) For operations O, and O, in O, if O; *> 0O,,thenO0; = O,.

Figure 3.4. Definition of a sequentially consistent execution and system.
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to the same location ordered before it by the execution order (or the initial value if there is no such write). Intui-
tively, the execution order represents the order in which memory operations appear to execute in the system to the
programmer.

The result of a sequentially consistent execution is the set of states of the external output interface specified
by the instruction instances of the execution. Note that given the uniprocessor correctness condition (Condition
3.11), it follows that the values returned by the various shared-memory reads in a sequentially consistent execu-
tion uniquely determine the result of the execution.’ Our definition of result does not specify the sequence in
which the external output interface states change; similarly, the formalism does not consider the order of changes
to the external input interface. Although these notions may be too unconstrained for practical 1/0, we deliberately
avoid formalizing 1/0 any further since we are mainly concerned with the behavior of the memory system. It
should be possible to independently incorporate a reasonable notion of 1/O to the above formalism without affect-
ing the results of thisthesis.

Often, we will use the term operations or memory operations to refer to both static shared-memory opera-
tions (specified by the static instructions in a program) and to dynamic shared-memory operations (specified by
the dynamic instruction instances of an execution); the reference made should be clear from the context.

Finally, the formalism of this section is to define SCNF models which will be used by programmers. There-
fore, the formalism is centered around sequential consistency, the only view seen by programmers of SCNF sys-
tems. Chapter 5 extends the above formalism for designers of SCNF systems who need to reason with non-
sequentially consistent behavior as well.

9. We assume a relatively weak notion of atomic read-modify-writes to be consistent with other work [GAG93]. A
stronger notion would require all operations of an atomic subset of an instruction to appear together in the execution order.
Note, however, that even with our notion for read-modify-writes, for every sequentially consistent execution E,, there is
another sequentially consistent execution E, such that E, has the same result as E; and a read and a write of a read-
modify-write appear together in the execution order of E.,.

10. The observation that the values returned by shared-memory reads determine the result of an execution is key be-
causeit will allow us to determine the correctness of a general (non-sequentially consistent) system based on the values re-
turned by its reads. We do not develop the formalism to describe general systems until Chapter 5; therefore, we cannot yet
formally describe the meaning of the values of the reads of such a system. Nevertheless, Chapter 4 informally looks at gen-
eral systems and executions, and informally uses the notion that the values of the shared-memory reads capture the result.



Chapter 4

An SCNF Memory M odel: Data-Race-Free-0

This chapter defines an SCNF model — data-race-free-0 [AdH90b] — that is based on the intuition of weak
ordering. It shows that although data-race-free-0 and weak ordering are based on the same intuition, the SCNF
nature of data-race-free-0 provides a cleaner interface to the programmer than weak ordering, and allows for more
implementations with potentially higher performance for some common programs than weak ordering.

Section 4.1 defines the data-race-free-0 model. Section 4.2 discusses programming with data-race-free-0,
specifically comparing it to sequential consistency. Section 4.3 discusses implementations and the performance
potential of data-race-free-0. Section 4.4 compares data-race-free-0 with weak ordering on the basis of program-
mability, portability, and performance.

A uniform description of the wide range of implementations allowed by data-race-free-0 requires develop-
ing a formalism to describe such implementations. The formalism and the details of the implementations are im-
portant for system designers, but their complexity is not necessary for users of data-race-free-0. For this reason,
Section 4.3 in this chapter informally discusses only the key features of data-race-free-0 implementations. The
next chapter develops the necessary formalism and uses it to describe data-race-free-0 implementations in more
detail. Also, this chapter discusses implementations only for the runtime system since the additional performance
gains with data-race-free-0 (as compared to weak ordering) are mainly significant for the runtime system; the next
chapter will discuss compiler optimizations as well.

4.1. Definition of the Data-Race-Free-0 Memory M odel

Section 4.1.1 and 4.1.2 respectively motivate and define the data-race-free-0 model (first presented in
[AdH90b]). Section 4.1.3 describes the support needed in programming languages for data-race-free-0, and how
the definition of data-race-free-0 can be adapted to the available support.

4.1.1. Motivation for Data-Race-Free-0

The problem of maintaining sequential consistency manifests itself when two or more processors interact
through memory operations on common variables. In many cases, these interactions can be partitioned into
memory operations that are used to order events, called synchronization, and the other more frequent operations
that read and write data. A sequentially consistent system is usually forced to assume that each operation could
be either a synchronization or a data operation, and so usually imposes a delay on every operation and executes
every operation atomically. If, however, the system could distinguish between synchronization and data opera-
tions, then it may be possible to restrict actions for ensuring sequential consistency to only the synchronization
operations, and achieve higher overall performance by completing data reads and writes faster.

For example, refer to figure 4.1. The figure shows process P, writing two data locations, A and B, which are
later read by process P,. The two processes use the location Valid to synchronize with each other so that P,
reads the data only after P, updatesit. Specifically, process P, usesitswrite of Valid to indicate to P, that previ-
ous data operations of P, are complete. Process P, usesitsreads of Valid to determine when it can issue its data
reads of A and B. A correct (and sequentialy consistent) execution of such a program is one where P,’s reads of
A and B will return the new values written by P,. This correct answer can be obtained even if the data operations
of each processor are done in parallel, as long as the data writes complete before the write of Valid, and the data
reads do not begin before the read of Valid returns the new value of Valid.

The above considerations motivate an aternative programmer’s model where the programmer explicitly in-
dicates to the system whether an operation is data or synchronization. The system can then treat the two types of
operations differently, typically executing the data operations faster for higher performance. The model of weak
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P1 P2

A =100; while (Valid!=1) {;}
B = 200; ..=B;

Vdid=1; W =A;

Figure4.1. Motivation for Data-Race-Free-0.

ordering by Dubois, Scheurich and Briggs [DSB86, DSB88, Sch89] is such an aternative model, where memory
operations of a processor are not guaranteed to execute in program order unless they are separated by synchroni-
zation, and writes may appear to execute at different times to different processors.

In general, to formally determine whether an operation should be distinguished as synchronization or data,
the programmer of a weakly ordered system needs to reason with the conditions of weak ordering and deduce if
distinguishing the operation in some way will result in a correct output from the program. Thus, to determine how
to distinguish an operation on a weakly ordered system, the programmer must be aware that memory operations
are not necessarily executed in program order and that a write may not be seen at the same time by all processors.
A model based on the same motivation as weak ordering, but using the SCNF approach, can provide a higher level
of abstraction where the programmer need only consider the sequentially consistent executions of programs,
where memory operations are guaranteed to execute in program order and atomically. Reasoning with sequential
consistency involves reasoning about fewer interactions between program instructions, and a familiar program-
ming interface. The data-race-free-0 model is based on this motivation and defined next.

4.1.2. Definition of Data-Race-Free-0

The key feature of the definition of data-race-free-0 is the definition of when an operation should be dis-
tinguished as synchronization or data. This definition should be such that (1) programmers can distinguish the
operations from reasoning about sequentially consistent executions of the program, and (2) the distinctions should
alow for higher performance than with sequential consistency (without violating sequential consistency).

Intuitively, the distinguishing characteristic between data and synchronization operations is that in the exe-
cution order of any sequentially consistent execution, conflicting data operations are separated by conflicting syn-
chronization operations. (Two operations conflict if they access the same location and at least one is a write
[ShS88].) Referring back to figure 4.1, consider the write and read of B. In every sequentially consistent execution
of this program, the write and read of B will always be separated by the write and read of Valid in the execution
order. Data-race-free-0 requires that a program distinguish its operations as data and synchronization based on the
above intuition. Operations distinguished as data can then be executed aggressively. Operations distinguished as
synchronization will be executed conservatively; therefore, a programmer is free to (conservatively) distinguish
an operation as synchronization. Distinguishing an operation conservatively will prohibit the high-performance
optimizations with respect to this operation, but will result in correct (sequentially consistent) executions. A pro-
gram distinguishes its operations correctly if sufficient operations are distinguished as synchronization. Intuitively,
sufficient operations are distinguished as synchronization if al conflicting data operations are ordered by syn-
chronization operations. A program that distinguishes its operations correctly is called a data-race-free-0 program
and is formalized below. Note that any program can be converted into a data-race-free-O program by simply dis-
tinguishing all operations as synchronization operations (this could be done by one single pragma or annotation).

There are several ways to formalize data-race-free-0 programs. The following method was used in our ori-
ginal definition of the data-race-free models [AdH90b, AdH93]. This method uses a happens-before relation to in-
dicate when two memory operations are ordered by intervening synchronization operations. The relation is
strongly related to the happened-before relation defined by Lamport for message passing systems [Lam78], and
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the approximate temporal order relation defined by Netzer and Miller for detecting races in shared-memory paral-
lel programs [NeM90].

Definition 4.1: Two memory operations conflict if they access the same location and at least one of
them is awrite [ShS88].

Definition 4.2: Synchronization-order-0 ( =2>): Let X and Y be two memory operations in a
sequentially consistent execution. X =2 Y iff X and Y conflict, X and Y are distinguished as syn-
chronization operations to the system, and X <> Y in the execution.

hbo

Definition 4.3: Happens-before-0 ( ——): The happens-before-0 relation is defined on the memory
operations of a sequentially consistent execution as the irreflexive transitive closure of program order

and synchronization-order-0; i.e,, ( 2> [] %>)+. (Program order or 2> was defined in figure
3.3)

Definition 4.4: Race: Two operations in a sequentially consistent execution form a race or a data
race iff they conflict and they are not ordered by the happens-before-0 relation of the execution.

Definition 4.5: Data-Race-Free-0 Program: A program is data-race-free-0 iff for every sequentially
consistent execution of the program, all operations can be distinguished by the system as either data
or synchronization, and there are no data races in the execution.

Definition 4.6: Data-Race-Free-0 Model: A system obeys the data-race-free-0 memory model iff the
result of every run of a data-race-free-O program on the system is the result of a sequentially con-
sistent execution of the program.

Figure 4.2 gives aternative definitions of a data race that can be used in definition 4.5. Appendix A shows
that these definitions can be used in Definition 4.5 to define the same set of programs as data-race-free-0. (The
proofs assume a very general set of mechanisms to distinguish operations; the assumptions are given in Section
5.1.3 in connection with implementations of SCNF models.) Alternative 1 is based on the work by Gharachorloo
etal. [GLL9O0]. It defines arace in a sequentialy consistent execution as two conflicting operations that occur con-
secutively in the execution order. We recommend this definition for programmers since it only involves the con-
cept of the execution order of a sequentially consistent execution. Definition 4.4 above, however, makes it easier
to determine how data-race-free-0 can be implemented (Chapter 5). Alternative 2 is analogous to definition 4.5,
but makes more aggressive implementations explicit (Chapter 5). Alternative 3 is presented for completeness
since a similar methodology will be used for later models. Alternative 4 is presented because it will be used later
to prove the correctness of Alternative 2. Note that definition 4.4 above and aternative 2 assume that all memory
operations are distinguished as either data or synchronization and then give away to determine if an operation dis-
tinguished as data forms adatarace. In contrast, alternatives 1, 3, and 4 define the notion of arace irrespective of
how memory operations are distinguished.

It follows that a program is data-race-free-0 if for any sequentially consistent execution of the program, an
operation that is involved in a race (as defined by any of the aternatives) is distinguished as a synchronization
operation. Operations that are not involved in arace may be distinguished either as data or synchronization; how-
ever, the more operations that are distinguished as data, the greater the potential for higher performance. For ex-
ample, figure 4.3 shows the code discussed earlier and depicts a sequentially consistent execution of the code.
The notation op,X denotes a shared-memory operation op on location X. Assume the vertical order of the opera-
tions to be the execution order. The write and read on Valid occur consecutively; therefore, they form a race by
Alternative 1 and should be distinguished as synchronization for this execution. The conflicting operations on A
and B do not occur consecutively in this execution and so they do not form arace in this execution and can be dis-
tinguished as data for this execution. The figure shows the program order relation and the synchronization-order-
0 relation assuming the above distinctions. It shows that all conflicting operations are ordered by the happens-
before-0 relation and so by definition 4.4 also, there are no data races in the execution. Converting the program
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Alternative 1.

Definition 4.7: Two operations in a sequentially consistent execution form arace iff they conflict and
no other operation is ordered between them by the execution order of the execution.

Alternative 2.

Definition 4.8:

Synchronization-order-0+ ( *3): Let X and Y be two memory operations in a sequentially con-
sistent execution. X > Yiff X =% Y, X isawrite, and Y isaread that returns the value of X in
the execution.

Happens-before-0+ ( 25): The happens-before-0+ relation is defined on the memory operations
of a sequentially consistent execution as the irreflexive transitive closure of program order and
synchronization-order-0+; i.e., ( 2> [] =*>)+

Definition 4.9: Two operationsin a sequentially consistent execution form a race iff they conflict and
they are not ordered by the happens-before-0+ relation for the execution.

Alternative 3.

Definition 4.10: Conflict Order ( =>): Let X and Y be two memory operations in a sequentially

consistent execution. X > Y iff X and Y conflict and X is ordered before Y by the execution order
of the execution.

Definition 4.11: The progranvconflict graph for a sequentially consistent execution E is a graph
where the (dynamic) operations of the execution E are the vertices and there is an edge labeled >
from vertex X to vertex Y in the graph iff X 2> Y for E, and there is an edge labeled = from ver-
tex X to vertex Y in the graph iff X == Y for E.

Definition 4.12: Two operations in a sequentially consistent execution form a race iff they conflict
and there is no path between the operations in the program/conflict graph of the execution such that
the path has at least one program order arc.

Alternative 4.

Definition 4.13: Causal-Conflict Order ( =>): Let X and Y be two memory operations in a sequen-

tialy consistent execution. X == Yiff X > Y, Xisawrite, and Y is aread that returns the value
written by X in the execution.

Definition 4.14: Two operations in a sequentially consistent execution form a race iff they conflict
and there is no path between the operations in the program/causal-conflict graph of the execution such
that the path has at least one program order arc. The program/causal-conflict graph is similar to the
program/conflict graph with conflict order replaced by causal-conflict order.

For each alternative, a datarace is arace where at least one of the operations is distinguished as a data operation.

Figure 4.2. Alternative definitions of data races.
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into a data-race-free-0 program, however, requires a mechanism in the programming language to distinguish
memory operations so that all sequentially consistent executions of the program do not have data races.

P1 P2
data Write, A
P1 P2 |po
_ ) data Write,B
A =100; while (Vaid!=1) {;} i«po

synch Write,Valid

B = 200; ..=B; wﬁ
Read,Valid

synch
vaid=1; W =A; [po
Read,B data
po
Read A data
@ (b)

po = program order, so0 = synchronization-order-0

Figure4.3. A sequentially consistent execution without data races.

In practice, the mechanisms provided in the programming language could make data-race-free-O easier or
more difficult to use for the programmer, and could affect the performance of a data-race-free-0 system. The next
sub-section describes possible mechanisms for distinguishing memory operations, the resulting effect on data-
race-free-0, and examples of data-race-free-0 programs that use these mechanisms.

4.1.3. Distinguishing Memory Operations

Data-race-free-0 requires a mechanism to distinguish memory operations for every component of the sys-
tem mentioned in Chapter 1; e.g., the hardware and the compiler. Thus, the high-level programming language and
the low-level machine language must provide support to make these distinctions. The data-race-free-0 model does
not place any restrictions on the mechanisms that can be used, but the support provided can make the model easier
or harder to reason with for programmers. The following first discusses four mechanisms for high-level program-
ming languages and then discusses analogous mechanisms for machine languages. The section concludes with a
note on the interaction between the high and low level mechanisms. Each of the mechanisms described could be
used in isolation, or in combination with the other mechanisms. Each mechanism aso leads to a higher-level
specification of data-race-free-0 than definition 4.6. This section is primarily meant to illustrate the support possi-
ble in programming languages and the higher-level specifications for data-race-free-0 that can result depending on
this support; this section should not be treated as an exhaustive description.

Mechanism 1 for high-level languages.

A simple mechanism is for the language to provide additional type declarations, called sync_type and
data type. For such a system, the definition of a data-race-free-0 program translates as follows. For any sequen-
tially consistent execution of the program, if an operation accessing location i could form arace in that execution,
then the corresponding static operation in the program should refer to a variable of type sync_type. For example,
figure 4.4(a) shows the data-race-free-0 version of the program of figure 4.3. Figure 4.3 showed a sequentially
consistent execution where the operations on Valid form a race; therefore, the variable Valid is declared as
sync_type. The conflicting operations on A and B do not form arace in the execution shown and can never form a
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P1

data typeint A,B;
synch_typeint Valid;

A =100;
B = 200;
Vaid=1,
@
P1
data = ON
A =100;
B = 200;
synchronization = ON
vaid=1,
(b)
P1 P2
Lock(L) Lock(L)
Access data Access data
Unlock(L) Unlock(L)
©

P2
data typeint A,B;

synch_typeint Valid;

while (Valid!=1) {;}

P2

synchronization = ON
while (Vdid = 1) {;}
data= ON
... = B;

LA

Implementation of Lock
while (Test& Set(L)) {;}
Implementation of Unlock

Unset(L)

Figure 4.4. Mechanisms for distinguishing operations and data-race-free-0 programs.
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race in any sequentially consistent execution since they are always separated by the write and read of Valid.
Therefore, the variable Valid can be declared as data_type. The above mechanism is simple to provide; however,
it may not allow every operation to be distinguished arbitrarily. For example, it may not be possible to use the
same variable for different types of operations in different parts of the program, and to declare the type of every
field of every non-scalar data structure individually. Particular care needs to be taken for pointers, and parameters
passed to procedures and library routines must be of consistent types. Specifically, if the parameter type assumed
by the caller is sync_type or points to a sync_type, then the corresponding type assumed by the called procedure
should be the same. For library routines, this might require supporting different flavors that accept different
parameter types.

Also, it may be valuable to have default types. The advantage of having sync_type as default is that old pro-
grams will run correctly without any change, and conservative programmers need not do anything special to get
correct programs. The disadvantage isthat programmers who want any performance gains need to use special de-
clarations; since most variables in programs are of type data_type, a default of sync_type will require many uses
of the specia declaration. Having data_type as default has complementary advantages and disadvantages.

Mechanism 2 for high-level languages.

Another simple mechanism is to provide annotations in the programming language. For example, an annota-
tion such as data = ON (or synchronization = ON) would imply that memory operations from all (statically) sub-
sequent instructions in the program until the (statically) next annotation in the program are data (or synchroniza-
tion). With this mechanism, the definition of data-race-free-0 programs trandates to the following. For any in-
struction i in the program, if a memory operation from an instance of i in a sequentially consistent execution could
form a race in the execution, then the (statically) last annotation before the instruction in the program should be a
synchronization = ON annotation. Figure 4.4(b) shows the corresponding data-race-free-0 program for the code in
figure 4.3; an annotation of synchronization = ON precedes the operations on Valid and a single data = ON anno-
tation suffices for the operations on A and B in each process. This mechanism does not have the disadvantages
described for the previous mechanism; however, the simplest form of this mechanism provides only one annota-
tion per instruction and so even if only one of the operations of an instruction is to be distinguished as synchroni-
zation, all operations from the instruction have to be distinguished similarly. Also, for callsto procedures and li-
brary routines, care must be taken to ensure that the annotations in the called routines are consistent with their
usage assumed by the caller. Assuming the annotation of data = ON as the default, the number of annotations per
program should be roughly proportional to the number of synchronization or race operations, which generally
form a small part of the overall program size (assuming the programmer is not too conservative). The advantages
and disadvantages of using either type of annotation as default are analogous to those for the defaults for mechan-
ism 1.

Mechanism 3 for high-level languages.

The third mechanism exploits the use of synchronization library routines for common synchronization con-
structs (e.g., locks, barriers). Programmers often restrict synchronization in the program to calls to such routines.
A useful mechanism for such a system would be one where operations from these library routines can be con-
sidered as synchronization while others as data. The definition of data-race-free-0 for a system that provides syn-
chronization routines for locks, unlocks, and barriers would be as follows. Treat the lock, unlock, and barrier rou-
tines as single atomic operations with the appropriate semantics; assume the locks and unlocks specify alock loca-
tion to be locked or unlocked, and the barriers specify a barrier location. Define the synchronization-order-0 rela-
tion for a sequentially consistent execution as ordering locks and unlocks to the same location, and barriers to the
same location in the order in which they happen in the execution order of the execution. Define the happens-
before-0 relation and data-race-free-0 programs as before. The advantage of the above method is that it does not
need any additional mechanisms for high-level programmers. The writers of the library routines still need some
mechanism to make the different memory operation types evident to lower levels of the system. The disadvantage
isthat synchronization operations are restricted to only the routines provided by the system. As an example, con-
sider figure 4.4(c) which shows two processors accessing data in a critical section implemented using library rou-
tines called lock and unlock. If the system specifies that the routines can be interpreted as synchronization, then
the program is data-race-free-0. A low-level implementation of the lock and unlock routines is shown next to the
high-level code. The lock is implemented using a read-modify-write instruction called Test& Set that atomically
reads (tests) the lock variable and writes (sets) it to the value 1 (see Section 3.3.2 for the definition of a read-
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modify-write). The unlock isimplemented using an Unset instruction that clears the accessed location to 0. This
implementation is correct if hardware recognizes operations from the Test& Set and Unset instructions as syn-
chronization operations.

Mechanism 4 for high-level languages.

The above mechanisms require programmers to consider low-level operations like individual reads and
writes, locks, and barriers. Many languages specify higher level paradigms for synchronization and restrict pro-
grammers to using these paradigms; e.g., monitors, fork-joins, task rendezvous, doall loops. Such paradigms are
naturally suited to data-race-free-0. For example, if the only way to express parallel tasks and synchronization is
through doall loops, then the data-race-free-0 requirement simply becomes that if two iterations of a given doall
loop access the same variable, then the variable cannot be written in either iteration. Similarly, for alanguage that
provides only monitors, the data-race-free-0 restriction is that shared-memory accesses should be made only in the
appropriate monitor. (The compiler ensures that the doalls and the monitors are translated appropriately so that
the low-level program is correct.) Programmers using the above languages already obey the specified restrictions
of data-race-free-0 simply because the above restrictions make parallelism easier to manage than unrestricted
sequentia consistency. In these cases, the implicit model for the high-level programmers was aready data-race-
free-0 and compilers of the above languages could already perform the optimizations of data-race-0. Specifying
the system model explicitly as data-race-free-0, however, alows al parts of the system to perform the high-
performance optimizations possible for data-race-free-0 programs.

Mechanisms for machine languages.

Mechanisms for distinguishing memory operations in the machine language are analogous to those for
high-level programming languages. For example, memory operations can be distinguished based on the locations
accessed. Alternately, analogous to the annotations of high-level languages, all operations could be assumed to be
data by default unless their instructions were preceded by special prefix instructions; e.g., memory barrier instruc-
tions [SUN9L, Sit92]. Another general mechanism that does not require adding extra instructions is to provide an
extra bit for the op codes of all instructions that access memory to indicate whether the operations of the instruc-
tions are synchronization or data. An adequate number of synchronization and data instructions would need to be
provided. The Am29000 processor, for example, provides option bits in its load and store instructions that could
be used for this purpose. Another possibility isto use any unused high bits of the virtual memory address space to
indicate whether the access is synchronization or data. A more restrictive version of the above is motivated by
current hardware design that often provides a few special instructions to aid synchronization; e.g., Test& Set and
Unset instructions in figure 4.4(c). Thus, all synchronization operations could be restricted to only these instruc-
tions. Finaly, like the specia library routines in programming languages, hardware may provide specia instruc-
tions for fast high-level synchronization that do not use memory reads and writes; e.g., barriers of Thinking
Machines CM-5 and locking in Sequent Balance. The synchronization-order and happens-before relations could
then be modified to use these hardware operations for ordering, rather than memory reads and writes.

Interaction between mechanisms for different levels.

The mechanisms for distinguishing memory operations provided at the different levels of the system need to
be compatible with each other. Specifically, the compiler needs to trandate a high-level data-race-free-0 program
into alow-level data-race-free-0 program. Therefore, if the low-level does not provide mechanisms to distinguish
any general memory operation as synchronization or data, then the high-level should not provide such a mechan-
ism either or the compiler should be able to determine an appropriate mapping for transforming the programs
correctly. Similarly, if the high-level languages restrict synchronization operations to be certain types of opera-
tions, then there may be no need for the hardware to provide general mechanisms.

4.2. Programming With Data-Race-Free-0

This section discusses programming with data-race-free-0, specifically compared to sequentia consistency.
A comparison with respect to weak ordering appears in Section 4.4.

Data-race-free-0 allows programmers to program with the familiar interface of sequential consistency, as
long as programmers obey certain rules. Therefore, the ease of programming with data-race-free-0 depends on
how easy it isto obey the rules of data-race-free-0. This in turn depends on the support provided in the specific
programming language for distinguishing memory operations. To isolate the effects of specific programming
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language implementations from the data-race-free-0 model, below we first consider programming with a general
language where any memory operation in the program can be distinguished as synchronization or data. We con-
sider more restrictive languages | ater in the section.

In a system where any memory operation can be distinguished as data or synchronization, data-race-free-0
does not impose any restrictions on how programs are written (compared to sequential consistency). Any pro-
gram that is correct for sequential consistency can be run on a data-race-free-0 system and will generate the same
instructions and memory operations as on a sequentially consistent system. Thus, programmers can use any Syn-
chronization mechanism, algorithm, or programming paradigm that they are familiar with. The only constraint
data-race-free-0 imposes is that memory operations of this program should be distinguished as synchronization or
data such that there are no data races in any sequentially consistent execution of the program.

Figure 4.5 captures the programmer’s model for such a system. The programmer initially writes a program
for a sequentially consistent system. Then for every static operation specified in the program, the programmer
must determine whether any dynamic instance of the static operation can form a race in any sequentially con-
sistent execution. The simplest definition of a race to use is definition 4.7 in figure 42111 the programmer can
determine that the operation will never form a race in any sequentially consistent execution, then the operation
should be distinguished as data. If the programmer can determine that the operation will form a race in some
sequentially consistent execution, then the operation should be distinguished as synchronization. If the program-
mer does not know whether the operation forms a race or not, or does not want to do the work to know, then the
programmer can distinguish the operation as synchronization. The presence of this ‘‘don’t-know’’ option is cen-
tral to the data-race-free-0 model and the SCNF models of the subsequent chapters. It ensures that for writing a
correct program, the programmer does not have to expend any more effort than on a sequentially consistent sys-
tem; all memory operations can be conservatively distinguished as synchronization. It is only for higher perfor-
mance that the programmer needs to expend more effort; furthermore, this effort can be spent incrementally by
examining operations in the most performance critical parts of the program first and examining other parts later.

1. Write program assuming sequential consistency

2. For every memory operation specified in the program do:

START

don’'t know or
distinguishas yes don't ce

data

distinguish as
synchronization

Figure 4.5. Programming with data-race-free-0.

11. Definitions other than definition 4.7 can be used for figure 4.5 aswell. Definitions 4.4 and 4.9 assume that memory
operations are already distinguished to determine when there isarace. To use these definitions, the programmer should as-
sume all operations except the considered operation are distinguished as synchronization, the considered operétion is dis-
tinguished as data, and then determine if the considered operation will form a race by the above definitions. Henceforth,
when we say an operation forms a race, we mean it in the above sense for the above definitions.
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Although programmers have the option of being conservative, we can expect that they will not invoke this
option too often. Thisis because the knowledge of whether an operation will be involved in arace or not is criti-
cal to the correct operation of the program even on a sequentially consistent system. A more important problem,
however, is that programmers might believe they have adequate information to distinguish an operation correctly,
but in reality there is a bug in the program that makes this information incorrect. This may result in non-data-
race-free-0 programs, the system will no longer appear sequentially consistent, and the programmer can no longer
use sequential consistency while debugging. In general, data-race-free-0 systems require additional support for de-
bugging. Chapter 8 discusses how techniques for detecting data races on sequentially consistent systems can be
used to detect data races on data-race-free-0 systems in a manner that allows the programmer to continue reason-
ing with sequential consistency. Gharachorloo et a. also propose hardware support that informs the programmer
of when there might be data races in the program [GhG91]; however, further support is required to allow pro-
grammers to reason with sequential consistency to eliminate these data races.

Note that although incorrect distinctions made by the programmer can lead to non-sequentially consistent
behavior, the responsible bug in the program will usually also be a bug on a sequentially consistent system for the
following reason. A programmer makes an incorrect distinction only when a race operation is distinguished as
data. Thisis an indication that the programmer expects two conflicting operations to be ordered by synchroniza-
tion on a sequentially consistent system, but in reality they are not. This implies a misunderstanding of the pro-
gram behavior on sequentialy consistent systems and a bug that would usually manifest itself on a sequentially
consistent system also; there is abundant literature on detecting data races on sequentially consistent systems
motivated by the observation that data races are often symptoms of bugsin a program (see Chapter 8). Thus, pro-
gram bugs due to the data-race-free-0 model are aso often likely to be bugs when assuming the sequentia con-
sistency model.

The above discussion assumes programming languages that allow any operation to be distinguished as data
or synchronization. The discussion aso applies to languages where distinctions are made at the level of variables
or instructions (such as described by mechanisms 1 and 2 in the previous section). For such languages, it may not
be possible to always distinguish an operation as data if other operations to the same variable or in the same in-
struction need to be distinguished as synchronization. Although this could affect performance, such languages do
not restrict programming techniques and the ease of programming is comparable to the most general language as
discussed above.

Systems where only limited types of operations can be distinguished as synchronization (such as described
by mechanisms 3 and 4) sacrifice programmers’ flexibility. Thisis not a limitation of the data-race-free-0 model,
but is a limitation of the specific implementation of data-race-free-0. Restrictions by systems such as those
described by mechanism 4, however, are widely accepted as desirable programming paradigms even with sequen-
tially consistent systems. Since those restrictions are at a higher level and since most high-level programmers al-
ready obey those restrictions, it follows that data-race-free-0 does not impose any additional constraints on pro-
grammers of such systems (but allows the hardware to exploit the constraints already assumed by high-level pro-
grammers).

To test our arguments above, we examined a set of programs from the SPLASH benchmark suite (Bar-
nesHut, MP3D, and LocusRoute) [SWG92], and a program (Polyroots) for computing the roots of alarge degree
polynomial with integer coefficients of arbitrary precision [NaT92]. The programs are written in C and use the
Argonne National Laboratory macro package to provide most synchronization and sharing primitives. Although
most synchronization is explicitly identifiable through the macros, some programs aso use normal reads and
writes for synchronization (as in figure 4.1), and some use operations that race for asynchronous data accesses.
We (manually) added the annotations indicated in mechanism 2 of the previous section (as illustrated by figure
4.4(b)) to identify the above accesses as synchronization. We assumed the default annotation as data = ON. We
found that it was usually not difficult to determine whether an operation might race and the don’t-know option
was not invoked. The number of annotations added to the programs varied. The following gives the number of ad-
ditional synchronization = ON annotations; an equal humber of following data = ON annotations are required.
Polyroots did not need any additional annotations, BarnesHut required five additional synchronization annotations,
and MP3D with the locking option required four additional synchronization annotations (for the non-locking op-
tion, the locks within ifdef statements indicate the points where synchronization annotations are needed). Locus-
Route uses many asynchronous data accesses, and required about 40 synchronization annotations. Thus, for the



programs that do not access data asynchronously, most races were already explicit calls to library routines.

4.3. Implementations of Data-Race-Free-0

One aspect of implementing data-race-free-0, support for distinguishing memory operations, has already
been discussed. This section discusses runtime system optimizations alowed by data-race-free-0. (Chapter 5
discusses compiler optimizations.) This section motivates four possible implementations of data-race-free-0. The
first implementation is allowed by weak ordering, while the other three implementations are not allowed by weak
ordering. The second implementation is based on release consistency (RCsc). As discussed earlier, this section is
intended to convey only the key intuition for the four implementations; therefore, it uses several terms (e.g., exe-
cution of a program on general hardware) in the intuitive sense. Formalizations of all the terms, and details of the
implementation proposals appear in the next chapter. Recall that we use the terms preceding and following to re-
|ate to program order.

Figure 4.6(b) depicts an execution of the program in Figure 4.6(a), where processor P, executes data opera-
tions, including a write of A, and then does a synchronization write on Valid. Processor P, executes a synchroni-
zation read on Valid until it returns the value written by P4, and then executes data operations, including a read of
A. For the execution to be sequentially consistent, the only constraint is that P,’s read of A should return the
value written by P,’swrite of A. The following first shows how weak ordering meets this requirement, and then
shows how data-race-free-0 allows more aggressive implementations. (This work is based on materia in
[AdH90b, AdH93].)

Weak ordering requires a processor to stall on every synchronization operation until its preceding opera-
tions complete. Thus, in figure 4.6(b), weak ordering would prohibit P, from issuing its write of Valid, and all
following operations, until the data write on A completes. Similarly, P, is prohibited from issuing its read of
Valid, or any other operation following the read, until all the operations preceding the read complete.

A more aggressive implementation (based on release consistency) requires P, to delay only its write of
Valid until its preceding operations complete; data operations following the write of Valid can execute even while
preceding data operations are not complete. This allows P4 to progress faster than with weak ordering, but does
not affect when itswrite of Valid is executed, and consequently, when P, sees that write.

The delay on the write of Valid imposed by the two techniques described above, however, is not necessary
to maintain sequential consistency (as also observed by Zucker [Zuc9l, Zuc92]). We discuss two aggressive im-
plementation proposals for data-race-free-0 that do not impose the above delay, and are not alowed by weak ord-
ering (and release consistency). The first of these implementations maintains sequential consistency by ensuring
that when P, issues its read of Valid, P, will not allow the read to return the updated value of Valid until P;’s
operations preceding the write of Valid complete [AdH90b]. This implies that P; need never delay its memory
operations; specifically, its write of Valid executes earlier than with the implementations discussed above. This
could also make P, progress faster since the earlier execution of the write of Valid impliesthat P,’s read of Valid
could succeed earlier than with weak ordering.

The final implementation proposal [AdH93] is even more aggressive. This proposal does not require P5’s
reads on Valid to wait for P,’s data operations, thus allowing P,’s synchronization to succeed earlier than the pre-
vious implementation. This implementation obeys sequential consistency by requiring P,’s data write on A to
complete before P, executes its data read on A. It achieves this by ensuring that (i) when P, executes its syn-
chronization read on Valid, P, notifies P, about its incomplete write on A, and (ii) P, delays its read on A until
P’ swrite on A completes.

Thus, both P, and P, complete their synchronization earlier than with weak ordering. Further, P,’s opera-
tions following its synchronization that do not conflict with previous operations of P, will also complete earlier.
Operations such as the data read on A that conflict with previous operations of P; may be delayed until P;’s
corresponding operation completes. Nevertheless, such operations can also complete earlier than with weak ord-
ering. For example, if P,’sread on A occurs late enough in the program, P’ s write may aready be complete be-
fore P, examines the read; therefore, the read can proceed without any delay.

Other implementation proposals in the literature that also obey data-race-free-0 include an aggressive im-
plementation of release consistency (without nsyncs and assuming data = ordinary, and synchronization = sync)
that uses (1) a non-binding prefetch into the cache to overlap part of the execution of a synchronization write with
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Figure 4.6. Implementations of weak ordering and data-race-free-0.

the completion of preceding data operations, and to overlap part of the execution of data writes with the comple-
tion of a previous synchronization read, and (2) a rollback mechanism to let a processor conditionally execute its
reads following its synchronization read before the synchronization read completes [GGH91b]. Our optimizations
will benefit such implementations also because we allow a processor to issue and complete its synchronization
writes earlier and conseguently synchronization reads that need to return the value of this write can complete ear-
lier; we also alow the data writes following a synchronization read to be issued and completed earlier, and the
data reads following a synchronization read to be committed earlier. Another aggressive implementation called
lazy release consistency has been proposed for software-based shared virtual memory systems [KCZ92]. Thisim-
plementation does not obey weak ordering or release consistency, but does obey our sufficient conditions for
data-race-free-0 described in the next chapter (assuming all read synchronizations are acquires and all write syn-
chronizations are releases).
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4.4. Comparison of Data-Race-Free-0 with Weak Ordering

This section compares data-race-free-0 with weak ordering on the basis of the 3P criteria— programmabili-
ty, portability, and performance.

Programmability.

Data-race-free-0 provides a simple and forma programmers’ interface: if programmers write data-race-
free-0 programs, a data-race-free-0 system guarantees sequential consistency. This allows programmers to reason
only with sequential consistency, a natural extension from uniprocessors and the most commonly (and often impli-
citly) assumed interface for multiprocessors. Further, Section 4.2 has argued that the knowledge and effort re-
quired of a programmer to write data-race-free-0 programs is often also required for writing programs for sequen-
tial consistency.

In contrast to data-race-free-0, the definition of weak ordering provides a more difficult and unfamiliar in-
terface for programmers, requiring programmers to reason with memory operations that may be executed out of
program order and writes that may be executed non-atomically. The authors of weak ordering do state that pro-
grams have to obey certain conditions (Section 2.2.1); however, further interpretation and reasoning with the weak
ordering definition is required to formally deduce whether a program obeys the required conditions and how the
hardware will behave for programs that obey these conditions. Data-race-free-0 formally defines both of the
above aspects: a program should not result in a data race in any sequentially consistent execution and a data-
race-free-0 system appears sequentially consistent to such programs.

Thus, data-race-free-0 provides an interface that is easier to program than weak ordering.
Portability.

An important architectural feature is the ease with which programs written for the architecture can be ported
to other architectures. Section 4.3 discussed several possible implementations for data-race-free-0. As motivated
by the first implementation discussed in Section 4.3, data-race-free-0 allows all implementations of weak ordering
(a more formal argument appears in Section 5.5). However, three out of the four implementations motivated in
Section 4.3 (and discussed in more detail in Chapter 5) do not obey weak ordering. Figure 4.7 illustrates a pro-
gram that would always run correctly on aweakly ordered system, but may not run correctly on the aggressive im-
plementations motivated in Section 4.3. Describing the architectural interface for al of the above implementa-
tions as data-race-free-0, however, allows a program written for any of the above implementations to work
correctly on all of the others. Thus, data-race-free-0 enhances portability. (The example in figure 4.7 may seem
convoluted and unredlistic to some readers. Note, however, that system designers must ensure that all possible
programs, no matter how unrealistic, are executed according to the system specification. Data-race-free-O does
not give any guarantees for such convoluted code, and so can afford more optimizations than weak ordering for
more redlistic code.)

Note that if memory models are defined using the hardware-centric approach of weak ordering, then the for-
mal specifications of the four implementation proposals (motivated by Section 4.3) given in the next chapter and
the lazy release consistency specification (assuming all synchronization reads are acquires and all synchronization
writes are releases) comprise five different memory models (there exist programs that would give different results
on the different models). Data-race-free-0, however, unifies all of the above models. We will also show in later
chapters that the SCNF method also enhances portability between different SCNF models, primarily since SCNF
models allow a conservative ‘‘don’t-know’’ option, and since all models allow programmers to reason with the
common interface of sequential consistency.

12. Asaninformal example, consider a program where processors obtain tasks from a task queue protected by a lock,
and then process the tasks. Assume that the task processing does not require additional synchronization with sequential
consistency because in a sequentially consistent execution, two tasks that are processed concurrently do not execute
conflicting operations. Further interpretation seems to be required, however, to unambiguously conclude whether such a
program obeys the program constraints for weak ordering given in Section 2.2.1, since the task processing is not donein a
critical section, but the program seems to be adequately synchronized. The data-race-free-0 definition unambiguously al-
lows the conclusion that the program obeys the data-race-free-0 conditions since no sequentially consistent execution of the
program exhibits data races.
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P1 P2
data A=1 B=1 data
synchronization c=1 D=1 synchronization
data rl=B r2=A  data

Figure 4.7. Portability with weak ordering and data-race-free-0.

Assume the bold words next to an instruction indicate the way the operations from the instruction are distinguished
to the system (by the programmer). In a sequentially consistent execution, the reads of A and B cannot both return
0. Weak ordering ensures this for the above program. However, the program is not data-race-free-0 and so the ag-
gressive implementations motivated in Section 4.3 alow executions where both the reads return 0. If registersrl
and r2 represent external output interfaces, then it follows that the aggressive implementations do not appear
sequentially consistent.

Performance.

As discussed above, data-race-free-0 alows al implementations of weak ordering. Additionaly, data-
race-free-0 also allows implementations that are not allowed by weak ordering. Weak ordering requires a proces-
sor to stall on a synchronization operation until all previous operations complete. The second method discussed
for data-race-free-0 describes an implementation where synchronization reads do not have to wait for preceding
operations to complete, and data operations do not have to wait for preceding synchronization writes to complete.
The third and fourth methods do not require a processor to delay any synchronization operation for preceding
operations to complete. Section 4.3 qualitatively indicated the increased performance potential with such imple-
mentations for some programs.

Thus, compared to weak ordering, data-race-free-0 provides more flexibility to system designers by allow-
ing more implementations and has the potential for higher performance for some programs.

A potential disadvantage of data-race-free-0, however, is that it constrains programmers to identify all po-
tential race operations as synchronization operations. Weak ordering may result in higher performance than data-
race-free-0 if it were possible to identify a race operation as a data operation and still get sequentially consistent
results. However, the following observation and conjecture lead us to believe that the above advantages of ease-
of-programming, portability, and increased performance potential (through aggressive implementations) may
offset this disadvantage for data-race-free-0.

The observation cited above is that a data-race-free-0 system can be accompanied by a hardware-centric
specification that describes the specific implementation. Programmers who want the maximum performance pos-
sible can reason with this low-level system specification to determine the optimal way to distinguish memory
operations. Such programmers will not benefit from the advantages of data-race-free-0, but others who prefer to
reason with sequential consistency can continue to do so.

The conjecture cited above is that the performance increase through allowing data races may either not be
significant or would be difficult to exploit because of the following reason. In most programs, race operations are
used to order conflicting data operations. Therefore, irrespective of how the operations are distinguished, to get
sequential consistency, a weakly ordered system must stall on the race operations until preceding operations that
the race is meant to order are complete, and stall on a non-race operation until the preceding race that is meant to
order it is complete (Chapter 7 provides more intuition for this). Data-race-free-0 gives one way of distinguishing
memory operations that will ensure the above. Other ways that could give higher performance would require that
there be intervening operations between a race and the data operation that it is supposed to order, and that pro-
grammers realize and be able to exploit this fact. Thisis difficult and the performance gains, especially compared



to the more aggressive implementations of data-race-free-0, are not clear.

A disadvantage of data-race-free-0 similar to the above arises for programmers using asynchronous algo-
rithms [DeM88] that do not rely on sequential consistency for correctness. Such programs would probably get
better performance in the presence of data races. However, again the observation specified above leads us to be-
lieve that the advantages of data-race-free-0 for the many programmers who do prefer to reason with sequential
consistency offset the disadvantage.

In conclusion, for many programmers, data-race-free-0 provides the advantage of a simpler interface,
enhanced portability, and higher performance potential than weak ordering. For some programmers, weak order-
ing may offer a higher performance potential, and they may be willing to sacrifice the advantages of data-race-
free-0 for this potential. Data-race-free-0 provides such programmers the choice of dealing with the low-level
hardware-centric specification to get the higher performance, but at the loss of all the advantages of data-race-
free-0.
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Chapter 5

A Formalism To Describe System I mplementations
and Implementations of Data-Race-Free-0

Section 5.1 develops a formalism to describe implementations of SCNF models. Section 5.2 uses the for-
malism to describe a high-level sufficient condition for implementing data-race-free-0 that encompasses the im-
plementations we can currently envisage. Section 5.3 describes low-level sufficient conditions based on Section
5.2 and describes hardware implementation proposals for those conditions. Section 5.4 discusses compiler optimi-
zations. Section 5.5 uses the specifications of previous sections to argue that all implementations of weak order-
ing obey data-race-free-0.

5.1. A Formalism for Shared-Memory System Designers

Section 3.3 modeled a system as consisting of processes, input and output interfaces, and a single copy of
shared-memory locations which could be atomically updated. Such an abstraction of a system is adequate for pro-
grammers of SCNF models who only need to deal with sequential consistency. Practically, for higher perfor-
mance, systems allow multiple copies of shared-memory locations (e.g., in the presence of caches), and do not ex-
ecute memory operations atomically. System designers need to reason with such features. To describe implemen-
tations that can use such features to system designers, our abstraction of a system must model this behavior. Sec-
tion 5.1.1 extends the notion of a system to model this behavior, and defines a general execution that can describe
the results of running programs on such systems. Section 5.1.2 shows how these abstractions of system and exe-
cution can be used to describe real system implementations. Section 5.1.3 gives an assumption made by all our
implementations of SCNF models that rely on distinguishing memory operations, and extends some previous
definitions to the more general notion of an execution.

5.1.1. A Formalism for Shared-Memory Systems and Executions
Based on Collier’ swork [Col84-92], we extend the definition of a system as follows.

Definition 5.1: A system is as defined by definition 3.2 in figure 3.2 with the following changes.
(Denote the n processes of the systemas P4, P, ..., Py).

(1) The single copy of shared-memory is replaced with n copies of shared-memory, denoted by M,
Mo, ..., M,,, where memory copy M; belongs to process P;.

(2) In arun of a program on a system, aread operation R to a shared-memory location X specified by
process P; is comprised of a single atomic sub-operation R (i), that reads the value of X in M;.

(3) In arun of a program on a system, a write operation W to a shared-memory location X with vaue
Val specified by process P; is comprised of an atomic sub-operation W(i) and zero or more atomic
sub-operations from W(1), W(2), -+, W(i-1), W(i+1), - - -, W(n), where the sub-operation W (k)
updates the location X in M to the value Val.

Our previous work describes how the above formalism represents real systems as follows [AdH92].
“* Although real systems do not usually provide physical copies of the entire memory to any processor, a logical
copy of memory can be assumed to be associated with every processor. For example, in a cache-based system,
the logical copy of memory for a processor may be the union of the processor’s cache and all the lines from the
main memory that are not in the cache. Also, in area system, some sub-operations may not be distinct physical
entities. However, logically distinct sub-operations can be associated with every operation. For example, an up-
date of main memory on awrite constitutes the sub-operations of the write in the memory copies of the processors
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that do not have the line in their cache. Finaly, in real systems, sub-operations may not actually execute atomi-
cally; i.e., one-at-a-time and instantaneously. However, in most systems, sub-operations appear to execute atomi-
cally. For example, the sub-operation involving an update of a processor cache may be spread over an interval of
time and may occur in parallel with other sub-operations. However, one can identify a single instant of time at
which the update takes effect such that other sub-operations take effect either before or after thistime.”’

The notion of sub-operations is similar to that of memory operations performing with respect to a processor
defined by Dubois et al. [DSB86]. A write sub-operation, W(i), corresponds to the write W performing with
respect to processor P;. A read sub-operation, R(i), corresponds to the read R performing with respect to all pro-
cessors. Our first use of Collier’swork in [AdH92] assumed that a write always had n sub-operations. The relaxa
tion that only some sub-operations need be included was first included in [GAG93] to represent more systems,
e.g., systems with software-based cache-coherence where a write need not update the memory copies of al pro-
cessors. Further, the work in [AdH92] implicitly assumes that in any execution, only afinite number of operations
can be ordered before another operation by program order. Our formalism and that in [GAG93] do not make this
assumption. Finally, the work in [GAG93] explicitly models features such as write buffers, Section 7.6 of
Chapter 7 explains why we chose to exclude that feature.

With the above formalism for a system, an execution is defined similar to a sequentialy consistent execu-
tion with four important exceptions. First, an execution also consists of a set of sub-operations. Second, the exe-
cution order is a total order on sub-operations rather than on operations since sub-operations are the atomic enti-
ties; the execution order condition is suitably modified to reflect this. Third, the execution order does not neces-
sarily have to be consistent with the program order. Fourth, an instruction instance may be in the execution even
if there are infinite instruction instances before it by program order. This was earlier implicitly prohibited by the
uniprocessor correctness condition (Condition 3.11 in figure 3.4) which required an instruction instance to exist in
an execution only if it was an initial instruction instance or a next instruction instance of some other instruction in-
stance. We remove the above restriction for general executions so that a processor can now speculatively execute
and commit instructions even when it is not known whether a preceding unbounded loop will terminate. This al-
lows useful optimizations since usually either unbounded loops of programs are intended to terminate, or they are
not followed by any instructions that can affect the result of the program.

The definition of a general execution and the corresponding execution order condition follows below. The
relaxation of the uniprocessor correctness condition described above is intuitive, but involves more complex for-
malism and is described in Appendix B.

Definition 5.2: Execution: An execution of a program Prog consists of the following components.

(1) A (possibly infinite) set, |, of instances of the instructions of program Prog that obeys the
modified uniprocessor correctness condition in Appendix B.

(2) A set, O, of memory operations, specified by the instruction instancesin I.
(3) A st, V, of the values returned by the read operationsin O.

(4) A set, O, of sub-operations corresponding to the operations in O as follows. For each read opera-
tion R by process P; to location X in O, O contains a read sub-operation R (i) to location X. For each
write operation W by process P; to location X with value Val in O, O4 contains a write sub-operation
W(i) to location X with value Val, and zero or more write sub-operations from W(1), W(2), ...,
W(i-1), W(i +1), ..., W(n) to location X with value Val.

(5) A total order on the sub-operations in O, called the execution order, denoted >, that obeys the
execution order condition (Condition 5.3) below.

Condition 5.3: Execution order condition:

The execution order, denoted *>>, of any execution, E, is a total order on the set of memory sub-
operations, O, of E that obeys the following.

(1) A read in O returns the value of the write sub-operation in O that is to the same location and in
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the same memory copy as the read and is the last such write sub-operation ordered before the read by
the execution order, if such a write exists. If there is no such write, then the read returns the initia
value of the location.

(2) If two sub-operations O and O, in Og are from operations of a read-modify-write and O, and
O, are to the same memory copy, then there is no write to the same location and same memory copy
as 0, and O, ordered between O4 and O, by the execution order.

(3) The number of sub-operations ordered before any given sub-operation by the execution order is
finite.

The definition of the result of an execution is the same as in figure 3.3, and the definition of the data-race-
free-0 model is the same as in Definition 4.6. We say an execution gives a sequentially consistent result or ap-
pears sequentially consistent if the result of the execution isthe result of a sequentialy consistent execution.

5.1.2. Using The Formalism to Describe System | mplementations

The definition of the data-race-free-0 model (or any SCNF model M) gives the necessary and sufficient con-
dition for a system to obey data-race-free-0 (or model M). However, trandlating this definition into an implemen-
tation is difficult. This section discusses giving specifications that are easier to trandate into implementations.
This section focuses on implementing the runtime system; Section 5.4 will consider the static compile-time sys-
tem.

The obvious trandation from the definition of data-race-free-0 to a system implementation is to ensure that
arun of a program on the system imitates a sequentially consistent execution. This does not, however, exploit the
flexibility of data-race-free-0 which requires that a run of a program only appear sequentially consistent, and ap-
pear sequentially consistent only to data-race-free-0 programs. A way to make the trandation simpler and pro-
vide high performance is to specify other, less stringent constraints on executions, which for data-race-free-0 pro-
grams, will give the same result as a sequentially consistent execution. Hardware (or the runtime system) can im-
plement the memory model by directly meeting these constraints. Specifications that give such constraints
correspond to the hardware-centric specifications of earlier hardware-centric models. Since we will use them for
al aspects of system design (including software), we call them the system-centric specifications of the SCNF
models.

Definition 5.4: A system-centric specification for an SCNF model specifies constraints on executions
such that executions that obey the constraints give sequentially consistent results for programs that
obey the model.

Hardware (or the runtime system) can implement a memory model by running programs exactly as specified by
the system-centric specification of the model. There usually will be a tradeoff in how easily a system-centric
specification can be translated to a system implementation and how much flexibility (or performance) it offers.

To trandate a system-centric specification into a system implementation, runtime system designers need to
determine a mapping between physical events and entities of the system, and the various components of an execu-
tion, such that the result of arun of a program that imitates an execution with this mapping is the result of the exe-
cution. For example, a read sub-operation can be assumed to occur when the requesting processor procures the
line in its cache, or when the requested value arrives in the processor’s register, or when the requested line is
dispatched to the processor from another processor’s cache or memory. A mapping for some write sub-operations
was given in Section 5.1.1. A mapping for the execution order is the real time order of execution of the various
sub-operations. Since these mappings are very specific to specific hardware, but fairly obvious for most systems,
we do not give details of such mappings here. In our descriptions of system implementations, we use terms such
as'‘a sub-operation executes in the hardware,”” **a sub-operation executes before or after another sub-operation,’’
etc., implicitly assuming the above mappings. Similarly, we will use informal implementation specific terms such
as ‘‘issuing an operation’’ or ‘‘committing an operation;’”’ we expect their meanings to be clear for most hardware
since the conditions they are expected to meet are formally described by the formal system-centric specifications.

System designers trandlating a system-centric specification must ensure that all instructions, operations,
sub-operations, and values of reads generated in arun of a program (according to the mapping above) respectively
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form the sets |, O, O, and V of an execution such that | obeys the uniprocessor correctness condition, the real time
order of execution of sub-operations obeys the execution order condition, and all the above components obey any
other conditions in the system-centric specifications. However, note that system-centric specifications are only an
aid to the system designers; they do not require that the system actually follow them exactly. It issufficient if the
system only appears to follow them, or appears to follow any other system-centric specification of the same
model. Thus, hardware can execute sub-operations in any order in real time as long as it appears as if the order is
the same as for some system-centric specification of the model. Similarly, hardware can actualy execute more
operations than specified by an execution as long as the effects of these extra operations are not seen. Thisisin
contrast to many earlier specifications [AdH90b, DSB86, GLL 90, ScD87] which impose constraints on the rea
time ordering of events.

We next give an assumption made by all system-centric specifications of all SCNF models that rely on dis-
tinguishing between different memory operations, some terminology used by such specifications, and an interpre-
tation of ‘‘result’’ that we use for the rest of thisthesis.

5.1.3. An Assumption and Terminology for System-Centric Specifications

The SCNF models that rely on distinguishing memory operations do not place any restrictions on how the
operations are distinguished. However, to be able to prove the correctness of specific implementations, we need
to make some assumptions. The assumption we make allows the practical mechanisms we can currently envisage
(including those discussed in Chapter 4) and is as follows. We assume a system can distinguish an operation O
only on the basis of the instruction or address of O, or on instructions (and their operations) preceding O’s instruc-
tion by program order, or on non-memory instructions following O and in the same basic block as O, or on the
write whose value O returns. Informally, this assumption requires that an operation be distinguished either based
onitsown ‘‘behavior’’ or based on the behavior of only certain ‘‘related’’ operations or instructions.

The system-centric specifications use the following terminology. A condition such as ‘X (i) = Y(j) for
ali, | refersto pairs of valuesfor i and j for which both X (i) and Y (j) are defined. The condition implicitly also
requires that all such pairs be in the execution. Thus, W(i) 2> R(j) for dl i,j where Ris issued by process P,
implies that W(m) is in the execution for m = 1,n and W(m) == R(k) for m = 1,n, where n is the number of

processes in the system. Similarly, *“X (i) =>> Y(i) for al i’ refers to values of i for which both X (i) and Y (i)
are defined.

The following definitions extend previous concepts to the more general notion of an execution, and formal-
ize the notion of coherence (or cache coherence) that we will use throughout the thesis. The definitions assume
X(i) and Y (j) are memory sub-operations corresponding to operations X and Y respectively.

Definition 5.5: Two memory sub-operations conflict if they are to the same location and same
memory copy and at least oneisawrite.

Definition 5.6: For two memory sub-operations X (i) and Y (j) in an execution, X (i) *= Y(j) iff X
25y,

Definition 5.7: The synchronization-order-0 ( =2 ) and happens-before-0 ( 2 ) relations for
any execution:

Let X and Y be two memory operations in any execution E. X 22> Y iff X and Y conflict, X and Y are
distinguished as synchronization operations to the system, and X (i) => Y(i) for somei inE.

The happens-before-0 relation is defined on the memory operations of an execution as the irreflexive
transitive closure of program order and synchronization-order-0; i.e., ( == [] 0 5)+,

Definition 5.8: The synchronization-order-0+ and happens-before-0+ relations on the operations of
any execution are defined exactly as the corresponding definitions for sequentially consistent execu-
tions.
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Definition 5.9: Cache coherence or coherence: Two conflicting write operations, W, and W5, in an

execution are cache coherent or coherent iff either W, (i) ==> W, (i) for al i or W,(i) 2> W;(i)
for @l i in the execution.

We next give an interpretation of the result of an execution that we use throughout. To determine whether a
system-centric specification is correct, we need to compare the result of the executions alowed by the
specification to the results of sequentially consistent executions. Given the modified uniprocessor correctness
condition (Appendix B), for finite executions, it follows that the values returned by the various shared-memory
reads of the execution uniquely determine the result of the execution. Thus, to determine whether the results of
two finite executions are the same, it is sufficient to only compare the reads of the executions and their values.
Further, unless mentioned otherwise, for the program examples we use in the rest of this thesis, we implicitly as-
sume that every instruction that reads shared-memory is followed by an instruction that modifies the output inter-
face based on the value returned by the read. Thus, it follows that unless mentioned otherwise, for two finite exe-
cutions of our example programs to have the same result, it is necessary to ensure that the reads and the values re-
turned by the reads are the same in the two executions. Thus, for finite executions, we will henceforth assume
that, unless mentioned otherwise, the reads and the values returned by the reads of the execution comprise the
result of the execution.”® The above observations aso hold for infinite executions that obey the unmodified
uniprocessor correctness condition (Condition 3.11); i.e., where only a finite number of instruction instances can
be program ordered before any instruction instance. To show that the results of two infinite executions that do not
obey the unmodified uniprocessor correctness condition are the same, it is sufficient to additionally ensure that the
instruction sets of the two executions are identical .

5.2. A High-Level System-Centric Specification for Data-Race-Free-0

This section gives a high-level system-centric specification for the data-race-free-0 model. The advantage
of this specification is that it encompasses all data-race-free-0 systems that we can currently envisage; the disad-
vantage is that it is not very simple to trandate into an implementation. The next section will give low-level
specifications that are easier to trandlate to implementations, and will describe implementations based on those
specifications. Figure 5.1 summarizes the tradeoffs between performance potential and ease-of-implementation
for the various specifications of data-race-free-0 given in this thesis. The definitions of data-race-free-0 and
sequentia consistency mark the ends of the spectrum; the system-centric specifications and implementations of
this and the next sub-section represent intermediate points in the spectrum that increasingly sacrifice implementa-
tion flexibility and performance potential in favor of easy trandations to actual implementations.

There are three aspects to the high-level system-centric specification proposed in this section: the data, syn-
chronization, and control requirements. These are first intuitively motivated below (the description below is simi-
lar to that in [AdH93]).

A system-centric specification of data-race-free-0 is correct if the result of any execution of a data-race-
free-0 program allowed by the specification is the same as that of a sequentialy consistent execution of the pro-
gram. From the discussion of Section 5.1.3, the above is true if al the instruction instances of the execution, the
shared-memory reads in the execution, and the values returned by the shared-memory reads are the same as that
of a sequentially consistent execution. The value of aread is the value from the conflicting write sub-operation
that is ordered last before the read by the execution order. Thus, the value returned by aread depends on the order
of the conflicting sub-operations in the execution order. Thus, a system-centric specification of data-race-free-Ois
correct if for every execution E of a data-race-free-O program that is alowed by the specification, (i) the instruc-
tion instances and read operations of E are the same as those of some sequentialy consistent execution of the pro-
gram, and (ii) the order of conflicting sub-operations in the execution order of E is the same as in the execution
order of the above sequentially consistent execution. The three requirements of the system-centric specification
given below together ensure the above.

The first requirement of the system-centric specification, called the data requirement, pertains to all pairs of
conflicting sub-operations of a data-race-free-0 program, where at least one of the operations is a data operation.

13. A key exception that will be made later isfor unessential reads as defined in Chapters 6 and 7.
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High-level Condition 5.10 of Section 5.2
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Ease of
I mplementation

|

Figureb5.1. Performance/ease-of-implementation tradeoffs in system-centric specifications.

Implementations of Section 5.3

Straightforward sequential consistency

In asequentially consistent execution, the operations of such a pair of sub-operations are ordered by the happens-
before-0+ relation of the execution (using definition 4.9 for a race), and the sub-operations maintain this order in
the execution order. The data requirement is that if two operations are ordered by happens-before-0+, then their
conflicting sub-operations should be in the execution and should be ordered similarly by their execution order.
This requirement ensures that in figure 4.6, the data read of A will return the value of the write of A.

The second requirement of the system-centric specification, called the synchronization requirement, per-
tains to al pairs of conflicting synchronization sub-operations of a data-race-free-0 program, and is analogous to
the data requirement. In a sequentialy consistent execution, the operations of such a pair of sub-operations are
ordered by the happens-before-0 relation of the execution, and the sub-operations maintain this order in the execu-
tion order. The synchronization requirement for a data-race-free-0 execution is that if two operations are ordered
by happens-before-0, then their conflicting sub-operations should be in the execution and should be ordered simi-
larly by their execution order. The need for this requirement is apparent from figure 4.6, if all operations are dis-
tinguished as synchronization. This requirement would ensure that the synchronization read of A would return the
value of the synchronization write of A.

The data and synchronization requirements would suffice if they also guaranteed that for any execution, E,
that obeyed these requirements, there is some sequentially consistent execution with the same instruction in-
stances, the same happens-before-0+ relation, and the same happens-before-0 relation as E. I1n the absence of con-
trol flow operations (such as branches) and when all sub-operations of awrite are guaranteed to appear in the exe-
cution, the above is automatically ensured; otherwise, a third requirement, called the control requirement, is need-
ed to ensure the above. To see the effect of awrite for which all sub-operations are not guaranteed to occur in the
execution, consider figure 4.6. If the sub-operation of the write of Valid does not occur in P2's memory copy, then
P2’ s loop on valid will never terminate. To see the effect of control flow operations, refer to figure 5.2. Assume
all the operations in the figure are distinguished as data operations. 1n any sequentially consistent execution of the
program, the reads of X and Y would always return the value O, and therefore the writes on X and Y could never be
in the execution. Thus, there cannot be a data race, the program is data-race-free-0, and executions of the pro-
gram alowed by the system-centric specification should have the same result as a sequentially consistent execu-
tion. If only the data and synchronization requirements are imposed, then there is a possible execution that returns
the value 1 for both the reads in the program. The control requirement prohibits such behavior. (Such a behavior
would be possible on a real system only with a very aggressive implementation where P, could speculatively
write Y before its read of X returned a value, and P, could speculatively write X before its read of Y returned a
value. Although such implementations are unlikely, the formal system-centric specification needs to ensure that
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they are prohibited.)

Initially X=Y=0
PO P1
ifX=1{Yy=1} if(Yy=2{X=1}

Figure5.2. Mativation for the control requirement for data-race-free-0.

The formal system-centric specification for data-race-free-0 and the proof of its correctness follow. These
are based on the work in [AdH92]. In therest of this chapter, data (respectively synchronization) operation refers
to an operation distinguished as data (respectively synchronization).

Condition 5.10: High-level system-centric specification for data-race-free-0: An execution E of pro-
gram Prog should satisfy the following conditions:

(1) Data - If X and Y are conflicting operations, at least one of X or Y is a data operation, and X %>
Y, then X(i) = Y(i) for all i.

(2) Synchronization - If X and Y are conflicting synchronization operations, and X "2 Y, then X (i)
> Y(i)forali.

(3) Control - If Prog is data-race-free-0, then there exists a sequentially consistent execution, Eg of

Prog, such that (i) the set of instruction instances and read operations of E and E; are the same, (ii)

for two conflicting operations X and Y, such that at least one of them is a data operation, if X % Y

in Eg, then X ™5 Yin E, and (iii) for two conflicting synchronization operations X and Y, if X

05 YinEg, then X ™25 YinE.

Proof that Condition 5.10 is correct.

The control requirement ensures that for any execution, E, of a data-race-free-0 program, Prog, the instruc-
tion instances and read operations of E are the same as those for a sequentially consistent execution, Eg, of Prog

and the ™25 and ™ relations on conflicting operations are the same as those for E;. We know that the exe-

cution order of E orders all conflicting synchronization sub-operations in the same way as the 2> relation ord-

ers the corresponding operations. We also know that the execution order of Eg orders all pairs of conflicting sub-

operations, where at |east one is data, in the same way as the 2> relation orders the corresponding operations.

Therefore, the data and synchronization requirements ensure that the execution order of E orders all pairs of
conflicting sub-operations of E in the same way as the execution order for E;. Thus, E and E have the same sub-
operations and their execution orders order conflicting sub-operations similarly. Therefore, al read sub-
operations in E return the same value. It follows that the result of E isthe same as that of E. [

5.3. Low-Leve System-Centric Specifications and | mplementations of Data-Race-Free-0

For each of the data, synchronization, and control requirements, we first give an alternative system-centric
specification that enforces more constraints, but is easier to trandate into an implementation than the requirement
in Condition 5.10. We then describe an implementation proposal. The main difference between weak ordering
and datarrace-free-0 is in the data requirement; therefore, we focus on that requirement. Section 5.3.1 gives four
specifications and implementation proposals for the data requirement motivated by Section 4.3 to illustrate the
difference between weak ordering and data-race-free-0. Sections 5.3.2 and 5.3.3 give one system-centric
specification and implementation for the synchronization and control requirements. For the sake of simplicity, the
synchronization and control specifications given here are not very aggressive. (Parts of this work were originaly
presented in [AdH90b, AdH92, AdH93].)
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The proofs that the new low-level system-centric specifications of the data and synchronization require-
ments specify executions that also satisfy the system-centric specification of Condition 5.10 are straightforward,
but the corresponding proof for the control requirement is fairly complex. Chapter 7 develops a common frame-
work and proof for a common system-centric specification for all SCNF models; in Appendix F, we use the com-
mon proof of Chapter 7 to prove the special case of data-race-free-0 discussed here.

Below, S S, S,, S, etc. denote synchronization operations; D, D 1, D,, D;, etc. denote data operations; Sw,
Swq, Sw,, S, etc. denote synchronization write operations; &, S, S5, S, etc. denote synchronization read
operations; X, Y and Z denote any type of memory operations. Also, X(i) denotes the sub-operation of operation
X. We also continue to use the terms preceding and following to relate to program order. We say an operation
completes on a system when all its sub-operations have executed.

5.3.1. The Data Requirement

The following discusses four different methods for meeting the data requirement as motivated in Section
4.3. Thefirst two methods have been presented before in the literature in the context of weak ordering and release
consistency (RCsc); we present them here for completeness. The implementation proposals below assume a
hardware cache-coherent system and the increase in performance potential is due to overlapping memory latencies
with useful work. The system-centric specifications of data-race-free-0, however, allow for increased perfor-
mance potentia in other types of systems and in other ways as well; we briefly discuss these at the end of this sec-
tion.

All the implementation proposals below assume an arbitrarily large shared-memory system in which every
processor has an independent cache and processors are connected to memory through an arbitrary interconnection
network. The proposals also assume a directory-based, writeback, invalidation, ownership, hardware cache-
coherence protocol, similar in most respects to those discussed by Agarwal et al. [ASH88]. One significant
feature of the protocol is that invalidations sent on awrite to aline in read-only or shared state are acknowledged
by the invalidated processors.

The cache-coherence protocol ensures that (a) all sub-operations of an operation are eventually executed,
(b) conflicting sub-operations of a write operation execute in the same order in al memory copies, and (c) a pro-
cessor can detect when an operation it issues is complete; i.e., when all the sub-operations of the operation have
executed. For (c), most operations complete when the issuing processor receives the requested line in its cache
and services the operation. However, a write (data or synchronization) to aline in read-only or shared state com-
pletes when al invalidated processors also send their acknowledgements. (Either the writing processor may
directly receive the acknowledgements, or the directory may collect them and then forward a single message to
the writing processor to indicate the completion of the write.)

Finally, all of the implementation proposals below first assume a process runs uninterrupted on the same
processor. The last implementation proposal (method 4) indicates a general technique to handle context switches
correctly.

Method 1: Weak Ordering
Low-Level System-Centric Specification for Data Requirement.

Condition 5.11: An execution obeys the data requirement if it obeys the following.

(a) SyncWrite/SyncRead: If X 2= Y and at least one of X or Y is a synchronization operation, then
X(@i) == Y(j) foralli,.

(b) Sync-Atomicity: If Sv > & 25 7 then Sw(i) X Z(j) forall i, j.
(c) Uniprocessor-Dependence - If X 2= Y, and X and Y conflict, then X (i) 2> Y(i) for all i.

I mplementation Proposal.

The above specification is similar to that of weak ordering, and can be implemented as follows. The
Uniprocessor-Dependence condition is met if the processor maintains local data dependences. Sync-Atomicity is
met if a synchronization read miss is not serviced by memory when there are outstanding acknowledgements to



57

the accessed location. SyncWrite/SyncRead can be met by adding the following features to a uniprocessor-based
processor logic.

- A counter (similar to one used in RP3) per processor, initialized to zero.
- Modification of issue logic to stall on certain operations.

The counter of a processor is used to indicate the number of issued, but incomplete, memory operations of
the processor. It is incremented on the issue of a memory operation and decremented when the operation com-
pletes (as detected by the cache-coherence protocol). To meet the SyncWrite/SyncRead condition, the issue logic
examines all memory operations in program order, and stalls on a synchronization operation until the counter
reaches zero. This ensures that before any synchronization sub-operation executes, all sub-operations of preced-
ing operations execute, and no sub-operation of a following operation executes, thus obeying the required condi-
tion.

Method 2: Release Consistency (without nsyncs)
Low-Level System-Centric Specification for Data Requirement.

Condition 5.12: An execution obeys the data requirement if it obeys the following.
(a) SyncWrite - If X 22> Sw, then X (i) == Sw(j) for all ij.

(b) SyncRead - If 2= X, then S (i) == X(j) forall i;.

(c) Sync-Atomicity - Same as for Method 1.

(d) Uniprocessor-Dependence - Same as for Method 1.

I mplementation Proposal.

The above specification is similar to that for release consistency (RCsc), assuming no distinction between
sync and nsync special operations. It differs from method 1 by distinguishing between write and read synchroni-
zation operations. Sync-Atomicity and Uniprocessor-Dependence can be met as for method 1. SyncWrite and
SyncRead can be met by adding the following features to a uniprocessor-based processor logic.

- A counter (similar to method 1) per processor.
- Modification of issue logic to delay the issue of, or stall on, certain operations.

SyncRead can be met if the issue logic examines all operations in program order, and stalls after the issue of a
synchronization read until the synchronization read completes. For SyncWrite, recall that the counter indicates
the number of issued but incomplete operations of a processor. Therefore, the condition is met if the issue of a
synchronization write operation is delayed until the counter of the processor reads zero. Data operations following
the synchronization write can still be issued.

While a synchronization write is delayed waiting for preceding memory operations to complete, the opera-
tions following the synchronization write will aso increment its counter. This requires the synchronization write
to wait for the new operations as well, and it is possible that the counter may never reach zero. This problem can
be aleviated by allowing only a limited number of cache misses to be sent to memory while a synchronization
write is delayed for the counter to reach zero. A more dynamic solution involves having two counters and provid-
ing a mechanism to distinguish operations (and their acknowledgements) preceding a particular synchronization
write from those following the write.

A simpler implementation, such as the DASH implementation of release consistency [GLL9Q], is possible
by forsaking some of the flexibility of the above specification. The DASH implementation blocks on all read
operations; therefore, a synchronization write needs to wait for the completion of only preceding write operations.
On systems with write buffers, this can be ensured simply by stalling the write buffer before retiring a synchroni-
zation write until the counter reads zero. This allows reads following a synchronization write to be overlapped
with preceding data writes, but serializes data writes separated by synchronization writes.
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Method 3: First Aggressive Implementation For Data-Race-Free-0

The next two methods may seem complex and difficult to currently incorporate in hardware cache-coherent
systems. However, this complexity is manageable for software-based shared virtual memory systems, as demon-
strated by recent implementations based on similar ideas [KCZ92]. (These are further discussed at the end of this
section.) The following method is based on the proposal in [AdH90b].

Low-Level System-Centric Specification for Data Requirement.
Condition 5.13; An execution obeys the data requirement if it obeys the following.
(a) Post-SyncWrite - If X 22> Qv =5 & then X (i) X% S (j) for al i,j.
(b) SyncRead - Same as for Method 2.
(c) Sync-Atomicity - Same as for Methods 1 and 2.
(d) Uniprocessor-Dependence - Same as for Methods 1 and 2.

Implementation Proposal.

The above specification differs from that of Method 2 by not requiring the issue of a synchronization write
to be delayed for preceding operations to complete. Instead, the next synchronization read to the same location by
any processor (that might return the value of the above synchronization write) is stalled until the operations
preceding the synchronization write complete. The SyncRead, Sync-Atomicity, and Uniprocessor-Dependence
conditions are satisfied as for method 2. The Post-SyncWrite condition is met by adding the following features to
a uniprocessor-based processor logic and the base cache-coherence logic mentioned earlier.

- A data counter per processor, initialized to zero.

- A synchronization counter per processor, initialized to zero.

- A bit called the reserve bit per cache line, initialized to reset.

- Modification of issue logic to delay the issue of, or stall on, certain operations.

- Modification of cache-coherence logic to allow a processor to retain ownership of aline whose reserve bit is
set, and to specially handle requests to such aline.

The data and synchronization counters of a processor indicate the number of issued, but incomplete, data
and synchronization operations respectively of the processor, in a manner analogous to the counters of the first
two methods.

For the Post-SyncWrite condition, a synchronization write is not issued until all preceding synchronization
operations complete (accomplished using the synchronization counter, and necessary to prevent deadlock), and all
preceding data operations are issued. The reserve bits in the caches are used to ensure that after a synchronization
write sub-operation is executed, a synchronization read sub-operation to the same location cannot execute until all
operations preceding the synchronization write complete. A reserve bit of a line is set when a synchronization
write is issued for the line and if the data counter is positive; i.e., preceding data operations are incomplete. All
reserve hits are reset when the counter reads zero, i.e., when all outstanding data operations of the processor com-
plete. (The reset does not necessarily require an associative clear: it can be implemented by maintaining a small,
fixed table of reserved blocks as used for method 4 below, or a less aggressive implementation may allow only
one reserved line at atime and stall on any following operations that need to reserve aline.) On a synchronization
write, the writing processor procures ownership of the requested line, and does not give up the ownership until the
reserve bit of the line is reset (the mechanism for achieving thisis given in the next paragraph). Consequently, the
cache-coherence protocol forwards subseguent requests to the line, including subsequent synchronization reads, to
the cache holding the line reserved. The cache controller for this cache can now stall the synchronization reads
until the reserve hit of the lineis reset (i.e., its data counter reads zero). The cache controller can stall an external
reguest by maintaining a queue of stalled requests to be serviced, or a negative acknowledgement may be sent to
the processor that sent the request.

Table 5.1 gives the details of how the base cache-coherence logic can be modified to alow a processor P;
that does a synchronization write to retain ownership of the requested line. The only way a processor could be re-
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Reserve Bit of .
Request Requested L ine Set? Action

Requests by this processor

Any No Process as usual .
Any read or write Yes Process as usual.
Cache line replace- Yes Stall processor until all reserve bits reset.
ment
Requests from other processors forwarded to this processor
Any No Process as usual.
Synchronization Yes Stall request until reserve bit of line reset.
Data Yes If read request, send line to other processor; if

write request, update line in this processor's
cache and send acknowledgement to other pro-
cessor; request other processor to not cache the
ling; inform directory that this processor is retain-
ing ownership.

Table5.1. Maodification to cache-coherence logic at processor.

quired to give up ownership of aline with the base protocol is if it needs to flush the line due to a conflict in its
cache, or if it gets an external request for the line. We expect the former case of flushing to be rare and require
that the processor stall in that case until it is ready to give up ownership. For the latter case of external requests,
we have aready discussed that for external synchronization read requests, the cache controller of the processor
needs to stall the request to obey the Post-SyncWrite condition. For external synchronization write requests to the
same line aso, the cache controller must stall the request until it is ready to give up ownership. For al other
external requests to the same line (i.e., data requests), the cache controller must perform aremote service. The re-
mote service mechanism alows a cache controller to service the requests of other processors without alowing
those processors to cache the line. The mechanisms of stalling operations for external synchronization writes and
remote service for data operations are both necessary. This is because stalling data operations can lead to
deadlock (as illustrated by figure 5.3), and servicing external synchronization writes remotely would not let the
new synchronizing processors procure ownership of the line as required for the Post-SyncWrite condition.'*

Again, as discussed in method 2, data operations following a synchronization write will also increment the
data counter in the processor, and could slow progress by not letting the counter reach zero in reasonable time. To
preclude such a case, the implementation needs to either put a bound on the number of data operations that can be
issued while alineis reserved, or to have a more dynamic mechanism with two or more counters, as discussed for
method 2.

The proposal described above never leads to deadlock or livelock as long as the underlying cache-
coherence protocol isimplemented correctly, and messages are not lost in the network (or atime-out that initiates
a system clean-up is generated on a lost message). Specifically, the above proposal never stalls a memory opera-
tion indefinitely since (i) the proposal never delays the completion of issued data operations, and (ii) the proposal
delays an operation of a processor only if its preceding synchronization operation is incomplete, or issued, data
operations of other processors are incomplete.

14. The remote service mechanism should be included in the implementation proposal presented in our previous work
[AdH90b].
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P1 P2

data A=1 B=1 data

synchronization B=2 A=1 synchronization

Figure5.3. Need for remote service of data operations.

Consider an execution where the synchronization writes are allowed to get ownership of their lines before the
preceding data writes. Then, if remote service is not provided for data writes, each process will stall the data write
of the other process indefinitely, leading to deadlock.

Method 4: Second Aggr essive Implementation For Data-Race-Free-0
The following method is based on the material in [AdH92, AdH93].
Low-Level System-Centric Specification for Data Requirement.

Condition 5.14: An execution obeys the data requirement if it obeys the following.
Let X and Y be conflicting memory operations such that at least one of X or Y is a data operation.

(@) Post-SyncWrite - If Z 2> Sw; 25 &, 25 S, 25§, then Z(i) 22> S,(j) for all
i

(b) SyncRead - Same as for Methods 2 and 3.

(c) Post-SyncRead - If X 25 Sv 225 g 25 Y then X (i) 2> Y(i) for all i.

(d) Sync-Atomicity - Same as for Methods 1, 2, and 3.

(e) Uniprocessor-Dependence - Same as for Methods 1, 2, and 3.

Implementation Proposal.

The above specification differs from Method 3 by not requiring a processor (say P;) that issues a synchroni-
zation write (on say line ), to delay the next synchronization read (of any processor) until operations preceding
the synchronization write complete. Instead, P; can send the identity of its incomplete operations to the processor
that does the subsequent synchronization read on line |. The reading processor ensures that it does not subsequent-
ly access a location for which P; has a pending operation. SyncRead, Sync-Atomicity, and Uniprocessor-
Dependence can be satisfied as in the earlier methods. The Post-SyncWrite and Post-SyncRead conditions in-
volve adding the following features to a uniprocessor-based processor logic and the base cache-coherence logic
mentioned earlier.

- Addition of three buffers per processor -- incomplete, reserve, and specia (tables 5.2(a) and 5.2(b)).
- A synchronization counter (similar to method 3).
- Modification of issue logic to delay theissue of or stall on certain operations (table 5.3(a)).

- Modification of cache-coherence logic to alow a processor to retain ownership of aline in the processor’s
reserve buffer and to specially handle requests to such aline (almost similar to table 5.1 of method 3).

- A processor-to-processor message called ‘‘empty special buffer.”” (table 5.3(b)).

To meet the Post-SyncWrite and Post-SyncRead conditions, the incomplete buffer and reserve buffer
respectively are used analogous to the data counter and reserve hits of the previous implementation. A simple
data counter that indicates the number of outstanding data requests no longer suffices because we need to also
store the identity of the outstanding requests. Reserve bits could be used instead of the reserve buffer, but as men-
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Buffer Contents Purpose
Incomplete Incomplete data operations Used to remember incomplete operations (of
(of this processor) this processor) preceding a synchronization
write (of this processor).

Reserve Synchronization writes (of Used to remember synchronization writes (of
this processor) for which this processor) that may cause future synchroni-
there are incomplete opera zation reads (of other processors) to the same
tions line to need special attention.

Soecial Incomplete operations (of Used to identify if an operation (of this proces-
another processor) received sor) requires special action due to early comple-
on a synchronization read (by tion of a synchronization read (of this proces-
this processor) sor).

(a) Contents and purpose of buffers
Buffer Insertions Deletions
Event Entry Inserted Event Entry Deleted
Incomplete Data operation is Address of data Data operation Address of data
sued operation completes operation
Reserve Synchronization Address of syn- Operations Address of syn-
write issued chronization write preceding syn- chronization write
operation chronization write operation
complete, (i.e,
deleted from in-
complete buffer),
and specia buffer
empties
Specidl Synchronization Addresses re- ““Empty  special All entries
read completes ceived on syn- buffer’”  message
chronization read arrives

(b) Insertion and deletion actions for buffers

Table5.2. Second aggressive implementation of data-race-free-0 (Cont.).

tioned for method 3, the reserve buffer precludes the need for an associative clear of the reserve bits.

The incomplete buffer of a processor stores the addresses (and identity) of all the issued, but incomplete,
data operations of the processor. A synchronization write is not issued until all preceding synchronization opera-
tions complete (accomplished using the synchronization counter, and necessary to prevent deadlock) and all
preceding data operations are issued. Thus, the incomplete buffer contains the identity of all the operations
preceding a synchronization write that are incomplete. To distinguish between data operations preceding and fol-
lowing a synchronization write, entries in the incomplete buffer may be tagged or multiple incomplete buffers

may be used.
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Operation Sp':cc::lmBﬁjflfr;r? Action
Data No Process as usual.

Synchronization write No Issue after all preceding operations are issued and
all preceding synchronization operations com-
plete.

Synchronization read No Issue after special buffer empties and stall until
synchronization read compl etes.

Any Yes Stall or delay issue of only this operation until
special buffer empties.

(a) Modification to issue logic

Event M essage
All  incomplete  buffer  entries Send ‘‘empty special buffer’”” mes
corresponding to a synchronization sage to processors that executed syn-
write deleted chronization reads to the same line as

the synchronization write while the
line was in reserve buffer.

(b) New processor-to-processor message

Table5.3. Second aggressive implementation of data-race-free-0.

To meet the PostSyncWrite and PostSyncRead conditions, after a processor executes a synchronization
write operation, it prevents a subsequent synchronization read to the same line (by any processor) from complet-
ing until (a) all operations received by the writing processor on its synchronization reads preceding this write are
complete, and (b) the writing processor transfers to the new reading processor the addresses of all incomplete
operations preceding the synchronization write.

To accomplish the above, when a processor issues a synchronization write operation, it stores the identity of
the operation in its reserve buffer. The entry is deleted from the reserve buffer only after the previously received
operations mentioned in (a) complete and the operations preceding the write mentioned in (b) complete. As will
be clear from the following, the identity of the former operations is stored in the specia buffer, and as discussed
before, the identity of the latter operations is stored in the incomplete buffer of the processor. Thus, the entry for a
synchronization write remains in the reserve buffer until the entries in its processor’ s incomplete buffer tagged for
this write are deleted, and its processor’s specia buffer empties. After a processor issues a synchronization write,
it does not release ownership of the requested line until the identity of this operation is removed from the reserve
buffer (the mechanism for thisis described in the next paragraph). Thus, all synchronization reads for the line are
sent to the processor and the processor can now stall the synchronization read until (a) and (b) above are satisfied.
(a) is satisfied when the specia buffer of the processor empties. To satisfy (b), the processor transfers the contents
of itsincomplete buffer tagged for the synchronization write to the processor that did the synchronization read.

The mechanism for retaining ownership of aline in the reserve buffer is the same as described in table 5.1
for retaining ownership of aline with its reserve bit set in Method 3 with the following two exceptions. First, the
checks of the reserve bit of aline must be replaced with checks of whether the address of the lineisin the reserve
buffer. Second, an external synchronization read request to aline in the reserve buffer need not be stalled until the
line is deleted from the reserve buffer, but it can be serviced remotely once the conditions described in (a) and (b)
above are met.
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Satisfying (a) above directly meets the Post-SyncWrite condition. For the Post-SyncRead condition, a pro-
cessor must delay an operation following a read synchronization until the completion of any conflicting operation
transferred to it on the read synchronization. For this purpose, a processor uses a special buffer to save all the in-
formation transferred to it on aread synchronization. If afollowing operation conflicts with an operation stored in
the special buffer, the processor can either stall or delay only this operation, until it receives an ‘‘empty special
buffer’” message from the processor that did the relevant synchronization write. The latter processor sends the
“‘empty special buffer’”’ message when it deletes the entry for the corresponding synchronization write from its
reserve buffer. For simplicity, a processor doing a synchronization read can also stall on the read until its special
buffer empties to avoid the complexity of having to delay an operation for incomplete operations of multiple pro-
Cessors.

As for method 3, the above proposal never leads to deadlock or livelock because the proposal never delays
the completion of issued data operations, and it delays an operation only if certain issued data operations of other
processors are incomplete or a preceding synchronization operation isincomplete.

This completes all the implementation proposals for the data requirement, assuming that a process runs
uninterrupted on a processor. To handle context switches correctly, a processor must stall before switching until
the various buffers mentioned in the implementations empty, the counters read zero, and the various reserve bits
are reset. Overflow of the buffers can also be handled by making a processor stall until an entry is deleted from
the relevant buffer.

Alternative Implementations.

The implementation proposals so far have assumed hardware cache-coherent systems and benefit from in-
creased performance potential by overlapping the latency of memory operations with useful work. The system-
centric specifications, however, are well-suited for other types of systems and can benefit them in other ways as
well.

Software-based shared virtual memory systems [CBZ91, Li89], for example, have different tradeoffs com-
pared to hardware cache-coherent systems. First, more complex mechanisms can be used to ensure memory con-
sistency in software-based systems since the implementation is in software. Second, reducing the number of mes-
sages is critical for performance in such systems [CBZ91,KCZ92]. For these reasons, our more aggressive
system-centric specifications (Condition 5.10 and Methods 3 and 4) are less formidable to implement and can pro-
vide greater benefit on such systems. Munin [BCZ90, CBZ91] employs arelease consistency (RCsc) based imple-
mentation (Method 2) in which messages for data writes are combined and sent at the following synchronization
write (release). A more aggressive implementation not allowed by previous hardware-centric models, but allowed
by the specification of Condition 5.10 is the lazy release consistency implementation [KCZ92]. Thisimplementa-
tion executes a data write sub-operation of some processor in the memory copy of another processor (P;) only if
P, executes a synchronization read (acquire) ordered after the data write by happens-before-0+. (Methods 2 and 3
of this section execute a data write in all processor’s copies if any processor executes an acquire ordered after the
write by happens-before-0+.) This implementation satisfies the system-centric specification of Condition 5.10. It
does not, however, satisfy the hardware-centric models of weak ordering or release consistency since it does not
stall a synchronization write (release) for preceding operations to complete (this difference is observable by pro-
grammers since some programs can give results with lazy release consistency that are not allowed with release
consistency).

The specification of Condition 5.10 is also well-suited for software-based cache-coherent systems
[Chv88, Che90, CKM88]. Zucker explains how the hardware-centric models proposed so far cannot be used on
software-based cache-coherent systems but our specifications lead to efficient implementations [Zuc92].

5.3.2. The Synchronization Requirement

The synchronization requirement is met by ensuring that synchronization operations interact like on a
sequentially consistent system. The conditions for sequential consistency given by Dubois et al. [ScD87] motivate
the following system-centric specification to meet the synchronization requirement.

Condition 5.15: An execution obeys the synchronization requirement if it obeys the following.

@IS, 2> S, thenS,(i) 22> S,(j) for al i,j.



) If S =25 & 5 S then Sw(i) 2> S(j) for all i].
(c) If Sw, and Sw,, conflict, then either S, (i) = Sw,(i) for al i or Sw,(i) == Sw,(i) for all i.

A hardware implementation satisfies part (a) if a processor does not issue a synchronization operation until
its preceding synchronization operation completes. Part (b) isthe same as the Sync-Atomicity condition of method
1 of the data requirement, and can be satisfied similarly. Part (c) is satisfied by the cache coherence protocol.

5.3.3. The Control Requirement

The specification for the control requirement involves three intuitive, but hard to formalize concepts. Since
Chapter 7 will formalize these concepts while developing a common framework for SCNF models, we use those
concepts informally here. The first concept is that of aread controlling a memory operation. We (informally) say
aread R controls memory operation X if (a) R and X are issued by the same process, and (b) the value that R re-
turns determines if the instruction instance that generated X would be executed, or determines the address ac-
cessed by X, or determines the value written by X (if X isawrite). For example, X may be in only one path of a
branch whose outcome is decided by R, or X may access an address in an array whose index isreturned by R. The
second concept is that of determining whether a specific instruction instance in one execution occurs in another.
For a program without loops or recursion, the above is straightforward to determine; for other programs also, the
concept isintuitive but the formalization is slightly complex and will be given later. The third concept involves a
loop in a program that does not terminate in any sequentially consistent execution, and instruction instances from
the loop. The system-centric specification follows. It is mostly based on the work in [AdH92], and assumes that
the high-level data and synchronization requirements are obeyed.

Condition 5.16: An execution E of program Prog obeys the control requirement if it obeys the high-
level data and synchronization requirements of Condition 5.10, and the following.

(a) Let read R control an operation XinE. Then R(i) > X(j)forali,jinE.

(b) Consider any sequentially consistent execution, Eg, of program Prog and operations X and Y in Eg
such that Yisin E, X > Yin Es, and either X and Y conflict in E, or X isa synchronization read in
E,, or Y isasynchronization writein Eg, or X and Y are both synchronization operationsin Eg. If the
instruction instance i that issued operation X in Eg is not in E, or operation X does not access the same
location in E asin Eg, then let R be aread in E that determined that i would not be in E (if i isnot in
E) or that X would access a different location in E (if X accesses a different location). Then R(i) >

Y(j)forali,jinE.

(c) Let read R control operation X in E. Consider Y in E such that X 2> Yin E, and either X and Y
conflict in E, or X is a synchronization read in E, or Y is a synchronization write in E, or X and Y are
both synchronization operationsin E. ThenR(i) == Y(j)foralli,jinE.

(d) If Risasynchronization read and R > XinE, thenR(i) = X(j)forali,jinE.

(e) Let j be an instance of any instruction j' in E that writes shared-memory or writes to an output in-
terface in E. If j' follows (in E) an instance L of aloop that does not terminate in some sequentially
consistent execution of Prog, then the number of instances of instructions that are from the loop in-
stance L and that are ordered by program order before j in E isfinite.

(f) If asynchronization write operation, Sw, isin E, then there is a sub-operation Sw(k) in E for al k
from 1 tgi)sn where n is the number of processors in the system; i.e., al possible sub-operations of Sw
areinE.

Hardware can satisfy part (a) of the control requirement if a memory operation is not issued until it is

15. Kourosh Gharachorloo pointed out that for a control read, we need to also consider aread that determines the value
written by a write. Richard Zucker pointed out that for part (b) reads that control the value of awrite X in E need not be
considered if X's instruction instance does not execute in E or X accesses a different location in E. Parts (e) and (f) were
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known that it will be (committed) in the execution and it is known what address it will access and what value it
will write (if it isawrite). Parts (b) and (c) are satisfied if an operation is not issued until the following is known
about the preceding operations that are not yet issued or committed. First, a preceding unissued or uncommitted
operation cannot conflict with the current operation and cannot be a read synchronization. Second, if the current
operation is a synchronization operation, then all the preceding operations that will be in the execution are known.
Two simpler, but more conservative, ways of satisfying parts (a), (b), and (c) are for a processor to block on all
reads that could possibly control an operation, or to stall the issue of a memory operation until it is known that the
memory operation will be (committed) in this execution and it is known which memory operations preceding this
operation will be (committed) in this execution; specifically, speculative execution is prohibited.

Hardware can satisfy part (d) by stalling on a synchronization read until it completes. Hardware can satisfy
part (e) by not speculatively executing an instruction that might follow an unbounded loop until it is known that
the loop will terminate. The requirement is necessary only for those instructions that might write shared-memory
or change the output interface. If hardware has information about whether a loop always terminates in a sequen-
tially consistent execution, then the above requirement is needed only for loops that do not always terminate in
sequentially consistent executions. Often, programmers write programs so that aloop always terminates (for every
sequentially consistent execution) or is not followed by any other instructions; therefore, the above information
may be worthwhile to transmit if hardware does aggressive speculation. Hardware can satisfy part (f) simply by
ensuring that when a synchronization write operation is executed, all sub-operations of the write are executed.
Thisistrivialy satisfied by most hardware cache-coherence protocols.

5.4. Implementationsfor Compilers

This section discusses implementations of the static compile-time part of the system. We focus on the com-
piler, but the following discussion applies to any software that pre-processes the program. We can use the low-
level system-centric specifications to reason about compiler implementations similar to the runtime implementa-
tions. However, note that the runtime system needs to only ensure that the current run of the program gives the
correct output, while the compiler needs to consider all possible runs of the input program for all possible data
sets. The reasoning used in this section has evolved from other joint work [AGG93, GAG93].

We consider compiler optimizations that involve reordering instructions of the program (e.g., loop transfor-
mations) and allocating shared-memory locations to registers. The optimization of register allocation does not
have a direct analog in the runtime system, since this optimization results in eliminating certain operations from
the original input program. Below, we first discuss how we can use the system-centric specification to reason
about such an optimization. We expect this discussion will extend to other optimizations that involve eimination
of memory operations (e.g., common sub-expression elimination).

To use the system-centric specifications for reasoning about register allocation, we model register opera-
tions as memory operations as follows. We assume two types of intervals in the instruction instances of a process
(as ordered by program order) over which the compiler can allocate a memory location to aregister. Thefirst type
of interval consists of reads to the location with no intervening writes to that location. In such an interval, the first
memory read (by program order) needs to be retained as a memory read that writes the value returned into the re-
gister. Subsequent memory reads of the interval are replaced by reads that return values from the above register.
Call the first (by program order) memory read of this interval as the start operation of the interval. The second
type of interval begins with a memory write and may contain other reads and writes to the same location. In such
an interval, the first (by program order) memory write is replaced by a write to a register, and subsequent reads
and writes to the same location are replaced by accesses to that register. If the last (by program order) operation
(to the register-allocated location) in this interval is a read, then an additional memory write called a flush write
needs to be inserted at the end of the interval that writes back the value of the register to the register-allocated
memory location. If the last operation (to the register allocated location) at the end of thisinterval isawrite, then
either an additional memory write may be inserted as above, or thiswrite itself may be done to memory and treat-
ed as the flush write. Call the flush write as the end operation of the interval.

not present in previous versions of the control condition [AdH92] since those versions assumed a stricter model of an exe-
cution as discussed in Section 5.1.1. These parts were developed as part of other joint work [AGG93].



66

It follows that the register reads of the first type of interval can be modeled as memory reads that occur (in
the execution order) just after the start read of thisinterval. Thus, an effect of the register allocation for such an
interval isto reorder aregister alocated read with respect to the operations (other than the start read) that precede
it intheinterval. The register operations of the second type of interval can be modeled as memory operations that
occur (in the execution order) just before the end write of the interval. Thus, an effect of this type of register allo-
cation isto reorder aregister alocated operation with respect to the operations (other than the end write) that fol-
low it in the interval. We can now use the system-centric specification to reason about register allocation by
modeling register operations as memory operations as described above.

Consider the data requirement first. The more aggressive specifications cannot be easily exploited by the
compiler; therefore, we consider the specification for method 2 (Condition 5.12). The first part states that if an
operation X is followed by a synchronization write operation Sw, then X should be executed before Sv. To obey
this part, the compiler must not reorder instruction instances where the second instance could generate a synchron-
ization write in any execution of the original program.16 This part does not impose any constraints for register al-
location intervals of the first type since these only reorder an operation followed by aread. For register allocation
intervals of the second type, there should not be any synchronization write between (by program order) the begin-
ning of the interval and the end write in any execution of the origina program.

The second part of the data requirement (Condition 5.12) is analogous and states that an operation that fol-
lows a synchronization read should be executed after the read. To obey this part, the compiler must not reorder
instruction instances where the first instance could generate a synchronization read in any execution. For register
dlocation intervals of the first type, there should not be any synchronization read between (by program order) the
start read of the interval and the end of the interval. For the second type of interval, a read that could be a syn-
chronization read in any execution should not be replaced with a register operation.

The third part requires that if Sv 2%~ & 25 7 then Sw(i) 2>> Z(j) foral i, j. If the compiler obeys
the constraints for the second part discussed above, then it also obeys this part.

The fourth part requires maintaining the order of conflicting operations, which most uniprocessor compilers
aready maintain.

For the synchronization requirement, consider the low-level specification of Condition 5.15. The first part
states that synchronization operations should not be reordered. Thus, the compiler should not reorder instruction
instances that could generate synchronization operationsin any execution of the input program. Further, for regis-
ter allocation intervals of the first type, a synchronization operation should not be replaced with a register opera-
tion if there is another synchronization operation (to another location) preceding it in the interval. Anaogously,
for register alocation intervals of the second type, a synchronization operation should not be replaced with are-
gister operation if there is another synchronization operation (to another location) following it in the interval. The
second part of the requirement is already met by the above. The third part enforces coherence on synchronization
writes and is usually not relevant to the compiler.

For the control requirement, the first three parts are obeyed if a control read is not reordered with respect to
operations following it. Further, if an operation is replaced by a register operation using the first type of interval,
then no read that controls this operation should be after (by program order) the start operation of thisinterval. If a
read is replaced by a register operation with the second type of interval, then there cannot be an operation that the
read controls before the end operation of the interval. (These requirements will be relaxed in Chapter 7.) For the
part (d) of the control requirement, an instruction following a loop that may not terminate in some sequentially
consistent execution should not be reordered with respect to the loop instructions. Part (e) of the control require-
ment is not usually relevant to the compiler, given the assumption that a write alocated in a register is always
flushed.

This compl etes the requirements specified in the system-centric specification of the last section. In addition,
the compiler must also obey the general requirements of an execution; i.e., the uniprocessor correctness condition
(Condition 3.11 and Appendix B) and the condition that only a finite number of sub-operations are ordered before

16. Although we require the compiler to obey our constraints for any execution, it is sufficient to consider only the exe-
cutions possible on the runtime part of its system.
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any other by the execution order (Condition 5.3). Traditional uniprocessor compilers obey the major part of the
uniprocessor correctness condition constraints. However, additional care is required in the presence of register al-
location in multiprocessors. The uniprocessor correctness condition is satisfied if an execution always has an end
operation for every register alocation interval of the second type. Specifically, whenever an operation from an
unbounded loop is allocated in a register, the corresponding end operation should also be in the loop. The condi-
tion for execution order described above is relevant to the compiler in the presence of register allocation. This
condition can be met if whenever an operation from an unbounded loop is allocated in a register, then the start or
end memory operation of the allocation interval is also in the loop.

The compiler must also ensure that any operation of the input program that could be distinguished as syn-
chronization, is also distinguished as synchronization in the output program. How this is done is specific to the
mechanisms provided in the hardware. In the simplest case, where the hardware provides specia instructions for
synchronization, the compiler need only ensure that it uses the specia instructions for every synchronization
operation indicated by the input program. However, note that this straightforward reasoning does not work if a
synchronization operation is substituted by a register operation since hardware cannot recognize register opera-
tions as synchronization. For now, we satisfy the requirement by prohibiting synchronization operations from be-
ing allocated in registers. The compiler section in Chapter 7 indicates how this requirement may be met more ag-
gressively.

Finally, note that for the third part of the control requirement, if the runtime system exploits the knowledge
of whether aloop terminates in a sequentially consistent execution, then the compiler should ensure this informa-
tionisaso correctly trandated.

5.5. All Implementations of Weak Ordering Obey Data-Race-Free-0
This section argues that data-race-free-0 allows all implementations of weak ordering. Consider two opera-
tions X and Y such that X *- Y, one of X or Y is synchronization, and the other is data. Weak ordering ensures

that X (i) 2% Y(j) for al i, j. Further, if X isa synchronization read and W 22> X, then W(i) 2> Y(j) for
al i, j. Weak ordering also requires that synchronization operations appear sequentially consistent and uniproces-
sor data dependences be satisfied. These conditions fulfill the data and synchronization requirements for data-
race-free-0 and part (d) of the control requirement. Weak ordering also states that uniprocessor control depen-
dences should be satisfied. This notion is not formalized; we assume that it covers parts (a), (b), (c), and (€) of our
control requirement. We assume part (f) of the control requirement is met by weak ordering since it requires syn-
chronization operations to be sequentially consistent. Therefore, we claim that all implementations of weak order-
ing obey data-race-free-0.
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Chapter 6

Three More SCNF Models:
Data-Race-Free-1, PLpcl, and PLpc2

This chapter defines three SCNF models — data-race-free-1, PLpcl, and PLpc2. The data-race-free-1
model [AdH93] extends data-race-free-0 by allowing the programmer to provide more information about the syn-
chronization operations in the program. Data-race-free-1 unifies the hardware-centric model of release consisten-
¢y (RCsc) and other new implementations along with the systems unified by data-race-free-0.

The PLpcl and PLpc2 models are based on our earlier programmer-centric model called PLpc, proposed
jointly with others [GAG92]. PLpc unifies the models of total store ordering, partial store ordering, processor
consistency, and release consistency (RCpc) along with the systems unified by the data-race-free models. The
PLpcl and PLpc2 models achieve the same goals, but they are specified differently from PLpc to enhance porta-
bility across the programmer-centric models and to allow programmers to analyze their programs more incremen-
tally. A later section explains the need for defining the two modelsin more detail. PLpcl unifiesthe models of to-
tal store ordering and partial store ordering along with the systems unified by the data-race-free models. PLpc2
further unifies processor consistency and release consistency (RCpc) with the above systems. Thus, a program
written for PLpc2 works correctly on all the above-mentioned hardware-centric systems.

Other commercially implemented hardware-centric models not mentioned above are the IBM 370 and the
Alpha. We show that with reasonable interpretations of some ambiguities in these models, PLpcl can be viewed
as unifying the Alphaand PLpc2 can be viewed as unifying the IBM 370 model as well.

Sections 6.1, 6.2, and 6.3 describe the data-race-free-1, PLpcl, and PLpc2 models respectively. Each of
these sections is similarly organized with a sub-section each on the motivation for the model, the definition for the
model, programming with the model, implementations of the model, and comparison of the model with the new
hardware-centric models it unifies. Section 6.4 briefly discusses the PLpc model. Section 6.5 compares PLpcl
and PLpc2 with IBM 370 and Alpha. Section 6.6 concludes the chapter by using the SCNF models described so
far to re-evaluate the SCNF methodol ogy.

6.1. TheData-Race-Free-1 Memory Model

6.1.1. Motivation of Data-Race-Free-1

Figure 6.1 motivates the data-race-free-1 memory model, first presented in [AdH93]. Figure 6.1(a) shows
an implementation of acritical section using locks, where the lock and unlock use the Test& Set and Unset instruc-
tions discussed in Section 4.1.3. Assume the data |ocations accessed before the critical section are different from
the data locations accessed in the critical section. Figure 6.1(b) shows an execution of this code involving two
processes, P1 and P2, where P1's Test& Set succeeds first. Data-race-free-O requires the programmer to distin-
guish all the memory operations from the Test& Set and Unset instructions as synchronization operations. Thisim-
pliesthat the straightforward data-race-free-0 implementations (methods 1 and 2) will not allow a processor to ex-
ecute the write from the Set (and therefore the read from the Test) until its preceding operations complete. How-
ever, unlike the Unset, it is not necessary to delay the Set for sequential consistency. Data-race-free-1 exploits
this difference between the synchronization writes of the Set and the Unset.

More specifically, many synchronization operations occur in pairs of conflicting write and read operations,
where the read returns the value of the write, and the value is used by the reading processor to conclude the com-
pletion of all memory operations of the writing processor that preceded the write in the program. In such an in-
teraction, the write synchronization operation is called a release, the read synchronization operation is called an
acquire, and the release and acquire are said to be paired with each other. A synchronization operation is un-
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P1 P2
Test& Set,s
[* code for critical setion */
data ops before critical section Write.x et St
while (Test& Set(s)) {;} '
data opsin critical section Unset,s
Unset(s) Test& Set,s
Read,x
Unset,s
@) (b)

Figure6.1. Motivation for data-race-free-1.

paired if it is not paired with any other synchronization operation in the execution. In figure 6.1, the write due to
an Unset is paired with the Test that returns the unset value; the Unset write is a release operation and the Test
read is an acquire operation because the unset value returned by the Test is used to conclude the completion of
previous memory operations. The write due to a Set of a Test& Set and a read due to the Test of a Test& Set that
returns the set value are unpaired operations; such a read is not an acquire and the write is not a release because
the set value does not communicate the completion of any previous memory operations. Similarly, operations that
form a race (and hence need to be distinguished as synchronization) but occur due to asynchronous accesses to
data [DeM88] are unpaired synchronization in our terminology.

Of the synchronization operations, the system needs to enforce greater restrictions on paired operations
since they are used to order data operations. For example, unlike the paired Unset in figure 6.1, the unpaired Set
need not await the completion of preceding data operations. Thus, if hardware could distinguish an unpaired
operation from a paired operation, it could complete the unpaired synchronization operations faster than the paired
synchronization operations without violating sequential consistency. A data-race-free-1 system gives program-
mers the option of distinguishing unpairable synchronization operations from pairable synchronization opera-
tions. The system distinguishes a synchronization write and read as paired if they are distinguished as pairable by
the programmer and if the read returns the value of the write in the execution; otherwise, the synchronization
operations are distinguished as unpaired and can be executed faster.

The characterization of memory operations into pairable and unpairable operationsis similar to the sync and
nsync operations for properly labeled programs of release consistency [GLL90]; Section 6.1.5 discusses the
differences.

6.1.2. Definition of Data-Race-Free-1

The previous section informally characterized synchronization operations as paired and unpaired based on
the function they perform. This section gives the formal criterion for when the operations are distinguished
correctly for data-race-free-1. Again, as for data-race-free-0, the programmer has the option of distinguishing
operations conservatively; a synchronization operation can always be distinguished as pairable with all other syn-
chronization operations since only unpairable operations are optimized. Intuitively, data-race-free-1 requires that
sufficient operations be distinguished as synchronization (as for data-race-free-0), and sufficient synchronization
operations be distinguished as pairable so that only paired operations are used to order data operations. These no-
tions are formalized below.

Definition 6.1: Synchronization-order-1 ( =2>): Let X and Y be two memory operations in an exe-
cution. X 2> Y iff X and Y conflict, X is awrite, Y isaread, Y returns the value of X in the execu-
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tion, and X and Y are distinguished as pairable synchronization operations to the system. We say X is
arelease operation, Y is an acquire operation, and X and Y are paired with each other in the execution.

Definition 6.2: Happens-before-1 ( “25): The happens-before-1 relation is defined on the memory
operations of an execution as the irreflexive transitive closure of program order and synchronization-

order-1; ie, (2> [] =)+

Definition 6.3: Race: Two operations in an execution form a race under data-race-free-1 iff they
conflict and they are not ordered by the happens-before-1 relation of the execution. They form a data
race under data-race-free-1 iff at least one of them is distinguished as a data operation.

Definition 6.4: Data-Race-Free-1 Program: A program is data-race-free-1 iff for every sequentially
consistent execution of the program, all operations can be distinguished by the system as either data
or synchronization, all pairs of conflicting synchronization operations can be distinguished by the sys-
tem as either pairable or unpairable, and there are no data races (under data-race-free-1) in the execu-
tion.

Definition 6.5: Data-Race-Free-1 Model: A system obeys the data-race-free-1 memory model iff the
result of every run of a data-race-free-1 program on the system is the result of a sequentially con-
sistent execution of the program.

Mechanisms for distinguishing memory operations.

Data-race-free-1 requires a mechanism in the programming language for distinguishing data operations
from synchronization operations, and for distinguishing the write/read synchronization operations that are pairable
from those that are unpairable. For this purpose, the mechanisms to distinguish data and synchronization opera-
tions discussed for data-race-free-0 can be extended to distinguish multiple ( > 2) categories of operations. One
of the categories can be used to distinguish data operations. The rest of the categories can be used to distinguish
synchronization operations. In addition, the system can provide a static pairable relation on the different
categories of synchronization operations that defines the operation categories that are pairable with each other.

A simple implementation of the above notion is to provide three distinct categories (data, unpairable syn-
chronization, and pairable synchronization) and a trivial pairable relation that relates every pairable synchroniza-
tion write to every pairable synchronization read. Figure 6.2 uses annotations for a program discussed for data-
race-free-0. As before the operations on A and B can be distinguished as data and the operations on Valid are syn-
chronization. The operations on Valid are also pairable synchronization, as indicated by the annotations.

P1 P2
data= ON pairable= ON
A =100; while (Valid!=1) {;}
data= ON
B = 200; ..=B;
pairable=ON
Vaid =1, o EA;

Figure 6.2. High-level data-race-free-1 programs.
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Figure6.3. Low-level data-race-free-1 programs.
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Figure 6.3 illustrates specific pairable relations for three hardware systems that provide different instruc-
tions for data and synchronization (parts (a) and (c) are from [AdH93]). For each system, the figure shows the
different synchronization operations and the pairable relation, along with programs and executions that use these
operations. The table in each figure lists the read synchronization operations (potential acquires) horizontally, and
the write synchronization operations (potential releases) vertically. A ‘X’ indicates that the synchronization opera-
tions of the corresponding row and column are pairable. DataRead and DataWrite denote data operations.

Figure 6.3(a) shows a system with the Test& Set and Unset instructions, which are useful to implement a
critical section, as discussed in Section 4.1.3. A write due to an Unset and a read due to a Test& Set are pairable.
The figure shows code for implementing a critical section using these operations and a sequentially consistent exe-
cution with two processors executing the code. Assume the operations in the critical section do not access loca-
tion's. In the execution shown, all pairs of conflicting operations, such that at least one is a data operation, are or-
dered by the happens-before-1 relation; thisistrue of all sequentially consistent executions of the code. Therefore,
a program consisting of N (= 2) processors where each processor is executing the critical section code is data-
race-free-1.

Figure 6.3(b) shows a system with the Fetch& Inc [GGK83], Dec, and SyncRead instructions, which are also
useful for implementing a critical section, based on ticket locks [MeS91, ReK79]. The Fetch& Inc instruction is a
read-modify-write that atomically reads and increments a memory location. The Dec instruction atomically decre-
ments a memory location. The SyncRead is a read that is distinguished by hardware as synchronization. A write
due to a Dec is pairable with aread due to a SyncRead. The figure shows code for implementing a critical section
and a sequentialy consistent execution with two processors executing the code. This implementation of critical
sections (and others based on similar mechanisms) have more desirable properties than the implementation in
figure 6.3(a) in terms of reduced contention and fairness [MeS91]. In the execution shown, al pairs of conflicting
operations, such that at least one is a data operation, are ordered by the happens-before-1 relation; this is true of
all sequentially consistent executions of the code. Therefore, a program consisting of N (= 2) processors where
each processor is executing the critical section code is data-race-free-1 (assuming data operations in the critical
section do not access locations turn and ticket).

Figure 6.3(c) shows a system with Fetch& Inc, SyncWrite, and SyncRead instructions that are useful to im-
plement a barrier [MeS91]. SyncWrite is a synchronization write that updates a memory location to the specified
value. A write due to a Fetch&Inc is pairable with a read due to another Fetch&Inc and a write due to a
SyncWrite is pairable with a read due to a SyncRead. Also shown is code where N processors synchronize on a
barrier [MeS91], and its execution for N = 2. The variable local_flag isimplemented in alocal register of the pro-
cessor and operations on it are not shown in the execution. Again, the execution does not have data races and the
program is data-race-free-1 (assuming the data operations before and after the barrier code do not access the loca-
tions flag and count.

6.1.3. Programming with Data-Race-Free-1

Programming with data-race-free-1 is similar to programming with data-race-free-0: it alows reasoning
with sequential consistency as long as the programmer distinguishes all memory operations correctly. Figure 6.4
shows how memory operations can be distinguished correctly for data-race-free-1. Like data-race-free-0, data-
race-free-1 alows programmers to distinguish data operations from synchronization operations; in addition, it also
allows programmers to distinguish unpairable synchronization operations from pairable synchronization opera-
tions. As for data-race-free-0, any of the definitions of race used for data-race-free-0 can be used to distinguish
between data and synchronization for data-race-free-1. For the distinction between pairable and unpairable syn-
chronization, definitions 6.1-6.4 need to be applied (i.e., this distinction is correct if in every sequentialy con-
sistent execution, al conflicting pairs of operations, where at least one is distinguished data, are ordered by the
resulting happens-before-1 relation of the execution).17 Data-race-free-1 allows programmers to be conservative

17. There is one subtle difference between data-race-free-O and data-race-free-1 that affects the programmers’ model.
With data-race-free-0, there is always a unique set of memory operations that form arace, and are necessary and sufficient
to distinguish as synchronization. Thus, the correct distinction of a memory operation is independent of how the other
operations are distinguished. For pairable and unpairable operations, however, there is no such unique set that must be dis-
tinguished as pairable. Thus, the answer for the second question in figure 6.4 can depend on whether there are other opera-
tions distinguished as pairable that already order a data operation.
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in making their distinctions by providing *‘don’t-know’’ options. As with data-race-free-0, data-race-free-1 does
not restrict the use of any algorithms, synchronization primitives, or programming paradigms; it simply requires
distinguishing operations correctly.

1. Write program assuming sequential consistency

2. For every memory operation specified in the program do:

START

don’t know or

distinguish as yes don't ce

1
\
\
\
data } DRFO
\
\
\
!

distinguish as
synchronization

don’t know or
don't care

distinguishas Y&
unpairable

Qrders non-races

disti ngui as
pairable with appropriate synchronization
(paired write = release, paired read = acquire)

Figure 6.4. Programming with data-race-free-1.

Note that it is not necessary to use the data-race-free-1 model at al levels of the system. Instead, it is possi-
ble to specify the model for programmers of high level languages as data-race-free-0, and for the hardware as
data-race-free-1. Thus, at the high-level, an operation must be distinguished as either synchronization or data. If
(for example) some synchronization is through library routines, then the writers of the library routines can distin-
guish the operations in those routines as unpairable or pairable. Similarly, the compiler can translate high-level
synchronization constructs into low-level constructs that exploit the flexibility of data-race-free-1. In such a sys-
tem, only designers of synchronization library routines, compilers, and other system software designers need to
see the added complexity due to data-race-free-1.

6.1.4. Implementing Data-Race-Free-1

The high-level system-centric specification for data-race-free-0 (Condition 5.10), consisting of the data,
synchronization, and control requirements, is also a high-level system-centric specification for data-race-free-1. A
more aggressive specification that exploits the additional information available in data-race-free-1 programs is one
where the happens-before-0+ relation in the data-race-free-0 specification is replaced by the happens-before-1 re-
lation of data-race-free-1. The corresponding low-level system-centric specifications and hardware implementa-
tions of data-race-free-0 need to be changed as follows.
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For the data requirement, the low-level specification and hardware implementations of data-race-free-0 are
valid for data-race-free-1 as well. The system can be more aggressive, however, by exploiting the information that
data operations now are ordered only by paired operations. Thus, the data requirement need not restrict the execu-
tion of unpaired synchronization operations. Consequently, in each of the previous low-level specifications and
hardware implementation descriptions of the data requirement, synchronization writes can be replaced by releases
and synchronization reads can be replaced by acquires. Additionally, for the two aggressive hardware implemen-
tations (methods 3 and 4), when a processor stalls an external request to retain ownership of a reserved line, the
external requests for unpaired synchronization operations can be treated as data requests; i.e., they can be remote-
ly serviced. Specificaly, in table 5.1, the row for synchronization applies only to paired synchronization while the
row for data applies to data and unpaired synchronization. Also, for method 4, the issue logic can be modified so
that unpaired synchronization operations are again treated as data operations; i.e., in figure 5.3(a), the first row ap-
plies to data and unpairable synchronization while the second and third rows apply only to pairable synchroniza-
tion.

For the synchronization requirement, the low-level specification and hardware implementation of the syn-
chronization requirement of data-race-free-0 are valid for data-race-free-1. Data-race-free-1 does not offer any
higher performance aternatives for the synchronization requirement.

For the control requirement, again, the requirement for data-race-free-0 is sufficient; however, it can be re-
laxed for data-race-free-1 as follows. The condition of parts (b) and (c) need not be maintained if one of X or Y
mentioned in those parts is a data operation and the other is an unpaired synchronization operation. Also, the con-
dition of part (d) is required only if Ris a pairable synchronization read. Hardware implementations for the con-
trol requirement of data-race-free-1 are analogous to the data-race-free-0 implementations.

The formal proofs of the above requirements can be derived from the framework of Chapter 7 similar to the
derivation for data-race-free-0 in Appendix F.

The examples in figure 6.3 illustrate additional hardware performance gains made possible with data-race-
free-1 over data-race-free-0. For the critical section code of part (a), since the Set of the Test& Set is distinguished
as unpairable, the execution of the Test& Set can be fully overlapped with the execution of al the preceding data
operations. Similarly, in the critical section code of part (b), since the Inc is unpairable, the execution of the
Fetch& Inc can be fully overlapped with the execution of al the preceding data operations. These gains are more
significant with straightforward implementations (based on methods 1 and 2 of data-race-free-0) that delay the ex-
ecution of synchronization writes for preceding operations to complete. The barrier code of figure (c) does not
provide any significant additional gains over data-race-free-0.

Compiler optimizations for data-race-free-1 are also analogous to those for data-race-free-0 except that now
reordering and register allocation can be done on data operations between consecutive acquire and release. Thus,
data operations of a processor can be reordered even if there is an unpairable synchronization operation between
them, and register allocation intervals can correspondingly be longer.

6.1.5. Comparison of Data-Race-Free-1 with Release Consistency (RCsc)

This section compares data-race-free-1 with release consistency on the basis of programmability, portabili-
ty, and performance.
Programmability.

For ease-of-programming, release consistency (RCsc) formalizes programs, called properly labeled pro-
grams, for which it ensures sequential consistency [GLL90]. All data-race-free-1 programs are properly labeled
(interpreting data operations as ordinary, pairable synchronizations as syncs, and unpairable synchronizations as
nsyncs), but there are some properly labeled programs that are not data-race-free-1 (as defined by Definition 6.4)
[GMG91]. The difference is minor and arises because properly labeled programs have a less explicit notion of
pairing. They alow conflicting data operations to be ordered by operations (nsyncs) that correspond to the unpair-
able synchronization operations of data-race-free-1l. Thus, data-race-free-1 is similar in terms of ease-of-
programming to release consistency (RCsc) accompanied with the specification of properly labeled programs.
Although a memory model that allows all systems that guarantee sequential consistency to properly labeled pro-
grams has not been formally described, such a model would be similar to data-race-free-1 because of the similari-
ty between data-race-free-1 and properly labeled programs.



75

Portability.

Data-race-free-1 alows a strictly greater number of implementations than release consistency (RCsc), be-
cause as discussed below, al implementations of release consistency (RCsc) obey data-race-free-1 (interpreting
data operations as ordinary, pairable synchronizations as syncs, and unpairable synchronizations as nsyncs),
whereas implementations corresponding to methods 3 and 4 in Section 5.3.1 do not obey release consistency
(RCsc). Figure 6.5 shows a program that would run correctly on arelease consistent (RCsc) system but not on the
implementations of methods 3 and 4 (assuming values returned by reads constitute the result of an execution, as
discussed in Section 5.1.3). Thus, as for data-race-free-0, data-race-free-1 enhances portability when compared to
release consistency (RCsc).

P1 P2
data A=1 B=1 data
pairable c=1 D=1 pairable
pairable ..=E =F pairable
data ..=B . =A data

Figure 6.5. Portability with release consistency (RCsc) and data-race-free-1.

In a sequentially consistent execution, the reads of A and B cannot both return 0. Release consistency (RCsc) en-
sures this for the above program. However, the program is not data-race-free-1 and so the implementations of
data-race-free-1 corresponding to methods 3 and 4 of Section 5.3.1 allow executions where the reads return 0.

Performance.

With respect to performance, data-race-free-1 allows all implementations of release consistency (RCsc) be-
cause all data-race-free-1 programs are properly labeled [GMG91] (interpreting data operations as ordinary, pair-
able synchronizations as syncs, and unpairable synchronizations as nsyncs), and so all implementations of release
consistency (RCsc) ensure sequential consistency to data-race-free-1 programs. Further, the implementations
corresponding to methods 3 and 4 in Section 5.3.1 for data-race-free-1 violate release consistency (RCsc) because
they allow a processor to execute its release even while the preceding operations are incomplete and method 4 al-
lows an acquire to succeed even while preceding operations of the paired release are incomplete. Section 4.3 qual-
itatively indicated the increased performance potential with such implementations for some programs when com-
pared to weak ordering. Similar observations hold for release consistency (RCsc) since all implementations of
release consistency (RCsc) must obey the specification of method 2.3 As described in Section 4.3, our optimiza-
tions also benefit the aggressive implementations of release consistency (RCsc) based on hardware prefetch and
rollback [GGH91b)].

18. It may be argued that the definition of *‘ performs with respect to’” on which release consistency (RCsc) is based al-
lows a processor to execute its release as long as the release is not made visible to any other processor. Thus, it may seem
that our implementation based on method 3 could potentially be extended for release consistency (RCsc) by allowing a
release to be executed while preceding operations are pending, but stalling any external request to the released line until the
pending operations complete. Such an extension, however, is not a correct implementation of release consistency (RCsc)
because (1) it would lead to deadlock as illustrated by figure 5.3 in Section 5.3.1, and (2) for a program such as in figure
6.5, the implementation could return 0 for both the data reads violating release consistency (RCsc). The data-race-free-1
implementations avoid the above problems because they do not need to stall external requests to data operations and they
do not need to ensure that the program in Figure 6.5 gives sequentially consistent results.
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As for data-race-free-0, a potential disadvantage of data-race-free-1 is that programmers writing programs
directly for release consistency (RCsc) may be able to use data races and still get correct results, but at a higher
performance than possible with data-race-free-1 programs. The arguments used for data-race-free-0 in this con-
text apply to data-race-free-1 as well as follows. Except for programs that employ asynchronous algorithms, it is
not clear if exploiting data races can lead to significant performance gains. Since programming directly with
release consistency (RCsc) is difficult and since for many programs the additional gains are not clear, many pro-
grammers will not want to program directly with release consistency (RCsc), and will benefit from the advantages
of data-race-free-1. Programmers using asynchronous algorithms can reason with the system-centric specification
of data-race-free-1 for the highest possible performance, but at the cost of the programmability and portability
benefits of data-race-free-1.

Thus, compared to release consistency (RCsc), data-race-free-1 provides more flexibility to system
designers by allowing more implementations than release consistency (RCsc) and has the potential for higher per-
formance for some common programs.

6.2. ThePLpcl Memory Model

As mentioned earlier, the PLpcl memory model is based on the PLpc memory model [GAG92]; therefore,
the key concepts used to define PLpcl below were originally presented in [GAG92].

6.2.1. Motivation of PLpcl

PLpcl extends data-race-free-1 by exploiting additional differences between synchronization operations.
Consider the program in figure 6.6. Each processor produces a distinct set of data, sets a flag to indicate the data
is produced, tests the flag set by the other processor, and then consumes data produced by the other processor.
Data-race-free-1 requires the reads and writes of the flags to be distinguished as synchronization. Therefore, all
the implementations of data-race-free-1 considered so far require each processor to stall on its read of aflag vari-
able until its preceding write of a flag variable completes. However, this delay is not necessary for a system to ap-
pear sequentially consistent to the program in figure 6.6. To appear sequentialy consistent to this program, it is
sufficient if in the phase that consumes data, each processor reads the new values of the data produced by the oth-
er processor; thisis guaranteed even if the write and read of the flag variables of any processor execute in parallel
or out of program order (as explained in more detail below). The PLpcl modd distinguishes between synchroni-
zation operations to allow some synchronization write and synchronization read pairs of a processor (such as the
flag operations) to be executed in parallel and out of program order.

Initially all locations =0

P1 P2

produce data produce data

Flagl=1; Flag2 = 1;

while (Flag2 1= 1) {;} while (Flagl !'=1) {;}
consume data produced by P2 consume data produced by P1

Figure 6.6. Motivation for PLpc1.
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More specifically, paired synchronization operations often occur in loop interactions where a loop repeated-
ly executes synchronization reads until a read returns a specific value from a synchronization write. Further, the
synchronization write executes only to terminate such loops and is necessary to terminate the loops. The flag
operations of figure 6.6 represent such an interaction. We call the loop that generates the synchronization reads as
a synchronization loop, reads from such a loop as loop reads, and writes that terminate such loops as loop writes.
The next sub-section formalizes these concepts.

Loop reads and loop writes have two important properties that were first observed for the PLpc model
[GAG92]. First, assuming that a synchronization loop eventually terminates, the number of times the loop exe-
cutes or the values returned by its unsuccessful reads cannot be detected by the programmer and cannot comprise
the result of a run of the program. Henceforth, we do not consider such reads to comprise the result of an execu-
tion. For example, in Figure 6.6, it cannot be detected and does not matter how many times a processor reads its
flag unsuccessfully, or even what values the unsuccessful reads return, as long as eventually a read returns 1 and
terminates the loop. Thus, the unsuccessful reads of a synchronization loop can be ignored when analyzing a
sequentially consistent execution. Second, in general, two conflicting synchronization operations can occur in any
order in an execution. However, the final read of a synchronization loop always must execute after the loop write
that terminates the loop. For example, in Figure 6.6, P2's final read of flagl must execute after P1's write of
flagl.

The above observations allow reordering a synchronization write followed by a synchronization read where
at least one of them is aloop operation. For example, in figure 6.6, executing the flag reads of a processor before
its flag write does not violate the appearance of sequential consistency since the unsuccessful reads of the loop can
be ignored and the successful read is guaranteed to execute after the correct conflicting write (i.e., the write of the
flag of the other processor) and will return the correct value. As long as other constraints of data-race-free-1 im-
plementations are maintained (e.g., the data operations of the consumer phase do not begin until preceding paired
synchronization reads complete), each processor will read the data values updated by the other processor and the
system appears sequentially consistent. PLpcl gives programmers the option of distinguishing the loop synchron-
ization operations to exploit the above optimization.

6.2.2. Definition of PLpcl

The following first formalizes synchronization loops, and then formalizes loop and non-loop operations of a
sequentially consistent execution. These notions lead to the definition of PLpcl programs and the PLpcl model.
A PLpcl program must be a data-race-free-1 program; i.e., it must distinguish every operation as data, pairable
synchronization, or unpairable synchronization, as defined for data-race-free-1 programs. Additionally, it must
also distinguish all pairable operations as either loop or non-loop. Since PLpcl seeks to optimize loop operations,
any operation can be distinguished as non-loop; however, the operations distinguished as loop must obey the
definition for aloop operation given below.

For simplicity, the following formalization of a synchronization loop (from [GAG92]) captures only a sim-
ple (but common) case in which the loop repeatedly executes a read or a read-modify-write to a specific location
until it returns one of certain specific values. A more general definition alowing locks that employ
Test& Test& Set [RuS84] and/or backoff techniques [MeS91] appears in [GAG92]. Chapter 7 provides a further
generalization of this concept.

Definition 6.6: Synchronization Loop: A synchronization loop of a program is a sequence of instruc-
tions of the program that satisfies the following.

(i) The loop specifies the execution of a read or a read-modify-write to a specific location. If the
value returned by the read is one of certain specified values (called exit values), then the loop ter-
minates; otherwise, the loop repesats the above. The read or read-modify-write operations that ter-
minate the loop are called essential operations; the other operations from the loop are called unessen-
tial operations.

(ii) If the loop specifies the execution of a read-modify-write, then the writes of all but the last read-
modify-write store values returned by the corresponding reads.

(iii) The loop terminates in every sequentially consistent execution of the program.
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Definition 6.7: Loop and Non-loop Reads: A read R in a sequentially consistent execution is a loop
read (under PLpcl) iff it does not form a race with any write in the execution or if it satisfies all of
the following conditions.

(i) Risthe essential read of a synchronization loop.
(ii) R forms arace with exactly one write, W, in the execution.
(iii) Rreturns the value of write W.

(iv) The value written by the conflicting write ordered last before W by the execution order (or the ini-
tial valueif there is no other conflicting write before W) is not an exit value for R’ s loop.

(v) If Rispart of aread-modify-write, then the corresponding write does not form a race with another
write in the execution.

A re?d in a sequentially consistent execution is a non-loop read (under PLpcl) iff it is not a loop
read.

Definition 6.8: Loop and Non-Loop Writes: A write in a sequentially consistent execution is a loop
write (under PLpcl) iff it does not form a race with any write or non-loop read (as defined by
definition 6.7) in the execution.

A write in a sequentially consistent execution is a non-loop write (under PLpcl) iff it is not a loop
write.

Definition 6.9: PLpcl Programs. A program is PLpcl iff for every sequentially consistent execution
of the program such that the execution does not have unessential operations, the following conditions
aretrue:

(i) all operations are distinguished as either data, unpairable synchronization, loop pairable synchroni-
zation, or non-loop pairable synchronization,

(ii) there are no data races (as defined by data-race-free-1), and

(iii) operations distinguished as loop pairable synchronization are loop operations by definitions 6.7
and 6.8.

Definition 6.10: The PLpcl Memory Model: A system obeys the PLpcl memory model iff the result
of every run of a PLpcl program on the system is the result of a sequentially consistent execution of
the program.

The definition of PLpcl programs alows only pairable synchronization operations to be further dis-
tinguished as loop or non-loop. We do not make this distinction between data operations because the optimization
this distinction alows; i.e., reordering a write followed by aread, is already alowed if either the write or read isa
data operation. We chose not to make the distinction for unpairable synchronization operations because we ex-
pect that loop interactions will be used mostly by pairable operations and the added complexity to support two
types of unpairable operations may not be worth the performance gain.

Further, the definition of PLpcl programs requires considering only sequentially consistent executions
without unessential operations. An alternate way of interpreting the definition is to consider all sequentially con-
sistent executions, but to ignore any unessential operations in the execution when determining whether it obeys
the necessary constraints. The previous sub-section motivated why unessential operations can be ignored.

T Definitions 6.7, 6.8, 6.12, and 6.13, and Appendix G differ slightly from the filed thesis. The definitions in the latter
contained unnecessary restrictions on read-modify-writes and definition 6.13 did not have part (ii); the modificationsin Ap-
pendix G reflect the changes in the definitions.
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The observation for ignoring unessential operations can also be exploited for data-race-free-0 and data-
race-free-1; i.e.,, a program can be considered data-race-free-0 or data-race-free-1 as long as every sequentially
consistent execution without unessential operations does not have data races (where data race is as defined by the
respective models). We could not identify any common programming scenarios for which this observation would
provide a performance gain with the data-race-free models, however, when porting a data-race-free program to a
PLpcl system, it may be worthwhile to use this observation (one example involving a critical section implementa-
tion with Test& Set isgiven in figure 6.8(b) of Section 6.2.3).

Unfortunately, after ignoring unessential operations, the different definitions of a race given earlier
(definition 4.4 and alternatives 1-4 in figure 4.2) do not result in the same set of PLpcl programs. Specificaly, al-
ternatives 2 and 4 are not equivalent to the others because two conflicting data operations (as defined by the other
definitions) are not guaranteed to have the path in the program/causal-conflict graph required by alternatives 2 and
4. The distinction between unpairable and pairable synchronization for data-race-free-1 relies on the path in the
program/causal-conflict graph. To exploit this distinction and to allow ignoring unessentials at the same time, we
could require programmers to use only alternatives 2 or 4 to distinguish data operations; these, however, are
significantly more complex than alternative 1. A better solution results from noting that with any definition, a pair
of conflicting data operations that does not have a write between them always has the required path in the
program/causal-conflict graph (the proof is similar to Appendix A); furthermore, Chapter 7 shows that it is
sufficient to consider only the above pairs of conflicting operations to exploit the data-race-free optimizations. For
a sequentialy consistent execution, call two conflicting operations that do not have another conflicting write
between them (where ‘‘between’’ refers to the execution order of the execution) as consecutive conflicting opera-
tions. Then we can use aternative 1 (or aternative 2 or definition 4.4) to identify races if we impose the data-
race-free-1 requirement only for consecutive conflicting operations (i.e., only these need be ordered by happens-
before-1). This still does not produce the same set of PLpcl programs with all definitions, but allows the use of
all previous optimizations with the simplest definitions; the rest of this chapter appliesto al definitions.

The next sub-section discusses programming with PLpcl, including mechanisms for distinguishing memory
operations with PLpcl and examples of PLpcl programs.

6.2.3. Programming With PLpcl

The programmers’ interface for PLpcl is similar to that for the data-race-free models, except that PLpcl ad-
ditionally allows programmers to distinguish pairable synchronization loop operations from pairable synchroniza-
tion non-loop operations. Figure 6.7 shows how programmers can distinguish memory operations correctly for
PLpcl. As for the data-race-free models, PLpcl provides a ‘*don’t-know’’ option alowing programmers to al-
ways distinguish a pairable synchronization as non-loop. Although the formal definitions of loop and non-loop
operations are complex, the concepts are intuitively simple; in our analysis of the programs mentioned earlier, we
did not have much difficulty in avoiding the **don’t-know’’ option.

For distinguishing loop and non-loop operations, a PLpcl system can provide mechanisms similar to those
for distinguishing the operations of data-race-free programs, as shown in Figure 6.8 (the examples of the figure
are also used for the PLpc model in [GAG92]). Figure 6.8 (a) shows how the program of figure 6.6 can be con-
verted to a PLpcl program assuming the programming language provides annotations. A sufficient set of annota-
tionsfor PLpclis: data= ON, unpairable = ON, loop = ON, and non-loop = ON.

In figure 6.8(a), conflicting flag operations form a race and so should be distinguished as synchronization
operations; further, the write of aflag is pairable with the reads of the same flag. We assume that the operations to
produce and consume data do not form a race and so are data operations. The while loops containing the flag
operations form synchronization loops; therefore we can ignore the unsuccessful reads of flag. In any sequentially
consistent execution, the final read of flag forms a race with only the write to the same flag, the read returns the
value of the write, and thiswrite is necessary for the loop of the read to terminate; therefore, the final flag read isa
loop read. The writes to the flags do not form a race with another write or a non-loop read; therefore, the writes to
the flags are loop writes. Thus, annotations of data = ON before the producer phase, loop = ON before the flag
write, and data = ON before the consumer phase make the program a PL pc program.

Figure 6.8(b) shows an implementation of a critical section using the Test& Set and Unset operations previ-
ously shown in Section 4.1.3. The distinctions for the operations made in the figure are mostly analogous to the
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Figure 6.8. Examples of PLpcl programs.

For (b) and (c), assume a program with N = 2 processors executing the given code.
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previous example. However, this example illustrates that on a PLpcl system, it is useful to ignore unessential
operations even while making the distinctions that are also made by the data-race-free models. The while loop
containing the Test& Set forms a synchronization loop; therefore, we can ignore unsuccessful Test& Sets. In any
sequentially consistent execution, the Test read of an essential Test& Set forms arace only with the write from the
Unset that is required for the loop to terminate. Further, a write due to the Set of an essential Test& Set never
forms a race in a sequentially consistent execution that does not have unessential Test& Sets. Therefore, the Test
read isaloop read and the Set writeis adatawrite. A write from an Unset races only with the read from an essen-
tial Test; therefore, it is aloop write. If hardware recognizes Test, Set, and Unset to respectively represent loop
reads, data writes, and loop writes, then the program given is PLpcl. Note that not ignoring the unessential
Test& Sets would require distinguishing the write from the Set as an unpairable synchronization since it could
form arace with a Test read of an unessential Test& Set and an Unset write. This precludes the full overlap of an
Unset and Test& Set of a processor. Thus, for the full benefit of PLpcl, even the distinctions of data and syn-
chronization should be made after ignoring unessential operations. On a data-race-free-1 system, however, distin-
guishing the Set write as data does not provide any benefit. (Also note that although the performance advantage of
distinguishing the Set as unpairable in data-race-free-1 is also gained by ignoring unessential operations, the dis-
tinctions of pairable and unpairable are still useful for other cases; e.g., the Fetch&Inc in figure 6.1(b) and asyn-
chronous data operations that may occur along with other synchronized data operations.)

Figure 6.8(c) illustrates non-loop operations. It shows the implementation of a barrier previously discussed
in Section 6.1.2 for figure 6.3. The while loop containing the reads on flag forms a synchronization loop; there-
fore, we ignore the unsuccessful reads of flag. The write to count from DataWrite is data; the Fetch read and Inc
write to count are pairable synchronization with Inc writes pairable with Fetch reads, and the write and the final
read to flag are also synchronizations pairable with each other. The read and write to flag are loop operations,
while the Fetch and Inc operations are non-loop operations. Thus, the program given is PLpcl if hardware recog-
nizes writes from SyncWrite and reads from SyncReads as synchronizations pairable with each other, writes from
Inc and reads from fetch as non-loop synchronizations pairable with each other, and writes from DataWrite as
data operations.

6.2.4. Implementing PLpcl

A complete system-centric specification for PLpcl and its proof of correctness appear in Appendix G. This
section focuses on the additiona optimization that the extra information in PLpcl programs alows, as compared
to the information in data-race-free-1 programs. As motivated in Section 6.2.1, the key additional optimization is
in the reordering of certain synchronization operations. All implementations of data-race-free-1 seen so far re-
quired synchronization operations to be executed in program order; i.e., for synchronization operations S; and S,

if S; 2> S, then S;(i) 2> S,(j) for all i,j. With PLpcl, in the case where S, isawrite and S, is aread, the
above condition need not be maintained if at least one of S; or S, isaloop operation.

Figure 6.8 uses examples from [GAG92] to illustrate the performance gains in hardware with the above op-
timization. For the code in part (a), al data-race-free-1 implementations so far require a process to delay its read
of aflag variable (and hence the consumption of data) until its write of a flag variable. PLpcl allows the latency
of the write and read to be overlapped since they are both loop operations. Further, for the simpler implementa-
tions of datarrace-free-1, the flag variable is not set until the preceding data operations complete, requiring the flag
read to wait for the preceding data operations to complete as well. PLpcl does not impose such adelay. Thus, if
process P finishes producing its data and sets its flag before process P, process P, can read the flag and begin
consuming P,’s data even while it has not set itsflag. This alowsthe latency of the flag write (and the latency of
the preceding data operations for straightforward implementations) to be overlapped with the following computa-
tion. The critical section of part (b) can lead to similar gains. Consider a case similar to part (a) where instead of
producing and consuming data, each processor accesses two critical sections protected by two different locks.
Thus, the writes and reads to the two flags are replaced by Unset and Test& Set of two different locks respectively.
In this case, the Test& Sets to access the second critical section of a processor can be overlapped with the Unset to
exit thefirst critical section of that processor. The barrier code of part (¢) does not gain by PLpcl.

Additional compiler optimizations alowed by PLpcl are anal ogous to the hardware optimizations.
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6.2.5. Comparison of PLpcl with SPARC V8 and Data-Race-Free Systems

This section compares PLpcl to data-race-free-1 and the new hardware-centric models it unifies (total store
ordering and partial store ordering) on the basis of programmability, portability, and performance.

Programmability.

Compared to data-race-free-1, PLpcl gives the programmer the option of providing extrainformation to the
system in the form of whether a synchronization operation is aloop or non-loop operation. Since the programmer
can always conservatively specify an operation to be a non-loop operation, the PLpcl interface is more complex
than data-race-free-1 only for programmers who want higher performance than data-race-free-1 systems can pro-
vide.

Compared to total store ordering and partial store ordering, the benefits for ease-of-programming with
PLpcl are similar to those of the previous programmer-centric models. PLpcl provides the familiar and simplein-
terface of sequential consistency; total store ordering and partial store ordering provide more complex interfaces
requiring programmers to reason about hardware features such as write buffers and out-of-order issue. Similar to
weak ordering, the authors of total store ordering and partia store ordering specify certain scenarios where these
models give sequentially consistent results (Section 2.2.2). PLpcl provides a formal interface that does not res-
trict programmers to the above scenarios.

Portability.

Programs written for PLpcl can run on any data-race-free-1 system with sequentially consistent results
since PLpcl programs also contain the information exploited by data-race-free-1. PLpcl programs can also run
on total store ordering and partial store ordering systems with sequentially consistent results as follows.

First consider the total store ordering model which essentialy allows two optimizations: (1) reads can
bypass preceding writes, and (2) aread can return the value of awrite by its own processor when the write has not
been seen by other processors (a write is seen by the other processors at the same time). The model additionally
provides read-modify-write operations that can be used to eliminate the effect of the first optimization. During
our joint work for the PLpc model, Kourosh Gharachorloo first pointed out that for a write followed by aread in
program order, if either the read or the write is replaced by a read-modify-write, the effect is as if the read does
not bypass the preceding write. Examples that illustrate this also appear in [SUN91, SFC91].

The hardware-centric specifications of the data-race-free models allow the first optimization above if at
least one of the read or write is a data operation and allow the second optimization for all data operations. Asdis-
cussed in Section 6.2.4, PLpcl allows the first optimization for the case where at |east one of the read or writeisa
loop operation. Thus, a PLpcl program can be run correctly on atotal store ordering systemif for every write fol-
lowed by a read where the write and read are distinguished as either non-loop or unpairable operations, one of the
write or read is made part of a read-modify-write operation. Appendix H formally proves that the above mapping
to read-modify-writes is sufficient by showing that with the above mapping, total store ordering systems obey the
aggressive system-centric specification of PLpcl in Appendix G; the proof is very similar to that for the PLpc
model [GAG92]. The use of read-modify-writes is necessary in general as illustrated by figure 6.9. The figure
shows a program where all operations are non-loop operations; on a total store ordering system, both reads in the
program could return the non-sequentially consistent result of 0 unless the reads or writes are made parts of read-
modify-write operations.

It may seem unnatural to replace a non-loop or unpairable operation by a read-modify-write. It may also
seem surprising that we did not apply the idea of using read-modify-writes in data-race-free programs and claim
that the data-race-free models also unify total store ordering. Consider the second point of data-race-free models
first. Based on the above discussion, data-race-free programs can potentialy be run on atotal store ordering sys-
tem if for every write synchronization operation followed by aread synchronization operation in program order, at
least one of them is replaced with a read-modify-write. In general, we may expect thisto result in either al write
synchronizations or all read synchronizations being replaced with read-modify-writes. Converting all such opera-
tions to more expensive read-modify-writes could be detrimental to the performance of atotal store ordering sys-
tem. Thus, while data-race-free programs can run correctly on total store ordering with the above mapping to
read-modify-writes, they may not exploit the full performance of a total store ordering system and so we do not
consider the data-race-free models to unify total store ordering. With the PLpcl model, however, read-modify-
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Figure 6.9. Violation of sequentia consistency with total store ordering and partial store ordering.

writes are needed only with non-loop or unpairable operations. The common synchronization scenarios that we
examined (involving locks, barriers, and producer-consumer type synchronization) usually consisted either of loop
synchronizations or already were part of read-modify-writes. For example, in al the three programsin figure 6.8,
either the synchronization operations are loop operations or they are read-modify-writes. In the example programs
considered for data-race-free-1 (figures 6.2 and 6.3) aso, the synchronization operations are either loop synchron-
izations or read-modify-writes. This suggests that many common programming constructs written for PLpcl can
work unchanged on and exploit the full performance of total store ordering systems, and so we consider PLpcl to
unify total store ordering. (The above also explains why many programs written for sequentially consistent sys-
tems work correctly on total store ordering systems without any changes.)

In case a non-loop or unpairable operation are not already part of a read-modify-write, the operation needs
to be replaced by a dummy read-modify-write on a total store ordering system. Thus, such a system needs to pro-
vide general read-modify-write instructions that can replace any read or write. Replacing a write with a read-
modify-write requires a read-modify-write instruction that can write any value and ignore the returned value. Re-
placing a read with a read-modify-write requires a read-modify-write instruction that can write back the value
read. In the absence of such general read-modify-write instructions, the system may need to provide an additional
mechanism (e.g., a fence instruction) to impose an order on arbitrary writes followed by arbitrary reads.

The partial store ordering model is similar to total store ordering except that it allows any two non-
conflicting writes in program order that are not separated by the STBAR (store barrier) instruction to be executed
in parallel or out of program order. Thus, to run a program written for PLpcl on partial store ordering, read-
modify-writes need to be used as for total store ordering, and every synchronization write must be immediately
preceded by a STBAR instruction (Appendix G).

Thus, programs written for PLpcl can be efficiently run on data-race-free-1 systems and on total store ord-
ering and partial store ordering systems with the appearance of sequential consistency (assuming general read-
modify-writes for the latter two types of systems). Thus, PLpcl programs are portable across a wide variety of
hardware-centric systems.

Performance.

PLpcl clearly alows all the performance optimizations of data-race-free-1; the data-race-free-1 implemen-
tations however cannot exploit the extra information of loop and non-loop operations provided in PLpcl pro-
grams. Thus, PLpcl provides strictly greater performance potential than data-race-free-1. As discussed above,
PLpcl also alows al implementations of total store ordering and partial store ordering with the appropriate map-
ping of non-loop and unpairable operations to read-modify-writes. PLpcl can provide higher performance than
partial store ordering since it does not require a processor to stall on any data reads; it can provide higher perfor-
mance than total store ordering since it does not require a processor to stall on any data reads and does not require
any two non-conflicting writes of a processor to be executed in program order. However (as with other
hardware-centric models), programs written directly for total store ordering and partia store ordering could poten-
tially execute with higher performance than a corresponding PLpcl program by using fewer read-modify-writes
and STBARS. Nevertheless, as discussed above, for many programs, PLpcl does not require additional read-
modify-writes or STBARS (e.g., programs where the only synchronization operations are barriers and locks that
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implement critical sections). For other programs, we expect that the above disadvantage of PLpcl will be offset
by its advantages of programmability, portability, and higher performance potential through non-blocking reads.

6.3. ThePLpc2 Memory Model

6.3.1. Motivation of PLpc2

PLpc2 extends PLpcl by exploiting even more differences between different synchronization operations.
Consider again the programsin figure 6.8. All implementations of all programmer-centric models discussed so far
impose the Sync-Atomicity condition, prohibiting making a synchronization write of a processor visible to any
other processor until all processors have seen the write. Asdiscussed in Chapter 2, this makes update-based cache
coherence protocols inefficient for synchronization operations. An update-based protocol would benefit the syn-
chronization writes to the flags in the producer-consumer code, the Unset synchronization writes in the critical
section code, and the synchronization write to flag in the barrier code, because such a protocol would allow the
corresponding synchronization reads to succeed earlier. Note also that the updates would not violate sequential
consistency for any of the programs, irrespective of how many processors were executing the critical section code
and the barrier code, and even if the producer-consumer code were extended to involve more than two processors.
PL pc2 distinguishes certain synchronization writes that can be executed non-atomically.

To allow non-atomic synchronization writes, PLpc2 uses the properties of synchronization loops that were
also used by PLpcl. These are the properties of being able to ignore the unsuccessful operations of such aloop,
and the fixed order of execution of the successful read of the loop with respect to the write that makes the read
successful. Based on these properties, we can show that some types of loop writes can be executed non-
atomically, as long as any pair of conflicting writes containing one such write is cache coherent. We call such
writes non-atomic writes. Further, al writes can be executed non-atomically if some types of reads (called atomic
reads below) are executed like writes and if al pairs of conflicting writes where at least one is synchronization are
cache coherent. The next section formalizes these concepts.

6.3.2. Définition of PLpc2

The formalizations of atomic and non-atomic operations are similar to those of non-loop and loop opera-
tions except that the term race in the loop/non-loop definitions is now replaced by a slightly different concept of a
partial race and one additional constraint is added. The following first defines the notion of a partial race, then
defines atomic and non-atomic reads and writes, PLpc2 programs, and the PLpc2 memory model. For the
definition of a partial race, we use the notion of a progranyvsemi-causal-conflict graph of an execution (similar to
definition 4.14 of a program/causal-conflict graph). Thisis a graph where the vertices are the (dynamic) memory
operations of the execution, and the edges are due to the program order relation of the execution or of the type

Write > Read. The definition of PLpc2 programs below requires programmers to distinguish operations as
atomic or non-atomic; again, we make it possible for programmers to always conservatively distinguish an opera-
tion, in this case, as atomic.

Definition 6.11: Partial Race: Two conflicting operations X and Y of a sequentially consistent execu-
tion do not form a partial race iff there is at least one path between X and Y in the program/semi-
causal-conflict graph of the execution such that either

(2) the path begins and ends with a program order arc, or
(2) the path has at least one program order arc and consists of operations to the same location.

Further, if either X or Y qualifies for a data operation (i.e., does not form a race in any sequentially

consistent execution after ignoring unessential operations), then at least one of the above pathsis also

a5 path. If, instead, both X and Y qualify for synchronization operations, then at least one of the

above pathsisasoa 2> path.

Two operations form a partial race in an execution iff there is no path of the type described above
between them.
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Figure 6.10. Intuition for definition of partial race.

Figure 6.10 attempts to give some of the intuition motivating the above definition. The definition was
developed in a somewhat ad hoc manner with the main goal of identifying operations that can be executed non-
atomically on a processor consistency and release consistency (RCpc) system; Chapter 7 provides a more formal
and intuitive treatment of how to identify operations that can be executed non-atomically.

Consider the program in figure 6.10(a). Suppose P,’s write of X is not executed atomically. Consider the
execution sequence where P, returns the value of P’ swrite of X, P, executes itswrite of Y, P3 returns the value
of P,’swrite of Y, and then P5 executes itsread on X. Now if P;’swrite of X is not executed atomically, and if
P originaly had X in its cache, then it is possible that P3’s cache is not yet invalidated or updated, and P53 will
return the old value for X. Thisisa violation of sequentia consistency. Note that P,’s write of X and P3’s read
of X never form arace in any sequentially consistent execution; however, the path between them that is used to
communicate the value of X involves the write of X itself. Such a communication requires the write to execute
atomically (or the read to bypass the cache and get the new value, which can be achieved by using a read-
modify-write). Consider, in contrast, a slight modification of the program, as shown in part(b) of figure 6.10. Now
P’ swrite of X iscommunicated to P4 through a path that begins and ends with a program order arc. If each pro-
Cessor executes its operations one at atime, then the write of X can be done non-atomically and will not be noticed
by P5. Thiscaseis captured by part (1) of the above definition. Note also that if al the operations in the program
of part (a) were to the same location (say X), then a system that maintains cache coherence would ensure that P;’s
write and P,’ s write are seen by all processors in the same order and so P3 would not return the new value. Thus,
again P;’s write of X can be executed non-atomically. This case is captured by part (2) of the above definition.
The last part of the definition is to maintain consistency with previous models which require data operations to be

ordered by ™ paths and synchronization operations to be ordered by % paths.

We next use the notion of partial races to formalize atomic and non-atomic operations. In the following
definition, terms such as last, before, and between applied to operations of a sequentially consistent execution
refer to the execution order on operations of that execution. Further, for part (vi) below, to model the effect of ini-
tial values of alocation, we assume that there is a hypothetical write to every location that writes the initial value
of the location in the beginning of the execution order.

Definition 6.12: Atomic and Non-atomic Reads. A read R in a sequentially consistent execution E; is
a non-atomic read (under PLpc2) iff it does not form a partial race with any write in the execution or
if it satisfies all of the following conditions.

(i) Risthe essential read of a synchronization loop.
(ii) Rforms a partial race with exactly one write, W, in the execution.
(iii) Rreturns the value of write W.

(iv) The value written by the conflicting write ordered last before W by the execution order (or the ini-
tial valueif there is no other conflicting write before W) is not an exit value for R's loop.

(v) If Rispart of aread-modify-write, then the corresponding write does not form a partial race with
another write in the execution.
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(vi) Let W, be the last conflicting write (if any) before W whose value is an exit value of R's loop
(consider the hypothetical initial write as well). If there exists a path in the program/semi-causal-
conflict graph of the execution from any conflicting write W5 between W, and W to R such that the

path ends with a 2> arc, then there should be a path from W3 to R of the type described in the
definition of a partial race and that endsin > arc.’®

A read in a sequentialy consistent execution is an atomic read (under PLpc2) iff it is not a non-
atomic read. (It followsthat all hon-loop reads under PLpcl are atomic reads.)

Definition 6.13: Atomic and Non-atomic writes. A write W in a sequentially consistent execution Eg
isanon-atomic write (under PLpc2) iff

(i) it does not form a partia race with any write or atomic read (as defined by definition 6.12) in Eg,
and

(i) if there exists a path in the program/semi-causal-conflict graph of Eg from Wto aread R such that
the path ends with a > arc and Ris an atomic read in Eg, then there should be a path from Wto R
in E of the type described in the definition of a partial race and such that the path endsin == arc.

A write in a sequentially consistent execution is an atomic write (under PLpc2) iff it is not a non-
atomic write. (It followsthat all non-loop writes under PLpcl are atomic writes.)

Definition 6.14: PLpc2 Programs. A program is PLpc2 iff the program is PLpcl and if for every
sequentialy consistent execution of the program such that the execution does not have unessential
operations, al operations distinguished as loop or data are further distinguished as atomic or non-
atomic, and the operations distinguished as non-atomic are non-atomic operations as defined by
definitions 6.12 and 6.13.%°

Definition 6.15: The PLpc2 Memory Model: A system obeys the PLpc2 memory model iff the result
of arun of a PLpc2 program on the system is the result of a sequentially consistent execution of the
program.

6.3.3. Programming with PLpc2

Figure 6.11 captures the programmers model for PLpc2. It is similar to PLpcl except PLpc2 alows pro-
grammers to additionally distinguish non-atomic data and loop operations from atomic data and loop operations.
Again, every operation can be distinguished conservatively as non-atomic. Mechanisms for making the new dis-
tinctions are similar to those for the distinctions of the previous programmer-centric models. For examples of
PLpc2 programs, consider again the PLpcl programs of figure 6.8. All of the partial races in any sequentially
consistent execution (without unessentials) of any of the programs are also races; therefore, al the operations dis-
tinguished as |oop and data are also non-atomic and can be distinguished as non-atomic. To make the various dis-
tinctions, the word ‘‘non-atomic’’ can be added to each of the annotations of figure 6.8(a). For the examplesin
parts (b) and (c) of the figure, no change is required if the operations that hardware previously recognized as loop
and data are also recognized as non-atomic.

6.3.4. Implementing PLpc2

The key additional optimization allowed by PLpc2 is that it allows all synchronization writes distinguished
as non-atomic to be executed non-atomically, as long as cache coherence is imposed on any pair of conflicting
writes where at least one is non-atomic. Thus, the Sync-Atomicity condition (Condition 5.11(b) in Section 5.3.1)

19. Again, Chapter 7 provides the more formal treatment that motivates the definition of hon-atomic and atomic reads.

20. Implementations of PLpc2 described in this chapter do not exploit the distinction between atomic and non-atomic
datawrites; we retain the distinction in the definition of PLpc2 to maintain uniformity with the origina PLpc model.
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Figure 6.11. Programming with PLpc2.

is necessary only for the synchronization writes that are distinguished as unpairable, non-loop, or atomic. Unpair-
able synchronization writes could also be distinguished as atomic or non-atomic; however, we did not choose to
make this distinction in favor of simplicity. (Non-loop operations cannot be non-atomic.)

Distinguishing data read operations as atomic and non-atomic allows an alternative of executing all syn-
chronization writes non-atomically, as long as (1) reads distinguished as unpairable, non-loop, atomic loop, and
atomic data are made part of a read-modify-write where the correspondi nzq write for a synchronization (respec-
tively data) read is distinguished as synchronization (respectively data),”” and (2) conflicting pairs of writes,
where at least one write is synchronization, are cache coherent. The above alternative is particularly useful in a
system that does not provide any atomic writes, but does provide cache coherence and read-modify-writes. A
system-centric specification of PLpc2 along with its proof of correctness appearsin Appendix G.

To see the hardware performance gains possible with PLpc2, consider figure 6.8 again. As discussed be-
fore, al the data and loop operations in the figure are also non-atomic. Thus, al of those operations (including the
flag writes for the producer-consumer, the Unset and Set writes for the critical section, the SyncWrites on flag for
the barrier can be executed non-atomically. Thus, as mentioned before, an update based coherence protocol can be
used for each of them (assuming a system with hardware-coherent caching of shared data); the corresponding
pairable synchronization reads will find the location in their respective caches, and will return the successful value
faster. Note aso that the only operations distinguished as either non-atomic, unpairable, or non-loop are the
Fetch& Inc operations in the barrier code. These are already part of a read-modify-write and so the conditions the
aternative described above are aready satisfied; i.e., all the programs in the figure can be run on a system that
does not provide any atomic writes.

For compilers, we do not expect any additional gains from PLpc2 since the usual compiler optimizations do
not affect the atomic (or non-atomic) execution of writes.

21. The conversion to read-modify-writes can be replaced by any mechanism that makes aread ‘‘behave'’ like awrite.
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6.3.5. Comparison of PL pc2 with Processor Consistency, RCpc, and PLpcl Systems

This section compares PLpc2 with PLpcl (the most aggressive programmer-centric model so far) and with
the additional hardware-centric modelsit unifies (release consistency (RCpc) and processor consistency).

The relation between PLpc2 and the earlier programmer-centric and hardware-centric models based on pro-
grammability is similar to the corresponding relation for PLpcl.

With regard to portability, clearly, all programs written for PLpc2 can be run on PLpcl systems. PLpc2
further unifies the hardware-centric models of processor consistency and release consistency (RCpc) with the
PLpcl systems as follows. The optimizations allowed by processor consistency are (1) reads can bypass preced-
ing writes, and (2) all writes are non-atomic. Release consistency (RCpc) combines the optimizations of release
consistency (RCsc) and processor consistency. Both models enforce cache coherence. PLpc2 programs can be
run on processor consistent systems by converting all reads that are distinguished as unpairable, non-loop, and
atomic (loop or data) into read-modify-writes. Based on the discussion of PLpcl, this ensures that the effect of
the first optimization is not seen for a write followed by a read that are either non-loop or unpairable (for all oth-
ers, the optimization is safe). Based on the discussion of PLpc2 implementations, the mapping to read-modify-
writes ensures that the effect of non-atomic writes is not seen. Appendix H gives the formal proof (based on the
proof in [GAG92)]) that these mappings are correct. Figure 6.12 illustrates that this conversion to read-modify-
writesis, in general, necessary as follows. Processor P3'sread of X forms a partial race with P1'swrite of X and is
an atomic read. If P3'sread of X is not converted into a read-modify-write, a processor consistent system can re-
turn the value O for P3'sread of X, a non-sequentially consistent result.

Initiadly X =Y =0
P1 P2 P3
X=1 while(X1=1){;} while(Y !=1){;}
Y=1 =X

Figure 6.12. Violation of sequential consistency with non-atomic writes.

PL pc2 programs can be run on release consistency (RCpc) systems by combining the mappings of release
consistency (RCsc) and processor consistency; i.e., al operations distinguished as data for PLpc2 should be con-
verted to ordinary, all operations distinguished as unpairable for PLpc2 should be converted to nsyncs, all opera-
tions distinguished as pairable for PLpc2 should be converted to syncs, and all reads distinguished as unpairable,
non-loop, or atomic for PLpc2 should be converted to read-modify-writes. For the conversion to read-modify-
write, the write of the read-modify-write for the synchronization reads should be either sync or nsync (the read
should be as discussed above). (Again, figure 6.12 shows that the conversion to read-modify-writes is, in general,
necessary.)

Thus, programs written for PLpc2 can be run on all PLpcl systems and on processor consistency and
release consistency (RCpc) systems. As for PLpcl and its corresponding hardware-centric models, for many
common programs, the reads that need to be converted to read-modify-writes are already present as read-modify-
writes, asisthe case for all the programs in figure 6.8.

With regard to performance, programs written for PLpc2 can exploit the full performance of PLpcl sys
tems. Further, as discussed above, many programs written for PLpc2 can exploit the full performance of proces-
sor consistent and release consistent (RCpc) systems. (Again, as for other programmer-centric models and their
corresponding hardware-centric models, there are programs that may perform better when written directly for pro-
cessor consistency or release consistency (RCpc) systems; but we believe the advantages of PLpc2 offset those
gains.) Note that release consistency (RCpc) is the most aggressive hardware-centric system proposed so far.
PLpc2, however, allows even more implementations (e.g., the aggressive implementations of data-race-free-0 in
Chapter 5 and possibly even more aggressive implementations based on the system-centric specification of Ap-
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pendix G).

Thus, the PLpc2 memory model unifies many commercial and academic models, resulting in advantages of
programmability, portability, and performance for many of the programmers of such systems.

6.4. ThePLpc Memory M odel

For completeness, this section first briefly describes the PLpc model [GAG92] (the original model on which
PLpcl and PLpc2 are based) and then briefly describes why we choose to use PLpcl and PLpc2 instead.

PLpc is based entirely on the notion of a partial race as opposed to a race.?? PL pc calls an operation that
may be involved in a partial race as competing and the other operations as non-competing. It calls all competing
operations that are also atomic (by definition 6.12 and 6.13) as loop operations, and competing operations that are
also non-atomic (by definitions 6.12 and 6.13) as non-loop operations. It requires that all operations be dis-
tinguished as non-competing, loop, or non-loop; further, operations distinguished as non-competing must obey the
definition of non-competing operations, and operations distinguished as loop must obey the definition of either
non-competing or loop operations. Figure 6.13 captures the programmers’ interface with PLpc.

Theinformation present in a PLpc program is almost similar to that present in a PLpc2 program. An excep-
tion is that PLpc does not distinguish between pairable and unpairable synchronizations, however, that distinction
can be easily added and is not the key issue. Thus, the knowledge required of the programmer to provide (non-
conservative) information for PLpc and PLpc2 is almost the same. The advantage of PLpc when compared to
PLpc2 is that it seems much simpler (although, again, the knowledge required of the programmer for maximum
performance gain is the same for both models) However, PLpcl and PLpc2 may be more desirable than PLpc in
terms of programmability and portability for the following two reasons.

First, programs written for the data-race-free models do not contain any information that can be used by
PLpc since PLpc is based entirely on information regarding partial races whereas the data-race-free programs con-
tain information on races. Thus, if a program written for one of the data-race-free models must be moved to a
PL pc system, it must be re-analyzed for any performance optimizations. PLpcl and PLpc2 eliminate this problem
by expressing most of the required information in terms of races rather than partial races. Thus, data-race-free
programs can run unchanged on PLpcl and PLpc2 systems, and these systems can exploit al the information that
can be exploited by a data-race-free system for such a program.

Second, the information exploited by PLpc is motivated by two different optimizations. reordering some
synchronization writes followed by some synchronization reads, and executing some synchronization writes non-
atomically. PLpc gives the smpler specification that alows both these optimizations and the optimization of
reordering data operations and executing data writes non-atomically that are alowed by the previous
programmer-centric models. This specification requires programmers to reason about partial races for any optimi-
zation. We chose to separate the information required for all the optimizations so that only familiarity with the
notion of a race would be sufficient for as many optimizations as possible. Thisis desirable since reasoning about
partial races is more difficult than reasoning about races; determining whether two conflicting operations will race
just requires determining if the operations can execute ‘‘ one after another or consecutively’’ whereas determining
whether two conflicting operations form a partial race requires reasoning about whether certain paths exist
between the operations. Similarly, the definition of loop operations under PLpc is also more complex than that
under PLpcl.

Thus, the first advantage of defining PLpc in terms of PLpcl and PLpc2 is that it alows programmers to
analyze their programs more incrementally, allowing simpler information to be used for some optimizations and
requiring more difficult information for only aggressive optimizations. The second advantage is that (assuming
data-race-free and PL pc systems will both exist in the future) programs written for data-race-free systems can be
run unchanged on PL pc systems with potentially the same performance as a data-race-free system; for exploiting
the higher performance of the PLpc systems, programmers can further analyze their programs incrementally. Note
that an alternative approach for the second advantage would have been to define the data-race-free models also in
terms of partial races. However, as discussed above, reasoning about partial races may be more difficult than rea-

22. PLpc, however, does not require the last part regarding 22> and 22 pathsin the definition of apartial race.
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Figure 6.13. Programming with PLpc.

soning about races and so it does not seem worthwhile to change the smpler data-race-free models.

6.5. Comparison of PLpc Modelswith IBM 370 and Alpha

From Chapter 2, the IBM 370 model can be viewed as either a combination of processor consistency and
weak ordering, or a combination of total store ordering and weak ordering. In either case, PLpc2 can be viewed as
unifying this model with the other hardware-centric models as well.

The Alpha model is difficult to compare with the SCNF models because it does not obey any form of a con-
trol requirement needed by our system-centric specifications. We believe, however, that some form of a control
requirement is essential for Alphafor the following reason. The Alpha reference manua informally states proto-
cols that ensure reliable communication. For example, it states that data sharing is reliable if a processor updates
adata location, executes an MB, writes a flag, and then another processor reads the new value of flag, executes an
MB, and then reads the updated data location. In the absence of some form of a control requirement, however, the
informal protocols (including the above) are not sufficient to guarantee correct communication in al cases
[Hor92]. The specified protocols are similar to those for PLpcl and PLpc2 programs, if we interpret certain uses
of MB instructions as certain operation types. Specifically, if we place an MB before every write operation dis-
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tinguished as synchronization, an MB after every read distinguished as synchronization, and an MB between
every write synchronization followed by a read synchronization where either is a non-loop or unpaired operation,
and if we assume the control requirement, then Alpha systems obey PLpcl and PLpc2. Thus, with the above as-
sumptions, the PLpc models can be viewed as unifying the Alpha model as well. (If we require an MB between
every write synchronization followed by a read synchronization, then the Alpha systems also obey data-race-
free-1)

PLpc2

PLpc1

—— DATA-RACE-FREE-1 ——

— DATA-RACE-FREE-0 —

Weak Ordering
Specifications of Chapter 5
Lazy Release Consistency

Release Consistency (RCsc)

Specifications of Chapter 5
adapted to data-race-free-1

Total Store Ordering
Partial Store Ordering
Alpha
Specification of Appendix G.1

Processor Consistency
Release Consistency (RCpc)
IBM 370

Specification of Appendix G.2

Figure 6.14. Summary of SCNF Models.

For lazy release consistency, assume that all synchronization reads are distinguished as acquires and al synchroni-
zation writes are distinguished as releases. For IBM 370 and Alpha, assume interpretations of Section 6.5.
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6.6. Discussion

We have discussed four SCNF models so far that exploit increasing amounts of information and unify in-
creasingly many hardware-centric systems. Figure 6.14 summarizes this contribution by showing the
programmer-centric models and their relation with various hardware-centric systems and with each other. The
data-race-free-0 model unifies implementations of weak ordering, lazy release consistency (assuming all syn-
chronization reads are acquires and all synchronization writes are releases), and other implementations discussed
in Chapter 5. The data-race-free-1 model unifies data-race-free-0 systems with release consistency (RCsc) and
other implementations based on the methods of Chapter 5. The PLpcl model unifies data-race-free-1 systems
with total store ordering and partial store ordering systems, and with Alpha systems (assuming the interpretation
of Section 6.5). The PLpc2 mode unifies PLpcl systems with processor consistency and release consistency
(RCpc) systems, and with IBM 370 systems (assuming the interpretation of Section 6.5).

The SCNF models address the 3P criteria as follows.

Programmability: Programmers can reason with sequential consistency. They need to provide increasing amounts
of information about the program, but this can be done incrementally and conservatively.

Portability: A program written for any of the four SCNF models can be run correctly on any of the systems of
figure 6.14. Further, it is possible to design future SCNF systems so that the performance for a program is propor-
tional to the information in the program, no matter which SCNF system it runs on. For this, SCNF systems should
not penalize conservative distinctions (e.g., it should be possible to delay a non-loop read for a preceding non-loop
write without requiring expensive read-modify-writes).

Performance: Each of the four SCNF models allows more implementations than the old hardware-centric models
it unifies. For many programs, this leads to higher performance potential than previous hardware-centric models.
Each SCNF model has higher performance potential than the previous less aggressive SCNF model for all pro-
grams.
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Chapter 7

The Design Space of SCNF Memory M odels

The four SCNF models discussed so far unify several hardware-centric models and present a wide spectrum
of performance potential and programmability. Other researchers have proposed further relaxations of these
models; e.g., the entry consistency model requires programmers to associate locks with the data they protect
[Bez91,BZS92], Gibbons and Merritt allow programmers to associate a release with a specific subset of opera-
tions that it releases [GIM92], Carlton suggests associating locks with the data they protect and allocating them in
the same memory module [Car91]. A natural question that arises next is: are there other models that can poten-
tially give higher performance and/or better programmability than the current models? This chapter answers the
above question. Rather than simply propose yet another better memory model, however, this chapter aims to ex-
plore and characterize the design space for memory models.

With the SCNF view, a memory model is simply a way to obtain help from the programmer to identify
when certain optimizations can be performed without violating sequential consistency. Therefore, the question of
whether we can design other memory models with higher performance reduces to addressing the following issues.

. Are there other potential optimizations that have not been considered by, or fully exploited by, current
models?

. Given an optimization, can we determine the cases where it can be performed safely (i.e., without violating
sequentia consistency)?

. How can the programmer communicate the safe cases for the optimizations to the system?

Conversely, often certain aspects of program behavior are aready known because programmers generally
write well-structured programs. Then the question of designing an appropriate memory model reduces to deter-
mining what optimizations are guaranteed to be safe with the given information, and how this information can be
made explicit.

This chapter shows that there indeed are optimizations and well-defined programming constructs that have
not been fully exploited by previous models, and shows how the programmer can help the system to exploit these
optimizations and constructs. To exploit any general optimization or program information, we develop a mapping
between optimizations and program information. This mapping determines the program information that will a-
low the safe use of a given optimization, and conversely determines optimizations that can be performed safely
with given program information. This is an important contribution because in the past, determining when a certain
optimization was safe to use involved lengthy and complex proofs that required reasoning about executions on the
optimized system and proving that such an execution would appear sequentialy consistent
[AdH90b, AdH93, GLL90, GMG91, GiM92]; our mapping largely eliminates that complexity. The mapping
between program information and optimizations leads to a characterization of SCNF memory models that deter-
mines their performance and programmability. We define a generic memory model and a system-centric
specification for the generic model in terms of this characteristic. Our common characterization for memory
models is similar to the MOESI [SwS86] and Dir;[B |[NB] [ASH88] characterizations of cache coherence proto-
colsthat unified several seemingly disparate protocols and exposed the design space for more protocols.

Our overall approach is to first identify a system-centric specification for sequential consistency, and then
use it to characterize when an optimization will not violate sequential consistency. Section 7.1 gives such a
specification based on several previous works [AdH92a, Col84-92, GAG92, LHH91, ShS88]. Section 7.2 uses the
above specification to deduce the mapping between optimizations and information. Section 7.3 uses the mapping
of Section 7.2 to examine several optimizations and common program constructs. For each optimization, it shows
how the optimization can be applied safely to more cases than allowed by previous models and how the program-
mer can communicate these cases to the system, thereby resulting in new memory models. For the programming



95

constructs, it shows how more optimizations than previously considered can be applied to the constructs and how
programmers can make such constructs explicit, again leading to new models. Section 7.4 uses the results of Sec-
tion 7.2 to deduce a key characterization of SCNF memory models that determines their performance and pro-
grammability, and characterizes the design space in terms of a generic model. Section 7.5 discusses implementa-
tions of the generic memory model. Our work extends and is related to many previous studies. Section 7.6
discusses the related work and its relationship to our work. Section 7.7 concludes the chapter and discusses the
limitations of thiswork.

Asin previous chapters, we continue to use the terms preceding and following to indicate program order.

7.1. A Condition for Sequential Consistency

Section 7.1.1 first gives a simple system-centric specification for sequential consistency. Section 7.1.2
makes four observations that modify the specification to reflect certain optimizations. Section 7.1.1 and Observa-
tion 1 of Section 7.1.2 follow directly from previous work by Shasha and Snir [ShS88], Collier [Col84-92], and
Landin et al. [LHH91]. Observations 2 and 3 of Section 7.1.2 are extensions of similar concepts devel oped for the
PLpc model [GAG92].

7.1.1. A Simple Condition

We use the notions of conflict order ( =) and program/conflict graph defined earlier for a sequentially
consistent execution and reproduced below for a general execution.

Definition 7.1: Conflict Order ( >): Let X and Y be two memory operations in an execution. X
> Yiff Xand Y conflict and X (i) is ordered before Y (i) by the execution order for somei.

Definition 7.2: The progranvconflict graph for an execution E is a directed graph where the vertices
are the (dynamic) operations of the execution and the edges represent the program order and conflict
order relations on the operations.

For therest of this section, assume for simplicity that the number of instruction instances ordered before any
instruction instance by program order is finite for any execution considered below. Call this the finite speculation
assumption. Practically, the assumption means that we do not allow processors to speculatively execute a memory
operation until it isknown that all preceding loops will terminate. The assumption does not prohibit programs that
might execute infinite instructions (e.g., operating systems); it only restricts speculative execution beyond poten-
tially unbounded loops. Also assume that if a write operation isin an execution, then all its sub-operations are in
the execution. Call this the write termination assumption. Practically, this assumption is automatically obeyed in
systems that have atomic memory or that use a hardware cache coherence protocol to perform a write in the
memory copy of every processor. Section 7.5 will alleviate these restrictions.

A simple system-centric specification for sequential consistency (with the finite speculation and write termi-
nation assumptions) is that the program/conflict graph of the execution should be acyclic (as also observed by oth-
ers in various forms [Col84-92, LHH91, ShS88]). The following first illustrates the above condition with an ex-
ample, and then gives aformal proof of correctness. Figure 7.1(a) shows code in which processor PO writes loca-
tion x and then location y. Processor P1 reads y and then x into its registers r1 and r2 respectively. Consider a
system where PO could execute its writes out of program order. Then it is possible for P1 to read y after PO
modifiesit, but to read x before PO modifiesit. Figure 7.1(b) gives the corresponding execution order. We assume
that memory operations are executed atomically and give the execution order on operations rather than sub-
operations. Figure 7.1(c) shows the program/conflict graph. There is a cycle in this graph and so the execution
does not obey the above system-centric specification. Indeed, the execution does not have the same result as a
sequentially consistent execution (assuming the value returned by reads comprises the result), and the system does
not appear sequentially consistent. Note that if the read of x returned the new value written by PO, then the cycle
would be broken, the execution would obey the above specification, and the system would appear sequentially
consistent. The formal specification and proof follow.
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Figure7.1. Anexamplewhere sequential consistency is violated.

Condition 7.3: System-centric specification for sequential consistency: The program/conflict graph of
the execution must be acyclic (assuming finite speculation and write termination assumptions).

Proof: An acyclic program/conflict graph of an execution implies atotal order on the memory opera-
tions of the execution such that the total order is consistent with program order, a read in the execu-
tion returns the value of the last conflicting write before it by this order, and there is no conflicting
write between a read and write of a read-modify-write. Thus, this total order qualifies for an execu-
tion order of a sequentially consistent execution (Condition 3.12 in figure 3.4). Therefore, the instruc-
tion set, operation set, and value set of E aong with the above total order as the execution order
represent a seguentially consistent execution that has the same result as E. Thus, an acyclic
program/conflict graph is a correct system-centric specification for sequential consistency. [

We are interested in a slightly different form of the above specification that is more amenable to further op-
timizations. This form considers two types of paths in the program/conflict graph and requires that conflicting
sub-operations of operations ordered by such a path be executed in the same order as the path. We discuss the two
types of paths and then formalize the specification below. Both types of paths are between conflicting operations.

Thefirst type of path is a path that has at least one program order edge. For example, in figure 7.1 (c), there
is a path of the above type from the write of x to the read of x through the write and read of y. The specification
reguires the sub-operation of the write of x in the memory copy of P1 to appear before the sub-operation of the
read of x in the execution order. This is not true for the execution order of figure 7.1 and indeed the execution
does not appear sequentially consistent. Imposing the condition would require that the read of x return the value
of the write of x by P1.

Considering only the above types of paths is sufficient if writes are executed atomically. In the presence of
non-atomic writes, we need to consider another type of path as follows. Consider two conflicting operations such
that there is no path between them with at least one program order edge in the program/conflict graph. Such
operations were called race operations in definition 4.12 in Section 4.1.2; we call the pure conflict order path
between them as arace path. With non-atomic writes, it is possible that the conflicting sub-operations of two race
writes in different memory copies appear in a different order in the execution order. This can be detected by the
programmer, exposing the underlying non-atomicity and non-sequentially consistent behavior. To prohibit this,
the specification below also requires that conflicting sub-operations of writes ordered by a race path execute in the
same order in al memory copies. As an example, consider figure 7.2. It shows two processors writing the same
location, x, and two other processors reading the location twice. Assume the reading processors see the writes of
x in different orders. Figure 7.2(b) shows parts of the corresponding execution order (on sub-operations) relevant
to our discussion. The left and right sides show sub-operations in the memory copies of processors P3 and P4
respectively; Write,x,1,Pi denotes a write of x with value 1 in the memory copy of processor Pi and Read,xfj
denotes a read of x into register rj. Note that the write sub-operations appear in different orders in the two



97

Pl P2 P3 P4
x=1 x=2 rl=x; r3=x;

@
execution order program and conflict orders,
Memory of P3  Memory of P4 ordlering paths
Writex,1,P3 o
. Writeifx,Z,P4 L o Write,x,l\c;qx» 2

Rea(j/,x,rl Rea(jlf,x,rS Readi(,r\lco\ B )}l T/C(_)E)?d,x,m
WIeX 2P\ ritex.1,pa p°l o Witex2z o TDO

Read,x,r2 Reaj,x,r 4 Read<,x,r2 Reé,x,rS

@) ©

Result:r1=1,r2=2,13=2,r4=1

Figure7.2. Motivation for considering race paths.

memory copies. Part (¢) shows the corresponding program/conflict graph; the dashed and dotted lines trace the
execution order of conflicting sub-operations in the memory copies of P3 and P4 respectively. Thereisno path in
the program/conflict graph that contains at least one program order edge and for which the condition mentioned
above is violated. However, there are till cycles in the program/conflict graph, and the execution does not give
sequentially consistent results. Requiring that conflicting sub-operations of two writes ordered by a race path be
executed in the same order eliminates the above cycle and precludes the given execution.

The following formalizes the above concepts and the system-centric specification.

Definition 7.4: A path in the program/conflict graph from operation X to operation Y is called a race

path iff X == Y and there is no path from X to Y in the program/conflict graph that contains at |east
one program order edge.

Definition 7.5: An ordering path is a path in the program/conflict graph that is between two
conflicting operations, and either it has at least one program order edge or it is a race path between
two writes.

Condition 7.6: System-centric specification for sequential consistency: For every pair of conflicting
memory operations X and Y in an execution, if there is an ordering path from X to Y, then X(i) is be-
fore Y (i) for all i in the execution order (assuming finite speculation and write termination assump-
tions).

Proof: The proof follows directly from observing that the specification prevents any cycles in the
program/conflict graph, thereby obeying Condition 7.3. [
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7.1.2. Madificationsto the Condition for Sequential Consistency

This section first makes four observations that lead to a less restrictive form of the system-centric
specifications of the previous sub-section, and then gives the modified system-centric specification based on the
four observations.

The following motivates observations 1, 2, and 3. Condition 7.6 requires that if there is an ordering path
from operation X to operation Y, then the sub-operations of X must appear before the corresponding conflicting
sub-operations of Y in the execution order. The simplest way to achieve thisis to ensure that al operations on an
ordering path are executed one at atime in the order specified by the conflict and program order edges of the path.
On a system with atomic memory, operations on a conflict order edge are, by definition, already executed atomi-
cally and in the order of the edge. On a system with non-atomic memory, the same effect can be achieved by exe-
cuting writes on conflict order edges of ordering paths atomically. The additional condition to satisfy Condition
7.6 is to ensure that operations on a program order edge of an ordering path be executed in program order. For
example, consider the program and execution represented in Figure 7.3, where all program order edges are on ord-
ering paths except the one between the reads of ¢ by processor P1. Requiring operations on program order edges
of ordering paths to be executed one at atime in program order implies that all operations of PO and all operations
of P1 except itsreads of ¢ must execute one at atime in program order.

PO P1
Write,a Writed
P1 PO PO
aP—Ol. P Wrilte,b \ Read,c
-4 po ‘\\ Cco
b=1 d=1, Write,c / J po
c=1; while (c!=1) {;} | po N
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(po = program order, co = conflict order)

Figure 7.3. Examplefor observations 1, 2, and 3.

The four observations below show that to satisfy Condition 7.3, certain ordering paths (also present in Fig-
ure 7.3) need not be considered by the system. Thus, the system can exploit more parallelism and execute more
writes non-atomically, because it need not constrain operations on the ordering paths identified by the following
observations.

Observation 1.

The first observation (also made in [ShS88] in a different form) is that if there are multiple ordering paths
from X to Y, then the system needs to ‘*be careful”’ when executing the operations of only one of those ordering
paths. For example, in Figure 7.3(b), there are three ordering paths from the write of a to the read of a:

Write,a 2> Writeb > Write,c > Read,c *> Read,b > Read,a;
Writea 2> Writeb > Read,b > Read,a; and Writea 2> Writec => Read,c > Read,a.
Serializing operations on program order edges of all the above paths would require PO to execute its three writes

one at atime. However, by the above observation, it is sufficient to serialize operations on program order edges
of only the third path, allowing PO’s writes to a and b to be executed in parallel. (The writesto b and ¢ need to be
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done one at a time for the ordering path between operations to b.) Similarly, PO's write to b can be executed non-
atomically (although this example does not illustrate the performance gains that may be possible with such an op-
timization).

Observation 2.

The second observation, based on work for PLpc [GAG92], is that certain instructions and operations,
called unessential operations, can be removed from the execution, leaving behind instructions and operations that
aso form an execution and with the same result as the original execution. Consequently, the system need not con-
sider ordering paths resulting from unessential operations. For example, consider the while loopsin Figure 7.3(a)
which execute a read until the read returns some value. The loops are only used for control; as long as the loop
finally terminates on the correct value, the number of times the loop executed unsuccessfully does not matter and
the actual values returned by the unsuccessful reads are not useful. These unsuccessful reads can be removed
from the execution and what remains is still an execution with the same result as the original execution; hence,
these reads are unessential. The ordering path from the write of d to the read of d results from the unessential read
on c; therefore, this path can be ignored and the system need not restrict the operations on this path.

A case of unessential operations was identified for the PLpc model [GAG92] (and a conservative definition
was used for PLpcl and PLpc2 in Chapter 6). This chapter allows operations from more general types of loops
where the termination of the loop may require several reads to different locations to return certain values. The
definition, given below, is a straightforward extension of definition 6.6 used for the PLpc models. A synchroniza-
tion loop is a sequence of instructions that are repeatedly executed until an exit predicate is satisfied. The exit
predicate of the loop specifies reads of one or more memory locations (called exit reads) and requires each read to
return one of several values (called exit values of the read). Like PLpc, an exit read may be part of a read-
modify-write, but only if it isthe only read specified by the predicate. The write of the read-modify-write is called
an exit write. The other constraints below are the same as for the aggressive definition for PLpc given in
[GAG92]; they ensure that all but the last iteration of the loop can be ignored in every execution and the only
shared-memory operations in the last iteration are the exit reads and writes. Like PLpc, the only writes from a
synchronization loop that are allowed to change the value of any memory location are the exit writes from the last
iteration of the loop. With non-atomic writes, an additional system assumption is required to ensure that the other

writes of the loop do not change the state of any memory copy: if W; = W, and either W, or W, is from a
synchronization loop, then W, (i) =>> W,(i) for al i. We call thisthe loop coherence assumption.

Definition 7.7: A synchronization loop is a sequence of instructions in a program that would be re-
peatedly executed until a predicate (called the exit predicate) based on the values returned by certain
shared-memory reads (called the exit reads) in the sequence is satisfied. The exit predicate is satisfied
iff each exit read returns one of certain specified values called the exit values. An exit read may be
part of a read-modify-write iff it is the only exit read on which the exit predicate depends. In that
case, the write corresponding to the exit read-modify-write is called an exit write. Below, a loop
refers to a synchronization loop.

(1) For an instantiation of a Ioop23 in any execution, the exit predicate, the locations to be accessed by
the exit operations, and the corresponding exit values cannot be changed by any instruction instance
of the instantiation; the loop instantiation terminates iff all the exit reads in an iteration return their
exit values in which case thisis the last iteration; the exit write (if any) writes a value which isafixed
function of the value returned by the corresponding exit read and this function cannot be changed by
any instruction instance of the instantiation; every iteration of the loop instantiation terminates and
contains all the exit reads for the exit predicate of the instantiation.

(2) For an instantiation of aloop in any execution, the values of registers or private memory changed
by the instruction instances of the instantiation cannot be accessed by any instruction not in thisin-
stantiation, and the only way instruction instances in the instantiation can affect an output interface is

23. By instantiation of aloop, we mean instruction instances from every iteration of the loop beginning (in program
order) from the first iteration since the predicate of the loop was last satisfied and until the next iteration where the predicate
of theloop is satisfied.
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by writing the values returned by the exit reads of the final iteration to the output interface.

(3) For any instantiation of a loop in any execution, the first instruction instance program ordered
after the instruction instances of the loop is from the same instruction.

(4) For an instantiation of aloop in any execution, if conditions for the exit predicate to succeed per-
sist in memory, then the loop eventually exits.

(5) For an instantiation of aloop in any execution, the only writes in the loop that change the value of
a shared-memory location are the exit writes of theiteration in which the exit predicate is satisfied.

(6) In any execution, the only shared-memory operations in the iteration of a loop where the exit
predicate is satisfied are exit reads and exit writes.

(7) Every instantiation of aloop terminates in every sequentially consistent execution.

Definition 7.8: Unessential and Essential Operations: A set of operations in an execution are
unessential if they are from an iteration of a synchronization loop where the exit predicate is not
satisfied. All operations that are not unessential are essential.

Parts (1) - (6) of the definition of a synchronization loop require examining any execution, as opposed to
just sequentially consistent executions. However, each part requires examining just the control flow graph of a
loop of a single processor’s code in isolation; this does not require examining non-sequentially consistent interac-
tions between two processors. The purpose of the various conditions is to ensure that irrespective of the values re-
turned by the shared-memory reads of the loop, the unsuccessful iterations of the loop can be ignored. The condi-
tions are trivially satisfied if the only code in the loop is the exit reads and writes, the evaluation of the exit predi-
cate (without any writes), and a conditional jump to afixed instruction out of the loop or back to the beginning of
the loop depending on whether the predicate is satisfied or not.

Observation 3.

The third observation is that there are certain reads that will always execute after certain writes irrespective
of how the operations on the ordering path between them are executed by the system (assuming ordering paths
from previous conflicting writes are executed correctly). Therefore, ordering paths between such a write and read
need not be considered by the system. For example, consider the final read of b in the while loop of Figure 7.3. In
Figure 7.3(b), there is an ordering path from the write to the read of b. However, the loop was waiting for the
value written by the write; therefore, no matter how the system behaves with respect to the ordering path between
the write and read, the final read will always execute after the write. Therefore, no explicit system restrictions are
required to impose this particular order. Such aread is called self-ordered.

Definition 7.9: The essential exit reads from synchronization loops are self-ordered reads. Synchron-
ization loops are also called self-ordered Ioops.24
Observation 4.
The final observation uses the notion of consecutive conflicting operations.
Definition 7.10: Two conflicting operations in an execution are called consecutive conflicting opera-

tionsiff there is an ordering path or race path from one of these operations (say X) to the other opera-
tion (say Y), and no such path from X to Y has another write on it that conflicts with X and Y.

24. Although so far essential reads from synchronization loops and self-ordered reads are defined in the same way, we
will make a distinction between the two concepts for two reasons. First, for some models, we may want to exploit observa-
tion 2 but not observation 3 for some types of loops; therefore, we would like to identify system constraints for exploiting
observation 3 separately. Second, in the future we may be able to extend the definitions of synchronization loops and self-
ordered loops such that they are no longer identical. We, however, make the reasonable assumption that a loop that is ex-
ploited as a self-ordered loop is also exploited as a synchronization loop; therefore, all self-ordered loops are synchroniza-
tion loops and all constraints on synchronization loops are also implicitly applicable to self-ordered loops.
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It follows that as long as ordering paths between consecutive conflicting operations are maintained, all ord-
ering paths will be maintained. This does not lead to optimizations, but allows for a simpler analysis since we do
not need to analyze ordering paths between conflicting operations that are not consecutive.

Modified Condition.

Based on the above four observations, we next define a critical st® and modify condition 7.6. An explana-
tion of the definition and condition follows next. For simplicity, we give the definition assuming writes are atomic;
i.e., the execution order can be defined on operations rather than sub-operations. Below, terms such as last and
after refer to the ordering by the execution order. Further, for parts (2) and (3) of the definition below, we need to
consider initial values of alocation. To model the effect of initial values, assume that there is a hypothetical write
to each memory location that writes the initial value of the location at the beginning of the execution order. (Hy-
pothetical writes are not considered unless explicitly mentioned.)

Definition 7.11: A critical set for an execution is a set of ordering paths that obey the following pro-
perties. Let X and Y be any two consecutive conflicting operations such that there is an ordering path
or race path from X to Y. Ignore all unessential operations.

(D) If Yisnot aself-ordered read and if there is an ordering path from X to Y, then one such path isin
the critical set.

(2) If Yisan exit read from a synchronization loop that is not self-ordered and if there is no ordering
path from X to Y, then let W be the last write (including the hypothetical initial write) before X that
conflicts with Y and writes an exit value of Y. If W exists, then let W' be a write after W that has an
ordering path to Y that ends in a program order arc. If W' exists, then one ordering path from the last
such W' to Y that endsin a program order arc must be in the critical set.

(3) If Yisaself-ordered read, then let W and W' be as defined in (2) above. If W' exits, then one ord-
ering path from any W' to Y that endsin a program order arc must be in the critical set.

For every execution, we consider one specific critical set, and call the paths in that set as critical
paths.

For non-atomic writes, parts (2) and (3) of the above definition must consider write sub-operations that
conflict with Y’'s sub-operation. The modified definition is given in Appendix C.

Condition 7.12: System-Centric Specification of Sequential Consistency: The execution should have

acritica set such that if an ordering path from X to Yisin the critical set, then X (i) = Y(i) for all i
(assuming finite speculation, write termination, and loop coherence).

The formal proof of the above specification appears in Appendix C. The following informally explains the
specification. A critical set is the set of ordering paths that are not excluded by the four observations of this sec-
tion as follows. The definition exploits observation 2 by ignoring all unessential operations and exploits observa-
tion 4 by considering only consecutive conflicting operations. Part (1) of the definition exploits observation 1 by
choosing only one ordering path between a pair of conflicting operations to be critical. Part (2) of the definition is
an artifact of exploiting observation 2 and ignoring unessential operations, and is necessary only because later we
will want to restrict ourselves to analyzing only sequentially consistent executions (see Section 7.2).26 Part (3) of
the definition exploits observation 3. Observation 3 isthat self-ordered reads will always execute after the correct
write as long as they execute after the necessary previous writes that do not write an exit value. Thus, even if there

25. Theterm *‘critica’’ isinspired from the work by Shasha and Snir [ShS88].

26. We will later use information from only sequentially consistent executions to identify the critical paths of any exe-
cution (see Section 7.2). Part (2) of definition 7.11 then ensures that a synchronization loop does not terminate too early as
follows. Consider the operations W' and Y in part (2). For an acyclic program/conflict graph, Y must execute after W'.
However, if returning the value of W' would make Y unessential, then Y will execute after the next write that makes it
essential (in this case X). Thus, in any sequentially consistent execution W' and Y are never consecutive conflicting opera-
tions. If thereis no ordering path from X to Y, then to ensure that Y executes after W', we need to explicitly consider the
path fromW' to Y.
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isan ordering path from X to Y, a critical path for this case is necessary only if there is also an ordering path from
a previous write that writes a non-exit value. In that case, any ordering path from the non-exit value write or X (as
opposed to just from X) could be critical. (The reason for requiring a critical path even when there is no ordering
path from X to Y is the same as for part (2); however, again, this path can be chosen from more writes than al-
lowed by part (2).)

Our definition of a critical set contains the minimal ordering paths we have ascertained so far. It may be
possible to reduce this set in the future. (One example appearsin Appendix C.) We expect therest of thiswork to
be applicable to such reductions. We next use the above condition to determine how to design SCNF memory
models.

7.2. Designing An SCNF Memory M odel

An SCNF memory model solicits help from the programmer to facilitate system optimizations without
violating sequential consistency. Call an optimization safe iff it does not violate sequential consistency. Many
optimizations are safe to use for certain parts of the program, but not for others. For example, the optimization of
reordering operations of a processor is safe when applied to two data operations of a data-race-free-0 program, but
may not be safe when applied to two synchronization operations. SCNF models allow optimizations to be used
selectively based on the information provided by the programmer. Thus, an important aspect of designing an ap-
propriate SCNF model for a system is determining when an optimization is safe to use and how the programmer
can help the system detect these safe cases. Conversely, often some information may already be known about the
program either because of the limited synchronization libraries and parallel programming constructs provided by
the system or because programmers tend to write well-structured programs. We would like to be able to deter-
mine optimizations that would not violate sequential consistency with this known information. This section uses
Condition 7.12 to establish a mapping between optimizations and information that allows the safe use of optimiza-
tions.

From Condition 7.12, an optimization is safe as long as all conflicting sub-operations ordered by a critical
path are executed in the order of the critical path. We say that the system executes an ordering path safely if it ex-
ecutes two conflicting sub-operations ordered by the path in the same order as the path; otherwise, we say the sys-
tem violates the ordering path. Therefore to use an optimization safely, the system needs to selectively apply the
optimization to only the parts that will not violate the critical paths of the execution. The information that the pro-
grammer can provide to allow an optimization is to distinguish parts of the program where the optimization will
not violate any critical paths. Conversely, if some information about the critical paths of the program is aready
known, then the system can apply any optimizations that will not violate those critical paths.

The above is a correct mapping between optimizations and information; however, it is not sufficient for our
purpose. Specifically, we use the term programmer to refer to either the compiler or the human programmer. To
give the above information, the compiler requires a global data dependence analysis which can be quite pessimis-
tic and/or inefficient. (This approach has been suggested by Shasha and Snir as discussed in Section 7.6.1.)
Therefore, we expect that the human programmer will have to give the necessary information on the critical paths.
In that case, we can only expect information pertaining to the critical paths of sequentialy consistent executions
since making the programmer reason about other executions defeats the goal of SCNF models. Thus, it is impor-
tant to determine when an optimization is safe to use based on information from only sequentially consistent exe-
cutions. A large part of the complexity in designing an SCNF memory model arises because of this restriction.
This work largely eliminates the complexity by providing a genera relationship between optimizations and when
they are safe to use based on information about the critical paths of sequentially consistent executions of a pro-
gram. Specifically, we develop a pre-condition for the system and show that if the system obeys this pre-
condition, then the programmer need only provide information pertaining to critical paths of sequentially con-
sistent executions. We call this condition the control requirement. The control requirement is dependent on the
optimizations the system will employ and is formalized in Sections 7.4 and 7.5. Since it is satisfied by most
currently practical systems, for now, we will assume that the system satisfiesit.

Thus, assuming a system obeys the control requirement, if the programmer distinguishes the parts of the
program where an optimization will not violate a critical path of a sequentially consistent execution, the system
can apply the optimization safely to the distinguished parts. Consequently, if some information on the critical
paths of sequentially consistent executions is already available due to other reasons discussed above, then the sys-
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tem can apply any optimizations that will not violate such critical paths.

The work in designing a memory model is now restricted to characterizing when an optimization will not
violate the critical paths of a sequentially consistent execution, and determining how the programmer can com-
municate this information. Conversely, for known information about the program, the work in designing a
memory model is now restricted to converting this information into information on critical paths and determining
when an optimization will not violate these critical paths. Aswe will see in the next section, thiswork is far less
complex than proving from scratch when an optimization will not violate sequential consistency. Specifically, the
complex proofs for previous memory models [AdH90,AdH92,GLL90,GMG91,GiM92] can now be done in a few
steps as illustrated by Appendices F and G. Also note that expressing the required information in terms of the
behavior of sequentially consistent executions means that not only programmers but also future designers of
memory models need worry about the effect of optimizations on only sequentially consistent interactions of the
program. Thus, when reasoning about programs, writes can henceforth be assumed to be atomic and the definition
of conflict order used in the previous section can be replaced by the previous definition (Definition 4.10 of Section
4.1.2) assuming atomic writes; consequently, the notions of program/conflict graph, unessential operations, self-
ordered operations, consecutive conflicting operations, critical paths, and execution order no longer assume non-
atomic operations. Particularly, note that consecutive conflicting operations are now simply conflicting operations
not separated by another conflicting write in the execution order. Determining whether an optimization might
violate a critical path of a sequentially consistent execution and implementing the resulting model, however, still
requires reasoning with non-atomicity; to aid this process, we provide generic system-centric specifications for
generic memory modelsin Section 7.5.

Weillustrate the use of our mapping between information and optimizations in the next section by consider-
ing several optimizations and common programming constructs to explore a large part of the design space of
SCNF models.

7.3. New SCNF Memory Models

This section considers optimizations and common programming constructs that are not fully exploited by
previous work. For the optimizations, the approach is to begin with a general, sequentially consistent base system
and then examine optimizations that would relax some of the constraints imposed due to sequential consistency.
We reason about cases where the optimizations can be used safely and how the programmer can indicate to the
system when these optimizations can be used safely. The requirements for the programmer to indicate when the
optimizations can be used safely is the memory model for the system. Every optimization we consider leads to
one or more new memory models. For the programming constructs, we consider common uses of the constructs,
reason about the critical paths that result from such uses, and deduce optimizations that do not violate those criti-
cal paths. This leads to new and simple to use models. Such models prescribe how the construct should be used
and the only constraint on the programmer is to use the construct as prescribed.

The advantage of beginning with optimizations directly isthat it is easier to envisage potential optimizations
starting from a constrained system. However, the disadvantage is that the information required of the program-
mers deduced using this approach may not be directly related to high-level sharing patterns and synchronization
behavior. The advantage of beginning with common program constructs is that the constraints on programmers
are easier to describe and satisfy; the disadvantage is that this approach is restricted to the sharing patterns that can
be identified in current programs.

Sections 7.3.1 and 7.3.2 respectively discuss models based on the above two approaches.

7.3.1. ModelsMotivated by Optimizations on Base System

Our approach is to begin with a general, sequentially consistent base system and then examine optimiza-
tions that would relax some of the constraints imposed due to sequential consistency. Specifically, we consider a
system with a general interconnection network which may or may not have caches. In the presence of caches, we
assume some form of a hardware cache coherence protocol [ASH88].

In practice, such a system needs to adhere to the following to appear sequentially consistent [ScD87]. A
processor does not issue a memory operation until the preceding operations complete. Thus, a processor must
wait until a preceding read returns a value and a preceding write reaches memory. For systems with caches, a
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processor must also wait until all the caches that have the line accessed by a preceding write are invalidated or up-
dated (using a cache coherence protocol). To enable the processor to detect when its write has reached memory or
when the relevant caches have received invalidations or updates, the memory and/or the caches usually need to
send acknowledgements to the processor. Further, systems with caches also need to ensure that writes appear to
execute atomically. For this, first, a cache coherence protocol is used to serialize writes of all processors to the
same line. Second, a processor is hot allowed to read the value of awrite until all other processors have seen that
write. For an update-based cache coherence protocol, this requires two phases. In the first phase, memory sends
updates to caches and receives acknowledgements. In the second phase, memory sends messages to the caches in-
dicating they can now allow their processors to read the value.

It follows that, in general, sequentially consistent systems do not use the uniprocessor optimizations of write
buffers, out-of-order issue of memory operations (as with superscalar processors), and pipelined (or overlapped in
the inter-connection network) memory operations. In addition, they incur unnecessary network traffic and latency
by requiring invalidations/updates, acknowledgements, and serialized conflicting writes. If an update based cache
coherence protocol is used, atwo phase protocol is required which decreases the potential performance gain of an
update protocol.

Below, we consider the optimizations of out-of-order issue, pipelining (with in-order issue), eliminating the
second phase of an update protocol, and eliminating acknowledgements. The first three optimizations are allowed
by previous SCNF models for some cases, we show we can apply them to more cases with more help from the
programmer leading to new models. The last optimization has not been considered by previous models in the
presence of genera interconnection networks.

7.3.1.1. Out-Of-Order Issue

This section investigates when it is safe to execute two operations out of program order. Consider the ex-
ample in Figure 7.4. Ignore the program and conflict order edges for now. The program represents processor P1
producing separate data for processors P2 and P3 to consume. Variables Flagl and Flag2 are used to indicate
when the data is ready. For processor P1, previous SCNF models allow some of its operations to be executed
out-of-order. However, al the implementations we considered imposed some unnecessary ordering constraints.
For example, al of them require P1's write of Flag2 to wait for the completion of the write of Flagl. Intuition
suggests that this delay is unnecessary because both operations seem to be involved in *‘independent’” tasks of
producing independent data for different processors. Thisintuition is correct and we can use our results to formal-
ize amemory model that will exploit it as follows.

From the previous section, two operations can be executed out of program order as long as this does not
violate a critical path. Out-of-order execution of operations that are not on a program order edge of any critical
path cannot violate any critical path. Thus, two operations that are not on a program order edge of a critical path
can be executed out of program order.

In Figure 7.4, we overload the instructions of the program to also represent memory operations of an execu-
tion of the program. Certain program and conflict order edges of executions are shown. The paths between
conflicting operations (with at least one program order edge) constitute a critical set of ordering paths. Now it is
clear why P1's writes of Flagl and Flag2 can be reordered: it is because these operations are not on a program
order edge of any critical path.

Thus, to reorder operations, we need the programmer to identify program order edges that are not on critical
paths. This requires a mechanism in the programming language and hardware that will allow the programmer to
distinguish program order edges that are not on critical paths from those that are on critical paths (or for which
this information is not known to the programmer). We use the following terminology adapted from message-
passing homenclature.

An operation that lies on a conflict order edge of a critical path is called a communicator; others are called
non —communicators. For example, in Figure 7.4, only operations on Flagl and Flag2 are communicators. We
call the first operation on a conflict order edge a sender and the second operation areceiver. The writeon Flagl is
a sender and the read of Flagl isareceiver. If a sender isalso on a program order edge, we say the sender sends
the first operation on that edge. Analogoudly, if areceiver is also on a program order edge, then we say the re-
celver receives for the next operation on that edge. The write of Flagl sends the writes of A and B. The read of
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P1 P2 P3
A= while (Flagl 1= 1) {3} while (Flag2 1= 1) {3}
[po
po -c
= D;
po

Figure 7.4. Reordering memory operations.

Flagl receives for the reads of A and B.

The use of message-passing terminology is intentional and suggests an intuitive interpretation of operations
on a critical path. In message passing systems, processors communicate by using explicit sends and receives. In
shared-memory systems, processors communicate through conflicting accesses to a common memory location. In
the absence of additional information, a shared-memory system must assume that any pair of conflicting accesses
are implicitly involved in acommunication. The conflict order edges of critical pathsindicate the true (as opposed
to potential) communication in a shared-memory execution; we therefore call the first operation on such an edge

as a sender and the second operation as a receiver. Further, we interpret edges of the type op; 2> S 2> R

25 op, on acritical path as the sender Ssending *‘information’” about the operation op; to the receiver R, and
the receiver R passing this information on to operation op,. Thus, a critical path can be considered as a sequence
of sends and receives that pass a message about the first operation on the path to the last operation on the path.
Making critical paths explicit makes this communication explicit to the system. Note that senders and receivers
on the critical path can be either reads or writes (as long as at least one operation per conflict order edge is a
write), because any pair of conflicting operations can communicate information in a shared-memory system.

A mechanism to distinguish program order edges not on critical paths from those that are on critical pathsis
to associate every operation with the operations it sends and the operations that receive for it. Then the associated
operations are on critical edges. For a model that uses such a mechanism, the programmer must associate with
each memory operation all other operations sent by the operation and al receivers for the operation. Then the
system can execute the operation out of order if all its associated operations are aready executed. This model ex-
poses more operations that can be reordered than the SCNF models we have proposed so far. For example, the
write to Flag2 can be executed before the writes to A and B as well as before the write to Flagl. Optimizations
similar to those of the above model are suggested by Bershad et a. [BeZ91,BZS92] and Gibbons and Merritt
[GiIM92]; we discuss how they compare to our models at the end of this sub-section.

The above mechanism may be difficult for programmers to use and difficult for system designers to imple-
ment. We can define a simpler, intermediate model that is not as aggressive as the above but still allows more
reordering than the previous models. Specifically, it alows Flag2 to be executed before Flagl. This model is
based on the notion of distinguishing between different operation types also used by the earlier SCNF models.
The following describes the operation types that the model distinguishes; the actual mechanism for distinguishing
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operations can be any of those described for the previous modelsin Chapters 4 and 6.

op> Op:1

Non-Communicator Communicator
Condition when op, can bypass op,

Non-Communicator Always safe op; does not receive for op,

OR

op does not receive for
non-communicators

Communicator op, does not send op4 0p, doesnot sendop;
OR and op, does not receive for op,
op, does not send . ORd _
. ! op, does not send communicators
non-communicators and op, does not receive for

communicators

(a) Let op, be before op, by program order. The table states when op, can be executed before op;.

. Supported by
M echanism DRFO DRFL PLpcL, PLpc2
Distinguish:
non-communicators data data data
communicators that do not - release, unpaired sync release, unpaired sync
receive for non-communicators
communicators that do not - acquire, unpaired sync acquire, unpaired sync
send non-communicators
communicators that do not - - loop read
send communicators
communicators that do not - - loop write
receive for communicators

(b) Useful mechanisms based on distinguishing operations

Table 7.1. Mechanisms for reordering memory operations.

Table 7.1(a) specifies several characterizations for when an operation op, can bypass a previous operation,
op4, of its processor. The table gives four cases depending on whether op; and op, are communicators or non-
communicators. For example, the first entry states that if both op, and op, are non-communicators, it is aways
safe for op, to bypass op;. This motivates a mechanism to distinguish non-communicators from communicators.
The remaining entries first specify an aggressive characterization requiring mechanisms to associate operations as
discussed above, and then the corresponding more conservative characterization requiring mechanisms to distin-
guish operations.

Table 7.1(b) summarizes the conservative mechanisms motivated by Table 7.1(a). For a model that uses
these mechanisms, the programmer must ensure that an operation distinguished as in Table 7.1(b) does indeed
obey the corresponding specification. For example, an operation distinguished by the programmer as a non-
communicator should indeed be a non-communicator. A system obeying such a model can execute out-of-order
all pairs of operations characterized by the conservative parts of Table 7.1(a) (using the identification by the pro-
grammer).

Table 7.1(b) aso shows the mechanism that each of the SCNF models discussed in earlier chapters supports
and the corresponding terminology the model uses for the particular type of operations. (The proofs for the
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models in the appendices clarify why the correspondenceistrue.) PLpcl and PLpc2 are the most aggressive since
they provide more mechanisms than the other models. However, they support the last two mechanismsin alimit-
ed way, and so are less aggressive than the new model which supports the last two mechanisms in the most gen-
eral way. Specifically, PLpcl and PLpc2 distinguish communicators which do not send other communicators
from those that do; however, they do so only for read communicators. In Figure 7.4, the write to Flagl is a write
communicator that does not send other communicators. The PLpc models do not provide a mechanism for the
programmer to indicate that this write does not send communicators. Therefore, the PLpc models cannot use any
information from the programmer to determine that the write of Flag2 need not be executed before the write of
Flagl. The above more general model allows the programmer to provide thisinformation and allows the writes of
Flagl and Flag2 to be reordered.

The models resulting from the mechanisms given by Table 7.1(b) also require fairly detailed reasoning from
programmers about the behavior of the programs. Are there other easier to identify characterizations of program
order edges that are not on critical paths? The earlier SCNF models use such characterizations as shown in Table
7.1(b): the data and loop characterizations are simpler to identify than the corresponding more general distinctions
in the leftmost column of the table. Section 7.3.2 examines models based on common programming constructs
that make some of the more aggressive information also easier to obtain.

Finally, we compare the optimizations of the above models to the aggressive models of entry consistency
proposed by Bershad et a. and an aggressive version of release consistency proposed by Gibbons and Merritt.
The optimizations of allowing the write of Flag2 in Figure 7.4 to be executed before the write of Flagl and before
the writes of A and B are allowed by the definition of the entry consistency model [BeZ91] as well. The write of
Flag2 is allowed before the write of Flagl because entry consistency does not impose any ordering constraints on
synchronization operations of the same process (the Flag operations qualify as synchronization). However, reord-
ering any arbitrary pair of synchronization operations can violate sequential consistency; e.g., consider a program
where all operations are distinguished as synchronization. Thus, by allowing this optimization, entry consistency
has to forgo sequential consistency (even for the programs it supposedly allows). Entry consistency allows the
optimization of the write of Flag2 to execute before the writes of A and B. The cost, however, is that it requires
every access to a shared variable to be protected by alock and to be executed within an acquire and release of this
lock, thereby restricting the use of common synchronization techniques such as the use of task queues (further il-
lustrated in Section 7.3.2.3).

Gibbons and Merritt have proposed an aggressive version of release consistency where the programmer can
associate a release (or sender) operation with data operations that it must release [GiM92]. However, the system
they propose does not alow overlapping two releases (or senders). Thus, just by associating releases with ap-
propriate operations, the system they propose would not execute the writes of Flagl and Flag2 in paralel. Their
framework, however, allows program order to be a partial order per process. With that, it would be possible for
the programmer to indicate directly to the system that the last three operations of P1 are not program ordered after
the first three operations of P1, and the system can execute these operations in parallel. However, this mechanism
may not be general enough for some cases. For example, there may be dependences between any of the above
operations that may be inconvenient to remove in the high-level program, thereby prohibiting the relaxation of
program order. Further, at a very fine-grain, it may be difficult for programmers to determine when to relax pro-
gram order and to express this relaxation; our work gives programmers a way to reason about whether a set of
operations might be safely executed in parallel and also suggests conservative mechanisms that make it easier to
express this parallelism.

7.3.1.2. Pipelining Operations (With In-Order |ssue)

We next consider systems where processors issue memory operations in program order, but we would like
to pipeline (in the inter-connection network) as many operations as possible. The observation of the previous sec-
tion holds here as well; i.e., only operations that form a program order edge of a critical path cannot be pipelined.
However, for a processor that does not issue operations out-of-order, this requires that in Figure 7.4, processor P1
should stall on its write of Flagl until it receives the acknowledgements for its writes of A and B. Our condition
for sequential consistency requires only that critical paths be executed safely. In this case, it requires only that
P1'swrites of A and B be executed only before P2 reads those locations. Previous work has shown how to pipe-
line P1's writes of A, B, and Flagl while still ensuring the above [AdH90, AdH92b, Bez91, Car91, Col84-92,
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KCZz92, LHH91]. However, except for the work by Carlton [Car91], all the previous methods either require con-
siderable hardware or software complexity or are applicable only to highly restricted (acyclic or ring) networks.
Carlton proposed (without proof) that if al datais protected by locks, alock and the data it protects are put in the
same memory module, and the network does not reorder accesses along the same path, then all operations can be
pipelined [Car91]. We use Carlton’s approach, but argue formally to show how it can be applied to only a few
accesses, eliminating the need for only lock-based synchronization and the need to allocate alock variable and all
data associated with it in the same memory module.

Consider hardware that inherently preserves the order of some (but not all) operations. For example, consid-
er a system that does not have caches (or where certain locations can be marked uncacheable) and where there is
no reordering of operations from a given processor to a given memory module (i.e., network guarantees pairwise
order). Thenif A, B, and Flagl were in the same memory module, they could be pipelined and would still be exe-
cuted in memory in program order (since P1 issues them in program order). P2 then would always return the up-
dated values for A and B. This pipelining can be done by the hardware if it knows that al the operations that
Flagl sends are for its own memory module. Thus, a useful model for this scenario would be one that provides a
mechanism in the programming language for programmers to associate with senders the operations they send.
The compiler could then allocate the locations of the associated operations in the same memory module (if possi-
ble) and communicate that to the hardware. This communication could be done, for example, by distinguishing
the above senders simply as non-communicators. Since hardware does not wait on a non-communicator for previ-
ous non-communicators, hardware will not wait on Flagl for the operations on A and B. A similar scheme for
cache based systems can exploit the fact that most cache coherence protocols ensure that operations to the same
cache line are seen by all processors in the same order. Note that this model needs to associate senders with
operations they send only at the high level programming language level, not at the hardware level. So, at the
hardware level, thismodel is different from previous models and that described in the previous section.

7.3.1.3. Single Phase Update Protocols

We next consider eliminating the second phase of update protocols; i.e., we would like a read to return the
value of a write even while other processors could return the value of a previous write. Previous SCNF models
identify two cases of writes where thisis possible: data writes for all models and the loop non-atomic writes for
the PLpc models. (The PLpc models aso alow all writes to be non-atomic if some operations are made read-
modify-writes)) We use our methodology to characterize another case where non-atomic writes are safe without
the use of read-modify-writes, resulting in a new memory model.

P1 P2 P3
Lock S if (A==1){ if(B==1){
A=1 Lock S > Lock S
po :
po co |f (A =1{ if (B =1){
Un'lock S P
}
UnIock S Unlock S
}

Figure 7.5. Non-atomic writes.

Consider Figure 7.5, which shows three processes sharing data through critical sections. However, to avoid
unnecessary lock accesses, P2 and P3 first check (outside the critical section) if some data they want to access has
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the desired value. These values are updated by P1 and P2 respectively. If the values are not as desired, they do
not need to do the lock access. Otherwise, they access the lock, but read that data again to ensure they get the la-
test value. The figure also showsthe critical paths.

P1'swrite on A races with P2’ sfirst read on A which isnot in aloop. Therefore, that write does not qualify
for a single phase update protocol with the other models. Therefore, the implementations of those models dis-
cussed so far do not allow P2'sfirst read on A to return the new value until the update for A reaches P3 (assume
P3 has A cached from a previous phase of the program). The purpose of this delay is to ensure that P3 does not
later read the old value of A. However, the critical path from P1's write of A to P3'sread of A ensures that P3
will return the new value of A even if P2 sfirst read completes before the write. Thus, intuitively, a two phase up-
date protocoal is not needed for this write. The following shows how to formally translate this intuition to charac-
terize such a case so the programmer can indicate it to the system.

In the following, we say that a write, W,, executes atomically if no read R returns the value of W, or the
value of a conflicting write ordered after W, in the execution order, until W, completes; i.e., if W, = R, then
W, (i) == R(j)foralli,j. Otherwise, we say the write executes non-atomically.

Proposition 7.13: Executing a write W with a single-phase update protocol (or non-atomically) does

not violate a critical path if (a) there is no critical path of thetypeW =~ R --- R where Rand R’
are different reads, or (b) there is no critical path with W as a receiver (assuming operations on a pro-
gram order edge of a critical path are executed serially in program order and conflicting writes are
coherent).

The following analysis shows that the above proposition istrue.
Analysis: We first examine critical paths that either begin with a program order arc, or begin with a

Write > Read arc and end with aread. Let A, A,, - - -, A, represent the operations on the path.
The following induction shows that given the system assumptions in the above proposition, for all A,

either (1) A, = Ay, or (2) Ay(i) == A(j) foralli,j, or (3) Ai(i) > A(j) for al i and somej. In
addition, for (3), A, must be awrite and there exists aread R on the critical path such that the part of
the path from Rto A, consists only of writes (except R) and = arcs.

Base case: Holdstrivialy for n= 1.

Induction for n = k+1.

Casel: Ay > Ay (ie, Ali) == Aia(j) forali, j): It followsthat A, ., obeys (1) or (2).

Case 20 Ay > Agyg (I8, Ai) ™ Aci(i) for al i) and A, obeys (2): It follows that A .,
obeys (3) when A, isaread and A, ., isawrite, and obeys (2) otherwise.

Case3: Ay > Ay, A obeys (3) and A, isawrite: It follows A, ,; obeys (3).
Case4: Ay => Ay, A obeys (3), and A ., isaread: The conditions necessary for A to obey
(3) imply that A, isawrite and isareceiver on the path. Therefore, by proposition 7.13, A, must
be executed atomically and so A (i) == Ac1(j) for ali,j. It followsthat A, ,; obeys (2), com-
pleting the induction.
We need to show that A, (i) = A,(i) for al i. Thisclearly followsif A, obeys (2). If A, obeys(3),
it must be awrite. If A; isawrite, the proposition follows. If A; isaread, then suppose A,(i) ==
A, (i) for some i. Since A, obeys (3), it is executed atomically, and so A,(i) == A,(j) for all i,j.
But since A, obeys (3), there is aread R on the path such that A;(i) 2> R(j) for al i, j and R(j)
225 A, (j) for some j, a contradiction to the result above that A,(p) == A;(q) for all p, q.
We next consider the critical paths not considered above; these must consist of a chain of == arcs
from (say) X to Y followed by a path from Y to (say) Z of the type considered above, and such that X
and Y conflict. Applying the above analysis to the path from Yto Z, it followsthat Y(i) 2> Z(i) for
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ali.ltmust also bethat X (i) 2> Y(i) for al i and soit followsthat X (i) = Z(i) forali. O

A write satisfies cases (a) and (b) of the proposition if it is never a communicator on a critical path. In Fig-
ure 7.5, the write of A by processor P1 is not on a communicator on any critical path; therefore, it does not need a
two phase update protocol. Thus, a model that allows more single phase updates than previous models is one that
provides a mechanism to distinguish writes that are either non-communicators (or more generally that obey (a)
and (b) above) or writes that are non-atomic loop writes (as defined by PLpc2). (The data writes identified by pre-
vious models for single phase updates are a subset of non-communicator writes.) Call the above writes as non-
atomic+ writes. Then the programmer’s requirement for such a model is that writes distinguished as non-atomic+
should obey the above conditions. The system can execute all writes distinguished as non-atomic+ with single
phase updates.

As for the optimization involving reordering, Section 7.3.2 examines common programming constructs that
contain writes that obey the above characteristics but are easier to identify.

7.3.1.4. Eliminating Acknowledgements

Finally, we consider eliminating acknowledgements for some writes with general interconnection net-
works.?” Previous work has considered this optimization [Car91,Col84-92,L HH91], but either assumes restricted
networks [Col84-92,LHH91], or does not ensure sequential consistency (as in some schemes in [Col84-
92, LHH91]), or requires restricted, lock-based synchronization [Car91]. Only the work by Carlton [Car91] indi-
cates (without proof) how this optimization might be used for an SCNF model, but requires restricted, lock-based
synchronization. Acknowledgements are needed only to indicate the completion of a write operation. The com-
pletion of a write operation needs to be indicated only if some later operation will wait for this write. Thus, to
determine when acknowledgements are not required, we need to characterize writes for which no other operation
waits. The analysisin the previous sub-sections makes this characterization obvious. These are writes that are not
sent by a sender, that do not receive for any operation, and that are non-atomic+. Call such writes non-ack writes.
An example of such awrite is the write of Flagl in Figure 7.4. Thus, a memory model that will allow some ack-
nowledgements to be eliminated is one that provides a mechanism to distinguish non-ack writes from others. The
requirement of the programmer is simply to distinguish a write as non-ack only if it satisfies the above mentioned
properties. Again, we will see easier-to-identify characterizations for such writesin Section 7.3.2.

7.3.2. Models Motivated by Common Programming Constructs

This section proposes new memory models based on common programming constructs. The goal of this
section is not to determine new optimizations or new cases where the optimizations of the previous section are
safe. Instead, the goal of this section is to determine safe cases that are easy to identify for the programmer. For
this, the section examines easy-to-identify high-level programming constructs and determines the optimizations
they allow. For constructs that allow useful optimizations, the memory model requires only that the high-level
programmer make this easy-to-identify construct explicit. We show how the high-level programmer can make the
construct explicit to the compiler. We assume, however, that there are underlying mechanisms for the compiler to
convey this high-level information to the hardware, and for the hardware to perform the optimizations possible
with this information. The previous section discussed such mechanisms for the various optimizations. Note that
the compiler can directly exploit all the optimizations cited in this section (that are relevant to the compiler)
without any additional mechanisms.

The following sub-sections examine constructs involving producer-consumer synchronization, barriers,
locks, and constructs used to decrease lock contention. For some of the new models, the analysis may seem
lengthy; however, al the analysis in this section is far shorter and simpler than any of the origina proofs for the
earlier SCNF models [AdH90,AdH92,GLL90,GMG91,GiM92].

Below, we use terms such as executes after, executes before, before, after, between, and last to indicate the
ordering by execution order. Since we need to analyze only sequentially consistent executions, we assume the ex-

27. Ross Johnson brought the possibility of such an optimization to our notice, as an optimization examined by the
Scalable Coherence Interface (SCI) extensions group.
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ecution order on operations. The terms following and preceding still indicate program order.

7.3.2.1. Producer-Consumer Synchronization

In a producer-consumer interaction, a producer process typicaly generates some data and then, using a
write to a shared-memory location, signals to the consumer that the data is ready. The consumer process
meanwhile reads the above shared-memory location in aloop, waiting for the read to return the value to be written
by the signal. Call the loop an await loop, its reads as await reads, and the values the loop waits for as exit values.
With the PLpc models, the usual use of signal writes and await reads would constitute loop operations, alowing
certain optimizations. This section examines a slightly more general case of an await loop, and other possible op-
timizations on the signal and await operations. More generally, an await loop may wait for more than one
shared-memory location to reach an exit value. Figure 7.6 illustrates an example where the loop waits for al of
the locations to reach certain values. We investigate such loops below.

P1 P2 P3
[* spin until both flagsare 1 */
while ((Flagl!=1) ||

(Flag2!=1)) {;}
A =52, C=721; ..=B;
B = 46; D =543; ..=D;
Flagl=1; Flag2 = 1; ..=GC;
=A:

Figure 7.6. Producer-consumer interaction.

For the following analysis, consider a program for which every sequentially consistent execution is divided
into phases, where each phase ends with a barrier and locations accessed by barrier operations are not accessed by
any other operations. Thus, for two conflicting operations in different phases, there exists an ordering path consist-
ing of only barrier operations (other than the operations being ordered). Assume such a path to be chosen as the
critical path. Also assume that for two conflicting barrier operations, the critical path chosen (if any) consists only
of barrier operations.

For the await loop described above, a useful (and intuitively safe) optimization is parallel execution of the
reads of an iteration of the await loop. The data-race-free and PLpc models require distinguishing all await reads
as synchronization and none of their described implementations would allow the above optimization. The follow-
ing uses our framework to determine the properties of an await loop that would make the above optimization safe,
and then gives the corresponding model that allows the above properties to be made explicit. The section con-
cludes with other optimizations possible with the new model.

Optimization of parallel execution of readsin an await loop: Analysis.

Two reads in program order can be executed in paralld if they do not form a program order edge of any
critical path. By the assumption discussed above, two reads from an await loop cannot be on a critical path order-
ing operations from different phases. Thus, we need only be concerned with critical paths ordering operations

from the same phase. Denote the two reads from an await loop as R; and R, where R; > R,. For this pro-
gram order arc to be on a critical path, R, should either be a sender, or R, should receive for R,. The following
two paragraphs show that with a few reasonable assumptions, neither of the above conditionsistrue.

For R, to be a sender, in some sequentially consistent execution, there must be a write in the same phase as
R,, such that the write conflicts with R, and executes after R,. It is reasonable to expect that there will be only
one write to the location of R, in the entire phase and this write writes the exit value for R, (as in figure 7.6).
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Since R, must be essentidl, it follows that R, must return the value of the above write, and so no conflicting write
can execute after R, in the same phase. Thus, R, cannot be a sender.

We next investigate if R; can receive for R,, given the assumptions already made to ensure that R, isnot a

sender. If R, is not a sender, then a critical path with R; > R, must end on R,, and so it must begin with a
write W (in the same phase) that conflicts with R,. The described await loop is self-ordered. Therefore, the path
from Wto R, need not be chosen as critical. However, we must ensure (by definition of a critical set) that if there
is a conflicting write W' before W that writes an exit value of the loop, then some ordering path (to R,) from a
write between W' and W is critical. The current phase cannot have any other writes that conflict with W (by the
assumptions of the previous paragraph); therefore, any W' must be in a previous phase and any writes between W'
and W aready have a critical path to R,. Thus, we only need to ensure that if a W' exists, then another write
between W' and W that writes a non-exit value exists. We can ensure this by requiring that when a phase begins,
no location accessed by an await loop in the phase has an exit value. Thus, the path from Wto R, is not critical
and R, cannot be areceiver for R,.

Optimization of parallel execution of readsin await loop: The model.

The above analysis motivates a model that recognizes special signal-await constructs shown on the left side
of figure 7.7 with semantics shown on the right side of the figure. The signal construct specifies alocation and a
value. Semantically, it represents a write to the given location updating it to the given value. The await construct
specifies one or more locations (called the await locations) and a predicate for each await location that is a func-
tion of the value of the location. Semantically, an await repeatedly reads all the specified locations until each read
returns a value that satisfies the corresponding predicate. The model allows programmers to use the constructs to
represent the given semantics only if they obey the following constraints for every sequentially consistent execu-
tion.

(1) A phase with an await construct should begin with the await locations in a state that would not satisfy the
corresponding await predicates, and an await loop should eventually terminate.

(2) If aphase has an await, then exactly one signal per location specified by the await must be in the phase,
and no other write to the same location isin the phase.

signal (LOC, VALUE) : LOC=1

await (LOC1, LOC2, ..., LOCn;
PRED1, PRED?2, ..., PREDn) : while ('PREDL1 || !PRED2 || ... || 'PREDN) {;}
/* PREDI depends only on the value of LOCi */

Figure7.7. Signal-await constructs.

The above constraints are reasonable to expect from some producer-consumer scenarios and should be sim-
ple to verify; the model simply requires that whenever these constraints are met, the programmer explicitly indi-
cate it to the system by using the special constructs. Simply using the constructs provides enough information to
the system that the reads of the awaits can be executed in parallel without violating sequential consistency.

The rest of this section investigates other possible optimizations with the above constructs. For optimiza-
tionsinvolving signal writes, we add two other reasonable constraints to the three constraints imposed above:

(4 Inany phase, alocation specified by a signal or await can be accessed only by other signals or awaits.
(5) If aphase has asignal, then the phase must aso have an await specifying the signal location.
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Other optimizations.

The following first derives relevant critical path information for the signal and await constructs, and uses it
to show that two non-conflicting, program ordered operations from these constructs can be executed out-of-order
(and in parallel) in all cases except for an await read followed by a signal write. We also show that all signal
writes can be executed non-atomically.

We can derive the following information about the signal and await constructs of the new model.
(i) An await read isnot a sender. (Follows directly from the earlier analysis.)
(if) An await read does not receive for another await read.

The earlier analysis proved the above for await reads from the same loop; it applies to await reads from dif-
ferent loops as well.

(iii) A signal write cannot be areceiver.

The constraints above imply that a signal write can conflict only with an await read in a phase. Since an
await read cannot be a sender, a signal write cannot be areceiver.

(iv) No ordering path beginning with a signal write iscritical.

An ordering path in a given phase that begins with a signal write must end in an await read (because a sig-
nal write cannot conflict with another write in the same phase). The earlier analysis showed that since the
await read is from a self-ordered loop, and since the phase begins with the await locations with non-exit
values, the path from a signal write to an await read is not critical.

(v) No operation sends a signal write.

For an operation to send a signal write, the signal write must either begin the critical path or must be are-
ceiver on the critical path. From (iii) and (iv) above, neither is possible.

We next investigate the optimizations the above information allows. First consider the optimization of out-
of-order (or paralel) execution of two non-conflicting, program ordered operations, X and Y, from signal and

await constructs. Assuming X 2> Y, the optimization is safe if Y is not a sender for X and if X is not a receiver
for Y. From (i) and (ii), it follows that two non-conflicting await reads (from any await loops) can be reordered.
From (i) and (iii), it follows that a signal write followed by a non-conflicting await read can be reordered. From
(iii) and (v), it follows that two non-conflicting signal writes can be reordered. Thus, al combinations of non-
conflicting operations from signal and await constructs, except an await read followed by a signal write, can be
reordered.

Next consider the optimization of non-atomic signal writes (as described for proposition 7.13). From pro-
position 7.13, awrite needs to be executed atomically only if it is either areceiver or if it beginsacritical path that
endsinaread. From (iii) and (iv), neither is possible, and so a signal write can be executed non-atomically.

7.3.2.2. Barriers

This section examines overlapping the latency of barrier operations with operations that precede and follow
the barrier. The resulting model is similar to the notion of fuzzy barriers proposed by Gupta [ Gup89]; we discuss
the relationship with Gupta’ s work at the end of the section.

As before, assume programs that are divided into phases where adjacent phases are separated by a barrier
and locations accessed by barrier operations are not accessed by non-barrier operations. Also assume that for two
conflicting operations from different phases and from different processors, the critical path chosen consists of only
barrier operations (other than the operations being ordered). For conflicting operations from the same processor, a
single program order arc between the operations is the chosen critical path.

If in some phase, an operation O accesses a location that is not accessed in the immediately next phase, then
intuitively, the operations from the barrier immediately following that phase can be overlapped with the operation
O. The following explains how this notion (and an analogous notion for barriers preceding an operation) can be
formalized and gives the corresponding SCNF memory models.

A non-barrier operation O can be overlapped with a following barrier operation B if O > Bisnot on a
critical path. With the above assumptions, this arc can be on a critical path only if the path begins with O and
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ends with an operation O’ that conflicts with O and is from a different processor than O. If O and O’ are not in
adjacent phases of the program, then there are more than one ordering paths between O and O' that contain only
barrier operations; only one of these paths needs to be considered critical and executed safely. Call the barrier

selected for the critical path from O to O’ as a sender barrier for O and a receiver barrier for O'. Then if O 2>
B (where B is a barrier operation), O and B can be executed in parallel as long as B is not from (or follows) a

sender barrier for O. Similarly if B 22> 0O, then O and B can be executed in parallel as long as B is not from (or
precedes) areceiver barrier for O.

To exploit the above observation, a memory model can provide a mechanism to associate with every opera-
tion the sender and receiver barriers of that operation. A conservative approach would be to provide a mechanism
to only distinguish between the case when the sender barrier is the immediately following barrier from the case
when it is not, and to distinguish between the case when the receiver barrier is the immediately preceding barrier
from the case when it not. Assume the default to be the case when the sender/receiver barrier is the immediately
following/receiving barrier. A sufficient requirement of the programmer for such a model isthat if an operation O
is distinguished as having the non-default sender barrier, then the following phase in any sequentially consistent
execution should not contain an operation that conflicts with O and is by a processor different from that of O.
Similarly, if an operation O is distinguished as having the non-default receiver barrier, then the preceding phase in
any sequentially consistent execution should not contain an operation that conflicts with O and is by a processor
different from that of O. Communicating and exploiting the information for the above model is much simpler
than associating general senders and receivers for general programs as discussed in Section 7.3.1.1. For example,
operations can be distinguished using annotations as discussed for earlier models, and the information for the
sender barriers can be exploited in hardware by using two counters to indicate the outstanding operations each of
the next two barriers needs to wait for.

The model described above is related to the notion of fuzzy barriers proposed by Gupta [Gup89]. The work
assumes a barrier implementation using a hardware broadcast mechanism without involving memory. A proces-
sor can execute a barrier in parallel with its other memory operations. For each barrier in a process, a region of
contiguous instructions before and after the barrier isidentified that could potentially be overlapped with the bar-
rier. Thisregion is called the barrier region; the compiler can reorder operations to increase the size of thisregion.
The hardware execution of the barrier is overlapped with the barrier region (operations after the barrier region are
guaranteed to begin only after operations before the barrier region complete). Thus, the key intuition behind the
fuzzy barrier and our model above is similar. However, Gupta assumes that the compiler will determine the bar-
rier and non-barrier regions of a program. Since compilers can be conservative, we expect to get information
from the programmer to determine which operations can be overlapped with a barrier. Since we expect program-
mers to provide information only about sequentially consistent executions, we need a formal proof that this infor-
mation is sufficient to guarantee sequential consistency in the presence of the above optimizations. Specificaly,
unless the system obeyed the control requirement (discussed in detail in Section 7.5), the optimizations discussed
above with information from only sequentially consistent executions would not be safe and anomalies similar to
figure 5.2 in Section 5.2 could occur. Thus, our work shows that the key intuition used by Gupta is applicable to
non-sequentially consistent systems even without aggressive compiler technology, and shows how the necessary
information to exploit thisintuition can be obtained from the programmer and exploited without hardware support
for abarrier.

The work by Gibbons and Merritt [GiIM92] discussed in Section 7.3.1.1 is related to the model of this sec-
tion as well since it alows associating a sender barrier with all operations it sends. Our work additionally allows
associating the receiver barrier with an operation, and explicitly identifies barriers as constructs that are relatively
easy to reason with for associating senders and receivers.

7.3.2.3. Locksand Unlocks

We investigate a typical use of lock locations for implementing critical sections. Typically (in any sequen-
tially consistent execution), such lock locations are accessed only through special lock and unlock constructs
where the lock construct is a self-ordered loop whose only shared-memory operation in the final iteration is a
read-modify-write that ‘*acquires’’ the lock, and the unlock construct is awrite that *‘releases’’ the lock. Further,
programmers ensure that all processes that access the lock location obey the following protocol: a process exe-
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cutes an unlock for alocation only if it was the last process to successfully lock the location and it has not already
executed another unlock to the same location since that lock. Finaly, every execution of alock construct eventu-
aly acquires the lock. We call lock and unlock operations that obey the above protocol as critical section locks
and unlocks, or CS locksand CS_unlocks for short.

The following considers optimizations for CS locks and CS _unlocks; we first consider optimizations in-
volving only CS lock/CS unlock operations and then consider optimizations involving interactions between
CS lock/CS_unlock operations and other operations. Uses of locks and unlocks that do not obey the CS lock and
CS unlock restrictions cannot, in general, safely use the following optimizations.

Optimizationsinvolving only CS lock/CS _unlock operations: Analysis.

Essential CS lock reads and CS_unlock writes obey the conditions for a loop operation of PLpc and an
essential CS_lock write obeys the conditions for a data operation (as discussed in Chapter 6). Thus, a CS_unlock
write followed by a CS lock read can be executed in parallel, and CS lock and CS_unlock writes can be executed
non-atomically. The following investigates if other optimizations are possible by deriving critical path informa-
tion for CS locksand CS_unlocks. The information derived and the analysis used is similar to that for the signal
and await constructs. It shows that along with optimizations of PLpc, two non-conflicting program ordered
CS unlock writes can be reordered or overlapped, and a CS unlock write does not require acknowledgements.
(The analysis below also provides a simple proof for why the optimizations of the PLpc models are safe for
CS locksand CS _unlocks.)

The protocol for a CS lock and CS_unlock mentioned above leads to the following useful observation. Let

X and Y be conflicting operations from CS_lock or CS_unlock constructs where X executes before Y (i.e., X =
Y). Then either X is a CS unlock write and Y is a CS lock read, or X and Y are separated by alternating
CS _unlock writes and CS_lock reads. Both cases imply that there is a path from X to Y in the program/conflict

graph where the only <> arcs are from a CS_unlock write to a CS_lock read. This implies that if a <> arc
consisting only of CS lock and CS_unlock operations is on an ordering path, then the arc can always be replaced
with another path where only CS_unlock writes are senders and CS lock reads are receivers. Thus, if when
choosing a critical path, we always choose an ordering path where such a replacement has been made, it follows
that the only sender operations from CS lock/CS _unlock constructs are CS_unlock writes and the only receiver
operations from such constructs are CS lock reads. Assuming that critical paths are chosen based on the above
criterion, we can derive the following information.

(1) CS_lock read cannot be a sender. (Follows from assumption in previous paragraph.)

(2) CS_unlock write cannot be areceiver. (Follows from assumption in previous paragraph.)

(3) CS_lock write cannot be a sender or receiver. (Follows from assumption in previous paragraph.)
(4) No operation need send a CS_unlock.

Consider a CS _unlock U. U cannot be a receiver. Therefore, if U is sent by some operation O, then the
corresponding critical path must begin with U. The path can end at either a CS _lock or CS_unlock opera-
tion (say) UL. UL and U must be consecutive conflicting operations for the following reason.

Suppose for a contradiction that UL and U are not consecutive conflicting operations. The only critical
paths between operations that are not consecutive conflicting operations are paths to self-ordered reads.
Therefore, assume that UL is a read. Therefore, UL must be a CS lock read. The only path to a self-
ordered read that needs to be critical and is not from a consecutive conflicting operation is a path from a
write that does not write an exit value for theread. However, U writes an exit value for UL, a contradiction.

Therefore, U and UL must be consecutive conflicting operations. But then UL cannot be a CS_unlock be-
cause a CS lock write must come between two CS unlocks to the same location. Therefore, UL is a

CS lock write or CS _lock read. If UL is a CS lock write, then the path U => R > UL is critical
where Risthe read of UL’slock. U isnot sent by any operation on this path. So suppose UL isa CS_lock
read. Then since UL is from a self-ordered loop, a path to UL needs to be critical only if there is either a
path from U or from the last previously executed conflicting CS_lock write to UL that ends in a program
order arc. Any such path can be chosen as critical. The last conflicting CS_lock write W before UL must be
by U’s processor. Therefore, if a critical path is required, then there exists an ordering path from W to UL
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that ends in a program order arc. We can require this path to be critical; therefore, no operation need send
U.

Thus, if an ordering path from an essential CS _lock write to the next conflicting essential CS _lock read and
that ends in a program order arc is considered critical (when such a path exists), and a path of the type

CS unlock > CS lock-read *> CS lock-write is considered critical, then no operation need send a
CS unlock.

(5) No critical path beginswith a CS_unlock write operation on a conflict order arc and ends on aread.
Suppose there is a path of the kind stated above beginning with a CS_unlock U and an arc of the type U

2> 0. Let the path end on aread L (L must be a CS _lock read). For reasons discussed in the previous
analysis, U and L must be consecutive conflicting operations. Therefore, O cannot be awrite. Therefore, O
must be a CS lock read. However, then O is a read-modify-write and this write must be between O and L.
Thus, again U and L are not consecutive conflicting operations and so the path is not critical.

The model motivated by the above analysisis discussed below.
Optimizationsinvolving only CS lock/CS _unlock operations: The Model.

The above analysis motivates a model that recognizes specia lock/unlock constructs called CS_lock and
CS_unlock respectively. Programmers are allowed to use these constructs for locking and unlocking only if they
obey the constraints mentioned in the beginning of the section for CS locks and CS_unlocks; i.e., in any sequen-
tially consistent execution of the program, a process executes a CS_unlock only if it was the last process to suc-
cessfully acquire the lock location and it has not already issued a CS__unlock to the same location since that lock,
locations accessed by a CS_lock or CS_unlock are accessed only by other CS_lock or CS_unlock operations,
and a CS_lock operation always eventually succeeds in acquiring the lock location.

The above constraints describe the conventional protocol for implementing critical sections and are usually
obeyed; the model simply requires the programmer to make this explicit by using a special construct. Providing a
special construct allows programmers who might want to use other protocols to continue to do so by using the
usual locking constructs provided by the system. It also alows for portability of dusty deck programs for which it
may be difficult to verify whether the usual locks and unlocks obey the above protocol.

Using the above constructs (as specified) provides enough information to the system to execute CS_unlock
and CS_lock writes non-atomically (from (2), (3), and (5) and as described for proposition 7.13), to reorder or
overlap two program ordered non-conflicting CS_unlock writes (from (2), (4)), to reorder or overlap a
CS_unlock followed by a non-conflicting CS_lock (from (1), (2)), and to not require acknowledgements on a
CS_unlock write (from (4) and since CS_unlock writes can be non-atomic).

We next investigate optimizing interactions between CS_|ock/CS_unlock operations and other operations.
Other optimizations.

The data-race-free models showed that data (or non-communicator or non-race) operations following an un-
lock (or preceding a lock) can execute in parallel with the unlock (or lock). As discussed earlier, for increased
parallelism, the entry consistency model requires that a data location be accessed only between an acquire and
release of alock that has been declared as protecting that data [BeZ91, BZS92]. Using our terminology, an unlock
in this model only sends the operations following the preceding lock to the same location, and alock only receives
for operations preceding the following unlock to the same location. Providing only the above types of locks and
unlocks is restrictive for programmers since not al data can be accessed in the above manner, as illustrated by
figure 7.8. The figure shows processors repeatedly getting a task from a task queue, processing the task, and pos-
sibly enqueuing new tasks for others to process. Assume that in any sequentialy consistent execution, procedures
that process or generate tasks do not execute any operation that may conflict with any other processor’ s concurrent
accesses. Thus, the only necessary synchronization is to access the queues. Since a processor may add and re-
move tasks to and from different queues, a data operation may never be between alock and unlock to the same lo-
cation and the entry consistency mechanism isinsufficient.

To alleviate the above problem, the Midway system allows different data locations to be accessed using dif-
ferent consistency protocols [BZS92]. Thus, the locations accessed by the task processing and task generating
procedures could be declared as release consistent; consequently, al following unlocks would send operations to
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Master Process Code Save Process Code
while (More_Tasks) { while (All_Tasks Done) {
generate initial task to be done Task = Deque_Task(Queue j)
Enqueue_Task(Task,Queue i) process the task
} if (New_Tasks Generated)
Enqueue_Task(New_Task,Queue k)
}
procedure Deque_Task(Queue i) procedure Enqueue_Task(Task,Queue i)
{ {
lock(Lock_for_Queue i) lock(Lock_for_Queue i)
remove task from queue_i and set pointers put task in queue i and set pointers
unlock(Lock for Queue i) unlock(Lock for Queue i)
return(Task) }

Figure 7.8. Task Queues.

such locations. Thisimplies that the unlock in a dequeue procedure would be a sender for all the operationsin the
preceding task processing procedures, and would typically have to wait for those operations to complete. Intui-
tively, this serialization is not necessary. How can we extend the key idea of entry consistency without the above
limitation? Gibbons and Merritt proposed a general scheme to associate releases with operations they release
[GIM92]; i.e., an unlock could be associated with the operations it sends. However, such a general mechanism is
difficult to implement and use, and not necessary for figure 7.8. Can we identify easier-to-use mechanisms?

Figure 7.8 uses two types of easily distinguishable unlocks: unlocks that send all preceding operations and
unlocks that send only the operations that follow the last preceding lock. Thus, the unlock of the enqueue pro-
cedure potentialy sends al preceding operations, but the unlock of the dequeue only needs to send the operations
following the preceding lock (to ensure that the queue is accessed consistently). Analogous observations hold for
the locks in figure 7.8. Further, note that all the lock and unlock accesses in the figure are CS locks and
CS _unlocks.

The above motivates a model that distinguishes between two types of CS_lock and CS_unlock constructs.
The first is represented as aregular CS_lock or CS_unlock construct that is not optimized any more than in the
previous section. The second version, represented by partial_CS_lock and partial_CS_unlock, is optimized
similar to entry consistency. Informally, users of the partial constructs must use those constructs only to order
data accessed in the manner described for entry consistency; all other data operations must be ordered by com-
municators other than the partial constructs. More formally, the above model requires a location accessed by an
operation distinguished as a non-communicator (or non-race or data) to obey one of two conditions in any sequen-
tially consistent execution. The first condition is that the location is associated with some lock (say L), an opera-
tion to the location is always preceded by any CS lock construct (partial or otherwise) accessing the lock L and is
aways followed by any CS unlock construct accessing the lock L. The aternative condition is that any two
conflicting operations that access the location must be ordered by an ordering path consisting of communicators
other than the partial_CS_lock and partial_CS_unlock constructs.
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The above model ensures that the only non-communicators that a partial_CS unlock sends are the non-
communicators following the last preceding CS lock to the same location. Any other preceding non-
communicators can be executed in parallel with the unlock. For example, in figure 7.8, if we assume that all
operations within a lock and unlock in the enqueue and dequeue procedures are always accessed within the same
lock and unlock variable, then the unlock in the degueue procedure can be made partial. This allows the non-
communicator operations in an enqueue or task processing procedure to be overlapped with the unlock of the fol-
lowing dequeue procedure. We aready know that two CS_unlocks can be overlapped. Thus, it follows that once
the preceding engqueue procedure (from the previous iteration) getsits lock, the unlock of a dequeue procedure can
be executed even if the enqueue operations or the task processing operations of the previous task are not yet done.
While this does not directly speed up the dequeuing process any more than the previous models, it allows the
queue locks to be released faster and can potentially aid overall performance by decreasing contention on the
queues.

Analogous optimizations are possible with a partial_CS_lock in general, but cannot be exploited in the ex-
ample in figure 7.8 because a dequeue lock cannot in general be executed in parallel with a preceding enqueue
lock (in the absence of further constraints).

The above model combines the notions of entry consistency which essentially allows only partial
lock/unlock constructs, and the data-race-free models which essentially allow only the ‘‘regular’” lock/unlock
constructs. However, this combination is different from the model provided by Midway that combines entry and
release consistency [BZS92] since Midway requires the unlock of the dequeue to send data operations from the
preceding task processing procedure. Further, since we have shown that CS_unlocks can be executed in parallé,
it follows that the dequeue unlock need not wait for preceding data operations from the enqueue procedure either;
Midway does not formally guarantee sequential consistency with such an optimization. Also note that although
from the programmer’ s perspective, the above model can be viewed as a special case of the relaxed release con-
sistency model in [GIM92], the above optimization is not allowed by the systems considered in [GIM92] since
they do not reorder unlocks; further, the special case we cite is easier to use than the genera mechanism of
[GIM92].

7.3.2.4. Constructsto Decrease Lock Contention

Consider figure 7.9(a). It shows a processor that accesses some shared variables protected by alock. Before
the processor can make the accesses, however, it must ensure that some predicate based on the values of certain
shared-memory locations is true (e.g., it may need to ensure that a queue to be accessed is not empty). If the
predicate is not true, the processor must try again. If the predicate is true the processor performs some work
which may involve updating some of the locations read to test the predicate. Assume that any other accesses in
the rest of the program to the locations accessed within the critical section are also protected by the same lock;
i.e., the accesses are non-communicators.

To decrease lock contention, it may be worthwhile to wait for the predicate to become true outside of the
critical section, as shown in figure 7.9(b). Call such aloop that tests the predicate as a predicate loop. A predicate
loop implies that the write accesses within the critical section body that conflict with the reads of the predicate
loop race with those reads. Without any further analysis, these writes must be declared as communicators that
might send or receive for other communicators. This implies that these writes now have to wait for preceding
such writes in the critical section and must be done non-atomically. Intuitively, just the introduction of a
performance-enhancing loop should not impose such arestriction. Below, we show how we can reason about the
loop and define an SCNF model that eliminates this restriction.

Analysis.
We assume the locks and unlocks in figure 7.9 are CS_locks and CS_unlocks (as defined in the previous
section). Also similar to the previous section, we assume that when choosing an ordering path to be critical, we

choose a path with minimum number of == arcs that are not from a CS_unlock write to a CS_lock read. For
simplicity, the analysis below first assumes the predicate in figure 7.9 involves only one shared-memory read.

Consider aread R from the predicate loop and a write W from the critical section to the same location as R.
To eliminate the restrictions described above, we need to analyze when and if W can send to or receive from R.
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while (done) {

while (!done) { while (A= ...||B!=.){;}
Lock(L) Lock(L)
if(A==..&& B=..){ if(A==..&& B=..){
B=.. B=..
A= A=..
done = true done = true
} }
Unlock(L) Unlock(L)
} }
@ (b)

Figure 7.9. Loop for decreasing lock contention.

First consider when W could sendto R; i.e., W =~ Rison acritical path from (say) operation O, to opera-
tion O, in some sequentially consistent execution. Assume sequentially consistent executions without unessential
operations. W is followed by an unlock write U, and R is immediately followed by a successful lock read L that

executes after U. If R receives from W for an operation that follows L, then W - R on the critical path can be

replaced with U == L, a contradiction to our choice of critical paths. Thus, W °> R cannot be on a critical
path where R receives for an operation that follows L. So for Wto send to R, R must receive for L. From the pre-
vious section, we know that L cannot be a sender. Again, from the previous section, a critical path that ends at a
CS_lock read must be from the write of the last CS_lock. Thus, if W sends to R, then the corresponding critical

path must be CS_lock write 2> W 2> R 2> CS_lock read, where the CS_lock write is from the last lock
of that location preceding W and CS_lock read isthe first lock read following R.

Next consider when W could receive from R. Again, let L be the lock access that successfully acquires the
lock and immediately follows R. If W executes after L, then there is an ordering path from R to W consisting of
aternating CS_unlock writes and CS_lock reads, contradicting our choice of critical paths. Therefore, W must
execute before L. Suppose R is not from the first iteration of the outer-most loop in figure 7.9(b), then the unlock

from the previous iteration of the outer-most loop and the lock preceding W can replace R == W on the critical
path, again a contradiction. So assume that Ris from the first iteration of the outer-most loop. The following sim-
ple extension to our framework shows that a path with R as a sender need not be in the critical set.

Consider a program Prog that uses the construct shown in figure 7.9(b). Consider a program Prog’ that is
the same as Prog except that the read R from the predicate loop in the first iteration of the outer-most loop is not
program ordered after anything (recall that program order is partial per process). Then R cannot be a sender on a
critical path of an execution of Prog’ because R has nothing to send. Consider a system that safely executes all
critical paths of the program Prog except those that have R as a sender (the system also obeys the corresponding
control condition). Then such a system safely executes al the critical paths of program Prog' and so the result of
an execution of program Prog on such a system will be the result of a sequentially consistent execution of the pro-
gram Prog’'. We show below that the result of a sequentially consistent execution of Prog’ isthe same asthat of a
sequentially consistent execution of Prog; therefore, the above mentioned system appears sequentially consistent
to Prog and so ordering paths where R is a sender are not critical.
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Consider a sequentially consistent execution E of program Prog’ without any unessential operations. We
divide our reasoning into two cases as follows.

Case (1): The first iteration of all outermost loops of the constructs of the type in figure 7.9(b) are not the
last iterations of the loopsin E.

If the first iteration is not the last, then no operation from outside the iteration can see the effect of the itera-
tion. Thus, the first iteration of al the loops can be deleted from the execution leaving behind another
sequentialy consistent execution of Prog’ with the same result as E. This execution is also a sequentially
consistent execution of Prog, proving the required result.

Case (2): Thefirst iteration of some outermost loop of the constructs of the typein figure 7.9 isthe last itera-
tion of theloopin E.

In this case, again delete the first iteration of all the loops where the iteration is not the last one. Let this ex-
ecution be E'. Now consider aloop where the first iteration is the last. Let R be the read from the predicate
loop and let L be the successful lock access immediately following R. Then the last write Win E that is be-
fore L and to the same location as R (if any) must make R terminate the predicate loop. Consider an execu-
tion order that is the same as that of E' except that R is placed immediately before L and returns the value of
W (or the initial value if W does not exist). This execution order represents an execution with the same
result as that of E and is also an execution order of a sequentially consistent execution of program Prog,
proving our proposition.

Thusit follows that a write W in the critical section of figure 7.9 (b) is never areceiver, and is a sender only

for a path of the type CS_lock-write > W > R #- CS_lock-read, where the lock write is from the last
lock of its location preceding W. It follows that W can be executed non-atomically. Further, since it only sends
the lock write, it need not wait for any operations other than the lock write in the critical section. Therefore, the
restrictions described earlier are not required.

The above analysis has assumed a predicate whose value depends on a single read. The analysis easily ex-
tends to predicates with multiple reads by reasoning about a program where the reads in the predicate are not pro-
gram ordered with respect to each other, and the reads in the predicate in the first iteration of the outer-most loop
are not program ordered after any other operations.

The Modsdl.

The above observations motivate a model that recognizes a special synchronization construct called
Lock_With_Predicate as shown in figure 7.10(8). The construct consists of a lock variable, a predicate, and a
body. The predicate is a function of the values of zero or more shared-memory locations. The semantics of the
congtruct are as shown in figure 7.10(b). The model requires users of the construct to obey the following con-
straints for every sequentially consistent execution: (1) locations accessed by the construct are accessed only by
other Lock_With_Predicate constructs that specify the same lock variable (the predicates and bodies may be dif-
ferent), (2) a process that executes the construct eventually finds the predicate to be true, and (3) the predicate
code does not write any shared-memory location and the values of any registers or private memory written by an
iteration of the predicate code can only be read by instruction instances of that iteration.

With the above model, a Lock_With_Predicate construct provides enough information to the system such
that the accesses (other than the lock and unlock) within the construct can be treated like non-communicators ex-

cept that an ordering path such as CS_lock-write = write 2> read *> CS_lock-read made of accesses
from such constructs must be safely executed. (It is sufficient if the above path is safely executed only when the
first read on the above path is from a predicate loop. Thus, such a path would be automatically safe with hardware
that does not speculatively execute a write or read-modify-write following an unbounded loop until it is known
that the loop will terminate.) Specifically, the hardware can execute a write from the above construct non-
atomically and can execute all operations other than the lock and unlock operations from the above construct in
paralel.
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while (! Predicate) {;}

Lock_With_Predicate { Lock(Lock_Variable)
{ Lock Variable} if (Predicate) {
{ Predicate }
Body
{ Body }
} }

Unlock(Lock Variable)

€Y (b)
Figure 7.10. Predicate-loop construct.

7.4. Characterization of the Design Space of SCNF Memory Models

From the results of the previous sections, we deduce that the key characteristic common to all SCNF
memory models is that they can identify certain ordering paths as special and promise to execute those safely. |If
the programmer ensures that these special paths include a critical set of paths for every sequentialy consistent ex-
ecution of the program, then the model promises sequential consistency to the programmer. We call the specia
ordering paths that the model executes safely as the valid paths of the model, and define a generic model in terms
of valid paths as follows.

Definition 7.14: A Generic SCNF Memory Model: An SCNF memory model specifies a characteristic
set of ordering paths called the valid paths of the model. A program is avalid program for an SCNF
memory model iff for all sequentially consistent executions of the program, a critical set of ordering
paths for the execution are valid paths of the model. A system obeys an SCNF memory model iff it
appears sequentially consistent to all programs that are valid programs for the model.

The constraints on the programmer of a generic SCNF model are apparent from the above definition:

Definition 7.15: Constraints on the Programmer of a Generic SCNF Memory Model: Programmers
of an SCNF model must write programs that are valid programs for the model.

System constraints are less obvious from the above definition, but follow from the earlier discussion in Sec-
tions 7.1 and 7.2. The system-centric specifications of this and the next section are generalizations of similar
specifications developed for the data-race-free-1 [AdH92] and PLpc memory models [AGG93]. The generaiza-
tion makes explicit the relation between the model, the programmer constraints, and the system constraints. The
methodology used to describe the specifications is based on the work in [AdH92] and [GAG93]. Section 7.6
further explains the relationship between the specifications of this chapter and those in [AdH92, AGG93, GAG93].

In the specification below (and in the rest of the chapter), we use the term *‘ synchronization loop’’ only for
those loops that are exploited as synchronization loop by the model being considered; i.e., some programs valid
for the model are no longer valid if operations from the unsuccessful iterations of the loop are not ignored. Simi-
larly, we use the term ‘‘self-ordered read’’ only for a read R that is exploited as self-ordered by the relevant
model; i.e., in some sequentially consistent execution of avalid program for the model, part (3) of the definition of
critical paths is used to select a critical path to R to be the valid path to R. Similarly, we use the term *‘self-
ordered loop’’ only for those loops that have a self-ordered read in the above sense. Recall that we assume that all
loops exploited as self-ordered loops are also exploited as synchronization loops; therefore, any system constraints
applicable to the latter are also applicable to the former.
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Condition 7.16: High-Level System-Centric Specification of Generic SCNF Model:

Valid Path: If there is a valid path of the model from X to Y and if either X and Y are from the same
processor, or if X is a write, or if X is aread that does not return the value of its own processor’s

write, then X (i) == Y(i) for al i.
Control: For any valid program for the model, the following should be true.
(a) Critical set: The valid paths of the execution form acritical set of the execution.

(b) Finite speculation: The number of instruction instances program ordered before any in-
struction instance isfinite.

(c) Write termination: For any write in the execution, all sub-operations of the write are in the
execution.

(d) Loop Coherence: If W; = W, and one of W, or W, is from a synchronization loop,
then Wy (i) == W.,(i) for all i.

Proof: The proof follows directly from Condition 7.12. The valid path requirement and the critical
set part of the control requirement ensure that the critical paths of the execution are executed safely.
It is safe to ignore valid paths from aread R to awrite W where R and W are from different processors
and R returns the value of its own processor’s write W', because the control requirement ensures a

critical path corresponding to W' and W will be valid and so W'(i) <> W(i) for al i. Thisimplies
that R(i) 2> W(i) for al i and so the path from R to Wis automatically safe.® The remaining parts

of the control requirement make explicit the finite speculation, write termination, and loop coherence
assumptions of Condition 7.12. [J

Although current memory models are not specified directly in terms of valid paths, they can be converted
into the form of Definition 7.14. For example, the valid paths for the data-race-free-0 model are the happens-
before-0 paths. For a model that only distinguishes between communicators and non-communicators, the valid
paths are all ordering paths where the conflict order edges are between operations distinguished as communica-
tors.

Similarly, for many current and future models, the above form may not be the best specification for pro-
grammers or system designers to use directly. For example, the easiest-to-use characterization of the model based
on signal-await constructs discussed earlier israther different from the valid path characterization above. Similar-
ly, the data-race-free-0 model is easier to program with when stated as requiring the identification of al race
operations as synchronization. Nevertheless, the above characterization in terms of valid paths is valuable for the
following three reasons.

First, the above definition of a generic model characterizes and exposes the design space of memory
models. Theoretically, any set of ordering paths can be chosen as valid paths and considered as a new memory
model. Similarly, any two specifications that imply the same set of valid paths represent the same memory model.

Second, the above definitions directly provide a qualitative assessment of each point in the design space
since the valid paths of amodel determine its programmability and performance potential as follows.

The programmer must ensure that for every sequentially consistent execution of the program, the critical
paths of the execution are valid paths. Therefore, the ease of programming with a model depends on the ease with
which programmers can convert critical pathsinto valid paths.

The generic system-centric specification (Condition 7.16) described above indicates the performance poten-
tial of the model. The next section will show that the control requirement is mostly a function of uniprocessor
control dependences and the valid paths of the model, and is often aready obeyed by systems. Therefore, the key

28. The relaxation for reads that return the value of their own processor’s write is specifically used in Theorem H.1in
Appendix H.
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determinant of performance isthe valid path requirement, which requires the valid paths of an execution to be ex-
ecuted safely. The minimal requirement for sequential consistency that we have been able to ascertain in Section
7.2 is that the system must execute critical paths safely. Thus, a measure of the performance potential of a
memory model is the precision with which the valid paths of an execution can capture the critical paths of an exe-
cution. Specifically, providing a mechanism to alow programmers to convert exactly the critical paths to valid
paths is usually complex and expensive. Therefore, a model will usually provide simpler mechanisms by which a
programmer can convert a superset of the critical paths into valid paths; i.e., converting a critical path into a valid
path may implicitly convert other ordering paths into valid paths which will also be executed conservatively.
Thus, the performance potential of the model depends on how much of the critical path information the model al-
lows the programmer to convey to the system. For example, a model that only distinguishes between communica-
tors and non-communicators assumes that a write distinguished as a communicator is a sender for all preceding
operations and so uses less precise information (and has lower performance potential) than a model that can asso-
ciate a sender with operations that it sends. The valid paths of a model make apparent how much critical path in-
formation the model allows the programmer to convey, and so directly indicate the performance potential of the
model.

Finally, the third advantage of the characterization, as we have already seen in the previous section, is that it
facilitates converting well-known information about programs into useful memory models that can exploit that in-
formation. Conversely, it alows us to determine for important optimizations or system implementations, the
corresponding information from the programmer that would ensure sequential consistency. Program information
can be converted into optimizations by converting it into the paths that it ensures will not be critical; the system
need not consider those paths as valid and so can optimize those paths. For a set of system constraints or optimi-
zations, the necessary information can be determined by determining the ordering paths that the system executes
safely and using those paths for which the control requirement is also obeyed as the valid paths.

7.5. Implementing An SCNF Memory Model

The previous section gave a generic high-level system-centric specification for the generic memory model.
This section describes lower-level specifications and implementations. Since the control requirement is not very
intuitive, Section 7.5.1 first gives the motivation for the various aspects of the control requirement. Section 7.5.2
then gives low-level system-centric specifications and corresponding hardware implementations. Section 7.5.3
discusses corresponding compiler implementations.

7.5.1. Motivation for the Control Requirement
The following intuitively motivates the various parts of the control requirement of Condition 7.16.
Motivation for the critical set part of the control requirement.

The critical set part of the control requirement states that for an execution of a valid program, the valid
paths of the execution should form acritical set of the execution. This part is needed to avoid situations where the
programmer ensures that a critical set of every sequentialy consistent execution of the program consists of valid
paths, the system executes all valid paths safely, and yet the resulting execution is not sequentially consistent be-
cause some paths from every critical set of the execution are not valid. Thisis possible with avalid program since
a valid program guarantees a critical set will congtitute valid paths only for sequentially consistent executions.
Figure 7.11 illustrates the need for the requirement.

The example in figure 7.11(a) was used to motivate the control requirement for data-race-free-0 in Chapter
4; the same reasons are applicable to all other SCNF models. Specifically, in any sequentially consistent execu-
tion, the reads of X and Y should return the value 0, and the writes should not be executed. Thus, there are no ord-
ering paths in any sequentially consistent execution and the program is valid for any model. Without the control
requirement, it is possible to have an execution where both processors return the value 1 for their reads and exe-
cute their writes (the corresponding set of instructions and operations obey the uniprocessor correctness condition
and allow an execution order with the required properties). Such an execution is not sequentially consistent and it

has ordering paths which are not executed safely. For example, the path Read, X *-> WriteY = Read,Y

5 Write,X is not executed safely since the read of X returns the value written by the write of X. This path
does not have to be a valid path for the program to be valid and so violating this path does not violate the valid
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Initially X =Y =0 Initially X =Y =flag=0
Py P2 P1 P2
if (X==1) if (Y==1) if(X==0){Y =1} while (flag '= 1) {;}
Y=1 X=1 flag=1 if (Y ==0){X=1}
@ (b)

Figure 7.11. Motivation for critical set part of control requirement.

path requirement. The critical set part of the control requirement prohibits the above path from occurring in the
execution by requiring that the critical paths of the execution be the valid paths of the model. Note that since most
processors do not execute writes speculatively, processors P, or P, will usually not execute their write until the
read returns a value and it is known that the write needs to be executed. This precludes the execution described
above. Thus, simply observing uniprocessor control dependences prohibits an anomaly of the above type.

Figure 7.11(b) illustrates an example (from [AdH92]) where observing simple uniprocessor control depen-
dences may not suffice. In any sequentially consistent execution of the program, P,’sread on Y would always re-
turn the value 1, and therefore P, would never issue the write on X. Thus, the only ordering path in any sequen-

tially consistent execution is WriteY > Write,flag <> Read,flag > Read,Y. Assume a memory model
where only the above path is valid. In the absence of the control requirement, an aggressive implementation
[FrS92] could allow P, to write flag before its read of X returned a value. This could result in the following se-
guence of events which makes P,’s read on Y return 0, and violates sequential consistency without violating the
valid path requirement: (a) P, writes flag, (b) P,’'sread on flag returns 1, (c) P,’sread on Y returns O, (d) P, ex-
ecutes its write on X, (€) P;’sread on X returns 1, (f) P, does not issue its write on flag. This execution is not

sequentially consistent and it has an ordering path which is not executed safely: Read, X => Write,flag ==

Read,flag *> WriteX. This path does not have to be a valid path for the program to be valid and so need not be
executed safely to obey the valid path requirement. For example, in data-race-free-1, assuming operations on Y
and flag are unpairable synchronization operations and operations on X are data operations, the given program is
valid (i.e., data-race-free-1) but the path above is not a valid path. The critical set part of the control requirement
prohibits the above path from occurring. Again, note that the anomaly described above occurs because processor
P, executed its write on flag too early; however, note that the write of flag is not (uniprocessor) control dependent
on any operation of its processor, and so this case is different from that in figure 7.11(a).

In general, in the absence of the critical set part of the control requirement, anomalies of the type in figure
7.11(b) may occur because the system is free to execute a logicaly future operation that results in some non-
sequentially consistent behavior which destroys a future valid path whose safe execution was to have prevented
thisvery behavior. We will see that the low-level specification of the control requirement will break the above cy-
cle in causality by ensuring that no logically future operation can affect valid paths from its logical past.
Anomalies of the typein figure 7.11(a) may occur because alogically future operation that should not be executed
occurs and affects the rest of the execution in away that makes it possible for this operation to be executed. The
low-level control requirement will break this cycle in causality by ensuring that no speculative operation whose
execution is not yet certain can affect the course of the execution.

Motivation for the finite speculation part of the control requirement.

The finite speculation part of the control requirement states that in an execution of a valid program, the
number of instruction instances program-ordered before any instruction instance should be finite. This require-
ment is met if processors do not execute instructions speculatively since without speculative execution, each in-
struction instance is preceded by afinite number of instruction instances even in an infinite execution. For proces-
sors that do speculative execution, Figure 7.12 illustrates the need for this condition. (Similar examples appear in
[AGG93].) In part (a) of the figure, for every sequentially consistent execution, P;’s while loop will be in an
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infinite loop and so its write of X will not be executed. Therefore, P, will never write an error message on the
output. Thus, there are no conflicting operations in any sequentially consistent execution and the program is valid
for any model. If, however, the finite speculation assumption of the control requirement is not ensured, then it is
possible that P, executes its write of X. This does not violate the valid path requirement or the critical set part of
the control regquirement since there are no valid or critical paths in the execution. The finite speculation part of the
control requirement prohibits the above execution.

Initially X =0 Initially X =Y =0
Py P2 P1 P2
while (true) {;} if (X==1) while (X '=1) {;} if (Y ==0)
X=1 write error on output Y=1 X=1
@ (b)

Figure 7.12. Motivation for finite speculation part of control requirement.

In figure 7.12(b), P,’s while loop terminates in every sequentially consistent execution. However, without
the finite speculation requirement, it is possible for processor P, to execute the write of Y and for processor P, to
read the updated value of Y and never execute the write of X, making P,’s loop never terminate. There are no
ordering paths in the execution and so only the finite specul ation assumption prohibits this anomaly.

Note that the examples discussed above differ in that the first involves a loop that never terminates in a
sequentially consistent execution while the second involves a loop that always terminates in a sequentially con-
sistent execution.

Motivation for the write termination part of the control requirement.

Initially X =0 Initially X =Y =0
Py P2 Py P2
X =1 while (X 1=1) {;} X=1 Y=1
z=1 Z=2
=Y =X
@ (b)

Figure 7.13. Motivation for write termination part of the control requirement.

The write termination part of the control requirement states that if an execution of a valid program contains
awrite, then it should contain al possible sub-operations (in al memory copies) of the write. Figure 7.13 illus-
trates the need for this condition. For the program in figure 7.13(a), in every sequentially consistent execution,
some read of X by processor P, will return the value of the write by processor P4, terminating P,’s while loop.
However, if the write termination part of the control requirement is not ensured, then this may not happen. For the
program of figure 7.13(b), in any sequentially consistent execution, either P,’s write of Z is ordered before P,’s
write of Z by the conflict order, or vice versa. Therefore, in any sequentialy consistent execution, either there is

an ordering path of the type Write, X 2> Write,Z > Write,Z > Read, X, or of the type Write)Y 2
Write,Z = Write,Z > Read, Y. Thus, for the program to be valid, both of the above paths must be recog-
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nized as valid, and in any sequentially consistent execution either the read of X or the read of Y returns the updated
value. Consider, however, an execution where P,’s write of Z does not happen in P,’s memory copy and P,’'s
write of Z does not happen in P,’s memory copy. Then in this execution, the two writes to Z are not related by
conflict order and there are no valid paths in the execution. Thus, the reads of X and Y can both return the initial
values, giving a non-sequentially consistent result. The write termination requirement prohibits such an execution.

Motivation for the loop coherence part of the control requirement.

The loop coherence part of the control requirement states that in an execution of a valid program, al sub-
operations of awrite from a synchronization loop should either appear before or after all the sub-operations of any
other write in the execution order. Figure 7.14 motivates this condition through a hypothetical variant of a com-
pare and swap instruction denoted by CAS. The primitive has three arguments and has the following semantics. It
reads the value in the location denoted by the first argument. If this value is the same as the second argument, then
it updates the location to the value indicated by the third argument and returns the value true. |If the value returned
is not the same as the second argument, then it writes back the value read, and returns the value false. The loop
containing the primitive in the figure qualifies as a synchronization loop. If the loop coherence part of the control
requirement is not obeyed, it is possible that P,’'s write of X to the value 1 happens in P,’s memory copy, P5’s
read from the primitive returns the value 1, P,’s write from the primitive writes back the value 1, P,’ s write on X
happens in P3’s memory copy before P4’s write on X, P3 returns the value written by P,’s write, P3’s loop ter-
minates, P returns the value O for itsread of Y. The above execution does not appear sequentialy consistent, and
is prohibited by the loop coherence requirement.

Initially X =Y =0
Py P2 P3
Y=1
X=1 while (CAS(X,5,0)) {;} while (X!=1) {;}
X=5 =Y

Figure 7.14. Motivation for loop coherence part of the control requirement.

7.5.2. Low-Level System-Centric Specificationsand Hardwar e | mplementations

The following gives low-level system-centric specifications of the valid path and control requirements and
describes corresponding hardware implementations. As mentioned earlier, the specifications of this section and
the various concepts they use are related to those in [AdH92, AGG93, GAG93]; Section 7.6 discusses this rela
tionship.

Valid path requirement.

The high-level valid path requirement in Condition 7.16 is analogous to the data requirement of the data-
race-free-0 model discussed in Chapter 5. Consequently, analogous low-level specifications are possible. The
following is a conservative low-level specification that follows from the discussion in Section 7.3.

Condition 7.17: Low-level system-centric specification of the valid path requirement: Below, we use
*W to indicate a path with one or more conflict order edges between conflicting writes and ending
with thewrite W. Rand R’ represent reads, W, W, and W, represent writes.

(D If X 2> Yisonavalid path, then X (i) = Y{(j) for all i,j.
@ If R=> *W-=> R'isonavalid path, or if W => Rbegins avalid path that ends on aread, or

if R => *W ends avalid path that begins with aread, then W should be atomic; i.e., for any read R,
if W25 R, thenW(i) 2> R'(j)foralli,.
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(3) If avalid path between two writes, W, and W,, could begin and/or end in a => arc, or if W;
=5 W, ison avalid path, or W; > R =5 W, ison avalid path, then W, and W, should be
coherent; i.e., if W(i) == Wo,(i) for any i, then W (j) == Wo,(j) for al j.

The above specification is similar (but dightly more aggressive) than the system implied by Proposition
7.13in Section 7.3.1.3 and has a very similar proof of correctness; it is straightforward to go through the steps of
the proof of Proposition 7.13 and verify that the above specification also allows the conclusions made in that
proof.

A hardware implementation of the above specification requires providing mechanisms that allow hardware
to recognize when two operations can be on a program order arc of a valid path, and to recognize writes men-
tioned in (2) and (3) above. Hardware can recognize writes mentioned in (2) if special instructions are used for
atomic writes; to obey (2), hardware can execute writes from such instructions atomically. Hardware can recog-
nize writes mentioned in (3) if special instructions are used for coherent writes; to obey (3), hardware must ensure
that each such write is executed in a coherent manner with respect to all other writes (i.e., for each coherent write,
either al its sub-operations are before all sub-operations of any other write, or al its sub-operations are after all
sub-operations of any other write). Thus, for (2) and (3), the complexity of the hardware implementation is in-
dependent of the specific model; only the compiler needs to be aware of how the high-level programmer identifies
atomic or coherent writes for the given model and to convert these writes into the appropriate instruction for the
hardware.

In contrast to (2) and (3), the complexity of implementing (1) directly in hardware varies depending on the
model; specifically, it depends on how many different types of program order arcs could appear on valid paths.
Applying the sender-receiver terminology to valid paths, it follows that the most general mechanism required in
hardware is a mechanism to recognize senders, receivers, the operations that a sender sends, the operations that a
receiver receives for. Further, a mechanism is required to ensure that a sender is not issued until all the operations
it sends are complete, and an operation is not issued until the operations that receive for it complete. For a model
like data-race-free-0 where the only senders are synchronization writes that send all operations preceding them,
and only receivers are synchronization reads that receive for all operations that follow them, the requirement is
straightforward to implement with the aid of a single counter and a mechanism to stall on a receiver. For more
complex models, a simple extension of the data-race-free-0 scheme requires a counter per sender category and a
bit per receiver category, where the counter indicates the outstanding operations the corresponding sender needs
to send and the receiver bit indicates that the corresponding receiver typeis outstanding. This scheme can be used
only for alimited number of sender and receiver categories, and thus puts a practical bound on the amount of in-
formation that hardware exploit with a generic model. Alternative schemes are possible; e.g., Tera [ACC90] uses
afield with every instruction to indicate the number of following instructions that can be overlapped with thisin-
struction.

Asfor data-race-free-0, more aggressive hardware implementations of the high-level valid path requirement
are possible. For example, a sender need not wait for all operations it sends to complete; it is sufficient if these
operations complete before the next receiver that receives from the sender completes. The completion of the
above operations can be delayed further until a processor that receives from the above sender actually accesses the
locations of the above operations or executes its following sender. As with lazy release consistency, software-
based shared virtual memory systems may also implement the high-level valid path requirement directly [KCZ92].

Control requirement.

Our work so far does not make any assumptions on how the programmer can make the valid paths explicit
to the system. However, to define a low-level specification of the control requirement and prove systems correct,
we need to make some assumptions about how a system may recognize the valid paths. We aso need to make a
few assumptions about the structure of the valid paths. We make the following, fairly general, assumptions. (The
models and system implementations discussed so far easily obey the assumptions below.)
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Condition 7.18: Assumptionsfor Valid Paths Made by Low-Level Control Requirement:

(1) To distinguish an ordering path in an execution as a valid path, the system can take only the fol-
lowing aspects into consideration. (Below, W and R represent awrite and a read respectively.)

(a) Theinstructions that generated the operations on the ordering path.
(b) The addresses accessed by the operations on the ordering path.

(c) The presence of some specific instruction instance (e.g., the MB instruction in Alpha)
preceding the instruction instance of an operation on the ordering path.

(d) The presence of some specific instruction instancei (e.g., the MB instruction in Alpha) fol-
lowing the instruction instance of an operation O on the ordering path and such that the in-
structions of i and O are in the same basic block.

(e) For aW = R arc on the ordering path, W may need to be the last essential conflicting
sub-operation before R's sub-operation in the execution order.

(f) For aW > R arc on the ordering path, R may need to return the value of another
processor’ s write in the execution.

@ W, = RandR = W, (where W; and W, are writes and R is a read) are not consecutive
arcs on any valid path.

(3) X ®> Ywhere X and Y conflict isavalid path.

(4 If R=> W (where Risaread and W is awrite) ends a valid path (say VP sub 1) and there isa

valid path (say VP sub 2) from R to W, then the path obtained from VP, by replacing R > W by
VP, isaso avalid path.

The following specification of the control requirement assumes that the system obeys the high-leve valid
path requirement (in Condition 7.16). Given that, the critical set part of the control requirement is necessary only
in the presence of reads that control which code will execute next (through deciding the direction of a branch), or
control the address accessed by a memory operation (e.g., through array indexing), or determine the value to be
written by a write, or establish valid paths based on the values they return. We call such reads control reads and
need to formalize a relation that will relate such reads to the necessary operations they control. The control rela-
tion expresses conventional uniprocessor data and control dependence and also certain multiprocessor depen-
dences to preserve valid paths. Intuitively, the uniprocessor dependence part requires that aread control an opera-
tion if it either determines whether the instruction instance of the operation will execute, or the address that the
operation will access, or the value that the operation will write (if the operation is a write). Intuitively, the mul-

tiprocessor dependence part requires that if aread controls an operation X such that X * Y could be an arc on
some valid path of the considered model, then the read should control the operation Y. Thus, the control relation
depends on the model being considered. Additionally, for the finite speculation part, the control relation also in-
cludes dependences due to some types of potentially unbounded loops.

We define the control relation at a high-level that expresses the above properties below; Appendix D gives a
low-level and more constructive definition that obeys the following high-level properties. Some of the underlying
concepts for the control relation were first developed for the data-race-free-1 model [AdH92] and then formalized
for the PLpc model [AGG93]. The material in this section and Appendix D is a generalization of those concepts
and formalizations for all models within our framework.

We first explain some terminology used by the following definitions. For two memory operations X and Y,

we say X > Y in an execution (where = stands for valid program order) if X > Y could be a program
order arc on some valid path in some execution, given the instruction of X and Y, the address of X and Y, and the
other instructions executed by the processor of X and Y. The control relation aso requires determining if a
memory operation in one execution executes in some sequentially consistent execution and vice versa as follows.
(Most of the following is taken from [AGG93].) We say an operation O in execution E, executes in some execu-
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tion E, if itsinstruction instance executes in E,, and the corresponding operation of the instruction instance in E,
accesses the same address and writes the same value (if O isawrite) as O in E;. Further, we also require that if
some preceding instruction instance can be used to determine whether the operation is on a valid path (as specified
in part 1(c) of condition 7.18), then that instruction instance should be present either in both E; and E,, or in nei-
ther of E4 or E2.29 For an instruction instance from one execution to execute in another, we do not require that |o-
cations accessed or the values read and written by the corresponding instruction instances in the two executions be
the same; we are only concerned with whether the specific instances appear in the execution. For instructions that
are not parts of loops and in the absence of recursion, it is straightforward to determine if an instance that appears
in one execution also appears in another. For instructions that are parts of loops, care has to be taken to match
consistent pairs of instruction instances. Instruction instances between two executions are matched consistently if
the set of instances that are considered to appear in both executions have the same program order relation between
them in both executions, and are the maximal such sets. (A set S with property P isamaximal set satisfying pro-
perty Pif there isno other set that isa superset of Sand also satisfies property P.)

The definitions below may seem complex. Much of the complexity, however, arises because the definitions
alow fairly aggressive implementations. For example, parts (d), (), and (g) in definition 7.19 and part (2) of
definition 7.21 are not necessary if awrite following a loop is not executed until it is known whether the loop will
terminate in the execution. Similarly, part (3) of definition 7.21 is not required if the system always executes all
sub-operations of any write in an execution.

Definition 7.19: Properties of the control relation ( -*>): Consider a program Prog. Below, Eq
represents any sequentially consistent execution of Prog, E represents any execution of Prog, and a
read is said to control an operation ordered after it by the control relation. The control relation orders
aread operation before an operation O if the read precedes O by program order, and such that the fol-
lowing properties hold.

(a) If for every read R that controls an operation O in E, Risin Eg and returns the same value in E and
E,, then O isin Es. Further, if O isan exit read of a synchronization loop, then the exit value of O and
the value written by the exit write corresponding to O (if any) are the samein E and Eg.

(b) If for every read R that controls an operation O in E, Risin Eg and returns the same valuein E and
Es, andif O' = OinEg, then O’ > OinE.

(c) If Rcontrols an operation O’ in Eand if O’ > OinE, then R controls O in E.

(d) Consider an instance of aloop such that it does not termi nate in E, it terminatesin every Eg, and
its termination in Eg depends31 on the value returned by one or more of its shared-memory reads R
that could be involved in arace in some sequentially consistent execution without unessential opera-
tions. Then aread of the type R above that is not the last such read from itsloop instance by program
order in E must control any operation O in E such that O isnot in R'sloop instance and either O isan
exit read of a self-ordered loop or O forms a race in some sequentially consistent execution without
unessential operations.

(e) Rcontrols O in E if (i) Ris either an exit read from a self-ordered loop or Ris an exit read from a
synchronization loop that forms a race in some sequentially consistent execution without unessential

operations, and (ii) either R *> O in some sequentially consistent execution, or O could form a
race in some sequentially consistent execution without unessential operations, or O is an exit read of a

29. Note that when an operation O is distinguished by an instruction instance following the operation, part 1(d) of con-
dition 7.18 requires that the distinguishing instruction be in the same basic block as the instruction of O. Thus, whenever O
isin an execution, the distinguishing instruction is in the execution as well.

30. Seeappendix B for the definition of an instance of aloop and when an instance of aloop terminates.

31. For simplicity, the somewhat ambiguous term of ‘*depends’”’ is used here. Appendix D gives a more constructive
specification. A simpler, more conservative specification would be to consider al readsin aloop that may beinvolved in a
race in some sequentially consistent execution without unessential operations.
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self-ordered loop.

A IfW,RandOareinEand E;, W 2> R 2> Oisonavalid path in E, and the above == arc
ison the valid path only if W isthe last conflicting essential write before R (by execution order), then

R-%5 OinE.

(g) If Risan exit read of a synchronization loop instance that does not terminate in E, R controls Win
E, and Wis not from R's loop instance, then all exit reads in R's loop instance that are from the same
static operation as R control Win E.

Definition 7.20: Control Path:

A control/semi-causal-conflict graph of an execution is a graph where the vertices are the (dynamic)
memory operations of the execution, and the edges are due to the transitive closure of the control rela-

tion of the execution, or of the type Write > Read.

A control path for an execution is a path between two conflicting operations in the control/semi-
causal-conflict graph of the execution such that no read on the path returns the value of its own
processor’ s write in the execution.

Condition 7.21: Low-Level System-Centric Specification of the Control Requirement:

An execution E of program Prog obeys the control requirement if it obeys the high-level valid path
requirement (Condition 7.16) and the following. (Below Eg represents a sequentially consistent exe-
cution of program Prog.)

(1) Critical set: If thereisacontrol path from Rto W, then R(i) = W(i) for al i.
(2) Finite speculation.

(3) The number of memory operations that are ordered before any write operation by { -5} +
in Eisfinite.

(b) Let j be an instance of any instruction j' in E that writes shared-memory or writes to an
output interface in E. If j' follows (in E) an instance L of a loop that does not terminate in

some Eg, then the number of instances of instructions that are from the loop instance L and
that are ordered by program order before j in E isfinite.

(3) Write termination:
(a) Let operation X and write W be in E and in some Eg. Let X and W be essential in Eg. If
there is arace path between X and Win Eg, then W s sub-operation in the memory copy of X's
processor must bein E.

(b) Let Rand W bein E and in some Eg. Let Rand W be essential in Eg. If Risan exit read in
E from a self-ordered loop that does not terminate in E, W writes the exit value read by Rin
E,, and no ordering path from W to R is valid in Eg, then W's sub-operation in the memory
copy of R's processor must bein E.

(4) Loop Coherence: If W; == W, and one of W; or W, is from a synchronization loop, then
Wi(i) == W,(i) for all i.

The proof of the above specification is the most complex part of thiswork and appearsin Appendix E.

The above requirement may seem complex; however, as discussed below it is straightforward to obey in
hardware. For an intuitive understanding of the requirement, observe that the critical set part prohibits the
anomalies illustrated by figure 7.11. Parts (a) and (b) of the finite speculation requirement respectively prohibit
the anomalies illustrated by figure 7.12(b) and 7.12(a). Part (a) of the write termination requirement prohibits the
anomalies of figures 7.13(a) and 7.13(b). Part (b) of the requirement is needed for cases similar to that illustrated
by figure 7.13(a) when the loop is self-ordered and there is an ordering path from the write to the loop read but not
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a valid path. The loop coherence part is the same as the high-level requirement and prohibits the anomaly of
figure 7.14.

Note that the control relation and control requirement can exploit information about whether an operation is
from a synchronization or self-ordered loop. This information may or may not be directly available from the
specification of valid paths32 If it is not directly available, then the control relation and requirement have to make
conservative assumptions. Note, however, that this information is mainly exploited if either the system alows a
write following a loop to be executed before it is known whether the loop will terminate, or the system does not
execute all sub-operations for a given write. An exception is the latter part of property (a) which requires that
reads that control the exit values of a synchronization loop (and the value of exit writes) should also control the
exit reads of the loop. This property, however, isautomatically satisfied if the exit value of a synchronization loop
instance (and the value of exit writes) is aways the same in every execution. This is indeed the case for all the
examples of synchronization loops that we have seen so far and we henceforth assume thisrestriction. (Note that
this does not require the exit values to be the same for every instance of a synchronization loop. For example, in
the barrier code of figure 6.8, the exit values of different instances of the synchronization loop are different; how-
ever, the value for each instance is the same in every execution.)

We next consider satisfying the control requirement in hardware. Again, the implementations discussed
below are based on those in [AdH92, AGG93, GAG93]. The write termination and loop coherence parts are au-
tomatically satisfied in systems that have only a single copy of any memory location, or in systems that employ a
cache coherence protocol to ensure that all sub-operations of a write are executed in every memory copy and all
processors see conflicting writes in the same order.

For the critical set part of the requirement, the most conservative implementation is to make a processor
stall on aread until the read returnsitsvalue. A more aggressive implementation can allow a processor to proceed
with pending reads as long as it does not execute a write sub-operation W(j) until (a) it is resolved that the instruc-
tion instance for W will indeed be executed (i.e., will not have to be rolled back) with the given address and value,
and (b) it is known which memory operations preceding W by program order will be executed, which addresses
such operations will access, and which values such writes will write. Thus, reads can always be executed specul a-
tively, but writes need to wait until the control flow for the execution and the addresses and values to be accessed
by different operations before the write are resolved. Further, corresponding to part (f) of definition 7.19 for the

control relation, an operation O should be stalled for a preceding read Rif W == R 2> O could be on avalid
path depending on whether W is the last essential conflicting write before R. Note that this delay is aready im-
posed by all the implementation proposals for the valid path requirement so far.

For the finite speculation part of the requirement, part (a) is obeyed if the critical set part is obeyed in either
of the two ways described above. For part (b), an additional requirement is necessary that prohibits the specula-
tive execution of an instruction that follows a loop that is not guaranteed to terminate in every sequentially con-
sistent execution. Only shared-memory instructions that generate a shared-memory write or affect the output in-
terface need be prohibited.

Note that the control requirement allows a processor to execute a write even if it is not known whether pre-
vious loops (by program order) will terminate in the execution, as long as the loop is known to terminate in every
sequentially consistent execution and as long as no memory operation from the loop will be ordered before the

write by 2>, Programmers usually know whether a loop will always terminate in a sequentially consistent exe-
cution, and can provide this information to the system. Since programs are often written so that either they ter-
minate in all sequentially consistent executions, or there are no shared-memory operations that follow a potential-
ly non-terminating loop, aggressive systems can potentially take advantage of the above optimization for many
programs.

The above methods are conservative; a processor can aways obey the requirement by exactly following the
system-centric specification, which is more aggressive.

32. For synchronization loops that can be exploited by amodel, at least one of the exit reads must be involved in arace
in some sequentially consistent execution or must be exploited as self-ordered. These attributes are often recognizable
from the valid path information.



132

7.5.3. Compiler Implementations

Compiler constraints due to the low-level system-centric specifications are analogous to those for hardware.
We consider the compiler optimizations of reordering operations of a process and allocating shared-memory loca-
tionsin registers. We reason about register allocation in the same way as for data-race-free-0; part of the reason-
ing was done jointly with Kourosh Gharachorloo for the work in [AGG93, GAG93]. Thus, we allow two types of
intervals over which a memory location can be allocated to aregister. The first type allows only read operations to
be substituted by register operations and is preceded by a start memory read. The second type begins with awrite
that is replaced by a register operation and ends with an end memory write (called the flush write). Then register
reads in the first type interval can be modeled as memory operations that execute just after the start read of thein-
terval, while register operations in the second type of interval can be modeled as memory operations that execute
just before the end write of the interval. The following discusses the constraints on the compiler imposed by the
valid path and control requirements. Much of the discussion parallels that for data-race-free-0 in Section 5.4, and
evolved from joint work in [AGG93, GAG93]. Recall that the compiler must ensure that the relevant constraints
are obeyed for all executions (that might be possible on the system the output program will run on). Below, all
referencesto an ordering refer to program order, unless stated otherwise.

First consider the low-level specification of the valid path requirement. The first part states that operations
that could form a program order edge of a valid path must be executed in program order. To obey this part, the

compiler must not reorder instruction instances whose operations could form a ~®- arc in any execution. Furth-
er, for aregister alocation interval of the first type, between the start read of the interval and the end of the inter-
val, there should not be any receiver that could have received for aread that was substituted by a register opera-
tion in the interval, and no read substituted by a register operation should be a sender for any operation in the in-
terval. Similarly, for a register allocation interval of the second type, between the beginning of the interval and
the end write of the interval, there should not be any sender that could have sent an operation that was substituted
by aregister operation in the interval, and no operation substituted by a register operation should be a receiver for
any operation in the interval. The second and third parts of the valid path requirement concern write atomicity
and coherence and are not usually relevant to the compiler.

Next consider the control requirement. The critical set part requires that operations ordered by a control

path should be executed in that order. A control path consists of > edges from reads to writes and conflict ord-
er edges from writes to reads. Such a path can be maintained by ensuring that a read that controls a write is not
reordered with respect to that write. For register allocation, there are no constraints on the first type of interval
since such an interval does not reorder aread preceding awrite. There are no constraints on the second type of in-
terval either since whenever such an interval reorders a read preceding a write, the read returns the value of its
own processor’s write. Such a read does not occur on a control path, and so it is not constrained by the critical set
part. Thus, the critical set part of the control requirement does not impose any restrictions on register allocation.

For the finite speculation part, part (a) is satisfied if the critical set part is obeyed as described above, and
the following is assumed for register allocation intervals of type 2: if amemory read from a potentially unbounded
loop is replaced by a register read, then the flush write for the interval must be in the loop. For part (b) of the
finite speculation part, an additional requirement is that for every loop that may not terminate in some sequentially
consistent execution of the input program, no instruction instance that writes shared-memory or an output inter-
face following the loop is reordered with respect to the loop instruction instances.

The write termination part is usually not relevant to the compiler, given that a memory write substituted by
aregister writeisaways flushed. Similarly, the loop coherence part is also usually not relevant to the compiler.

Recall from the discussion on data-race-free-0 that the compiler must also obey the general requirements of
an execution; i.e., the uniprocessor correctness condition and the condition that only a finite number of sub-
operations are ordered before any other by the execution order (Definition 5.5). The constraints on the compiler
for this are the same as those for data-race-free-0 and are repeated here from Section 5.4 for compl eteness.

Traditional uniprocessor compilers obey the major part of the uniprocessor correctness condition con-
straints. However, additional care is required in the presence of register allocation in multiprocessors. The
uniprocessor correctness condition is satisfied if an execution always has an end operation for every register allo-
cation interval of the second type. Specifically, whenever an operation from an unbounded loop is allocated in a
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register, the corresponding end operation should also be in the loop. The condition for execution order described
above is relevant to the compiler in the presence of register allocation. This condition can be met if whenever an
operation from an unbounded loop is allocated in a register, then the start or end memory operation of the alloca-
tioninterval isalso in the loop.

The compiler must also ensure that it correctly translates the information on valid paths present in its input
high-level program to its output low-level program. The translation procedure is specific to specific models,
depending on the type of information communicated and the hardware and software mechanisms for communi cat-
ing the information. Note that with register allocation, the compiler needs to be careful if communicators are sub-
stituted with register operations; in such a case, the corresponding start or end memory operation should have the
equivalent properties for communicating critical paths as the register allocated communicator. For example, if the
register allocated communicator in an interval of the first type receives for al following operations, then so must
the start read.

Finally, if hardware optimizes loops that are guaranteed to terminate in sequentially consistent executions
by speculatively executing operations beyond such loops (as discussed in the previous sub-section), then the com-
piler should trandate any information required for this optimization consistently as well.

7.6. Relation with Previous Work
This section discusses the relationship of our work with several previous studies.

7.6.1. Relation with Work by Shasha and Snir

Shasha and Snir have proposed a compile time algorithm that allows parallel and out of program order exe-
cution of memory operations [ShS88]. Their scheme aims to statically identify a minimal set of pairs of opera-
tions within a process, such that delaying the issue of one of the elements of each pair until the completion of the
other is sufficient for sequential consistency. The agorithm uses the program order relation P, and a conflict rela-
tion C which is true for any pair of conflicting operations. The algorithm requires finding the *‘minimal’’ cycles
in the graph of P O C. Such cycles are called critical cycles and the operations on the P edges of critical cycles
are called critical pairs. They show that imposing delays on only the critical pairs is sufficient to ensure sequential
consistency.

The algorithm, however, depends on detecting conflicting data operations at compile time; therefore, its suc-
cess depends on data dependence analysis techniques, which may be quite pessimistic. Furthermore, the algo-
rithm presented in detail assumes straightline code with no branch instructions. The paper then identifies two ex-
tensions to accommodate code with branches. The first technique requires imposing delays between basic blocks
and considers each pair of basic blocks from different processors in isolation to determine critical pairs. The
second technique requires assuming that every possible execution path of each processor can execute concurrently
with every possible execution path of other processors; the critical pair analysisis applied to all such combinations
irrespective of whether they are possible on sequentially consistent systems. The paper mentions that a polynomi-
a time algorithm (in the number of nodes in the graph) can be used for their scheme (with bounded nesting of
loops and conditionals), but no details of the algorithm are given. Subsequently, Midkiff et al. have shown a de-
tailed and more practical agorithm to apply the above work to programs with branches and loops [MPC89], but
this also requires a globa data dependence analysis.

Our condition for sequential consistency in Section 7.1.1, and the reasoning for relaxing the program order
constraints in Section 7.1.2 uses reasoning similar to the algorithm by Shasha and Snir, but requires that the pro-
grammer provide the information to the system. We believe it would be difficult for programmers to use the work
in [ShS88] (and [MPC89]) because it would require programmers to look at all possible execution paths of a pro-
cess, including those not possible with sequentially consistent executions. We overcame this problem by impos-
ing the control requirement on implementations. Furthermore, our work alows the programmer to exploit the
knowledge of dependences that result in a fixed, known order of execution of certain conflicting operations. We
exploit this knowledge through the notions of synchronization loops and self-ordered loops. These allow more op-
timizations by using more information about the program than just the conflict relation used in [ShS88]. (The
work in [MPCB89] partly exploits the above type of knowledge by fixing the orientation of conflict order arcs
between synchronization operations whose order of execution is known.) Our work also leads to aggressive im-
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plementations (such as for data-race-free-0 in Chapter 5) that do not necessarily require the system to impose de-
lays on program order edges of critical cycles. Finally, we also examine the optimizations of executing writes
non-atomically and eliminating acknowledgements in cache-based systems; the work in [ShS88] implicitly con-
siders systems with only one copy of aline (i.e., writes are atomic).

7.6.2. Relation with Work by Collier

Collier has developed a general framework to define memory models using his abstraction of a shared-
memory system (described in Chapters 2 and 5) [Col84-92]. We have adopted Collier's abstraction for system-
centric specifications of our models. Collier defines architectures (or memory models) as sets of rules, where each
rule is a restriction on the order of execution of certain sub-operations (see Chapter 2 for examples). Our work
focuses on systems that can provide the illusion of sequential consistency by using information from the program-
mer. The contribution of this chapter isin exposing a mapping between information and possible system optimi-
zations that can preserve thisillusion, and in using the mapping to develop memory models. Collier’s framework
does not make apparent such a mapping, and his models are not expressed in terms of sequentia consistency (with
an exception of few models where writes to al locations are seen in the same order by all processors). Our
system-centric specification for sequential consistency in terms of acyclic program/conflict graph, however, is a
direct consequence of Collier’s specifications. Furthermore, Collier's abstraction for shared-memory systems has
been an invaluable aid for reasoning about non-atomic systems, specifying such systems, and proving the correct-
ness of our system-centric specifications.

7.6.3. Relation with Work by Bitar

Bitar has proposed the ‘‘weakest memory access order’’ [Bit92]. He proposes a weakest order for the pro-
cessor to issue memory operations and for the memory modules to execute memory operations. For the processor,
he associates a tree of locks and unlocks with every memory operation. A memory operation can be issued as
soon as the “‘first”” lock is obtained and must complete only before the first unlock. However, he does not pre-
cisely state what these locks and unlocks are and what their exact relationship is to the memory operation under
consideration. Further, we also show that requiring some operations of a processor to be executed in program ord-
er cannot constitute a weakest requirement. Aslong as critical paths are executed safely, all operations of asingle
processor may be executed in parallel.

For the memory module, Bitar uses the theory of Shasha and Snir and mentions that only conflicting opera-
tions that could be part of a critical cycle should be executed by the memory in the correct order. Other opera-
tions can be executed in any order. To determine what the critical cycles are, he says that the program should be
labeled properly but he does not clarify what that means for the programmer and how critical cycles can be
identified. In contrast, our work shows how programs can be *‘labeled properly’’, and using only information
from sequentially consistent executions.

Finally, he extends his work to cache based systems, but does not give a precise formulation of the require-
ments for such systems. In particular, he does not consider the optimizations of non-atomic writes and eliminating
acknowledgements.

7.6.4. Relation with Data-Race-Free and PL pc models

We first discuss how our framework relates to the work on the data-race-free and PLpc memory models,
and then discuss how the new models of Section 7.3 compare with the data-race-free and PLpc models.

The notions of synchronization loops, unessential operations, and self-ordered loops are generalizations of
similar notions used for PLpc. The distinctions that make the definitions in this chapter more general are the fol-
lowing. First, this chapter separates the notions of synchronization loops and self-ordered loops; PLpc combines
the two ideas. Second, synchronization loops and self-ordered loops of this chapter are not restricted to a single
exit read per loop asin PLpc. The model using the signal-await construct in Section 7.3.2 would not be possible
without the above extension.

The generic system-centric specifications of Sections 7.4 and 7.5 are generalizations of the specifications for
data-race-free-1 in [AdH92] and PLpc in [AGG93]. Both of these models express their conditions essentially in
the form of a valid path requirement and a control requirement. (The control requirement for data-race-free-1
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[AdH92] is more conservative than Condition 7.21, while that for PLpc [AGG93] is similar to Condition 7.21.)
However, the data-race-free-1 and PL pc specifications do not explicitly show the relationship between the two re-
quirements and the information the models derive from the programmer. We have generalized the work on these
two models to make explicit this relationship in a manner that exposes the design space and alows system
designers to directly transform optimizations and information about programs into useful memory models and im-
plementations. Specifically, by giving a common proof of correctness of a generic system-centric specification
(that is relatively easy to trandlate to implementations), we have eliminated the need for the complex proofs that
were earlier necessary to prove the correctness of the data-race-free-1 and PL pc implementations.

Our generalization has made possible new memory models that allow optimizations to be applied to more
cases than alowed by either the data-race-free or PLpc models. Each of the eight sub-sections of Section 7.3
describes at least one such model. These models alow for greater overlapping of memory operations of a process
and more writes can be executed non-atomically. Further, Section 7.3.1.4 describes how to eiminate ack-
nowledgements, an optimization not considered by the work describing the data-race-free and PL pc models.

7.6.5. Relation with a Framework for Specifying System-Centric Requirements

Jointly with others, we have proposed a framework for uniformly specifying previous hardware-centric
models and system constraints for future memory consistency models [GAG93]. This framework uses an exten-
sion of Collier’s abstraction that also models the equivalent of a write buffer in a processor. The following first
discusses how the extension differs from the original abstraction by Collier and why we chose the origina
abstraction for this work. We then discuss how the methodology for specifying system-centric requirements in
[GAGY3] relates to the methodology of this chapter.

The extended abstraction explicitly models the equivalent of a write buffer in a processor. A write opera-
tion now involves an additional initiation sub-operation that can be viewed as the write being placed in the write
buffer of its processor. Aswith Collier’s model, in an n processor system, a write also can have n memory sub-
operations, each representing the write updating the respective memory copy. A read returns the value of the
““last’” conflicting write placed in its processor’s write buffer if such a write exists; if there is no such write, then
the read returns the value in its processor’s memory copy.

The advantage of explicitly modeling a write buffer is that as soon as the read returns the value of a write
from a write buffer, the read sub-operation can be considered to have occurred; the sub-operation of the write it-
self may occur later in the execution order. Collier's abstraction allows a system to have write buffers, but does
not allow a read to return the value of a write whose conflicting sub-operation is after the read in the execution
order. Thus, with Collier’s abstraction, when a read returns the value of awrite from a write buffer, the read sub-
operation cannot be considered to have occurred until the write sub-operation occurs. In a hardware cache-
coherent system, the write sub-operation would occur only when the write gets ownership of the requested line.
Meanwhile, other conflicting writes from other processors could also occur and the read would be ordered after
them all in the execution order. Thus, although the above writes happen after the read returns its value in real
time, they must be viewed as having happened before the read. Specificaly, if the read were areceiver, it would
have to ensure that it receives al the necessary information about operations that are sent by the above writes.
Similar interactions are possible when allocating shared-memory locations in registers and when a processor
writes and subsequently reads from a cache line before getting ownership [GAG93, GGH93].

Thus, the extended abstraction allows more direct modeling of certain interactions than the original abstrac-
tion by Collier. However, we have found that specifying systems with Collier’ s abstraction makes it easier to rea-
son about the mapping between program information and optimizations that will give sequentia consistency, and
so we chose to use that abstraction for our work. There are some interactions that can be represented easily with
the extended abstraction but seem difficult (and we believe not possible) to represent cleanly with Collier's
abstraction. However, we have so far found that we can always represent systems with Collier’s abstraction that
have, for all practical purposes, the same valid paths as systems with the additional interactions and are more ag-
gressive than the above systems. Thus, if only SCNF models are considered, Collier’s abstraction seems to be
sufficient, and has the additional advantage of not imposing constraints on the system that are not likely to be ex-
ploited by the programmer. In conclusion, while we believe the use of the extended abstraction will aid imple-
mentors, we consider the original Collier’s abstraction as more appropriate for reasoning about when a system
will appear sequentially consistent. It would be interesting to formalize results that would allow translating
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specifications from one abstraction to another easily. Theorem H.1 in Appendix H formalizes one type of transla-
tion for some systems and is used to prove results for the PLpc models [AGG93].

We next discuss the methodology for specifying system constraints in [GAG93]. The methodology is an ex-
tension of the data-race-free-1 specifications and has also been used for system-centric specifications of PLpc
[AGG93]. The methodology for the system-centric specifications of this Chapter is based on the above work.
Specifically, [GAG93] proposes specifying systems as constraints on conflicting sub-operations, and shows how
such specifications are more aggressive but semantically equivalent to previous specifications of hardware-centric
models. The observation that all system constraints (other than finite speculation) can be expressed in terms of
constraints on conflicting sub-operations was made by Kourosh Gharachorloo while working on the PLpc model
and led to the work in [GAG93]; the data-race-free-1 model made this observation only for part of the system con-
straints. Effectively, [GAG93] proposes that system specifications should give the ordering paths that are executed
safely by the system (along with a write termination requirement, a requirement for the initiation sub-operation of
awrite, and finite speculation). However, unlike the work in this chapter, the work in [GAG93] is concerned only
with specifying systems in the most aggressive manner. This chapter tries to determine the relationship between
the ordering paths executed safely by the system and information from the program that will give sequential con-
sistency to such a system, and to propose new SCNF models based on this relationship. The work in [GAG93]
does not provide insight for such a relationship, and uses the work of the current chapter to ensure that
specifications of previous hardware-centric models appear sequentially consistent to data-race-free/PL/PL pc pro-
grams.

7.6.6. Relation of New Modelswith Other Models

Section 7.3 proposed several new models that are related to recently proposed models not unified by the
data-race-free and PLpc models. These relationships were discussed along with the relevant models in Section
7.3; the following briefly summarizes them. The following discusses models related to the optimization of execut-
ing memory operations out of program order, pipelining operations, executing writes non-atomically, and elim-
inating acknowledgements in the above order.

Gibbons and Merritt have relaxed release consistency by alowing arelease to be associated with a subset of
the preceding operations [GiIM92]. They show that it is sufficient for a release (a sender in our terminology) to
wait for only the preceding data operations that are associated with it to complete, for preceding synchronization
writes to complete, and for preceding synchronization reads that return the value of a synchronization write of
another processor to complete. Section 7.3.1.1 shows how to generalize the above observation by alowing a re-
ceiver (an acquire in the terminology of [GiIM92]) to be associated with operations it receives for as well, and al-
low more optimizations with acquires. Further, we also allow a sender to not wait for the preceding synchroniza-
tion operations that it is not associated with. Finally, Gibbons and Merritt do not state any control requirement; as
stated, their conditions seem to allow the anomaly of figure 7.11(b). Another contribution of the work by Gibbons
and Merritt is that they effectively alow program order to be a partial order per process. We have adopted their
approach in our work. With this, some of the reordering optimizations in the previous sections could be achieved
if the programmer simply indicated that the considered operations are not ordered by program order. Neverthe-
less, our work shows how programmers (and memory model designers) can reason when program order can be
safely relaxed, identifies mechanisms to communicate this information, and identifies common cases where the
program order can be safely relaxed.

The entry consistency model allows more data operations to be executed out-of-order (with respect to other
data or synchronization operations) than the SCNF models discussed in previous chapters. (Section 7.3.1.1
discusses why we believe entry consistency does not allow reordering of two synchronization operations). Our
models allow more pairs of synchronization operations to be executed out of order as well. Further, entry con-
sistency requires data accesses to always be protected by alock to appear sequentially consistent; we remove this
restriction. Finally, entry consistency is not accompanied by a proof of correctness. Our work provides such a
proof and in doing so shows that an additional control requirement and added constraints on synchronization
operations are necessary for an entry consistent system to appear sequentially consistent. To eliminate the restric-
tion on the use of locks by entry consistency, the Midway system allows data to be declared as either release, pro-
cessor, or entry consistent [BZS92]. Our work extends such a model as well by proposing more optimizations
(eg., asin section 7.3.2.3).
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The model for allowing reordering of operations across barriers (Section 7.3.2.2) is strongly related to the
notion of fuzzy barriers [Gup89]. Our work is a straightforward generalization and formalization of the fuzzy bar-
rier work that allows programmers to give the necessary information for the optimization.

For the optimization of pipelining memory operations in Section 7.3.1.2, we have used Carlton’'s approach
[Car91], but remove the restriction of only lock-based synchronization and the restriction of requiring a lock and
data associated with it to be in the same memory module for every lock. We also provide the proof of correctness
for this optimization.

To the best of our knowledge, the optimization of non-atomic writes has been considered only for systems
aready allowed by data-race-free/PL pc models and by Collier [Col84-92]. As discussed above, the only case for
which Collier seems to alow non-atomic writes and guarantee sequential consistency is when writes to al loca-
tions are seen in the same order by all processors. The implementation described requires a restricted (ring based)
network. Our models do not impose the above restrictions. Compared to data-race-free-1 and PLpc, we have
shown models that allow more writes to be non-atomic (e.g., the signal constructs of Section 7.3.2.1).

The optimization of not requiring acknowledgements on certain accesses has been considered by Collier
[Col84-92], Landin et al. [LHH91], and Carlton [Car91]. Callier’s scheme has the limitation described above for
non-atomic writes. Landin et al. also required a restricted (race-free) network. Carlton assumes only lock-based
synchronization and restricts locks and the data they protect to be in the same memory module. Our models allow
this optimization without the above restrictions; for example, we show that for CS_unlocks, acknowledgements
are not required irrespective of the underlying hardware.

For al the optimizations, our approach of considering common programming constructs and specifying
memory models in terms of how such constructs should be used leads to easier-to-use models (even if for some
cases, the considered optimizations are already allowed by some previous models).

Finally, our framework for reasoning about the design space of memory models can be viewed as a
unification of all of the above models.

7.7. Conclusions

Previous chapters of thisthesis argued that memory models be proposed using the SCNF approach, and pro-
posed several SCNF models that unified many of the earlier models. Since the work on those SCNF models, other
researchers have proposed several other models. Rather than develop yet another new SCNF model that would
unify the other models and/or alow more optimizations, this chapter seeked to explore the design space of SCNF
memory models. We developed a framework that provides insight into the optimizations and program informa-
tion that a memory model can exploit, and provides a relatively straightforward mapping between an optimization
and the information (from sequentially consistent executions) that allows the optimization to be performed without
violating sequential consistency. We used this framework to design several new memory models and showed that
there are optimizations and information about common programming constructs that are not fully exploited by
current programming models. We used our framework to characterize the design space in a manner that provides
qualitative insight into the programmability and performance of the various points of the design space. The fol-
lowing discusses three potential limitations of this work for SCNF models.

First, our work mainly concerns the design process for a memory model. The final decision on which
memory model to use for a system requires a quantitative analysis of the cost/performance ratio for the various
models. The cost is the system support and programmer effort required for the specific model. The performance
benefit depends on how often the optimizations exploitable by the model can be safely applied for the application
program domain of the system. Our work only provides a qualitative insight for this step. Based on our experi-
ence with a few programs so far, the concluding chapter of this thesis conjectures key optimizations and mechan-
isms that may be useful to support in the future to adequately address the 3-P criteria of performance, programma-
bility and portability for memory models. More detailed quantitative analysis is required to evaluate our conjec-
ture, and is a subject of future work.

Second, this work may be criticized as being too complex. However, we maintain that the subject is in-
herently complex as demonstrated by other formal treatments of the subject, and the inaccuracies detected in
many of the informal treatments. In contrast to previous formal treatments, the analysis for each of the new
memory models developed in this chapter is simpler and more intuitive. The major complexity of thiswork isin
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the proof of Appendix E, which need no longer be confronted by most users, designers, and implementors of
memory models. An exception to thisis discussed in the next limitation below.

The third limitation of this work is that the part of the design space exposed by our framework depends on
our definition of the critical set. If we could eliminate more ordering paths from the critical set, it may be possible
to allow more optimizations than allowed currently by our framework. In that case, designers of memory models
need to ensure that our system-centric specification and proof hold for the new critical set as well, and may have
to confront the full complexity of our proof in Appendix E. It would be interesting to determine a characterization
of aminimal critical set and a characterization of the type of optimizations not allowed by the current critical set.
A related limitation concerns the low-level specification of the control requirement. While the current require-
ment seems adequate for now, it is possible that future systems may be able to exploit a more relaxed condition.
Relaxing the low-level control requirement also requires confronting the full complexity of the proof in Appendix
E. It would be useful to develop alternate proof techniques to simplify the proof in Appendix E so that more ag-
gressive specifications of a critical set and the control requirement can be easily incorporated.
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Chapter 8

Detecting Data Races On Data-Race-Free Systems

SCNF memory models seek to provide a sequentially consistent interface to the programmer. They achieve
this by guaranteeing the appearance of sequential consistency if the programmer writes valid programs (i.e., the
program obeys certain conditions specified by the model). It is possible, however, that during program develop-
ment, the program is not valid because of the presence of a bug. The SCNF models do not guarantee sequential
consistency for such programs. To be practically useful, however, SCNF-based systems must provide support so
that even while debugging, programmers can assume se%uential consistency. This chapter investigates such sup-
port for the data-race-free-0 and data-race-free-1 models. 3

For brevity, this chapter uses data-race-free to denote both data-race-free-0 and data-race-free-1; it uses

happens-before ( > ) to denote > when considering data-race-free-0 and to denote "> when consider-

ing data-race-free-1; it uses synchronization-order ( 2> ) to similarly denote 2% or >; it uses race or
data race to denote the concepts according to definition 4.9 when considering data-race-free-0 and according to
definition 6.3 when considering data-race-free-1. This chapter uses the term pairable synchronization for data-
race-free-1 systems consistent with the definition in Chapter 6, and for data-race-free-0 systems to refer to all syn-
chronization operations. In using the work of this chapter, the above terms should be used consistently for each
model.

Data-race-free systems guarantee sequential consistency to data-race-free programs; i.e., programs for
which sequentially consistent executions do not exhibit data races. We would like to determine when programs
are data-race-free and detect the data races in non-data-race-free programs so that programmers can assume
sequential consistency when designing and debugging their programs.

The praoblem of detecting data races is not unique to data-race-free systems. Even on sequentially con-
sistent systems, the presence of data races makes it hard to reason about a program and is usually considered to be
abug. Much current research in parallel programming has therefore been devoted to detecting data races in pro-
grams written for sequentially consistent systems. Static techniques perform a compile-time analysis of the pro-
gram text to detect a superset of all possible data races that could potentially occur in all possible sequentially con-
sistent executions of the program [BaK 89, Tay83b]. In general, static analysis must be conservative and slow, be-
cause detecting data races is undecidable for arbitrary programs [Ber66] and is NP-complete for even very res-
tricted classes of programs (e.g., those containing no branches) [Tay83a]. Dynamic techniques, on the other hand,
use a tracing mechanism to detect whether a particular sequentially consistent execution of a program actually ex-
hibited a data race [AIP87, ChM 91, DiS90, HKM90, NeM 90, NeM91]. While dynamic techniques provide precise
information about a single execution, they provide little information about other executions, a serious disadvan-
tage. For these reasons, the general consensus among researchers investigating data race detection is that tools
should support both static and dynamic techniques in a complementary fashion [EmP88].

Rather than start from scratch, we seek to apply the data race detection techniques from sequentially con-
sistent systems to data-race-free systems. Static techniques can be applied to programs for data-race-free systems
unchanged, because they do not rely on executing the program. Dynamic techniques, however, depend on execut-
ing aprogram. If a program is data-race-free, then all executions of it on a data-race-free system will be sequen-
tially consistent, and the dynamic techniques will correctly conclude that no data races occurred. If a program is
not data-race-free, on the other hand, an execution of it on a data-race-free system may not be sequentially con-

33. Most of this chapter (except Section 8.5) is taken verbatim from a paper jointly written with others[AHM91]. The
material is copyrighted by ACM and reproduced here with the permission of al the co-authors.
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sistent. Applying the dynamic techniques to such an execution may produce unpredictable results.

This chapter develops a system-centric specification for data-race-free systems that allows data races to be
dynamically detected. The key observation we use is that many currently practical hardware implementations of
the data-race-free models give sequential consistency at least until the first data races (those not affected by oth-
ers). We formalize this observation with a condition that all executions on data-race-free systems have a sequen-
tially consistent prefix that extends to the first data races (or the end of the execution). With this specification, we
show how to use a dynamic approach that either (a) correctly determines no data races occurred and concludes
that the execution was sequentially consistent, or (b) identifies the first data races that could have occurred in a
sequentially consistent execution with approximately the same accuracy as on a sequentialy consistent system.
Furthermore, since many currently practical hardware implementations of data-race-free already exhibit the re-
quired sequentially consistent prefix, we argue that the new specification is often obeyed for free from the
hardware perspective. An aggressive optimizing compiler could violate our condition; however, since debugging
already imposes constraints on optimizing compilers, it is not clear how significant our added constraint would be
for compilers.

Alternatively, one could use dynamic techniques on data-race-free systems by having data-race-free sys-
tems support a ower sequentially consistent mode that is used for debugging (e.g., while debugging, al opera-
tions could be distinguished as synchronization operations). The results of this chapter, however, show that such a
slower mode is not necessary for detecting data races. Furthermore, we expect that our results will also allow oth-
er debugging tools for sequentially consistent systems to be used unchanged on data-race-free systems. If there
are no data races in the execution, then the execution is sequentialy consistent and other debugging tools can be
directly applied. If there are data races, then the presence of the sequentially consistent prefix allows the tools to
be applied to the part of the execution that contains the first bugs of the program.

The actual technique for detecting the data races in an execution on a system that obeys our specification
was primarily developed by other authors of this joint work. This chapter summarizes the technique and briefly
mentions its limitations; a more detailed description appearsin [AHM91].

The rest of this chapter is organized as follows. Section 8.1 discusses the potential problems in applying
dynamic data race detection techniques to data-race-free systems. Section 8.2 develops the system-centric
specification to overcome these problems. Section 8.3 shows how many practical implementations of data-race-
free systems already obey the specification of Section 8.2. Section 8.4 summarizes how data races can be dynami-
cally detected on a system obeying our specification, and briefly mentions the limitations of such a technique.
Section 8.5 discusses related work and Section 8.6 concludes the chapter.

8.1. Problemsin Applying Dynamic Techniquesto Data-Race-Free Systems

This section describes the problems that could potentially limit the use of dynamic data race detection tech-
nigques on data-race-free systems. We call executions that obey system-centric specifications of the data-race-free
models as data-race-free executions.

Existing dynamic data race detection techniques for sequentially consistent systems [AlIP87, ChM91,
DiS90, HKM90, NeM90, NeM91] instrument the program to record information about the memory operations of
its execution. Thisinformation allows the happens-before relation for the execution to be constructed, thereby al-
lowing the detection of data races. There are two approaches for recording and using this information. The post-
mortem techniques generate trace files containing the order of all pairable synchronization operations to the same
location, and the memory locations accessed between two pairable synchronization operations in a given process.
These trace files are analyzed after the execution; the ordering of the pairable synchronization operations allows
the synchronization-order relation of the execution to be constructed from which the happens-before relation can
be constructed. The pairs of conflicting operations (at least one of which is data) that are not ordered by the
happens-before relation are reported as data races. The on-the-fly techniques do not produce explicit trace files,
but buffer partial trace information in memory and detect data races as they occur during the execution.

The difficulty in applying the above techniques to data-race-free executions is that such executions may not
be sequentially consistent (if the program is not data-race-free). For such an execution, we first need to formalize
the notion of adatarace. This can be donein a manner analogous to that for sequentially consistent executions by
using the happens-before relation for the execution. Note that since in general, the pairable synchronization
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operations of a data-race-free execution are not constrained to be executed in a sequentially consistent manner, the
synchronization-order relation and hence the happens-before relation may contain cycles and hence not be partial
orders. Nevertheless, the current dynamic techniques for sequentially consistent executions can still be applied to
find the data races of a data-race-free execution.

Although data races of a data-race-free execution can be easily detected with the current techniques, there
are two potential problems that need to be resolved for the reported data races to be meaningful. The first problem
isthat for arbitrary data-race-free systems, it is theoretically possible for a data-race-free execution to not exhibit
data races and yet not be sequentially consistent. Fortunately, as we shall see later, the implementations of the
data-race-free models proposed to date do not exhibit this problem.

The second problem is that data races that may be reported from data-race-free executions may never occur
on any sequentially consistent execution of the program. This could easily occur with the current data-race-free
systems. Figure 8.1 illustrates a program fragment and one data-race-free execution in which such non-
sequentially consistent data races occur. In this program, processor P1 places the starting address of aregion for
processor P2 to work on in a shared queue and resets the QEmpty flag. Processor P2 checks to determine if work
is available, and degueues an address if the queue is not empty. Processor P3 works independently on some part
of the address space. Since P1 and P2 both access the shared queue, operations manipulating the queue are en-
closed in critical sections, implemented with the Test& Set and Unset instructions. However, due to an oversight,
the Test& Set instructions were omitted and the program is not data-race-free (assuming that the Test& Set and Un-
set are the only operations distinguished as pairable synchronization operations). A sequentially consistent execu-
tion of this program will exhibit data races between the accesses to the queue and the variable QEmpty. Because
the program is not data-race-free, a data-race-free execution does not have to appear sequentially consistent. One
such execution is shown in Figure 8.1(b), where op(x,a) represents a read or a write memory operation to location
X that respectively returns or storesthe value a. In this execution, although processor P2 finds QEmpty to be reset,
it does not read the new value, 100, enqueued by P1. Instead it reads an old value, in this case 37. The region that
processor P2 starts working on now overlaps with the region accessed by P3. This gives rise to many data races
between the operations of P2 and P3 as shown. On a sequentially consistent system, P2 could never have returned
the value 37, and hence these races would never have occurred. Nevertheless, naively using the dynamic tech-
niques would report all of these data races.

For debugging programs for data-race-free systems, we are only interested in detecting data races that
would also occur in a sequentially consistent execution of the program. Further, the motivation of detecting data
races was to allow programmers to reason in terms of sequential consistency. Therefore, reporting data races that
cannot occur in a sequentially consistent execution can be confusing to the programmer and can complicate the
task of debugging. The next section develops a system-centric specification that addresses this problem.

8.2. A System-Centric Specification for Dynamic Data Race Detection

This section develops a system-centric specification that addresses the limitations of dynamic data race
detection described in the previous section. The specification ensures that for any execution on a system that
obeys this specification, a set of data races that would also occur in some sequentially consistent execution can be
identified. A later section will show how dynamic detection can be used to report this set.

Intuitively, our specification requires that an implementation guarantee sequential consistency until a data
race actually occurs in the execution. Further, once a data race occurs, sequential consistency should be violated
only in parts of the execution that are affected by the data race. This will ensure that every execution has a
sequentially consistent prefix that contains the first data races (those not affected by others) of the execution.
Dynamic techniques can then potentially be applied to this sequentially consistent prefix to report the first races.
We introduce the following terminology to formalize our condition. As in Section 7.5.2, the following terminolo-
gy involves determining when some operation in an execution also occurs in another execution; recall from Sec-
tion 7.5.2 that we only consider the instruction instance, address accessed and value written by a write (not value
returned by a read) in determining if an operation occurs in another execution. Below, [XyOdenotes a race
between memory operations x and y.

Definition 8.1: A prefix of an execution E is a subset of the memory operations of E such that if y is
inthe prefix and x 2> yin E, then x isin the prefix.
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Definition 8.2: A prefix of an execution E of a program Prog is a sequentially consistent prefix or
SCP of Eiff

(1) itisalso the prefix of a sequentially consistent execution Eseq of program Prog, and

(2) if xand y are in the prefix, then ¥,y[isadataracein E only if X, y(isalso adataracein Eseq.34

An example of an SCP is shown in Figure 8.1(b). Thus, for an execution E of any program, the operations
of a processor in its SCP are also the initial operations of the processor in some sequentially consistent execution,
Eseq, of the program. Further, a data race involving operations in the SCP occurs in E only if it also occurs in
Eseg. Thisimpliesthat the set of data races that have their operations in a particular SCPisavalid set of sequen-
tially consistent data races to report.

To enable the identification of data races in an SCP, we propose a condition that in an execution, either a
data race has its operations in a specific SCP of the execution, or the data race is affected by another data race
with operationsin the SCP, where ** affected’’ is defined as follows.

Definition 8.3: A race X, y[affects amemory operation z, written X, y(-2~> z, iff

(1) zisthe same memory operation as x or y, or

@) x 25 zory ™ zor

(3) there exists arace X', y' Csuch that X', y'0%> z and either X, yO-2> X or X,y02> y.

A race [, yCaffects another race X', y'[iwritten O, yO-2> X', y'Diff X y02> X or ByO2> y.

Thisimplies that data races that are not affected by any other data race (intuitively the first data races) should al-
ways be in an SCP of the execution, i.e., they should also occur in a sequentially consistent execution. Thus, the
data races that are not affected by any others constitute a valid set of data races that can be reported.

The system-centric specification fol lows. > we say that arace [X,yCoccurs in an SCPif the operations x and
y arein the SCP.

Condition 8.4: For any execution E of a program Prog,
(1) if there are no data races in E, then E appears sequentially consistent, and

(2) there exists an SCP of E such that a data race in E either occurs in the SCP, or is affected by
another data race that occurs in the SCP.

Condition 8.4(1) ensures that if no data races are reported, then the programmer can safely assume that the
systemsis sequentially consistent, overcoming the first problem cited in the previous section. Condition 8.4(2) en-
sures that if a data race is detected in E, then there isa datarace in E that affects this data race that also occurs in
some sequentially consistent execution of the program. Thus, the set of data races that are not affected by any
other datarace in E form avalid reportable set of data races that also occur in some sequentially consistent execu-
tion.

34. Thedefinition of an SCP in [AHM91] required [¥,y[to be adataracein E if and only if it is also adatarace in Eseq.
Theif and only if clause needs to be replaced by only if; it is required to prove the theorems of the paper but does not affect
any results.

35. The notion of a system-centric specification is used a little differently in this chapter. Specifically, so far a system
obeys a system-centric specification as long as the result of the run of a program on the system is the same as the result of
some execution allowed by the specification. The work in since this chapter, however, requires tracing the memory opera-
tions during a run of the program; therefore, this work requires that the system obey the requirements of the specificationin
real time.
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8.3. Data-Race-Free Systems Often Obey Condition for Dynamic Data Race Detection

This section discusses why we expect many practical hardware implementations of data-race-free-1 to al-
ready obey Condition 8.4, and how the condition might restrict an optimizing compiler. Recall that Appendix F
shows that all low-level system-centric specifications of data-race-free-0 in this thesis obey the generic high-level

valid path and low-level control requirements of Chapter 7, where the valid paths of data-race-free-0 are "2
paths between conflicting synchronization operations and 2> paths between other conflicting operations. A

similar result holds for data-race-free-1 as well (with 2> paths replaced by "> paths)) The following
theorem states that the above requirements along with an additional condition also obey Condition 8.4. The fol-
lowing uses the control ( ) relation as defined in Section 7.5.2. Recall also (from Appendix F) that the valid

paths for data-race-free-0 are "> paths between conflicting synchronization operations and "> paths

between other conflicting operations; the valid paths for data-race-free-1 are the same except that 2> isre-

placed by "%

Theorem 8.5: Condition 8.4 for dynamic detection of dataraces is obeyed by all executions that obey
the generic high-level valid path requirement (Condition 7.16) assuming valid paths for data-race-free
models as described above, and the generic low-level control requirement (Conditions 7.21) with the

following additional restrictions: (1) the “® relation in properties (b) and (c) for the control rela-
tion (Definition 7.19) should be replaced by 2=, (2) if R > O in E where R is a pairable read,
thenR %> OinE, and 3) if R{ %> }+WinE, thenR(i) 2>> W(j)forali,jinE.

The proof of the above theorem appears in Appendix |. The following gives the intuition for the correctness
of the above theorem and then explains how the added constraint on control reads of the above theorem affects
practical implementations.

Condition 8.4(1) requires that if an execution has no data races, then it should appear sequentially con-

sistent. In an execution without data races, all conflicting synchronization operations are ordered by 2> and all

other conflicting operations are ordered by "> (or ™~ for data-race-free-1); therefore, all critical paths are

valid paths of the data-race-free model. It follows that the execution obeys Condition 7.6 for sequential consisten-
¢y, assuming write termination and finite speculation. Appendix | shows that the control requirement ensures that
the execution also appears to obey the write termination and finite speculation assumptions, thereby obeying Con-
dition 8.4(1).

Condition 8.4(2) requires that every data race in a data-race-free execution that is not affected by any other
data race should also occur in a specific sequentialy consistent execution of the same program. The data races
that are not affected by any others are intuitively, the first data races in an execution. Therefore, Condition 8.4(2)
can be obeyed by ensuring that an execution provides sequential consistency until a data race actually occurs.
Even then, aviolation of sequential consistency should be allowed to occur only for operations that are directly af-
fected by the data race. Intuitively, this is true for al data-race-free implementations that obey the condition of
theorem 8.5 for the following reason. The data-race-free implementations proposed to date are alowed to violate
sequential consistency only for executions that exhibit data races. Practically, however, it is not possible to
predict whether an execution will exhibit a data race until a data race actually occurs in the execution. Therefore,
if a processor does not execute operations until the course of the execution preceding the operation is aready
determined, it follows that the data-race-free implementation will provide sequential consistency for al operations
until the first datarace. Further, it will violate sequential consistency only in the parts of the execution that are af-
fected by the dataraces. The added constraint of theorem 8.5 ensures that a processor does not execute operations
until the course of the execution preceding the operation is already determined, thereby obeying condition 8.4.

Figure 8.2 illustrates the need for the added constraint on control reads as follows. Assume al operationsin
the figure are data operations. In every sequentially consistent execution of the illustrated program, the reads of X
and Y by processors P, and P, should return the initial value 0 and the italicized data operations are not executed.
Without the additional requirement, however, the following execution is possible: (1) P, and P, execute their
writes of Y and X respectively, (2) P, and P, execute their reads of X and Y respectively, which return the value



145

Initially X =Y =0
P1 P2
if X==1){ if (Y ==21){
data operations data operations
} }
Y=1 X=1

Figure 8.2. Motivation for extra constraint in theorem 8.5.

1, (3) P, and P, execute their italicized data operations. This execution does not appear sequentially consistent.
The only data races in this execution that could occur in a sequentially consistent execution are due to the opera-
tionson X and Y. However, any prefix that includes these races must include the italicized data operations and so
is not a sequentially consistent prefix. Note, however, that in the above execution also, the *‘first’”’ data race
would occur on a sequentially consistent execution and all the violations of sequentia consistency occur only be-
cause of the data race; the problem encountered is that the execution up to the data race no longer consists of
operations that could occur on a sequentially consistent execution.

We next discuss how the added constraint on control reads of the above theorem affects implementations of
data-race-free systems proposed to date. Previous chapters have proposed system-centric specifications for the
data-race-free models that do not require the additional constraint. When compared to the low-level system-
centric specifications, the additional requirement can limit performance in two ways. First, it does not allow
writes to be executed speculatively. Although the aggressive specifications alow writes to be executed specula-
tively (assuming the control path of Section 7.5.2 is maintained), this is not currently practical since it could po-
tentially result in global rollbacks. The second limitation of the additional constraint is that it requires a write to
wait until it is known which preceding operations will be executed, which addresses they will access, and which
values they will write. The low-level specifications require a write to wait only if the preceding operations could
be one of certain operation categories (e.g., if the write is data, then it needs to wait to determine if a preceding
operation could be a pairable read synchronization or could conflict with the write). Practically, however, we ex-
pect that most hardware will obey the conservative condition of theorem 8.5. Thus, we conclude that the addition-
a constraint is already obeyed by most practical data-race-free hardware. For an optimizing compiler that reord-
ers memory operations, it may be possible to exploit the more aggressive condition. However, debugging with op-
timizing compilers already often imposes constraints on the compiler, and it is not clear if the above constraint
would be a significant restriction.

8.4. Detecting Data Races on Data-Race-Free Systems

This section summarizes how Condition 8.4 can be used to dynamically detect sequentially consistent data
races on data-race-free systems, and briefly mentions the limitations of our technique. A detailed description of
this material appearsin [AHM91].

A post-mortem approach can be used to locate sets of data races, where each set contains at least one data
race that belongs to a specific SCP. We can achieve this by instrumenting the program to record the operations
(including locations accessed) of every process, and the order of execution of conflicting synchronization opera-
tions. This allows constructing the happens-before graph for the execution, which indicates the operations that
were involved in a race in the execution. To determine the data races in an SCP, we need to augment the
happens-before graph with doubly directed edges between any pair of operations that formed a race in the execu-
tion. This graph represents the affects relation between races. Since the graph can have cycles, it does not yet
give usthe first data races (i.e., the data races from the SCP). To determine the first data races, we need to use the
strongly connected components of the graph to partition the data races. The first partitions containing data races
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(i.e., the partitions with data races that are not ordered after any other partitions with data races in the graph) con-
tain data races from the SCP. It is straightforward to prove that Condition 8.4 ensures that there is afirst partition
iff there is a data race in the execution, and that each first partition contains at least one data race belonging to a
specific SCP. Thus, thefirst partitions contain the data races which should be given to the programmer.

A limitation of the above approach isthat for first partitions with more than one data race, we cannot deter-
mine which are the sequentially consistent data races. Nevertheless, the number of data races and the portion of
the program that need to be examined are significantly reduced, making debugging much easier. The other limita-
tions of thiswork are that we do not detect sequentially consistent data races that are not in the first partitions, and
the race detection overhead is quite high. We argue in [AHM91] how all the limitations of our technique are
anal ogous to the limitations of dynamic techniques for sequentially consistent systems.

8.5. Related Work

To the best of our knowledge, the only other work related to debugging on non-sequentially consistent sys-
tems is by Gharachorloo and Gibbons [GhG91]. This work proposes additional hardware support for a release
consistent system that allows runtime detection of violations of sequentia consistency (due to programs not prop-
erly labeled [GLL90Q]). The scheme imposes an additional constraint on release consistent (RCsc) hardware re-
quiring acquires to wait for all previous operations. Since release consistent (RCsc) systems obey data-race-free-1
and since data-race-free-1 programs are also properly labeled programs, it follows that the above scheme is appli-
cable to data-race-free systems as well. The advantages of the above scheme compared to our work are the fol-
lowing. First, the debugging overhead for the scheme in [GhG91] isin the additional hardware support and the ad-
ditional constraint on acquires. This is far less than that incurred by our tracing mechanism. The second advan-
tage is that since the debugging hardware is aways enabled, the above scheme can signal violations of sequential
consistency for every run of the program on the system. In contrast, our scheme allows detecting data races that
occur only for executions that have the debugging support on; since this support involves relatively large over-
head, keeping it on is not practical for every execution. The disadvantages of the above scheme are the following.
First, the above scheme cannot detect the first data races that may be responsible for the bug in the program.
Therefore, unlike our scheme, the scheme in [GhG91] does not (yet) help programmers to reason with sequential
consistency while debugging. The second disadvantage is that the debugging overhead due to the additional
hardware constraint is incurred with the above scheme even after the program is debugged. The only additional
system constraint (for all executions) imposed by our scheme is aready obeyed by most currently practical sys-
tems.

8.6. Conclusions

The data-race-free-0 and data-race-free-1 models provide high performance by guaranteeing sequential
consistency only to programs that do not exhibit data races on sequentially consistent hardware. To allow pro-
grammers to use the intuition and algorithms already developed for sequentially consistent systems, it is important
to determine when a program is data-race-free; when a program is not data-race-free, it isimportant to identify the
parts where data races could occur.

Detecting data races is aso crucia for programs written for sequentially consistent systems. Static tech-
niques for sequentially consistent systems can be directly applied to data-race-free systems as well. Dynamic tech-
niques, on the other hand, may report data races that could never occur on sequentially consistent systems. This
can complicate debugging because programmers can no longer assume the model of sequential consistency.

We have shown that a post-mortem dynamic approach can be used to detect data races effectively even on
data-race-free systems. The key observation we make is that most data-race-free hardware preserves sequential
consistency at least until the first data races (those not affected by any others). We formalize this condition by us-
ing the notion of a sequentially consistent prefix. For an execution on a system that obeys this condition, we can
either (1) correctly report no data races and conclude the execution to be sequentially consistent or (2) report the
first data races that also occur on a sequentially consistent execution (within the limitation discussed in Section
8.4). Since our condition is already met by currently practical data-race-free hardware, our technique can practi-
cally exploit the full performance of the data-race-free hardware.
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It would be interesting to investigate on-the-fly techniques for data-race-free systemsin the future. 1t would
also be interesting to determine if the techniques of this chapter would extend to other SCNF models.
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Chapter 9

Conclusions

The abstraction of shared-memory provides important advantages for programming paralel systems. The
naive shared-memory model of sequential consistency, however, restricts exploiting many performance enhancing
optimizationsin hardware and software that have been successfully employed for uniprocessors.

Alternative models for higher performance have been proposed, but suffer from two important disadvan-
tages. First, programming with many of the aternative models is difficult, often requiring programmers to be
aware of hardware features such as write buffers and caches. Second, the multitude of current memory models
(more than a dozen were proposed in the last four years!), besides being intimidating, thwarts portability. Even
so, it is difficult to believe that the future will not bring more models, resulting in an ever-increasing number of
shared-memory interfaces for programmers to deal with (this thesis itself indicates another dozen system imple-
mentations that could be viewed as new memory models!).

A much needed attribute in the design and specification of memory models today is a unifying framework
that can express the rich variety of current system optimizations and help envisage future optimizations, both in a
way that would lead to models that adequately satisfy the 3P criteria of programmability, portability, and perfor-
mance. Thisthesisfulfillsthis need by

. establishing a unifying methodology (SCNF) for specifying memory models that meet the 3P criteria,

. proposing four SCNF memory models (data-race-free-0, data-race-free-1, PLpcl, and PLpc2) that unify
several previous hardware-centric models,

. exposing alarge part of the design space of SCNF models by formalizing the complex relationship between
system optimizations and program information necessary to design SCNF models, and

. making preliminary progress in debugginbg with relaxed models by showing a technique to detect meaning-
ful data races on data-race-free systems.3

Section 9.1 further discusses the key features of thisthesis, and Section 9.2 discusses relevant issues not ad-
dressed by thisthesis.

9.1. Thesis Summary

The key feature of SCNF memory models is that they al provide a constant and simple view of the system
to the programmer. This immediately alleviates the problems of programmability and portability. For perfor-
mance, SCNF model s require more active cooperation of the programmer. Typically, they require programmers to
make explicit some information about the behavior of the program, assuming the simple system view. Since the
programmer writes the program assuming the simple system view, it is natural to expect that the programmer will
have this information. Our approach does not give any guarantee about the system behavior if the programmer
givesincorrect information. An important effect is that system designers can exploit the information they seek to
the maximal extent, thereby optimizing for the expected case (i.e., correct information). In contrast, previous
models provide guarantees for all programs, potentialy sacrificing some optimizations for the more frequent pro-
grams.

For the choice of the base system view for all models, we have chosen the model of sequential consistency.

Thisis anatura choice considering the smplicity of sequential consistency, and considering that a large body of
algorithms has been developed (often implicitly) assuming sequential consistency. Our general approach outlined

36. The data race detection work is joint work with others [AHM91]; PLpcl and PLpc2 are derived from joint work
with others on the PLpc model [GAG92].
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above, however, isvalid with any other base model aswell.

The thesis demonstrates the effectiveness of the SCNF methodology by developing four SCNF models
(data-race-free-0, data-race-free-1, PLpcl, and PLpc2) based on popular commercial and academic hardware-
centric models (weak ordering, release consistency (RCsc), release consistency (RCpc), processor consistency, to-
tal store ordering, partial store ordering, IBM 370, and Alpha). Each SCNF model allows programming with
sequential consistency and allows more implementations (and potentially higher performance) than the
corresponding hardware-centric models. The key features of these SCNF models are that they exploit increasing
amounts of information about a program, and they allow the programmer to provide conservative information.
This ensures the following for the four models.

- Any program can be run with any of the above models (assuming conservative defaults).

- In moving from aless aggressive to a more aggressive model, programmers can add new information incre-
mentally; meanwhile, they can continue to see the performance benefits of the original model.

- A program written for a more aggressive model can be run on a less aggressive model with all the perfor-
mance benefits of the latter model; extra information has no penalty and is simply ignored.

Thus, the four SCNF models provide four levels of exploitable information and optimizations. Programmers
can write programs for any specific level; running them at higher or lower level systems simply exploits the ap-
propriate level of information and optimizations.

The SCNF approach addresses the 3P criteria well. A cost, however, is the increased complexity of design-
ing the memory model for a system. The relationship between an optimization and the program information that
will allow the optimization to be used safely (i.e. without violating sequential consistency) is complex. The key
reason for this complexity is that the information can only be from sequentially consistent executions of the pro-
gram. The thesis aleviates this complexity by developing the control requirement. The requirement is difficult to
formalize and prove correct, but is fortunately obeyed by currently practical systems. In particular, it is obeyed by
al systems where writes are not executed speculatively, each write is eventually seen by all processors, and writes
to the same location are seen in the same order by all processors. The control requirement is a key contribution of
this work since most previous work either ignored the issue, or addressed it only informally, or imposed fairly
con%ervar[ive conditions (e.g., processors block on reads, or cannot execute any memory operations speculative-
ly).

Obeying the control requirement allows the use of a straightforward mapping between optimizations and in-
formation from sequentially consistent executions. To determine when an optimization is safe, we need to simply
determine when the optimization violates the critical paths of a sequentially consistent execution. The correspond-
ing model requires the programmer to make the relevant parts of the above paths explicit, so that the optimization
isnot applied to that path. Thus, the design space of SCNF models can be succinctly characterized as follows:

- An SCNF model is characterized by a set of ordering paths called its valid paths.
- A system obeys an SCNF model if it executes the valid paths ‘‘ safely’’ and obeys the control requirement.

- A program obeys an SCNF model if the critical paths of every sequentially consistent execution are valid
paths.

The thesisillustrated these concepts through several new memory models, exploiting new optimizations and
old optimizations in new cases for potentially higher performance, and exploiting commonly used programming
constructs for easier programmability.

An impediment to the effective use of the SCNF approach is that initially, while debugging, programmers
might unknowingly give incorrect information. In this case, sequential consistency is not guaranteed. We have
taken a preliminary step in overcoming this problem for the data-race-free models. Programs written for these
models are incorrect if they have data races. We have adopted the approach of extending the data race detection
work for sequentially consistent systems to data-race-free systems. The key issue is that for dynamic data race
detection techniques, we must expose to the programmer only those data races that could aso have occurred in

37. Some of the formalization of the control requirement was done jointly with others in the course of developing the
PLpc model [AGG93].
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sequentially consistent executions. We develop a system condition to allows this, and show that currently practi-
cal data-race-free systems obey this condition. It should be understood that the debugging problem is not any
worse with the SCNF models than with the earlier hardware-centric models; the reason it is not an important issue
with the earlier models is that they require programmers to reason with non-sequentially consistent executions all
thetime.

9.2. What next?

There are at least two key, relevant issues not addressed by this thesis. The first issue is the choice of the
best model for a system. The answer to this question depends on several variables such as the application domain
and other system design constraints. A study that would give a satisfactory answer, especially considering future
generations of aggressive processors, is beyond the scope of this work. We, however, make a few conjectures
below.

First, considering programmability, experience with a few programs suggests that distinguishing operations
on the following bases is reasonably straightforward for programmers:

- non-communicators (i.e., data or non-race) vs. communicators (i.e., Synchronization or race)

- communicators that order non-communicators (i.e., paired or true synchronization) vs. other communica
tors (i.e., unpaired synchronization)

Other distinctions (e.g., loop vs. non-loop operations, and distinctions between other types of communica-
tors) are easy to make for common synchronization scenarios (e.g., locks and barriers), but difficult for general
cases. This suggests that from the programmability perspective, any other information would be best camouflaged
in terms of the behavior of commonly used programming constructs. Typically, this would involve having library
routines with easy-to-obey restrictions on their use, as illustrated by Chapter 7; programmers can use the special
routines whenever they meet the necessary restrictions.

Second, considering portability, if al models always provide a ‘‘conservative’’ or ‘‘don’t-care’’ option,
then porting programs for correctness is trivial. Specifically, memory models that provide direct mechanisms to
distinguish only the types of operations listed above, and seek the remaining information through the use of spe-
cial constructs guarantee easy portability.

Third, considering performance, earlier detailed hardware simulation studies for release consistency (RCpc)
and weak ordering have reported upto 41% speedup in hardware (compared to sequential consistency)
[GGH914a, ZuB92]. These studies do not fully exploit non-blocking reads; a study that does exploit such reads in-
dicates better performance, but is trace-based [GGH92]. In most cases, weak ordering performs as well as release
consistency (RCpc), but there are some cases where it gives significantly worse performance. However, the above
studies analyze programs written for sequential consistency and are not data-race-free-0 or PLpc. To the best of
our knowledge, these studies consider only the explicit calls to synchronization libraries (and afew other races) as
synchronization. As indicated in Chapter 4, for many programs, these calls do indeed represent most of the races
in the program. Therefore, it is reasonable to conclude from these studies that distinguishing between communi-
cators and non-communicators is worthwhile. However, it is difficult to draw any conclusions regarding the dis-
tinction between unpaired and paired synchronization, and any other further distinctions, from these studies.
More detailed studies, specifically considering future more aggressive processors, larger systems, and a wider
breadth of applications (including applications with more fine-grained sharing) are needed to assess the impact of
further distinctions. Finally, the above studies are for hardware implemented shared-memory. For software im-
plemented shared virtual memory systems, we expect the differences between different models to be more
significant.

The second key issue not addressed in this thesis concerns alternative approaches for specifying memory
models that may possibly satisfy the 3P criteria better than SCNF. There are at |east three other alternatives worth
consideration.

The first aternative is to use an SCNF-like framework, but use a base model different from sequential con-
sistency. Although sequential consistency provides a simple and intuitive view of the system, often programmers
do not seem to rely on all of its power. For example, if two processors write (via operations that race) to the same
location, should they really be treated as a synchronization? Most programs seem to use only races involving a
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write and aread, where the write executes before the read, to order other accesses. In fact, since often interactions
occurring due to a race between two writes are unintended, it may be difficult for programmers to provide the
necessary information to preserve sequential consistency that require considering such interactions. The model of
causality, however, only considers interactions due to write/read pairs [AHJ90, HUA90]. Should causality be con-
sidered as the base model? Our framework would still be applicable; only now programmers would provide infor-
mation about the program behavior on causal systems and systems would ensure causality. Correspondingly, in
Chapter 7, the program/conflict graph would be replaced by the program/causal-conflict graph.

Potential disadvantages of using causality are the following. First, for naive programmers, it is difficult to
envision an analog as simple as figure 1.1 to describe causality. But perhaps, if write atomicity were added, one
could describe it simply enough. Second, programs like Dekker’'s algorithm in Chapter 1 which do rely on syn-
chronizations due to operation pairs other than a write followed by aread will simply not be allowed. Undoubted-
ly, there are useful programs (e.g., operating systems) that rely on the correctness of such interactions. A pertinent
question here is whether writers of such (relatively complex) code could deal with reasoning with more system-
centric constraints. These constraints could potentially provide some weak guarantees for such interactions.

The second alternative of a base model is ‘‘no model at all.’”’ Thus, the programmer assumes the system is
completely unconstrained (except perhaps the guarantee of preserving some intra-processor dependences and
write termination). Then programmers would need to explicitly indicate al the ordering paths that they want
preserved. (An equivalent converse isto require programmers to explicitly state which ordering paths need not be
preserved.) The advantage of such amodel isthat it does not impose unnecessary constraints on the system; there-
fore, programmers can potentially tune their programs for maximal performance. This would specifically be use-
ful for users of asynchronous algorithms which need very weak guarantees to converge on the correct answer.
The relaxed memory order model for SPARC V9 is an example of such a model. Further, with more powerful
hardware primitives such as full/empty bits [Smi82] that enforce implicit synchronization, a system with no
model at al may be viable [Goo93].

Finally, we could continue to use SCNF, but also provide an alternative, high-level system-centric
specification. Thus, programmers who prefer the ssmplicity of sequential consistency can continue to reap the ad-
vantages of the SCNF methodology, and programmers who like to maximize their performance by dealing direct-
ly with the idiosyncrasies of specific systems can also continue to do so. The tradeoff isthat if in the future, more
aggressive system implementations that obey the SCNF model but not the system-centric specification are en-
visaged, then either those implementations cannot be exploited or the programs that relied on the system-centric
specification would not be portable to the new system. For this reason, the system-centric specification given
should be at a high-level. We recommend Collier’s model as the abstract system model, and the high-level valid
path requirement coupled with the low-level control requirement as the system-centric specification. Note that
release consistency (RCsc) uses a similar approach; however, the system-centric specification is fairly conserva-
tive (e.g., it does not allow implementations such as lazy release consistency, delayed consistency, and other im-
plementations described in Chapter 5).

There are several other unresolved issues including the correct programming language support for distin-
guishing different operations, possible techniques to verify whether software obeys necessary constraints, and
tools to aid debugging where verification is not possible or not exact. Interactions between relaxed memory
models and other latency hiding or reducing techniques are also important to study further [GHG91]. Note that
most of the optimizations due to memory models are essentially trying to exploit the implicit, fine-grained paral-
lelism in a single thread. One way to make the memory model a less significant issue is for programming
languages to provide the maximum flexibility for programmers to express the fine-grained parallelism that they
are already aware of. This is expressed in our work by making the program order of each process partial, as
recommended by Gibbons and Merritt [GIM92]. Finally, from a more theoretical standpoint, it would also be in-
teresting to make the critical set and control regquirement more aggressive, and the proof of correctness of the con-
trol requirement simpler.

Thus, while this thesis has established the necessary unifying framework in which to reason about memory

models, more work is certainly required before we converge on the best memory models for shared-memory sys-
tems.
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Appendix A: Equivalence of Definitions of Race for Data-Race-Free-0 Programs

This appendix proves that using any of the definitions of a data race in figure 4.2 or in definition 4.4 results
in the same set of data-race-free-0 programs. Alternatively, we need to prove the following for any sequentially
consistent execution, E, of a program Prog: if an operation in Eg needs to be distinguished as a synchronization
operation by some definition above, then it also needs to be distinguished as a synchronization operation by all of
the above definitions. The following discusses each of the five aternative definitions.

Alternative 1 (Definition 4.7): Clearly, a data race according to alternative 1 is also a data race according to
all other definitions. Therefore, all operations that need to be distinguished as synchronization by alternative 1 also
need to be distinguished as synchronization by other definitions.

Alternative 3 (Definition 4.12): Consider a pair of conflicting operations, X and Y, that form a race with
dternative 3; i.e.,, X and Y are not ordered by the program/conflict graph. Then alternative 3 requires that these
operations be distinguished as synchronization. We show that these operations need to be distinguished as
synchronization by other definitions as well as follows. Consider the operations in E that are ordered before Y in
the program/conflict graph. Consider a modification of the execution order of Eg where the above operations are
moved to just before X, retaining their original relative order. Consider the resulting order until before X. This
resulting order is still consistent with program order, and the last conflicting write before any read is till the same
as with the original execution order. Now consider the resulting order appended with X and Y (in any order) and
make X and Y return the value of the last conflicting write before them. (If X or Y is part of a read-modify-write,
then include both the read and write above.) It follows that the resulting order is the prefix of an execution order
of some sequentially consistent execution where the operations of the processors of X and Y preceding X and Y are
the same as for Eg, and X and Y access the same addresses as before. Further, if X and Y are not parts of read-
modify-writes, then they occur consecutively in the resulting order. If they are parts of read-modify-writes, then
one of the arrangements (i.e., either X before Y or Y before X) has X and Y consecutive. Consider any sequentially
consistent execution with the above prefix. From the assumptions of how operations are distinguished (Section
5.1.3 and Condition 7.18) and by the above observations, it followsthat X and Y form arace by alternative 1 in the
new execution and are distinguished in the same way as in Es. It therefore follows that X and Y should be
distinguished as synchronization according to all definitions in the new execution, and therefore in E;. Thus, any
operation that needs to be distinguished as synchronization by alternative 3 needs to be distinguished similarly by
all other definitions.

Definition 4.4: This definition requires two conflicting operations, X and Y, not ordered by 2> to be dis-
tinguished as synchronization. Suppose X and Y are not ordered by any path in the program/conflict graph
described by alternative 3, where the path has at least one program order arc. Then X and Y need to be dis-
tinguished as synchronization by alternative 3, and therefore (by the above case), by all other definitions. Suppose
X and Y are ordered by a path in the program/conflict graph of aternative 3, where the path has at least one pro-
gram order arc. Then consider alongest such path. Between any operations of a =~ arc on this path, thereisno
path of the above type. Therefore, alternative 3 requires the operations on the > arcs of this path to be dis-
tinguished as synchronization. But then the above pathisa 2> path from X to Y, a contradiction.

Alternative 4 (Definition 4.14): The proof for alternative 4 is similar to that for aternative 3.

Alternative 2 (Definition 4.9): The proof for alternative 2 can be derived from the result for aternative 4
similar to the way the proof for definition 4.4 is derived from the result for alternative 2.
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Appendix B: Modified Uniprocessor Correctness Condition

We assume the notion of a control flow graph and that of a loop defined for a control flow graph as in
[ASU86]. Specifically, we only consider loops where an instruction of the loop cannot fork off multiple instruc-
tion instances in an execution; i.e., each set of next instructions of an instruction in the loop contains only one in-
struction (note that this does not prohibit branch instructions which have more than one sets of next instructions).
We use the following definitions.

An instance of loop L in an execution is a sequence of instruction instances such that all instruction in-
stances are from instructions in loop L, the first instruction instance in the sequence is the next instruction instance
of an instruction instance not from loop L (or is an initial instance that is not the next instance of any instance), at
least one next instruction instance of all but the last instruction instance in the sequence is from an instruction in
loop L.

An instance of aloop is incomplete or does not terminate in an execution iff the number of instruction in-
stances in the loop instance is infinite.

We modify the definition of an instruction instance to include the following. For every incomplete loop in-
stance L in execution E, one instruction instance of L may specify two (sets of) next instructions, where one next
instruction is from the loop and the other is not from the loop.

We modify the definition of program order on instruction instances to aso include the following. For in-
struction instances i; and i, in an execution, i; = i, if i, isfrom an incomplete loop instance L, and i, is an
additional next instance of an instruction instance from L as allowed by the above modification to the definition of
instruction instances.

The modified uniprocessor correctness condition assumes the above modifications to the definition of an in-
struction instance and program order and is as follows. (It differs from the original condition in points (2) and (3).)

Condition B.1: Uniprocessor correctness condition: The set of instruction instances | of an execution
must obey the following conditions.

(1) For every initial instruction of a process, exactly one instance of the instruction must be present in
| such that it is not the next instruction instance of another instruction instance. Such an instruction in-
stance is called an initial instruction instance.

(2) Aninstruction instance is present in | only if it is the next instruction instance of another instruc-
tion instance, or it isan initia instruction instance (as specified by (1) above).

(3) If aninstruction instance is present in | and does not follow an instruction instance from an incom-
plete loop instance, then its next instruction instance must be present in 1.

(4) The program order relation is acyclic. Specifically, an instruction instance is the next instruction
instance of at most one instruction instance, an initial instruction instance cannot be a next instruction
instance of any instruction instance, and a merge instruction instance for an instruction instance i
must be after i by program order.

(5) If i isaninitia instruction instance, then the value returned by i for its read of a state variable of
its processis theinitial value of that state variable as specified by the program. If i isnot aninitia in-
struction instance, then the value returned by i for its read of a state variable of its process is the value
specified by the last instruction instance ordered before i by program order that modified that state
variable.

38. Note that part (5) implies that an instruction instance i following an incomplete loop instance L cannot be in the ex-
ecution if an infinite number of the instructions instancesin L could access the processor state accessed by i in a conflicting
manner. The execution order condition imposes a similar condition for memory operations.
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(6) The components other than the values of the state variables and memory locations read by an in-
struction instance i are determined by applying the functions specified by the instruction of i to the
values of the state variables read by i and the values returned by the various reads of i.

(7) The value read from an external input interface by an instruction instance i must be a value written
by an external observer or an initial value.
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Appendix C: Correctness of Condition 7.12 for Sequential Consistency

This appendix proves the correctness of Condition 7.12 and also discusses an aggressive extension for the
definition of acritical set. For reference, we repeat Condition 7.12 below, and also give the definition of a critical
set incorporating non-atomic writes. Recall that last and after used below refer to the ordering due to execution
order.

Definition C.1: A critical set for an execution is a set of ordering paths that obey the following pro-
perties. Let X and Y be any two consecutive conflicting operations such that there is an ordering path
or race path from X to Y. Ignore all unessential operations.

(1) If either Xisaread or Y is not a self-ordered read, and if there is an ordering path from X to Y,
then one such path isin the critical set.

(2) If Yisan exit read from a synchronization loop that is not self-ordered, Y is issued by processor
P;, and if there is no ordering path from X to Y, then let W (i) be the last write sub-operation (includ-
ing the hypothetical initial write) before X (i) that conflicts with Y (i) and writes an exit value of Y. If
W(i) exists, then let W'(i) be awrite after W (i) such that there is an ordering path from W' to Y that
endsin aprogram order arc. If W' exists, then one ordering path from the last such W' to Y that ends
in aprogram order arc must bein the critical set.

(3) If Yisaself-ordered read, then let W and W' be as defined in (2) above. If W' exits, then one ord-
ering path from any W' to Y that endsin a program order arc must be in the critical set.

For every execution, we consider one specific critical set, and call the paths in that set as critical
paths.

Condition 7.12: System-Centric Specification of Sequential Consistency: The execution should have
acritical set such that if an ordering path from X to Yisin the critical set, then X (i) == Y(i) for all i
(assuming finite speculation, write termination, and loop coherence).

Proof:

Consider an execution E that obeys the above specification. Ignore all unessential operationsin E. Consid-
er two consecutive conflicting operations X and Y that have an ordering path between them. The following

shows X (i) = Y(i)foraliinE.
Case 1: Xisareador Yisnot a self-ordered read.
Xand Y satisfy part (1) in definition 7.11. Therefore, an ordering path from X to Y is critical. There-
fore, X(i) = Y(i) for alli.
Case 2: Xisawriteand Yisa self-ordered read.
Xand Y satisfy part (3) in definition 7.11. Let Y be issued by processor P;. Suppose for a contradic-
tion that Y(i) =>> X(i). If an ordering path corresponding to X,Y is chosen critical, then let W' be
the write such that an ordering path from W' to Y is chosen critical. Then W'(i) == Y(i). Therefore,

W' must be different from X. W'(i) is after (by =>>) the last conflicting write before X(i) that wrote
an exit value of Y. Therefore, W'(i) and all other conflicting write sub-operations between W'(i) and
Y (i) (by execution order) must write non-exit values. Therefore, Y(i) is unessential, a contradiction.
If no W' is chosen, then there is no write before Y (i) that writes an exit value. Therefore, again Y is
unessential, a contradiction.

We have proved so far that (after ignoring unessentials), if there isan ordering path from Xto Yand X and Y
are consecutive conflicting operations, then X(i) =>> Y(i). It follows immediately that if X and Y are any

conflicting operations and there is an ordering path from X to Y, then X(i) = Y(i) for al i. Thus, if E
does not have any unessentials, then it obeys Condition 7.6 and so the above specification is correct. If E
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has unessentials and all its synchronization loops terminate, then by the loop coherence assumption, an exe-
cution that is the same as E but without the unessentials of E has the same result as E. This execution obeys
Condition 7.6 and therefore again the above specification is correct. Thus, the only remaining case is where
E has synchronization loops that do not terminate.

Let processor P; have a synchronization loop that does not terminate in E. By the finite speculation assump-
tion, P; does not execute any operations or instructions following the loop operations and instructions. Con-

sider the > of E without the unessential operations. Any prefix of this > must be a prefix of a
sequentially consistent execution of program Prog. We know that a synchronization loop always terminates
in every sequentially consistent execution of the program. Therefore, it follows that a some point in the

above X, the shared-memory locations should have values that satisfy the predicate of at least one of the

synchronization loops that did not terminate and these values should not change in the rest of the > (oth-
erwise, we can construct a sequentially consistent execution where all the above loops would not terminate).
It follows that even in E, the reads of this synchronization loop will see the exit values and will terminate
the loop (assuming write termination). [

We next discuss an aggressive extension of the definition of a critical set. The extension applies to part (3)
of the definition when Y is an exit read that is part of aread-modify-write, and is based on the following observa-
tion. If the first write W, after W mentioned in part (3) is also part of a read-modify-write from a synchronization
loop that writes a non-exit value of Y and if the value written by Y’ s read-modify-write is a non-exit value of W's
loop, then Y cannot execute just before W, because that makes W, unessential. Therefore, making an ordering
path from W to Y critical is also sufficient. Furthermore, if the conflicting writes before W also write non-exit
values, then making an ordering path from those writes to Y critical is also sufficient. Extending this observation
to all writes that obey the above pattern leads to the following formalization for a possible critical path when Yisa
read-modify-write from a self-ordered loop. This observation is exploited by the PLpc models. The following as-
sumes atomic writes as in definition 7.11; the extension to non-atomic writes is analogous to definition C.1 given
at the beginning of this appendix.

Definition C.2: Extension to definition 7.11:

Parts (1) and (2) of definition 7.11 remain unchanged and part (3) need be applied only when Y is not
part of a read-modify-write. When Y is part of a read-modify-write, either part (3) or the following
can be applied.

Let W be the last write (including the hypothetical initial write) before X such that W conflicts with Y,
W writes an exit value of Y, and the following istrue. If W, (conflicting with X) is between W and X
and writes an exit value of Y, then the first conflicting write, W,, after W, writes a non-exit value of
Y, W, is from a synchronization loop, and the write of Y's read-modify-write writes a non-exit value
for W,'sloop. If W exists and if there is an ordering path from any write after Wto Y that endsin a
program order arc, then one such path isin the critical set.

The proof given above extends easily to incorporate the extension as well. Specifically, for the new casg, if

Y (i) 2> X(i), then the first conflicting essential write, W,, after Y (i) must be from a synchronization loop and
Y swrite writes a non-exit value for that loop. Thus, W, must be unessential, a contradiction.

The proof of the current low-level control requirement (Condition 7.21) in Appendix E considers the possi-
bility of the above types of critical paths;, however, it makes two assumptions. The first is that the exit read of the
loop of W, mentioned above forms a race in some sequentially consistent execution without unessential opera-
tions. Without this assumption, the proof of Appendix E is valid with the above extension only if the following
additional condition on the properties of the control relation is imposed. (Below, assume E; is a sequentially con-
sistent execution without unessential operations.) The additional condition is: an exit read R, of the loop of W,

mentioned above should control any operation O that follows it such that (8) R, > Oinsome Eg, or (b) Ois
an exit read from a self-ordered loop, or (¢) O forms arace in some Eg and is an exit read of a synchronization
loop.

The second assumption in the proof in Appendix E is that property (a) of the control relation (definition
7.19(a)) should hold if al control reads of O in E arein Eg, and al such reads return the same value in E and Eg
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with the possible exception of reads which have critical paths of the above type and such that O is not in the loop
instance of the exception reads. This assumption is reasonable because the properties of a synchronization loop
ensure that the value returned by a read of the above type cannot affect whether a later operation following this
loop instance will be executed in Eg, or what the exit values of an exit read from another loop instance will be, or
what the write of an exit read’ s read-modify-write from another loop instance will write.
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Appendix D: A Constructive Form of the Control Relation

This appendix constructively defines a relation for an SCNF model that obeys the properties for the control
relation in Definition 7.19. The underlying concepts for this work were first developed for the data-race-free-1
and PLpc models [AdH92, AGG93]; the following is a generalization of those concepts for all SCNF models ex-
pressed in our framework. The formalization and description of the relation below are similar to that of the
corresponding relation developed for PLpc [AGG93] (and later used for other models [GAG93]). The origina

rch

relation is called thereach ( —>) relation [AGG93] and we continue to use the same name here.

To obey property (g) of the control relation, the reach relation assumes that in any execution, no instruction
instance of a synchronization loop can change the way an exit read is distinguished for the purposes of determin-
ing whether it is on avalid path. This additional assumption is only required if the presence of a preceding instruc-
tion can be used to determine whether an operation is on a valid path (as with MB of Alpha), and this preceding
instruction and the operation are in different basic blocks within the loop which are not guaranteed to execute to-
gether in an execution.

Section D.1 defines the reach relation and Section D.2 proves that it obeys the properties of the control rela-
tion given in Definition 7.19.

D.1 The Reach Relation

We assume the internal state of a process that can be read and written by an instruction instance consists of
registers and private memory of the process. The register read set of an instruction instance consists of the regis-
ters and private memory locations whose values the instruction instance reads, and the register write set consists
of the registers and private memory locations that the instruction instance updates. For simplicity, we assume that
an instruction instance accesses at most one shared-memory location, and the shared-memory operations of any
instruction instance that accesses shared-memory consist of either exactly one read or exactly one write or exactly
one read-modify-write. This assumption is obeyed by most RISC architectures. The assumption is for simplicity
only; the relation below can be easily extended for a more complicated instruction set.

We first define the notion of local dataldistinction dependence ( -“>) and branch dependence™ ( 2 )

that will be used to develop the “> relation. For two instruction instances A and B in an execution, A > Biif
B reads a value that A writes into its register write set. (The interaction due to shared-memory data dependence is

handled later.) Also, A %2> B if the presence of A is used by the system to determine if B is on a valid path (as
specified in part (c) of Condition 7.18).40 The following definition of branch dependence assumes that the pro-
gram order is atotal order per process; it can be extended in a straightforward manner when this order is partial.
The notion of branch dependence is borrowed from Ferrante et a. [FOW87], and is defined in terms of a control
flow graph and dominators [ASU86] as follows. Let Prog be the program under consideration, and let E be an ex-
ecution of program Prog. Consider the control flow graph of any process in program Prog, with the final node in
the graph denoted by EXIT. Let C and D be two instructions in the control flow graph. C is post-dominated by D
if D ison every path in the control flow graph from C to EXIT. Let A and B be two instruction instances of proces-
sor P in execution E and let A" and B' be the instructions corresponding to A and B in the program text. Instruc-
tion instance B is branch dependent on instruction instance A if the following conditions hold: (i) A 2> B in ex-
ecution E, and (ii) A’ is not post-dominated by B’, and (iii) there is a path between A’ and B’ in the control flow
graph of processor P such that all the nodes on this path (excluding A’, B') are post-dominated by B'.

39. The branch dependence relation is called control dependence in [AGG93, GAG93]; we have aready used the term
control in other places and so use a different term here.

40. This is the only way in which the data/distinction dependence relation differs from the corresponding relation
(called data dependence) in [AGG93, GAG93]. The work in [AGG93, GAG93] currently does not alow distinguishing
valid paths as specified by part (c) of Condition 7.18, but could easily do so.
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To alow for possibly non-terminating sequentially consistent executions, we need to augment the control

flow graph and the resulting 2> relation with additional arcs. Informally, consider aloop in the program (as as-
sumed by Appendix B) that does not terminate in some sequentially consistent execution. Consider an instruction

instance i that is not in the loop and is program ordered after an instance L of the loop. Then we require ( 2>)+
to order i after the instances of the branch instructions of L that jump back into the loop and cause the loop to exe-
cute infinite iterations. More formally, let a branch instruction be one that specifies more than one set of next in-
structions (e.g., conditional branch instructions), or a single set of next instructions where one of the next instruc-
tions is not the immediately following instruction in the static sequence of instructions specified by the program
(e.g., unconditional jumps). Let an instance of a branch instruction be said to change the program flow if one of
the next instruction instances is not from an instruction immediately following the branch in the static sequence of
instructions of the program. Then the condition for augmenting the control flow graph for aloop L that does not
terminate in some sequentially consistent execution is as follows. Let C be abranch instruction that could be exe-
cuted infinite times in some sequentially consistent execution Eg. Suppose an infinite number of successive in-
stances of C change the control flow of the program in some E;. Add an auxiliary edge from every such instruc-
tion C to the EXIT node. This ensures that any such branch instruction C is not post-dominated by any of the in-
structions that follow it in the control flow graph, and so instances of C are ordered before al instances of al sub-

sequent instructions by ( 22>)+. The modification described above is not necessary if all sequentially consistent
executions of the program will terminate, or if there are no memory operations or instructions that affect the out-
put interface that are ordered after possibly non-terminating loopsin the control flow graph.

We next use 22> and %% to define two relations, the uniprocessor reach dependence ( %2> ) and the
multiprocessor reach dependence ( -™®> ) below, and then define the “>> relation in terms of these two rela-

tions. Below, E, denotes a sequentially consistent execution. The following extends the > relation discussed
in Chapter 7 to instruction instances in the obvious way.

Definition D.1: Uniprocessor Reach Dependence: Let X and Y be instruction instances in an execu-
tion E of program Prog. X 225 Yin Eiff X 2 Y, and either

(@ X 2> YinE, or
(b) X L YinE, or

(c) X and Y are in another execution E, of the program Prog, X ( 25)+ Z %> YinE, and Z is not
inE.

Definition D.2: Multiprocessor Reach Dependence: Let X and Y be instruction instances in an execu-

tion E of program Prog. Let Y be an instruction instance that accesses shared-memory. X ™25 Yin
E iff any of the following istrue.

(@ X 2> YinEand X and Y are in another execution Es of Prog, where X { %25 }+Z Y®5 Yin
E,, Z is an instruction instance that accesses shared-memory, for any A 2> B constituting the {

W% 5 1+ path from X to Zin Eg, Bisalso in E, and either Zisnot in E, or Z isin E but accesses dif-
ferent addresses in E and E;, or Z generates a write to the same address in E and Eg but with a dif-
ferent valuein E and Es.

(b) X 2> YinE X{ “®5 0 ™23 14+ ZinE andZ > YinE.

(©) X 2> YinE, Y generates an exit read of a synchronization loop, and X { 22> }+ Z, where Z is
abranch instruction in the Ioop.41

41. Part (c) is not required if for every instance of a synchronization loop, the exit values of the loop instance and the
vaues written by the exit writes of the loop instance are the same for every execution in which the loop instance occurs (see
Section 7.5.2).
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() X 2> YinEand X{ 225 O ™5 1+7 25 YinE where (i) X is from an instance L of a
loop that does not terminate in E, L terminatesin every Eg, X generates aread Rin E where Rformsa
race in some sequentially consistent execution without unessential operations and R is not the last
such read in L, and (ii) Z is a branch instruction in L that can change the program flow to the begin-
ning of L, and (iii) Y generates an operation that is either an exit read of a self-ordered loop or that
could form arace in some sequentially consistent execution without unessential operations.

(e) X > Yor Xisthe same as Y. Further, X generates read R which is either an exit read from a
self-ordered loop or it is an exit read from a synchronization loop that could form a race in some
sequentially consistent execution without unessential operations. Further, Y generates an operation O

(different from R) such that either R 2> Oin some E or O isan exit read of a self-ordered loop, or
O could form arace in some sequentially consistent execution without unessential operations.

() X B> YinEor Xisthe same as Y in E, X generates read R and Y generates operation O (dif-

ferent from R) in E, R and O are in another execution Eg of Prog, R 2> OinE, and W 2> Ris
on avalid path in E5 only if W's sub-operation is the last essential conflicting sub-operation before
R's sub-operation.

Definition D.3: Reach Relation: For two (possibly identical) instruction instances X and Y in E, X
NS YinEiff X (225 0 -™P5)+ Y. For two different memory operations X' and Y' in E from
instruction instances X and Y in E respectively, X' > Y in E iff X’ 2> Y and X ( 25 [
DS )+ Y,

The reach relation is a transitive closure of the uniprocessor reach dependence ( “®-> ) and the multipro-

cessor reach dependence ( ™2 ) relations. The uniprocessor component largely corresponds to uniprocessor
data and branch dependence, while the multiprocessor component corresponds to dependences that are present
due to the memory consistency model and due to aggressive speculative execution beyond unbounded loops. The
uniprocessor dependence component also incorporates dependences that determine how an operation is dis-

tinguished for valid paths. The components that make up 2> and ™®> are defined for a given execution E.
Both relations also require considering other sequentially consistent executions of the program, and determining if
an instruction instance in one execution isin the other execution, as described in Section 7.5.2.

D.2 Proof of Correctness of the Reach Relation

We say an instruction instance in execution E; executes in execution E,, or isin E,, if it is matched up
with some instruction instance in E, as explained in Section 7.5.2. We say an instruction instancein E; fully exe-
cutesin E, if it executes in E,, it accesses the same registers and memory locations in E; and E,, it reads and
writes the same values in the corresponding registers and memory locations in E; and E,, and its operations are
distinguished (for valid paths) similarly in E; and E,. We prove that the reach relation obeys the various proper-
ties of the control relation in definition 7.19 below. Recall that E5 denotes a sequentially consistent execution.

Property (a): If for every read R that controls an operation O in E, Risin Eg and returns the same value in E and
E,, then O isin Es. Further, if O isan exit read of a synchronization loop, then the exit value of O and the value
written by the exit write corresponding to O (if any) are the samein E and Es.

Proof:
Consider an operation O and a sequentially consistent execution Eg for which property (a) is not obeyed.

Consider all { “*®5}+ pathsto O in E, using only E; as the other execution for the third part of the 22
relation. We show that al instruction instances on these paths in E must be fully executed in Eg, and there-
fore, O executesin Es.

42. Recall that appendix C mentions a slight modification to property (a) to incorporate the extended definition of criti-
cal paths (Definition C.2): control reads of O that use the extended definition may not return the same valuein E and E; (if
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Suppose some instruction instance on such a path is not fully executed in E;. Choose a first such instruction

instance in program order. Let thisinstruction instance bei.

Case l:iisnotin E.
Let c bethelast (by program order) instruction instance before i in E that executesin Eg. Then ¢ must
be a branch instruction, ¢ { 2> }+i in E, and c reads different values in E and E,. But then c {
%% 51+ i, and so ¢ cannot have different values since i was a first such instruction instance to have
different values and ¢ precedes i, a contradiction.

Case 2 iisinE;.
There must be a difference in one of the values of i, or some instruction instance used to distinguish i
is not fully executed. The difference in values cannot be the value returned by a shared-memory read

rch

since thisread is before O by — and so returns the same value in E and E;. So either i read a dif-
ferent value written by a preceding instruction instance into its register write set, or a preceding in-
struction instance that distinguishes an operation of i is not fully executed. Let this preceding instruc-
tioninstancebe j; inEand j, in Es.
Sub-case 2a: jq isnotin E.
j1 %5 iinEandsoj,isona{ “®}+ pathto OinE and so must bein Eg, acontradiction.
Sub-case 2b: j,isnotinE.
Then consider the first instruction instance k, before j, (by program order) in Eg that isin E.
Calitky inE. k,{ 2> }+j, “ iinEs Butthenk,isona{ “*>}+ pathtoOinE. So
it cannot return a different value in E and Eg, a contradiction.

Sub-case 2c: j, and j, arebothin E and E..

Then both j; and j, are on a{ “*3}+ path to O. They must both have the same values.
Further, since they write the same register or private memory locations, they must be ordered
by program order and so the same one must be the last one beforei. So i must read the same
vaue. O

It remains to prove that if al the reach reads of O return the same value, and if O is an exit read of a syn-
chronization loop, then the exit values of O are the same and the value written by the exit write correspond-
ing to O (if any) isthe same. Thisfollows directly from part (c) and since all reads that reach an exit write
also reach the corresponding exit read.®®

Property (b): If for every read R that controls an operation O in E, Risin Eg and returns the same value in E and
E,, andif O' > OinE, thenO’ &> OinE.

Proof:

Consider an operation O, an operation O', and an Eg for which property (b) is not obeyed. Consider all

paths to O’ in Eg such that these paths followed by O' 2> O in Eq imply a ™2 relationin E. Further,
for any instruction instance i on these paths, also consider all instruction instances in Eg that are also in E

and are before i by { %> }+in E. We show that al instruction instances considered above in Eq must be

fully executed in E. Thus, O’ isin Eand O' > Oin E. Suppose not. Choose any first instruction in-
stance by program order that violates the above. Let thisinstruction instance bei.

such aread and O are not in the same loop instance). This modification does not affect the proof of correctness of property

(a) in this appendix because the above control reads are from synchronization loops and therefore cannot be on { 2 }+
paths to O. Thus, such reads are not considered by this proof and so their value does not matter.

43. The modification due to Appendix C does not affect this part of property (a) for reasons similar to that for the first

part.
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Casel:iisnotinE.
Let ¢ be the last (by program order) instruction instance before i in Eg that isin E. Then ¢ must be a

branch instruction, ¢ { 2> }+iin E, and c has a different value in E and E,. But ¢ must be one of
the considered instruction instances; therefore, ¢ cannot have different values in the two executions, a
contradiction.

Case2:iisinE.
Then one of the values of i must be different, or i is distinguished differently. Similar, to property (a),
the difference in values cannot be due to a shared-memory read (because of part (a) of the definition

of ™23 ) So either i must have read the wrong value from a register or private memory that was
updated by a preceding instruction instance, or a preceding instruction instance that distinguishesi is
not fully executed in E. Let this preceding instruction instance be j; inEand j, in E.

Sub-case 2a: j,isnotinE.
Consider the last instruction instance before j, in Eg (by program order) that isin E. This in-

struction instance must be before j; by { 2> }+, returns different values, but must be on the
chosen paths. Then as before thisis a contradiction.

Sub-case 2b: j4 isnotin E.
Then consider the first instruction instance k, before j; in E (by program order) that isin Eg.

Call itk, inEq. ki { 25 }+j; 2> iinE. But then k, must be on one of the chosen paths.
But k; and k, have different values, a contradiction.

Sub-case 2¢: j; and j, arein E and Es.
Then both j; and j, are on a path being considered and so must have the same values. Only
one of them must be last and so i must have same values.
O
Property (c): If R controls an operation O' in E and if O’ > QinE, then Rcontrols O in E.
Proof:

Follows directly from part (b) of the definition of ™. [

Property (d): Consider an instance of aloop such that it does not terminate in E, it terminates in every Eg, and its
termination in Eg depends on the value returned by one or more of its shared-memory reads R that could be in-
volved in arace in some sequentially consistent execution without unessential operations. Then aread of the type
R above that is not the last such read from its loop instance by program order in E must control any operation O in
E such that O is not in R's loop instance and either O is an exit read of a self-ordered loop or O forms arace in
some sequentially consistent execution without unessential operations.

Proof:

Follows directly from part (d) of the definition of "2, [

Property (e): Rcontrols O in E if (i) Ris either an exit read from a self-ordered loop or R is an exit read from a
synchronization loop that forms a race in some sequentially consistent execution without unessential operations,

and (ii) either R “®> O in some sequentially consistent execution, or O could form a race in some sequentially
consistent execution without unessential operations, or O isan exit read of a self-ordered loop.

Proof:

Follows directly from part (€) of the definition of ™®>. O
Property (f): If W, R, and O arein E and E;, W > R = Oison avalid pathin Eg, and the above <> arcis
on the valid path only if Wisthe last conflicting essential write before R (by execution order), thenR > OinE.

Proof:
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Follows directly from part (f) of the definition of "2, O

Property (g): If Risan exit read of a synchronization loop instance that does not terminate in E, R controls W in
E, and Wis not from R's loop instance, then al exit reads in R's loop instance that are from the same static opera-
tion as R control Win E.

Proof:
Follows by inspection and from the assumption stated in the beginning of this appendix. [
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Appendix E: Correctnessof Low-L evel System-Centric Specification of Control Requirement

This appendix proves that the low-level system-centric specification of the control requirement for a generic
SCNF model M (Condition 7.21) is correct. We prove this by proving the following theorem.

Theorem E.1: An execution E of program Prog appears sequentially consistent if Prog isavalid pro-
gram for model M and E obeys the low-level control requirement (Condition 7.21) for model M.

The proof proceeds by assuming that theorem E.1 is incorrect and shows a contradiction. Informally, the
proof first shows that there must be a sequentially consistent execution (say E) that is‘‘similar’’ to Eina‘‘max-
imum number of ways.”” The proof then shows a transformation on Eg that results in another sequentially con-
sistent execution that is similar to E in **more ways”’ than Eg, implying a contradiction. The following first out-
lines the overall structure of the proof and gives some terminology.

Overall Structure of Proof

The proof consists of five main steps. Below, Eg denotes any sequentially consistent execution of program
Prog without unessential operations.

Step E.1: We first define an execution E,, such that E,, has the same result as E, E,, obeys the low-level
control requirement (Condition 7.21) for model M, and the execution order of E,, has some specia proper-
ties.

Step E.2: For every Eg, we define certain types of well-behaved sub-operations in E,,, called ok and semi-
ok sub-operations. In particular, these sub-operations are in Eg as well, and ok reads return the same values
in E,, and Es.

Step E.3: We show that if theorem E.1 is incorrect, then there must be a finite prefix (called Prefix) of the
execution order of E,, such that for every Eg, there is a sub-operation in Prefix that is not ok for E.

Step E.4: Step E.3 implies that there must be an E; for which the number of ok sub-operations in Prefix is
greater than or equal to the corresponding number for any other sequentially consistent execution of Prog.
We pick such an E (called E;). We also show the existence of a sub-operation called K (i) in Prefix that is
not ok for E; but well-behaved in a certain way.

Step E.5: We define a transformation for E; that produces another sequentially consistent execution of
Prog such that al sub-operations in Prefix that are ok for E; are ok for the new execution. In addition, K (i)
is also ok for the new execution. This is a contradiction since E; had the maximum number of ok sub-
operations in Prefix.

Terminology and Notation
We continue to use the terms precede and follow to indicate program order, unless stated otherwise.

Other than the terms precede and follow, unless stated otherwise, all references to an ordering of sub-
operations of an execution (e.g., first, before, after, etc.) pertain to the execution order of the execution. For a
sequentially consistent execution, we also consider an execution order on operations, and the above comment ap-
pliesto operations for such an execution as well.

Below, Eg denotes a sequentially consistent execution of program Prog without unessential operations.
Further, a read of a read-modify-write in E is immediately followed by the sub-operations of its corresponding
write in the execution order of Eg.

R and W denote read and write operations respectively. O, X, Y, and Z denote any operations. We use sub-
scriptsto differentiate between different operations. This appendix also sometimes overloads the above symbolsto
denote sub-operations. The specific usage is either clear from the context, or is applicable to both operations and
sub-operations.

Valid paths refer to valid paths for model M.
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The control requirement refers to the low-level specification of the control requirement (Condition 7.21) for
model M.

Proof of Theorem E.1

Step E.1: Construction of execution Eg,.

Definition : Control+ reads. The control+ reads of an operation in an execution are the reads or-

dered before the operation by the ( 2> )+ relation of the execution. (The ( -2 )+ relation is
specified in definition 7.19.)

Definition : Mate reads and writes: Consider a read R and write W from a read-modify-write in an
execution. Then Risthe mate read of W and W is the mate write of R in the execution.

Definition : <™= relation and CTL reads. In an execution, R <™= O or Risa CTL read of O if

either Risa control+ read of O, or if Rand O are from a synchronization loop and R is the mate read
of O.

Definition : <™ relation: In an execution, R(i) <= O(j) if R <> O, O isawrite, and ei-
ther R returns the value of another processor’s write or Ris a mate read of O.

Recall that the -2~ symbol is overloaded to define a relation on operations and sub-operations. The relation on
sub-operationsisasfollows: X (i) => Y(i)if X(i) and Y(i) conflict and X (i) == Y(i).

CTL*

Lemma E.1.1: Therdation (—— 0O -2 )+ on the sub-operations of an execution is acyclic.
Proof:

Suppose for a contradiction that there is acycle in the relation ( <"~ 0 2> )+ on the sub-operations of

some execution. Viewing the relation as a graph with edges due to <™~ and 2>, consider acyclein-

volving the fewest number of sub-operations. There are two cases discussed below.

Case 1: For every R (i) <> W;(j) onthecycle, R; (2> )+ W,.
Let W(i) = R(i) be one of the => arcs on the cycle. Viewing the relation as a graph, the path
from R(i) to W(i) isacontrol path. The critical set part of the control requirement ensures that R(i)
22> W(i) for all i. Therefore, W(i) = R(i) cannot be on the cycle, a contradiction.

CTL*

Case2: ThereisoneR(i) —— W,(j) onthe cycle such that R, isthe mate read of W;.

Then we have W, (i) == R(i) 2> W,(j) == Ry(j) onthecycle, where W4, Ry, W,, R, are all
to the same location. By the assumptions for valid paths (condition 7.18), it follows that R (i) ==
W, (i). Therefore, W,(i) => W;(i). By the loop coherence part of the control requirement, it fol-

lows that W,(j) ==> W,(j). It therefore follows that W,(j) == Rs(j). Thus, Wy(j) == Ry(j),
implying there is a cycle in the graph with fewer sub-operations than the chosen cycle, a contradic-
tion. O

Lemma E.1.2: There isan execution E,,," of program Prog such that:
(i) E,,' obeys the control requirement for model M.
(if) All components of E,,' except its execution order (i.e., I, O, V, Og in definition 5.2) are the same
asE.
(iii) The execution order of E,, obeys the following properties: (a) if R(i) = W(j) in E,,, then
R(@i) = WO(j)inE,’, and (b) conflicting sub-operations are ordered similarly by the execution ord-
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ersof Eand E,,'.
Proof:

Lemma E.1.1 ensures that there is atotal order on the sub-operations of E that is consistent with the <™~
and => (on sub-operations) relations of E. The finite speculation part of the control requirement ensures

that only a finite number of sub-operations can be ordered before another sub-operation by the <™= rela-
tion. The execution order condition on an execution (Condition 5.3) ensures that only a finite number of

sub-operations can be ordered before another sub-operation by the == relation. It follows that there must

be atotal order on the sub-operations of E that is consistent with the <"~ and - (on sub-operations)
relations of E, and that orders only a finite number of sub-operations before any other sub-operation. It fol-
lows that the new total order qualifies to be an execution order of an execution E,,’ whose other components
are the same as E. Further, this execution order obeys part (iii) of the lemma. To show that E,,' obeys the
rest of the lemma, we need to show that E,,,' obeys the control requirement.

The only constraints of the control requirement are on the order of conflicting sub-operations (i.e., the criti-
cal set part and the loop coherence parts), and on whether certain sub-operations and instruction instances
can be present (i.e., the finite speculation and write termination parts). These aspects are the same for E and
E.,' and so E,,' obeys the control requirement. [

Let E,, be the same as E,, (where E,;,’ is as defined in lemma E.1.2) except that E,,, does not contain any opera-
tions that are unessential in E,,' and are from loop instances that terminate in E,,’. (Correspondingly, E,, does not
contain sub-operations of the above operations or instruction instances that generate the above operations.) By the
loop coherence part of the control requirement and the definition of unessential operations, it follows that E,, isan
execution of program Prog. From lemmaE.1.2, it follows that the result of E,, isthe same asthat of E. Therefore,
E,, does not appear sequentially consistent. The rest of the proof uses the execution E,, to arrive at a contradic-
tion.

Step E.2: Definition and properties of ok and semi-ok sub-operations and operations.

This step defines certain types of sub-operations and operations that we will use throughout the proof, called
ok and semi-ok sub-operations and operations. We use the following definitions and observation.

Definition : For any E, defineitscritical+ paths as follows.

(1) The paths in one critical set of Eg that are also valid paths, and each such valid path (say between
operations X and Y) is the longest valid path in Eg between X and Y. (Such a critical set exists since
Progisavalid program for model M.)

(2) All race paths in Eg between consecutive conflicting operations.

Two conflicting sub-operations are said to be ordered by a critical+ path if their corresponding opera-
tions are ordered by that critical+ path.

Definition : The valid+ paths of E,,, are the following.

(1) Thevalid paths of E,,, such that each such valid path (say between operations X and Y) isthe long-
est valid path in Eg between X and Y and isalso avalid path of E.

(2) All paths of thetype X == Yin E,, where one of X or Y is aread operation.

Two conflicting sub-operations are said to be ordered by a valid+ path if their corresponding opera-
tions are ordered by that valid+ path.

Observation E.2.1: Suppose there isavalid+ path from X to Y in E,,. Further suppose that if the path
is of type (1) above, then either X and Y are from the same processor, or X is a write, or X is a read

that returns the value of its own processor’swritein E. Then X (i) <> Y(i) for al i in Ep,.
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Proof: For paths of type (1), the observation follows directly from the valid path requirement (Condi-
tion 7.16). For paths of type (2), the observation follows directly from the definition of =>. O

Definition : The critical + operation before operation Y in Es is the last operation before Y in Eg that
has a critical+ path to Y in E;. If X isacritica+ operation before operation Y in Eg, then X(i) isthe
critical+ sub-operation before Y(i) in Eg (assuming both X (i) and Y (i) are defined).

Definition : Reasonable sub-operations: A sub-operation Y (i) in E,, is reasonable for Eg if it obeys
the following:

(1) Yisan essential operationin E,.

@ Y()isinEs.

(3) If thereisacritica+ path from X to Y in Eg, then there is avalid+ path from Xto Yin E,, and X is
essentia in Ep,.

Definition : Ok sub-operations:

A write sub-operation in E,, is ok for Eg if it is reasonable for Eg, its control+ reads in E,, are ok for
E,, and the last conflicting write sub-operation before it in Eg is ok for Eg.

A read sub-operation in E,, isok for Eg if it isreasonable for E, its control+ reads in E;,, are ok for Eg,
the critical+ write sub-operation before it in Eg is ok for Eg, and the last essential conflicting write
sub-operation beforeiit in E,, is ok for E.

We will show later that the above definition of ok sub-operations unambiguously defines each sub-operation as ok
or not ok.

Definition : Ok operations: An operation in E,, is ok for Eg if al its sub-operations in E,, are ok for
Es.

Definition : Semi-ok sub-operations and operations. A sub-operation O (i) or an operation O in E,
are semi —ok for E; if the control+ reads of O in E,,, are ok for E.

Properties of ok sub-operations:
LemmaE.2.1 describes the properties of ok sub-operations. It uses the following definitions.

Definition : Special read: A read Rin Eg isa special read for E; if there isacritical+ path from some
Wto R (in E) of the typein definition C.2 of Appendix C. Call this critical+ path a special critical+
path for R.

Definition : Bad read-modify-write: Consider a special read Rin Eg. Let the special critical+ path for
R be from W to R. Then for every W; between W and R (in E;) that writes an exit value of R in Eg,
there must be a read-modify-write immediately after W, (by definition C.2 of Appendix C). Call
such read-modify-writes and their constituent operations and sub-operations in Eg as bad for R.

Lemma E.2.1: Below, ignore all unessential sub-operations in E,,. Below, we use R, W, etc. to represent sub-
operations.
(1) Consider awrite Wthat isin Eg and E,,, and ok for Es. Then all writes that conflict with W and are be-
fore Win Eg are in E,,,, are ok for Eg, and are before Win E,, in the same order asin E. Further, the opera-
tion of Wisalso ok for Eg.

(2) Consider awrite W that isin Eg and E,,, and ok for Eg. If there are writes that conflict with W and are
before Win Eg, then all sub-operations of al these writesand W are in E,.

(3) Consider aread Rthat isin Eg and E,,. If the last write W before R in E;,, that conflicts with Ris ok for
Es, then Wisbefore Rin Es.
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(4) Consider aread Rthat isin Eg and E,,,, isok for Eg, and is an exit read of a synchronization loop. Then
the exit values of R and the corresponding values to be written by the write of R's read-modify-write (if
any) are the samein E,, and Es.

(5) Consider aread Rthat isin Eg and E,,,, and is ok for E;. Then the last write before R that conflicts with
Risthe samein E;, and Eg (and so R returns the same value in E,, and E;), or Ris a special read in Eg such
that the following is true. The last write W before R in E,, that conflicts with R is before R in Eg, the
conflicting write immediately after Win Eg is bad for Rin Eg, and the read of the bad read-modify-write is
either not in E,,, or isnot ok for E;.

(6) Consider aread Rthat isin Eg and E;,, and is ok for E;. If R returns the value of an unessential write in
E, then the write is from a different processor in E.

Proof:

For a contradiction, consider the first sub-operation O in E that violates the conditions of the lemma. There
are six cases depending on the part of the lemmathat is violated.

Case 1: O violates part (1) of the lemma.

Let W; be the last write in Eg before O that conflicts with O. There must be a critical+ path from W,
to O in Eg and so there isavalid+ path from W, to O in E,,. Therefore, by observation E.2.1, W must
be before O in E,. Since O is ok for Eg, W must be ok for Eg too (by definition of ok sub-
operations). By assumption, W; obeys the lemma. Therefore, al conflicting writes before W; in Eg
are ok for Eg and in the required order before W; in E,,,. It follows that O cannot violate the first part
of part (1) of the lemma. For the second part, since W is ok and obeys the lemma, it follows that all
sub-operations of the operation of W; are ok. It immediately follows that all sub-operations of the
operation of O are ok and so the operation of O is ok, proving the second part.

Case 2: O violates part (2) of the lemma.

The proof for this case is similar to that for Case 1 asfollows. Let W; be the last write in Eg before O
that conflicts with O. There must be a critical+ path from W; to O in E and so there is avalid+ path
from W, to Oin E,,. Therefore, by observation E.2.1, all sub-operations of W, and O arein E;. Since
O is ok for E;, Wy must be ok for Eg too (by definition of ok sub-operations). By assumption, W
obeys the lemma. Therefore, all sub-operations of all conflicting writes before W; in Eg are in E,,. It
follows that O cannot violate part (2) of the lemma.

Case 3: O violates part (3) of the lemma but not part (6).

O must be aread R, the last write sub-operation before Rin E,, that conflicts with R (say W,,) must be
ok for E5, and W,,, must be after Rin E;. Let the first write that conflicts with Rand is after Rin E be
W (W5 may be the same as W,,,). The following first derives two facts that must be true for this case,
and then shows that they lead to a contradiction.

Fact (a): R does not return the value of its own processor’s writein E.

W, is after Rin Eg and before R in E,;,; therefore (by the assumptions for valid paths and the
valid path requirement), W,,, cannot be from the same processor as R. Therefore, if R returns
the value of W,,, in E, then R does not return the value of its own processor’s write in E. Other-
wise, R returns the value of an unessential write in E. Since R does not violate part (6), it fol-
lows that R returns the value of another processor’s writein E.

Fact (b): W; must be before Rin E,,, and is ok for E..

If W is the same as W,,,, then W is ok for E5 and before R in E,, (by the statement for this
case). Otherwise, by the proof in Case (1) above, W must be ok for Eg and must be before W,
in E,,. Therefore, in all cases, Wy isok for Eg and must be before Rin Ej,,.

We show next that facts () and (b) lead to a contradiction. There must be a critical+ path from R to
W, in E;. Since W; is ok for Eg (by fact(b)), it follows that there is a valid+ path from Rto W in E,,.
Since (by fact (a)) R does not return the value of its own processor’s write in E,,, it follows (from ob-
servation E.2.1) that R must be before W; in E,,. This contradicts fact(b) above. Thus, O cannot
violate part (3) of the lemma.
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Case 4: O violates part (4) of the lemma.

Below, we use the term ‘‘exit values'’ of an exit read to refer to the exit values that the read needs to
return to exit the loop, and to the values that the write of the read’s read-modify-write (if any) will
write corresponding to an exit value of the read. By property (&) of the control relation, if all control
reads (except possibly specia reads) of O in E,, are in Eg and return the same value in E,, and Es,
then the exit values of O are the samein Eg and E;,,. Since O is ok for Eg, all control reads of O in E,
are ok for E. It follows that al control reads of O are in E (by definition of ok sub-operations).
These reads must be before O in Eg. Therefore, they obey the lemma and so a control read of O in E,
either returns the value of the same write in Eg and E,, or is a special read in Es. It follows that the
exit read and exit write values of O must be the samein E5 and E,;,.

Case 5: O violates part (5) of the lemma.

Then Oisaread R. Let the last write before R in E,,, that conflicts with R be W,,,. Then W, is before
Rin E; (by the proof of part (3)), and W, is ok for E; (by definition of ok sub-operations). Let the
last write before R in Eg that conflicts with R be W;. Let the critical+ write before R in E; be W,.
Then W, is before R in E,, (by observation E.2.1) and W, is ok for Eg (by the definition of ok sub-
operations). Only the following cases are possible.

ub-case (5a): W, isthe same as W.
The lemmafollows directly.
Sub-case (5b): W, is not the same as W, W is the same as W.
Then W; is ok for E5 and before R in E,,. Therefore, W is before W, in E;. We have seen

above that W, is before R and so before W in E5. But then for W to be ok for Eg, part (2) of
the lemma requires that W, be before W; in E;,,, a contradiction.

Sub-case (5¢): W, is not the same as W;, W, is not the same as W,

Then R must be from a self-ordered loop. We show in the following three paragraphs that R
must be a specia read in Eg, and there is a bad read-modify-write for R after W, in Es.

There are two possible cases: W, is different from W,,, or W, isthe same as W,,. The fol-
lowing two paragraphs examine these cases.

Suppose W, is different from W,,,. Then W, must be before W,, in E (because both are
ok for Eg, W, is before R in E,, and so W, is before W,,, in E,)). W, writes the same
valuein E, and E5 (since W,,, isok). Thisvalueisan exit value for Rin E,,;; therefore by
part (4) of the lemma, thisvalue is also an exit value for Rin E;. Thisimpliesthat Risa
special read in Eg and there is a bad read-modify-write for R after W, in Es.

Suppose W, is the same as W,,,. Then again W,,, writes an exit value for Rin Eg. Since Wi,

is the critical+ write for Rin Eg and W,, is not the same as W in E;, it follows that R

must be a special read in Eg and there is a bad read-modify-write after W, for Rin Es.
Thus, we have shown so far that Ris a specia read for Eg, W,, is before Rin Eg, and thereisa
bad read-modify-write for R after W,, in E;. Denote the read and write of the bad read-
modify-write by R, and W,. If R, isnotin E,, or not ok for Eg, then the proposition is proved.
Therefore, assume that R, is ok for E;. There are two cases depending on whether R, is after
W, in E,, or not.

Sub-case (5¢1): R, isafter Wy, in Ep,.
Let R's processor be P; and R,’s processor be P;. Let RsmatebeW. In Ep, R(i) ==
W(j) (by construction of E,).
First note that R,(j) cannot be between R(i) and W(j) in E,, as proved in the following
paragraph.
Suppose R,(j) is between R(i) and W(j). Then by the definition of an execution,

W,(j) must be before W(j) (otherwise, W(j) is between R,(j) and W,(j) violating
the condition for read-modify-writes). But then by loop coherence, W,(i) must
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also be before W (i) in E,. But W(i) is after R(i) in E,. Thus, W,(i) is between
R(i) and W(i). Thisis not allowed by the definition of an execution.

Similarly, R(i) cannot be between R, (j) and Ws(i).

We divide the rest of the argument of this sub-case into two further sub-cases depending
on whether R,(j) isbefore or after R(i) in E,, asfollows.

Suppose R,(j) isbefore R(i) in E,,,. Then W, (i) must also be before R(i) in E,,. Further,
since R,(j) is after Wi,(j) and W(j) is after R,(j), it follows (by the loop coherence part
of the control requirement) that W(i) is after W,,(i) in E,,. Therefore, W,(i) must be
between W,,,(i) and R(i) in E,,. Thisisa contradiction since W,(i) isthe last conflicting
write before R(i) in E,.
Suppose R,(j) is after R(i) in E,,. Then it must be after W(j) in E,,. By definition of a
special read and its bad operations, the value written by W(j) is not an exit value for R,
in Es. By part (4) of the lemma, the value of W(j) is not an exit value for R, in E, as
well. Therefore, there must be another write W3(j) between W(j) and Rx(j) in E,,, and
W3 conflicts with R,. Since R, is ok for Es, by part (3) of the lemma, the last such W,
must be ok for Eg and must be between W,,, and R, in Es, a contradiction.

Sub-case (5¢2): R, isbefore W, in E,.
Then since by assumption, R, obeys the lemma, it must be that there is a bad read-
modify-write before R, (and before W,,) in Eg such that the read of that bad read-
modify-write is not ok for E;. The read of the bad read-modify-write is a control read of
its mate (by property (e) of the control relation); therefore, the write of the bad read-
modify-write is not ok, and the write is before W,, in Es. But then by part (1) of the lem-
ma, W,,, cannot be ok for Es, a contradiction.

Case 6: O violates part (6) of the lemma.

O must be aread that returns the value of an unessential write W in E, and this write is from the same
processor as O. Recall that a synchronization loop with an exit read-modify-write is allowed to have
only a single exit read; further, the value written by an exit write is the same as that returned by the
read of its read-modify-write. From the above observations and because O is essentid in E, it follows
that O cannot be from the same synchronization loop as W. |If W' s loop instance terminates in E, then
there must be another write between W and O in E corresponding to the read that returned the exit
value. Thus, O cannot return the value of Win E. If W sloop does not terminate in E, then there are

infinite writes to the same location as O and all of these writes are before O by *> in E. By the
valid path requirement, al the sub-operations of the infinite writes that conflict with O's sub-
operation must be before O in E, a contradiction to the execution order condition (Condition 5.3).
This covers all the sub-cases for thiscase. [J

Properties of semi-ok sub-operations:

Lemma E.2.2: Consider an operation O in E,, that is semi-ok for E;. Let operation O’ be such that O' “*- Qiin
E,. ThenOand O' areinE; and O’ is semi-ok for Es.

Proof

By property (@) of the control relation, if al control reads of O in E,, are in Eg and return the same value in
E,, and E; (with the possible exception of special reads), then O isin Es. All control reads of O in E,, are
ok for E5. By Lemma E.2.1, all of these reads are in Eg, and all of these reads except possibly some special
reads in Eg return the same value in E;, and Eg. It followsthat O must bein E;.

By property (c) of the control relation, all control+ reads of O' in E,, are control+ reads of O in E,,. These
reads are ok for E;. It followsthat O' issemi-ok for E.

Lemma E.2.3: Consider an operation O in E,, that is semi-ok for Eg and an operation O’ that is before O by >
in Eg. Then, O' isin E;, and O’ is semi-ok for Es.
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Proof:

By property (b) of the control relation, if all control reads of O in E, are in Eg and return the same value in
E,, and Eg, then O' isin E,,. All control reads of O are ok for Es. They are therefore in Eg, and all but the
special reads return the same value in E,, and E;. By the argument in lemma E.2.2, the value of a special
read cannot affect whether an operation will be executed as long as the loop of the specia read terminates.
It followsthat O' isin E,,. By property (c) of the control relation, it follows that all control+ reads of O' in
E,, are also control+ reads of O in E,,. Therefore, al control+ reads of O’ are ok for E;. It followsthat O'
issemi-ok for Eg. O

Lemma E.2.4: If Xin E,, is non-semi-ok for Es, then there must be a control+ read of X in E, that is semi-ok and
non-ok for E.

Proof:

There must be some control+ read of X in E,, that is non-ok for Es. Consider the first such read R by pro-
gram order in E,,,. Then the control+ reads of R are also control+ reads of X, which are ok for E;. There-
fore, the control+ reads of R are ok for Eg, and so R is semi-ok for Eg, proving the proposition. [

Lemma E.2.5: Consider aread Rthat isin Eg and E,, and is semi-ok for Es. If R returns the value of an unessen-
tial write in E, then the write is from a different processor in E.

Proof:
The proof isidentical to that for Case 6inlemmaE.2.1. [

We next show that the definition of ok sub-operations unambiguously defines each sub-operation to be ok or not
ok. Suppose for a contradiction that there is an ambiguous sub-operation in E,,. Then it must also be in Eg; other-
wise, it isnot ok. Consider the first sub-operation O in E that is ambiguous. (Note that determining whether cer-
tain valid+ paths exist in E,, and whether an operation is essential in E,, is unambiguous. Therefore, an ambiguity
arises only if disambiguating a sub-operation requires determining if another operation is ok.)

Suppose O is awrite. Then the decision of whether O is ok depends only on sub-operations before O in Es.
All the sub-operations before O are unambiguously known to be ok or not ok; therefore, O cannot be ambi-
guous, a contradiction.

Suppose O isaread. Then the decision of whether O is ok depends only on sub-operations before O in Eg
and on whether the last essential conflicting write sub-operation (W,,) before O in E,, isok. ThusOisam-
biguous only if W,,, is ambiguous. This is possible only if W, isin E5 and is after O in E;. However, by
lemmaE.2.1, if W,,, isO in Eg, then W,,, cannot be ok. Thus, O cannot be ambiguous.

Step E.3: A finite prefix (Prefix) of the execution order of Em.44

Let the finite part of E,, be the operations that do not follow infinite operations in E,,. (Recall that follow refers to
program order.)

Lemma E.3.1: There must be afinite prefix of the execution order of E,, such that for every E, thereis at least one
essential sub-operation O in the prefix that is not ok for Eg. Further, if O isaread, then it is from the finite part of
En.

Proof:

Assume that there is no finite prefix of the execution order of E,, of the type mentioned in the lemma. Then
for any finite prefix of the execution order of E,,, there exists an Eg such that all essential reads in the prefix
from the finite part of E,, and all essential writesin the prefix are ok for E;. We show that then E,,, must ap-
pear sequentially consistent, a contradiction. We show this through a series of results as follows. (Results
2, 3, 4, and 5 are relevant only if E,,, obeys the modified uniprocessor correctness condition of Appendix B,
but not the unmodified condition in Chapter 3.)

44, The use of the term prefix in this appendix is unrelated to that of Chapter 8 or appendix I. This appendix uses prefix
to imply an initial sub-sequence of the execution order such that if O isin a prefix, then all sub-operations before O in the
execution order are also in the prefix.
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Result 1: Consider an essential operation W in E,, such that W(i) is not in E,,. Then there cannot be any
essential operation O in E,, such that O(i) could conflict with W (i), and O is either a read from the finite
part of E,, or awrite.

Suppose for a contradiction that there is an O as described above. If there is a write that qualifies for
O, then choose O to be awrite. Consider the prefix of the execution order of E,, that consists of the
sub-operations of O and W in E,,,. If O can be a specia read, then include the sub-operations of the
mate W, of O as well. Then there is an E; for which the sub-operations of O, W and W, are ok.
There are three cases as follows.

Case 1: Thereisacritical+ path between O and Win Es.

Then there must be avalid+ path between O and Win E,,. From observation E.2.1, either W (i)
isin E,, or O isaread that returns the value of its own processor’s write W, in E,. The former
case isacontradiction. The latter case is also a contradiction since it requires W, to be chosen
asO.

Case 2. O and W are consecutive conflicting operations in Eg and there is no critical+ path between O
and Win Eg.

O must be aread from a self-ordered loop and W must write an exit value of O in E;. By as-
sumption, W is the only essential write in E,,, that conflicts with O. Therefore, O cannot be a
special read in E;. From lemma E.2.1, the last conflicting write sub-operation before O’s sub-
operation must be the same in E;, and E;. It follows that W (i) must be in E,,, a contradiction.

Case 3: O and W are not consecutive conflicting operations, and O is before Win Es.

There must be a conflicting write between O and Win E;. From lemmaE.2.1, it follows that all
sub-operations of W must be in E,,,, a contradiction.

Case 4: O and W are not consecutive conflicting operations, and O is after Win Es.

If O isawrite, then again from lemmaE.2.1, it follows that all sub-operations of O and W are
in Ey, acontradiction. Therefore, O must be aread. We know by lemmaE.2.1 that if O is not
a specia read in Eg, then the last conflicting write before O in E; must be ok for Eg. Therefore,
it follows that all sub-operations of W are in E,,,, a contradiction. If O is a special read in Eg,
then itsmate is ok for E; therefore, again all sub-operations of W are in E,,, a contradiction.

Result 2: Consider a loop instance L in the finite part of E,, such that L does not terminate in E,, but ter-
minatesin every E5. Further, L isnot a synchronization loop (that is exploited by model M in the sense dis-
cussed in Section 7.4). Then there are infinite reads in E,, that determine the termination of L in some
sequentially consistent execution and form arace in that execution.

Suppose there is a loop instance L by processor P; that does not obey the above result. Let the
number of possible states of a processor be NS Consider a sequentially consistent execution of Prog,
Esq, such that all essential operations of P; in E,,, until and including the first NS+1 iterations of L (as
ordered by program order) are ok for Eg;. (Such an Eg; is possible because there is afinite prefix of
the execution order of E,, that contains the operations of P; until and including the first NS+1 itera-
tions of loop L in E,,,.) It follows that all the first NS+1 iterations of L must bein Eg;. Suppose none
of the reads that determine the termination of L in Egq form aracein Eg;. Then the termination of L
depends only on the internal state of the processor at the beginning of each iteration, and the state of
shared-memory at the beginning of the first iteration. The state of the processor at the beginning of an
iteration must be the same for at least two of the first NS+1 iterations of L in Eg;. However, thisim-
plies that loop L cannot terminate in Egq, a contradiction. Thus, the termination of L in Eg; must
depend on aread R; which isinvolved in arace in E5, and thisread must be in E;,,. Let the number
of iterations of L in Eg; be N1. Next consider a sequentially consistent execution of Prog, Es,, for
which the number of iterations of L in E, that are ok is at least N1+NS+1 or 2NS+1, whichever is
greater. Applying the same reasoning as for Eg;, there must be arace read in Eg, different from Ry
that determines the termination of loop L and isin E,. Extending this argument, it follows that there
are infinite reads in E,, that determine the termination of loop L in some sequentially consistent exe-
cution and form arace in that execution.
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Result 3: There cannot be a write in the infinite part of E,, that forms a race in some sequentially consistent
execution (without unessentials).

Suppose for a contradiction that there is a write W in the infinite part of E,, that forms arace in some
sequentially consistent execution (without unessentials). There must be a loop instance L preceding
Win E,, such that L does not terminate in E,,.

L must be guaranteed to terminate in all sequentially consistent executions; otherwise, by the finite
speculation part of the control requirement, W cannot be in E,,,.

If L isfrom a synchronization loop such that if at least one exit read of the synchronization loop isin-
volved in arace or if the loop is self-ordered, then by property (e) of the control relation, the infinite
exit reads of L control W in E,,,, a contradiction to the finite speculation part of the control require-
ment. Note that if L is from a synchronization loop, but the loop does not obey the above properties,
then the synchronization loop cannot be exploited by model M in the sense discussed in Chapter 7.4.

Then by result 2 and property (d) of the control relation, there are infinite reads that control Win E,.
This violates the finite specul ation part of the control requirement, a contradiction.

Result 4: If X and W conflict in E,, X isin the finite part of E,,, Wisin the infinite part of E,, and X and W
are both essential in E,, then X (i) => W(i) for al i in Ep,
Suppose there are X and Win E,, that do not obey the above result. Consider the first sub-operation in
E,, that qualifies for X and consider a corresponding W. Let the processor that executes X be P;.

From result 1, we know that W(i) isin E,. By result 3, W cannot form a race in any sequentially
consistent execution of Prog.

Consider a prefix of the execution order of E,, that contains all sub-operations of W and X and the fol-
lowing. If X could be a special read in any E, then the prefix contains all sub-operations of the mate
of X. The prefix also contains al sub-operations of all essential operations from the finite part of E,,

that are ordered before X by ( 2> 0O =5 )+ of E,,. Call X and the set of essential operations from

the finite part of E,,, that are ordered before X by ( > 0O 2> )+ of E,, asset S There must be an
E; such that all essential write sub-operations of the above prefix and all essential read sub-operations
of the above prefix that are from the finite part of E,, are ok for E;. Consider this Eg below.

X (i) must be ok for Eg, and so W(i) =>> X(i) in Eq and W and X are consecutive conflicting opera-
tionsin E;. Further, W and X cannot form arace in any sequentially consistent execution. Therefore,

there must be a path from W to X consisting of alternating -~ and W; > R, arcsin Eg, where
W, and R, form arace in some sequentially consistent execution of Prog. We show below that all
operations on the above path must be from the finite part of E,,, must be from set S and all their sub-
operations must be ok for Eg, a contradiction since W is not from the finite part.

Suppose there is some operation on the above path that is not from the finite part of E,,, or is not
from set S or whose sub-operations are not all ok for E;. Consider the last such operation O on
the path. There are two cases discussed below.

Suppose O is the first operation of a *> arc. Then the next operation on the 2> arcisin
the finite part of E,, and from set Sand all its sub-operations are ok for E5. If Oisin E,, then
O must be in the finite part of E,, and so isin Sand al its sub-operations are ok for Eg, a con-
tradiction. Therefore, O must not be in E,,,. But then some read in E; that isin E,, and in the
finite part of E,, and in Sisnot ok for Eg, a contradiction.

Suppose O isthe first operation of a > arc. Then the next operation on the arc (and its mate
if it isaspecial read) is ok for Eg and in Sand in the finite part of E,,. 1t follows that O must be
in E,,. Further, O forms a race in some sequentially consistent execution and it is a write;
therefore, O cannot be in the infinite part of E,,, (by result 3). Therefore, O must also bein Sand
isok for Eg, a contradiction.

Subsequent results use the following definition.
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Definition : Consider an unessential read Rin E,,,. If there isawrite sub-operation in the finite part of
E,, such that this write and all conflicting writes after this write in the finite part of E,, write exit
values for R in E,, then call the operation of the first such write sub-operation in E, as the stable
writefor Rin E,,. If thereisno such write, then the stable write for R is undefined.

Result 5: Consider an unessential read sub-operation R in the finite part of E,, that (in E;,,) conflicts with an
essential write sub-operation in the infinite part of E,,. Then there must be some exit read R, of the loop in-
stance of R such that the stable write of R isnot defined in E,,.

Suppose, for a contradiction, that in E,,, there is a read that violates the above. Let R be such aread
that is the first such read of its processor (say P;). Let W be the first essential write sub-operation in
the infinite part of E,, that conflictswith Rin E,,. By result 3, W cannot form arace in any sequential-
ly consistent execution (without unessentials) of Prog.

Consider a prefix of the execution order of E,, that contains all sub-operations of W, R, the stable
write for R in E;,, the stable writes in E,, for all exit reads in R's loop instance that precede R, the
mate write for Rin E, (if any), and all sub-operations of all essential operations from the finite part of

E,, that are ordered before the above listed operations by ( 2> 0O = )+ in E,,. Let the set of
above mentioned operations be called the set S

There must be an E; such that all essential write sub-operations of the above prefix and all essential
read sub-operations of the above prefix that are from the finite part of E,, are ok for Eg and an itera-
tion of the loop instance of Risin E;. Consider such an E; that additionally also obeys the following:
E; should have the minimum possible number of reads such that the read is R or an exit read of the
loop instance of R that precedes R, and a conflicting write before thisread in Eg isnot in S. Call the
above conditions on E5 the minimality conditions for Es.

From Result 3, W and R cannot form a race in any sequentialy consistent execution. Further, since
all sub-operations of W must be ok for Eg, W cannot be after R in Eg because R is unessential in E,,.
Therefore, W must be before Rin Eg. Similarly, all stable writes of all exit reads of R's loop instance
that precede or include R are before the corresponding exit reads in E5. Further, suppose in Eg, W'

> R where R’ is€ither Ror an exit read of R’ s loop instance that precedes Rin Eg, and there is no
path from W' to R’ in the program/causal-conflict graph (see figure 4.2 for the definition) of Eg that
contains at least one program order arc. Then the minimality conditions for E; mentioned above im-
ply that W' must be from S. (Otherwise, there is another sequentially consistent execution that obeys
the minimality conditions on E5 and where R’ is before W', thereby implying that the original Eg does
not obey the minimality conditions.) Call the above the minimality inference.

Consider the last conflicting write W' before R. If W' isfrom Sand is not W, then W' is from the finite
part of R and is essential in E,. Therefore, W' must be ok for Es. Further, W is before W' in Es.
Therefore W must be before W' in E,,,. By result 4, it follows that W cannot be from the infinite part, a
contradiction.

If W isfrom Sand is W, then since W and R cannot form arace in any Eg, it follows that there must
be a path from W to R consisting of aternating > and W; > R; arcsin Eg, where W; and R;
form arace in some sequentially consistent execution (without unessentials) of Prog.

If W' is not from S then from the minimality inference, it follows that there must be a path from W'
to R consiting of aternating > and W; > R; arcsin Es, where W; and R, form arace in
some sequentially consistent execution (without unessentials) of Prog.

Thus, it follows that either W' is not from Sor it isW, and there is a path from W' to R consisting of

aternating - and W; > R; arcsin Es, where W, and R, form arace in some sequentially con-
sistent execution (without unessentials) of Prog. However, using the minimality inference and rea-
soning similar to that for result 4, we can show that all operations on the above path must be from S
and must be from the finite part of E;,,, a contradiction.
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Result 6: There is no cycle in the program/conflict graph of E,, that involves only essential operations from
the finite part of E,,.

Suppose there is a cycle in the program/conflict graph of E,, that involves only essential operations
from the finite part of E,,. Then one such cycle must be finite since there are only a finite number of

processors, *- istransitive, and there can be only a finite number of operations ordered before any

operation by . Consider the prefix of E,, that consists of all the sub-operations of all operations
on the above cycle. Further, if there are any reads on the cycle that could be specia in some Eg, then
include the sub-operations of their mates in the prefix as well. There must be an Eg where all of the

above sub-operations are ok for E. Therefore, all > arcs on the above cycle are also => arcsin
E;. Thisimpliesacyclein the program/conflict graph of Eg, a contradiction.

Result 7: There isatotal order T on the essential operations of the finite part of E,, such that any finite prefix
of thistotal order isthe prefix of an execution order of a sequentially consistent execution.

From result 6, there is a total order on the essential operations of the finite part of E,, such that the

order is consistent with > and > of E,,. Consider any finite prefix of this order. All reads in
the prefix that are essential reads in the finite part of E,, return the value (in E,,) of the last conflicting
write as ordered by the above total order (from result 4). Thus, this prefix represents the prefix of an
execution order of an execution. Thisorder can be continued to represent an execution where all sub-
sequent operations appear in program order and all sub-operations of a specific operation appear to-
gether. An execution with such an execution order obeys Condition 7.12 since it obeys the finite
speculation and termination assumptions, and any two operations ordered by an ordering path are
present in the execution order in the same order as the ordering path. This proves the above result.

Result 8: Consider an essential operation W in the finite part of E,, such that W(i) isnot in E,,, and thereisa
conflicting unessential read R(i) in the finite part of E,,. Then there must be some exit read R, of the loop
instance of R such that the stable write of R; is not defined in Ep,.

Suppose, for a contradiction, that thereisaR(i) in E,, and a W that violates the above. Let R be such
aread that is the first such read of its processor. By result 1, there cannot be any other essential write
that conflictswith Win E,,. Also, all exit reads of R’ sloop must have a stable writein E,,.

Consider the prefix of the total order T (T is defined in result 7) that contains W and all essential
operations of R's processor before R and the stable writes of al exit reads of R's loop. By result 7,
there is a sequentially consistent execution E5 where the above prefix of T is the prefix of the execu-
tion order of E5. There must also be an E; such that the operations immediately after the above prefix
in Eg are the exit reads of R's loop until R. These must all be essential since they all have stable
writes. Further, by the termination part of the control requirement, there should be a valid path from
Wto Rin Es. But then one such path must be in E,, as well, and so by the valid path requirement,
W(i)isin Ep,.

Result 9: There are no unessential operations in the finite part of E,,.
Suppose there is an unessential read Rin the finite part of E,,,.

Note that there is no stable write for at least one of the exit reads of R's loop. Otherwise, in E,,, by
result 5, all the exit reads of R'sloop should have returned values from the finite part of E,,. But then
all these reads should have returned exit valuesin E,, and so R should not be unessential, a contradic-
tion.

We identify two types of unessential exit reads in Eg that do not return their exit values in E;,, and for
which there is no stable write in E,,. For atype 1 read, the number of writes that conflict with the
read in thefinite part of E,, isfinite. For atype 2 read, the number of writes that conflict with the read
in the finite part of E,, isinfinite. Further, since there is no stable write for the type 2 read, note that
the number of writes in the finite part of E,, that write non-exit values for the read must also be
infinite.

Consider the total ordering T defined in result 7. To this ordering add the unessential operations of
the finite part of E,, as follows. Consider the above unessential operations of a specific processor in



183

program order below. If the operation O is an exit read of type 1, then place it anywhere in T after
the last unessential operation placed for this processor and after the last conflicting essential write W,
make O return the value of write W. If the operation O is an exit read of type 2, then place it any-
where in T after the last unessential operation O’ placed for this processor and after the first write W
that conflicts with O and is after O’ and writes a non-exit value of O (recall there are infinite such
writes); make O return the value of W. If the operation O is any other operation, then insert it im-
mediately after the previous operation of its processor by program order in the new total order; if itis
aread, make it return the value of the last conflicting write before it in T; if it is a write from an exit
read-modify-write, then make it write the value its read returns.

The total order generated above is an execution order of a sequentialy consistent execution. In this
execution, an exit read of type 1 or type 2 always returns a non-exit value and so the loop cannot ter-
minate. However, a synchronization loop must terminate in all sequentially consistent executions, a
contradiction.

Thus, there are no unessential operationsin the finite part of E,,.
Result 10: E,, appears sequentially consistent.

Consider the total order T defined in result 7. Then this order is an execution order of some execu-
tion. This execution obeys the finite speculation and termination assumptions of Condition 7.12.
Further, two operations ordered by an ordering path are similarly ordered by the execution order of
this execution. Thus, this execution is sequentially consistent. Call it Es. All reads from the finite
part of E,, are in Eg and return the same value in E; and E,,. Therefore, any loops in the finite part of
E,, that do not terminate in E;,, must also not terminate in Eg. It follows (from the finite speculation
part of the control requirement) that there cannot be any instructions that access the output interface
in the infinite part of E,,. Thus, Eg and E,, have the same result. Therefore, E,,, appears sequentially
consistent.

Lemma E.3.2: There must be a finite prefix, Prefix, of the execution order of E,,, such that for every Eg, there is at
least one essential sub-operation O in Prefix that is not ok for Eg but is semi-ok for Eg. Further, all control+ reads
of all writes before and including O in E,,, are in Prefix.

Proof:

From the previous lemma, there must be some finite prefix, Prefix’, of the execution order of E,,, such
that for every Eg, there is at least one essential sub-operation Ogg in the prefix that is not ok for Es.
Further, if Ogg isaread, then it isin the finite part of E,,. Consider the prefix of the execution order
of E,, that contains Prefix'. Further, for every Es, the prefix should also contain all the control+ reads
of the corresponding Ogs in E,,, and all the control+ reads of awrite W that is before Ogg or before a
control+ read of Ogg in E,,. The number of control+ reads for any write is finite (by the finite specu-
lation assumption); the number of control+ reads for any read in the finite part of E;,, must also be
finite (by definition of the finite part). Thus, a prefix of the execution order of E;, that contains all of
the above sub-operations must be finite. We show below that this prefix qualifies for Prefix defined in
the lemma.

Consider any Eg and the corresponding Ogs. If Ogg is semi-ok for Eg, then it qualifies as O for the
lemma. If Oggisnot semi-ok for Eg, then by Lemma E.2.4, there must be a control+ read R of Oggin
E,, that is semi-ok for Eg but not ok for E;. Theread Risin the above prefix. If Oggisaread, then R
isclearly essential since Ogg must be in the finite part and is essential. If Oggisawrite, then again R
must be essential; otherwise, by property (g) of the control relation, the finite speculation part of the
control requirement isviolated. Thus, R qualifiesas O for the lemma. O

Below, we consider the prefix called Prefix defined by the above lemma, but ignore al unessential sub-operations
in Prefix. Henceforth, when considering E,,,, we also ignore all the unessential sub-operations of E,, in Prefix.



Step E.4: Construction of E; and existence of a non-ok K (i) with special properties.

Consider an Es, called E4, such that the number of sub-operations in Prefix that are ok for E4 is the max-
imum for any Es. We later show that there must be another E; such that all sub-operations in Prefix that are ok for
E, are ok for Es. Further, one more sub-operation from Prefix is ok for E;. This is a contradiction. This step
picks a candidate for the additional ok sub-operation. We use the following definition and lemmas.

Definition : Good valid+ paths ( -22>) for E:

Consider an operation Y that isin E, and E;. We say that X 2> Yin E, if thereis acritical+ path
from X to Yin E; that obeys the following.

(1) Fora—=> arc on the path, the operations on the arc are in E,,, and are similarly related by =
of Eg.

(2) For a = arc on the path, the operations on the arc are in E,,.

(3) All operations on the path are semi-ok for E;.

(4) Suppose W => R arcs exist on the path such that W needs to be the last essentia conflicting

write before R or R needs to return the value of another processor’s write, then the above properties
are obeyed by Rin E aswell.

(5) If Xisaread that returns the value of its own processor’s write in E,, then X(i) 2> Y(i) for al i
in Eq,.

LemmaE.4.1: If X 22> Yfor Eq, then X(i) == Y(i) in Ep.

Proof:
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Properties (1)-(4) of agood valid+ path and the assumptions for a valid path (condition 7.18) imply that the
path is a valid+ path in E,, aso. From the valid path requirement and from property (5) above, it follows

that X (i) 2> Y(i)foraliinE,. O

Lemma E.4.2: There must be at |least one non-ok sub-operation, Y (i), in Prefix such that

Proof:

(@) Y(i) issemi-ok for Eq,
(b) there is acritical+ path from X to Yin E,, but thereisno 22> path from Xto YinE,, and
(c) if Y(i) isaread, then the last conflicting write sub-operation before it in E,, isok for E;.

The proof considers three exhaustive cases below. Note that a sub-operation in Prefix that violates property

(3) for reasonable sub-operations obeys property (b) of the current lemma.
Case 1: Thereisawritein Prefix that is semi-ok but not ok for E;.

Consider a write W4(i) in Prefix that is semi-ok but not ok for E; and is the first such write in E;.
Let the last conflicting write before W (i) in E; be W5(i). Thereisacritical+ path from W, to W in
E,. If thisisnot a 2> path, then W, qualifiesfor Y(i). If itisa 22> path, then W, is semi-ok for
E,. But then by the choice of W;, W, must be ok for E;. It follows that W, must also be ok for E;, a
contradiction.

Case 2: Thereisasemi-ok non-ok read in Prefix that is a control+ read for some sub-operation in Prefix and
returns the value of its own processor’ s writein E,,.

Consider the first non-ok, semi-ok read R(j) in Prefix that is a control+ read and returns the value of
its own processor’s write in E,,. Then either the last conflicting write before R(j) in E,, that conflicts
with R(j) isnot ok for E4, or R(j) violates property (3) for reasonable sub-operations, or the critical+
write before R(j) in E; isnot ok for E;.

Suppose the last conflicting write W(j) before R(j) in E,,, isnot ok. W(j) and R(j) are from the same
processor. W(j) must be semi-ok by lemma E.2.2, and it must be in Prefix. Thus, by Case 1 above,
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W(j) qualifiesas Y (i) in E,. Below, we can assume that the last conflicting write before R(j) in E,
isok.

Suppose R(j) violates property (3) of reasonable sub-operations. Then R(j) qualifiesfor Y(i).

So assume that the last critical+ write W'(j) before R(j) in E; isnot ok. Then there is either a 22>
path from W' to Rin E; or there is not. In the former case W' is a semi-ok, non-ok write and in Prefix
and so Case Limpliesa Y(i). In the latter case, R(j) qualifiesfor Y(i).

Case 3: There is no semi-ok non-ok read in Prefix that is a control+ read for some sub-operation in Prefix
and returns the value of its own processor’s writein E,,.

By construction, there is some sub-operation O in Prefix that is semi-ok but not ok for E;. If Oisa
write, then by Case 1, thereisa Y (i) in E,, proving the lemma. So assumethat O isaread. Consider
thefirst read R(j) in Prefix that is semi-ok but not ok for E;.

Note that a conflicting write sub-operation before R(j) in E,,, say W(j) must be semi-ok because of
the following. If W(j) is not semi-ok, then by lemma E.2.4, there is a control+ read of W(j) in E,
that is semi-ok and non-ok for E;. By construction of Prefix, this read must be in Prefix; it is aso
essentia in E,,. Therefore, by the statement of this case, if thisread is a control+ read, then it returns
the value of another processor’s write in E,,. Therefore, by construction of E,,, this read must be be-
fore W(j) and so before R(j) in E,,. But then this read cannot be non-ok semi-ok because R(j) isthe
first such read in Prefix, a contradiction.

Either the last write sub-operation before R(j) in E,, that conflicts with R(j) isnot ok for E4, or R(j)
violates property (3) for reasonable sub-operations, or the critical+ write before R(j) in E; is not ok
for E;.

If the last write sub-operation before R(j) in E,, that conflicts with R(j) is not ok for E, then by the
above note, it is semi-ok for E4, and so by Case 1, there isa Y (i). Therefore, below we can assume
that the last conflicting write sub-operation before R(j) in E,, isok for E;.

If R(j) violates property (3) for reasonable sub-operations, then R(j) isa Y (i) and we are done.
So it must be that the critical+ write W,(j) before R(j) in E isnot ok for E;. Then there is either a

%5 path from W; to R in E4 or there is not. In the former case W is a semi-ok, non-ok write in
Prefix and so Case 1Limpliesa Y(i). In the latter case, R(j) qualifiesfor Y(i). O

Call the first sub-operation in E, that qualifies as a Y(i) of the above lemma as K(i). Next we give a
transformation on the execution order of E; that produces an execution order of an Eg such that K (i) is ok for Eg,
and all sub-operations in Prefix that are ok for E; are also ok for the above Eg, a contradiction.

Step E.5: Transformation on E;.

This step consists of four parts. The first part consists of the transformation itself. The second consists of
showing that the transformation produces an execution that preserves ok sub-operations. The third consists of
showing that the transformation terminates. The fourth shows that the transformation terminates in an execution
with the required properties.

Step E.5.1: The Transfor mation.

The transformation given below as Trans(A4,A,) isarecursive procedure call that transforms the execution
order of E;. Theinitia A4, A, for the call are chosen as follows.

Let A, bethefirst operation Zin E; such that Z is semi-ok for E; and there is a critical+ path from some Z'

to Zin E, but no 2% path from Z' to Z in E;. Further, if Z is an exit read of a synchronization loop, then the
last conflicting write before Z in E,, isok for E;. (Z must exist since K itself qualifiesas Z.) For A1, we choose
an operation that qualifies for Z' above as follows. If some operation qualifying as Z' for A, issuch that Z' =

A, endsacritical+ path in E4, then let A; be the last such operation in E ;. Otherwise, let A; be the last operation
in E; that qualifiesas Z' for A,.
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Before we proceed with the transformation, we introduce some terminology below.

We call the execution order of E; as the original order. At any point in Trans, the current order is the
result of applying Trans until that point to the original order. We use A;j and A; to represent A; and A, for call
j. We show later that at the beginning of any call j, the current order until A,; (with possibly a different value re-
turned by A,;) isthe prefix of an execution order of some sequentially consistent execution of Prog. We use E; to
denote such an execution. In the specification of the procedure below, we assumewe areincal i.

We say an operation O isarace if O could be in some sequentially consistent execution and form arace in
that execution.

Call an operation O as semi-ok+ for E if (a) O is semi-ok for E; and (b) either O has a sub-operation in
Prefix, or there is at |least one operation after O in E that is semi-ok for E; and has a sub-operation in Prefix.

Call an operation O as ok+ for E; if (a) O isok for E; and (b) either O has a sub-operation in Prefix, or
thereisat least one operation after O in E that is semi-ok for E and has a sub-operation in Prefix.

Call an operation O as semi-ok++ for E4 if () O is semi-ok+ for E; and (b) if O is an exit read of a self-
ordered loop or arace exit read from a synchronization loop, then the last conflicting write before O in E,, is ok
for E;.

We extend the notion of a good valid+ path for the various E;’s produced by Trans. The definition below
differs from the corresponding definition for E4 in point (3).

Definition : Good valid+ paths ( ) for E;:
Consider an operation Y that isin E,, and E;. We say that X = YinE; if thereis a critical+ path
from X to Y in E; that obeys the following.

(1) Fora-=> arc on the path, the operations on the arc are in E,,, and are similarly related by =
of Eg.

(2) For a = arc on the path, the operations on the arc are in E,,.

(3) All operations on the path are semi-ok for E; and semi-ok+ for E;.

(4) Suppose W => R arcs exist on the path such that W needs to be the last essentia conflicting

write before R or R needs to return the value of another processor’s write, then the above properties
are obeyed by Rin E aswell.

(5) If Xisaread that returns the value of its own processor’s writein E,, then X(i) 2> Y(i) for al i
in Eq.

Asfor lemmaE.4.1, it followsthat if X **> Y for Ej, then X (i) = Y(i) in Ep,

Call an arc of acritical+ path in E; asimpureif it violates (1) or (2) in the definition of a **~ path for E;
or either of its components is not semi-ok+ for E;. Call the other arcs as pure arcs.

Let the set Ok_sub —ops denote K (i) and the sub-operations in Prefix that are ok for E ;.

The transformation follows next.
Trans(Aq, A,):

If thisisthefirst call to Trans, then let Q. be the first sub-operation in the execution order of E; and jump

to Step 3.

If Aj =* or** or *** return.

Sep 1 - Consider the critical+ path from A; to A, in E;. If there is no impure arc on this path, then call
Trans(*,A,) and return. If there isan impure arc, then call the last such arc on the path asB{,B.

Sep 2 - Consider all operations after B, that are ordered before B, by ( 2> 0O =5 )+inE. Move By,
B,’'s mate write (if any), and all above operations except B, to just above B4 (and its mate read if any) in
the current order, maintaining the relative order of the moved operations. Let Q, be the first moved opera-
tion in the new order.
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Sep 3 - (Inthefirst call to Trans, this step tries to ensure that there are no bad read-modify-writes. For sub-
sequent calls, this step tries to ensure that the ordering until Q,, isthe prefix of a sequentially consistent exe-
cution. For thefirst call, only the if-statements of (iv) and (vi) below are relevant and could be true.)

(i) If Q5 is after all sub-operations in Ok_sub—ops in the current order, then call Trans(**,Q,) and
return.

(ii) If the processor of Q, does not have any sub-operations that are semi-ok+ for E; following and
including Q, then delete Q,, mark the processor and go to Step 3(ix).

(i) If the instruction instance of Q, cannot be in any sequentially consistent execution which has the
current order until before Q, as a prefix of its execution order, then delete Q. from the ordering and
go to Step 3(ix).

(iv) If for any sequentially consistent execution that has the current order until before Q. as a prefix
of its execution order, there must always be other operations before Q, (or before Q, with a modified
address and value), then do the following.

If abounded number of operations need to be inserted before Q,, then insert the first operation
just before Q,, redefine Q. to be that operation and repeat Step 3. Also unmark the processor

of Q,.
If an unbounded number of operations need to be inserted before Q, and some of these are
from a loop that may not terminate in some sequentially consistent execution of Prog that has

operations until before Q, as prefix of its ==, then delete Q, and all the other operations fol-
lowing Q, from its processor and mark the processor of Q,. Go to Step 3(ix).

If an unbounded number of operations need to be inserted and all of them are from loops that
terminate in every sequentially consistent execution that has operations until before Q, as

prefix of its =, then go to Step 3(x).

(v) Consider a sequentially consistent execution that has the current order until before Q, as a prefix
of its execution order, and has the instruction instance of Q,. Make Q, access the same address and
write the same value (if Q, isawrite) as the corresponding operation in the above execution.

(vi) Suppose Q. is semi-ok++ for E;. If Q, is an exit read of a synchronization loop and the last
conflicting write before Q, writes a non-exit value for Q,, then consider a sequentialy consistent ex-
ecution that has the current order until before Q, as a prefix of its execution order, it has Q, as essen-
tial, and it has Q, immediately after the first conflicting write after Q,’'s current position that writes
Q,’'sexit value. Otherwise, consider a sequentially consistent execution that has the current order un-
til before Q, followed by Q, (possibly returning a different value) as prefix of its execution order.
Supposethereisa Q, that is before Q, in the current order such that there is a critical+ path from Q4

to Q, in the considered sequentially consistent execution, but no 2 path from Q, to Q, for that

execution. If thereissuch aQ; suchthat Q; => Q, ends avalid+ path, then pick the last such Q,
in the current order; otherwise, pick thelast Q, in the current order. Call Trans(Q1,Q>) and return.

(vii) If Q, is aread, make it return the value of the conflicting write operation last before it in the
current order. If Q, is an exit read of a synchronization loop and the value returned is not an exit
value for Q,, then go to Step 3(x). Otherwise, unmark the processor of Q.

(viii) Consider any seguentially consistent execution that has the current order until Q, as a prefix of
its execution order. If Q, could be a bad read-modify-write for a specia read in any such execution,
Q- isnot ok for the execution and either the special read is ok+ for E 4, or it is semi-ok+ for E; and a
race, then go to Step 3(x).

(ix) If there is an operation after Q, in the current order, then redefine Q, as the next operation in the
current order and repeat Step 3. Otherwise, assume w is a hypothetical last operation of the execution
and call Trans(**, w) and return.

(X) Mark the processor of Q,. Consider the first operation O of all processors after and including Q»
that satisfy the following.
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First, there is no operation O' between and including Q, and O such that (a) O’ conflicts with O or its
mate, and (b) O’ is either ok+ for E;, or O' is semi-ok++ for E; and races with O (or its mate) in
some E;.

Second, if the processor of O is marked, then the following should be true. (a) there should be no
preceding operations that need to be inserted before O, (b) O is semi-ok++ for E4, (c) O conflicts with
O' that is before Q», (d) in any sequentially consistent execution that has the current order until be-
fore Q, as a prefix of its execution order and where O is essential, there is a critical+ path from O’ to

O but no #& path from O’ to O for that execution.

Now move the first of the above considered operations and its mate to before Q,. Redefine Q, asthe
first moved operation and repeat Step 3.

Suppose there is no operation of thetype O. If inserting a‘‘missing’’ operation of a processor before
Q> (inamanner that ensures the resulting order until the inserted operation is a prefix of a sequential-
ly consistent execution) could result in terminating the first loop of any processor after Q, (assuming
the loop does not terminate with the state of memory represented just before Q5), then insert such an
operation, cal it Q,, and repeat Step 3. Otherwise, call Trans(***,Q,) and return.

Step E.5.2: Properties of the Transfor mation.

Below, B, and B; represent By, B, chosen in Step 2 of the j™ call to Trans.

Lemma E.5.1: The following results hold for the j™ call to Trans, j = 1. Below, Q is an operation in E; that is be-
fore Ay;.

Proof:

(a) B4;,B, must race with each other in E; and B; is semi-ok+ for E;, where call i isbefore call j.
(b) The current order at the beginning of call j until Ay; isthe prefix of an execution order of a sequentially
consistent execution of Prog.

(c) If Q is semi-ok++ for E; and thereisacritical+ path from Q' to Q in Ej, then thereisa **-> path from
Q toQinE;.
(d) (i) Anoperation that is semi-ok+ for E isin the current order at the beginning of call j.
(ii) The value returned by aread that is ok+ for E; does not change until the j" call. An exception is
aread that is special for E4; if the value of thisread was not the samein E; and E,,, then it changes to
become the same as that of E,,.
(iii) If Q or Ay issemi-ok+ for E4, thenit is semi-ok for E;.
(iv) If Qissemi-ok+ for E; and isawrite, then Q is ok for E;.
(v) If Q is semi-ok++ for E;, Q is not self-ordered in Ej, then al operations before Q in E; that
conflict with Q must be semi-ok+ for E; and semi-ok for E;, and are before Q in Ey,.
(vi) If Qisok+ for E4, then Qisok for E;.
(vii) Consider two conflicting operations O' and O in E,, such that both are either ok+ for E,, or both
are semi-ok++ for E; and form arace in some E;. Then once any conflicting suboperations of these

operations are in the same order asin E,,, Trans does not change the ordering of these sub-operations
until call j.

We proceed by induction.

Base case: (a), (b), (c), and (d) clearly hold for E;.

Induction: Suppose the above results hold for the n™ call to Trans. We next prove that they hold for the
n+1% call to Trans.

Result (a) -

Suppose the result is not true. Then either B,,,B,, do not form aracein E, or B,, isnot semi-ok+ for
E,. Consider the critical+ path from A4, to A,, of E, for which B4,,B,, have been chosen as the last
impure arc. Either there is a pure arc after B,,, on the above path, or B,, is the last operation on the
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path. In either case, B,, must be semi-ok+ for E4. By induction hypothesis, B, is semi-ok for E,.
Thus, it must be that B4,,,B,, do not form aracein E,,. Only the following cases are possible.
Case (al): By, > By, inE,.
By lemmaE.2.3, B, isin E,, and is semi-ok for E,,. By lemmaE.2.2, B4, is semi-ok+ for E;.
But then B4, B, isnot impure, a contradiction.
Case (a2): By, 2> B, inE, and B,, is not a self-ordered read or arace exit read from a synchron-
ization loop.
Suppose B, isbefore A,, in E,. Then by part d(v) of thislemma and the induction hypothesis,

B,, must be semi-ok+ for E; and semi-ok for E,, and By, => B, in E,. It follows that
B 1,,B2n 1SN0t impure, a contradiction.

Suppose B, isA,,. Then B4, cannot be the same as A4, (since B4,,,B5, do not race and are on

a &> path from A, to Ay, in E). If By, and B, are consecutive conflicting operations,
then let X be Bq,; otherwise, let X be the last conflicting write between B4, and B, in E,.
There must be a critical+ path from X to B, in E,. Therefore, there must be a *2> path from
Xto B,y in E, (otherwise X, B,, would be chosen as A4, Ay,). Therefore, X is semi-ok+ for
E; and X => B, in E,,. By result d(iii) and the induction hypothesis, X is semi-ok for E, as
well. It follows from result d(v) that B4, is semi-ok+ for E; and semi-ok for E,, and By, —>
B,, in Ey,. Thus, B4,,B2, ishot an impure arc, a contradiction.

Case (a3): By, 2> B, inE,, By, isasaf-ordered read or arace exit read from a synchronization
loop, and B,,, > Bj ison the critical+ path from A, to Ay, in E,,.

Then B; is semi-ok+ for E; and semi-ok for E,,. By property (€) of the control relation, B,
controls B; in E,,,. Therefore, B, is ok for E; and E,,. Suppose B, is not a specia read in E,
or it is a specia read such that the reads from its bad read-modify-writes in E,, are ok for E,.
Then by lemmaE.2.1, the last conflicting write operation W before B,,, isthe samein E,, and in
E, andisok+ for E; and E,,. From result d(v), B4, must be semi-ok+ for E; and by result d(iv)

B, must be ok+ for E;. Further, By, = By, in Ey,. By result d(vi), B, isok+ for E,. It fol-
lows that B4,,B, is not impure, a contradiction. Thus, B,, must be a special read in E, and
the read from its bad read-modify-write must not be ok for E,. But thisis not possible because
of step 3(viii) and 3(x) of Trans which ensures that such a bad read-modify-write cannot be be-
fore A,y; further, if itis A,,, then Trans terminates for that call.

Case (ad): By, 2> By, inE,, By, isasdf-ordered read or arace exit read from a synchronization
loop, and B,, > Bj ison the critical+ path from Ay, to Ay, in E,.
This case impliesaW; > R 2> W, chain on a valid path. This contradicts our assump-
tionsfor avalid path (condition 7.18).
Case (ab): By, => By, inE,, By, isasdf-ordered read or arace exit read from a synchronization
loop, and B, isthe last operation on the critical+ path from A4, to A5, in E,,.

If Ay, isnot the same as B, then the path from A, to A,, is not a critical path because A4,
and A,, are not consecutive conflicting operations in E,,, and a critical path that is not between

consecutive conflicting operations must end ina *- arc. The path is also not a critical+ path
because A, and A, do not race, a contradiction.

If Ay, isthe same as By, then the only way the path from A, to A,, can be a critical+ path is
if it forms arace, a contradiction.

Result (b) -

By the induction hypothesis, at call n, the order until A, of call nisa prefix of the execution order of
a sequentially consistent execution. Since then, the only changes to the order since call n upto the be-
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ginning of call n+1 are dueto Steps 2 and 3in call n. For step 2, since B1,B, form arace, the change
preserves program order and atomicity. The only changes made by Step 3 are to mimic the order of a
sequentially consistent execution until the A, of call n+1.

Result (c) -
We know that result (c) is true for E, until before A, of E, and therefore until before B, of E,,. The
ordering until before B, of E, staysthe samein E,,;. Soif Q was before B, in E,, result () cannot
beviolated in E,, ;. If Q was after or same as B, in E, and is before A, in E, 1, then Q should have
been selected as A, in Step 3 of Trans, a contradiction. Thus, result (¢) cannot be violated.

Result (d) -
Suppose result (d) is not true for E,,;. We know that result (d) is true for E,. In going from E, to
E,+1, changes are made to the order in Steps 2 and 3 of Trans. The only operations that can result in
aviolation of result (d) are those examined by Step 3 of Trans before the A, of call n+1. Below, we
say an operation is successfully examined in Step 3 if its examination in some iteration of Step 3 does
not result in going to Step 3(x) of Trans, or if it is selected as A,. Then if some operation violates
result (d), there must be one such operation that is successfully examined by Step 3 of Trans at call
n+1 and is before or the same as A, of call n+1. Let O be thefirst such operation. We examine each
part of result (d) as a separate case below, and show that either O cannot violate that part or must also
violate a later part.

Case (d1): O violates d(i).
Then one of the control+ reads for O in E,,, is not ok for E, ;. Thiswas ok for E; and so exist-
ed in E, and so must have been successfully examined by Step 3 before O. Therefore, this read
should have been chosen as O, a contradiction.

Case (d2): Oviolates d(ii).
If Oisnot ok for E,+q, then alater case applies, so assume that O is ok for E,,;. By construc-
tion of Trans, if O is a specia read for E,.4, then its bad read-modify-writes must be ok for
E,+1. So by lemmaE.2.1, O must return the same valuein E, 4, and in E,,. So theresult istrue
when O is specia. If O is not special, then O should have returned the same value in E,, as
well. By induction hypothesis, thisis the same value until call n+1.

Case (d3): O violates d(iii).
One of the control+ reads for O in E,, must not be ok for E,,;. Thisread was ok for E; and so
existed in E,, and so must have been successfully examined before O, a contradiction.

Case (d4): Oviolatesd(iv).
By d(iii), O must be semi-ok for E,.;. By result (c), O obeys property (3) for reasonable sub-
operations. Therefore, the only way that O is not ok for E, 4 isif the last conflicting write O’
before O in E,,; ishot ok for E,;;. Thereis a critica+ path from O’ to O in E,,41, and so a

225 path from O’ to O in E,44. It followsthat O’ is semi-ok+ for E;. Further, O' must have
been successfully examined before O. So O should have been selected as O, a contradiction.

Case (d5): O violatesd(v).
Let O' be the last conflicting operation before O in E,, ;1. Then there is a critical+ path from O'
to O in E, .y, and so a -2*> path from O’ to O in E, ;. If follows that O’ is semi-ok+ for E;
and O' => 0Oin E,,. Further, O' must be semi-ok for E,.;; otherwise, it should have been
selected as O, a contradiction.

Case (d6): O violates d(vi).

O cannot violate property (3) of reasonable sub-operations; otherwise, O would be A, for E,, ;.
Also dl control+ reads of O in E;, must be ok for E,.; otherwise, that read would be O. By
result d(iv), O cannot be awrite.
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Thus, O must be a read and either the last critical+ write operation before O in E, 4 is not ok
for E, 41, oOr the last conflicting write operation before O in E,,, isnot ok for E, 1.

Suppose the last conflicting write, O, before O in E,,, isnot ok for E, ;. O' must be ok for E;
and before Oin E;. If O' isnot before O in E, 41, then O violates d(vii) and is discussed in the
next case. If O' is before O in E, .4, then it must be ok, or should have been selected as O, a
contradiction.

Suppose the last critical+ write O" before O in E,, .1 isnot ok for E,.;. Suppose O’ is semi-ok+
for E;. Then O’ must be ok for E, 1 or it would be chosen as O, a contradiction in both cases.
Suppose O' is not semi-ok+ for E;. Then O would be A,, a contradiction.

Case (d7): O violates d(vii).

There must be an O’ such that O and O’ satisfy the requirements of d(vii), O' => OinE, and

E, but O > O'in E,,;. By inspection, Step 3 could not change the order of O and O'.
Thus, it must have been changed by Step 2. In Step 2, the only change is that B, and some
operations between B, and B, (and B,’s mate write) are moved to before B;. Suppose B, and
one of the moved operations (X) satisfy the criteriafor O and O'.

Suppose X isB,. Weknow that B; > Xin E,,. ButthenB,,B, ispure, a contradiction.

Suppose X is B,'s mate write. Let B,’s processor be P;. We know that B,(i) == X(i) X

B4(i) in E, (otherwise B;,B, is not impure), and B,(j) == X(j) for some j in E,,. Thus, it
follows that B, and X are not coherent in E,,,. Therefore, by the loop coherence part of the con-
trol requirement, neither B, nor X can be from a synchronization loop. Further, since both B
and X must form a race in some sequentially consistent execution, B, cannot be the mate write
of a read-modify-write. It follows that there is some E; such that B; and X form arace in that
E; and both are essential. It follows then that B; and X must be coherent in E,;,, a contradiction.

Suppose X is before B,. We know that B; => Xin E,. If X, B, conflict, then X => B,

must be in E,; otherwise, some other operations should have been A;, A,. SoB; > B, in
E... But then B,,B, isnot impure, a contradiction. If X, B, do not conflict (i.e., both are reads),

then there must be a conflicting write W between them (because B;,B, race). W = B, must
bein E,, and W must be semi-ok+ for E; (else W, B, would be A, A,). So X = W must be
inE,. SoB; => B, must bein E,, acontradiction. O

Lemma E.5.2: For every call to Trans(A1,A,) after thefirst call, Step 2 of TransfindsaB,, B,, or A =**, or A;

— k%%

Proof:

For every call to Trans after the first call, either the call isthe last call, or thereisaB4,B, for the cal, or the
call makesthe last call. If itisthelast cal, then either A; =** or A, =*** or Step 2 of the previous call
did not find aB4,B,. Thus, it is sufficient to show that for each call to Trans that is not the first or last call,
Step 2 findsa B,B,. For a contradiction, assume that call k of Trans does not have aB4,B,, and it is not
thefirst or last call. In Ey, there is a critical+ path from the corresponding A, to the corresponding A, but

thereisno 2> path from A; to A, in E;. Sincethereisno By, B, the critical+ path from A; to A, in E;
obeys parts (1), (2) and (3) for the definition of a 22> path for E,. We show below that such a path also
obeys parts (4) and (5) in the definition of a 22> path of E,. In that case it must follow that the path is
adsoa %> pathin E,, acontradiction.
Case 1: Thereisaread on the critical+ path from A; to A, of E, that does not obey part (4) in the definition
of a -#&> path for E,.
Consider the last read R on the path in E, that satisfies this case. Let W, be the write whose value R
returns in E,,. By assumption, R is semi-ok+ for E; and semi-ok for E,. Further, W 2> R 2> X
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ison the critical+ path in E,, and either W is the last conflicting write before Rin E, but not in E,,, or
R returns the value of another processor’s write in E, but not in E (and so not in E,, either). In the
former case, by property (f) of the control relation and since X is semi-ok for E; and E,, R must be ok
for E,; therefore W,,, isbefore Rin E,. In the latter case, clearly W, isbefore Rin E,. It follows that
in all cases, W,,, is before Rin E,. For a contradiction, it is sufficient to show that the last conflicting
write before R in E isthe same as W,,.

Consider the critical+ write W before Rin E,. There must be a **> path from W, to Rin E, (else
R would be chosen as A, which is not possible since R cannot be the last operation on the path), and

oW, 2> RinE,, W, is semi-ok+ for E;, and so by lemma E.5.1, W, is ok for E,. There are two
sub-cases.

Sub-case 1a: W, and W, are not the same.

Then W,,, must be between W, and Rin E,. So Risself-ordered in E,. W, writes an exit value
of Rin E,, and so by property (a) of the control relation, W, must also write an exit value of R
in E,. Therefore, R must be a special read in E,. Then by property (€) of the control relation, R
must be ok+ for E; and (by lemma E.5.1) R must be ok for E,,. It followsthat if k # 2, then R
returns the value of the same write in E, and E,,,, a contradiction. If k = 2, then if the bad read-
modify-write for Ris ok for E,, again R returns the value of the same writein E,, and E,, a con-
tradiction. If the bad read-modify-write for R is not ok for E,, then R cannot be before A, by
construction of Trans.

ub-case 1b: W; and W, are the same.
Then W,, is ok for E,. If W isthe last conflicting write before Rin Ey, it follows that R returns
the value of the same write in E,, and E,, a contradiction. If W is not the last conflicting write
before Rin E,, then R must be self-ordered in E,. As for sub-case 1a, R must be a special read
in E, since W, writes an exit value of Rin E,, and so in E,. The rest of the argument is the
same as for sub-case 1g; i.e., Rmust be ok for E; and so for E,, implying that R must return the
value of the same writein E,, and E,, a contradiction.

Case 2. The critical+ path from A, to A, in E, does not obey part (5) in the definition of a 2*> path for

Ey.

In this case, the critical+ path from A; to A, in E, isfrom aread R to a write W where R returns the
value of its own processor’s write W, in E,, and R(i) is after W(i) in E,,,. Since Ris semi-ok+ for E;
and semi-ok for E,, (by lemma E.2.2) W, must be in E; and E, and must be semi-ok+ for E; and
semi-ok for E,. By lemma E.5.1, W; must be ok for E,. If W; and W are consecutive conflicting
sub-operations in E,, then let W, be Z below; otherwise, let Z be the last conflicting write before Win
E.. Then there must be a critical+ path from Z to W in E,. We show first that all arcs on this path
must be pure.

Assume for a contradiction that there is some impure arc on the above path. Let the last such arc on
the path be from X to Y. There are three cases as follows.
Sub-case 2a: X > YinE,.
Y must be semi-ok+ for E; and semi-ok for E; therefore, X must be semi-ok+ for E; and
semi-ok for E; therefore, the arc is pure, a contradiction.
Sub-case 2b: X <> YinEg and Yisnot W.

Y is semi-ok+ for E; and semi-ok for E,. By lemmaE.5.1, X > Y cannot be impure unless Y
is self-ordered or arace exit read of a synchronization loop. In either case, Y must be ok for E
(by property (€) of the control relation). Further, Y must be ok+ for E; and so ok for E,. But
then X = Yin E,, and further X is semi-ok+ for E; and ok for E,. Thus, X => Yisnotim-
pure, a contradiction.

Sub-case 2c: X = YinE, and YisW.
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X and W must be consecutive conflicting operations in E, because there cannot be a conflicting
write between X and W. Then thereisacritical+ path from X to W. But there cannot be a 22>
path, since otherwise X -=> W s not impure. But then since X > W ends the critical+ path
from Zto W, X = W should have been chosen as A,, A,, acontradiction. (Note that R =
W cannot end a critical+ path since we choose the longest possible paths to be critical+ paths.
By the assumptions for valid paths (Condition 7.18), the valid path from R to W can aways be
substituted for R 2> W in acritical+ path.)

Thus, the path from Z to W obeys (1), (2), and (3) in the definition of 2> paths for E,. By
the arguments of Case 1 above, it follows that all operations on the path also obey (4) in the

definition of -#2> pathsfor E,. Thus, the path from Zto Wisa -2*> path. Therefore, Z =
Win E,, and Z is semi-ok+ for E; and semi-ok for E,. By lemma E.5.1 it follows that W, (i)

> W(i) for al iin E,. Butthenitfollowsthat R => Win E, acontradiction.
Lemma E.5.3: For every call to Trans(A1,A5) that findsaB4,B, in Step 2, A;, A, =By, Bo.
Proof:

Suppose the lemmais not true for call k. Then by lemmaE.5.1(a), B,,B, form arace in E,. We also know
that B, is semi-ok+ for E4 and therefore semi-ok for E,.

If B, isnot A,, then by lemma E.5.1(d(v)), B; must be semi-ok+ for E; and semi-ok for E, and B; =>
B, in E,, or B, is self-ordered, or B, is a race exit read from a synchronization loop. In the first case,
B1,B, is not impure, a contradiction. In the second and third cases, B, is ok+ for E; and so ok for E,.

Therefore B; > B, in E,,. Further, B, is semi-ok+ for E;. Therefore, B4, B, isnot impure, a contradic-
tion.

If B, isA,, then B, isnot A;. Since B4, B, racein E, thereisacritical+ path from B; to B, in E,. It fol-
lows that there must be a 22> path from B, to B, in E, (otherwise, B; should be A;). But then B; is

semi-ok+ for E; and so semi-ok for E,, and B; => B, in E,,. But then B4,B, is not impure, a contradic-
tion.

Step E.5.3: The Transformation Always Ter minates.
Lemma E.5.4: Trans always terminates.
Proof:

Suppose Trans does not terminate. Then by the previous lemma, every call after the first call to Trans has a
B,,B,. ThisisthesameasA,, A,, 0 Ay, A, get swapped in every cal. Further, note that B, is semi-ok++
for E;. Also, note that the same operation can be chosen as A, for only afinite number of successive calls
and then some other operation must get chosen as A,.

Consider the k' call of Trans and its corresponding By, By such that the k-1st call had a different B,.
Consider the sequence of operations in E that are semi-ok+ for E 4, are before B4, and were aB; for some
call j before call k. We prove below that for every call j before call k, the above sequence for E, either (@)
is different from the corresponding sequence for E; and is aso not the prefix of the corresponding sequence
for Ej, or (b) isthe same as the corresponding sequence for Ej and A, for al E since and including E; up to
E, isthe same asfor E,.

Suppose the sequence for E, does not obey the above properties. Then B, of E, must have been a
B, for acal j before call k—1 such that at the end of call j, By, was not before By, Thus, the only
way that B4, can come before By at the end of call k-1 isif in between, some other B4,,B,, were
swapped such that B,, was before B, or before a control read of By in Ey, and B, was not same as
Bo. Consider thelast call g before call k such that By, was before By, By Was before B,y or before
acontrol read of By in Egy, and B, was not By, Then the sequence at call k is the sequence for call
g followed by B, which must be a unique sequence.
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Since Prefix is finite, it follows that the number of operations that are semi-ok+ for E; isfinite, and so the
number of unigue sequences involving such operations is finite and so the number of calls to Trans must be
finite. Thus, we need to show that each call to Trans terminates. The call istail recursive so we only need
to show that the last call to Trans terminates. Consider the last call to Trans. Then either the call sequen-
tially examines all operations (in which case it must cover al operations in Ok_sub-ops and so terminate),
or it is interrupted because there are marked operations and other out of sequence operations are pulled up
in the current order or Trans terminates. When out of sequence operations are pulled up, either more
marked processors are generated, or from then on, Trans resumes its sequential examination. Eventually,
Transwill cover all operations that are semi-ok+ for E4 or will not pull up any operations and terminate.

Step E.5.4: The Transformation Ter minates with the Required Execution.

We first analyze the case when Trans terminates with ***. Let the final call be f and its corresponding
sequentially consistent execution be E;.

Call all operations after and including A, as pending operations. Then for every processor P; and its first
pending operation O;, one of the following must be true. (We say O; iswaiting for a pending operation if there is
a pending operation before O; in the final order that conflicts with O; (or its mate) and that is either ok+ for E 4, or
it is semi-ok++ for E4 and forms arace with O; (or its mate) in some Es.)

(1) G; isan exit read from a synchronization loop, the last write before Ay that conflicts with O; writes a
non-exit value of O;, and O; is not waiting for a pending operation.

(2) There should be aloop before O; that does not terminate at A, and placing any more operations of this
loop in the execution will not make any such or above loops terminate. Further, the loop is guaranteed to
terminate in every sequentially consistent execution with operations until before Ay as prefix of the execu-
tion order.

(3) G; is from a read-modify-write synchronization loop, O; is not ok+ for an E; that has O; immediately
after all the operations before Ay in the current order (and so O; is not ok for E;), O; is a bad read for
another loop read R after it where Ris ok+ for E; or Risarace that is semi-ok+ for E4, and O; is not wait-
ing for a pending operation.

(4) O, iswaiting for a pending operation, O; is an exit read from a synchronization loop, the last write be-
fore Ay that conflicts with O; in the final order writes a non-exit value of O;, and O; is not ok+ for E;.

(5) O; iswaiting for a pending operation and does not satisfy case 4 above.

(6) The pending operations of P; do not consist of any operations that have sub-operations in Ok _sub —op,
or operations that are semi-ok+ for E 4, or operations that might terminate the above loops of other proces-
Sors.
Call theloopsin (1), (2), (3), (4) above as pending loops. We next prove some properties about the pending
loops.
Lemma E.5.5: Consider a pending operation O whose processor has a pending loop. (i) If O isthe first pending
exit read of a pending synchronization loop, then it cannot be ok+ for E;. (ii) If O isnot the first pending exit read
of a pending synchronization loop, then O cannot be semi-ok+ for E; and be a race or an exit read of a self-
ordered loop.

Proof:
Let L be the pending loop of O's processor. There are four cases depending on the type of loop L is.
Case 1: L isaloop of type (1).

Then the first exit read R of L cannot be ok+ since its value must have changed in some call of Trans
and is different from its value in E,,,. This proves the first part of the lemma. For the second part, note
that R must be arace operation. Therefore, if O isarace or an exit read of a self-ordered loop, then R
controls O by property (€) of the control relation. But then O cannot be semi-ok+ for E, proving the
second part of the lemma.

Case 2: L isaloop of type (2).
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Then the first part of the lemmaistrivially true. For the second part, since the loop is guaranteed to
terminate for every sequentially consistent execution (with operations until before A, as the prefix of
the execution order), but cannot terminate before A, it follows that the termination of the loop must
depend on some shared-memory reads that form a race and that are not present in the current order.
These reads cannot be semi-ok+ for E; because they were either not present in E; or were deleted
from E;. However, some reads that control these reads in E,, are in E; and are not ok+ for E;.
Therefore, if Oisarace or an exit read of a self-ordered loop, then these reads control O (by property
(d)). But then O cannot be semi-ok+ for E, proving the lemma.

Case 3: L isaloop of type (3).
We know that the exit read of L isnot ok+ for E;. This proves the first part of the lemma. We also
know that the exit read of L must be arace or an exit read of a self-ordered loop. If Oisarace or an

exit read of a self-ordered loop, then by property (€) of the control relation, the exit read must control
O. But then O is not semi-ok+ for E .

Case 4: L isaloop of type (4).
We know that the exit read of L is not ok+ for E;. This proves the first part of the lemma. The exit

read of L must also be a race operation. If O isarace or self-ordered operation, then by property (€)
of the control relation, the exit read must control O. But then O is not semi-ok+ for E4. [

Lemma E.5.6: If Trans terminates with *** | then there must be some processor whose first pending operation is of
type (5).
Proof:

For a contradiction, assume that Trans terminates with *** and all processors first pending operations are
of type (1)-(4) or (6).

Suppose one of the processors P; is of type (3); i.e., itsfirst pending operation, O;, is aread of a bad read-
modify-write. Consider the last such O;. Then there must be some other read R from a self-ordered loop
where R is ok+ for E; or R is semi-ok for E; and is from a race operation, and R is after O;. The last
conflicting write before O; is not pending and writes an exit value for O;. Thus, this write also writes an exit
value for R. Therefore, R cannot be an exit read of a pending loop. But it also cannot follow a pending loop
by the previous lemma and since R must be from a self-ordered loop. Thus, R must be from a processor
whose first pending operation is of type (5), a contradiction.

Suppose al processors are of type (6). Then Trans must terminate with **, a contradiction.

Thus, at least one processor must be of type (1), (2), or (3). The pending loops of type (1), (2), and (3) are
guaranteed to terminate in every sequentially consistent execution (with operations before A, as a prefix of
the execution order). However, they do not terminate before Ay and therefore cannot terminate for any
sequentially consistent execution that has the operations until before A, as a prefix of its execution order, a
contradiction. [

Consider the first pending operation J in the final order that is from a processor of type (5). Then Jis wait-
ing for a pending operation |. If both J and | are reads for every I, then J must be a read from a read-modify-
write. In that case, call the write of J's read-modify-write the waiter. Otherwise, cal J the waiter. If the waiter is
aread, then consider the last write that qualifiesfor |. If Jisawrite, then consider the first operation that qualifies
for I.

Lemma E.5.7: | must be ok+ for E4, | must be from a processor that has a pending loop, | is not the first exit read
of its processor’s pending loop, | is not arace operation or an exit read from a self-ordered loop.
Proof:
First note that | must be from a processor with a pending loop; otherwise, | is from a processor of type (5)
and so should have been chosen as J, a contradiction.

Suppose | is the first exit read of its processor’s pending loop. Then | is not ok+ for E; (by lemma E.5.5).
The last conflicting write W,,, before | in E,,, isok+ for E; and isbefore | inthefinal order. If W, isapend-
ing operation, then W,,, should have been selected as |, a contradiction. So W, is before Ax. So W, is ok
for E;. If W, isthe last write to its location before Ay in E;, then since it writes an exit value for I, | should
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be a bad read-modify-write. But then | must be ok for “‘an E; with | just before Ax'’, a contradiction.
Therefore, the last conflicting write before | and Ay in E; must be a write that is not W,,. This can only be
if | isaspecial read and aread of its bad read-modify-write is not ok for E; (by construction of Trans). But
thisis not possible with Trans. Thus, | isnot the first exit read of its processor’ s pending |oop.

Since | isfrom a processor with a pending loop, from lemma E.5.5 it follows that | must be ok+ for E; and
must not be arace or self-ordered operation. This proves the above lemma. [

Lemma E.5.8: There is a sequentially consistent execution, Ey, without unessential operations, that is the same as
E; until just before Ay, and has the following property. If | isin Eg, then either there exists a conflicting operation
before | in Ey that was not before Ay in E;, or there exists awrite before | in Ey such that it is not semi-ok+ for E
and it isbefore A in Es.

Only the following cases are possible.

Case 1. Either Jis not an exit read of a synchronization loop, or the last write conflicting with J before A

writes an exit value for J.
Consider a sequentially consistent execution whose execution order is the same as the current order
until before Ay, then has J, and then proceeds in any way. If J is from a synchronization loop with a
single exit read, then clearly Jisessentia. If Jisfrom a synchronization loop with multiple exit reads,
we can till consider J as the essential exit read. If | isin this execution, then | is after J. Thus, this
execution qualifies for E.

Case 2: Jis an exit read from a synchronization loop, the last write conflicting with J before A, does not

write an exit value for J, and | isawrite.
In this case, J must be ok+ for E4; otherwise, it would qualify as being from a pending loop, and so
its processor is not of type (5). Recall that | is the last write before J in E; that is ok+ for E;. From
the definition of Trans, it follows that | writes the exit value of J. Consider a sequentially consistent
execution whose execution order is the same as the current order until before Ay, and then proceeds
inany way. Consider only essential operations in this execution. If | isin this execution, then J must
come before | because otherwise it is possible to have an execution where J comes just after |, mak-
ing | arace operation, a contradiction.

Case 3: Jis an exit read from a synchronization loop, the last write conflicting with J before A, does not
write an exit value for J, and | isaread.

In this case, J must be part of aread-modify-write. Asin case 2, J must be ok+ for E;. Therefore,
the last conflicting write W before J and Ay must not be semi-ok+ for E;. Consider any Ey which
has the operations before A, as a prefix of its execution order. If | isin Ey, then Wis before | in Eg.

We next show that Trans cannot terminate with A; = ***,
Lemma E.5.9: Trans cannot terminate with A =***,
Proof:

Suppose Trans terminates with A, = ***. Consider the Ey described in the previous lemma. We show that
the existence of Eg isa contradiction. There are two cases.

Case L | isin Eg and all control+ reads of | in E,, are in Eg and return the same value asin E;.

Let W be the last conflicting write before | in Ey. Since | cannot be self-ordered, there must be a criti-
cal+ path to | from W. The path is also a valid+ path. Further, either W is not before Ay or Wis be-

fore Ay and is not semi-ok+ for E;. If any X = Y arc on the path is such that there is another
valid+ path from X to Y, then consider a path where such a = arc is replaced with the correspond-
ing valid+ path. All == arcs on the new path are either race paths or are from a write to a self-
ordered read. Further, all > arcs on such apath are “®-> arcs. There are two sub-cases.
Sub-case 1a: Wisnot before Ax.

It follows that there must be an operation O in I’s processor P; that () is the same as or follows
the first pending operation of P; in Eg, (b) O isarace or a self-ordered read in Eg, and (c) O is
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either | or isbefore | by ( 2> )+in Ey. Further, sincel isok+ for E; and al control reads of
| return the same value in Ey and E,,, (and therefore in Ey and E,), it follows (from (c) above)
that O must bein E;. So O must also be semi-ok+ for E;. But then from lemmaE.5.5 and (b)
above, it follows that O must be the first exit read of its processor’s pending loop. Further, O
must form arace in Ey, and so O must control | in Ey, (by property (€) of the control relation).
It followsthat | cannot be ok+ for E4, a contradiction.

Sub-case 1b: Wisbefore A.

It follows from arguments similar to the above sub-case that all operations on the above path
other than | must be from before A in the final order. Further, al operations on the path must
be semi-ok+ for E;. Therefore, Wis semi-ok+ for E4, a contradiction.

Case 2: | isnot in Eg or some control+ reads of | in E,, are not in Ey or do not return the same value in Eg
and E;.
Some read in E, that follows a pending loop and was ok+ for E; executes in E4 but returns a dif-
ferent value in E; and E4. Consider the first such read R as ordered by the final order. Note that by
lemma E.5.5, the read cannot be a self-ordered read. Only the following cases are possible. Below,
Wisthe last write before Rin Eg.

Sub-case 2a: Wisnotin E4 and is not before A in the final order.

There must be a vaid+ path from Wto Rin Ey. Thisisa contradiction by an argument identi-
cal to that used for Case 1a above and substituting R for 1.

Sub-case 2b: Wisnotin E; and isbefore Ay in the final order.
There must be a valid+ path from Wto Rin Ey. Asin Case 1 above, replace this path with a
longer path so that all >~ arcs on the path are either race or self-ordered paths and all =~

arcsare ~*-> arcs. It follows from arguments similar to Case 1 above that operations from all
processors other than that of R must be from before Ay in the final order. Further, all opera-
tions on the path must be semi-ok+ for E;. Therefore, Wisin E{, a contradiction.

Sub-case 2c: Wisin E; but isnot the last conflicting write before Rin E;.

Let the last conflicting write before Rin E; be W;. Then W; must be ok+ for E; and W; must
be between W and R at the end of the last call to Trans. Thus, some control read of W, must
return different valuesin E, and Eg. Then if Wy is not from a processor with a pending loop,
then a sub-operation of the first pending operation of W;’s processor should have been chosen
as J, a contradiction. If W, is from a processor with a pending loop, then some other read
should have been chosen as R, a contradiction. [

Let the last call to Trans be f. Consider E;.
Lemma E.5.10: All sub-operationsin Prefix that were ok for E4 are ok for E; and K (i) is ok for E;.
Proof:

By the previous lemmas, Trans terminates with **. Thus, all operations with a sub-operation in Prefix that
are ok for E; and K (i) are before A, for E;. Therefore, from the previous lemmas, all operations with sub-
operations in Prefix that are ok for E; are ok for E;. K (i) is semi-ok+ for E;. Therefore, by the previous
lemmas, if K(i) is a write, then K (i) is ok for E;, proving the lemma. If K(i) is a read, then the last
conflicting write before K (i) in E, is ok+ for E; and isin Prefix; therefore, itisok for E;. Thus, if K(i) is
not ok for E;, then either the critical+ write W before it in E; isnot ok for E; or there is no valid+ path from

WtoK in E,,. But by the previous lemma, there must be a -2*> path from Wto K in E;; therefore, there is
avalid+ path from Wto K in E,,,. Further, W is semi-ok+ for E; and so ok+ for E;. Thus, K (i) is ok for E,
proving the lemma. (]

The proof of theorem E.1 follows from lemma E.5.10. O
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Appendix F: Correctness of Low-L evel System-Centric Specification of Data-Race-Free-0

This appendix proves the correctness of the low-level system-centric specifications of the data-race-free-0
model (Conditions 5.11 - 5.16), based on the framework developed in Chapter 7. The proof shows that the condi-
tions for data-race-free-0 meet the generic valid path and control requirements of a generic model in Chapter 7 for
all data-race-free-0 programs.

In any sequentially consistent execution of a data-race-free-O program, al conflicting pairs of synchroniza-

tion operations are ordered by 2> paths, while all conflicting pairs of operations where at least one of the pair

is data are ordered by "> paths. Thus, %> paths between conflicting synchronization operations, and

b0* 5 paths between other conflicting operations form a set of critical4€a¢hs for the execution. It follows that the

above paths can be considered to be the valid paths of data-race-free-0.

With the above valid paths, the data and synchronization requirements of data-race-free-0 (Conditions 5.11
- 5.15) obey the generic valid path requirement of a generic model in Condition 7.16. We show that the control
requirement of data-race-free-0 (Condition 5.16) obeys the generic control requirement for a generic model in
Condition 7.21. There are five parts to the generic requirement: critical set, finite speculation, write termination,
and loop coherence. Loop coherence is not relevant to data-race-free-0 since it does not exploit synchronization
or self-ordered loops. The following three paragraphs show that the data-race-free-0 control requirement obeys
the other three parts of the generic requirement.

First consider the critical set part. Parts (a), (b), (c), and (d) of Condition 5.16 implicitly specify a relation
between a read and some following operations. This relation directly satisfies properties (a), (b), (c), and (d) of
the control relation (Definition 7.19) specified for the generic control requirement. (Note that part (c) and the con-
dition for synchronization loops in parts (b) and (d) of Definition 7.19 are not relevant to data-race-free-0 since
data-race-free-0 does not exploit synchronization loops.) Condition 5.16 ensures that if R is ordered before X by

the above relation, then R(i) =~ X(j) for all i, j. Thisensuresthat all control paths are executed safely, thereby
obeying the critical set part of the generic control requirement.

Next consider the finite speculation part. Part (a) requires that the number of operations ordered before any
write by { > }+ befinite. Since R %> X impliesthat R(i) 2>> X(j) for al i, j and since there can only be

finite sub-operations before any sub-operation by ==, it follows that part (a) of the finite speculation require-
ment istrivially satisfied by Condition 5.16. Part (b) of finite speculation is directly satisfied by part (€) of Condi-
tion 5.16.

The write termination part of the generic requirement requires that some sub-operations of certain writesin
the execution should be in the execution, and has a requirement for self-ordered loops. The latter requirement is
not relevant to data-race-free-0. The former requirement is imposed on writes that can form a race in some
sequentialy consistent execution of the program. In data-race-free-0 programs, such writes are distinguished as
synchronization. Therefore, part (f) of the data-race-free-0 condition ensures that the generic write termination re-
quirement is also obeyed. This completes the proof.

45. This appendix assumes that data-race-free-O does not ignore unessential operations. If, however, unessential opera-
tions are ignored with data-race-free-0, then the assumptions for valid paths (Condition 7.18) require that system designers

assume amodified version of the >~ relation as follows. W =~ Riff W and R are both synchronization and W(i) is
the last essential conflicting sub-operation before R(i) by the execution order (assuming R is issued by processor P;). In
contrast, the definition in Chapter 4 requires W(i) to be the last conflicting sub-operation before R(i). This modification
does not affect programmers since programmers need only consider sequentially consistent executions without unessential
operations.
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Appendix G: System-Centric Specifications of PLpcl and PL pc2

This appendix discusses system-centric specifications for PLpcl and PLpc2 that allow the optimizations dis-
cussed in Chapter 6. Based on the results of Chapter 7, the valid paths of a model completely define system-
centric specifications of the model. Sections G.1 and G.2 derive a set of valid paths for PLpcl and PLpc2 respec-
tively, and use the results of Chapter 7 to show that the system-centric specifications corresponding to these valid
paths alow the optimizations discussed in Chapter 6. We also indicate which reads can be self-ordered since that
information can be exploited by aggressive implementations of the control requirement. The specifications and
proofs are similar to those for the PLpc model [AGG93].

G.1ThePLpcl Mode
Theorem G.2 below gives a set of valid paths for the PLpcl model. The theorem uses several types of valid

vcol veo2 vco3

conflict order relations ( , , ) to capture the possible conflict order arcs on the valid paths

(analogous to the = relation for the program order arcs). Definition G.1 first gives these relations. Following
the statement of the theorem, we show how it allows the PLpcl optimizations discussed in Chapter 6, and then
prove the theorem is correct.

In the following, we say an operation is of a particular category if it is distinguished as that category. We
use W to denote any write, SW to denote a synchronization write, NLUW to denote a non-loop or unpaired write,
LW to denote a loop write, and DW to denote a data write. We use R, SR, NLUR, LR, and DR correspondingly
for reads. We use S, NLU, L, D to denote either aread or awrite of the corresponding category. We use numeri-
cal suffixes to the above if we need to refer to two operations of the same category. X, Y, Z, A, B denote any
memory operations.

When using the notion of paired synchronization after ignoring unessentials, the assumptions for valid paths
(Condition 7.18) require that system designers assume a modified version of the notion of paired as follows. A
write W should be considered paired with aread R (issued by processor P;) if W and R are distinguished as pair-
able with each other and if W(i) is the last essentia conflicting sub-operation before R(i) by execution order. In
contrast, the definition in Chapter 6 requires W(i) to be the last conflicting sub-operation before R(i). This
maodification does not affect programmers (or our analysis for the proof) since programmers and our analysis need
only consider sequentially consistent executions without unessential operations.

VCO

Definition G.1: The valid conflict order ( ——) relations for an execution E and the PLpcl model:

X and'Y below are memory operations from different processorsin E.

X Y@Ls vy iff X and Y are respectively the first and last operationsin one of
NLUR > NLUW
SW 2> SR, thelast conflicting write before SR in E is from a different processor than SR
NLUW =5 NLUW
NLUR > NLUW 25 SR

vco2

X —= Y iff Xand Y are respectively thefirst and last operationsin
SW 2> SR, thelast conflicting write before SR in E is from a different processor than SR

X 5y iff
X Y225 y X and Y are paired with each other.
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Theorem G.2: Valid paths of PLpcl: The following constitute a set of valid paths for PLpcl.
(D)X (2> 0% )+Y,XandY are non-loops or unpaired synchronization.

(2) X (2> 0O =5 )+, both X, Y are synchronization, and at least one of X or Y isloop.
QR)X (2> 025 )+Y,atleast oneof X or Y isdata

(4) X (2> 05 )+Y, X isawrite from a read-modify-write whose read is non-loop or un-
paired synchronization, Y is a read from a read-modify-write whose write is non-loop or unpaired
synchronization.

Further, in al of the above paths, no two consecutive edges are both 2= or both due to a ~*=> re-
lation.

Note that paths of type (4) described in theorem G.2 are executed safely if paths of type (1) are executed
safely. For paths of type (1) - (3), by inspection it follows that SW = SRisa ~*> arc only if both the write
and read are non-loop or unpaired synchronization (or both are to the same location). Thus, a synchronization
write followed by a synchronization read to a different location need be executed in that order only if both are dis-
tinguished as non-loop or unpaired. (The other > arcs are similar to data-race-free-1; i.e., acquire > data,
data *> release, SR > S, SW1 *> SW2, and arcs between operations to the same location.) From the
proof below, it also follows that only synchronization reads are exploited as self-ordered with respect to synchron-
ization writes. Thisinformation can be used for aggressive implementations of the control requirement.

We say aread (or awrite) isan intrinsic loop read (or intrinsic loop write) in a sequentially consistent exe-

cution E; if it obeys definition 6.7 for aloop read (or definition 6.8 for aloop write) for E;. A path of type (1), (2),
(3), or (4) refers to paths of the type specified in theorem G.2.

Consider a PLpcl program Prog. Let E; denote a sequentially consistent execution of Prog without
unessential operations. We prove that theorem G.2 is correct by proving that for any E, there is a critical set of
paths for Eg that consists only of paths of the type (1), (2), (3), and (4). We use the following lemmas. Below,
termsindicating order (e.g., last, after, first, between, etc.) implicitly refer to the execution order of the considered
execution (unless otherwise specified). Further, since we will only be considering execution orders of sequentially
consistent executions, we assume execution orders are on operations rather than sub-operations.

Lemma G.3: If X 2> YinEgand X and Y form arace® in E, then X 215 Yin E..
Proof:
Xand Y must be synchronization operations because they form aracein Eg.

X cannot be an intrinsic loop read because of the following. Suppose X is an intrinsic loop read. Then by
definition 6.7 of aloop read, X must be an exit read of a synchronization loop in Eg. But then it must return

the value of the write it raceswith in E;. Since X > Yin E,, it follows that X cannot return the value of Y
in E, acontradiction.

Y cannot be an intrinsic loop write. Thisis because by definition 6.8 of an intrinsic loop write, an intrinsic
loop write can only race with an intrinsic loop read.

Thus, X iseither NLUR or SW, and Y iseither NLUW or SR. Further, if X isan intrinsic loop write, then Y
must be a read because an intrinsic loop write can only form a race with aread. The lemma follows im-
mediately. [

Lemma G.4: Define the relation (and graph) rel (on the memory operations of an execution) as the union of pro-

gram order and arcs of the type W 2> R where W is the last conflicting write before R and is from a different
processor than R. Let X and Y be synchronization operationsin Es. If thereisapath in rel from X to Y in Eg that

endsina ®> arc, then there isapath of type (2) from X to Y that endsina *> arc.

46. The proofsin this appendix apply to al definitions of arace.
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Proof:

Consider apathinrel from Xto Yin Eg that endsina 2> arc and such that no two consecutive arcs on the
path are 2> arcs and the path has fewest possible data operations. 1f no > arcs on the above path have

data operations, then the above path is of type (2) and the lemma follows. So suppose that some = arc

has data operations. Then there must be a ™ path between the two operations on the above 2> arc.

Replace the above 2> arc with the > path. The resulting path also implies a path in rel from X to Y
that satisfies all the criteria for the chosen path but has fewer data operations than the chosen path, a con-
tradiction.

If operation X is from a read-modify-write, then let X' be the other operation of the read-modify-write. Similarly,
define Y' for V.

Lemma G.5: Consider two conflicting operations X and Y in E such that there is no rel path from X to Y that ends

ina 2> arc. Consider the operations O that are between X and Y and have arel path to Y that endsin a == arc;
donot include Y' in O. Then there is another sequentially consistent execution Eg' such that the execution order of

E isasfollows. The = first has all the operations of the execution order of Eg until just before X (in the same
relative order) with possibly the exception of X' (if X isawrite of a read-modify-write) and Y’ (if Y isawrite of a
read-modify-write and Y’ is before X), followed by all the operationsin O (in the same relative order asin Ey), fol-
lowed by X', X, Y and Y in any order as long as a write is not placed between the read and write of a read-
modify-write and program order between the read and write of a read-modify-write is preserved. Further, there
are no unessential operations until before all of X, X', Y, and Y', and all operations until and including X, X', Y, and
Y' are distinguished asin Es.

Proof:

Consider a modification of the execution order of E5 where the operations in O are moved to just before X,
retaining their original order, and then X' (if X is awrite of a read-modify-write) is moved to just before X.
Consider the resulting order until before X' and X. This resulting order is till consistent with program ord-
er, and the last conflicting write before any read is still the same as with the origina execution order of E.
Now consider the resulting order appended with X', X, Y" and Y (in any order that preserves the constraints
specified by the lemma) and make the appended reads return the value of the last conflicting write before
them. It follows that the resulting order is the prefix of an execution order of some sequentially consistent
execution where the operations of the processors of X and Y preceding X and Y are the same as for Eg, and X
and Y access the same addresses as before. Consider one such sequentially consistent execution E. E has
the operations required of ES'. Since all operations before X, X',Y,Y’ return the same values as in E;, none of
them are unessential in E. From the assumptions of how operations are distinguished (Condition 7.18 and
Section 5.13) and by the above observations, it follows that al operations until and including X', X, Y', and
Y must be distinguished the same way in E and E;. Thus, we have proved the existence of an execution that
satisfies al the required properties of Eg'. [

When applying lemma G.5 in the appendix, we refer to X, X', Y, and Y’ as used by the lemma as appended opera-
tions.

Lemma G.6: Consider two conflicting operations X and Y in Eg such that there is no other conflicting write
between X and Y in E, and there is arace path from X to Y in E (asin definition 7.4). Then X **> YinE,.
Proof:

Consider E{' as defined in the lemma G.5 with X before Y. Then since there are no writes between X and Y
in E, it follows that the reads from the appended operations return the same values in Eg and E;'. There-
fore, all operations until Y are essential in E5'. Since there is arace path from X to Y in Eg, it follows that if
X is part of a read-modify-write, X must be the write. Further, if Y is part of a read-modify-write, then Y

must be the read. Thus, X and Y form arace in E{'. Therefore, from lemma G.3, it follows that X “<> Y
in E5' and therefore, X %> Y in Es, proving the lemma. O
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Lemma G.7: Consider two conflicting operations X and Y in Eg such that there is arace path from Xto Y in Eg (as
in definition 7.4). Then X %> YinE,.
Proof:

If there is no other conflicting write between X and Y in the execution order of Eg, then the lemma follows
from lemma G.6. Therefore, assume that there are conflicting writes between X and Y in the execution ord-
er of E;. For any such write, there must be a race path from X to the write and from the write to Y in Es.
Let W, be the first conflicting write ordered after X by the execution order of E. Let W, be the first
conflicting write ordered before Y by the execution order of E;. (W; may or may not be the same as W,,.)

FromlemmaG.6, X > W, and W, > YinE;. It followsthat X **> YinE,. O

We next prove theorem G.2 is correct. We do this by considering every pair of consecutive conflicting
operations, X and Y, in E5 and showing that one of the candidates for a critical path for every pair (when acritical

path is necessary) is a path of type (1), (2), (3), or (4). If X and Y are from the same processor, then the > arc
is a critical path that is of type (1), (2), or (3). Therefore, assume that X and Y are from different processors.

Without loss of generality, assume X > Y. Then there are the following cases.
Case 1: At least one of X or Yisdata.

In this case, there must be a ™ path from X to Y. There is dways an "> path where all the =2

arcs are between operations of different processors and no two adjacent arcs are > arcs. Then on this
path, the 22> arcsare 2> arcs. Therefore, the path is of type (3).
Case 2: Both X and Y are synchronization, Y is not from a synchronization loop.
There are two sub-cases.
ub-case 2a: X and Y are both NLU.
A path corresponding to X and Y needs to be critical only if there is an ordering path from Xto Y. So
suppose there is an ordering path from X to Y. There must be an ordering path where the == arcs

are race paths and no two adjacent arcs are both 22>. The - arcs on this path are > arcs by
lemma G.7. Therefore, thispathis of type (1).

ub-case 2b: At least one of X or Y isaloop operation.

If there isa path in rel from X to Y that endsin a > arc, then by lemma G.4, there is an ordering
path of type (2) from X to Y that can be chosen as critical. Therefore, assume that there is no path in

rel from X to Y that endsin a *> arc. There cannot be any other write W between X and Y in Eg

such that W conflicts with X and Y and has apath inrel to Y that endsin a *> arc (otherwise, X and
Y are not consecutive conflicting operations). Consider E¢' defined in lemma G.5 with Y after X. Then
X" and X (if either is a read) return the same value as E5 and so are essentia. Since Y is not from a
synchronization loop, Y is also essential. Further, note that if Y is a write from a read-modify-write
and X is awrite, then the read of the read-modify-write cannot be between X and Y in E5 because then

there isarel path from X to Y that endsin = arc. (Also X cannot be a read from a read-modify-
write because then X and Y are not consecutive conflicting operations in E5.) Therefore, we can have
an EJ' where X and Y are adjacent in the execution order and so form a race. From lemma G.3, X

Y®Ls YinEg. Therefore, Y cannot be LW. Therefore, X must be aloop operation. The only possi-
bility isfor X to be LW and Y to be NLUR. But X must be an intrinsic loop operation and Y is not an
intrinsic loop operation. Therefore, X cannot race with Y, a contradiction.

Case 3: Both X and Y are synchronization, Y is an exit write of a synchronization loop.

Let Y' be the read of Y's read-modify-write. Note that there cannot be another write between X and Y in Eg
that conflicts with Y since then X and Y are not consecutive conflicting operations. There are two sub-cases.

Sub-case 3a: Xisawrite.
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Either Y is data or synchronization. Suppose first that Y' is a data operation. Then there is a %>

hbl

path from X to Y' in Eg and therefore a —— path from X to Yin Eg. Thisimplies a path of type (2)
from XtoYinEs.

Next suppose that Y' is a synchronization operation. Y' must return the value of X in Es. It follows
that X => Y > Yisapath of type (2) in Es.

Sub-case 3b: Xisaread.
If X is part of a read-modify-write, then the corresponding write must be before Y'. But then X and Y

are not consecutive conflicting operations. Therefore, X is not part of a read-modify-write. Consider
E.' of lemma G.5 with Y after X and Y' before X. X, Y' and Y must be essential and X and Y form a

race in E¢'. By lemma G.3, X 5 YinE'. Then both X and Y must be NLU. A path correspond-
ing to X and Y need be critical in Eg only if there is an ordering path from X to Y in E;. So suppose

there is an ordering path from X to Y in E;. There must be some path where the > arcs are race

paths and no two adjacent arcs are both 2>. Then the 2> arcs are > arcs by lemma G.7.
Therefore, the path is of type (2).

Case 4: Both X and Y are synchronization, Y is an exit read of a synchronization loop.

Y is from a self-ordered loop. Let Wy be the write in the definition of critical paths such that a path after a
write after W; to Y is a candidate for a critical path. (We use the extended definition in Appendix C.) If
there needs to be a critical path, there must be such a W; and there must be an ordering path from a write

after W, to Y that endsina 2> arc. If thereisarel path that endsin a program order arc from some write
after W; to Y, then by lemma G.4, the theorem follows for this case. So for a contradiction, assume that
there is no rel path that ends in a program order arc from any write after W to Y. Then let W, be the first
write after W;. Consider Eg' assuming W, to be X. There are three sub-cases.

ub-case 4a: Y isnot part of a read-modify-write.

Consider E4' with Y just before W,,. 'Y must be essentia since W; writes an exit value for Y. W, must
also be essential since even if it is part of a synchronization loop, its read returns the same value asin
E;. But Y forms arace with W, and W, is not necessary to make Y essential. Therefore, Y must be
NLU and W, must be NLU also. In Eg, there is an ordering path from W, to Y that ends in a program
order arc. One such path must be such that the = arcs are race paths and no two adjacent arcs are

vcol

both 2>, Thenthe => arcsare = arcs by lemma G.7. Therefore, the path is of type (1) and
can be selected as the critical path corresponding to X and Y.

Sub-case 4b: Y is part of a read-modify-write, W, is not part of a read-modify-write.

Consider ES' with Y before W,,. Again, Y must be essential. W,, is aways essential. Then W, forms a

race with Y's exit write and does not terminate Y. So Y must be NLU and W, must be NLU. As for

the previous sub-case, in Eg, there is an ordering path from W, to Y that ends in a program order arc

and is of type (1). This path can be selected as the critical path corresponding to X and Y.

Sub-case 4c: Y is part of a read-modify-write, W, is part of a read-modify-write.

Consider E¢' with Y before W,,. Again, Y must be essential. There are two cases depending on wheth-

er W, isessential in E'.

Sub-case 4c1: W, isessentia in Eg'.
The read of W,'s read-modify-write forms arace in ES'. If thisread is not from a synchroniza-
tion loop, then thisread isNLU. If thisread isfrom a synchronization loop, then since both W,
and the write of Y's read-modify-write make W,,’s loop terminate in EJ', the read of W,’s read-
modify-write must be NLU. Thus, in all cases, the read of W,’s read-modify-write is NLU.
Since the write of Y's read-modify-write must form a race with the read of W,,’s read-modify-
write, it follows that the write of Y's read-modify-write must be NLU. In Eg, there is an order-
ing path from W, to Y that ends in a program order arc. One such path must be such that the

-5 arcs are race paths and no two adjacent arcs are both >, Then the 2> arcs are
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Yol arcs by lemma G.7. Therefore, the path is of type (4) and can be selected as the critical
path corresponding to X and .

Sub-case 4¢2: W, isunessentia in Eg'.
W, must be from a synchronization loop and the exit read of the loop must form arace in some
sequentially consistent execution. Therefore, W, must write an exit value for Y (from the ex-
tended definition of critical setsin appendix C).
Consider ES' with W, before Y. Both W, and Y must be essential in ES'. Both W and W, write
exit values for Y in EJ'; therefore, Y must be NLU. W, forms arace with Y in EJ'. Therefore,
W, must be NLU. Again, from arguments used in previous sub-cases, there exists an ordering
path from W, to Y of type (1) and that ends in a program order arc in E;. This path can be
chosen as critical.

This compl etes the proof. [

G.2 ThePLpc2 Mode

The following theorem gives a set of valid paths for PLpc2. These are the same as the PLpcl model when
the operations at the end-points are both atomic or NLU. If the operations are non-atomic, then a more con-
strained type of paths can be specified as follows. (The notation used is the same as for PLpcl in Section G.1; the
maodification to the notion of paired discussed in Section G.1 isrequired for PLpc2 aso.)

Theorem G.8: Valid paths of PLpc2: The following constitute a set of valid paths for PLpc2.
()X (2> 05 )+Y, X and Y are non-loops or unpaired synchronization.
(2 X (2> 0 25 )+Y, both X, Y are synchronization and atomic, at least oneisloop.

vco3

BX (™ O -5 )+Y,aleastoneof X or Y isdata, both are atomic.

@)X 2> A(2> O Y25 )+ B 25 Y, both X, Y are synchronization, at least one is non-
atomic.

BG)X 2> A(2> 025 )+B 2> VY, atleastoneof X or Y isdata, at least one is non-atomic.
(6) SW Y25 SR 25 S at least one of SW or Sisnon-atomic.
(7) SW Y225 SR 25 D, at least one of SW or D is non-atomic.

(8) X (2> O 5 )+, X isawrite from a read-modify-write whose read is non-loop or un-
paired synchronization, and Y isaread from aread-modify-write whose write is non-loop or unpaired
synchronization.

Q) X 25 v,

Further, in all of the paths, no two consecutive edges are both 2> or .

By inspection, it follows that the > arcs for PLpc2 are the same as for PLpcl. Further, a write distinguished

as non-atomic is never areceiver, and never starts avalid path with W <> Runlessit is a path of type (6), (7), or
(8). For paths of type (6) and (7), cache coherence and preserving intra-processor dependences suffices; write
atomicity (as discussed in Chapter 6) is not needed. Paths of type (8) are executed safely if paths of type (1) are
executed safely. Thus, writes distinguished as non-atomic can be executed non-atomically, as long as they are
coherent with respect to other writes and intra-processor dependences are maintained.

Further, as mentioned in Chapter 6, if al atomic, unpairable, and non-loop reads are converted into read-
modify-writes, then all writes can be executed non-atomically (as long as al synchronization writes are coherent
with respect to other conflicting writes). Appendix H uses this conversion to show how PLpc2 programs can be
run correctly on release consistency (RCpc) and processor consistency systems; the proof in Appendix H can be
easily adapted to show the result is true in general. Essentially, the proof consists of a simple case analysis of the
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valid paths of type (1) - (3) (which require write atomicity) and shows that the above conversion allows replacing
some of the paths of type (1)-(3) by paths that do not require write atomicity, and the conversion ensures that the
remaining paths of type (1)-(3) are executed safely without write atomicity but because of the properties of a
read-modify-write.

Finally, from the proof below, it follows that as for PLpcl, synchronization reads from synchronization
loops can be self-ordered with respect to synchronization writes. For PLpc2, additionally, data reads can also be
self-ordered with respect to synchronization writes where at least one of the read or writeis non-atomic.*’

We next prove that theorem G.8 is correct. We do this by considering a PLpc2 program Prog and a sequen-
tially consistent execution Eg (without unessentials) of program Prog. We consider every pair of consecutive
conflicting operations, X and Y, in E; and show that one of the candidates for a critical path for every pair (if a
critical path is necessary for that pair) is a path from type (1)-(9) described above. Without loss of generdlity, as-

sume X > YinE,. The PLpcl analysis applies directly in the cases where (i) X and Y are from the same pro-
cessor, or (ii) when both X and Y are atomic or NLU, and at least one is data, or (iii) when both X and Y are atomic
or NLU, both are synchronization, and Y is not a self-ordered read. Therefore, below we consider only cases
when X and Y are from different processors. Further, either at least one of X or Y is non-atomic (under PLpc2), or
both X and Y are synchronization and Y is a self-ordered read.

Case 1: At least one of X or Yisdata, and X and Y do not form a partial race.

Then there isa ™ path from X to Y such that it begins and ends with a 2> arc or consists only of

operations to the same location. The former case implies a path of type (5). In the latter case, the path must
be of the type X = SW Y25 SR 2> Y (since X and Y are consecutive conflicting operations). Thus, the
path is of type (7).

Case 2: At least one of X or Yisdata, and X and Y form a partial race.

Since at least one of X or Y is non-atomic and they form a partial race, Y must be an exit read from a syn-
chronization loop and must be an intrinsic non-atomic read. This loop is also self-ordered. Consider the
last write W before X that conflicts with X in Eg (including the hypothetical initial write). Then by definition
of anon-atomic read, W must write a non-exit value for Y. If Wisthe hypothetical initial write, then thereis
no need for a critical path corresponding to X and Y, proving the theorem for this case. Therefore, assume
that W is not the hypothetical initial write. By definition of a non-atomic read, W and Y cannot form a par-
tial race in E5. There are three sub-cases.

ub-case 2a:; At least one of Wor Y isdata

There must be a ™ path from Wto Y in Es that satisfies the conditions of definition 6.11 of not

forming a partial race. Since at least one of X or Y is data, this path must end in a program order arc.
Thus, the path is either of type (5) or type (7) and can be considered as the critical path corresponding
toXand .

Sub-case 2b: Both W and Y are synchronization and there is a path in rel from W to Y that begins and ends
ina-®> arc.
By argument similar to that for lemma G.4, the above rel path implies an ordering path from Wto Y
of type (4) and can be considered as the critical path corresponding to X and Y.
Sub-case 2c: Both W and Y are synchronization and there is no path in rel from W to Y that begins and ends
ina*> arc.
Let O be the set of operations that are after W and have arel path to Y in Eg such that the path endsin
5. Xmust bein O because X must have a "> pathto Y. Consider amodification of the execu-

47. Thisisin contrast to the PLpc model where all self-ordered reads are considered competing [AGG93]. (Recall that
competing operations in PLpc are otherwise analogous to synchronization operations in PLpc2.) This affects aggressive im-
plementations of the control requirement since now al reads in synchronization loops need to be assumed to be self-
ordered. This suggests further distinguishing data operations that are involved in apartial race from those that are not; only
the former are self-ordered.
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tion order of E5 where the operations in O and Y are moved to just after W, retaining their relative
order. The resulting order until and including Y is still consistent with program order, and the last
conflicting write before any read until and including Y is till the same as with the original execution
order. It followsthat the resulting order until Y isthe prefix of an execution order of some sequential-
ly consistent execution where the operations until Y are distinguished as in Eg and are all essential. Y
must form a partial race with X in the new execution as well. Since at least one of X or Y is dis-
tinguished as non-atomic and X and Y form a partial race, Y must be intrinsic non-atomic (by
definition 6.12 of non-atomic reads) for the new execution. Therefore, Y cannot form a partial race
with W in the new execution. There cannot be a path in the program/semi-causal-conflict graph from

W to Y that begins with a 2> arc. Therefore, there must be a path in the program/semi-causal-
conflict graph from W to Y that consists of operations to the same location and is of the type W = SW

Y25 SR -2 V. This path is also present in Es. It is of type (6) and can be considered as the criti-
cal path corresponding to X and Y.

Case 3: Both X and Y are synchronization and there isapath in rel from X to Y that begins and endsina *- arc.

By argument similar to that for lemma G.4, the rel path described above implies an ordering path from X to
Y of type (4). This path can be considered critical.

Case 4: Both X and Y are synchronization, there is no path in rel from X to Y that begins and ends in a =~ arc,
and Y is not an exit read from a synchronization loop.

Note that X cannot be a read from a read-modify-write since then X and Y are not consecutive, and there
cannot be any other conflicting write between X and Y. Let O be the set of operations that are after X and

have arel path to Y in Eg such that the path endsin *>. Consider a modification of the execution order of
E; where the operations in O and Y are moved to just after X, retaining their relative order. The resulting
order until Y is till consistent with program order, and the last conflicting write before any read until Y is
still the same as with the original execution order. It follows that the resulting order until Y is the prefix of
an execution order of some sequentially consistent execution where the operations until Y are distinguished
asin E; and are all essential. Call the new execution Eg'. There are two sub-cases.

Sub-case 4a: X and Y do not form a partial racein Eg'.

There cannot be a path in the program/semi-causal-conflict graph from X to Y that begins with a =
arc. Therefore, there must be a path in the program/semi-causal-conflict graph from X to Y that con-

sists of operations to the same location and is also present in Eg, and is of the type X = SW 25 SR
25 Y. Thisisa path of type (6), and can be considered critical.

Sub-case 4b: X and Y form a partial racein E'.
Since either one of X or Y is non-atomic or Y is a self-ordered read, it follows that Y must be an exit
read from a synchronization loop, a contradiction.

Case 5: Both X and Y are synchronization, there is no path in rel from X to Y that begins and endsina -~ arc, Y
isan exit read from a synchronization loop, and X and Y form a partial race in Es.

If thereis no critical path required for X and Y, the theorem is proved for this case. So assume that a critical
path is required for X and Y.

Let W, be the first conflicting write in Eg from which there can be a critical path to Y corresponding to X and
Y (we use the extended definition of a critical set in Appendix C). Then the last conflicting write W; (in-
cluding the hypothetical initial write) before W, writes an exit value for Y. Let W, be any conflicting write

in E; between W, and X and including W, and X. Let Y’ be the first operation before Y by >
Sub-case 5a: There does not exist arel path from any W, to Y'.

Since the program is a PLpcl program as well and a critical path is required for X and Y, it follows
that the path corresponding to PLpcl is of type (1) or (8). That path can be considered critical for
PLpc2 aswell.
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Sub-case 5b: There existsarel path from some W, to Y'.

Consider the last such W,. Let W, be the first operation after W, by program order in E;. There can-
not be arel path from W' to Y’ in Eg because this implies a path of type (4) from W, to Y in Eg (by
arguments similar to lemma G.4), a contradiction. Let O be the set of operations that are after W,, and
have arel pathto Y’ in E;. O cannot contain any write conflicting with Y. Consider a modification of
the execution order of E5 where the operationsin O and Y' are moved to just after W,,, retaining their
relative order. The resulting order until Y’ is still consistent with program order, and the last
conflicting write before any read is ill the same as with the original execution order. Thus, it
represents the prefix of the execution order of a sequentially consistent execution where all operations
until Y’ and Y are distinguished similar to Eg and all operations until Y’ are essential. Now extend the
resulting order to represent a sequentially consistent execution where Y is also essential, Y returns the
value of the first write after W, that writes its exit value, and Y occurs immediately after this write.
Note that the rel path from W, to Y’ also exists in the new execution. The following sub-cases are
possible for the new execution.

Sub-case 5b1: At least one of W, or Yisintrinsically non-atomic (by definitions 6.12 and 6.13) in the
new execution.
Since there is a rel path from W, to Y that endsin a = arc, by definitions 6.12 and 6.13,
there must be a path from W, to Y of the type described in the definition of a partial race and
such that it ends in a -~ arc. Such a path must be of type (6) and qualifies as the required
critical path.
Sub-case 5b2: Both W, and Y are intrinsically atomic (by definitions 6.12 and 6.13) in the new execu-
tion.
Therel path from W, to Y isof type (1), (2), or (3) and qualifies as the required critical path.
Case 6: Both X and Y are synchronization, there is no path in rel from X to Y that beginsand endsina = arc, Y
isan exit read from a synchronization loop, and X and Y do not form a partia race in E.
There cannot be a conflicting write between X and Y; otherwise, X and Y are not consecutive. Let O be the

set of operations that are after X and have a rel path to Y in Eg that ends in a > arc. Consider a
modification of the execution order of Eg where the operations in O and Y are moved to just after X, retain-
ing their relative order. Consider the resulting order until Y. This resulting order is still consistent with pro-
gram order, and the last conflicting write before any read is still the same as with the original execution ord-
er. It follows that the resulting order until Y is the prefix of an execution order of some sequentially con-
sistent execution where the operations until Y are distinguished similar to Eg and are essential.

Sub-case 6a: X and Y do not form a partia race in the new execution.
There must be a path of the type X = SW Y225 SR 25 Y in the new execution. This path is also
present in the old execution. It is of type (6) and can be considered the critical path for X and Y.
Sub-case 6b: X and Y form a partial race in the new execution.

Then applying analysis similar to Case 5, there must be a write W, before X such that a path from W,
to Yis of type (1) - (9) and can be chosen as the critical path for the new execution. This path must
also exist in the old execution.

This completes the proof. O
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Appendix H: Porting PL pcl and PL pc2 Programsto Hardware-Centric Models

This appendix proves the correctness of the mappings discussed in Chapter 6 for porting PLpcl and PLpc2
programs to systems based on hardware-centric models.

For the hardware-centric models, we use the specifications developed in [GAG93]. These specifications use
the extension of Collier’s abstraction discussed in Section 7.6.5, and have been shown to be equivalent to the ori-
ginal specifications [GAG93]. Section H.1 discusses the extended abstraction and gives the specifications using
this abstraction. It then shows how to derive specifications in Collier’s original abstraction that are more aggres-
sive than the above specifications (i.e., the derived specifications allow a superset of the executions than the
corresponding hardware-centric models). Section H.2 shows that the derived aggressive specifications obey the
valid path and control requirements for PLpcl with the mappings of Chapter 6, thereby proving that the
hardware-centric models obey the necessary requirements. Section H.3 repeats the above for PLpc2. The materi-
a in Sections H.2 and H.3 is very similar to that for the corresponding proofs for the PLpc model [AGG93].

H.1 Specifications of Hardware-Centric Models

The extension to Collier’s abstraction [GAG93] explicitly models the equivalent of a write buffer in a pro-
cessor. A write operation now involves an additional initiation sub-operation called Winit that can be viewed as
the write being placed in the write buffer of its processor. Informally, a read returns the value of the last
conflicting write placed in its processor’s write buffer if such awrite exists; if there is no such write, then the read
returns the value in its processor's memory copy. More formaly, as mentioned in [GAG93], ‘‘a read sub-
operation R(i) by processor P; returns a value that satisfies the following conditions. If there is a write operation

W by P; to the same location as R(i) such that Winit(i) 2>~ R(i) and R(i)) =>> W(i), then R(i) returns the value
of the last such Winit(i) in =—. Otherwise, R(i) returns the value of W’ (i) (from any processor) such that W’ (i)
isthe last write sub-operation to the same location that is ordered before R(i) by ~>>.”

The specifications of the various models we are concerned with are given in figuresH.1 - H.4, taken directly
from [GAG93]. The notation is similar to that used in the rest of thisthesis. Some differences are: RW is used to
indicate aread or awrite, AR and AW indicate a read and write respectively from a read-modify-write, RMW in-
dicates a read-modify-write, Wc, Rc, RWc indicate competing operations, Rc_acq and Wc_rel indicate an acquire

and a release respectively. The “> relation for RCpc will be discussed in Section H.3. All specifications re-
quire certain ordering paths to be executed %{fely,48 a condition for read-modify-write, a coherence condition for
certain writes, and a termination condition for certain sub-operations of certain writes (which requires the specific
sub-operations to be in the execution). In addition, they also require an initiation condition which essentially en-
sures that initiation sub-operations of a processor appear in program order with respect to other conflicting sub-

operations of the same processor. More formally, as mentioned in [GAG93], the condition requires: *‘If R >

W, then R(i)) == Winit(i). If W 2> R, then Winit(i) = R(). If W1 2> W2, then Wlinit(i) **>
W2init(i).”” The specifications also implicitly assume the low-level finite speculation requirement similar to ours
(Condition 7.21(2)).

Theorem H.1: Consider a specification given in the extended Collier's abstraction which only re-

quires safe execution of certain ordering paths, safe execution of certain > paths, termination of
certain writes, the finite speculation requirement for some appropriate control relation, and the initia-
tion condition. Consider a corresponding specification given in Collier’s abstraction which differs
from the above specification only in requiring that (1) in the ordering paths that need to be executed

safely, W == R arcs should involve only reads that return the value of another processor’s write,
(2) a path that begins with a read that returns its own processor’s write is not required to be executed

48. An ordering path from operation X to operation Y is executed safely if X (i) =~ Y(i) for ali.
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Define ¥ asfollows: X ¥ Y if X,Y arethefirst and last operations in one of
R 2> RW
w s w
AW (inRMW) 25 R
w 2> RMW 25 R

Define = asfollows: X = Y if X,Y arethefirst and last operationsin one of
X =>Y
R=> W= R
Define 2> asfollows: X = Y if X and Y conflict and X,Y are the first and last operationsin one of
uniprocessor dependence: RW 2> W
coherence: W == W
multiprocessor dependence chain: one of
W= R*5 R
RW 5 A =25 B *5 1+ RW
w5 RS A =5 B-*5 1+R
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then

either W = ARor AW =5 W

Conditionson 2> :
Initiation condition holds.

=25 condition: if X = Y, then X(i) > Y(i) for all i.
Termination condition holds for all sub-operations.

Figure H.1. Specification of Total Store Ordering

safely (unless the path is between operations by the same processor), and (3) if W > R, then W(i)

~2> R(i) for al i. Then the result of an execution that obeys the specification in the extended
abstraction isthe same as the result of an execution that obeys a specification in Collier’ s abstraction.

Proof:

Let E be an execution of the specification in the extended abstraction. We construct an execution E' below
that has the same result as E but obeys the corresponding specification in Collier's abstraction described
above.

For every W ®> R such that R(i)) ==> W(i) in E and W(i) is the last such write in E (by =>> ),
move R(i) to just below W(i) in the execution order of E.

Call the result of the above conversion as the new order, and the 22> of E asthe old order.

The only difference in the <> of the old and new ordersisthat aR > W1 in the old order can be W1
-5 Rinthe new order, if R returns the value of its own processor’s write, W, in E and either R => W1
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Define ¥ asfollows: X ¥ Y if X,Y arethefirst and last operations in one of
R 2> RW
W 25 STBAR > W
AW (in RMW) 25 RW
w 2> STBAR > RMW 2> R

Define = asfollows: X = Y if X,Y arethefirst and last operationsin one of
X =Y
R>= wW->> R

Define 2> asfollows: X = Y if X and Y conflict and X,Y are the first and last operationsin one of
uniprocessor dependence: RW 2> W

coherence: W == W
multiprocessor dependence chain: one of

W =5 R-*5 R
RW 5 {A =5 B 5 }+RW
W =5 R*5 {A =5 BF5 1+R
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then

either W = ARor AW =5 W

Conditionson 2> :
Initiation condition holds.

=25 condition: if X = Y, then X(i) > Y(i) for all i.
Termination condition holds for all sub-operations.

Figure H.2. Specification of Partial Store Ordering

25 WinEorWil=W.

Now in the new order, every read returns the value of the last conflicting write before it by the execution
order and this value is the same as for E. Thus, the new order is an execution order using Collier’s abstrac-

tion with the sameresult as E. Call the corresponding execution E’.

Further, all ordering pathsin E’ that have to be executed safely by the specification with Collier’s abstrac-
tion also had to be executed safely by the specification with the extended abstraction. These paths are exe-
cuted safely in E' as well unlessit is required to safely execute a path from aread R to write W2 where R
and W2 are from different processors and R returned the value of its own processor’s write. However, by
assumption, paths of the above type are not required to be executed safely. Thus, all the required ordering
paths are executed safely in E'. All the other aspects of the specification in Collier’ s abstraction are trivially

obeyed by E’, proving the theorem. [
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Define ¥ asfollows: X ¥ Y if X,Y arethefirst and last operations in one of
R 2> RW
w s w

Define 2> asfollows: X > YifX 2> Y

Define =% asfollows: X =% Y if X and Y conflict and X,Y are the first and last operationsin one of
uniprocessor dependence; RW 2> W

coherence: W 2> W
multiprocessor dependence chain: one of

W= R=*5 R
RW *5 {A =5 B *5 }+RW

atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then
gither W =25 ARor AW =% W

Conditionson X :
Initiation condition holds.

=5 condition: if X =% Y, then X(i) X>> Y(i) for dl i.
Termination condition holds for all sub-operations.

Figure H.3. Specification of Processor Consistency.

H.2 Porting PL pcl Programsto SPARC V8 Systems

Below, we give the correctness proof for the mappings for total store ordering (TSO). The proof for partial
store ordering is almost identical.

By inspection, it follows that TSO executes the following ordering paths safely. Recall again that an order-

ing path from operation X to operation Y is executed safely if X (i) 2> Y(i) for al i. (Below, ¥~ and =
are the corresponding relations defined for TSO.)

(D) X (> 0O =)+ Y where no two adjacent arcs are both =~ or both >, and for any W =
R arc, Rreturns the value of another processor’s write.

QX2 Y.
We refer to the above paths as the safe ordering paths of TSO. Note that a path of type (4) given in

Theorem G.2 is executed safely as long as a path of type (1) of theorem G.2 is executed safely; we therefore need
not consider paths of type (4) when considering the valid path requirement below.

We first consider the mapping of converting a NLUW into a read-modify-write when NLUW 2= NLUR.
By inspection, this resultsin the ¥ of TSO being a superset of the “*> of PLpcl (with the appropriate map-

ping). Further, =*> of TSO isasuperset of the “*= relations of PLpcl. It follows that the safe ordering paths
of TSO are a superset of the valid paths of PLpcl. Thus, TSO obeysthe valid path requirement of PLpcl. It trivi-
aly obeys the control requirement because of the following. The critical set requirement is trivially obeyed be-
cause the control paths are safe ordering paths of TSO. The finite speculation, write termination, and loop coher-
ence requirements are obeyed directly. Thus, with the above mapping, a TSO system guarantees sequential con-
sistency to PLpcl programs.
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Define ¥ asfollows: X ¥ Y if X,Y arethefirst and last operations in one of
Rc > RWc
Wc 2> Wc
RW 2> we re
Rc_acqg 2> RW
X 25 YifX{ @ 025 }+Y

Define = asfollows: X = Y if X,Y arethefirst and last operationsin one of
X =2>Y
R1 => W -*> R2where R1,R2 are on the same processor

Define = asfollows: X =*> Y if X and Y conflict and X,Y are thefirst and last operationsin one of
uniprocessor dependence: RW 2> W

coherence: W > W
multiprocessor dependence chain: one of

w2 R*®> R
RW 5 { A =5 B *5 1+RW
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then

either W = ARor AW =5 W

Conditionson 2> :
Initiation condition holds.

=25 condition: if X = Y, then X(i) > Y(i) for all i.
Termination condition holds for all sub-operations.

Figure H.4. Specification of Release Consistency (RCpc).

We next consider the mapping of converting a NLUR into a read-modify-write when NLUW *- NLUR.
The only missing > of PLpcl from TSO's > isthat of NLUW > NLUR. Consider a valid path of
PLpcl that uses such a “=->. If the above type of 2> arc is not the last arc on the path, then the next arc is of
the type NLUR - W1. By replacing NLUR by a read-modify-write (RMW), we can replace the NLUW -
NLUR > W1 sequence of the original path by a NLUW == W =5 W1. Such programs do not require

valid paths with NLUW *- NLUR arcs except at the end of the path. Consider a path that does have the above
arc a the end. Then the path must begin with awrite W1. Since the NLUR is replaced by a read-modify-write, it

follows that there is a safe ordering path from W1 to the write W2 of this read-modify-write. Thus, W1(i) =
W2(i) for all i. But we also know that for the read R of the read-modify-write, R(i) > W2(i) for al i. Thus, it

follows that W1(i) == R(i) for all i. Thus, the above path is executed safely and can be considered as a safe ord-
ering path of TSO. Thus, TSO obeys the valid path requirement for PLpcl with the above mapping. The argu-
ment for the control requirement is the same as for the earlier mapping. Thus, the above mapping is correct.
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H.3 Porting PL pc2 Programsto Processor Consistency and RCpc Systems

Below, we give the correctness proof for the mapping for RCpc. The arguments for the mapping for proces-
sor consistency are a subset of the arguments for RCpc.

The mapping requires converting all operations distinguished as data to ordinary, all operations dis-
tinguished as unpairable to nsyncs, all operations distinguished as pairable to syncs, and all reads distinguished as
unpairable, non-loop, or atomic reads to read-modify-writes. For the conversion to read-modify-write, the write of
the read-modify-write for synchronization reads should be either sync or nsync (the read should be as discussed
above).

By inspection, the above mapping ensures that RCpc executes valid paths of types (4), (5), (6), (7), and (9)
in theorem G.8 safely. Further, paths of type (8) are executed safely as long as paths of type (1) are executed
safely. Thus, we need consider only paths of types (1)-(3) when considering the valid path requirement below.

There are two cases for paths of types (1)-(3).
Case 1. The path is from types (1)-(3), and begins and ends with a *> arc.

Paths of type (2) and (3) that begin and end with a 2> arc are executed safely by RCpc. Paths of type (1)

that do not have arcs of thetype NLUW 2> NLUR and NLUR -2 NLUW %> SR are also executed
safely by RCpc. So consider paths of type (1) with the above arcs. Converting NLURSs into read-modify-

vco2

writes alows replacing the latter arcs by SW —= SR arcs. Asfor TSO, the former arcs get replaced by

NLUW 2> NLUW arcs (except for the last one on the path). Thus, if the last arc is not NLUW 2=
NLUR, then the paths get converted into paths that are executed safely by RCpc. If the last arc is NLUW

25 NLUR, then arguments similar to those for TSO are applicable and ensure that the path is executed
safely.

Case 2: The path is from types (1)-(3), and does not begin and end with = arcs.

Consider the longest sub-path of such a path that starts and ends with =>. If the end points of the above
sub-path are conflicting, then the above sub-path is executed safely by RCpc, as argued above. Therefore,

the entire path can be replaced by a path with == arcs. This path is executed safely on RCpc.

So assume the above sub-path is between non-conflicting operations; i.e., between reads, say R; and R,.
Suppose R, is the last operation on this path. Then R, is distinguished as either atomic, non-loop, or un-
paired and so is replaced by a read-modify-write. Then the path from R; to the write of the above read-
modify-write is executed safely and so it follows that the entire path is executed safely. Suppose R, is not

the last operation on this path. Then the next arc must be a > arc and so R, must be NLU. So again R, is
replaced by aread-modify-write. Again, as above, the path must be safe.

Thus, RCpc obeys the valid path requirement with the above mapping. For the control requirement, the

5 relation of RCpc is similar to the “> relation described in Appendix D for the valid paths discussed in
Appendix G for PLpc2, and for the mapping to RCpc discussed above. However, one difference arises because

rch

the — relation for RCpc was developed to correspond to the necessary requirement for PLpc. As mentioned in
appendix G, a difference between PLpc and PLpc2 is that PLpc2 allows some data reads to be self-ordered. Thus,

the “> relation for RCpc given in [GAG93] needs to be slightly altered (based on the generic relation in Ap-
pendix D) to incorporate such self-ordered reads as well. Recall, however, that thisis only pertinent for systems
that allow writes to be executed before it is known whether preceding loops will terminate. With the above
maodification, RCpc executes control paths safely. RCpc obeys the other parts of the control requirement directly.
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Appendix |: Correctness of Theorem 8.5 for Detecting Data Races

This appendix shows that theorem 8.5 is correct. The theorem and Condition 8.4 mentioned in the theorem
are repeated below for reference. Recall also that the valid paths for data-race-free-0 are 2> paths between

conflicting synchronization operations and "> paths between other conflicting operations; the valid paths for

data-race-free-1 are the same except that > isreplaced by ™.

Theorem 8.5: Condition 8.4 for dynamic detection of dataraces is obeyed by all executions that obey
the generic high-level valid path requirement (Condition 7.16) assuming valid paths for data-race-free
models as described above, and the generic low-level control requirement (Conditions 7.21) with the

following additional restrictions: (1) the “* relation in properties (b) and (c) for the control rela-
tion (Definition 7.19) should be replaced by 2>, (2) if R > O in E where R is a pairable read,
thenR 2> OinE, and (3) if R{ <> }+WinE, thenR(i) 2> W(j)foralli,jinE.

Condition 8.4: For any execution E of a program Prog,
(1) if there are no data races in E, then E appears sequentially consistent, and

(2) there exists an SCP of E such that a data race in E either occurs in the SCP, or is affected by
another data race that occurs in the SCP.

The proof in this appendix uses notation corresponding to data-race-free-1. The identical proof holds for

data-race-free-0 if ™ isreplaced by "> and all synchronization operations are assumed to be pairable with
each other. (Thus, a release and an acquire are paired synchronization write and paired synchronization read
respectively.)

We use the term ‘*data-race-free requirements of theorem 8.5’ to refer to the high-level valid path and
low-level control requirements of Chapter 7 (assuming the valid paths mentioned above), and the additional con-
straint on the control requirement mentioned in theorem 8.5. Consider an execution, E, of program, Prog, that
obeys the data-race-free requirements of theorem 8.5. The following lemma first shows that E must obey Condi-
tion 8.4(1).

Lemma |.1: E obeys Condition 8.4(1).
Proof:

Condition 8.4(1) requires that if E does not have data races, then E must appear sequentially consistent. As-
sume that E does not have data races. We show another execution E' that has the same result as E and
obeys Condition 7.12 for sequential consistency. Below, we first construct an execution E' that has the
same result as E, obeys the data-race-free requirements of theorem 8.5, obeys the write termination assump-
tion of Condition 7.12, and such that there is no instruction instance in E' that follows a loop instance of a
loop that is not guaranteed to terminate in every sequentially consistent execution. We then show that E'
obeys all the requirements of Condition 7.12 relevant to the data-race-free models. (The loop coherence as-
sumption isthe only one not relevant to the data-race-free models.)

Construction of E' that has the same result as E, obeys the data-race-free requirements of theorem 8.5,
obeys the write termination assumption of Condition 7.12, and such that no instruction instance in E' fol-
lows a loop instance from a loop not guaranteed to terminate in every sequentially consistent execution.

Consider E' which is the same as E, except for the following. First, for every write Win E issued by
processor P; and such that a sub-operation of Wisnot in E, add the missing sub-operation to the set of
sub-operations in E'. Second, from the set of instruction instances of E, delete al instances that fol-
low aloop instance that does not terminate in E and is from aloop that is not guaranteed to terminate
in every sequentially consistent execution of the program. Third, delete all memory operations and
sub-operations corresponding to the deleted instruction instances from the set of operations and sub-
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operations of E' (by the finite speculation part of the generic low-level control requirement, this does
not include any write operations). Fourth, consider the following modification of the execution order
of E as a candidate for the execution order of E': place the sub-operations of a write W by processor
P, that are added to E' just before W(i) in the original execution order of E, and delete all sub-
operations of the operations deleted from E'. The following paragraph shows that E' is an execution
of Prog because its instruction set obeys the uniprocessor correctness condition, and the execution
order of E with the above modification obeys the execution order condition for E'.

Theinstruction set of E' obeys the uniprocessor correctness condition because it is the same as that of
E except for instances that follow non-terminating loop instances of E. The execution order of E with
the above modification obeys the execution order condition for E' because of the following. For
every pair of conflicting operations, O, and O,, in E, there is a valid path between O; and O, inE
(otherwise O; and O, form a data race). Therefore, by the valid path requirement, all conflicting
sub-operations of O4 and O, arein E. Therefore, for awrite W in E that isissued by processor P;, a
sub-operation W(j) isnot in E only if P; is not the same as P;, if there is no read by P; that conflicts
with W, and if there is no other write that conflicts with W. Thus, none of the newly added sub-
operationsin E' conflict with any other sub-operations of E'. Further, by the finite speculation part of
the low-level generic control requirement, none of the deleted sub-operations are writes. Therefore,
the madification to the execution order of E obeys the execution order condition for E'.

E' has the same result as E because of the following. The only difference between the instruction in-
stances of E and E' is that some instances following a non-terminating loop instance L in E are not in
E', where L is not guaranteed to terminate in every sequentialy consistent execution. By the finite
speculation part of the low-level generic control requirement, the deleted instruction instances do not
write any output interface. Further, al reads that are in E and E' return the same value in E and E'.
Therefore, al the instruction instances that write to an output interface are the same in E and E’, and
write the samevaluein Eand E'. Thus, E and E' have the same resullt.

E’ clearly obeys the data-race-free requirements of Theorem 8.5 and the write termination assumption
of Condition 7.12. E' also clearly obeys the requirement that there be no instruction instance that fol-
lows a loop instance from a loop not guaranteed to terminate in every sequentially consistent execu-
tion. Thus, E' isthe required execution.

We next show that E' obeys Condition 7.12.

Thereisacritical set of E' such that if there isa critical path from X to Yin E', then X (i) = Y(i) for all i
inE'; i.e., the critical paths are executed safely.

E' does not have data races. Therefore, one critical set of E' consists of the above-mentioned valid
paths of the corresponding data-race-free model. The valid path requirement ensures that these paths
are executed safely.

E' obeys the write termination assumption of Condition 7.12.
Thisfollows trivially from the construction of E'.
E’ obeys the finite speculation assumption of Condition 7.12.

The finite speculation assumption requires that an instruction instance in E' should be preceded (by
program order) by only afinite number of other instruction instances. Asin Appendix E, let the finite
part of E' be the operations that do not follow infinite operations in E' (recall that follow refers to
program order). Let the rest of the operations be the infinite part of E'. We first show below that
there cannot be awrite in the infinite part of E' whose valueisread in E' by aread in the finite part of
E'.
Suppose there is awrite in the infinite part of E' such that itsvalueisread in E' by aread in the
finite part of E'. Let W be such awrite such that there is no such write ordered before W by the
program/conflict graph of E'. Since E' does not have data races and obeys the valid path re-
guirement, E' has an acyclic program/conflict graph; therefore, the above mentioned W exists.
Let R be the read in the finite part of E' that returns the value of W. Let the processor of W be
P;. Then there must be a non-terminating loop instance L issued by P; in the finite part. By
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construction of E', L must be guaranteed to terminate in every sequentially consistent execu-
tion. Further, because of the choice of W, there isno read by P, in the finite part of E' such that
the read returns the value of awrite from the infinite part in E’'. Consider the set Sof operations
of E' such that for every operation O in S, (a) O is from the finite part of E', (b) neither O nor
any read program ordered before O returns the value of a write from the infinite part in E', and
(c) all operations before O by the program/conflict graph of E' are in S S must include all
operations of P; in the finite part. Then since the program/conflict graph of E' is acyclic, there
isatotal order of the operationsin S such that the order is consistent with the program/conflict
order of E' and such that the last write before every read in this order is the same as for the exe-
cution order of E'. It follows that any finite prefix of such a total order represents the initial
operations of the execution order of some sequentially consistent execution E;. All operations
of the loop instance L are in the total order. Thus, it follows that for any number of iterations
of L, there is an Eg where those iterations are in Eg. It follows that for an infinite number of
such Eg, the termination of L must depend on reads that are in E' and Eg and form arace in Eg,
and L must consist of infinite such reads in E' (the reasoning for this is similar to result 3 in
Step E.3 of Appendix E). By property (d) of the control relation and the finite speculation part
of the generic low-level control requirement, it follows that there cannot be any synchroniza-
tion operation following L in E'. However, since W and R cannot form adatarace in E', it fol-
lows that there must be some synchronization operation following L in E', a contradiction.
Thus, no read in the finite part of E' can return the value of awrite in the infinite part.
From the above result it follows that there is a total order of all operations in the finite part of E' such
that the order is consistent with the program/conflict order of E' and such that the last write before
every read in this order is the same as for the execution order of E'. It then follows that (i) this total
ordering represents the initial operations of the execution order of some sequentially consistent exe-
cution Eg of program Prog, and (ii) if there are operations in O from loop instances that do not ter-
minate in E', then these loop instances do not terminate in Eg either. But by construction of E', there
isno instruction instance in E' that follows a loop instance that is not guaranteed to terminate in every
sequentially consistent execution. Thus, it follows that there is no instruction instance of E' that fol-
lows aloop that does not terminatein E'. Thus, E’ obeys the finite specul ation assumption. [

We next show that E obeys Condition 8.4(2). For a contradiction, assume that E does not obey Condition 8.4(2).
The proof uses the following definitions.

Definition : For aprefix (asin definition 8.1), S, of E, call the first operation of a processor (by )
that is executed in E and that is not in S as the Sterminator of the processor. Denote the Sterminator
of processor P; by t; .. (t; s does not exist if al operations of processor P; arein S)

Definition : A read in aprefix of E isasignificant read for the prefix if it isa pairable read in E or if it
controls an operation O in E where O isin the prefix.

Definition : A prefix, S of E is a proper prefix corresponding to a sequentially consistent execution
E; if it obeysthe following three properties.
(P1) If op; = op, inEgand op, isin S thenop; isin S

(P2) If op; and op, arein S, then either op; => op, inEgand E, or op, = op; inE;and E.
(P3) A significant read in Sreturns the value of awritein Sin E.

Definition : For a proper prefix Sof E, let S+ be the set of all operationsin S and all Sterminators,
t; s, such that the following is true for t; . SO t; s does not violate property (P3) above for a proper
prefix, and if t; s is a pairable read such that the last write in Sto the same locetion as the read (as or-

dered by the = of E) is pairable, then the read returns the value of that pairable writein E.
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The proof proceeds in the following steps.
Sep 1: Lemmal.2 shows that a proper prefix corresponding to Eg isaso an SCP corresponding to Es.
Sep 2: We use Lemmall.2 to choose a particular (**maximal’”) proper prefix of E called prefix.

Sep 3: Lemmal.3 uses Lemmal.2 to show that any prefix terminator is affected by a data race in prefix+in
E.

Sep 4: Lemmal.4 shows that prefix+ isan SCP of E.
Sep 5: Lemmal.5 uses Lemmas .3 and 1.4 to show that E obeys Condition 8.4(2).

Below, we say an SCP, S, of E corresponds to a sequentially consistent execution, E, if Eg satisfies the con-
ditions of Definition 8.2 that make San SCP.

Step 1: A proper prefix corresponding to E is aso an SCP corresponding to Es.
We use the following results to prove the required lemma.

Result 1: Let She a proper prefix of E corresponding to E. A significant read in Sreturns the value of the same
write (and therefore the same value) in Eg and E.

Proof:

A read in an execution returns the value of the conflicting write sub-operation that is ordered last before it
by the execution order. By properties (P1) and (P3), this last write for a significant read must be in S for
both E; and E. By property (P2), thislast write must be the same for Eg and E.

Result 2: Let Sbe a proper prefix of E corresponding to E; and let y be an operationin S. If x > yin E, then x
isinS
Proof:

If XisinE, then xisin S(by definition of a prefix of E). Otherwise, some reads that control y in E return
different valuesin E and Eg. These reads are significant reads in S, a contradiction to Result 1. Thus, xisin
S

Lemma |.2: Let Sbe a proper prefix of E corresponding to Eg. Then Sisan SCP corresponding to Es.
Proof:

For a contradiction, assume that Sis not an SCP corresponding to E;. Thus, there must be an operation op
in Swhere at least one of the following must be true.

(D opisnotinEs.

(2) There exists amemory operation x in Es such that x "> opin Eg but xisnotin S

(3) There exists amemory operation x in Ssuch that x and op form adatarace in E but not in E.

The following shows that each of the above cases leads to a contradiction. Below, consider op such that if it
obeys (2), then it is the first such op (by the 2> of E).

Casel: opisnotin E.

Then some read that controls op in E and isin Sdoes not return the same valuein E and Eg. This con-
tradicts Result 1.

Case 2: There exists amemory operation x in Eg such that x “2> opin Eg but xisnotin S

There are three sub-cases as follows.
Sub-Case 2a: x > opinE..

Then by Result 2, xisin S, a contradiction.
Sub-Case 2b: x 2> opin Es.

Then by property (P1), xisin S, a contradiction.

Sub-Case 2c: There existsay such that x 2> y 25 opinEsorx 2> y <5 opin E,.
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By previous two sub-cases, yisin S By the choice of op, x must be in Stoo, a contradiction.
Case 3: There exists amemory operation x in Ssuch that x and op form a datarace in E but not in Es.

From Case 1, x must be in Es. Therefore, either x 2> op or op ™5 x in E,. The analysis for

both casesisidentical, and so we consider only the first case below.

Operations x and y cannot be from the same processor since they form adatarace in E. Therefore, in
E,, there must be operations rel; and acq; such that x 2> rel; or xisthesameasrel; andrel; 2>
acq; 2> rel, 2> acq, - 2 acq, and acg, 2> opor acq, isthesameasopand n = 1.
Since acq, > op or acg, is the same as op, it follows (using Result 2) that acg, must bein S. By

Result 1, acq, returns the value of the same write in Eg and E; therefore, rel, > acq, in E also. By
property (P1), rel,, must bein S, therefore, by Result 2, acq,,—; isin Salso. Continuing the same argu-

ment yields that rel; and acg; arein Sand rel; 22> acq; inEfor al i < n. It followsthat x 22> op

in E aswell, acontradiction. [
Step 2: Choosing prefix.

Consider a proper prefix, prefix, and a corresponding prefix + of E such that there is no other proper prefix, S
and a corresponding S+, of E for which either (i) the number of processors that do not have Sterminators or those
whose S terminators are affected by a data race in S+ is greater than the corresponding number for prefix, or (ii)
the set of operationsin Sis a superset of the operations in prefix. prefix exists because of the following. The null
set is a proper prefix of E. Therefore, prefix exists unless for every proper prefix, there is always another proper
prefix Swhere S satisfies (i) or (ii). Since the number of processors is finite, it follows that there must be at least
one proper prefix of E such that there is no other prefix that satisfies (i). If for every proper prefix, there is aways
another proper prefix that satisfies (ii), then it follows that al operations of E form a proper prefix. By Lemmal.2,
all operations of E form an SCP. Therefore, E obeys Condition 8.4(2), a contradiction.

Henceforth, we will usually consider the prefix terminators of E and will therefore drop the reference to
prefix when discussing terminators of prefix. Thus, t; implicitly denotes the prefix terminator of P;. Further, we
will use E; to implicitly denote a sequentially consistent execution for which prefix is a corresponding proper
prefix.

Step 3: Any prefix terminator is affected by adatarace in prefix+in E.
We use the following additional results.

Result 3: If y 2> t; in Eg, thenyisin prefix or prefix O t; s violates (P3).

Proof:
If yisin E, then y must be in prefix since t; is the first operation of its processor (by =) that isnot in
prefix. If yisnotin E, then some reads that control t; in E return different values in E and E,. These reads
arein prefix. Thus, either t; isin prefix or prefix O t; violates (P3).

Result 4: If x ™5 opin E and op isin prefix, then x "> opin Es.

Proof:
There are two cases as follows.

Case 1. x and op are from the same processor; i.e., x > opinE.

By Lemmall.2, prefix is an SCP for E,. Therefore, x > opin E, proving the result.
Case 2: x and op are not from the same processor.

There must be operations rel; and acq; in E such that x 2> rel; or x isthe same asrel; and rel ;
2Ly acq; 2> rel, 2> acq, - 2> acq, and acq, 2> t; or acqy, isthe same ast; and n >

1. Sinceacq, 2> op or acq, isthe same as op, it follows that acg, must be in prefix and in Eg (us-
ing Result 2 and definition of a prefix of E). By Result 1, acq, returns the value of the same writein

E, and E, therefore, rel, 2> acq, in Eg also. By definition of a prefix of E, rel, must be in prefix;



219

therefore, acq,,—1 isin prefix and in Eg also. Continuing the argument yields that rel; and acq; are in

prefix and Eg and rel; =2> acqg; in E for al i < n. It followsthat x ™ opin Eg aswell.

Result 5: Let op be an operation in prefix and t; be a prefix terminator such that prefix O t; does not violate (P3),

therei

Proof:

sno datarace in prefix + that affectst; inE, op == t, inE, andt, > opinE. Then

(i) t; forms arace with op in E.

(i) if t; isnot in prefix+, then t; isa pairable read,

(i) t; is a synchronization operation,

(iv) if t; isin prefix +, then op is a synchronization operation.

op ™5 t in Eimpliesop > t in E (by the valid path condition), a contradiction. t, "> opin Eim-
pliest; isin prefix, a contradiction. Therefore, op and t; must form aracein E, proving (i).

The proof for (ii) follows directly from the definition of prefix + and since prefix O t; does not violate (P3).

Suppose t; is a data operation. By the proof of (ii), t; isin prefix+. But then by (i), there is a data race in
prefix + that affects t; in E, a contradiction.

If op is adata operation and t; isin prefix+, then again by (i), there is a data race that affects t; in E, a con-
tradiction.

Lemma 1.3: A prefix terminator is affected by a datarace in prefix+in E.

Proof:

Consider a prefix terminator t;. In the following, consider an Eg such that prefix is a proper prefix

corresponding to E and such that the °> of E; orders the operations in prefix before any operations that
are not in prefix, and orders t; before any other operations that are not in prefix. Such an Es is possible by
(P1) and Result 3. prefix O t; cannot be a proper prefix since there is no superset of prefix that is a proper
prefix. Therefore, prefix O t; must violate one of properties (P1)-(P3) for E;. We divide our proof into five
exhaustive cases based on the above observation. Cases 1 and 5 assume prefix O t; violates (P1) and (P3)
respectively. Cases 2, 3, and 4 assume prefix O t; violates (P2), and examine three exhaustive ways in
which this violation can occur. Specifically, prefix O t; violates (P2) if there is an operation op in prefix
such that either op and t; are not related by > inE, orop => t;inEandt; = opinEgort; => op
inEandop = t; in Es. Cases 2, 3, and 4 examine each of the above separately. We show that for each
of the five cases below, either there is a contradiction, or a later case is valid, or a data race in prefix+ af-
fects t; in E. We proceed by contradiction. Suppose for each of the following cases, no later case applies
and no data race in prefix + affects t; in E.

Case 1: prefix O t; violates property (P1); i.e., there must be an operation x in Eg such that x ==> t; in Eg
and x isnot in prefix.

By our choice of E, all operations ordered before t; by == in Eg are in prefix, a contradiction.
Case 2: prefix O t; violates property (P2) such that there is an operation op in prefix such that op and t; are
not related by = inE.

By the valid path requirement, op and t; must form a race in E. We also know that t; isin Eg (by

Result 3 and since prefix O t; does not violate (P3)). Further, we know that op = t; in Eg (since
prefix obeys (P1)). There are three sub-cases discussed below.

Sub-Case 2a: At least one of op or t; isadata operation in E.

op and t; form a data race in E and this data race affects t;. Therefore, t; cannot be in prefix +.
Since prefix O t; does not violate (P3), from the definition of prefix +, it follows that t; must be a

pairable read, and the last write in prefix that conflicts with t; (by the =°> of E) is a pairable
write w. Further, thiswrite w is different from op since op and t; form a data race. Also sincet;

is aread, op must be awrite. By (P2), op 2> winE. If op ™ win E, then by the valid
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path requirement, all sub-operations of op arein E. It followsthat op and t; are related by >
in E, a contradiction. Therefore, op and w must form a data race in E. Since op and t; form a
race in E, the data race between op and w affectst; in E, a contradiction.

Sub-Case 2b: op and t; are both synchronization operations in E and there is no path from op to t; in
25 02> of Egthat endsina *> arcinE..
Modify the execution order of Eg as follows. Consider all operations between op and t; that

have apathtot; in 2> 0O 2> of E that endsina > arc. Move al the above operations
to just before op. Next, if op isthe write of a read-modify-write, then move the corresponding

read to just before op. The above order preserves the > and > relation of E;. Next
derive two orders from the above order as follows. In the first order, move t; (and the write of
its read-modify-write if t; is a read from a read-modify-write) to just before op (and before the
read of op’s read-modify-write if op is a write of a read-modify-write). In the second order,
move t; to just after op (and after the write of op’s read-modify-write if op is aread of aread-
modify-write). If any of t;, op, and the other operations from their read-modify-writes (if any)
are reads, then let those reads return the value of the last conflicting write before them in the
new orders. The modified orders until op, t; and the other operations of their read-modify-
writes (if any) are the initial part of some sequentially consistent executions of Prog where
there is arace path from t; to op in at least one of these executions. Therefore, from the write
termination part of the low-level generic control requirement, it follows that op and t; must be

related by <> in E, a contradiction.
Sub-Case 2c: op and t; are both synchronization operations in E and there is a path from op to t; in
25 02> of Egthat endsina *> arcinE..

Consider the longest path fromoptot; in 2> 0 =5 of E; such that the path endsina ==

arc and does not have two consecutive = arcs. Then all operations on this path must be syn-
chronization operations for the following reason. Suppose there is a data operation op; on the

path. Then this operation must be on a = arc on the path. Let the other operation on this arc
be op,. Then op; and op, must form a data race in Eg (otherwise, the path chosen is not the
longest path possible). By Result 4, op; and op, also form adatarace in E. By (P2), the above
path also exists in E. It follows that the above data race affects t; in E, a contradiction. Thus,
all operations on the chosen path are synchronization operations and therefore the path is a

05 path in E. By (P2), this ™> path also exists in E. It follows from the valid path re-
quirement that op and t; must be related by = in E, a contradiction.
Case 3: prefix O t; violates property (P2) such that there is an operation op in prefix such that op = t; in
Eandt; = opinEs.
Since opisin prefix and t; is not, thisimplies that prefix violates (P1), a contradiction.
Case 4: prefix O t; violates property (P2) such that there is an operation op in prefix such that t; ==> opin
Eandop = t; inE..
Denote the set of operations op in prefix that satisfy this case by O. Denote the last operation of P,

(by >) that isin prefix by I;. Since prefix O t; does not violate (P3), Result 3 implies that |; is the
last operation of P; preceding t; in Eg. There are two cases depending on whether there is a path in

5 0 =5 of E from any of the operations in O to I;. Each case is separately handled below.
(Below we abbreviate 2> 0 2> by %))

Sub-case 4a: Thereisno pathin == of E from any operationin Oto ;.

Modify the == of E; asfollows. Move all the operations in O, and all the operations ordered
after any operation in O by the &> of E; (and that are before t;) to just before t;. The moved
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operations cannot include |; because no operation in O has a path to |; in the = of Es. Furth-
er, if t; is a write of a read-modify-write, the moved operations cannot include a conflicting

write. Therefore, the new order is consistent with > and = of E;, and forms an execu-
tion order of a sequentially consistent execution of Prog. Next move t; just before al the
operations moved in the above step. (If t; is a read from a read-modify-write, then move the
write of the read-modify-write to just before any conflicting writes between t; and the write of

t;"s read-modify-write.)) The new order still preserves 22>, Make all reads until prefix O t; in
the new order return the value of the last conflicting write before them by the new order. We
prove in the next paragraph that all operations that are moved that conflict with t; are in O.

Therefore, the = relation on the operations in prefix O t; O {the write of t;’s read-modify-
write (if t; isaread from aread-modify-write)} isthe same for the new order and E. Therefore,
the last write before al reads in prefix that control an operation in prefix O t; in E isthe samein
E and in the new order and by Result 1, thisis the samein E;. Therefore, al the above reads
return the same value in the new order and in E and in E;. Therefore, the new order until and
including all the moved operations forms the initial operations of an execution order of some
sequentially consistent execution, Eg', of Prog. Further, prefix O t; obeys (P1)-(P3) for E'.
Thus, we now have a proper prefix that is a superset of prefix, a contradiction.

We still, however, need to give the proof mentioned above that all operations that are moved
that conflict witht; arein O.

For a contradiction, suppose there is an operation that is moved that conflicts with t; and is not
in O. Let op, be the first such operation (by the 2> of E). Let op; be the first operation in

O before op, (by the == of Eg) such that there is a path in > of E5 from op; to op,.
(There has to be such an op; or op, cannot have been moved.)

Suppose op; and op, conflict. Thenin E, op; > 0p,, 0p, —> ti, ti > op;. By the
valid path requirement, thisis possible only if at least two of op4, op, and t; form adataracein
E. Thisdatarace must affect t; in E. Thisis a contradiction unless the only data race between
the above operations involves t; and t; is not in prefix+. From Result 5, t; must be a (pairable)
read. Therefore, op, and op, are both writes; further, they do not form a data race. Therefore,

op;,(k) == op,(Kk) for al kin E. It therefore follows that op, (i) =>> t;(i) in E, a contradic-
tion.

Suppose op; and op, do not conflict. Then they are both reads, and therefore t; is a write.
From Result 5, it follows that t; isin prefix+, and t; and all operationsin O are synchronization

operations. If there is a path from op, tol; in == of E, then there is a path from op; to |; in

the == of Eg, a contradiction. Therefore, there is no path from op, to |; in the == of E;.

Therefore, thereisno "> path from op,, to |; in Es. From Result 4, thereisno > path

from op, to I; in E. Therefore, there isno 2> path from op, tot; in E (since t; is a write).

There cannot bea > path from t; to op, in E; otherwise, t; would be in prefix. Thisimplies

that op, and t; form arace in E. Suppose op, is a data operation. Then we have adataracein
prefix + that affects t; in E, a contradiction. Therefore, op, must be a synchronization opera-

tion. Perform the following transformation on the path from op, to op, in the = of E;.
First, if any = edge can be replaced with a longer path in the > of Es, then replace it.
Now replace any consecutive 22> edges with one > edge. The above path has the proper-

ty that if there is a data operation on it with a > edge into or out of it, then the data operation
forms a data race in Eg (and therefore in E by Result 4 and property (P2)) with the operation on

the other side of the 2> edge. (If this not true, then the concerned 2> edgeisa > edge

which can be replaced with a longer path in > of E, a contradiction.) We will need the
above transformation and property in a later case also and will refer to them as the data race
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transformation and property for convenience.
Suppose all operations on the above transformed path are synchronization operations. Then by

(P2), there exists a > path from op; to t; in E. By the valid path condition, op;(k) %>
t; (k) for all kin E, acontradiction.

Suppose at least one of the operations on the above transformed path is data. We know that
op, and op, are both synchronization operations, therefore the data operation on the above
path will be on a > edge. Therefore, the data operation forms a data race in Eg (and there-

fore in E by Result 4). By (P2), the above path also exists in > of E. Therefore, the above
datarace affects t; in E, a contradiction. Thus, any operation that is moved that conflicts with t;
must be in O.

Sub-case 4b: There is a path from some operationin O to |; in the > of E.

Let op; be the closest such operation to |; as ordered by the == of E;. Perform the data race
transformation discussed earlier on the path from op4 to I;. In addition, if the edge to |; is a

5 edge, then remove |; from the path. Thus, the last edge on the path isa > edge to an
operation from P;.

Suppose all operations on the transformed path are synchronization. Then by (P2), there exists
a ™ path fromop; tot; in E; therefore, op;(k) 22> t;(k) for al kin E, a contradiction.

Suppose at least one of the operations on the transformed path is data. If the data operation lies
ona 2> edge, then by the data race property of the transformed path discussed earlier, this

data operation forms a data race with the other operation onthe > edgein E;. Thisisalsoa
datarace in E (by Result 4) and affects |; in E (because of the path to |;), and therefore affects t;
in E, a contradiction.

The only remaining case is where the only data operations on the transformed path do not lie on

> edges. op; isthe only operation that can satisfy the above condition. Thus, the only case
left iswhere op, isthe only data operation on the transformed path and the edge out of op; isa
5 edge. By Result 5, it must be that t; is not in prefix+, and so t; is a (pairable) read opera-
tion.

Consider the set O' of writes ordered after op, by the == of E. Modify the >~ of E; as
follows (similar to the modification of Sub-case 4a). Move all the operationsin O', and all the

operations ordered after any operation in O' by the *> of E to just beforet;. Next movet; to
before the operations moved in the first step above. (If t; is aread from a read-modify-write,
then move the write of the read-modify-write to just before any conflicting writes between t;
and the write of t;’s read-modify-write.) Note that the operations in O' must also be in O be-
cause of the following. Suppose there is some op, in O that is not in O. Then we have op,

=25 0py, 0p; = t,andt; = op, in E, acontradiction. Let aread in the new order re-
turn the value of the last conflicting write before it in the new order. As for Sub-Case 44, the
new order until the operations of prefix [ t; represents the initial operations of a sequentially
consistent execution E'. Consider S= prefix - al the moved operations. Sis a prefix of E and

obeys (P1)-(P3). Further, the last write in S (by the == of E) to t;’s location is a data write;
therefore, t; isin S+. Further, t; is affected by a data race (between op, and t;) in S+ in E.

Also all the operations that were deleted from prefix to form Swere ordered after op, by <>
of Eg and therefore of E (by (P2)). Therefore, the data race above affects al the deleted opera-
tionstoo. Thus, for S the number of processors without terminators or whose terminators are
affected by a data race in S+ is greater than the corresponding number for prefix, a contradic-
tion.
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Case 5: prefix O t; violates property (P3), i.e., t; isapairable read that does not return the value of write in E

that isin prefix, or some read in prefix controls t; and does not return the value of awritein prefix O t; in E.
If t; satisfies the first case above, then let r; = t;, else let the read that satisfies the second case above
ber;.
Let the write whose value r; returns in E be called the violator of P;, denoted by v;. We have so far
proved that for every processor, P;, that has a terminator t;, either there is a data race in prefix + that
affectst; in E or t; satisfiesthe current case. Suppose P; satisfies the current case and v; isissued by a
processor P;, which does not satisfy the current case. Then a data race X, y[in prefix affects t;. The
datarace ¥,y Al so affects t; and we have proved our proposition for P;.
The only remaining case is when P; satisfies the current case and v; is issued by a processor that also
satisfies the current case. Such processors form clusters, where a cluster labeled (without loss of gen-
erality) asPq, P, ..., P isaset of processors such that for j <k, v; is executed by Pj +1, and vk is ex-
ecuted by P;.

Consider a cluster P4, P, ..., P,. Theviolator v, of P, isissued by P,. By the data-race-free re-
quirements of theorem 8.5, it follows that in E, r,(2) = v,(j) for al j. We know that v,(1) =
r1(1) in E (because r ; reads the value of v, in E). Therefore, r,(2) == r,(1) inE. Similarly, r3(3)
225 1,(2) in E and so on until r (k) == r_q(k-1) and r,(1) == r(k) in E. Therefore, r,(1)
~> r1(1) inE. Thisisnot possible. Therefore, there cannot be any clusters, the final contradiction
for Lemmal.3. O

Step 4: prefix + isan SCP of E.

Lemma |.4: prefix+isan SCP of E.

Proof:

The proof proceeds by contradiction. Consider an E for which prefix is a corresponding proper prefix of E,

and whose > orders its operations as follows. The <= first orders operations of prefix, followed by
remaining reads of prefix +, followed by remaining writes of the read-modify-writes of reads of prefix +, fol-
lowed by the remaining writes of prefix+, followed by other operations. Such an E; is possible by (P1),
Result 3, and since the terminators in prefix + do not violate (P3).

Assume for a contradiction that prefix+ is not an SCP corresponding to the above E;. Then at least one of
the following must be true for some prefix terminator t; that isalso in prefix +.

(1)t isnotin Es.

(2) There exists amemory operation x in Eg such that x ™ t; in E5 but x is not in prefix +.

(3) There exists amemory operation x in E such that x 2> t; in E but x is not in prefix +.

(4) There exists amemory operation x in prefix such that x and t; form a datarace in E but not in Eq.

The first and second cases are not possible by construction of E;. The following shows that the third and
fourth cases aso lead to a contradiction.
Case 3: There exists amemory operation x executed in E such that x 2> t; in E but X is not in prefix +.

Operations x and t; must be from different processors. Either x 2> t; in E or there exists ay such

that x 2> y 25 tinEorx 2> y 25 inE. Supposex > t; inE. Then prefix O t;

violates (P3), a contradiction. Supposethereisay suchthat x 2> y 25  orx 2> y 2L

in E. In the first case, since t; is the first operation of its processor (by >>) not in prefix, y isin
prefix and so x isin prefix, a contradiction. In the second case, since prefix O t; does not violate (P3),
yisin prefix and so x must be in prefix too, a contradiction.

Case 4: There exists amemory operation x in prefix + such that x and t; form adatarace in E but not in E.

Either tt ™ xorx > t; inEs. Supposet; “2> xinEs. Thent must bein prefix, a contradic-
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tion. Supposex ™5 t; in Es. Either x =% t in Es or thereisay such that x ™ y 25 t in Eg
orx s y 25 tinEs. Supposex 2> t; in Es. Then both x and t; are synchronization opera-

tions, therefore they cannot form a data race in E, a contradiction. Suppose there is a 'y such that x

sy 5t inEe. By construction, yisinprefixand sox 2> yinEand sox 2 t inE, a

contradiction. Suppose thereisay such that x 2> y %5 t; in Es. By construction, y isin prefix.

Sox ™5 yvinE. Sincet; isin prefix+, it follows that t; returns the value of y in E, so x ™2 t, in

E, acontradiction. O
Step 5: E obeys Condition 8.4(2).
Lemma |.5: E obeys Condition 8.4(2).
Proof:

E obeys Condition 8.4(2) if thereisan SCP of E such that adatarace in E is either in the SCP or is affected
by adatarace inthe SCP. Lemmal.3 impliesthat for every processor, either all of itsoperationsin E arein
prefix or there is adatarace in prefix + that affects its terminator in E. The terminator is the first operation of

its processor (by 2) that is executed in E that is not in prefix; therefore, a data race that affects a
processor’s terminator also affects all operations of the processor that are executed in E that are not in
prefix. Thus, Lemma |.3 implies that for every operation in E that is not in prefix, there is a data race in
prefix + that affects the operation in E. Thus, it follows that every data race in E is either in prefix+ or is af-
fected by adatarace in prefix+. By Lemmall.4, prefix+ is an SCP. Therefore, prefix + is the SCP required
by Condition 8.4(2). Thus, E obeys Condition 8.4(2). (I

Theorem 8.5 directly follows from Lemmas|.1 and 1.5. [



