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Abstract

Most computers that support virtual memory translate virtual addresses to physical ad-
dresses using a translation lookaside buffer (TLB) and a page table. Time spent in TLB miss han-
dling—number of TLB misses times average TLB miss penalty—is increasing due to
workload, architectural, and technological trends. This thesis studies TLB architectures that
reduce the number of TLB misses by increasing TLB reach—the maximum address space
mapped by a TLB— and page table designs that decrease TLB miss penalty or support new

TLB architectures without increasing TLB miss penalty.

First, this thesis evaluates two TLB architectures in commercial use—superpages and com-
plete subblocking. This thesis studies the benefits of superpages and the issues involved in
modifying operating systems and page tables to support superpages. Complete subblocking
allows processor designers to use larger chip areas to build large TLBs within cycle time con-
straints. Simulation results show that for comparable chip area, complete-subblock TLBs have
faster access times and incur fewer TLB misses than single-page-size TLBs without requiring

operating system changes.

Second, this thesis proposes a new TLB architecture, partial subblocking, that combines the
best features of complete subblocking and superpages. Simulation results show that super-
page and subblock TLBs, for comparable chip area, incur fewer TLB misses than single-page-
size TLBs. Further, partial-subblock TLBs require simpler operating systems and incur fewer

misses than superpage TLBs.

Third, superpage and partial-subblock TLBs are ineffective without operating system sup-
port. This thesis identifies the policies and mechanisms required to support these TLBs. In
particular, this thesis proposes a physical memory allocation algorithm, page reservation, that

makes partial-subblock TLBs effective or eliminates page copying in superpage creation.

Fourth, this thesis suggests modifications to conventional page tables to support super-
page and subblock TLBs and proposes a new page table structure, clustered page table, that
augments hashed page tables with subblocking. Simulation results show that clustered page
tables are smaller and have a faster access time than conventional page tables when using sin-
gle-page-size TLBs. A clustered page table improves on these advantages when storing su-

perpage and subblock PTEs.
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Chapter 1 Introduction

1.1 Problem Description

Paged virtual memory distinguishes addresses used by programs (virtual addresses) from
the real memory addresses (physical addresses). On every memory access the system trans-
lates a virtual address to a physical address. This indirection allows access to more memory
than physically present, transparent relocation of program text and data, and protection be-
tween processes [Denn70]. A page table stores the translation and protection information and
a translation lookaside buﬁer (TLB) caches recently used translations to accelerate the transla-
tion process [Lee69, Smit82, Mile90]. The TLB and page table make up the address translation
hierarchy that is the focus of my study.

Time spent in TLB miss handling is an overhead of virtual memory and is equal to the
number of TLB misses incurred times the average time to traverse the page table (TLB miss
penalty). In the early 1980s, TLB miss handling was a small fraction of the processor’s cycles-
per-instruction (CPI) [Clar85, Wood86]. Many workload, technology, and architecture trends
have combined to increase both the number of TLB misses and the TLB miss penalty, increas-
ing the amount of time spent in TLB miss handling.

One long-standing computer trend is that programs” memory usage doubles each year or
two [Henn90]. To support the larger program working set sizes [Denn68], workstations with
more than 100MB of physical memory are becoming common. This places pressure on the
TLB to map an increasingly larger amount of memory. Innovative uses of virtual memory to
implement new functionality, such as distributed shared memory, is increasing the address
space that a TLB should map. Programs incur a large number of TLB misses if their working
set is larger than the TLB reach—maximum amount of address space mapped by a TLB. This
is analogous to an increase in disk paging if the working set is larger than the amount of
available physical memory. There are at least two ways of increasing TLB reach—by increas-
ing the number of TLB blocks (or entries) or by increasing the address space mapped by each
TLB block.

The number of TLB blocks is not increasing significantly as TLBs are now implemented
on the microprocessor chip where chip area, access time, and cycle time constraints limit TLB
size. First, access time constraints limit TLB designers from using the larger number of tran-
sistors and chip area available today [Gels89] to increase the number of TLB blocks. Larger
TLBs are slower to access and affect cycle time. TLB access time is an important metric as
TLBs are often in the cache-access critical path. Cache consistency management by the oper-
ating system has complicated efforts to remove the TLB from the critical path using virtually-
tagged caches [Whee92]. Physically-tagged caches continue to be common. Second, the trend
toward wider superscalar processor implementations [Joup89] requires TLBs to support mul-
tiple translations per cycle through multi-porting or replication. TLBs that support multiple
transactions per cycle are slower to access and occupy larger chip area. This reduces the num-
ber of TLB blocks that can be implemented for fixed chip area or access time constraints.
Third, larger virtual and physical address sizes, e.g., 64-bit virtual addresses, increase the
number of bits stored in a TLB, further reducing the number of TLB blocks for a fixed transis-
tor count. Thus, there is need for innovative ways to increase TLB reach with little or no in-

1. Also known as anslation Bufer (TB), Directory LookAside able (DLAT), Address Tanslation Cache (EC) or
Memory Management Unit (MMU)




crease in the number of TLB blocks.

One way to increase the address space mapped by a TLB block is to increase the page
size. Doubling the page size, for example, doubles TLB reach. Large page sizes, however, in-
crease physical memory usage due to internal fragmentation [Denn70] because the page size
is larger than what the program needs. While the smallest supported page sizes have in-
creased modestly from 512 bytes in VAX 11/780 to 8KB in Alpha, virtual and physical mem-
ory sizes have increased by orders of magnitude, e.g., from 640KB to 64MB. Two factors
restrict the page size choice. First, microprocessors are designed to be used in a variety of
computer systems from large-memory servers to small-memory laptops. A large page size
will restrict the processor to large-memory machines. Extra paging in small-memory ma-
chines from use of larger pages makes the large pages unattractive. Increasing the page size
from 4KB to 64KB, for example, doubles the working set size for some programs [Tall92] and
can increase paging. Second, the page size is an architectural feature that changes only during
major transitions in processor architecture, such as from VAX [Levy82] to Alpha [Site93] or
from SPARC V8 [SPAR91] to SPARC V9 [SPAR94]. On the other hand, cache line size is an im-
plementation parameter more easily changed.

TLB miss penalty is also increasing due to many reasons. First, as processors become fast-
er relative to main memory accesses [Henn90], page table traversal—the main component of
TLB miss penalty—becomes relatively slower. Second, page table size has been increasing
due to larger address spaces and larger page table entry (PTE) size, e.g., four bytes to eight
bytes. This increases cache pollution and reduces the likelihood of completing page table tra-
versal within the CPU caches. Third, many processors support TLB miss handling in soft-
ware, e.g., Z5-1 [Smit87], AMD29000 [John87], MIPS [Kane92], Alpha [Site93], UltraSPARC
[Yung95], PA7100 [Aspr93], that incurs higher overhead than hardware state machines. A
small five cycle overhead to drain the processor pipeline before trapping to software has an
opportunity cost of twenty instructions in a four-way superscalar processor. Memory system
designers are addressing the increasing TLB miss penalty with more levels in the address
translation hierarchy by using a second-level software TLB, e.g., swTLB [Huck93], TSB
[Yung94], STLB [Bala94].

My thesis looks at increasing TLB reach through use of variable block size and subblock-
ing techniques to map more address space per TLB block. My thesis addresses the trend to-
ward higher TLB miss penalties by proposing page table designs that are better than
conventional page tables or proposing modifications to conventional page tables to support
the new TLB architectures without increasing TLB miss penalty. I make four significant con-
tributions in the areas of TLB and page table design.

¢ I evaluate two TLB architectures in commercial use today that have a larger TLB reach
than single-page-size TLBs of equivalent chip area and access tlme—superpage (Chapter 3)
and complete-subblock TLBs (Chapter 4).

e [ propose a new TLB architecture—partial-subblock TLB—that is more effective at reducing
the number of TLB misses than single-page-size, medium-size superpage, and complete-sub-
block TLBs of comparable implementation complexity (Chapter 5).

¢ I identify the operating system policies and mechanisms required to support superpage
and partial-subblock TLBs. Further, I have implemented some policies and mechanisms in So-

2. | use the term first suggested by Mogul [Mogu93].



laris 2.1, a commercial operating system (Chapter 6).

e [ propose a new page table structure, clustered page table, that has a lower page table access
time, occupies less memory, and stores superpage (and partial-subblock) mappings more effi-
ciently than conventional page tables (Chapter 7).

Section 1.2 explains, in brief, the new TLB and page table architectures and key results of
my thesis—Chapters 3-7 include a detailed description and evaluation. Section 1.3 includes
references to published literature of other research in this area. Section 1.4 brings out the rela-
tionship between my previous published papers and my thesis. Section 1.5 explains a typical
hardware implementation of conventional single-page-size TLBs and TLB miss handling. Lat-
er chapters show extensions required to support the new TLB architectures. Table 1-1 in-
cludes a definition of terms and naming conventions that I use throughout the thesis.

Table 1-1: Definition of terms

Term Definition
Address An address is virtual unless explicitly identified as a physical address
A region of contiguous memory of size B is aligned if it starts at a virtual g

=

Aligned physical address that is a multiple of B
A page is a contiguous region of address space, virtual or physical, that ig power
Page .

of-two alignede.g, 4KB
Base page size is the smallest page size supported in a systedkKB. A base

Base page ; .
page is a page of that size

Page block A page block is a contiguous region of address space, virtual or physical,|that is

aligned to a poweof-two multiple of the base page sieeg, 64KB
Subblock factor | Subblock factor is the number of base pages in a page block
A superpage is a page block where all the base pages have superpage campatible
mappings (see below)
VPN (PPN) is the virtual (physical) page number—the virtual (physical) address
divided by the base page size
VPBN (PPBN) is the virtual (physical) page block number—the virtual (physi-
cal) address divided by the page block size
Virtual (Physical)| Virtual (Physical) block déet is the virtual (physical) page number mod sub
block offset block factor (mod is the modulus operator)
A mapping stores the translation and protection information for one base page,
superpage, or page block
A TLB block consists of one or more valid bits and a VPN or VPBN (and pro-
cess ID) as tag and one or more mappings as data. Also known as a TLB entry
A subblock- prefix identifies a property of a base page within a TLB-block|or
Subblock- page blocke.g, a subblock-valid bit refers to the valid bit corresponding tg a
base page within a TLB block that maps multiple base pages
A page table entry (PTE) consists of one or more mappings, and optianally
VPN or VPBN (and process ID) as tag
A base page mapping is page block aligned if the virtual and physical bfeck of
Page block alignedsets are equale., VPN(p) mod s = PPN(p) mod s, where mod is the modulus
operator and s is the subblock factor

Superpage

VPN (PPN)

VPBN (PPBN)

Mapping

TLB block

Page table entry




Table 1-1: Definition of terms

Term Definition
Base pages x and y are properly placed if they are placed in the same virtual and
physical page blockse., VPBN(x) = VPBN(y) and PPBN(x) = PPBN(y), and
are both page block aligndde., VPN(x) mod s = PPN(x) mod s and VPN(y
mod s = PPN(y) mod s, where s is the subblock factor (seespage

Two (or more) mappings are compatible to share a TLB block (or PTE) if their
Compatible | virtual addresses fall within the same virtual page bloek,VPBN(pl) =
VPBN(p2), and satisfy a compatibility constraint that depends on the TLB|type
Superpage | Mappings for a virtual page block are superpage compatible if they all are valid,
compatible all have the same attributes, and all are properly placed with respect to each other

The maximum amount of address space that a TLB caniragphe number of

Properly placed

TLB reach TLB blocks times the maximum page block size for each TLB block
Bit orderin | use little-endian notation for numbering bits within a wael, bity is in the
9 |least significant bit
1.2 Summary of thesis

A conventional, or single-page-size, TLB block stores a translation for a fixed-size base
page using the virtual page number (VPN) and valid bit (V) for a tag and physical page num-
ber (PPN) and page attributes (ATTR) as data. My thesis explores three ways to increase TLB
reach by allowing a single TLB block to map multiple base pages. Figure 1-1 illustrates the
TLB block formats for the different TLB architectures with length of the bit fields in bits. I dis-
cuss the details of each field in the appropriate chapters (Chapters 3-5). The first approach al-
lows each TLB block to map a variable sized “page”, i.e., superpages. To benefit from
superpages, however, requires significant operating system changes. The second approach
uses naive subblocking, complete-subblocking, where each TLB block maps several base pag-
es but includes individual mappings for base pages. The third approach, partial-subblocking,
maps several base pages per TLB block but includes in each TLB block only individual sub-
block valid bits. Both varieties of subblocking require simpler operating system changes than
superpages.

Figure 1-1: Comparison of TLB blocks of diffeent TLB architectures

Tag Data
Single-page-size (4KB)| VPN | v | | PPN | ATTR |
64 1 36 9
Superpage TLB [ VPN IMASK |V | [ PPN | ATTR |SZ]
4KB/16KB 64 2 1 36 9 1
| VPBN | BV| [ Vo| PPNg ATTRq
\ PPN ATTR
Complete-subblock 62 1 Vl PP 1 ATTRl
(subblock factor 4) 2 Np 2
V3| PPNg ATTR3
1 36 9
Partial-subblock
(subblock factor 4) | VPBN VaVoViVg | [ PPN ATTR |SB|
62 4 36 9 1



All three types of TLBs attempt to improve TLB performance by storing in a single TLB
block mappings to multiple base pages more efficiently than separate single-page-size TLB
blocks. To be effective, however, base pages belonging to the same virtual page block must be
simultaneously active in the TLB. These TLBs can hold mappings to more base pages than a
monolithic single-page-size of comparable implementation cost. Prefetching mappings for
neighboring base pages on a single TLB miss further reduces the number of TLB misses.
These techniques are effective when spatial locality [Denn75] makes it likely that consecutive
base pages are in contemporaneous use.

The three TLB architectures differ in the conditions under which mappings to base pages
within a page block can share a single TLB block (Table 1-2). Superpage TLB blocks are used
only when all base pages within the page block are valid, properly placed in physical memo-
ry, have the same attributes, and the operating system has promoted the page block to a su-
perpage. Partial-subblock TLB blocks can store mappings to multiple base pages even if just
two or more base pages have valid, properly placed mappings with the same attributes. A
complete-subblock TLB block can store multiple valid mappings for base pages within a page
block without any restrictions.

Table 1-2: Summary of when base pages within a page block can sharsingle TLB block

. properly Operating Partial- Complete-
valid placed in same Superpage
mappings physical attributes system Pag8 11 B block subblock subblock
promotion TLB block TLB block
memory

all all all YES X X X

all all all NO X X

somé N/A X X

1 or more N/A N/A N/A X

a. some => two or more valid, properly placed base page mappings with the same attributes

Superpages have sizes that are power-of-two multiples of the base page size and must be
aligned in both virtual and physical memory (Chapter 3). Many processors now support su-
perpages, e.g., MIPS [Kane92], UltraSPARC [Yung95], Alpha [Bann95], PowerPC [Silh93], HP-
PA RISC [Hunt95]. A fully-associative TLB can easily include support for superpages. An ex-
ample is the MIPS R4000, which supports a 4KB base page size and superpages of 16KB,
64KB, 256KB, 1MB, 4MB, and 16MB with a fully-associative TLB. Set-associative TLBs typical-
ly use the least significant bits of the VPN as index bits and are not trivial to extend to sup-
port variable superpage sizes [Tall92]. Large superpages, 256KB and larger, are most useful
for unpageable memory and devices, e.g., kernel text, frame buffer, and database buffer pools.
If there are only a few large superpages in use, their mappings may be set up with limited
changes to existing operating systems. As using superpages results in larger memory usage
and I/0O costs due to internal fragmentation, programs are more likely to use medium-size
superpages in the range of 16KB to 64KB. However, medium-size superpages or generic uses
of larger superpages require substantial operating system changes in mechanisms to support
them and policies for choosing appropriate page sizes. Chapter 3 explores how to build su-
perpage TLBs and handle TLB misses in superpage TLBs. TLB simulation results show that,
with an operating system that uses superpages, medium-size superpage TLBs result in signif-
icant execution time speedup for the workloads described in Section 2.4.



Subblocking associates mappings for multiple base pages with each TLB tag, thus increas-
ing TLB reach (Chapter 4). With a subblock factor of sixteen and 4KB base pages, for example,
each tag covers a 64KB page block. Each subblock-TLB block also includes multiple subblock-
valid bits that allow individual base page mappings to be loaded into the TLB. Chapter 4
shows a naive implementation of subblock TLBs, i.e., complete-subblocking, that stores in each
TLB block the full base page mappings for base pages in the page-block. Complete subblock
TLBs use similar implementation technology as subblock caches, do not require any operat-
ing system support, can use prefetching without displacing other useful translations in the
TLB, and incur fewer TLB misses than superpage TLBs with the same TLB reach. Complete-
subblock and single-page-size TLBs that have the same TLB reach have the same number of
bits in the data memory. Complete-subblock TLBs, however, use tag memory more efficiently
than single-page-size TLBs. Simulation results in Section 4.3 comparing alternate implemen-
tations for a fixed chip area show that complete-subblock TLBs nearly always incur fewer
TLB misses than single-page-size TLBs. A disadvantage of complete-subblocking is that each
TLB block’s data area is large, because it contains multiple mappings. The next design at-
tempts to address this issue by using the data memory more efficiently also.

Chapter 5 introduces a third way to improve TLB reach—partial subblocking—that re-
quires less operating system support than medium-size superpages and uses less chip area
than complete-subblock TLBs. Partial-subblock TLBs use less area than complete-subblock
TLBs by storing only one set of page attributes and a single PPN per TLB block. To make ef-
fective use of a partial-subblock TLB requires base virtual pages in a page block to be placed
in a single, aligned block of physical memory, i.e., properly placed. Pages not properly placed
are allowed but use multiple TLB blocks. Thus, if the operating system can implement a good
physical memory allocation algorithm, partial-subblock TLBs can be as effective as complete-
subblock TLBs but use significantly smaller chip area. Superpages require more complicated
operating systems than partial-subblock TLBs, because the hardware requires the operating
system guarantee that base pages within a page block are superpage compatible. By storing
subblock valid bits, partial-subblock TLBs require only a best-effort by the operating system.
Further, the operating system need not wait for all base pages within a page block to be
present in memory to share TLB blocks. A single partial-subblock TLB block suffices, for ex-
ample, if only ten of sixteen pages of a page block are memory resident whereas using a su-
perpage TLB block requires all sixteen to be resident. Chapter 5 studies alternate ways to
build partial-subblock TLBs and TLB miss handling techniques, including subblock prefetch-
ing. Simulation results comparing single-page-size, superpage, and both types of subblock
TLBs show that for fixed chip area partial-subblock TLBs result in the best execution time
speedups for the workloads I consider (Section 5.5).

In comparing different TLB configurations, TLB access time and chip area are important
metrics. I estimate TLB access time and chip area cost using analytical models adapted from
similar models developed for caches. Section 2.2 describes the area model adapted from Mul-
der’s model [Muld91] and Section 2.3 describes the access time model adapted from Jouppi
and Wilton’s model [Wilt93]. In Chapters 3 to 5, I compare TLB configurations of comparable
chip area to show that the new TLB architectures not only improve execution time but often
result in a TLB with faster access time3.

I illustrate the effectiveness of the new TLB architectures by comparing three alternate ful-
ly-associative TLBs that occupy comparable area to a 64-block fully-associative TLB (the ac-

3. The access times estimates in this thesis for superpage and subblock TLBs are pessimistic and real implementations
can be expected to be faster



cess times are also comparable)—a 62-block superpage TLB that supports a 4KB base page
size and a 32KB superpage size with the page size decisions made as described in
Section 2.7.1, a 57-block partial-subblock TLB with subblock factor 16 and preloading in the
TLB miss handler as described in Section 5.3.3, and a 35-block complete-subblock TLB with
subblock factor four without preloading. The superpage and subblock TLBs have fewer TLB
blocks than the single-page-size TLB but have a larger TLB reach and better performance.
Table 1-3% shows the normalized execution time speedup (defined in Section 2.5) relative to
using a 64-block fully-associative single-page-size (4KB) TLB.

Table 1-3: Key TLB performance results—normalized execution time speedupefative to using 64-
block fully-associative single-page-size (4KB) TLB

64-block 62-block 57-block partial-  35-block complete-
Single-page-size Superpage subblock TLB subblock TLB
(4KB) TLB (4KB/32KB) TLB (subblock factor 16) (subblock factor 4)
1.00 1.18 1.21 1.04

The important conclusion from Table 1-3 is that there are alternate TLB designs to a
monolithic single-page-size TLB that are of comparable implementation complexity but deliv-
er good execution time speedups. The speedups are not gigantic (4% to 21%) even with my
overemphasis on workloads that spend significant time in TLB miss handling (Section 2.4).
Future workloads, 64-bit and object-oriented, that spend more time in TLB miss handling can
get higher execution time speedups. To realize these speedups, however, requires low-over-
head operating system support for superpage and partial-subblock TLBs, and page table sup-
port to keep the TLB miss penalties comparable or smaller.

Operating system support for paged virtual memory with a single fixed page size is sub-
stantial but well-understood (e.g, UNIX [Thom74, Bach86, Leff90], VMS [Levy82], NT
[Cust93], MACH [Acce86, Rash88], OS/2 [Koga88]). Most facets of paged virtual memory op-
erating system policies and mechanisms require modifications to support superpages effec-
tively. A new policy—page-size assignment—and upto six newv mechanisms may also be
required. A page-size assignment policy decideswhen to use superpages, what size super-
pages, and for which address space regions. Chapter 6 describes the operating system sup-
port required, discusses alternate page-size assignment policies, the mechanisms required to
support the policies, and interactionwith other operating system policies. Operating system
support for partial-subblock TLBs does not include page-size assignment, but requires a dif-
ferent physical memory allocator to optimize TLB usage. Section &.5 describes page reserva-
tion, a new physical memory allocation algorithm, that commonly allocates properly placed
physical pages for partial-subblocking. Page reservation also helps in efficient creation of su-
perpages. Section 2.7 describes the specific policy I use in superpage and partial-subblock
TLB simulations.

Reducing the number of TLB misses addresses only part of the time spent in TLB miss
handling. Reducing TLB miss penalty is equally important. TLB miss penalty is dependent on
the page table structure. In Chapter 7, I propose a nev page table structure, clustered page ta-
ble, that extends a hashed page tablewith subblocking—a clustered page table is a complete-
subblock hashed page table. My results on a single-page-size system comparing clustered
page tables with conventional page tables show that clustered page tables use less memory
and are faster to access. Clustered page tables have additional advantageswhen supporting
superpage or subblock TLBs.

4. Sectiorb.5 includes a comparison with more alternate TLBs and chip areas.



If page tables do not properly support superpages and subblocking, increases in TLB miss
penalty can offset some or all of the gains from reduction in the number of TLB misses. In
Sections 3.3 and 5.3, I show that superpage and partial-subblock TLB miss handling is most
efficient if the operating system can construct and store in the page table superpage and par-
tial-subblock PTEs that coalesce multiple base page PTEs into a single PTE. Chapter 7 shows
how popular page tables can be extended to support superpage and partial-subblock PTEs. In
particular, by replicating them at every base page PTE site the TLB miss penalty is no worse
than in a single-page-size system but using the new PTEs reduces the number of TLB misses.
It is often desirable for operating systems to store a single copy of a superpage PTE, e.g., for
efficient update in multi-threaded operating systems. Clustered page tables store superpage
and partial-subblock PTEs without replication using the same superpage and partial-sub-
block techniques used in TLBs. In addition, clustered page tables support the new TLB archi-
tectures using less memory, and are often faster to access than other page tables. Section 7.5
discusses how to store superpage and partial-subblock PTEs in an operating system data
structure that maintains aliases to physical pages, a synonym table.

My thesis shows that superpages and subblocking are effective ways to increase TLB
reach, discusses the hardware implementation issues, and operating system support required
to make the new TLBs effective, and proposes a page table that again uses superpages and
subblocking to reduce page table memory usage and TLB miss penalty.

1.3 Related Work

In this section, I review related work on segments, TLBs, caches, superpages, and page ta-
bles. The next section reviews my previous work. While few published literature exist on the
use of superpages and subblocking in TLBs, the basic ideas of superpages and complete sub-
blocking appear in earlier systems.

Pure segmented systems allow allocation of arbitrary sized regions of memory and were
popular in early computer systems, e.g., Multics [Orga72] and Burroughs B5000 [Bur61]. Seg-
ments use a two-dimensional address space, may be arbitrarily long, and may start at arbi-
trary physical addresses. Supporting superpages is easier than supporting segments because
superpages have alignment restrictions that allow hardware to use bit steering instead of
adders that segments require. Further, simpler versions of the algorithms used in segmented
operating systems may be applicable in superpage operating systems, e.g., memory allocation
[Knut68a], segment-size assignment [Redd75], and variable-sized segment and page replace-
ment [Prie76, Fran74, Turn81]. Smith compiled a bibliography of early virtual memory re-
search that includes research on segmented systems [Smit78c]. Operating systems still use
segments to represent objects in address spaces, but most current operating systems treat all
physical memory as fixed-size frames or pages, allowing portions of segments to be present
in memory. This segmentation can be either invisible to hardware using a linear address
space model, e.g., VAX [Leon82] and MIPS [Kane89], or visible to hardware using a paged-
segmentation model. In a paged-segmentation model, programs generate a <segment identi-
fier, segment offset> tuple that first translates to a global effective virtual address before
translating to a physical address [Knig81, Dall92]. Examples include Honeywell 645 [Glas65],
SPUR, [Hill86], HP-PA RISC [Lee89b], IBM RS/6000 [Chan90], and PowerPC [May94]. TLBs
and page tables translate the virtual address to physical address, and superpages or sub-
blocking are equally applicable as described in this thesis. If segmentation is visible to the
hardware, base page protection and attributes may be enhanced through support for segment
protections, protection lookaside buffers [Kold92], page-groups [Wilk92], or capabilities



[Fabr74].

Various researchers have studied TLB design and extensions to improve TLB performance
that may complement use of superpages or subblocking. I list some literature relating to TLBs
that may be useful for future reference. A survey paper on cache memories by Smith also de-
scribes TLBs and related design parameters [Smit82]. The TLB in the VAX 11/780 system is
the focus of some studies [Saty81, Clar85, Alex85, Alex86]. Their studies show that t1me spent
in TLB miss handling is less than 5%, for the workloads (including multlprogrammed work-
loads) used in early 1980s. Workload changes have made TLBs more important, as shown in
later studies [Chen92, Tall92]. Some innovative designs that attempt to reduce TLB access
time include the TLB-slice [Tayl90], micro-TLB [Chen92], lazy address translation [Chiu92],
and fast address calculation [Aust95]. TLB misses are often handled by hardware that
traverses page tables. Some processors support TLB miss handling in software and Nagle et al
discuss issues in software TLB miss handling using MIPS processors as examples [Nagl94b].
In multi-processor systems TLB coherence becomes an issue. Teller describes many strategies
for maintaining TLB coherence [Tell90]. Many operating systems use a conservative TLB
shootdown algorithm, e.g., [Blac89]. The SPUR [Wood86] and Fugu [Mack94] machines com-
bine TLB coherence with existing cache coherence mechanisms. Systems that support paged-
segmentation typically include two translation buffers, a TLB and a SLB (segment lookaside
buffer), that are accessed one after another. Dally shows a scheme that combines the segment
and page translation [Dall92].

TLBs have traditionally been a second-order performance concern, as programs often in-
cur a higher overhead in cache miss handling. With the use of large multi-megabyte caches
[Kess91] and innovative uses of virtual address spaces [Appe91a, Blum94], some applications
now incur more TLB misses than cache misses. Fortunately, there is a large body of research
in cache design [e.g., Smit86, Smit91] that is largely applicable to TLBs also—TLBs have a
structure similar to caches (Section 1.5).

In particular, my thesis applies to TLBs and page tables three techniques borrowed from
cache design—variable block size [Dubn92], subblocking [Lipt68, Bell74, Good83, Hill84], and
subblock prefetching [Smit78b, Hill87]. Superpage TLBs implement a variable block size de-
sign with the policy decisions on when to use superpages made by the operating system. A
subblock-cache associates with each address tag several data subblocks that each have their
own valid bits so that they can be loaded independently. A complete-subblock TLB uses the
same techniques as subblock-caches. The partial-subblock design optimizes a subblock design
using specific knowledge about the structure and content of the data stored in a TLB.

A key motivation for my thesis was the introduction of superpage support in many mi-
croprocessor TLBs, e.g., MIPS [Kane92], UltraSPARC [Yung95], Alpha [Bann95], PowerPC
[Silh93], HP-PA RISC [Hunt95]. Commercial operating systems I am aware of, however, do
not support general use of superpage mappings. Many operating systems include special
mechanisms to use large superpages for unpageable memory and devices. While some have
suggested uses for superpages [Chen92, Mogu93], I believe my thesis (and my previous
work) is the first to study the issues involved in building superpages TLBs and supporting
them. My results show that superpage TLBs are largely ineffective and a waste of hardware
resources if operating systems and page tables do not support them.

5. By multiprogramming, | mean execution of multiple concurrently active processes.



Operating system support for superpages involves implementing some mechanisms (de-
scribed in Section 6.2), e.g., variable-size memory allocation [Knut68a], and a page-size as-
signment policy (described in Section 6.1). Romer et al. [Rome95] study the use of competitive
algorithms for page-size assignment among multiple superpage sizes. I use working-set
based page-size assignment (described in Section 6.1) in my work [Tall92, Tall94a].

Three styles of page tables are popular6—linear (e.g., VAX [Levy82]), forward-mapped
(e.g., SPARC [SPAR91]), and hashed/inverted (e.g., PowerPC [May94], IBM System/38
[IBM78]). Many forward-mapped page table implementations and guarded page tables
[Lied95] support certain superpage sizes at their intermediate nodes. Hashed page tables are
being increasingly used to support sparse 64-bit address [Houd68, Abra81, Thak86, Rose92,
Huck93, May94] but none support superpage mappings. Page table management algorithms
in a multi-threaded multiprocessor operating system [Bala92, Khal94] also affect system per-
formance, however, they execute infrequently compared to TLB misses.

1.4 My Previous Work

A paper titled “Tradeoffs in Supporting Two Page Sizes” by Talluri et al. [Tall92] first address-
es the costs and benefits of using large page sizes. Using larger page sizes increases the work-
ing set size but reduces the number of TLB misses. The paper suggests the simultaneous use
of two page sizes with an operating system page-size assignment policy to decide the appro-
priate page size for every virtual address. It also shows how to build fully-associative and
set-associative TLBs to support two page sizes. Using results from trace-driven simulations
the paper shows that using two page sizes can reduce the number of TLB misses with only a
small increase in the working set size. Chapter 3 gives an updated presentation of this mate-
rial using results from larger workloads, a real operating system implementation, a chip area
model, and an access time model.

A paper titled “Surpassing the TLB performance of Superpages with Less Operating System
Support” by Talluri and Hill [Tall94a] summarizes the new TLB architectures that my thesis
presents. It proposes partial-subblock TLBs, compares the TLB performance of superpage,
complete-subblock, and partial-subblock TLBs, and the operating system support required for
these TLBs. Chapters 3-5 describe in detail the new TLB architectures, how to build such
TLBs, how to handle TLB misses, and include detailed performance studies.

This thesis includes two significant changes from the above paper that offset each other to
leave the conclusions unchanged. First, in doing the TLB simulations for this thesis, I uncov-
ered a bug that overestimated the number of TLB misses for superpage TLBs reported in the
paper. Second, in designing partial-subblock TLBs in Chapter 5 and page tables for them in
Chapter 7, I found a simple extension to partial-subblock TLBs, preloading, that results in a
simpler hardware implementation, smaller TLB miss penalty for many page tables, and sig-
nificantly reduces the number of TLB misses. The net effect of these two changes is that the
conclusions of the paper remain the same—partial-subblock TLBs incur fewer TLB misses
than superpage TLBs and require less operating system support. For the workloads used in
the paper, superpage TLBs incur fewer TLB misses than partial-subblock TLBs without pre-
loading but more TLB misses than partial-subblock TLBs with preloading.

A paper titled “Virtual Memory Support for Multiple Page Sizes” by Khalidi et al. [Khal93b]
explains the importance of operating system support for superpage TLBs and lists the issues

6. For lack of a standard page table terminology in literature, | use the same terminology as Huck anddkags [
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that need to be addressed in operating system implementation or design to support super-
page TLBs. Chapter 6 identifies the mechanisms and policies that need to be implemented in
an operating system to support superpage or partial-subblock TLBs. While I suggest some
page-size assignment policies and algorithms for the various mechanisms, this area merits
further operating system research.

A paper titled “A New Page Table for 64-bit Address Spaces” by Talluri et al. [Tall95] reviews
the suitability of conventional page tables—linear, forward-mapped and hashed—for 64-bit
address spaces and superpage mappings. The paper then proposes a new page table, clus-
tered page table, that extends hashed page tables using the same subblocking techniques that
this thesis uses to make TLBs more effective. Clustered page tables can have a faster access
time, occupy less memory, and are more efficient at storing superpage and partial-subblock
PTEs than conventional page tables. Chapter 7 is an expanded version of this paper. Solaris
2.5, a commercial operating system, implements clustered page tables as explained by Khalidi
et al. [Khal95a] and in patent applications [Tall93, Khal93a].

A technical report titled “Improving the Address Translation Performance of Widely Shared
Pages” by Khalidi and Talluri [Khal95b, Tall94b] addresses TLB performance and page table
size in the presence of large number of aliases for physical pages, e.g., shared libraries. It sug-
gests a common-mask scheme for TLBs and hashed page tables where “correctly-placed” aliases
share a single TLB block or page table entry. This approach increases TLB reach and reduces
page table size in an orthogonal way to the use of superpages or subblocking and the two ap-
proaches can be combined. I do not describe this work further.

1.5 Mechanics of a single-page-size TLB

A TLB, being a cache of virtual-to-physical address translations, is constructed similar to
a CPU data or instruction cache [Smit82]. A processor or the memory system accesses a TLB
with a virtual address (VA) to translate it to a physical address (PA)—typically before or in
parallel to accessing a physically-tagged cache or main memory. If the TLB has a matching
translation—a TLB hit—it outputs the physical address and memory access attributes. If the
TLB does not have a matching translation—a TLB miss—special hardware or software fetches
the missing translation by traversing a page table—TLB miss handling—and loads it into the
TLB.

A TLB stores translations in TLB blocks, each containing a tag and a data part. The tag
contains the virtual page number (VPN) of the translation and a valid bit (V). The data part
stores the corresponding physical page number (PPN) bits and page attributes (ATTR), e.g.,
protection, cacheability, referenced /modified bits. Figure 1-2 shows a sample TLB block for
64-bit virtual addresses with the length of the fields in bits—the VPN includes a 12-bit pro-
cess identifier (PID) [Dekk87]. Note that the TLB tag has more bits than the data. This is a sig-
nificant difference from cache designs where tags, e.g., four to eight bytes, are much smaller
than a cache block size, e.g., 32-256 bytes.

Figure 1-2: Structure of a single-page-size (4KB) TLB block
Tag Data

| VPN lv| | PPN | ATTR|
64 1 36 9
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Many such TLB blocks can be combined in either a fully-associative or set-associative
form as explained in Sections 1.5.1 and 1.5.2. In either case, a tag array stores all the tags and
includes comparators to compare them with the input VA. A random-access-memory (RAM)
stores the data parts of the TLB blocks.

Figure 1-3: Structure of a conventional TLB
PID/VPN | Offset |ya

Access Mode|

TLB
TLB Miss Protection Attr | PPN | Offset] PA
Violation

During a TLB lookup, the input VA is split into two parts based on the page size—VPN
and Offset. The Offset field, without any translation, appends to the PPN output from the
TLB. The page size has to be a power of two to use this bit steering approach. The TLB com-
pares the VPN stored in the tags with the input VPN. Only TLB blocks that contain a valid
translation participate in the comparison. The valid bit differentiates between valid and in-
valid translations. The result of tag comparison selects one word from the RAM as the match-
ing translation and outputs the correct PPN and Attributes (Attr). If no TLB block has a
matching tag, the TLB generates a TLB miss signal. Separate control logic generates a protec-
tion violation signal if the attributes do not match the intended mode of access.

1.5.1 Fully-associative TLB

In a fully associative TLB (Figure 1-4), the tag array uses a content-addressable-memory
(CAM) and the data array uses a randomly-addressable-memory (RAM). Each word, or tag,
in the CAM includes a comparator. The tags compare their contents, all in parallel, with the
input VPN and signal a match by asserting a match line corresponding to the matching word.
The match line, amplified by the wordline driver, selects one data word in the RAM. The bit-
lines, sense amps, and output drivers output the selected word to the physical address gener-
ation and protection check circuits. If none of the tags match, the CAM generates a TLB miss
signal as the logical-NOR of all the match lines. Appendix A shows sample VLSI circuits for
some components.

Hardware or software must guarantee that only a single tag can match a given VPN. If
multiple tags match, more than one RAM word will be enabled onto the bitlines, overloading
the circuits. A logical AND of the match signal and the valid bit in each TLB block prevents
invalid TLB blocks from generating a spurious match. There are at least three ways to imple-
ment valid bits as explained in Appendix A. The first uses a special valid-bit CAM cell to ex-
tend the CAM array. The other two store the valid bit in separate storage and combine it with
the match signal using either logic or pass gates.
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Figure 1-4: Structure of a fully-associative TLB.

VPN TAG
WORDLINE BITLINES
DRIVERS
WORDLINES
RAM ARRAY
CAM ARRA Y SENSE AMPS A

TLBHIT — -, I OUTPUT DRIVERS

DATA OUTPUT

1.5.2 Set-associative TLB

In a set-associative TLB, as in a set-associative cache [Smit78a], both tag and data arrays
use RAMs [Wilt93]. In a typical implementation of an a-way set-associative TLB, a single row
of the data RAM stores a data words and a single row of the tag RAM stores a tag words. The
low-order bits of the VPN typlcally index both the RAMs to read out one row from each. Tag
comparators compare the a tags read out with the high-order bits of the VPN. The output of
the tag comparators, amplified by the multiplexor drivers, enables one of a output drivers on
a TLB hit.

Figure 1-5: Structure of a set-associative TLB

VPN Tag | VPNIndex| Offset | VA

BITLINES

WORDLINES

DECODER

COLUMN MUXES

Ll e 1L

- COMPARATORS[jj_'

MUX DRIVERS

= OUTPUT DRIVERS

DATA OUT&’UT

7. TLBs often use a hash function that includes bits from the PID or ¥BN_dgic not shown in Figure-5 combines
these bits with the VPN Index bits before being input to the decoder
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As in a fully-associative TLB, the valid bits can be part of the associative compare or can
combine with the comparator output as part of the multiplexor driver logic (Appendix A).
Direct-mapped TLBs do not require the multiplexors [Hill88] and the data can be used before
the tag array access is complete. If tag comparison fails subsequently, the processor can undo
the instruction(s) and cause a precise interrupt [Smit88, Wang93]. Figure 1-5 shows column
multiplexors associated with the RAMs. Column multiplexors are required in set-associative
designs only if the RAM layout has more than a words per row—RAM designers often opti-
mize the access time by changing the layout of the array to be roughly square. Bits from the
VPNIndex field control the column multiplexors.

1.5.3 TLB miss handling

TLB miss handling, follow-up action on a TLB miss, consists of three different actions.
First, locate the PTE corresponding to the faulting address, possibly setting reference and
modified bits. Second, choose a victim TLB block to store the PTE. Third, load the PTE into
the chosen TLB block. A typical TLB miss handler is as follows:

PTE = Find_mapping(VPN); /* Includes reference/modified bit setting */
load_TLB(PTE, blocki); /* blocki is replacement victim */

The cost of locating the PTE largely determines the TLB miss penalty and involves tra-
versing a page table structure. The traversal can be done by hardware, e.g., SPARC Reference
MMU [SPAR91], some PowerPC implementations [May94, Levi95, Beck93], or by software,
e.g., MIPS R4x00 [Kane92], UltraSPARC [Yung95], Alpha [Site92]. With software TLB miss
handling, there is typically some hardware assist to speed up page table traversal. Some pro-
cessors generate specialized TLB exceptions and hardware generated page table hint pointers
as in MIPS R4x00 [Kane92], UltraSPARC [Yung95], and PowerPC [Ogde95]. Further, software
TLB miss handlers incur trap entry/exit costs not shown here. Chapter 7 describes popular
page table data structures and their access times.

Many operating systems require the TLB miss handler to set reference and modified bits
in the page table. Reference bits are set on TLB misses for loads and stores to a page that has
the reference bit clear. Modified bits are set only on TLB misses for stores to a page that has
the modified bit clear. A special TLB miss handler typically handles the situation where the
TLB has a valid translation and only the modified bit in the page table needs to be set. This
mod-bit update does not require TLB replacement but only updates the page table®. Mod-bit
updates occur frequently as programs often read data from a page before writing to it. Soft-
ware TLB miss handlers allow operating systems to implement optimizations in setting these
bits [DeMo086].

A TLB replacement policy, like a cache replacement policy [Puza85], decides where to
place a new translation by choosing a victim TLB block. In a direct-mapped TLB replacement
is trivial—there is only a single TLB block that can store the new translation. For set-associa-
tive and fully-associative TLBs, hardware or software must implement a replacement policy.
The TLB replacement policy impacts TLB performance because non-optimal replacement de-
cisions would cause additional TLB misses. It is impossible to implement the optimal replace-
ment policy (OPT) [Bela66, Matt70, Prie76], and it is impractical to maintain information for

8. Alternatively the modified bit can be updated in the TLB, postponing the page table update till the next TLB replace-
ment and leaves the page table in a stale state. The operating system often consults page table modified bits to flush
dirty pages to disk and must instead use TLB probes to get the correct state.
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true LRU (least recently used) replacement policy for large set sizes. Pseudo-LRU algorithms,
that approximate LRU with limited information [Kess89, So88, Devi92], are often used. Poli-
cies that do not use reference information, e.g., RANDOM [Kane89], are cheaper to implement
but incur more TLB misses. Section 2.6 describes the pseudo-LRU replacement policy I use in
my TLB simulations.

Finally, the new translation directly overwrites the victim TLB block by writing into the
tag and data arrays. TLBs do not require write-backs, as in write-back caches, as the TLB miss
handler often writes-through reference and modified bits to the page table. If the PTE format
differs from the TLB block format, some transformations are required, e.g., the size field in a
superpage PTE may be decoded into a MASK field in the superpage TLB block. Often the
TLB miss handler need load only the data part as hardware can infer the tag from the faulting
virtual address.

1.6 Roadmap to rest of thesis

Chapter 2 separates out the simulation methodology, metrics, chip area model, access
time model, and specific operating system policies used in reporting simulation results in the
rest of the thesis. Chapters 3, 4, and 5, describe superpage, complete-subblock, and partial-
subblock TLBs. Each chapter includes details of hardware implementation, TLB miss han-
dling techniques, and comparison with other TLB architectures of equal TLB reach or compa-
rable chip area. Appendices A-H include descriptions of alternate implementation ideas,
extensions to the base TLB architectures, and handling error conditions. Chapters 3, 4, and 5,
report normalized execution time speedup averaged over ten workloads. Appendix I includes
execution time speedups for individual workloads. Appendix J shows the absolute number of
TLB misses for different TLBs to allow readers to recompute execution time speedups with
different assumptions for TLB miss penalty. Chapter 6 includes a discussion on the operating
system support required for superpage and partial-subblock TLBs—these TLBs require prop-
er operating system support to be effective. Chapter 7 discusses how conventional page ta-
bles may be extended to 64-bit virtual addresses, and to support superpage and subblock
TLBs. It also proposes a new page table, clustered page table, that applies the same superpage
and subblocking ideas used for TLBs to hashed page tables. Chapter 8 concludes reiterating
the contributions of my thesis and pointers to future research avenues.
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Chapter2 Methodology

This chapter describes the TLB simulation methodology, metrics, workloads, and operating
system support I use to evaluate the performance of single-page-size, superpage, and subblock
TLBs. I describe these here so that I can combine performance results along with the descrip-
tion of the new TLB architectures in Chapters 3, 4, and 5, instead of placing the results in a sep-
arate chapter after all the TLB descriptions.

I built an operating system Foxtrot to evaluate the new TLB architectures. Foxtrot extends
Solaris 2.1, a commercial operating system, in two ways. First, Foxtrot includes a TLB simula-
tor that uses trap-driven simulation to simulate a target TLB, the TLB under study, different
from the hardware TLB. Second, Foxtrot implements operating system policies and mecha-
nisms required to support superpage and partial-subblock TLBs.

Section 2.1 explains the trap-driven simulation technique I use to measure the number of
TLB misses, instead of traditional trace-driven simulation techniques. I include a chip area
model and an access time model in my study to compare the costs of building different TLBs.
The chip area model extends Mulder’s model [Muld91] to accommodate superpage and sub-
block TLBs (Section 2.2) and the access time model extends Wilton and Jouppi’s model [Wilt93]
(Section 2.3). Section 2.4 describes ten workloads I use throughout the thesis. I use execution
time speedup as the performance metric as explained in Section 2.5. Section 2.6 describes the
TLB replacement policy I assume. Finally, as superpage and partial-subblock TLBs are ineffec-
tive without proper operating system support, Foxtrot implements a default page-size-assign-
ment policy for superpage TLBs and physical memory allocation for partial-subblock TLBs as
explained in Section 2.7.

2.1 Trap-Driven Simulation

I use trap-driven simulation to measure the number of TLB misses for single-page-size, su-
perpage, and subblock TLBs. Trap-driven simulation manipulates valid bits in the operating
system page table to invoke a TLB simulator on target TLB misses and never on target TLB hits.
Trap-driven simulation can be faster than trace-driven simulation, as it does not have to pro-
cess references that are target TLB hits, but cannot measure the number of TLB hits. Wisconsin
Wind Tunnel [Rein93] and Tapeworm II [Uhli94] are examples of other systems that use trap-
driven simulation for memory system simulations.

Foxtrot manipulates page tables to cause traps into the TLB simulator on target TLB misses
as follows: The TLB simulator maintains a data structure corresponding to the target TLB and
marks valid only those PTEs that correspond to a mapping present in the target TLB. PTEs ini-
tialized by the operating system but not resident in the target TLB are marked in a fake state—
using an unused bit combination in the PTE format. The TLB simulator does not modify PTEs
marked invalid. The hardware TLB caches a subset of the valid mappings. The native TLB
miss handler handles hardware TLB misses by traversing the page table without invoking the
TLB simulator. The native TLB miss handler causes two types of traps when the processor ref-
erences a page that causes a target TLB miss. PTEs marked invalid result in invoking the oper-
ating system page fault handler and PTEs marked fake result in invoking the TLB simulator.
The TLB simulator loads a mapping for the faulting address into the target TLB—can be a su-
perpage or subblock mapping—and changes the corresponding PTE(s) from fake to valid
state. On target TLB replacement, the simulator changes the PTE(s) corresponding to the vic-
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tim TLB block from valid to fake state. Foxtrot hides these page table changes from the rest of
the operating system with wrapper functions for the read_pte and write_pte routines in So-
laris. Foxtrot implements this for superSPARC processors [Blan92] with SPARC Reference
MMU [SPAR91] and hardware TLB miss handling. This technique is also applicable for other
processors or page table structures. Tapeworm II [Uhli94], for example, implements trap-driv-
en simulation for a MIPS RX000 processor with linear page tables. Further, the technique ex-
tends to support multiprocessor TLB simulations—by maintaining per-processor page tables.
Foxtrot implements the uniprocessor version only.

Trap-driven simulation for TLBs has three advantages over trace-driven simulation. First,
trap-driven simulation runs faster as it incurs overhead only on relatively infrequent target
TLB misses. My simulations run three to four orders of magnitude faster than comparable
trace-driven simulations. Second, trap-driven simulation naturally handles multiprogrammed
workloads. Third, superpage and partial-subblock TLB simulations require dynamically
changing operating system information that is hard to encapsulate in a trace, e.g., page-size as-
signment, physical page numbers and attributes. The simulator has access to such information
from the operating system page table. Trace-driven simulation techniques can simulate ap-
proximate page-size assignment and physical memory allocation, e.g., as I did for a prior paper
[Tall92].

Trap driven simulation has two disadvantages. First, it only calculates the number of target
TLB misses and requires other techniques to measure the number of TLB hits, e.g., profiling
counters [Site93], external probes [Nagl92]. Second, trap-driven simulation requires separate
runs for simulating multiple TLBs. It is possible to use techniques for simultaneous simulation
of multiple TLBs [Matt70, Hill89, Kim91] in trap-driven simulators for TLBs that satisfy the in-
clusion property [Matt70]. Foxtrot does not implement these techniques and I use separate
runs for each TLB simulation. The operating system introduces variation in physical memory
allocation between multiple runs of a workload. I minimize such variations by flushing the
physical memory to a quiescent state before each simulation. In my simulations, variability in
the number of TLB misses between multiple runs of the same workload is statistically insignif-
icant (< 1%).

Trap-driven simulation techniques can account for operating system behavior. By locking
in the TLB or page table mappings to code and data required for simulation and trap handling,
the simulator can simulate TLB or cache misses to addresses outside the locked regions. How-
ever, I was unable to isolate the trap handling code and data in Solaris into a few pages. I in-
stead lock nearly all the kernel text and data mappings. Thus, Foxtrot is unable to simulate
kernel TLB misses. It simulates only user TLB misses and kernel TLB misses incurred due to
data copying during file I/O.

Trap-driven simulation is a very fast simulation technique when the miss ratio is very low
[Uhli94, Lebe95], as it often is for TLBs. Other researchers instrument executables and operat-
ing systems to perform memory system simulations, e.g., Active Memory [Lebe95], Epoxie
[Chen93b, Chen93a], and ATOM [Sriv94]. I do not use this technique as I did not have access to
an instrumentation system for Solaris that worked on dynamically linked libraries, operating
system references, and supported multiprogramming. Finally, Foxtrot supports simulation of
two-level TLBs, with or without multi-level inclusion [Baer88].
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2.2 Area Model

The number of TLB misses incurred by a TLB can often be made arbitrarily small by in-
creasing the number of TLB blocks to map the complete working set of a workload. However,
most microprocessor designs include a TLB on-chip and chip area constraints limit the design
options available to processor designers [Joup94, Nagl94a]. In later chapters, I show the effec-
tiveness of the new TLB architectures by comparing execution time speedups for different
TLBs that occupy comparable chip area. In this section, I describe the area model I use to esti-
mate the chip area cost of a TLB.

The primary component of a TLB is the data path—tag and data arrays, drivers, multiplex-
ors, and sense amps. I estimate the area cost using the model proposed by Mulder et al.
[Muld91] for fully-associative and set-associative caches. The model calculates the area in units
of register bit equivalents (rbe)—the number of register cells that can be implemented in the
same area. Figures 2-1 and 2-2 illustrate how the model estimates chip area for TLBs. The for-
mulae for fully-associative (Areas,.) and set-associative TLBs (Areag,.) are as follows, where
#blocks is the number of TLB blocks:

Areg,c = PLA + RAM + CAM = 130 + 0.6 * (#blocks + 6) * ((#data bits + #status bits) + 6) + 0.6 *
(V2 * #blocks + 6) * {/2 * #tag bits + 6)

Areagsc= PLA + Data-RAM + Bg-RAM =130 + 0.6 * %sets + 6) * ((#data bits * associativity) +
6) + 0.6 * (#sets + 12) * (((#tag bits +#status bitgbz(#sets * associativity) + 6)

Figure 2-1: Fully-associative TLB aea model assumptions
6 tag bits datat+status g

7 7/ CAM cells
nblock RAM cells
Drivers +
nblocks 5 Sense Amps

6 Data Array

Tag Array

Figure 2-2: Set-associative TLB aa model assumptions

6  (t+s-lg(s))*a) (d*a) 6
nsets nsets RAM cells
Drivers +
Sense Amps
6 6 Comparator
X 6

Tag Array Data Array

I use the exact same estimates as in Mulder’s model. The original model assumes that driv-
ers, precharge circuitry, and sense amps for each array have an overhead equal to six bits wide
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and six blocks high—solid areas in Figures 2-1 and 2-2. It assumes that set-associative TLB tag
comparators occupy an area comparable to six tags—checked area in Figure 2-2. The model as-
sumes square shapes for both RAM and CAM cells. In practice, fully-associative TLB imple-
mentations in custom VLSI match the pitches of the CAM and RAM arrays. This results in
rectangular shaped cells that are different from the square cell assumption in the model. The
model assumes that a RAM cell is 0.6 rbe and that a CAM cell is twice as large as a RAM cell.
The model assumes overhead for control logic and decoders to be a constant 130. Besides the
assumptions in the original model, I make the following assumptions about the number of bits
in a TLB block:

#status bits is the number of status bits per TLB block. I assume one status bit per TLB
block—the usedbit (for pseudo-LRU replacement).

#data bits is the number of bits in the data part of a TLB block. I assume that the data bits
include a 36-bit PPN (48-bit physical address - 12-bit base page offset) and nine attribute bits
including one modified bit. A complete-subblock TLB has s, the subblock factor, times as many
data bits. A superpage TLB block adds a SZ field that is Igy(number of supported page sizes)
bits. A partial-subblock TLB block adds a one-bit SB attribute.

#tag bits is the number of bits in the tag part of a TLB block and is also the width of the tag
comparator. The tag bits include a 12-bit Context ID, a 52-bit VPN (64-bit virtual address - 12-
bit base page offset) and one or more valid bits!. There are logy(s) fewer tag bits smaller in sub-
block TLBs as they store only the VPBN. In superpage TLBs logy(s) bits of the VPN, the MASK
field, are don’t care bits that I model as two tag bits each. Single-page-size, superpage, and
complete-subblock TLB blocks have one valid bit and partial-subblock TLB blocks have s valid
bits in the tag.

This analytical model allows a simple back-of-the-envelope estimate of the chip area for
various TLB parameters. In real implementations, the formulae must be adjusted for many
VLSI process and implementation dependent parameters. Many optimizations I do not consid-
er here also affect the accuracy of this model. The size of drivers is usually a function of the
number of bits or blocks—the model assumes them to be of constant size; don't care bits may
be smaller than two CAM cells; large TLB implementations are split into multiple arrays with
separate drivers, decoders and multiplexors—the model assumes a single monolithic array.
The original model gave estimates that were comparable to caches built around the time the
paper was published in the early 1990s. I have not adjusted or validated the model for many
VLSI process changes that have since occurred.

2.3 Access Time Model

TLB access time is also an important metric and design constraint as the TLB often lies on
the processor critical path. Recent VLSI technology trends have increased the importance of ac-
cess time relative to chip area. Chip designers have an increasing number of transistors or chip
area available to them but cannot build large first-level caches or TLBs due to access time con-
straints. In real implementations circuit analysis tools, such as spice, predict TLB access time
accurately. Due to lack of detailed circuit implementations and the large number of TLB con-
tigurations studied, I use an analytical model proposed by Wilton and Jouppi [Wilt93], which

1. The original model assumes tag valid bits to occupy a smaller area than CAM ¢2lls-1)(vs. /2 x V2) times
a RAM cell. | assume valid bits to have the same area as a CAM cell as | use CAM cells in partial-subblock TLBs
(Section5.1.2). In practice, valid bits are smaller and my model overestimates the area.
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is an extension of the analytical model proposed by Wada et al. [Wada92]. The model derives
simple equations that predict access and cycle times as a function of various cache and VLSI
process parameters. I extend the model in several ways:

e [ assume the number of tag and data bits as described in Section 2.2 for a 64-bit address
space. The original model assumes that tag bits are significantly fewer than data bits and does
not optimize the tag array drivers. TLBs for 64-bit address spaces may have more tag bits than
data bits. I size the tag array drivers, in set-associative TLBs, using the same algorithm used in
the original model to size the data array drivers.

¢ I model valid bits in the tag comparator. Appendix A includes alternate implementations
for valid bits for single-page-size and superpage TLBs. Appendix B explains alternate ways to
include multiple subblock-valid bits in subblock TLBs. I model the least efficient way to in-
clude subblock-valid bits in partial-subblock TLBs. Faster implementations are possible. I also
model superpage TLBs to include don’t care bits in the tag.

e [ use a simpler multiplexor driver in set-associative TLBs if the number of data bits read
out of the data array is same as the number of output bits. I use a 2-stage driver instead of a 3-
stage driver used in the original model.

¢ I extended the data RAM model to support complete-subblock TLBs—with and without
the use of column multiplexors as described in Appendix C. A complete-subblock TLB fits in
the original model as a cache supporting word reads smaller than the block size.

¢ The original model does not support CAM arrays. I developed a model for a CAM array
using the set-associative comparator and wordline models. I assume that the bitlines of a CAM
array behave as wordlines during tag comparison. I also assume that the set-associative com-
parator models a CAM word comparator.

¢ I assume the use of a single RAM or CAM array in a rectangular shape. Other organiza-
tions may be faster to access. Wilton and Jouppi’s model, for example, assumes that the arrays
approximate a square shape. Large arrays may be faster to access when split into multiple
smaller arrays and their results combined.

In a real implementation, many circuit optimizations are possible that can improve the ac-
cess time by optimizing the critical path. Therefore, the absolute value of the access time is not
significant and I present relative access times between the different TLB organizations
throughout the thesis. There are some caveats for interpreting these results:

¢ The CAM model is a first order approximation and the access time for a fully-associative
TLB from this model is not comparable to the access time for a set-associative TLB.

¢ Cycle times are also an important consideration in TLB design. Cycle time differs from ac-
cess time by the time required to precharge various circuits. I use access time instead of cycle
time as circuit designers have considerable leeway in varying the precharge times by proper
sizing of precharge transistors. Note that changing the size of precharge transistors changes ca-
pacitances and will affect the access time calculated here.

* The model does not include in fully-associative TLBs an output multiplexor needed to im-
plement MMU bypass mode or superpage and partial-subblock TLB physical address genera-
tion.
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* Most importantly, the model has not been validated against any spice simulations. Many
parts of the original model were validated [Wilt93] for greater than 100 rows. I, however, use
the same RAM model even when the number of rows is less than 100.

The relative access time between two TLB configurations is an indication of the cost of im-
plementing a TLB—another cost is the chip area calculated as in Section 2.2. The costs raise in-
teresting questions about the relative merits of the different TLBs and any comparison using
only number of TLB misses or execution time speedups would be incomplete.

2.4 Workloads

I use ten 32-bit single-user workloads from different application areas—scientific, integer,
database, and functional programming—to evaluate the performance of various TLB imple-
mentations. I first describe the workloads and then discuss the consequences of concentrating
on these workloads. Nasa7, compress, wave5, spice, and gcc are from the SPEC92 suite [SPEC91];
fftpde is a NAS benchmark [Bail91] operating on a 64X64X64 matrix; mp3d and pthor are uni-
processor versions from the SPLASH benchmark suite [Sing92]; coral [Rama93] is a deductive
database executing a nested loop join; ML [Appe91b] is executing a stress test on the garbage
collector [Repp94]. I use a Sun SPARCstation with a 40 MHz SuperSPARC processor for all the

simulations.

Table 2-1: Workload characteristics (40MHz SuperSRRC processor)

#user TLB #(user+kernel)
. : misses for % user time in cache misses
Workload | fotaltime —usertime o o cppc  TLBmiss  SuperSRRC ' cak Memory
(seconds) (seconds) TLB handling Ecache Usage (MB)
(thousands) (thousands)
coral 177 172 85974 50% 71053 19.9
nasa7 387 385 152357 40% 64213 3.5
compress 99 77 21347 28% 21567 1.4
fftpde 55 53 11280 21% 14472 14.7
waveb 110 107 14510 14% 4583 14.3
mp3d 37 36 4050 11% 5457 4.8
spice 620 617 41923 7% 81949 3.6
pthor 48 35 2580 7% 6957 154
ML 945 917 38423 4% 314137 32.0
gcc 118 105 2440 2% 9980 5.6

Table 2-1 displays workload data, with the workloads sorted from most to least percent of
user time spent on TLB miss handling for a SuperSPARC processor. Columns two and three
give total and user execution time, showing that these workloads spend most of their time in
user mode. This is important as my simulations do not account for operating system TLB miss-
es. Columns four and five give the number of user TLB misses (for the SuperSPARC proces-
sor’s TLB) and the percent of user time spent servicing these misses (assuming a forty cycle
TLB miss penalty). I estimate the number of TLB misses by using Foxtrot to simulate Super-
SPARC’s TLB—64-block fully-associative single-page-size (4KB) TLB using the TLB replace-
ment algorithm described in Section 2.6. Column six shows the number of cache misses
(includes user and kernel cache misses) incurred by the SuperSPARC’s level-two cache—1MB
direct-mapped cache with 32-byte cache lines. I measure this using hardware counters in the
cache controller. Note that some of these workloads incur more TLB misses than cache misses.
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TLB misses may be more important than cache misses, because, in many systems, TLB miss
penalty is larger than cache miss penalty. Finally, column seven displays the peak memory us-
age of each workload in megabytes.

I intentionally selected workloads that spend significant time in TLB miss handling. While many
programs have negligible TLB miss ratios and do not benefit from TLB performance improve-
ments of the new TLB architectures, my results are still relevant for two reasons.

First, today’s microprocessors are used in a variety of computers, from laptops to multipro-
cessor servers. A TLB that can handle larger workloads makes a microprocessor viable for use
in larger systems, even if it does not help average performance in smaller ones. The new TLB
architectures reduce the number of TLB misses for even the small workloads, though the im-
provement in execution time is negligible.

Second, future workloads may place a greater pressure on TLBs than today. I use 32-bit
workloads only. I expect future 64-bit and object-oriented programs to have even larger and
sparser address spaces and spend more time in TLB miss handling. Such workloads would
make TLB and page table effects more important. For example, Mogul et al report that modify-
ing some 32-bit programs to use 64-bit pointers increases address space usage about 30%
[Mogu95]. I am not aware of any published results about the effect on time spent in TLB miss
handling.

By emphasizing on workloads for which TLB miss handling time is important, however,
my results overestimate the potential speedup for workloads that include processes with small
address spaces. Thus my results should be interpreted as a measure of the benefit for large
workloads from the new TLB architectures.

There are two other limitations of my workloads—multiprogramming and working set
size. I do not study the effects of multiprogramming several large programs. Multiprogram-
ming can increase the number of TLB misses and make TLB miss handling more significant
[Agar88]. Another effect of multiprogramming is the use of more physical memory. This can
affect the proper placement of pages in physical memory for superpage and partial-subblock
TLBs (Chapter 6). In chapters 3 and 5, I include TLB performance numbers with and without
proper memory allocation support in the operating system for the new TLBs. I do not account
for virtual memory paging in these simulations as I execute them on an otherwise idle system
with 96MB of physical memory. Of my workloads, only compress and gcc are multipro-
grammed.

Further, while my workloads are large enough to stress 64-block fully-associative TLBs, the
working sets of many of them fit in 256 or 512-block TLBs and incur only compulsory misses
(Appendix J). I include comparisons between large TLBs to emphasize the access time and
chip area advantages of the new TLB architectures, though only some of my workloads exer-
cise them, e.g., coral and ML.

2.5 TLB Performance Metric

I use execution time of the workload as a measure of performance. I compare the perfor-
mance effect of a TLB, TLB,ey, relative to a base TLB, TLBy,,4e, using execution time speedup
as the metric. As I do not have hardware TLB implementations of the various TLB configura-
tions, I could not measure execution time on a real system. I instead estimate the execution
time for each workload and TLB configuration using the number of TLB misses from my TLB
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simulator and a TLB miss penalty estimate, as explained below:

Time(i, baseTLB)
Time(i, newTLB)

load i and TLB configuration T.

, where Time(i, T) is the execution time for work-

Speedup for workload i =

Time(i, T) = Tideal (i) + (TLBmisses(i, T) x TLBmisspenalty) , where Tideal(i) is the execution time
for workload i if it spent zero time in TLB miss handling.

Tideal (i) = RunTime(i, SPARCstation) — (TLBmisses (i, Super SPARCTLB) x TLBmisspenalty), where
RunTime(i, SPARCstation) is the wall clock time to run workload i on the SPARCstation I use for
my thesis. I then measure the number of TLB misses using my TLB simulator to simulate the
processor (SuperSPARC) TLB configuration and replacement algorithm.

I further assume a constant TLB miss penalty of 40 cycles (on a 40 MHz processor) for all
TLBs. I could not measure the TLB miss penalty on a SuperSPARC processor as the TLB miss
handling happens in hardware. Further, the TLB miss penalty can vary from 2 to 80 cycles de-
pending on the number of cache hits on page table accesses. I also assume that the new TLB ar-
chitectures incur the same TLB miss penalty as a single-page-size system. In Chapter 7, I
describe page table strategies for which this is true and some for which the TLB miss penalty
can be higher.

In the main text of the thesis I only present normalized speedups, which allows me to com-
pare the performance of two TLBs with a single number. Appendix| shows the individual
WTime (baseTLB)
WTime (newTLB) /

WTime(T) is the normalized workload execution time. WTIME(T) = Z( W(i) x Time(i,T),
i = workloads

workload speedups for more detailed study. Normalized speedup = where

the weighted arithmetic average of the individual workload execution times. The weights nor-
malize execution times such that each workload runs for the same amount of time with an ide-

Tideal (j)

o Em ] . L Weight (i)
al TLB.weight (i) = WorTioge;(i) ' W) = Weight (j)

j = workloads

Table 2-2 shows the calculation of Tideal for each workload. The second and third columns
show RunTime(i, SPARCstation) and TLBMisses(i, SuperSPARCTLB) from Table 2-1. The fourth
column shows the TLB miss penalty estimate—40 cycles or one microsec at 40MHz. The fifth col-
umn derives the time spent in TLB miss handling and the sixth column shows Tideal for each
workload. Weights for calculating normalized speedup can be derived from Tideal using the
above formulae—column seven shows the weights used in rest of the thesis. The last column
shows the maximum speedup possible for each workload relative to a 64-block fully-associative
single-page-size (4KB) TLB. Note that many tables in Appendix I list speedups that are relative
to TLBs different from a 64-block fully-associative single-page-size (4KB) TLB and may differ
significantly from the maximum speedup shown in Table 2-2.

The calculation of execution times, speedups, and weights are highly sensitive to the TLB
miss penalty estimate. I illustrate this sensitivity in Table 2-3, where I compare normalized
speedups relative to a 64-block fully-associative single-page-size (4KB) TLB for four fully-asso-
ciative TLBs that occupy comparable chip area—128-block single-page-size (4KB) TLB, 123-
block superpage TLB that supports 4KB and 32KB pages using the policy described in
Section 2.7.1, 114-block partial-subblock TLB with subblock factor of 16, and a 72-block com-
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Table 2-2: Parameters used to calculate normalized speedup

: : Maximum

RunTime for ﬁﬂtirsmyféés TIp_eBnreT\]IItils TLBMISS — ijealt) .. . Speedup

SuperSRRC TLB (cycles) handling time (seconds) Weight (W(i)) relative to

Workload | (seconds) (thousands) 1cycle = 25ns (seconds) Sup_?[SBRRC
@ ) @ @ () U ©)
(b)*(c)*25 (a)-(d) function(e) (a)l(e)

coral 177 85974 40 85.97 91.03 0.088 1.94
nasa’ 387 152357 40 152.36 234.64 0.034 1.65
compress 99 21347 40 21.35 77.65 0.103 1.27
fftpde 55 11280 40 11.28 43.72 0.183 1.26
waveb 110 14510 40 14.51 95.49 0.084 1.15
mp3d 37 4050 40 4.05 32.95 0.242 1.12
spice 620 41923 40 41.92 578.08 0.014 1.07
pthor 48 2580 40 2.80 45.42 0.176 1.06
ML 945 38423 40 38.42 906.58 0.009 1.04
gcc 118 2440 40 2.44 115.56 0.069 1.02

plete-subblock TLB with subblock factor 4. Tables 12-3a to 12-3¢c in Appendix I show individual
benchmark speedups. I consider TLB miss penalties of 30, 40, and 50 cycles. A larger TLB miss
penalty makes the speedup more significant for these workloads.

Table 2-3: Sensitivity to TLB miss penalty—execution time speedup for alternate fully-associative
TLBs relative to 64-block fully-associative single-page-size (4KB) TLB

TLB miss 128-block single- 123-block 114-block partial- 72-block complete-
enalt page-size (4KB) superpage subblock TLB subblock TLB
penaity TLB (4KB/32KB) TLB (subblock factor 16{subblock factor 4)
30 1.045 1.132 1.161 1.072
40 1.061 1.185 1.227 1.098
50 1.078 1.242 1.301 1.125

Iinclude enough data in the thesis for readers to recalculate execution time for any workload
or TLB configuration with different TLB miss penalty assumptions using formulae described
earlier in this section. Calculating the execution time for a workload requires Tideal(i) and TLB-
Misses(i, TLB). Tideal(i) can be calculated by redoing the calculations in Table 2-2. Tables in
Appendix ] show TLBMisses(i, TLB) for all the TLB configurations I describe in the thesis.
Table 2-4 shows the effect of varying the TLB miss penalty from 30 to 50 cycles on Tideal and the
weights.

I use a normalized speedup with weights that treat all ten workloads with equal importance.
Readers can choose different weights for the workloads if the desired workload mix is different
from my assumptions.

2.6 TLB Replacement Policy

All my TLB simulations use a pseudo-LRU replacement algorithm—Go-Down-Stack
(GODS) policy [Devi92]—that some commercial processors also use, e.g., UltraSPARC
[Yung94]. Each TLB block includes one extra bit, the used bit that is set on TLB hits. The algo-
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Table 2-4: Effect of TLB miss penalty on Tdeal and Weights

Tideal (seconds) Weight (W(i))

Workload | 4, 40 50 30 40 50
coral 112.52 91.03 69.53 0.075 0.088 0.107
nasa7 272.73 234.64 196.55 0.031 0.034 0.038
compress 82.99 77.65 72.32 0.101 0.103 0.103
fftpde 46.54 43.72 40.90 0.181 0.183 0.183
waveb 99.12 95.49 91.86 0.085 0.084 0.081
mp3d 33.96 32.95 31.94 0.248 0.242 0.234
spice 588.56 578.08 567.60 0.014 0.014 0.013
pthor 46.06 45.42 44.77 0.183 0.176 0.167
ML 916.18 906.58 896.97 0.009 0.009 0.008
gcc 116.17 115.56 114.95 0.073 0.069 0.065

rithm for choosing a victim block for replacement on a TLB miss is as follows—assume that
TLB blocks in a TLB set are numbered starting from 0%

1) If there are any invalid TLB blocks, choose the lowest numbered invalid TLB block. 2) If
there are no invalid TLB blocks, choose the lowest numbered TLB block with the used bit clear.
3) If there are no unused TLB blocks, clear all the used bits and restart the algorithm—chooses
TLB block 0.

A 2*n-input priority encoder easily implements this algorithm. However, setting of used
bits on TLB hits may affect the TLB access critical path. Foxtrot manipulates hardware-main-
tained referenced bits in the page table to simulate used bits in an exact fashion.

In the rest of the thesis, I only include results using the above replacement policy. Simula-
tion results show that using this replacement policy often results in fewer TLB misses than oth-
ers. For illustration, I consider three alternate TLB replacement policies. Clock [East79]
implements a second-chance replacement algorithm often used in operating system page re-
placement, with the additional optimization that invalid TLB blocks are replaced first. Ran-
dom [Kane89] replaces an arbitrary TLB block that may or may not be valid. FIFO implements
a straightforward first-in-first-out algorithm. Table 2-5 shows the sensitivity to replacement
policy for a 64-block fully-associative single-page-size TLB. For these workloads, the Clock re-
placement policy performs comparable to the Go-down-stack policy, but is more complicated
to implement. Random and FIFO are simpler to implement but have slightly worse perfor-
mance as they do not account for reference history. However, the results are not uniform. Table
12-5 in Appendix I shows that fftpde, for example, incurs fewer TLB misses with a Random re-
placement policy than with pseudo-LRU replacement.

Table 2-5: Sensitivity to TLB replacement policy—execution time speedupeglative to 64-block
fully-associative single-page-size (4KB) TLB using Go-down-stack (GODSplacement policy

GODS Clock Random FIFO
1.00 1.00 0.98 0.98

2. A few TLB blocks are often reserved for special operating system code that needs to execute without incurring TLB
misses. | assume that the replacement algorithm skips these special blocks.
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2.7 OS Support for superpage and subblock TLBs

Superpage and partial-subblock TLBs are largely ineffective without proper operating sys-
tem support. For the TLB simulations in chapters 3-5, I fix a single set of operating system
mechanisms and policies—Chapter 6 discusses alternate mechanisms and policies. For super-
page TLBs, Foxtrot implements a page-size assignment policy that decides when to use super-
pages and when to use base pages. For partial-subblock TLBs, Foxtrot includes mechanisms to
properly place (Table 1-1) base pages in physical memory.

2.7.1 Description of superpage page-size assignment policy

Foxtrot implements a page-size assignment policy based on the working set threshold
(Section 6.1)—it uses superpages when the number of pages referenced within a page block
crosses a threshold. The thresholds I use are: 50% for disk file pages, 75% for network file pag-
es, 100% for heap pages. I chose the thresholds based on the likelihood of finding unreferenced
base pages within a page block already in physical memory. This depends on the prefetching
policy in the file system and virtual memory system of Solaris. I have not studied the effect of
varying the thresholds.

To implement this policy, Foxtrot includes some new operating system mechanisms. The
page fault handler maintains counters for each virtual page block to keep track of the number
of pages referenced within each page block. A page promotion mechanism changes the page
size when the counters cross the predetermined thresholds.

A naive implementation of page promotion would require base pages to be copied into a
physical page block before using superpages. Foxtrot, instead, implements page reservation
(Section 6.2.5) to allocate pages at the “proper” place in the first place and avoid copies com-
pletely. The policy is as follows:

On the first page fault to a page block, Foxtrot reserves a physical page block for the virtual
page block. After I/O for the faulting base page completes, Foxtrot stores a base page mapping
in the page table. On subsequent page faults to other base pages within the page block, Foxtrot
fetches the data from backing store into the prereserved physical pages and loads base page
mappings in the page table. When the number of page faults to a page block crosses the page
promotion threshold, Foxtrot promotes the page block to use a superpage mapping. Page pro-
motion involves unloading the base page mappings from the page table, fetching from backing
store into the prereserved pages any base pages not present in memory, and loading a super-
page mapping into the page table.

Foxtrot reduces page promotion costs by prefetching into memory, in the background, un-
referenced base pages within a page block. This reduces the wait time to fetch extra pages dur-
ing page promotion. Solaris, by default, prefetches the next eight base pages to the faulting
base page. Foxtrot modifies the prefetching policy to read-around the faulting base page, i.¢,
prefetches pages that both precede and follow the faulting base page but limits the prefetch to
within a single page block. Foxtrot prefetches a full page block for ufs files, the following eight
base pages that belong to the same page block for nfs files, and does not prefetch (or preinitial-
ize) heap pages.

Page promotion, reservation, or prefetching do not occur for segments that do not span a
full page block, e.g., segment size smaller than the page block size, the first (or last) page block
in a segment that starts (or ends) at an unaligned virtual address, or when base pages within a
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page block do not have the same attributes.

2.7.2 Physical Memory Allocation for Partial-subblock TLBs

Partial-subblock TLBs do not require the operating system to implement a page-size as-
signment policy but do require physical memory allocation to properly place base pages in
physical memory. Foxtrot uses page reservation, described in Section 6.2.5, to allocate physical
memory such that base pages are often properly placed.
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Chapter 3 Superpage TLBs

This chapter evaluates the use of superpages [Tall92, Mogu93, Tall94a] to increase TLB reach.
Superpages use the same linear address space as conventional paging, have sizes that must be
power-of-two multiples of the base page size, and must be aligned in both virtual and physical
memory [Tall94a]. Superpages, however, are not universally useful and there is an inherent
tradeoff in using superpages [Tall92]. Superpages decrease the number of TLB misses but in-
crease memory demand” due to internal fragmentation. Thus, the key to using superpage
TLBs is an operating system that uses superpages where appropriate and base pages else-
where. Nearly every current microprocessor supports superpages, e.g., MIPS [Kane92], UltraS-
PARC [Yung95], Alpha [Bann95], PowerPC [Silh93], HP-PA RISC [Hunt95]. The MIPS R4000
[Kane92], for example, supports a 4KB base page size and superpages of 16KB, 64KB, 256KB,
1MB, 4MB, and 16MB. However, I am not aware of any operating system that uses superpages
in a general manner. I discuss the operating system issues in Chapter 6.

This chapter studies the issues involved in building both fully-associative and set-associa-
tive TLBs that support superpages, discusses how to handle TLB misses for superpage TLBs,
and compares the TLB performance with alternate single-page-size TLBs.

A superpage TLB block’s tag maps variable-sized page blocks and the data stores a single
mapping. Mappings to base virtual pages within a page block can share a single superpage
TLB block if all are mapped, all are present in physical memory, all are properly placed in phys-
ical memory, all have the same attributes, the operating system has recognized these base pag-
es, and promoted them. The hardware complexity to add superpage support to fully-
associative TLBs is small but requires significant operating system support to use superpages.

Figure 3-1: Superpage TLB block

VPN IMASK | V | | PPN | ATTR | SZ |
64 Igo(s) 1 36 9 Igo(n)
max. superpage size
s= n = number of supported page sizes

base page size

Figure 3-1 shows the format of a superpage TLB block, which adds a size field to both the
tag (MASK) and data (SZ) portions of a single-page-size TLB block. The MASK field prevents
certain tag bits from participating in tag comparison for superpage mappings and the SZ at-
tribute controls a multiplexor during physical address generation. A fully-associative TLB can
simultaneously support multiple superpage sizes, but set-associative TLBs do not efficiently
support more than one page size as explained in Section 3.2.2.

Figure 3-2 shows some mappings from a virtual address space to a physical address space
and how they can be stored in an 8-block fully-associative superpage TLB that supports 4KB
and 16KB pages. Only the mappings for page block x can use a superpage mapping—page
block w has one base page not properly placed in memory with respect to other base pages,
page block y has some unmapped base pages, page block z has both improperly placed and
unmapped base pages.

1. On todays lage physical memory machines. increased memory demand may not be a concern, but initialization
overhead—zeroing or doing I/Os—for the extra memory used can increase execution time.
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Large superpage sizes (2256B) can improve TLB performance significantly and are clearly
useful in certain applications, e.g., kernel text/data, frame buffers, and database buffer caches.
I assume, and strongly recommend, use of large superpages in such situations. If there are usu-
ally only a few large superpages in use, it may be possible to setup their mappings with limit-
ed changes to existing operating systems.

Medium-sized superpages (< 128KB) are more appropriate for general use, as most objects
mapped in an address space are not large enough to use large superpage sizes and the cost of
making a wrong decision in choosing a medium-sized superpage is small. The cost of a 64KB
disk sequential I/O, for example, is not that different from that of a 4KB I/O. However, medi-
um-sized superpages require more substantial operating system support to provide policies
for choosing appropriate page sizes and the mechanisms to support them.

Figure 3-2: Mrtual Addr ess to Physical Addess mappings in a superpage system

P
page block w —
N
page block x page block b
B
page block y — I
—1 ge block a '
Page block z E -
Virtual Addr ess Space Physical Address Space
XXX 11 O bXX Attr |1
w00 00 O c00 Attr |0
w02 00 | O c02 Attr |0
w03 00 | O c03 Attr |0
w01l 00 | O a0l Attr |0
y02 00 | O b02 Attr |0
z03 00 | O c01 Attr |0
z00 00 | O a00 Attr |0
VPN MASK V PPN ATTR SZ

Superpage TLB storing mappings for above
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Throughout this thesis, I assume superpage TLBs that support two page sizes—a base page
size of 4KB and a medium-sized superpage size that is a power of two multiple of 4KB. I also
assume that the operating system supports the generic use of superpages with a dynamic
page-size assignment policy (as explained in Section 2.7.1) that chooses between these two
page sizes. Section 3.1 discusses other way of using superpage TLBs and the reasons why I re-
strict my thesis to this alternative.

Section 3.2.1 shows how fully-associative single-page-size TLBs include superpage support
with little overhead. Set-associative superpage TLBs are harder to build as it is not clear which
bits from the virtual address must index the TLB. Section 3.2.2 suggests three indexing
schemes—base page index, superpage index, and exact index. The base page index does not
reduce TLB misses, the superpage index has unacceptable performance if the operating system
does not use superpages, and the exact index is costly to implement as the page size corre-
sponding to a virtual address is unknown when starting the lookup. Further, neither is practi-
cal when simultaneously supporting more than two page sizes. Simulation results show that
set-associative superpage TLBs can be effective at reducing the number of TLB misses. Howev-
er, if the operating system does not use superpages, and uses base pages only, a set-associative
superpage-index TLB incurs significantly higher TLB misses than a single-page-size TLB with
the same number of blocks and associativity.

While the number of TLB misses reduce with use of superpages, other system overheads
may increase and offset some gains. The system overheads include page fault service time,
paging traffic, memory demand, TLB miss penalty, and execution of page-size assignment pol-
icy. With efficient implementation of the superpage mechanisms, policies (Section 6.1), and
page tables (Section 7.4), it is possible to minimize these overheads such that the reduction in
number of TLB misses also reduces overall execution time. Section 3.3, in particular, shows
how to handle superpage TLB misses without increasing the TLB miss penalty over a single-
page-size system.

Section 3.4 compares the performance of superpage TLBs with set-associative single-page-
size TLBs of comparable chip area. For the workloads I consider, results show that the super-
page TLBs, though they have fewer TLB blocks, incur fewer TLB misses if the operating sys-
tem uses superpages. The superpage TLBs, however, incur more TLB misses if superpages are
not used. Section 3.5 reiterates the conclusions.

3.1 Superpage TLB and Operating System taxonomy

Before discussing how to build superpage TLBs and evaluating their performance, I first
discuss the different varieties of superpage TLBs used in different processors and how operat-
ing systems use them. TLBs that support multiple page sizes can typically support one or more
of three different features:

a) per process/system configurable page size: The TLB supports a single page size, but the
page size can be changed either during system initialization or process switch. Examples of
this category include Motorola 68040, which has a mode bit to select between 4KB and 8KB
page size [Eden90], Motorola 68020 using MC68851 controller can select a page size from 256
bytes to 2KB [Moto86], the SGI R8000 processor allows two page sizes—one for instructions
and another for data—that are selectable per-process [MIPS93], AMD29000 [John87] supports
a per-process page-size.
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Many single-page-size operating systems use a configurable system-wide PAGESIZE con-
stant. Solaris, for example, uses 8KB pages on V7 or V9 machines and 4KB pages for V8 ma-
chines; IRIX uses 4KB pages for R4X00 machines and 16KB pages for R6000 machines.
Superpage TLBs allow such operating systems to choose different page sizes for different ma-
chines, e.g., server machines could use 64KB pages while desktop workstations use 4KB pages.
This is an important use for TLBs that support multiple page sizes. I am not aware of any oper-
ating system that supports varying per-process page sizes on a single system. I do not explore
this option further, as the version of the Solaris operating system I use does not support chang-
ing the default PAGESIZE.

b) separate superpage TLB: The main TLB supports the base page size and a separate TLB
supports the large superpages. This allows the operating system to use large superpages for
special cases such as kernel text, database buffer caches, and frame buffers. Examples of this
category include HP-PA RISC [Hewl93, Hunt95], Motorola 88x00 [Mile90], Intel i860XP
[Inte91], and PowerPC [Silh93, May94]. Such a superpage TLB is also known as a Block TLB or
a Block Address Translation Cache (BATC). Most implementations of separate superpage TLBs
require special TLB miss handling for superpages as the default TLB miss handler does not
handle superpage mappings. I do not explore this option further as a limited number of super-
page TLB blocks largely restricts superpage usage to a few restricted situations and not appli-
cable for generic user programs.

¢) multiple-page-size TLB: The TLB can simultaneously store mappings of many different
page sizes. These TLBs are usually fully-associative due to the difficulty of building set-asso-
ciative TLBs that support multiple page sizes (Section 3.2.2). For example, MIPS R4x000 sup-
ports seven page sizes from 4KB to 16MB [Kane92], UltraSPARC [Yung95] and Alpha [Bann95]
support four pages sizes of 8KB, 64KB, 512KB, and 4MB. Others include ETA-10 [ETA 86],
ARMSG6 [Adva93], and SPARC Reference MMU [SPAR91]. Many also include a default TLB miss
handler (in hardware or software) that can load superpage mappings in the TLB.

This is more useful than supporting a single configurable page size as programs have a mix
of mappings that cannot all use superpages, e.g., stack pages would rarely use 4MB pages that
frame buffers could use. Multiple page size TLBs also can be used as configurable page size
TLBs if the operating system uses mappings of only a single page size. The interesting case, is
when the operating system uses a mix of page sizes making a dynamic choice of different page
sizes for different page blocks—page-size assignment.

In this thesis, I assume superpage TLBs that support two page sizes—a base page size of
4KB and a medium-sized superpage size that is a power of two multiple of 4KB. I also assume
that the operating system supports the generic use of superpages with a dynamic page-size as-
signment policy (as explained in Section 2.7.1) that chooses between these two page sizes. I do
not explore the effect of using more than two page sizes simultaneously because I did not com-
plete in time a working implementation of the page-size assignment policy and mechanisms
needed to support more than two page sizes.

3.2 Mechanics of a superpage TLB

A superpage TLB is a small modification to a single-page-size TLB with a remarkable in-
crease in TLB reach. This section identifies the basic hardware differences from a single-page-
size TLB and discusses fully-associative and set-associative implementations.
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Each TLB block in a superpage TLB can store mappings for different page sizes. The TLB
uses for tag comparison the VPN bits assuming the smallest page size with the Offset bits
passed through to physical address generation. A superpage TLB adds two things to a single-
page-size TLB design (Section 1.5), as shown in Figure 3-1. First, each TLB block includes a
page size mask (MASK) that identifies which bits of the VPN are part of the superpage VPN.
The tag comparators include in the tag match only the superpage VPN bits, treating the rest of
the tag bits as “don’t care”. Second, the physical address generation depends on the page size
corresponding to the virtual address—for superpages the Soff field from the virtual address is
used in the physical address, and for base pages the PPN bits output from the TLB are used.
On a TLB hit, the page size attribute (SZ) read from the TLB controls a multiplexor to imple-
ment the physical address generation, as in Figure 3-3.

Figure 3-3: Structure of a superpage TLB
[ PIDIVPBN | Soff. | Offset| VA

Soff => Superpage Offset

TLB
TLB Miss Protection Attr [SiZ€
Violation

| PPBN | Soff. | offset | PA

3.2.1 Fully-associative superpage TLBs

A fully-associative TLB includes an individual tag comparator for every TLB block that can
be modified to support multiple superpage sizes. If the operating system uses superpages, the
number of TLB misses can decrease significantly. Further, if the operating system does not use
superpages, a fully-associative superpage TLB behaves exactly as a single-page-size TLB with
the same number of blocks.

A fully-associative superpage TLB (shown in Figure 3-4) uses regular CAM cells for the
VPBN bits (assuming the largest superpage size) and don’t-care cells for the superpage offset
bits in the tag (Appendix A). Implementation of the rest of the tag remains unchanged from a
single page-size TLB—except for a longer match line to traverse the wider don’t-care cells. The
MASK bits store the page size in a predecoded form in the don’t-care cells, e.g., a superpage
mapping for four base pages stores a mask of 0011 and prevents the two low-order bits of the
VPN from participating in the tag match. When loading a mapping into the TLB, the PTE for-
mat can include the MASK field, the TLB miss handler can read the MASK from a special reg-
ister, e.g., MIPS R4000 [Kane92], or hardware can decode the size attribute in the PTE, e.g.,
UltraSPARC [Yung95].
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Figure 3-4: A fully-associative superpage TLB
PID/VPBN | Soff. |Offset | VA
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The size field (SZ), read from the data array along with the attributes, controls physical ad-
dress generation. This increases the TLB access time as it serializes the RAM access and the
multiplexor control. This also requires the size field to be stored in the data RAM. It is possible
to use the mask field in the tag to setup the physical address multiplexor in parallel to the data
RAM access. However, it is difficult to read a CAM during the tag match and extra wires be-
tween the two arrays also make it difficult to implement.

Adding superpage support to a fully-associative TLB has very small area and access time
overheads (bottom of Table 3-1) but can significantly reduce the number of TLB misses. The
number of TLB misses declines for two reasons. First, the increased TLB reach allows the TLB
to hold a larger fraction of the working set and misses less often, e.g., 64KB superpages in-
crease the TLB reach of a 4KB single-page-size TLB by a factor of 16. Second, a superpage map-
ping loads mappings to multiple base pages on a single TLB miss that would have taken
multiple TLB misses in a single page size TLB. Table 3-1 shows the normalized? speedup when
using superpage TLBs supporting two page sizes—a superpage and a base page size of 4KB.
The simulation assumes that the operating system implements a page-size assignment policy
that uses superpages—the policy described in Section 2.7.1. The speedups shown in Table 3-1
are significant, 1.05 to 1.21. The workloads I use spend significant time in TLB miss handling,
smaller workloads may have less speedup.

3.2.2 Set-associative superpage TLBs

A set-associative TLB reads out a selected set of tags from the tag array and the corre-
sponding data from the data array. Tag comparators compare the few tags and output the cor-
responding physical address if a TLB hit. To support superpages, the tag comparators and the
physical address generation can be modified to use don’t-care bits and a multiplexor respec-
tively as in fully-associative TLBs. However, indexing into the tag and data arrays to select the

2. The normalized execution time speedup is shown here, as explained in Séctigpendid shows execution
time speedups for individual workloads.
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Table 3-1: Execution time speedups for fully-associative superpage TLBslative to single-page-size
(4KB) TLBs with same number of blocks

Superpage TLB with superpage size

#blocks | okg  16KB  32KB  64KB

64 1.09 1.15 1.18 1.21

Average Speedup 128 1.07 1.1 1.13 1.17
256 1.05 1.06 1.07 1.08

Relative Chip area | 64-256 1.02 1.03 1.04 1.05
Relative Access timg  64-256 1.00 1.00 1.00 1.00

set of tags to compare is nontrivial in a superpage TLB. A set-associative TLB usually uses the
low-order bits of the VPN as index bits. Some TLBs use a hash function of all or some bits of
the VPN, but for performance reasons the hash function always includes the low-order x bits
of the VPN, where x is Igy(number of TLB sets).

When using superpages the page size for a virtual address is unknown when starting the
TLB access to identify the index bits uniquely—the page size is known when inserting a map-
ping into the TLB. In this section, I discuss three ways to index a set-associative TLB that sup-
ports two page sizes only—a 4KB base page size and superpage size (e.g., 32KB). None of the
solutions I discuss here are, however, practical to support multiple superpage sizes. The exact
index method, described later, is practical to implement if the page size corresponding to the
virtual address is known when starting the TLB access, e.g., the virtual address includes the
page size [Cart94].

Which bits from the virtual address should the TLB use to index the tag array? There are at
least three options to consider: the VPN of the base page; the VPN of the superpage; or the ex-
act VPN with apriori knowledge of the page size. I illustrate these next with a direct-mapped
8-block TLB storing mappings for three different 64KB regions of address space shown in
Figure 3-5.

Figure 3-5: Mapping a 64KB addess space with 4KB and 32KB superpage mappings

0x0000m- Base page O
Superpage 0 S Superpage O
Base page 7
Base page 0 Base page 0
Superpage 1 Ce ce
Oxffff Base page 7 Base page 7
(a) (b) (c)

Indexing the TLB by the VPN of the base page. The TLB uses as index the virtual address
bits <14..12>, the least significant bits of the base page VPN. This would be same as the index
used in a set-associative single-page-size TLB and would work fine for the case shown in
Figure 3-5(b), which has only base pages. However, for the superpage mapping in Figure 3-
5(a) or (c), all eight TLB blocks are candidates to store a superpage mapping, depending on the
value of virtual address bits <14..12> that are part of the superpage page offset. This negates
the very reason to support superpages and the TLB has the same performance as a similar set-
associative TLB (the top row of Table 3-2). Therefore, there is no advantage to supporting su-
perpages in a TLB indexed by the VPN of the base page.
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Indexing the TLB by the VPN of the superpage. The TLB uses as index the virtual address
bits <17..15>, the least significant bits of the superpage VPN. This would be same as the index
used in a set-associative single-page-size TLB with a 32KB page size and would work fine for
the case shown in Figure 3-5(a), which has only 32KB pages. However, using small pages, as in
Figure 3-5(b) and (c), eight consecutive base pages compete for the same TLB block. For exam-
ple, in Figure 3-5(b), base pages 0-7 all index into TLB block 0, causing many conflict misses.
The collision cost is very high if no superpages are used—similar to using virtual address bits
<17..15> in a single-page-size TLB with 4KB pages. If the operating system uses superpages,
however, the collision cost may not be large, because:

¢ References to multiple base pages within the same page block cause collisions. The oper-
ating system should use superpage mappings for such page blocks (Figure 3-5(c)).

¢ If the program exhibits a non-looping sequential access pattern, e.g., scanning an array,
then the TLB uses only a single TLB block instead of overwriting the rest of the TLB. This
helps applications such as nasa7 and fftpde even when using only base pages.

¢ Increasing the set-associativity reduces the impact of collisions. Increasing the associativi-
ty to eight, for example, allows the base pages 0-7 to reside in separate TLB blocks though
they map to the same set.

Superpage-index TLBs result in a simple hardware implementation for supporting medi-
um-size superpages, but may perform much worse than equivalent single-page-size TLBs if
the operating system does not use superpages. If the operating system uses superpages, the
TLB incurs fewer misses, for reasons explained above, and results in execution time speedup
relative to a single-page-size TLB that uses the base page index (Table 3-2). However, the
workloads suffer a slowdown if the operating system does not use superpages, e.g., if the oper-
ating system support is lacking or the application has small segments or there is shortage of
physical memory. Thus, superpage-index TLBs are sensitive to the available operating system
support and workloads that can use superpages.

Table 3-2: Execution time speedups for 256-block 4-way set-associative superpage TLdative to
single-page-size (4KB) TLBs

superpage size (using superpagesuperpage size (using base pages only)

8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Indexing scheme

base-page-inde

X

éggggu‘; superpage-indek 1.06 ~ 1.09 1.0 1.07 | 1.01 102 087 081
exact-index 1.06 1.10 1.1 1.14 1.00 1.00 1.00 1.00
Relative Chip area 1.02 1.03 1.04 1.05
Relative Access time 1.00 1.01 1.01 1.01

Indexing the TLB by the exact VPN. If the TLB knew the page size before starting the TLB
access or can magically guess the correct page size, e.g., the virtual address may include the
page size [Cart94], the TLB can be indexed by the superpage VPN (bits <17..15>) for superpag-
es and by the base page VPN (bits <14..12>) for base pages. This solution would use a single
TLB block for superpages without increasing the collision costs for using base pages. The third
row of Table 3-2 shows that set-associative TLBs using the exact index are very effective if us-
ing superpages. Using the exact index is more effective because base pages within a page block
map to different sets in an exact-index TLB. These base pages would have mapped to the same
set in a superpage-index TLB and cause additional conflict misses.
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However, an exact index set-associative TLB is not easy to implement if the page size corre-
sponding to the virtual address is unknown prior to starting the access. There are at least three
strategies and each has significant costs.

Parallel access: A dual-ported or replicated TLB can use different index bits on the two
ports to translate the same virtual address. This solution has two opportunity costs that make
it unattractive. First, a dual-ported TLB can improve the CPI of a processor by allowing two
memory access translations per cycle that may increase overall performance better than TLB
performance benefits of superpages, e.g., multiple load /store pipes in processors already satu-
rate the bandwidth of multi-ported single-page-size TLBs and supporting superpages would
use half the TLB bandwidth. Second, a dual-ported TLB occupies a larger chip area and is
slower to access. Other single-page-size or fully-associative TLB designs that occupy a similar
area become attractive alternatives. For example, a 256-block fully-associative TLB requires
less chip area than a dual-ported 256-block direct-mapped TLB, incurs fewer TLB misses, and
can support multiple superpage sizes.

Rehash schemes: The TLB can first index assuming a base page and on a miss can repeat
the access, next cycle, using the superpage index. Similar schemes have been used to improve
the performance of set-associative CPU caches [Agar88, Kess89, Agarwal93] and page tables
[Thak86, May94]. The TLB access takes a variable number of cycles and can complicate pipe-
line design. If TLB access is in the critical path, increasing the TLB hit time for superpage map-
pings decreases their usefulness. If TLB access is not in the critical path, e.g., when using
virtual-tagged caches, a rehash scheme may be practical. In particular, rehash schemes are at-
tractive for operating systems to traverse hashed page tables that store superpage mappings
(Section 7.4.2).

Split TLBs: A processor can include separate TLBs accessed in parallel for the two page
sizes, similar to split instruction and data caches [Smit82]. The two TLBs can be either both set-
associative, both fully-associative or one set-associative and one fully-associative. This has the
disadvantage of unused hardware if pages are not appropriately distributed between the two
page sizes.

Supporting more than two page sizes in set-associative TLBs makes them further unattrac-
tive. Indexing with the VPN of the largest supported superpage sizes increases the conflict
misses for all smaller, more frequently used, page sizes. Indexing with the exact VPN requires
either a) too many ports, b) many reprobes, or c) many separate TLBs. A compromise solution
uses a set-associative single-page-size TLB for base pages and a separate fully-associative TLB
for multiple superpage sizes, e.g., HP PA-RISC [Lee89b], PowerPC [May94]. This allows a
much larger single-page-size TLB to be built but restricts the number of superpage mappings
and requires separate TLB miss handlers.

In summary, set-associative superpage TLBs can use either the base page index, superpage
index, or exact index. The base page index does not reduce TLB misses, the superpage index
has unacceptable performance if the operating system does not use superpages, and the exact
index is costly to implement as the page size corresponding to a virtual address is unknown
when starting the lookup. Further, neither is practical when simultaneously supporting more
than two page sizes.
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3.3 TLB miss handling in a Superpage TLB

TLB miss handling for a superpage TLB may be more complicated than for a single-page-
size TLB. It is important that superpage TLB miss handling does not increase the TLB miss
penalty and offset the gains from the fewer TLB misses incurred. I first show a naive way to
handle TLB misses for a superpage TLB using a single-page-size page table. I then show that
by modifying the operating system and page table to store superpage mappings explicitly, the
TLB miss penalty can be no worse than in a single-page-size TLB.

Most operating systems use page tables that store base page mappings only. A naive TLB
miss handler for a superpage TLB scans the PTEs corresponding to all base pages that belong
to the faulting page block and, if they are all superpage compatible, loads a superpage TLB
block. Otherwise, it loads a base page mapping for the faulting virtual address. The naive TLB
miss handler is as follows:

Mapping = Find_mapping(VPN);
for i = 0 to (s-1), except Block Offset(VPN) /* s is number of base pages per superpage */
if (!compatible(Find_mapping(i + VPBN), Mapping)) break;
if (all bases pages compatible) {
Mapping.SZ = 1;
TLB_demap(VPBN, s * PAGESIZE); /* remove existing base page mappings */
}
load_TLB(Mapping, blocki); /* set the MASK field based on SZ */

This is clearly inefficient, does not extend easily to multiple superpage sizes, and would in-
crease the TLB miss penalty by more than an order of magnitude neutralizing any benefit due
to reduction in the number of TLB misses. An alternate solution, used by many current micro-
processors, is to store explicitly superpage mappings in the page table (e.g., SPARC reference
MMU [SPAR91]) that the TLB miss handler can load into the TLB without further checking.
Storing superpage mappings in the page table has two advantages. First, it is more efficient as
the operating system does compatibility checks only during page faults, which are less fre-
quent than TLB misses. Second, when loading a superpage mapping into the TLB, preexisting
base page mappings for the same virtual address range as the superpage must be invalidated
from the TLB. The operating system can guarantee this by invalidating the base page map-
pings from the TLB during page promotion, instead of requiring the TLB miss handler to in-
clude a TLB_demap operation (as shown above). This simplifies the TLB miss handler for the
superpage TLB to be same as a single-page-size TLB miss handler:

Mapping = Find_mapping (VPN); /* base page or superpage */
load_TLB(Mapping, blocki); /* blocki is TLB replacement victim block*/

TLB miss penalty depends on the time to traverse a page table that stores superpage map-
pings. Replicating a superpage PTE at each base page PTE site extends any single-page-size
page table to store superpage mappings without increasing the TLB miss penalty over that for
a single-page-size TLB. Chapter 7 discusses other adaptations to popular page tables to store
superpage mappings. Clustered page tables, for example, reduce page table size using medium-
size superpage mappings, without affecting the TLB miss penalty.
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In some microprocessors, the default TLB miss handler services only TLB misses to base
page mappings. On base page table misses, the operating system page fault handler traverses
other data structures to find and load superpage mappings into the TLB, e.g., block TLB miss
handling in PowerPC [May94].

3.4 Sample design given area constraint

A fully-associative single-page-size TLB can support superpages with little area and access
time overhead (Section 3.2.1). Further, the TLB performance of a fully-associative superpage
TLB is comparable to that of a single-page-size TLB in the absence of operating system support
and vastly superior in the presence of operating system support. Thus, if one were building a
fully-associative single-page-size TLB, based on other single-page-size design studies, adding
superpage support is a small additional cost with huge potential benefits. Many microproces-
sors support superpages with fully-associative TLBs and in this section I try to answer the
question: Does a superpage TLB always outperform a single-page-size TLB of comparable im-
plementation complexity?

I answer this question by comparing superpage TLBs with d1fferent set-associative single-
page-size TLB implementations that require comparable chip area’. T use the area model de-
scribed in Section 2.2 to find the size of fully-associative single-page-size TLBs and superpage
TLBs supporting superpage sizes of 32KB or 64KB that have comparable chip area to 4-way
set-associative single-page-size (4KB) TLBs. Note that fully-associative TLBs can have non-
power-of-two number of TLB blocks. Set-associative TLBs typically require a power-of-two
number of sets. Table 3-3 shows the normalized execution time speedup of the different TLBs
relative to the set-associative single-page-size TLB. The table differentiates between superpage
TLB performance depending on whether the operating system uses superpages. The columns
titled "Speedup using superpages" assume the operating system uses superpages (using the
policy in Section 2.7.1) and the columns titled "Speedup using base pages" assume the operat-
ing system uses only base pages. Set-associative superpage TLBs use the superpage index.
There are two observations to make:

Table 3-3: Execution time speedups for superpage TLBeglative to set-associative single-page-size
(4KB) TLBs of comparable chip ara

4KB Single-page-size TLB 4KB/32KB Superpage TLB 4KB/64KB Superpage TLB
Area Speedup Speedup Speedup Speedup
(rbe) #blocks Speedup | #blocks using  using base #blocks using  using basg
superpages pages superpages pages
162 fully- 102 | 196Mlly- oy 45 102 | 154fuly- g 4y 1.02
associative associative associative
19160 256 set 256 set 256 set
set- 1.00 T 110 0.87 T 107 0.81
associative associative associative
304 fully- g o [ 293Mully- oy g 100 |290Mully- g 47 1.00
associative associative associative
35412 512 set 512 set 512 set
se- 1.00 € 106 0.84 101 0.77
associative associative associative

3. TLB access time is also an important criterion in choosing a TLB design. Howevassumptions in my timing
model prevent access time comparison of fully-associative TLBs with set-associative TLBs (&8gtion
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First, when the operating system uses superpages, superpage TLBs result in a significant
speedup over the set-associative single-page-size TLBs, for these workloads. Second, in the ab-
sence of superpage operating system support, i.e., when using only base pages, the superpage
TLBs have worse performance than the single-page-size TLBs. Though the fully-associative
TLBs appear to have comparable performance to the set-associative TLBs, excluding fftpde the
fully-associative TLBs have an execution time slowdown (Tables 13-3a and 13-3b in
Appendix I). They incur more TLB misses as they have fewer TLB blocks and a smaller TLB
reach. The set-associative superpage TLBs use suboptimal index bits when using only base
pages and incur a significant slowdown in execution time.

Thus, my results show that for these workloads, superpage TLBs are clearly more effective
than equivalent single-page-size TLBs but only if the operating system uses superpages. Hard-
ware designers are building superpage TLBs, assuming that operating systems will use super-
pages and exploit the potential for execution time speedup. Commercial operating systems,
however, do not support medium-sized superpages and use base pages only. Hardware de-
signers could have built better set-associative single-page-size TLBs if the intent was to use
only base pages.

3.5 Conclusion

A superpage TLB allows different TLB blocks to map different sized virtual address re-
gions. With simple hardware extensions to a single-page-size TLB, superpages increase the
TLB reach by one or two orders of magnitude. For superpage TLBs to be effective, however,
the operating system must use superpages and exploit the increased TLB reach. While some
commercial operating systems use superpages for special cases only, e.g., databases, there is
some evidence that upcoming operating system releases will support superpages for more
user programs.

This chapter shows that with proper operating system support, fully-associative superpage
TLBs using medium-sized superpages can result in a significant speedup in execution time,
e.g., 10%, relative to using equivalent single-page-size TLBs. As explained in Section 2.4, the
workloads I chose have potential for and show more execution time speedups than many
small and short-lived programs.

This chapter also shows that set-associative implementations of superpage TLBs that sup-
port more than two page sizes are impractical. Set-associative implementations of superpage
TLBs that support two page sizes can use the superpage index, but perform much worse than
single-page-size TLBs if superpages are not used by the operating system.

Superpage support is easy to implement in hardware due to the strict definition of a super-
page. However, the restrictions make superpages ineligible to be used in many situations—
segments smaller than the superpage size (e.g., a 60KB file with a superpage size of 64KB), seg-
ments with unaligned boundaries, segments with holes, pages with different attributes. Thus,
there is an opportunity cost where a less restrictive definition of “superpage” would have re-
sulted in more frequent usage. The next two chapters describe subblock TLBs that offer a bet-
ter alternative to medium-sized superpage TLBs. Subblock TLBs incur fewer TLB misses and
require simpler operating system support. The last two chapters describe operating system
and page table support that minimize overhead and make it more attractive to use superpages.
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Chapter4 Complete-subblock TLBs

This chapter explores the use of subblockmg a feature commonly used in cache design, to
increase TLB reach as an alternative to use of medium-sized superpages The key idea in sub-
blocking is to allow a single TLB block to map multiple base pages but with each base page
having it’s own mapping. I call this complete subblocking and a TLB built with this feature a com-
plete-subblock TLB. Complete-subblock TLBs have the same TLB reach advantages of medium-
sized superpages and exploit spatial locality to improve TLB performance but do not require
any operating system support. This chapter discusses the basic operation of complete-sub-
block TLBs, some implementation issues, and compares the advantages and disadvantages of
a complete-subblock TLB with single-page-size and superpage TLBs. While commercial pro-
cessors, such as MIPS R4000, implement complete-subblock TLBs with subblock factor of two,
I show complete-subblock TLBs with larger subblock factors to be effective as well. My results
show complete-subblock TLBs to be a superior choice to conventional single-page-size TLBs
that occupy comparable chip area. The primary contribution of this chapter is that I show how
hardware designers can use the larger chip area available in today’s VLSI implementations to
build complete-subblock TLBs that are more effective and faster to access than equivalent sin-
gle-page-size TLBs.

A complete-subblock TLB block’s tag maps a fixed page block size but the data stores sepa-
rate mappings for the base pages. Mappings to base virtual pages share a single TLB block if
they are part of the same virtual page block. Base pages within the page block need not be
properly placed, page block aligned, or have the same attributes, and only a subset need be
mapped or present in memory. The hardware complexity to build a complete-subblock TLB is
small, but the chip area cost is high. However, complete-subblock TLBs require no additional
operating system support.

A TLB block for a complete-subblock TLB of subblock factor s, has a tag that contains the
virtual page block number (VPBN)—the VPN without the logy(s) low order bits—and a data
part that has space for s mappings. A complete-subblock TLB block also has a block valid bit
(BV) in the tag to identify valid TLB blocks besides the individual subblock valid bits (Vp-V3)
in the data. Figure 4-1 compares a single-page-size TLB block and a complete-subblock TLB
block with subblock factor of 4.

For a typical 64-bit system, the size of the tag (~64 bits) is comparable to the size of the data
(~64 bits) in a single-page-size TLB. A complete-subblock TLB uses fewer tags by associating a
single tag with multiple mappings—saving chip area and reducing access time. The saving
does not come for free—only mappings to pages that belong to the same page block can be
stored in the data fields sharing a single tag. If a workload has good spatial locality—i.e., refer-
ences many pages within a page block—the TLB has comparable performance to a TLB that
has independent tags but at a lower cost. If the program has bad locality—i.e., references only a
small fraction of the pages within a page block—the TLB performance is worse. This is the
tradeoff in using subblock TLBs or caches.

1. Subblocking [Hill84] has also been called sectoring [Lipt68] and address/transfer blocks [Good83].

2. This chapter concentrates on subblock TLBs as an alternative to medium-sized superpages. A plustites
how subblock TLBs support lge superpages.
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Figure 4-1: Structure of a complete-subblock TLB block

Tag Data
| VPN | v | | PPN | ATTR |
9
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Figure 4-2 shows how a fully-associative complete-subblock TLB stores some mappings
from a virtual address space to a physical address space. A complete-subblock TLB’s fields are
as shown in the TLB block format in Figure 4-1. Note that each page block in the virtual ad-
dress space requires a single TLB block—a superpage TLB uses multiple TLB blocks for page

Complete-subblock TLB block (subblock factor 4)

blocks that cannot be mapped by a superpage mapping (Figure 3-2).

Figure 4-2: Mrtual Addr ess to Physical Addess Mappings in a Complete-subblock System

P
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BV subblock 00 subblock 01 subblock 02 subblock 03

Complete-subblock TLB storing mappings for above
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The rest of this chapter describes the structure and operation of a complete-subblock TLB,
describes TLB miss handling in a complete-subblock TLB, introduces preloading or prefetching
into subblock TLBs, compares alternate TLBs that occupy comparable chip area, and concludes
with a comparison of complete-subblock TLBs with other single-page-size and superpage
TLBs.

4.1 Mechanics of a Complete-subblock TLB

The structure and operation of a complete-subblock TLB (Figure 4-3) differs in three ways
from that of a single-page-size TLB (Figure 1-3) with the same number of blocks and associa-
tivity. First, since each TLB block maps s pages, the tag stored in a complete-subblock TLB
block is logo(s) bits smaller. Second, the data RAM is s times wider and the low-order logy(s)
bits of the VPN, the Block-Offset bits, control a subblock multiplexor to select the appropriate
subblock from the data RAM. Third, each TLB block has multiple (s) subblock valid bits. TLB
miss signal generation includes the status of the appropriate subblock valid bit read from the
TLB and the conventional result of the tag compares. Note that the Block Offset bits of the vir-
tual address do not pass through to form the physical address as the Page Offset bits do and
the TLB data stores the full PPN.

Figure 4-3: Structure of a complete-subblock TLB
[ PID/VPBN [ BI.Off] Offset| VA

Bl.Off => Block Offset
D is a decoder

TLB
TLB Miss
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MUX 4//‘0 Ty
Subblock |si * I
Protection Attr *

Violation | PPN | Offset| PA
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The basic structure of a fully-associative complete-subblock TLB is very similar to that of a
single-page-size fully-associative TLB (Section 1.5.1) as shown in Figure 4-4. Each TLB block
stores a tag consisting of a virtual page block number (VPBN) and a block valid bit—imple-
mented using the variations described in Appendix A. Each TLB block stores s mappings in a
single row of the data RAM. The tag memory, implemented as a content-addressable memory,
compares the VPBN of the faulting address. The selected row of RAM cells reads out s map-
pings onto the bitlines. The column multiplexors, controlled by the decoded block offset bits,
select one bit from each set of s bits to output one mapping. The subblock valid bit read out of
the data RAM enables the output drivers. In a single-page-size TLB the TLB hit signal, the log-
ical OR of the wordlines, enables the output drivers.
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Figure 4-4: Structure of a fully-associative complete-subblock TLB
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A set-associative complete-subblock TLB has a similar construction. The tag and data RAM
decoders use as index bits the low order bits of the VPBN instead of the VPN. The Block Offset
bits control column multiplexors to select only a out of s*a mappings, where a is the associativ-
ity. The subblock valid bits read from the data RAM (there are a bits read, one for each degree
of associativity) ANDed with the tag compare result enable the data output through the MUX
drivers. The tags for a set-associative complete-subblock TLB need not store a block-valid bit
and can use the subblock valid bits only, as in Figure 4-5.

Figure 4-5: Structure of a set-associative complete-subblock TLB
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4.1.1 Implementation Issues for complete-subblock TLBs

In implementing a complete-subblock TLB, three issues must be addressed. First, for fixed
number of blocks, the size of the data RAM increases and may increase access time. Second,
there are at least two alternatives for positioning the subblock multiplexor. Third, the presence
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of multiple subblock valid bits provides at least three different implementation alternatives.
These issues are similar to those faced in implementing subblock caches.

Complete-subblock TLBs with large subblock factors will result in a large, wide data RAM
array. The access time for a monolithic array will be slow. It also may require unusually large
wordline drivers to drive the wide data word. RAM designers commonly divide a large RAM
array into smaller blocks to improve cycle time and layout aspect ratio. Similar techniques are
applicable here but this thesis does not discuss details of these or other optimizations [Wada92,
Wilt93]. One simple optimization for fully-associative subblock TLBs is to split the RAM array
into two halves and place the two halves on either side of the tag array. While this requires ad-
ditional drivers, it reduces access time. In my model, I assume a monolithic RAM array.

The position of the subblock multiplexor also affects access time. Appendix C discusses
two alternatives. The first alternative is to use a column multiplexor in the data RAM to act as
the subblock multiplexor. The second alternative is to combine the subblock multiplexor with
the output multiplexor associated with the output drivers—this is analogous to implementing
a multiplexor in caches that read out a word smaller than the cache line size. Using the column
multiplexors has several advantages and results in a faster access time, as explained in
Appendix C. I assume the use of column multiplexors when estimating the access time for
complete-subblock TLBs.

The presence of multiple subblock valid bits results in a more complicated design than a
non-subblock TLB. A simple solution that I describe in Appendix B uses a block valid bit in the
tag and stores subblock valid bits in the data RAM. The block valid bit stores the logical OR of
all the subblock valid bits. This allows tag comparison to work as in a single-page-size TLB
and only requires examining the single subblock valid bit that is output from the subblock
multiplexor. My area model, access time model and TLB simulations assume the use of block
valid bits for complete-subblock TLBs, as shown in Figure 4-4 for fully-associative TLBs.
Though set-associative complete-subblock TLBs need not use block valid bits (Figure 4-5), I as-
sume the use of block valid bit for uniformity.

Using the block-valid bit, however, requires the operating system or hardware to guarantee
that there can never be two TLB blocks with the same VPBN tag co-residing in the TLB. A com-
plete-subblock TLB can have two TLB blocks with the same tag if the TLB miss handler uses
different TLB blocks for base page mappings that belong to the same TLB blocks. Section 4.2
and Appendix D illustrate two examples where a complete-subblock TLB can have two TLB
blocks with the same tag. If the operating system cannot guarantee against this error condition,
the complete-subblock TLB implementation must include the appropriate subblock-valid bit in
the tag comparison. Selecting the appropriate subblock valid bit requires decoding the block-
offset field of the virtual address and serializing tag comparison. In Appendix B, I discuss two
alternatives for implementing subblock valid bits in the tag. The first alternative stores sub-
block valid bits in tag memory and extends the tag compare logic. The CAM array in fully-as-
sociative TLBs or the tag comparator in set-associative TLBs is extended to compare the
decoded block offset field of the virtual address with the subblock valid bits. The second alter-
native recognizes that the decoded block-offset has a one-hot encoding and uses a valid bit
RAM that can be read in parallel with tag comparison and may be faster.

4.1.2 Effect of complete subblocking

Modern microprocessors have an increasing number of transistors and chip area available.
A complete-subblock TLB is one way to use the extra area. This section explores the effect of
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increasing the TLB reach of a single-page-size TLB by keeping the number of blocks constant
and storing multiple mappings in each TLB block using complete subblocking. The complete-
subblock TLB occupies a larger chip area and has a larger access time but incurs fewer TLB
misses.

The complete-subblock TLB has a larger TLB reach (subblock factor, s, times larger) and in-
curs fewer TLB misses than a single-page-size TLB with the same number of blocks and asso-
ciativity. As shown in Table 4-1, the reduction in the number of TLB misses translates to
normalized execution time speedups of 1.04 to 1.17 for my workloads. The performance im-
proves further when using prefetching as described in Section 4.2.2.

Table 4-1: Execution time speedups for complete-subblock TLBeglative to single-page-size (4KB)
TLBs with same number of blocks

Subblock factor
TLB Type #blocks 5 4 8 16
Fully-Associative 64 1.04 1.09 1.16 1.17
128 1.05 1.10 11 1.15
4-way Set-Associative| 256 1.05 1.08 1.10 1.14

The complete-subblock TLBs, however, occupy a larger area and require additional control
logic. The left half of Table 4-2 compares the area for a complete-subblock TLB with the area
for a single-page-size TLB using the area model described in Section 2.2. The key observation
is that a complete-subblock TLB of subblock factor s does not require s times the area of the sin-
gle-page-size TLB. Since a complete-subblock TLB only duplicates the data portion but saves
on tag memory, the savings are more significant in fully-associative TLB. The set-associative
complete-subblock TLBs have a higher overhead as the tags account for a smaller portion of
the area.

Table 4-2: Chip Area and Access ime for complete-subblock elative to single-page-size TLBs with
same number of blocks

Chip Area Access Tme
2 4 8 16 2 4 8 16

TLB

(64-256) block
Fully-Associative

256-block 4-way
Set-Associative

1.24 1.71 2.67 4.59 1.02 1.06 11 1.20

1.38 2.14 3.66 6.71 1.00 1.01 1.04 1.12

Unfortunately, the extra area usually translates to an increase in TLB access time also. If
TLB access time is on the critical path for processor cycle time, this is an important consider-
ation. The right half of Table 4-2 shows the access time, calculated using the timing model de-
scribed in Section 2.3. Doubling the subblock factor impacts access time in three ways: the data
RAM lookup time increases as the wordline has to drive a wider array, the number of inputs to
the column multiplexors double and increases the data RAM access time, but the shorter tags
reduce the tag lookup and compare time.

For fully-associative TLBs, both the tag and data lookup are on the critical path. The data
RAM slowdown dominates and results in a slower TLB. For set-associative TLBs, only the tag
side is on the critical path and that decreases! Increases in the data RAM access time do not
affect the access time—except for very large subblock factors where the data RAM access

45



becomes the critical path. However, the tag compare multiplexor output must be driven
across a much wider data RAM and adds to the critical path. It is possible to optimize this
path to make the set-associative subblock TLBs faster than the single-page-size TLBs! This is
important since in many modern microprocessor designs, access time is more important than
small increases in chip area.

In summary, in designs where additional area is available for the TLB, extending the TLB
reach through complete subblocking with a small subblock factor is an attractive option. In ful-
ly-associative TLBs the access time will increase but in set-associative TLBs the access time can
decrease!

4.2 TLB miss handling for complete-subblock TLBs

TLB miss handling for a complete-subblock TLB is understandably more complicated than
for a single-page-size TLB. This section explores the three steps described in Section 1.5.3 and
discusses the changes needed to support complete-subblock TLBs—subblock miss checking
and loading a new mapping into the correct subblock in the TLB data.

First, the process of locating the mapping for the faulting address is the same as in a single-
page-size system. The page table structure, page table traversal hardware and/or software
need not change and can use the same page size and algorithms, including reference/modified
bit updates.

Figure 4-6: Subblock miss example for VPN 101010 (Complete-subblock TLB subblock factor 2)
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b) Subblock miss
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¢) Mapping placed in new TLB block on a subblock miss

Second, deciding where to place the mapping in the TLB is different. A TLB miss in a non-
subblock TLB always results in allocating a new TLB block to store the new mapping, possibly



requiring TLB replacement. TLB misses in a subblock-TLB can be either a block miss or a sub-
block miss. In a subblock miss, an existing TLB block may be able to hold the new mapping in
an unused subblock with the same tag. Figure 4-6 illustrates three possible scenarios when
loading a new mapping for VPN 101010: a) a block miss, b) a subblock miss, and c) a subblock
miss that uses a new TLB block. Sharing subblocks is the key to the performance advantages of
complete-subblock TLBs and Section 4.2.1. explains in detail how subblock-miss checking can
be implemented to avoid condition 0)°.

Third, loading a new mapping into the TLB differs on whether the miss resulted from a
subblock miss or not. On a regular miss, TLB replacement clears the victim TLB block and
writes a new tag and one of the fields at the correct offset in the data part of the TLB block. On
a subblock miss, only one mapping should be written while the tag without affecting the rest
of the TLB block. This is similar to writing a word to a cache with block size larger than a
word. Most implementations will read the existing TLB block, update the subblock in question
and rewrite the full TLB block into the same location but may take two cycles.

4.2.1 Implementing subblock miss checking

As explained above, before loading a new mapping into the TLB, hardware or software
should check if an existing empty subblock can be used, subblock miss checking. A pure software
approach is inefficient, requiring scanning all the TLB blocks’ tags, and hardware support is
essential for efficient TLB miss handling. This section suggests two mechanisms.

First, TLB lookup may already identify the TLB block where the new mapping can be load-
ed on a subblock miss. The MIPS processors, for example, cause a special trap on subblock
misses. Hardware could store this information in a register accessible to the TLB miss handler.
The miss handler can directly specify the destination TLB block (the virtual address implicitly
identifies the subblock). This solution is straightforward. The main disadvantage is that nested
TLB misses (TLB misses during execution of the TLB miss handler) will require special han-
dling as the old information will be lost.

The second way to implement subblock miss checking is to perform a TLB lookup just be-
fore loading the new mapping to determine if a subblock miss occurred. The hardware can
check for subblock misses as part of the load_TLB operation, making it a multi-cycle opera-
tion. In a system where the software miss handler explicitly identifies where the mapping is to
be placed, the hardware can provide a special load_TLB_subblock operation that checks for
subblock misses and updates the TLB. On a block miss the software can continue as before.
This adds to the TLB miss handler as illustrated below:

PTE = Find_mapping(VPN)
load_TLB_subblock(PTE)
if (fail) load_TLB(PTE, blocki)

In the next section, I discuss preloading, which attempts to eliminate subblock miss check-

ing.
4.2.2 Preloading

This section discusses a software approach to TLB miss handling in complete-subblock

3. Having two blocks with the same tag will cause electrical problems in most implementations and is undesirable.
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TLBs as an alternative to subblock miss checking hardware support. This approach handles
TLB misses by always loading all the mappings for a page block instead of just a single map-
ping for the faulting page—preloading. If the subblock factor is two, the TLB miss handler will
fetch and load into the TLB the mappings to both the pages in the page block that the faulting
address belongs to, e.g., MIPS R4000 TLB miss handling.

A preloading complete-subblock TLB miss handler would traverse the page table, possibly
multiple times to locate all the base page mappings for the page block that the faulting virtual
address belongs to. It can then load all the mappings using either a single operation or a series
of operations. The TLB miss handler might be as follows:

fori=0 to (s-1)
PTE_arrayl[i] = Find_mapping(VPBN+i)
load_TLB(PTE_array, blocki)

If the page table stores mappings for a page block adjacent in memory, then the miss han-
dler can be more efficient. First, it needs to traverse the page table only once—to the mapping
for the first base page of the page block. It can then read consecutive mappings using a simple
pointer increment. Second, the cache performance improves as the mappings would fit in few-
er cache blocks. Third, longer width memory loads, e.g., 128-bit loads, can reduce the number
of instructions executed in a TLB miss handler. However, the TLB miss penalty increases if us-
ing preloading. Since the costs of a TLB miss handler are dominated by the cost of traps and
traversing the page table, the increase in TLB miss penalty is small if base page mappings for a
virtual page block are adjacent in memory.

Preloading has two advantages. First, it requires no hardware support for subblock miss
checking as it loads all subblocks of the TLB block. Second, preloading results in significantly
fewer TLB misses. By prefetching neighboring mappings on a single TLB miss, programs that
exhibit spatial locality benefit by encountering one TLB miss per page block instead of one per
base page. Table 4-3 shows the normalized speedup for a complete-subblock TLB with pre-
loading over a complete-subblock TLB without preloading. Note that a complete-subblock
TLB already has a significant speedup relative to a single-page-size TLB. I assume the same
TLB miss penalty of 40 cycles for both the preloading and non-preloading versions of the TLB
miss handler in Table 4-3. In practice, the TLB miss penalty for a preloading TLB miss handler
can be higher. To quantify the tradeoff between the increase in the TLB miss penalty vs. de-
crease in the number of TLB misses, the table includes a critical TLB miss penalty. A critical rmss
penalty of two implies that a TLB with preloading and less than twice the TLB miss penalty
(than a TLB without preloading) delivers better TLB performance. Table 4-3A to Table 4-3D
show the individual benchmark speedups and critical miss penalties. Table 4-3 shows the nor-
malized speedup and the critical miss penalty that would result in a normalized speedup of
1.00.

Both fully-associative and set-associative TLBs benefit from preloading. With large TLBs
the working sets of some workloads fit in the TLB incurring only compulsory misses and do
not show much benefit from preloading. The critical miss penalties also show that the preload-
ing TLB miss handler can be only slightly more complicated. The critical miss penalty for sub-
block factor of 2 is 1.33, i.e., for preloading to be worthwhile, a TLB miss handler must spend
less than 33% extra time as in a single-page-size TLB to fetch and load two base page PTEs. For
workloads that spend less time in TLB miss handling than the workloads I use, the critical

4. TLB miss penalty should include thdesfts of cache and TLB misses within the miss handler
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Table 4-3: Effect of preloading in complete-subblock TLBs

subblock factor 2 | subblock factor 4 | subblock factor 8 | subblock factor 16
critical critical critical critical
TLB Type | #blocks Speedup miss | Speedup miss | Speedup miss | Speedup miss
penalty penalty penalty penalty
Fully-Asso- 64 1.05 1.33 1.06 1.65 1.02 141 1.04 2.05
ciative 128 1.02 1.26 1.01 1.20 1.02 1.36 1.02 2.85
4-way Set-| 256 1.01 1.08 1.01 1.21 1.01 1.39 1.00 4.03
Associative| 512 1.00 1.09 1.01 1.16 1.00 2.32 1.00 1.45

miss penalty may be much smaller.

There are at least three disadvantages to preloading. First, applications with little spatial
locality do not benefit from preloading but still pay higher TLB miss costs. Second, preloading
is much more expensive in some page table organizations where mappings of neighboring
pages in a page block are not adjacent, e.g., hashed page tables. This increases the TLB miss
penalty significantly and may be larger than the critical miss penalty. In Chapter 7, I describe
how different page tables are suited for preloading and propose one that has advantages for
preloading. Third, sometimes a base page becomes valid after the page block’s mappings were
preloaded into the TLB—at the time of preloading all base pages within a page block need not
have valid mappings. Blindly preloading can result in multiple copies of base page mappings
in a TLB. Appendix D describes how to handle this.

4.3 Sample design given area constraint

A computer architect, given a fixed TLB chip area, can choose between different single-
page-size, superpage, and complete-subblock TLB configurations. In this section, I consider al-
ternate fully-associative TLBs that occupy comparable chip area and try to find the best TLB
architecture for various chip area budgets, as predicted by the area model described in
Section 2.2. I compare the different TLBs using as metrics TLB access time, with the timing
model described in Section 2.3, and normalized execution time speedup.

I consider four area budgets—the area required to implement fully-associative single-page-
size TLBs of 64, 128, 256, and 512 blocks—and calculate the number of TLB blocks of complete-
subblock TLBs with different subblock factors and superpage TLBs that will fit in the same
area® (Table 4-4). The superpage TLBs support only two page sizes—the base page size (4KB)
and a superpage size eight times larger (32KB). An interesting observation from Table 4-4 is
that the superpage and complete-subblock TLBs have fewer TLB blocks than the single-page-
size TLBs but have a significantly larger TLB reach. A 92-block complete-subblock TLB with
subblock factor 8, for example, requires comparable area to a 256-block single-page-size TLB
but has nearly three times larger TLB reach of 736 base pages.

I calculate the TLB access time for the different TLBs (Table 4-4) compared to the access
time for a single-page-size TLB of comparable chip area. The superpage TLBs have nearly
equal access times. The complete-subblock TLBs may have a shorter access time because they
have fewer blocks and shorter tags. They may have a larger access time due to a larger data
RAM and a subblock multiplexor. The important observation here is that it is possible to build

5. Since a TLB cannot have fractional number of blocks or fractional subblock fhetdt_ B size chosen has an area
closest to the budget.
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a subblock TLB that has a faster access time than an equivalent single-page-size TLB. This is
important since microprocessor designers have increasingly larger area available to them but
cannot build large single-page-size TLBs due to slow access times. Further, complete-subblock
TLB access time can be improved over the monolithic memory design I assume.

Table 4-4: Access time for fully-associative TLBsalative to single-page-size (4KB) TLB of equal

area
Single-page- | Superpage TLE Complete-subblock TLB (subblock factor)
Area size TLB (32KB) 2 4 8 16
rbe
(rbe) #blocks Ac_cess #blocks AC.CGSS #blocks chess #blocks chess #blocks AC.C‘ESS #blocks Ac_cess
Time Time Time Time Time Time

7984 64 1.00 62 1.00 51 1.01 35 1.03 20 1.06 9 1.13
15298 128 1.00 | 123 1.00 | 102 1.00 72 1.01 44 1.04 23 1.10
29928 256 1.00 | 247 1.00 | 206 099 147 0.99 92 1.00 51 1.05
59186| 512 100 | 494 099 | 413 096 297 092 188 090 107 0.93

TLB performance is next metric to consider as access time alone does not dictate better per-
formance. Table 4-5 shows the normalized execution time speedup for the TLBs shown in
Table 4-4 relative to the respective single-page-size TLB. Note that I assume superpage TLBs
and complete-subblock TLBs with preloading have the same TLB miss penalty as a single-page-
size or a complete-subblock TLB without preloading.

Table 4-5: Execution time speedupsefative to single-page-size (4KB) TLBs of equal ea

Superpage TLB Complete-subblock TLB Complete-subblock TLB
A (4KB/32KB) (NO preloading) (with preloading)
(r{)eea)l Using Using
superpag base 2 4 8 16 2 4 8 16
es pages

7984 1.18 1.00 1.03 1.04 1.01 0.81 1.08 112 1.13 0.98
15298 | 1.13 1.00 1.02 1.04 1.05 1.03 1.06 1.09 1.10 112
29928 | 1.07 1.00 1.02 1.03 1.01 1.00 1.04 1.05 1.038 1.04
59186 | 1.03 1.00 1.00 1.00 1.00 0.99 1.01 1.01 1.01 1.01

Six important observations should be made from the above performance comparison using
a fixed chip area budget. First, superpage TLBs have clearly the best performance as they have
the largest TLB reach—almost eight times that of the single-page-size TLBs—and can load
mappings to eight base pages on a single TLB miss. However, to make effective use of the TLB
reach, operating system support is essential. If the operating system does not use superpages,
the superpage TLB performance degenerates to that of a fully-associative single-page-size TLB
with fewer TLB blocks.

Second, a complete-subblock TLB of small subblock factor (two or four) is preferable to
building a single-page-size fully-associative TLB. The subblock TLBs have comparable or bet-
ter access time but better TLB performance. This is an important observation because few TLB
designs use subblocking today. The performance is better in spite of having fewer TLB blocks
in the complete-subblock TLBs as workloads have sufficient spatial locality to exploit their
larger TLB reach.

Third, for a large area budget, complete-subblock TLBs, of any subblock factor, are clearly a
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better choice than building large single-page-size TLBs (e.g., 512 blocks) that may have an un-
acceptably large access time. Complete-subblock TLBs fit in very well here by providing a de-
sign that not only has a shorter access time but also a larger TLB reach and better TLB
performance! A 188-block complete-subblock TLB with subblock factor 8, for example, is 10%
faster to access and has three times the TLB reach of a 512-block single-page-size TLB.

Fourth, use of very large subblock factors (16) may result in worse TLB performance and
slower TLBs if the limited chip area allows a TLB with very few blocks. Though a 9-block sub-
block TLB with subblock factor 16 has a TLB reach of 138 pages, it performs worse than a 64-
block single-page-size TLB with TLB reach of 64 pages. Nine blocks are often not enough to
span the working set of many programs. With a large area budget, however, even the larger
subblock factors are effective. Thus, it is important that the subblock factor chosen does not se-
verely limit the number of blocks.

Fifth, complete-subblock TLBs are attractive compared to single-page-size TLBs, and pre-
loading in the TLB miss handler only makes them more attractive. Preloading requires simpler
hardware support for TLB miss handling and results in fewer TLB misses. Preloading, howev-
er, may increase the TLB miss penalty but the effect is small if the page table stores mappings
for a page block contiguously in memory. The last four columns of Table 4-5 assume preload-
ing in the TLB miss handler.

Sixth, complete-subblock TLBs with preloading significantly reduce the number of TLB
misses, and have speedups that are close to those with superpage TLBs. This is important be-
cause superpage TLBs require substantial operating system support and introduce other over-
heads. Complete-subblock TLBs offer a competitive hardware solution. The additional gains
from using medium-sized superpages may not justify the need to modify operating systems.
Large superpage mappings can still be supported in complete-subblock TLBs as explained in
Appendix E.

In this example, assuming no operating system support for medium size superpages, I
would choose a complete-subblock TLB design with subblock factor of 4. Preloading should be
used in the TLB miss handler if the page table stores mappings for a page block contiguously
in memory—four base page mappings would typically fit in a single cache line. In the presence
of operating system support, superpage TLBs are more effective.

4.4 Comparison with other TLB architectures of same TLB reach

This section compares the chip area, access time, and TLB performance of complete-sub-
block TLBs to single-page-size and superpage TLBs of equal TLB reach.

4.4.1 Complete-subblock vs. single-page-size TLBs

This section compares two brute force ways to increase TLB reach—more TLB blocks or
complete-subblocking, e.g., a 64-block complete-subblock TLB with subblock factor 4 and a
256-block single-page-size TLB have equal TLB reach. The complete-subblock TLB incurs more
TLB misses but is attractive as it occupies less chip area and has a smaller access time.

¢ Worse TLB performance: Though the TLBs have identical TLB reach, the complete-sub-
block TLB cannot always fully use the TLB reach due to less than optimal spatial locality. An
n-block single-page-size TLB can map any n independent pages whereas an n-block subblock
TLB can map n pages from only n/s page blocks. Table 4-6 compares the performance of com-
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plete-subblock and single-page-size TLBs with equivalent TLB reach. There are three observa-
tions to make: First, halving the number of TLB blocks does not double the number of TLB
misses as the programs exhibit spatial locality and use the larger area mapped by individual
TLB blocks (Appendix J). Second, for small subblock factors the performance degradation is
reasonable. Large subblock factors, however, result in a TLB with very few tags. A 16-block
TLB with subblock factor 16 has the same TLB reach as a 256-block TLB, for example, but has
much worse performance. A minimum number of tags are necessary to capture the working
set and 16 tags are not sufficient. Third, preloading in the TLB miss handler helps the sub-
block TLBs with fewer tags to perform comparable to the much larger single-page-size TLBs.

Table 4-6: Execution time speedups for complete-subblock TLBeglative to single-page-size (4KB)
TLBs with same TLB reach

Single P Sizk Complete-Subblock Complete-Subblock with preloading
LB mg&Kg?e 2P (subblock factor) (subblock factor)
type 2 4 8 16 2 4 8 16

#blocks| N N/2 N/4 N/8 N/16 N/2 N/4 N/8 N/16
Fully-Asso- | 256 1.00 | 0.96 0.94 0.92 0.88 0.98 0.99 1.00 1.00

ciative 512 1.00 | 0.99 0.96 0.95 0.92 0.99 0.97 0.97 0.98
4-way Set- | 256 1.00 | 0.98 0.96 0.93 0.87 1.00 1.01 1.00 0.97
Associative | 512 1.00 | 0.99 0.98 0.96 0.94 0.99 0.99 0.99 1.00

¢ Smaller chip area: The complete-subblock and single-page-size TLBs with same TLB reach
store nearly identical number of data bits® and have similar data RAM sizes. A complete-sub-
block TLB’s data array, being a wider and thinner rectangle, has higher driver/sense amp
overhead. The complete-subblock TLB however has s times fewer tags and, further, the tags
are 1g(s) bits shorter. In fully-associative TLBs, the savings in tag memory CAM cells is signif-
icant. In set-associative implementations, the effect of reduction in tag memory is smaller—
the savings from RAM cells is smaller and the tags were a smaller fraction of the overall area.
There is a small increase in area for large subblock factors and small number of tags due to
the fixed overheads that become significant as the data RAM becomes wider and thinner.

Table 4-7: Chip Area and Access ime for complete-subblock TLBs elative to single-page-size
TLBs with same TLB reach

Single Page Size Chip Area Access Tme
TLB type geras 2 4 8 16| 2 4 8 16
#biocks| N NZ N4 N8 NA6 | N2 N4 N8 N6

Fully-Associative 256 1.00 063 046 039 039 )| 094 091 092 0.96
512 1.00 063 044 036 034 | 086 081 0.80 0.83

4-way Set-Asso-| 256 1.00 079 073 081 105| 099 099 100 1.08
ciative 512 1.00 076 066 067 079 | 094 093 096 1.01

¢ TFaster access time: The smaller complete-subblock TLBs are also faster to access. The ac-
cess time reduces as the smaller, shorter, tag array results in a faster tag access time, which is
always on the critical path. In fully-associative subblock TLBs, the larger data RAM array is
slower and negates some benefits of the faster tag access. In set-associative TLBs the access
time does not improve—though the critical tag access and compare times reduce—due to an

6. An n-block complete-subblock TLB of subblock fac@toresn*s data bits (the subblock valid bits) more than a
n*s-block single-page-size TLB.
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increased delay in driving the multiplexor output across a much wider data RAM (as noted
in Section 4.1.2, this can be optimized further).

To summarize, a complete-subblock TLB with subblock factor s is more effective than
building a single-page-size TLB with s times as many TLB blocks. A complete-subblock TLB
has a faster access time, occupies less area, and offers competitive TLB performance. Further,
complete-subblock TLBs with preloading have comparable TLB performance to the much larg-
er, slower, single-page-size TLBs—a win-win situation.

4.4.2 Complete-subblock vs. Superpage TLBs

In Chapter 3, I proposed medium-sized superpages as one way to increase TLB reach if the
operating system can do proper page-size assignment to use superpage mappings. Complete
subblocking is a brute force way of increasing TLB reach without depending on any operating
system support. For the same number of TLB blocks, a complete-subblock TLB, with subblock
factor s, and a superpage TLB, supporting a single superpage size of s * base page size, have
the same TLB reach. The complete-subblock TLB requires significantly larger area and slower
access time but has better TLB performance. The area and access time arguments are similar to
those in Section 4.1.2, because a superpage TLB occupies nearly equal area and has similar ac-
cess time to a single-page-size TLB with the same number of blocks (Table 3-1). Table 4-8 sum-
marizes the area and access time comparisons for superpage and complete-subblock TLBs
with the same TLB reach. The set-associative superpage TLBs use the superpage index
(Section 3.2.2).

Table 4-8: Chip Area and Access ime for complete-subblock TLBs elative to superpage TLBs

Superpage TLBype

Chip Area
subblock factor:superpage size

2:8KB 4:16KB 8:32KB 16:64KB

Access time
subblock factor:superpage size

2:8KB 4:16KB 8:32KB 16:64KB

(64-256_ block
Fully-associative

256-block 4-way
Set-associative

1.22 1.67 2.58 4.39 1.02 1.06 1.1 1.20

1.38 2.14 3.67 6.71 1.00 1.00 1.03 1.10

The advantages of complete-subblock TLBs over superpage TLBs are:

Better TLB performance: Complete-subblock TLBs can deliver better performance than the
already significantly improved TLB performance of superpage TLBs. Table 4-9 compares the
complete-subblock and superpage TLB performance. Complete-subblock TLBs without pre-
loading perform worse than superpage TLBs. They often have more TLB misses than for a su-
perpage TLB. A superpage TLB loads all the mappings for a page block in a single TLB miss,
and a complete-subblock TLB takes multiple TLB misses to do so. Preloading addresses this
shortcoming. A complete-subblock TLB with preloading always incurs fewer TLB misses than
a superpage TLB with the same TLB reach, number of blocks, and associativity (Appendix J).
However, since the superpage TLBs reduce TLB miss handling time significantly already, the
incremental benefit of complete-subblocking is small for these workloads. In workloads where
superpages cannot be used for all of the address space, e.g., due to difference in attributes or
length of segments, complete-subblock TLBs can still share a single TLB block for multiple
base pages within a page block.

No operating system support: Except in the TLB miss handler, a complete-subblock TLB
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Table 4-9: Execution time speedups for complete-subblock TLBelative to superpage TLBs

With preloading
subblock factor: superpage size

2:8KB  4:16KB 8:32KB 16:64KB| 2:8KB 4:16KB 8:32KB 16:64KB

TLB Type | #blocks subblock factor: superpage size

Fully- 64 0.96 0.95 0.98 0.97 1.00 1.00 1.00 1.00
Associative 128 0.98 0.99 0.98 0.98 1.00 1.00 1.00 1.00
4-way Set-

256 1.00 0.99 1.00 1.07 1.00 1.00 1.01 1.07

associative

does not require additional operating system support. The superpage TLBs require substantial
support from the operating system. This is important since a processor may have to run old
software that may not support superpages—complete-subblock TLBs can better use their TLB
reach advantages.

Less I/0: Workloads run on complete-subblock TLB systems do the same I/O operations as
in a single-page-size TLB system, as the operating system is the same. Systems with superpage
TLBs will transfer more data to backing store as the operating system accepts some fragmenta-
tion in return for better TLB performance. However, even with more data is transferred in a su-
perpage system, there might be fewer I/O operations as I/O operations for multiple base
pages can be clustered.

Reduced Page Fault Service Time: Again, systems with complete-subblock TLBs have the
same page fault latency as in a single-page-size system. Superpages can take longer to initial-
ize and/or transfer from backing store, increasing the page fault service time. Subblock TLBs
can result in a better overall execution time.

Subblock caches allow a portion of a cache line to be accessed before completely fetching
the full cache line from memory [Hill86, Hill87]. Instruction caches use this feature to reduce
hit time, often combined with a fetch policy that brings the referenced word first from
memory. Subblock TLBs can similarly exploit this feature to reduce the page fault latency (not
TLB miss penalty) for superpages by using the operating system to implement the following
policy for servicing superpage page faults: The operating system initiates I/O for the
superpage with 1/O for the referenced page first from backing store. The process resumes
after I/O to the first base page is complete while the rest of the superpage loads into memory
in the background (similar to the cache example above). A subsequent page promotion finally
results in storing a superpage mapping in the page table. A superpage TLB will use multiple
base page TLB blocks for a partially-filled superpage while the I/O is in progress, whereas a
subblock TLB will continue to share a single TLB block for the all mappings within a partially
filled superpage.

Reference and Modified information granularity: Complete-subblock TLBs store a full
mapping for every base page and store reference or modified information at the granularity of
a base page size. Superpage TLBs can only store such information at the granularity of super-
page size for superpage mappings. The finer granularity results in better page replacement de-
cisions and reduces the number of dirty pages written to backing store in complete-subblock
systems.

In summary, complete-subblock TLBs offer better TLB and overall system performance by
exploiting spatial locality more effectively and providing for more efficient operating system
implementations than medium-size superpages. However, complete-subblock TLBs occupy
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larger chip area and have a slower access time. In the next chapter, I address these disadvan-
tages by proposing partial-subblock TLBs.

4.5 Conclusion

Subblocking has long been used for caches and this thesis shows that subblocking im-
proves the performance of TLBs also. A complete-subblock TLB associates with a page block a
single tag but allows for storage of separate mappings for base pages within the page block.
Spatial locality in programs helps subblock TLBs incur fewer misses than a purely random ac-
cess pattern would predict.

A complete-subblock TLB is more complicated to build than a single-page-size TLB. How-
ever, it does not require new implementation technologies—cache and RAM designers have
long used the techniques required for subblock TLBs. Superpage TLBs provide a cheap way
for the hardware to increase TLB reach but shift the burden of exploiting it to software—com-
plete-subblock TLBs are more hardware-centric, requiring no additional operating system sup-
port.

A complete-subblock TLB presents yet another win-win situation as superpages do—a
complete-subblock TLB has a larger reach and better performance and yet has a shorter access
time than a single-page-size TLB. Processor designers have an increasing amount of chip area
and transistors available but are unable to build larger TLBs due to cycle time constraints. The
key contribution of this chapter is that it shows that complete-subblock TLBs can use the extra
transistors to increase TLB reach without increasing the access time—especially in set-associa-
tive designs.
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Chapter 5 Partial-subblock TLBs

This chapter proposes and evaluates a new TLB architecture, partial subblocking, that com-
bines the low implementation cost of medium-sized superpage” TLBs and simpler operating
system support by borrowing subblock valid bits from complete-subblocking. A partial-sub-
block TLB has an implementation complexity comparable to that of a superpage TLB, requires
less operating system support than medium-sized superpages but still incurs fewer misses
than a superpage TLB. The main contribution of this chapter is that it shows that partial-sub-
block TLBs have the best TLB performance compared to alternate single-page-size, superpage,
and complete-subblock TLBs that occupy similar chip area. All three new architectures allow
mappings for multiple base virtual pages within a virtual page block to share a single TLB
block—but conditions under which mappings are considered compatible for sharing differ
(Table 1-2 in Chapter 1).

A partial-subblock TLB block’s tag maps a fixed page block size, like a complete-subblock
TLB block. Multiple base page mapfings share a single PPN and attribute field in the data but
have individual subblock valid bits* for the base pages. Two or more base virtual pages share a
single partial-subblock TLB block if they belong to the same virtual page block, are properly
placed (Table 1-1) in physical memory, and have the same attributes. A partial-subblock TLB
allows incompatible or unaligned mappings in the TLB but they use different TLB blocks. A
partial-subblock TLB (with preloading) incurs fewer TLB misses while requiring simpler oper-
ating system support than superpage TLBs. Partial-subblock TLBs occupy much smaller area
than complete-subblock TLBs but incur comparable number of TLB misses (Section 5.6.3).

Two base page mappings can share the same partial-subblock TLB block if they have the
same attributes and are properly placed. With subblock factor s, base pages x and y are proper-
ly placed if they are placed in the same virtual and physical page blocks (PPN(x) div s =
PPN (y) div sand VPN(x) div s = VPN(y) div s, wheredi v isinteger division) and
are both page block aligned (VPN(x) mpd s = PPN(x) nod s and VPN(y) nmod s =
PPN(y) nod s, where nod is integer modulus operation). Mappings that are not properly
placed are allowed, but in separate TLB blocks that can reside in the TLB simultaneously. Par-
tial-subblock TLB blocks store unaligned mappings (VPN(x) nod s # PPN(x) nod s) by
setting the SB attribute to 0 to disable subblocking.

Figure 5-1: Format of a partial-subblock TLB block

Tag Data

| VPBN | Valid bits | [ PPN | Attr [SB| ¢ _ subblock factor
64-1g-(s) s 36 9 1

Figure 5-1 shows the format of a partial-subblock TLB block. The tag stores a virtual page
block number (VPBN) and s valid bits for s individual base pages within the page block speci-
fied by VPBN. The ith valid bit set () or clear () shows whether the TLB block has a valid
mapping for the corresponding base virtual page, (VPBN + 7). The data portion stores a single
physical page number (PPN) and an attribute field. A subblock attribute bit (SB) is set to en-
able subblocking. When SB is clear, a TLB block stores a single base page mapping that may or

1. This chapter concentrates on partial-subblock TLBs as an alternative to medium-sized superpages Hagesdix
support for lage superpages.
2. Variations of partial-subblock TLBs that replicate other fields of the mapping are discussed in55éction
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may not be page block aligned. This feature permits partial-subblock TLBs to be used with an
operating system unaware of partial subblocking.

Figure 5-2 illustrates how a partial-subblock TLB stores base page mappings and brings
out the important properties of partial-subblock TLBs. First, the mappings from virtual-page
block x to physical page block b could use a superpage mapping, also use a single partial-sub-
block TLB block. A partial-subblock TLB will use a single TLB block for mappings that could
have used superpage mappings—thus removing the need for supporting medium-size super-
pages. A partial-subblock TLB always uses less or same number of blocks than a superpage
TLB to map an address space.

Figure 5-2: Mrtual Addr ess to Physical Addess Mappings in a Partial-Subblock System
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w | 0u0d a00 Attr 1
v oo™ b00 Attr 1
, | goOd a00 Attr 1
z | 0000 c01 Attr | O

Partial-subblock TLB storing mappings for above

Second, a partial-subblock TLB can have multiple TLB blocks cached in the TLB that have
identical VPBNSs but disjoint valid bits, e.g., the mappings from page block w to physical page
blocks a and ¢. The mappings for base pages 0,2,3 share a single TLB block as they are properly
placed (assuming identical attributes). The mapping for page 1 cannot share the same TLB
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block as it is placed in a different physical page block. Such a situation frequently occurs in op-
erating systems that use the copy-on-write optimization [Rash88].

Third, a partial-subblock TLB block can be incrementally populated, e.g., the mapping from
page block y uses a TLB block that also could store another properly placed mapping (if estab-
lished) from page block y to page block b. Thus, if the operating system properly places pages
in partially-populated page blocks, mappings established later can share a single TLB block.
Another option is to perform gather operations when adding new mappings, as some super-
page systems do during page promotion (Section 6.2.2).

Fourth, a mapping that is not page block aligned has the SB bit clear and cannot share the
TLB block with any other page, e.g., the mapping from page 3 of page block z. Unaligned map-
pings differ from aligned mappings in the way the TLB generates physical addresses for them,
as discussed in Section 5.1.1.

Fifth, partial-subblock TLBs treat differences in attributes similar to improperly placed
pages—different TLB blocks store the mappings. If pages 0 and 1 of page block x, for example,
had a different attribute from the rest of the page block, then they would share one TLB block,
while pages 2 and 3 would share another.

The most important feature of partial-subblock TLBs is the presence of subblock-valid bits.
This allows compatible base pages within a page block to share a single TLB block while other
base pages in the page block may be improperly placed or unmapped, e.g., small objects or ob-
jects that do not start or end at a page block boundary. Subblock-valid bits relieve the operat-
ing system of the need to implement page promotion and a page-size assignment policy. This
feature helps partial-subblock TLBs deliver comparable or better speedups to superpage TLBs
but only require the operating system to make a best-effort at page placement without provid-
ing guarantees required for superpages.

To support the above feature a partial-subblock TLB must allow for multiple TLB blocks
with the same VPBN, but disjoint subblock-valid bits, to be present in the TLB simultaneously.
Disallowing multiple TLB blocks with the same tag can result in a significantly worse TLB per-
formance and may livelock, Single-page-size, superpage, or complete-subblock TLBs do not
require support for multiple blocks with same VPNS4

In the following sections, I describe how a partial-subblock TLB works, discuss implemen-
tation alternatives to simplify the hardware, discuss techniques to handle TLB misses without
increasing TLB miss penalty, compare alternate TLBs given a fixed chip area, compare partial-
subblock TLBs with alternate single-page-size, superpage, and complete-subblock TLBs of
equal TLB reach, and list some possible variations of partial-subblock TLBs.

5.1 Mechanics of a Partial-subblock TLB

A complete-subblock TLB uses spatial locality in programs to deliver TLB performance
competitive to a non-subblock TLB with independent tags—the benefit is a significantly small-
er and faster tag memory. A partial-subblock TLB extends this using the operating system to

3. If a program attempts to execute an instruction on pégeecad data from pade processor implementations may
require that the TLB hold mappings to both pages. If the mappings are incompatible, theferesg gértial-sub-

block TLB blocks with the same tag. If the TLB disallows this, the program will livelock. All workloads in my simu-
lations did livelock. Separate instruction and data TLBs would avoid livelock in this example.

4. Operating system software or TLB hardware must guarantee that two TLB blocks cannot have the same VPN.
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properly place pages in physical memory and delivers TLB performance competitive to a com-
plete-subblock TLB but with a significantly smaller and faster data memory.

Figure 5-3: TLB blocks for different TLB architectures
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A partial-subblock TLB differs from the basic structure of a complete-subblock TLB
(Section 4.1) in three ways. First, the TLB block stores only a single PPN and Attr field, as
shown in Figure 5-3, and the data RAM is comparable in size to that in a single-page-size TLB.
Second, supporting multiple blocks with identical VPBNs requires the valid bits to be part of

the tag and there is no block-valid bit. Third, support for unaligned mappings requires a sub-
block attribute bit (SB).

Figure 5-4: Structure of a partial-subblock TLB
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Implementing a partial-subblock TLB requires two changes to a single page-size TLB
(Figure 1-3). First, physical address generation requires a multiplexor to support unaligned
mappings, discussed in Section 5.1.1. Second, similar to a complete-subblock TLB, the decoded
block offset field of the virtual address selects the appropriate subblock valid bit, but as dis-
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cussed in Section 5.1.2, the complete-subblock TLB solution of using a block-valid bit does not
work. Figure 5-4 shows the basic structure of a partial-subblock TLB.

5.1.1 Physical Address Generation in a partial-subblock TLB

Calculating the physical address from the selected mapping is trivial in single-page-size or
complete-subblock TLBs—the page offset from the virtual address appends to the PPN. In su-
perpage TLBs, a multiplexor selects bits from either the PPN or the virtual address based on
the page size of the selected mapping. In partial-subblock TLBs, physical address generation
depends on whether the selected mapping is page block aligned.

For page block aligned mappings (SB=1), both the block offset and page offset fields of the
virtual address append to the physical page block number (PPBN) from the mapping to pro-
duce the physical address. If all mappings are page block aligned, a partial-subblock TLB block
need store only the PPBN and neglect the low-order bits of the PPN.

However, a partial-subblock TLB block must store the complete PPN to allow for un-
aligned mappings (5B=0). In an unaligned mapping the block offset fields of the virtual and
physical page numbers are not equal, e.g., VPN = 0x5f0 and PPN = 0x891 with subblock factor
16. Using the block offset field from the virtual address will generate an incorrect PPN (0x890),
instead the TLB stores the complete PPN. Unaligned mappings occur if operating systems do
not (or cannot) allocate aligned physical pages.

A naive solution requires the operating system guarantee that physical memory allocation
always result in page block aligned mappings. The TLB then uses the trivial physical address
generation technique described above for aligned pages, there is no subblock attribute bit, and
only the PPBN is stored in the TLB block. This solution, however, is impractical. It turns phys-
ical memory into a set-associative cache of pages and has a higher page fault rate than in the
default fully-associative mode that can have unaligned mappings. While operating systems
may create page block aligned mappings in the common case, it is inefficient to guarantee page
block aligned mappings. Further, some UNIX APIs allow users to establish unaligned map-
pings that the naive solution does not support.

Another solution uses the subblock attribute bit (SB) to control a multiplexor. The multi-
plexor selects the block offset bits from either the PPN read from the TLB block or from the
block offset field of the virtual address (Figure 5-4). This requires the TLB block to store a full
PPN—a small cost of logy(s) extra RAM bits. Also, the multiplexor adds to TLB access time in
fully-associative TLBs. In set-associative implementations where the data RAM access is not
on the critical path, the multiplexor may not affect TLB access time.

5.1.2 Subblock-valid bits in a partial-subblock TLB

A partial-subblock TLB block has multiple subblock-valid bits and the appropriate one
must be selected to determine a TLB hit—just as in a complete-subblock TLB. Complete-sub-
block TLBs could use a block valid bit in the tag and store subblock valid bits in the data RAM.
A partial-subblock TLB cannot use the block-valid bit technique as it does not allow multiple
TLB blocks with identical tags to reside in the TLB (Appendix B).

As discussed in Appendix B there are two ways to implement subblock-valid bits in par-
tial-subblock TLBs. The TLB simulation results do not differ between the two subblock valid
bit implementations, but differ in area and access time characteristics.
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The first alternative includes subblock valid bits in the tag memory and extends the tag
compare logic—the CAM array in fully-associative TLBs or the tag comparator in set-associa-
tive TLBs—to compare subblock-valid bits with the decoded block offset field of the virtual ad-
dress. The second alternative uses a separate valid bit RAM that is read in parallel with tag
comparison. The selected valid bit combines with the tag match signal as part of the wordline
or multiplexor drivers. In set-associative TLBs, the subblock valid bits can be stored in the data
array itself.

In this thesis, the area and access time models assume the valid bit tag comparator imple-
mentation. The valid bit RAM implementation is faster and occupies a smaller area (as ex-
plained in Appendix B). This makes my results pessimistic for partial-subblock TLBs.
However, I still show that partial-subblock TLBs are faster and more effective than other TLB
architectures and a faster implementation only makes them more attractive.

Figures 5-5 and 5-6 show fully-associative and set-associative implementations of partial-
subblock TLBs respectively. They differ from the complete-subblock implementations in
Appendix B in two ways. First, they do not require column multiplexors as the data stores a
single mapping. Second, a multiplexor selects the physical block offset bits based on the sub-
block attribute bit read out of the RAM.

Figure 5-5: Fully-associative Partial-subblock TLB
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Figure 5-6: Set-associative Partial-Subblock TLB
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5.1.3 Modified Bits Update

Modified bits mark dirty pages that the operating system has to update in backing store.
The TLB miss handler sets modified bits in the page table on mod_bit_faults. A modified bit is
one of the attribute bits and, in a partial-subblock TLB, changing the modified bit for a base
page affects the compatibility of the mappings sharing a TLB block. There are at least three
ways to handle modified bit update5 in a partial-subblock TLB.

First, a partial-subblock TLB block could store subblock-modified bits for each base page
and mappings can continue to share a TLB block even after the TLB miss handler updates one
of the modified bits. In some systems, the write-permission bit emulates the modified bit and
providing subblock-modified bits can reduce the number of TLB misses by making both read-
only and read-write mappings compatible to share a single partial-subblock TLB block. This,
however, increases the chip area and may require wider page table entries.

Second, a partial-subblock TLB block could store a single modified bit in the attributes—as
the TLB block format in Figure 5-1 assumes—with clean and dirty base pages using separate
partial-subblock TLB blocks. This has the advantage that only a single modified bit need be
stored in the TLB but has the disadvantage that the number of TLB misses increases as more
TLB blocks are needed to store the same mapping6s. However, TLB simulations show that the
increase in the number of TLB misses is negligible®.

Third, a partial-subblock TLB block stores a single block-modified bit that is set if the pro-

5. The modified bit is special because it is an attribute that is updated by the TLB miss Gahefeattributes are set
by the operating system but not updated by the TLB miss hamtlereferenced bit is also updated by the TLB miss
handler but can be emulated using the valid bits.

6. My simulations run with sti€ient memory and run to completion without paging. There will a greaferetice

in TLB performance when short of memory
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gram writes to any base page mapped by the TLB block, i.e., marks all base pages sharing the
TLB block as dirty. This has the disadvantage of a coarser granularity than a base page size and
could result in an increase in the number of dirty pages written to backing store. The advan-
tage is that some programs exhibit spatial locality in writes—pages close to a recently written
page are likely to be written soon—and setting the modified bit on the first mod-bit fault
avoids later mod-bit faults for other pages in the page block.

The simulations in this chapter assume the block-modified bit option. If there are unused
bits in the PTE format, subblock modified bits may be preferred. However, further study is
needed to evaluate the tradeoff between the decrease in mod-bit faults and the increase in
backing store I/O when using the block-modified bit.

5.2 Effect of Partial subblocking

An n-block partial-subblock TLB significantly increases the TLB reach of an n-block single-
page-size TLB but only occupies a slightly larger area and has comparable access time. Partial-
subblock TLBs, similar to superpage TLBs, depend on operating system support to exploit the
increased TLB reach and achieve good TLB performance. A partial-subblock TLB adds to a sin-
gle-page-size TLB block multiple valid bits (s bits), an extra attribute bit (SB) and a multiplexor
for physical address generation but stores logy(s) fewer VPN bits.

Partial-subblock TLBs significantly reduce the number of TLB misses through effective use
of a larger TLB reach. With proper placement of physical pages by Foxtrot, Table 5-1 shows the
normalized execution time speedups when using partial-subblock TLBs relative to using sin-
gle-page-size TLBs with the same number of TLB blocks and associativity.

Table 5-1: Execution time speedup with partial-subblock TLBselative to single-page-size (4KB)
TLBs with same number of blocks

subblock factor
TLB Type #blocks 5 4 3 16
fully-associative 64 1.04 1.09 1.16 1.17
128 1.05 1.10 1.1 1.15
4-way set-associative| 256 1.05 1.08 1.10 1.12

Both fully-associative and set-associative partial-subblock TLBs show a speedup for my
workloads and larger subblock factors result in better performance. However, set-associative
TLBs with subblock factors greater than the set-associativity sometimes show a slowdown (Ta-
ble I5-1c in Appendix I) due to an increase in conflict misses. When pages within a page block
have incompatible mappings that cannot share a single partial-subblock TLB block, the base
pages all map to the same TLB set in a partial-subblock TLB. Associativity helps accommodate
the multiple mappings in the same set but if the subblock factor is greater than the associativi-
ty, it can cause an excessive number of conflict misses.

Table 5-2 shows the chip area and access time overhead for adding partial-subblock sup-
port to single-page-size TLBs. The chip area overhead is small for the large increase in TLB
reach. Further, adding partial-subblocking does not affect the access time. As mentioned in
Section 5.1.2, the timing model assumes a combined comparator for the VPN and valid bits.
Using the valid bit RAM approach (Appendix B) can reduce the chip area and access time fur-
ther.
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Table 5-2: Chip Area and Access ime for partial-subblock TLBs relative to single-page-size TLBs
with same number of blocks

Fully-associative (subblock factor) | 4-way set-associative (subblock factg
2 4 8 16 2 4 8 16
Relative Chip Area| 1.01 1.02 1.05 1.12 1.01 1.02 1.05 11

Relative Accessime| 1.00 0.99 1.00 1.01 1.00 1.00 1.00 1.03

5.3 TLB miss handling for partial-subblock TLBs

=

TLB )

TLB miss handling for a partial-subblock TLB is more complicated than for a single-page-
size or complete-subblock TLB. It is important that TLB miss handling does not increase the
TLB miss penalty and offset gains from reductions in the number of TLB misses. I first discuss
a naive way to handle TLB misses that requires hardware support for subblock miss checking.
I then show how subblock preloading7, introduced in Section 4.2.2 for complete-subblock TLBs,
improves TLB performance while requiring simpler hardware. In Chapter 7, I show how con-
ventional page tables can be extended to support preloading without increasing the TLB miss
penalty.

5.3.1 Naive TLB miss handling

A naive way to handle partial-subblock TLB misses uses a single-page-size page table to
store mappings and subblock miss checking to determine if the new mapping can share any of
the valid TLB blocks before loading the mapping into the TLB. This corresponds to the same
three steps in a single-page-size system as described in Section 1.5.3. The naive TLB miss han-
dler is as follows:

mapping = Find_mapping(VPN)
load_TLB_subblock(mapping)
if (fail) load_TLB(mapping, blocki) /* blocki is TLB replacement victim */

The process of locating the mapping for the faulting address is the same as in a single-
page-size system. The page table structure, page table traversal hardware and/or software
need not change and use the same page size and algorithms, including reference/modified bit
updates.

A subblock TLB can incur either a block miss or a subblock miss. In a complete-subblock
TLB, the virtual address of the new mapping and the TLB tags are sufficient to determine a
subblock miss (Section 4.2.1). In a partial-subblock TLB, the data field of the TLB blocks also
needs to be compared with the new mapping to determine if the new mapping results in a sub-
block miss. Further, multiple TLB blocks may have the same tag and are candidates for storing
the new mappings if the data fields match. Appendix G explores different alternatives for sub-
block miss checking in a partial-subblock TLB. One solution, first-tag-hit hardware, results in a
simple hardware solution. I do not discuss this issue further as I introduce in the next section a
TLB miss handling technique, preloading, that eliminates the need for subblock miss checking
and also delivers better TLB performance.

Loading a new mapping into a partial-subblock TLB on a subblock miss only requires set-
ting one valid bit in the TLB block, while the rest of the tag and data fields do not change. This

7. Robert Ying, Sun Microsystems Laboratories, first suggested preloading in partial-subblock TLBs to me.
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can be implemented by either reading out the valid bits, setting the bit and writing them back
or by providing control to write individual bits in the valid bit RAM or CAM. On a block miss,
TLB replacement occurs and the new mapping overwrites the victim TLB block.

5.3.2 TLB miss handling using preloading

Preloading involves prefetching into the TLB all the mappings within a page block that
will occupy the same TLB block as the mapping for the faulting virtual address. Preloading
has two advantages over naive TLB miss handling—reduces the number of TLB misses signifi-
cantly and does not require any hardware support for subblock miss checking. Preloading can
increase TLB miss penalty, but Chapter 7 describes how page tables can support preloading in
partial-subblock TLBs without increasing the TLB miss penalty.

Preloading exploits spatial locality by prefetching mappings to base pages within the same
page block as the faulting virtual address. If the program references the neighboring pages be-
fore the TLB block is replaced, it will hit in the TLB. Since subblock TLBs, both complete- and
partial-, use fewer tags and depend on spatial locality to expand TLB reach, it is only natural
that preloading helps reduce the number of TLB misses. A partial-subblock TLB prefetches
only the mappings that are properly placed with respect to the mapping of the faulting virtual
address. This guarantees that a single TLB block is replaced as all the properly placed map-
pings share a single TLB block.

Table 5-3 shows the normalized execution time speedup due to preloading relative to par-
tial-subblock TLBs without preloading. Preloading is very effective at reducing the number of
TLB misses for the smaller TLBs. The larger TLBs incur fewer TLB misses due to preloading
(Appendix J) but do not see any execution time speedup as the base partial-subblock TLB was
able to map most of the working set.

Table 5-3: Effect of peloading in partial-subblock TLBs

subblock factor 2| subblock factor 4| subblock factor 8| subblock factor 16

critical critical critical critical

TLB Type | #blocks Speedup miss | Speedup miss | Speedup miss | Speedup miss
penalty penalty penalty penalty

64 1.05 1.33 1.06 1.65 1.02 141 1.04 2.05

F“C"ig'tf\‘/zso' 128 | 102 125 | 101 120 | 102 136 | 1.02 279

256 1.01 1.16 1.01 1.38 1.01 2.00 1.00 3.76
4-way Set-| 256 1.01 1.08 1.01 121 1.01 1.38 1.00 1.19
Associative| 512 1.00 1.09 1.01 1.17 1.00 1.81 1.00 1.06

I assume that the TLB miss penalty with preloading in partial-subblock TLBs is the same as
in a single-page-size TLB. The critical miss penalty in Table 5-3 shows the break-even point for
the TLB miss penalty where the reduction in the number of TLB misses is offset by the increase
in TLB miss penalty. Therefore, for preloading to be useful, the TLB miss penalty must be less
than (critical miss penalty * original TLB miss penalty). As the critical miss penalty is small—
less than 1.4 for subblock factor 2 or 4 for subblock factor 16—the TLB miss handler must im-
plement preloading efficiently, which I discuss next.

5.3.3 TLB miss handler for preloading in a partial-subblock TLB

A naive TLB miss handler preloads by fetching all the base page mappings for the page
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block of the faulting virtual address, checking if any are properly placed with respect to the
faulting mapping, constructs a partial-subblock TLB block and loads it into the TLB:

Mapping.Valid = 0; /* bit vector */
PTE = Find_mapping(VPN);
Mapping.data = PTE.data;
Mapping.Valid[Block Offset(VPN)] = 1;
if (Mapping.SB = aligned(Mapping, VPN))
for i = 0 to (s-1), except Block Offset(VPN)
if (compatible(Find_mapping(i + VPBN), Mapping))
Mapping.Validl[i] = 1;
load_TLB(Mapping, blocki)®

The TLB miss handler can be simplified slightly if the hardware supports two varieties of
the load_TLB_subblock operation—strong and weak. The strong version loads a base page
mapping into the TLB, first checking to see if it can be placed in any partial-subblock TLB
block, then forcing a replacement if it is not a subblock miss. The weak version loads a base
page mapping only if it is compatible with the specified partial-subblock TLB block.

Mapping = Find_mapping(VPN);
blocki = load_TLB_subblock(Mapping, strong)
if (aligned(Mapping, VPN))
for i = 0 to (s-1), except Block Offset(VPN)
load_TLB_subblock(Find_mapping(i + VPBN),blocki, weak)

The naive TLB miss handlers are terribly inefficient and will easily exceed the critical miss
penalty shown in Table 5-3. There are two inefficiencies in the above code. First, it is construct-
ing a partial-subblock TLB block in the TLB miss handler when it would be more efficient to
have the operating system preconstruct partial-subblock PTEs—as it does for superpages
(Section 3.3). Second, it is fetching multiple mappings from the page table.

Figure 5-7: Storing partial-subblock PTEs in a linear page table

3 | O] 0x1003 Attr U000 0x1000 |1 | Attr

2 O] 0x2303 Attr OUOO] 0x2303 | 0 | Attr

1 O 0000

0o | 0O 0x1000 Attr U000 0x1000 |1 | Attr
Naive Replicated PTEs

A simple solution for preloading in the TLB miss handler is to modify the page table to
store partial-subblock PTEs computed by the operating system on page faults or when at-
tributes change. Figure 5-7 illustrates how a linear page table can store partial subblock PTEs.
Chapter 7 discusses adaptations to other page tables. The TLB miss handler is as follows:

Mapping = Find_mapping(VPN)
load_TLB(Mapping, blocki)

8. When preloading mappings, it is important to ensure that the TLB does not end up with multiple identical mappings.
Blindly preloading on every TLB miss can result in such duplicates if some pages were mapped after a previous pre-
load. AppendibxD explores solutions.
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This TLB miss handler is similar to that in a single-page-size TLB system. If a partial-sub-
block PTE fits in the same number of words as a base page PTE, the TLB miss penalty for a par-
tial-subblock TLB with preloading will be same as the original TLB miss penalty. Thus, all the
gains from preloading translate directly into reduction in time spent in TLB miss handling.
Further, in some page tables, the use of partial-subblock mappings reduces the size of the page
tables and may result in a faster page table lookup and a partial-subblock TLB miss penalty
may be less than the single-page-size TLB miss penalty (Chapter 7).

In summary;, if the page tables can be reorganized to store partial-subblock PTEs, TLB miss
handling for partial-subblock TLBs is very efficient. In the rest of this chapter, I assume pre-
loading in partial-subblock TLBs as it results in a) fewer TLB misses, b) simpler hardware, and
c) potential for smaller page table size.

5.4 Impact of operating system support

Partial-subblock TLBs, like superpage TLBs, have a much larger TLB reach than a single-
page-size TLB with the same number of blocks. However, they require operating system sup-
port to use the TLB reach effectively. Table 5-4 shows normalized execution time speedups
when using n-block partial-subblock TLBs relative to using an n-block single-page-size TLB.
The left half shows the speedup when the operating system properly places pages in physical
memory. For my workloads, the partial-subblock TLBs results in significant speedups. The
right half of Table 5-4 shows the speedup when running either old software or in a small mem-
ory system where aligned memory allocation may not be practical.

Table 5-4: Execution time speedups for partial-subblock TLBs (with prloading) relative to similar
single-page-size (4KB) TLBs

with OS support (subblock factor)| without OS support (subblock factor)
2 4 8 16 2 4 8 16
64-block Fully-Associative 1.09 1.15 1.18 1.21 1.00 1.00 1.00 1.00

256-block 4-way Set-Assac 1.06 1.09 11 1.12 1.01 1.02 0.87 0.80

TLB Type

The behavior of fully-associative partial-subblock TLBs degenerates to that of single-page-
size TLBs with the same number of blocks in the absence of operating system support. This is
because random physical memory allocation (the default) results in mostly unaligned map-
pings and no properly placed mappings for the partial-subblock TLBs.

For set-associative TLBs, the absence of operating system support is disastrous. The partial
subblock TLB is more complicated to build than a single-page-size TLB but results in a slow-
down! The performance gets worse as the subblock factor increases. This behavior is similar to
that of a set-associative superpage TLB using the superpage index (Section 3.2.2) as a partial-
subblock TLB also uses the same index bits. While associativity (four in this example) limits
some losses for small subblock factors (upto four), the performance degradation is still signifi-
cant.

It is important that a TLB provide reasonable performance in systems that either run legacy
operating systems or have small amounts of memory where the operating system may not be
successful at aligned physical memory allocation. Thus, set-associative implementations of
partial-subblock TLBs are not attractive, if there is doubt in the availability of operating system
support.
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5.5 Sample design given area constraint

In this thesis, I propose three alternate TLB architectures—superpage, complete-subblock
and partial-subblock TLBs—which have advantages and disadvantages as discussed in Sec-
tions 3.4, 4.4, and 5.6. In this section, I consider alternate fully-associative TLBs of the different
TLB architectures that occupy comparable chip area, as estimated by the area model described
in Section 2.2. Section 4.3 includes a similar design study considering single-page-size, com-
plete-subblock, and superpage TLBs where I concluded that for a fixed chip area budget, in the
absence of operating system support for superpages, a complete-subblock TLB is the best alter-
native. Section 3.4 also includes a similar design study considering set-associative single-page-
size and fully-associative superpage TLBs where I concluded that in the absence of operating
system support, a set-associative single-page-size TLB is a better choice. In both those sections,
with the presence of operating system support, superpage TLBs result in the best execution
time.

In this study I again consider the same four area budgets as in Section 4.3—the area re-
quired to implement fully-associative single-page-size TLBs of 64, 128, 256 and 512 blocks—
and calculate the number of TLB blocks of the partial-subblock, superpage and complete-sub-
block TLBs that will fit in the same area®. Table 5-5 shows the number of TLB blocks for the dif-
ferent TLB architectures considered in this study. Note that the superpage TLB supports only
the base page size and a superpage size of 32KB and not all possible superpage sizes.

Table 5-5: Number of blocks in alternate fully-associative TLBs of equal aa

Area | Single- |Superpage Partial-subblock Complete-subblock
(rbe) |page-size (32KB) 2 4 8 16 2 4 8 16
7984 64 62 64 63 61 57 51 35 20 9
15298 128 123 127 126 122 114 102 72 44 23
29928 256 247 255 252 244 228 206 147 92 51
59186 512 494 509 504 489 456 413 297 188 107

I then estimate the access time for all the TLB configurations using the model described in
Section 2.3. Table 5-6 illustrates the access time normalized with respect to the single page size
TLB of comparable area. The partial-subblock TLBs are faster than the single-page-size and su-
perpage TLBs as there are fewer tags and the tags are shorter. For large area budgets, the com-
plete-subblock TLBs are faster due to the fewer tags. The difference in access time, however, is
small and since they occupy comparable chip area, the implementation costs for the different
TLBs are comparable. Therefore, TLB performance is more important criteria for selecting be-
tween these TLBs.

Table 5-6: Access time for alternate fully-associative TLBs of equal ea

Area | Single- |Superpagg Partial-subblock Complete-subblock

(rbe) |page-size (32KB) 2 4 8 16 2 4 8 16
7984 1.00 1.00 1.00 0.99 0.99 1.00 1.01 1.03 1.06 1.13
15298 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.01 1.04 1.10
29928 | 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.05
59186 1.00 0.99 1.00 0.99 0.98 0.97 0.96 0.92 0.90 0.93

9. Since a TLB cannot have fractional number of blocks or fractional subblock faetdiB size has an area closest
to the budget.

68



Table 5-7 shows the normalized execution time speedup for the TLBs shown in Table 5-5
relative to the respective single-page-size TLB—assuming no subblock preloading in the TLB
miss handler. Table 5-8 shows the normalized execution time speedup assuming subblock pre-
loading. The performance of partial-subblock TLBs is better than that of the complete-subblock
TLBs. The partial-subblock TLBs incur fewer TLB misses because they have more TLB blocks
and a larger TLB reach than the complete-subblock TLBs.

Both superpage and partial-subblock TLBs show substantial speedups over the single-
page-size TLBs. Partial-subblock TLBs are more attractive with preloading. The partial-sub-
block TLBs with subblock factor of 8 or 16 have a better speedup than superpage TLBs.

Table 5-7: Execution time speedupsetative to single-page-size (4KB) TLBs of equal aa

Area | Single- |Superpagg Partial-subblock Complete-subblock
(rbe) |page-size¢ (32KB) 2 4 8 16 2 4 8 16
7984 1.00 1.18 1.04 1.09 1.15 1.17 1.03 1.04 1.01 0.81
15298 | 1.00 1.13 1.05 1.10 i1 1.15 1.02 1.04 1.05 1.03
29928 | 1.00 1.07 1.04 1.05 1.06 1.08 1.02 1.03 1.01 1.00
59186 | 1.00 1.03 1.01 1.01 1.03 1.03 1.00 1.00 1.00 0.99

Table 5-8: Execution time speedups using ploading in subblock TLBs elative to single-page-size
(4KB) TLB of equal area

Area | Single- |Superpagg Partial-subblock Complete-subblock

(rbe) |page-size¢ (32KB) 2 4 8 16 2 4 8 16
7984 1.00 1.18 1.09 1.15 1.18 1.21 1.08 1.12 1.13 0.98
15298 | 1.00 1.13 1.07 11 1.13 1.17 1.06 1.09 1.10 1.12
29928 | 1.00 1.07 1.05 1.06 1.07 1.08 1.04 1.05 1.03 1.04
59186 | 1.00 1.03 1.01 1.02 1.03 1.03 1.01 1.01 1.01 1.01

The subblock factor of a partial-subblock TLB can be increased with very little overhead in
hardware and software. Supporting a larger superpage size has little overhead in hardware
but has other costs—increasing the superpage size reduces the number of segments that can
use superpages and increases the amount of internal fragmentation and memory usage. In-
creasing the subblock factor in a partial-subblock TLB does not have these overheads. Thus, it
is more likely that an operating system will support a partial-subblock TLB with subblock fac-
tor 16 than a superpage TLB with superpage size of 64KB.

If operating system support for superpage or partial-subblock TLBs is not available, their
performance degenerates to that of a fully-associative single-page-size TLB with fewer TLB
blocks! Table 5-9 compares the execution time speedups for the same TLBs assuming the operat-
ing system does not use superpages or do proper physical memory allocation. Complete-sub-
block TLBs are a better alternative as explained in Section 4.3.

In summary, for a fixed chip area budget, partial-subblock TLBs with preloading offer the
best TLB performance. The largest subblock factor that would allow the PTE to fit in a single
word should be chosen—8 or 16. In the absence of operating system support, complete-sub-
block TLBs are a better choice.
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Table 5-9: Execution time speedups using base pagetative to single-page-size (4KB) TLBs of
equal area (without preloading)

Area | Single- |Superpage Partial-subblock TLB Complete-subblock TLB
(rbe) |page-size (32KB) 2 4 8 16 2 4 8 16
7984 1.00 1.00 1.00 1.00 0.99 0.98 1.02 1.04 1.01 0.81
15298 | 1.00 1.00 1.00 1.00 1.00 0.99 1.02 1.04 1.05 1.03
29928 | 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.03 1.01 1.00
59186 | 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99

5.6 Comparison with other TLB architectures

In this section I compare the costs and benefits of increasing TLB reach using partial-sub-
block TLBs relative to using single-page-size, superpage, and complete-subblock TLBs with
the same TLB reach.

5.6.1 Partial-subblock vs. single-page-size TLBs with same TLB reach

This section compares two different approaches to increasing TLB reach—a larger single-
page-size TLB or a smaller, smarter partial-subblock TLB. The partial-subblock TLB has worse
TLB performance and requires operating system support but occupies a much smaller chip
area and has a significantly smaller access time.

A partial-subblock TLB increases its TLB reach by large factors using few extra tag bits and
some control logic. Increasing the TLB reach in a single-page-size TLB by a similar amount re-
sults in much larger (and slower) TLBs. A 64-block partial-subblock TLB with subblock factor
8, for example, has the TLB reach of a 512-block single-page-size TLB, which occupies seven
times larger area and is 40% slower to access.

The left half of Table 5-10 summarizes the area overhead for a partial-subblock TLB com-
pared to a single-page-size TLB with the same TLB reach, i.e., the partial-subblock TLB with
subblock factor s has 1/s times the number of blocks in the corresponding single-page-size
TLB.

Table 5-10: Chip Area and Access ime for partial-subblock and single-page-size TLBs with same

TLB r each
Sinale Page Sizé Relative Chip Area Relative Accessime
TLB type gleragesiz¢ 5 4 8 16 | 2 4 8 16

#blocks N N/2 N/4 N/8 N/16 | N/2 N/4 N/8  N/16
256 100 | 051 0.27 015 009 | 091 0.8 0.82 0.80
512 1.00 | 051 026 014 0.08 | 0.83 0.76 0.72 0.70
256 100 | 058 036 026 022 | 098 098 097 0.99
512 100 | 055 032 020 0.15| 094 092 092 0.93

Fully-associative

4-way set-associativ

D

A partial-subblock TLB, being much smaller, is also faster to access than the larger single-
page-size TLB—as shown in the right half of Table 5-10. The fully-associative TLBs with larger
subblock factors show increasingly smaller access times as the partial-subblock TLBs have
much smaller tag and data arrays and smaller arrays have faster access times. The set-associa-
tive TLBs show only a marginally better access time as the tag side of the TLB is on the critical
path and reduction in the data RAM size does not help the overall access time. The tag access
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time does not improve much since the multiple valid bits in the tags of partial-subblock TLBs
increase the tag compare and multiplexor driver delays—this can be optimized further
through sizing the drivers.

Table 5-11 shows the normalized execution time speedups for partial-subblock TLBs (with
preloading) relative to single-page-size TLBs with the same TLB reach. Each row of Table 5-11
uses a 256- or 512-block single-page-size TLB as the base TLB and each column uses succes-
sively fewer partial-subblock TLB blocks with larger subblock factors. Though the partial-sub-
block TLBs have fewer tags, they have comparable performance to the larger, slower single-
page-size TLBs. Subblocking, however, is only effective when there are enough tags to exploit
spatial locality. With very few blocks, subblocking is not useful as TLB blocks get replaced be-
fore the program uses all the subblocks.

Table 5-1: Execution time speedups for partial-subblock TLBs elative to single-page-size (4KB)
TLBs with same TLB reach

Partial- lock with prel in

Single Page Size e ?suubbbb(lj(;:ck factcE)r)e oading

TLB type (4KB) 2 4 8 16
#blocks (N) N/2 N/4 N/ 8 N/16
Fully-Associative 256 0.98 0.99 0.99 0.97
512 0.99 0.97 0.97 0.98
4-way Set-Associative 256 1.00 1.00 0.98 0.88
512 0.99 0.99 0.98 0.95

Comparing set-associative TLBs in the last two lines of Table 5-11, shows that associativity
is important in a partial-subblock TLB. A partial-subblock TLB depends on the ability of the
TLB to store multiple TLB blocks with the same VPBN (but different valid bits) to accommo-
date pages that have incompatible mappings. An associativity greater than or equal to the sub-
block factor (4 in this example) results in good performance for the partial-subblock TLB
though it has fewer tags. Larger subblock factors cause thrashing that the associativity cannot
handle for unaligned and incompatible page blocks.

In summary, partial-subblock TLBs offer a large TLB reach for a low cost but depend on
spatial locality and proper physical memory allocation. For these workloads, given enough
TLB blocks (64 or larger), associativity (larger than or equal to the subblock factor), and proper
operating system physical memory allocation, partial-subblock TLBs offer competitive perfor-
mance to a much larger and slower single-page-size TLB.

5.6.2 Partial-subblock vs. Superpage TLBs with same TLB reach

Of the TLBs considered in this thesis, partial-subblock and superpage TLBs with the same
TLB reach are closest in implementation costs. A partial-subblock TLB with subblock factor s
has the same TLB reach as a superpage TLB that supports a single medium-sized superpage
(superpage size equal to the page block size) and has the same number of TLB blocks. Partial-
subblock TLBs adds subblock valid bits to superpage TLBs and are fractionally more compli-
cated to build. However, a partial-subblock TLB block share TLB blocks more often than super-
pages due to simpler restrictions and incurs fewer TLB misses. Further, partial-subblock TLBs
require simpler, more efficient operating system support.
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Comparing the chip area required, the left half of Table 5-12 shows that the two TLB types
occupy comparable area. The data fields of each TLB block are comparable for both superpage
and partial-subblock TLBs. In the tags, a partial-subblock TLB has logy(s) fewer VPN bits but
has (s-1) more valid bits. A superpage TLB block has an additional logy(s) MASK bits. For
small subblock factors, two or four, a partial-subblock TLB occupies a smaller area. For larger
subblock factors, a partial-subblock TLB occupies more area.

Table 5-12: Chip Area and Access ime for partial-subblock TLBs relative to superpage-TLBs
Chip Area

Access Tme

Superpage TLB ylpe subblock factor;superpage size subblock factor;superpage size
2:8KB 4:16KB 8:32KB 16:64KB| 2:8KB 4:16KB 8:32KB 16:64KB

Fully-associative 0.99 0.99 1.01 1.07 0.99 0.99 0.99 1.01

4-way Set-associative| 0.99 0.99 1.01 1.06 0.99 0.99 1.00 1.02

Comparing the access time in the right half of Table 5-12, the partial-subblock TLBs are
marginally faster except for a subblock factor of 16 where they are marginally slower. The
don’t-care bits in a fully-associative superpage TLB block degrade the time taken for the tag
compare. In a partial-subblock TLB, the fewer tag bits improve the tag compare time while the
extra valid bits degrade it.

Table 5-13 shows the TLB performance of partial-subblock TLBs relative to superpage
TLBs—a partial-subblock TLB with subblock factor s is compared with a superpage TLB that
supports a single medium-sized superpage size equal to the page block size. The set-associa-
tive superpage TLBs use the superpage index. A partial-subblock TLB without preloading in-
curs more misses than a superpage TLB because it takes multiple TLB misses to load the
mappings for the base pages within a page block while a superpage TLB can load multiple
mappings in a single TLB miss. Preloading in partial-subblock TLBs eliminates this advantage
of superpages and the right half of the table shows that partial subblocking is comparable to
using medium-size superpages. Tables in Appendix ] further show that the partial-subblock
TLBs incur fewer misses than superpage TLBs—though the reduction does not result in a no-
ticeable execution time speedup for these workloads.

Table 5-13: Execution time speedups for partial-subblock TLBsalative to superpage TLBs

Without subblock preloading

With subblock preloading

TLB Type | #blocks subblock factor:superpage size subblock factor:superpage size
2:8KB 4:16KB 8:32KB 16:64KB| 2:8KB 4:16KB 8:32KB 16:64KB
Fully-associa; 64 0.96 0.95 0.98 0.96 1.00 1.00 1.00 1.00
tive 128 0.98 0.99 0.98 0.98 1.00 1.00 1.00 1.00
AwaySet | o5s | 099 099 100 104 | 1.00 100 101 105
associative

The partial-subblock TLBs improve system performance in other ways that make them
more attractive than medium-size superpages.

First, superpage systems incur some penalty due to internal fragmentation—increased
paging I/0O, page initialization overhead—which the partial-subblock system does not. A par-
tial-subblock system uses the same amount of memory as in a single-page-size system. This is
an important benefit that I do not quantify here.
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Second, use of partial-subblock PTEs reduces page table size by 20% to 50% more than su-
perpage PTEs do (Table 7-6). This effect can be more significant than just the memory savings
as it reduces cache pollution and page table search time, which translates into smaller TLB
miss penalty.

Third, partial-subblock TLBs also support superpage mappings by appropriately setting
the subblock valid bits (Appendix H). If the operating system chooses to use superpages, the
page fault latency can be reduced by using the subblock feature to read only the base page
(subblock) needed first and complete the rest in the background—a feature that CPU subblock
caches also exploit to reduce cache hit time.

Fourth, reference information is available at the granularity of a base page size. This can re-
sult in better page replacement decisions or can be used for more efficient page promotion and
demotion decisions in a superpage system—where reference information is only available at a
coarser granularity. Similarly, modified information will be available at the granularity of a base
page size in a partial-subblock TLB with replicated write-permission bit or if separate TLB blocks
are used for dirty and clean subblocks.

Fifth, in systems that maintain attribute information at the granularity of a base page size,
e.g., page-based distributed shared memory systems, superpages pages are less likely to be
used due to the difference in attributes or holes. Partial-subblock TLBs can still share TLB
blocks for multiple base pages within a page block though there may be holes or differences in
attributes.

Lastly, partial-subblock systems use only a subset of the operating system mechanisms re-
quired for medium-sized superpage systems—requires only variable size freelist management
and careful physical memory allocation. Consequently, a partial-subblock system is more effi-
cient.

In summary, a partial-subblock TLB includes all the performance benefits of using a medi-
um-sized superpage and adds some more. A partial-subblock TLB incurs fewer TLB misses
than a superpage TLB with the same TLB reach and has fewer operating system costs. The par-
tial-subblock systems are at their best with a TLB miss handler and page table that stores par-
tial-subblock PTEs.

5.6.3 Partial- vs. complete subblock TLBs with same TLB reach

Partial subblocking is a low-cost alternative to complete-subblocking but delivers compa-
rable TLB performance. A complete-subblock TLB increases TLB reach by providing space for
separate mappings for every base page within a page block—a high cost in both chip area and
access time but deliver superior TLB performance without operating system support. A par-
tial-subblock TLB, on the other hand, provides only a single copy of the mapping for pages
within a page block with individual valid bits allowing multiple TLB blocks to map disjoints
sets of base pages of a page block—a low overhead in both chip area and access time but re-
quires operating system support.

The left half of Table 5-14 compares the area required to build partial- and complete-sub-
block TLBs with equal TLB reach. Since a partial-subblock TLB shares most of the TLB block
only requiring additional subblock valid bits and an extra attribute bit, a partial-subblock TLB
block is much smaller than a complete-subblock TLB block.
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Table 5-14: Chip Area and Access ime for partial-subblock TLBs relative to complete-subblock

TLBs
Chip Area Access Tme
TLB Type 2 4 8 16 2 4 8 16

Fully-associative 0.81 0.59 0.39 0.24 0.97 0.94 0.90 0.84
4-way set-associative| 0.73 0.48 0.29 0.17 1.00 0.99 0.97 0.92

The smaller TLB blocks also translate to faster access time for the partial-subblock TLBs
(the right half of Table 5-14). Both TLBs have the same number of VPN bits in the tag but par-
tial-subblock TLBs have a longer tag compare time due to the subblock valid bits included in
tag comparison—complete-subblock TLBs use a block-valid bit. However, the smaller data
RAM in fully-associative partial-subblock TLBs has a significantly faster lookup time, result-
ing in an overall faster access time. In set-associative partial-subblock TLBs, the data RAM ac-
cess time is not on the critical path but the multiplexor drivers are faster as they drive the
signals across a thinner RAM than in complete-subblock TLBs.

A partial-subblock TLB delivers comparable TLB performance to that of a much larger and
slower complete-subblock TLB (Table 5-15). Tables J-10 to J-37 in Appendix ] show that the
number of TLB misses incurred in a partial-subblock TLB is only a few percent more than in a
complete-subblock TLB. This is important since a faster partial-subblock TLB access time may
improve processor cycle time, which affects program execution time more than a few percent
change in the number of TLB misses (Table 7-5).

Table 5-15: Execution time speedups for partial-subblock TLBsalative to complete-subblock TLBs
with same subblock factoy number of blocks and associativity

with preloading subblock factor

TLB type #blocks 5 4 8 16
fully-associative 64 1.00 1.00 1.00 1.00
128 1.00 1.00 1.00 1.00
4-way set-associative| 256 1.00 1.00 1.00 0.98

A partial-subblock TLB has more misses than an equivalent complete-subblock TLB for
three reasons. First, pages within a page block that have different attributes share the same
complete-subblock TLB block but require separate partial-subblock TLB blocks. This results in
a smaller effective TLB reach and more TLB misses in a partial-subblock TLB. The effect, is no-
ticeable for the set-associative TLB with subblock factor 16 where the associativity of 4 limits
the number of partial-subblock TLB blocks for the same page block that can coreside in the
TLB. Second, virtual address allocation for a complete-subblock TLB is denser than in a par-
tial-subblock TLB system 0 that results in more sharing in a complete-subblock TLB. Third,
when two objects are mapped to addresses within the same virtual page block, a smgle com-
plete-subblock TLB block is used. Foxtrot allocates different chunks of physical memory 1 for
the two objects resulting in the use of multiple partial-subblock TLB blocks.

The TLB miss penalty for preloading in partial-subblock TLBs is smaller than in complete-
subblock TLBs. With a page table that supports partial-subblock PTEs (Section 7.4.3), a partial-
subblock TLB miss handler fetches a single word from memory whereas a complete-subblock

10. This is an artifact of Foxtratvirtual address allocation strategy for partial-subblock systems (Sé@&iap
11. Foxtrot allocates contiguous aligned physical pagesafcinobject but the two chunks of memory are not aligned
to each other
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TLB miss handler fetches multiple words. Thus, though a partial-subblock TLB incurs more
TLB misses than a complete-subblock TLB, partial-subblock TLBs may spend less time in TLB
miss handling.

In summary, partial-subblock TLBs offer comparable TLB performance to complete-sub-
block TLBs, but occupy a significantly smaller chip area and have a faster access time. Howev-
er, partial-subblock TLB performance depends on operating system support in physical
memory allocation.

5.7 Variations of partial-subblock TLBs

Section 5.1 introduced partial-subblock TLBs with only subblock valid bits. Other varia-
tions are possible where the data stores other fields per-subblock—modified bits, other at-
tributes, PPN. A complete-subblock TLB is a trivial variation, where all the fields in the
mapping are stored per subblock. There is a tradeoff in choosing between providing storage
for subblock attributes or shared attributes for a TLB block. A shared attribute has the advan-
tage of a smaller TLB block and the TLB either occupies a smaller area or can fit more blocks in
the same area. Shared attribute fields have the disadvantage of requiring separate TLB blocks
if base pages within a page block have different attributes.

In practice, for small subblock factors the extra chip area required to provide per-subblock
single bit attribute fields is negligible. The important consideration is whether the subblock-
PTE format will continue to fit in a single word after replicating more bits. Using a single word
PTE is preferable as the TLB miss handler is more efficient and is easier to do atomic update of
page tables—multi-word atomic updates require use of other synchronization methods.

¢ Valid bits: Many advantages of subblock TLBs are due to subblock valid bits. Reducing I/
O bandwidth, reduced memory usage and wider applicability than superpages are the main
advantages. I expect most subblock-TLBs to support subblock valid bits.

Configurations that do not provide subblock valid bits are possible. They are simpler to
implement, e.g., will not require decoding of low-order VPN bits to determine a TLB hit, and
have a faster access time. The ARM6x0 and the RS/6000 processors, for example, allow for
different attributes for subpages but require all subpages to be valid. This is useful when the
operating system or application requires fine-grain protections, e.g., database locking,
garbage collection. This also can be viewed as allowing subpage attributes in a superpage or
single-page-size TLB.

Another option is to store an encoded version of the valid bit vector!2, This has the
advantage of allowing large subblock factors (32, 64) with small hardware cost but has the
disadvantage that it allows only a few valid bit patterns. Two examples illustrate this. First, a
superpage TLB is a trivial example, where a single bit encodes the valid bit vector. The TLB
block is shared only if all base pages are compatible. Second, a subblock factor of 64 can be
encoded as two 6-bit fields (instead of a 64-bit vector)—the position of the first and last valid
bits with all bits in between set (a run). This allows any contiguous set of base pages that are
all properly placed to share a single TLB block, i.e., they need not start or end at a page block
boundary. Other exotic encodings are possible but complex hardware (or software) may be
needed to decode the encoding during tag comparison—a full valid bit vector results in a
simple implementation. Further, encoding places tighter constraints on when base pages can

12. Encoding was first suggested to me by Russell Kao, DEC WRL.
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share a TLB block and shares TLB blocks less often, e.g., superpage TLBs are less effective
than partial-subblock TLBs (Section 5.6.2).

* Physical Page Number (PPN): This field is typically the largest in a TLB block’s data.
Most of the area overhead of complete subblock TLBs is due to having subblock PPN fields.
Having a single shared copy of this field for the subblocks in a page block allows a much
smaller TLB to be built and is the primary advantage of the partial-subblock TLBs. However,
the performance improvement is conditional to the operating system doing the appropriate
physical memory allocation.

It is also possible to consider an implementation that shares only a few of the PPN bits,
e.g., the most significant bits, while maintaining separate copies for the low order bits. This
will place less stringent constraints on the operating system and gives the operating system
flexibility in physical memory allocation. My experience with operating systems suggests that
the complexity of allocating for the less stringent system of constraints is not much easier that
for the more stringent system, however, this is an option to explore.

On the other hand, storing the low order bits of the PPN per subblock, while storing a
shared copy of the high order bits, gives the operating system flexibility in page coloring.
Sharing the full PPN will make the operating system allocate physical pages with colors same
as the virtual addresses (modulo the page block size). This interferes with physical page
coloring for large physically addressed caches. Any skew in the virtual addresses used by the
application will show up in the physical coloring too. Virtual color 0, for example, is used
frequently as many segments start at a properly aligned address. Consequently, physical
color 0 will be heavily used if the operating system attempts to optimize for partial-subblock
TLB performance. Storing some low-order bits of the PPN per subblock allows the operating
system to implement a different page coloring algorithm. This also eliminates the need for the
SB attribute and the multiplexor in physical address generation, if the TLB stores block offset
bits per subblock 3.

e Attributes: Attributes include fields such as protection, cacheability, page size, referenced
and modified bits. A decision to share or replicate must be made for each field individually.
Base pages in a page block that have different values for a replicated attribute can still share
a single TLB block and improve TLB performance. Fields which can be expected to be differ-
ent for consecutive virtual pages should be replicated, e.g., write-permission bits. Distributed
shared memory operating systems that use page-level protections to implement coherent
memory, for example, would set write-permission bits at the granularity of base pages more
frequently than in single-node computers. Some attributes, such as the privileged bit, tend to
be identical for pages within a page block as they usually belong to the same virtual object,
and can be shared among subblocks. Section 5.1.3 discussed the tradeoff in replicating modi-
tied bits.

In summary, while there are many possible partial-subblock TLB configurations possible
by choosing different bits or (portions of) fields to share across subblocks, two important con-
straints limit the choices—the available chip area or access time and PTE format. The physical
page number field is the largest and most obvious one to share but requires operating system
physical memory allocation to be effective. Subblock valid bits give the most important prop-
erties of subblock TLBs and are essential. Subblock modified bits can be effective at reducing

13. This is important for a subblock factor of 2, where storing one additional low order bit of the PPN, eliminates the
need for the SB attribute and the multiplexmrt adds a column multiplexor to select the subblock.
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1/0 and should be considered if the PTE format allows for it.

5.8 Conclusion

The partial-subblock TLB architecture, is a key contribution of my thesis. I have studied the
issues involved in implementing a partial-subblock TLB and explored alternate ways to handle
TLB misses. I have shown that a partial-subblock TLB is better than the state-of-the art super-
page and complete-subblock TLB implementations.

A partial-subblock TLB allows base page mappings that are properly placed in physical
memory to share a single TLB block. Using spatial locality in programs, a partial-subblock TLB
uses fewer tags than a single-page-size TLB with the same TLB reach. Further, using intelligent
physical memory allocation by the operating system, a partial-subblock TLB uses less datapath
chip area than either single-page-size or complete-subblock TLBs with the same TLB reach. By
providing subblock valid bits, partial-subblock TLBs incur fewer TLB misses than an equiva-
lent superpage TLB but require only best-effort physical memory allocation from the operating
system.

Set-associative partial-subblock TLBs have similar characteristics to superpage-index set-
associative superpage TLBs. They are effective with operating system support for superpages
but use sub-optimal index bits when not using superpages. Fully-associative implementations
degrade gracefully to perform comparably to a single-page-size TLB with the same number of
TLB blocks.

In the next two chapters, I discuss the operating system mechanisms needed to support
partial-subblock TLBs (and superpage TLBs) and page tables to store partial-subblock (and su-

perpage) mappings.
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Chapter 6 Operating System Support

Virtual memory [Denn70] computer systems require a close interaction between the hard-
ware architecture and the operating system. Operating system support for virtual memory
with a single fixed page size is substantial but well-understood (e.g, UNIX [Thom74, Bach86,
Leff90, Ging87b], VMS [Levy82], NT [Cust93], MACH [Acce86, Rash88], OS/2 [Koga88]). It
includes a virtual memory manager that allocates virtual addresses, enforces protection, ini-
tiates I/O and loads/unloads mappings from a page table; one or more file systems that man-
age and maintain structure/coherence of objects on disk/network; a physical memory
manager that manages/allocates physical pages; and a page table manager that isolates page
table and TLB details in a machine-dependent module, e.g., SYSV UNIX hat layer [Mora88,
Bala92] and Mach pmap layer [Rash88].

To be effective, however, superpage and partial-subblock TLBs require operating system
support in areas other than TLB and page table management (Chapter 7 discusses page ta-
bles). The primary contribution of this chapter is thatI identify the operating system support
required and discuss alternate solutions. One new policy and upto six new mechanisms may
be required to convert a single-page-size operating system to one that supports superpage or
partial-subblock TLBs. Table 6-1 shows alternate TLB types with the mechanisms that are re-
quired, optional or not applicable (N/A) for each.

Table 6-1: Operating system mechanisms for superpage and partial-subblock TLBs

OS Mechanisms

Page-size Careful
TLB Type |Assignmen Var_lable Page_: Monitor Multlpl_e Physical
- Size Gather Promotion/ Reference page-size
Policy . . Memory
Freelist Demotion Patterns framework .
Allocation
Partial-subblock  N/A required  optional N/A N/A N/A required

Static required N/A N/A N/A optionaf  optionaf!

Superpage
Hperpag Dynamic | required required required required optional required

a. Static page-size assignment requires at least one of the two mechanisms—multiple page-size framework
or careful physical memory allocation.

Supporting partial-subblock TLBs requires two mechanisms—variable size freelist man-
agement to allocate contiguous regions of physical memory and careful physical memory al-
location to properly place virtual pages in physical memory (Table 1-1). Optionally, a gather
operation can correct mistakes in physical memory allocation by copying base pages to their
proper places.

Superpage operating system support includes a new policy—page-size assignment policy—
that decides when to use superpages, what size superpages, and for which address space re-
gions. Page-size assignment can be static—the decision is made once and does not change
over the lifetime of the process—or dynamic—the page size changes over time. Supporting su-
perpages with a static page-size assignment policy requires variable size freelist management.
In addition, the operating system data structures and interfaces should support a true multi-
ple-page-size framework. With a static page-size assignment policy, it also suffices to use
careful physical memory allocation in a single-page-size framework and a page table that co-
alesces compatible base page mappings into superpages. Static page-size assignment is prac-
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tical in only a few situations as it does not provide a way to recover from wrong decisions or
use smaller page sizes when memory is scarce.

A dynamic page-size assignment policy allows the page size for a virtual address region
to change in response to changes in reference patterns or available physical memory. This,
however, requires additional operating system mechanisms—page promotion and page de-
motion mechanisms to change the page size, a gather mechanism to collect base pages to
their proper place, and a mechanism to collect program reference patterns to help make page-
size assignment policy decisions.

A gather operation moves base pages to “proper” physical pages so that a superpage map-
ping or a partial-subblock mapping can be used. This requires locking pages in memory,
modifying page tables and performing TLB shootdowns that adds significant overhead to the
actual copy costs. Instead, I propose a physical memory allocation algorithm, page reservation,
that carefully allocates “proper” physical pages in the first place and avoids the copying.
Page reservation works by reserving a physical page block for specific base virtual pages and
holding the base physical pages at the end of the freelist. When the program references these
virtual pages, the operating system will allocate previously reserved properly placed pages.
However, if reserved pages reach the head of the freelist without the program referencing
them, they are reallocated. Page reservation makes a best-effort to properly place physical pag-
es with low overhead. This is sufficient for a partial-subblock system and reduces (eliminates)
gather costs when deciding between base pages and a single superpage size. Gather opera-
tions can be used to correct any improper placement or to augment page reservation for more
page sizes.

The rest of this chapter discusses page-size assignment policies and the different mecha-
nisms in detail. Section 6.1 discusses alternate page-size assignment policies. Section 6.2 dis-
cusses implementation of the different mechanisms—freelist management, gather, page
promotion/demotion, page reservation, monitoring, and changes required to move an oper-
ating system to a multiple-page-size framework. Section 6.3 discusses interactions between
the new policies and mechanisms with existing operating system policies and mechanisms.
Chapter 7 discusses page tables that can store and service TLB misses for superpage and par-
tial-subblock mappings.

6.1 Page-size assignment for superpage TLBs

A page-size assignment policy makes a tradeoff between the costs and benefits of using su-
perpages in deciding the page size to use for each virtual address. The primary benefit of us-
ing superpages is a reduction in the number of TLB misses (Chapter 3). The costs of using
superpages include a) overhead in monitoring the reference pattern of the workload, b) in-
creased internal fragmentation, i.e., larger working set size and increased page initialization
costs [Tall92], c) page promotion costs (Section 6.2.3), and d) increase in TLB miss penalty
(Chapter 7). Page-size assignment can be either static or dynamic and this section describes
two classes of dynamic policies—working set threshold [Tall92, Tall94a] and competitive
[Rome95].

A static page-size assignment policy makes the decision once and fixes the page size over the
life of the mapping. Device pages and non-pageable memory can use a static policy of using
the largest superpage size that maps the object (e.g, kernel text, frame buffers, database buff-
ers). Operating systems could also use simple heuristics for static page-size assignment poli-
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cies based on the type of object and available free memory. For example, a static policy could
assign base pages for stack pages and medium-sized superpages for heap pages.

A dynamic page-size assignment policy is more flexible allowing the page size for a virtual
address region to change and is useful in two situations. First, when the operating system
does not know enough about the costs and characteristics of accesses to an object to make a
static decision, a dynamic policy allows it to guess a page size and modify the page size after
monitoring the process for a while. Second, using superpages increases internal and external
fragmentation and will increase paging traffic if the system is short of physical memory—a
dynamic policy allows the operating system to adapt page-size assignment to changes in
such system parameters.

A working set threshold policy promotes page blocks when the working set contains more
base pages of a page block than a predetermined threshold, the promotion threshold (e.g., eight
4KB base pages within a 64KB page block). It demotes superpages to base pages or smaller
superpages when the working set contains fewer base pages from the page block than anoth-
er predetermined threshold, the demotion threshold (e.g., five 4KB base pages within a 64KB
page block). Romer et al. characterize such policies as ASAP (as-soon-as-possible) policies
[Rome95]. Foxtrot implements a working-set threshold policy and makes policy decisions be-
tween two page sizes [Tall94a].

Superpage TLBs and page tables do not gather reference information at base page granu-
larity for superpage mappings—there is only a single referenced attribute bit per superpage
PTE. Thus, all base pages of a superpage are in the working set or none are, i.e., if the corre-
sponding superpage is in the working set we cannot determine that a particular base page is
not in the working set. A page replacement policy can choose to either replace superpages
that are not in the working set or demote them. Replacing the superpage is more attractive
than demoting it, as it is not in use anyway.

The promotion threshold is an important parameter in working set threshold policies. A
high threshold uses superpages less often, reducing the number of page promotions and
memory usage, incurs less internal fragmentation but incurs more TLB misses than with a
lower threshold. A threshold of 0% always uses superpages and a threshold of 100% uses su-
perpages only for fully populated page blocks. Four factors determine the threshold: page
promotion cost, expected program reference pattern, amount of free physical memory, and
page fault latency. If the program is expected to reference most or all of the page block, the
threshold should be 0%—i.e., use superpages always—as it is more efficient to allocate a su-
perpage statically than allocating base pages and later promoting them. Foxtrot uses a thresh-
old of 50% for ufs files, 75% for nfs files and 100% for heaps. The advantage of a working-set
threshold policy is that it is cheap to monitor the working set, e.¢., maintaining counters on
page faults, but can unnecessarily promote page blocks that do not incur many TLB misses.

A competitive algorithm makes decisions that result in performance within a constant fac-
tor of an optimal policy and competitive algorithms have been used in other contexts, e.g.,
[Karl88, Karl91, Slea85, Cao94]. Romer et al. recently proposed a competitive page-size assign-
ment policy that accounts for the cost of TLB misses and captures reference patterns by updat-
ing counters for every base page and superpage on TLB misses [Rome95]. The policy
promotes pages when TLB miss costs exceed a threshold based on page promotion costs. The
advantage is that, by accounting for the workload’s TLB miss patterns, competitive policies
can make a better page-size assignment, often have less internal fragmentation, and use less
physical memory than working-set threshold policies. The disadvantage of competitive poli-
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cies is the increase in TLB miss penalty, e.g., from 30 to 130 cycles, and memory overhead and
cache pollution due to the extra counters, e.g., 3.125 counters per base page [Rome95]. By us-
ing superpages, these costs are offset by the decrease in the number of TLB misses and pro-
grams show a net decrease in execution time. Page demotions occur, if at all, when the
superpage is selected for page replacement.

Any page-size assignment policy must support page demotion for user applications that
change attributes for base pages within a superpage. Distributed shared memory machines
that use page-level protections or garbage collection systems, for example, frequently change
attributes at base page granularity. It is unlikely that operating systems will choose superpag-
es for such applications, unless the applications are aware of the use of superpages by the op-
erating system and adjust their attribute change requests. Partial-subblock systems are less
affected by such changes as the rest of the unaffected base pages within the page block can
continue to share a single TLB block.

The operating system also changes attributes for base pages that are part of superpages,
e.g., to implement copy-on-write or maintain modified bits. A page-size assignment policy
can choose either to extend the attribute change for the full superpage or demote it.
Section 6.3.3 illustrates this by explaining different ways an operating system could handle
copy-on-writes to a superpage. Other attribute changes involve similar tradeoffs.

Besides implementing a default page-size assignment policy, an operating system also
could export some mechanisms to user programs", compilers or run-time libraries, e.g.,
through the UNIX madvise system call. This allows implementation of custom user-defined
page-size assignment policies that exploit programs” knowledge of their access pattern. Some
operating systems have similarly exported mechanisms such as page replacement [Youn89,
Hart92], scheduling [Ande92], and cache coherence [Rein94].

In summary, operating systems have a choice of a variety of page-assignment policies and
different workloads may prefer different policies. The key to operating system design is to
identify and implement the mechanisms that can support many alternate policies. The next
section identifies the basic mechanisms needed to support superpages.

6.2 New Operating System Mechanisms

Superpage and partial-subblock TLB support requires one or more of six new operating
system mechanisms, besides page table support (Table 6-1)—variable sized free physical
memory management (Section 6.2.1), a gather mechanism (Section 6.2.2), page promotion/de-
motion mechanisms (Section 6.2.3), a mechanism to monitor reference patterns (Section 6.2.4),
careful physical memory allocation (Section 6.2.5) and data structure and interface changes to
support a multiple-page-size framework (Section 6.2.6).

6.2.1 Freelist management

The most important mechanism required to support superpages and partial-subblocking
is variable-sized physical memory allocation. Most operating systems treat all physical mem-
ory as interchangeable, equal-sized chunks (pages or frames) and use an unordered list of
free pages as the freelist. A superpage requires allocating a physical page block (aligned and

1. The operating system would most likely treat user page-size assignment decisions as advisory and mdket a best-ef
as it is often unacceptable in a multi-user system to allow user programs to control memory allocation.
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contiguous region of memory) equal to the superpage size. There are two issues that arise.
First, finding a free page block from the freelist is inefficient and needs better data structures.
Second, superpage use can be limited by external fragmentation, i.e., the amount of free mem-
ory is greater than the page block size but the free pages are scattered such that a contiguous
chunk is not available.

Variable-sized freelist management has been studied in the context of segments and mem-
ory allocators [Know65, Hirs73, Barr93]. The problem is simpler here than general memory
allocators as systems support only a few superpage sizes that are powers of two.

A buddy-block allocator [Knut68a, Pete77, Tayl81, Purd70, Bark89, Lee89c¢] organizes free
pages into multiple freelists, one per supported allocation size and has a policy and a mecha-
nism to coalesce free pages into a free superpage and vice versa. Buddy systems have been
extensively studied, are easy to implement, and can efficiently handle multiple sizes. Foxtrot
uses a buddy block allocator. Other alternatives include first-fit, best-fit or worst-fit algo-
rithms that scan the physical page descriptors to find a free page block. A common problem
with all variable-sized memory management is external fragmentation. The different algo-
rithms differ in the rate at which memory gets fragmented but all eventually require some
form of address space compaction. Another solution is to permanently partition physical
memory into pools for each page size [Kagi91]. This is a feasible option in systems that use
static page-size assignment but may increase page fault rate if the system does not use the
different page sizes in anticipated proportions.

Partial-subblock systems can sometimes allocate sizes that are not powers-of-two but
smaller than the page block size, e.g., a 60KB object, and require more general freelist man-
agement algorithms. One solution is to allocate a larger power-of-two page block and free
any extra base pages, however, this increases external fragmentation.

6.2.2 Gather Mechanism

A gather operation copies the contents of base pages corresponding to a virtual page
block into a contiguous physical page block and frees the original base physical pages. Sys-
tems that use page copying during page promotion to support dynamic page-size assignment
policies require a gather mechanism. Using page reservation to properly place physical pages
when first allocated may render a gather mechanism unnecessary or would reduce the fre-
quency of required gather operations (described in Section 6.2.5).

A gather operation typically involves the followmg operations: a) find and lock all the
base physical pages, b) remove any mapplngs to these physical pages from the TLB and
page table to prevent other threads/processes from accessing the pages during the copy, c) al-
locate a physical page block of the required size from the freelist, d) copy the contents of the
base pages, and e) unlock and free the base physical pages. The cost of a gather is roughly
equal to the cost of the following sub-operations: (s * (page find + page lock + page copy +
page unlock + page free + x * (PTE invalidate + TLB shootdown)) + physical page block allo-
cate), where the superpage size is s base pages and x is the average number of aliases per
base physical page. The cost of each sub-operation depends on operating system structure,
e.g., a page table manager could batch multiple TLB shootdowns, and available hardware
support, e.g., hardware support for efficient copying [Yung94].

2. Alternatively the mappings can be marked read-only and removed after the copy is completed.
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One complication that arises is that some base pages may be locked while involved in I/
O or when pinned in memory by applications (e.g., UNIX mlock system call) and cannot par-
ticipate in a gather operation. This will cause page promotions to fail.

6.2.3 Page Promotion/Demotion Mechanisms

Page promotion is the mechanism that coalesces a set of pages to a larger superpage. It in-
volves verifying that all the base pages are superpage-compatible, unloading any existing
base page mappings from the page tables and TLBs, allocating contiguous physical memory,
and copying the base pages to contiguous memory (a gatheroperation), doing additional I/O
(a populate operation), and updating page tables and TLBs. A superpage mapping cannot be
used until all the base pages within a page block chosen for page promotion are present in
memory and page promotion may cause the program to wait while the operating system
fetches the missing pages from backing store (or zeroes the page if it is an uninitialized heap

page).

The number of base pages brought into memory during page promotion is an additional
cost for superpage systems over single-page-size systems. The cost includes use of additional
physical memory, additional I/O, and time the program spends in populate operations. How-
ever, not all pages brought into memory by the populate operation are wasted. The program
may later reference some base pages prefetched by the populate operation—thus avoiding
page faults on these prefetched base pages. A populate operation that brings in x base pages
is more efficient than servicing x base page faults as the operating system may be able to
combine or batch multiple operations to neighboring pages, eg., disk I/O. The tradeoff, or
the threshold at which page promotion is more efficient, depends on the costs of doing1/O
and servicing page faults.

Foxtrot reduces page promotion costs in two ways. First, it avoids gather operations by
using page reservation. Second, it avoids delay due to populate operations by using prefetch-
ing to fetch base pages in the background—overlapping I/O latency with computation. How-
ever, prefetching can result in more I/O than in a single-page-size system.

An alternate way to implement page promotion, which I do not implement, is to first per-
form the populate operation into a newly allocated page block followed by a gather operation
of the rest of the base pages. This approach avoids the cost of extral/O due to prefetching.
This can be as efficient as Foxtrot’s policy if the operating system can overlap the I/O for
page promotion with computation of other processes.

Partial-subblock systems do not use page promotion operations as the TLB block includes
individual valid bits for base pages and do not require all base pages to be present in memory
to share a partial-subblock TLB block. This is a key advantage of partial-subblock systems.

Page demotion is the mechanism that breaks up a superpage into either base pages or
smaller superpages. It only involves unloading the superpage mapping from the page table
and TLB, possibly replacing it with new base page or smaller superpage mappings. A page-
size assignment policy may use page demotion to use smaller page sizes when there is a
shortage of free memory. Page demotion also occurs when attributes change for portions of
superpages, e.g., copy-on-write (Section 6.3.3).
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6.2.4 Monitoring Reference Patterns

A dynamic page-size assignment policy requires the operating system to implement a
mechanism to measure the reference pattern of programs to decide the best page-size assign-
ment. The exact information required, however, depends on the policy.

Working-set threshold policies require information about which physical pages are
present in memory. This can be retrieved by searching for the physical page descriptors for
the base pages corresponding to the virtual address range under consideration. This search
can be inefficient, and instead, the page fault handler can maintain counters for each virtual
(or physical) page block. The counters are more efficient to search but take up some memory.
Foxtrot implements counters in segment drivers to make decisions between two page sizes. A
counter scheme similar to Romer et al.’s can support multiple page sizes with working-set
threshold policies also.

Competitive policies that tradeoff TLB miss costs against page promotion costs require in-
formation about which pages are incurring a large number of TLB misses. The TLB miss han-
dler could maintain such statistics, e.g., as proposed by Romer et al. [Rome95].

Other policies may monitor characteristics of the system, e.g., amount of free memory,
number of free physical page blocks, whether a program is long-lived and could benefit from
use of superpages.

6.2.5 Physical Memory Allocation—Page Reservation

Most operating systems carefully select pages to replace, but treat free physical pages as
interchangeable when allocating a new page. This approach effectively treats physical memo-
ry as a fully-associative cache of pages and allocates random physical base pages. With ran-
dom allocation, page promotions require gather operations. Page reservation, a new allocation
algorithm I propose, allocates physical pages that are already properly placed instead of first al-
locating random pages and subsequently moving them. Page reservation sets aside a proper-
ly placed physical page block for pages that a program may reference soon. If the program
references these pages, the memory allocator allocates these reserved and properly placed
pages—avoiding the need for a gather operation. When memory demand is high, the memo-
ry allocator revokes the reservation on reserved pages that were not referenced within a cer-
tain time after the reservation.

The default physical memory allocator works as follows. The operating system divides
physical memory into equal-sized pages, marked as either free or busy. A busy page has the
contents of one page of an object (e.g., disk file, heap). The operating system maintains index
structures to map physical pages to their identity (<object identifier, offset>) and vice versa.
Before allocating a new page, the physical memory allocator searches the index structure to
avoid duplicate allocations. If it finds none, it chooses a free page and updates the index
structures. As more than one process may map the same physical page using different virtual
addresses, the physical memory manager uses an unique object page identity instead of vir-
tual addresses.

Page reservation adds a new state for pages—reserved. A reserved page has an identity
and resides in the index structures. However, the contents of a reserved page are not valid—
similar to an “in-transit” state used during I/O. The operating system maintains reserved
pages in a reserved list—analogous to the free list.
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Page reservation works as follows. On the first page fault to a virtual page block, the
physical memory manager allocates a physical page block—using techniques such as those
described in Section 6.2.1. With page block size 64KB, for example, a page fault to address
0x41034 allocates sixteen base pages for the object pages corresponding to virtual addresses
0x40000, 0x41000, 0x42000,..., 0x4£f000. The accessed base page (0x41000) is initialized and
marked busy. Other base pages are marked reserved and added to the end of the reserved
list. Subsequent page faults to the same page block will search using the corresponding iden-
tity and find these base physical pages reserved. The reserved physical page will be allocated
and marked busy. Thus page reservation always places the physical pages at the correct loca-
tion. Figure 6-1 shows a sample sequence of page faults and pages allocated using page reser-
vation. Some file systems also use similar techniques to reserve disk space [McKu84].

If the physical memory manager cannot find a free physical page block, Foxtrot resorts to
using random base physical pages. The operating system can use a gather operation to cor-
rect these random allocations later when there are free page blocks. An alternate or orthogo-
nal solution would be for the physical memory manager to invoke a memory compactor to
free some page blocks when the system is short of free page blocks but has sufficient free base
physical pages.

Figure 6-1: Page Reservation
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If the physical memory manager runs out of free pages, it frees pages by removing them
from the reserved list and erasing their identity, i.e., unreserving them. This has two implica-
tions. First, the system does not incur additional paging activity if it runs out of free pages
but has other reserved pages. Second, for base pages not referenced before the free list be-
comes empty, the page reservation lapses and later page faults will cause a random page to
be allocated. The operating system can use a gather operation to correct these random alloca-
tions later when there is sufficient free memory.

Page reservation provides a natural feedback mechanism for improving the effectiveness
of superpage and partial-subblock TLBs without unduly increasing memory demand. In peri-
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ods of low memory demand, pages will be allocated from reserved physical pages, allowing
partial-subblock TLB blocks to be shared and subsequent page promotions to proceed with-
out gather operations. In periods of high memory demand, on the other hand, base pages will
be rapidly removed from the reserved list and reallocated, gracefully degrading the page al-
location policy back to the standard “fully-associative” non-superpage approach. Thus, there
is no significant change in the page fault rate from the non-superpage implementation—ex-
cept for the cost of doing the page reservations.

Since page reservation properly places pages with respect to the size of page block initial-
ly allocated, it works best for a partial-subblock system, which has a fixed page block size. It
also works well for superpage systems that make decisions between two page sizes. Note,
however, that different parts of the virtual address space can choose different superpage sizes
for page reservation. Further, page reservation can make decisions between multiple page siz-
es efficient by avoiding gather costs sometimes, though not always.

For partial-subblock systems, pages allocated through page reservation can share partial-
subblock TLB blocks (if attributes match). For superpage systems, page reservation reduces
page promotion costs—a key cost of using dynamic page-size assignment policies.

6.2.6 Multiple-page-size framework

A question that may be of interest to operating system designers is: How much of a com-
mercial operating system is affected by supporting superpages? I have explored two ap-
proaches in implementing Foxtrot—a) changing the virtual memory system to a multiple-
page-size framework and b) retaining the original single-page-size framework and imple-
menting the new mechanisms to operate on sets of physical pages. I found it easier to retain
the single-page-size framework.

There are two fundamental problems in changing the operating system to a multiple-
page-size framework. First, the operating system has the idea of a single page size ingrained
at all levels. Most code and data structures assume a constant PAGESIZE. Many internal and
external interfaces assume a single fixed page size as an implicit parameter (e.g., vnode inter-
face [Klei86]). A multi-processor multi-threaded operating system [Camp91, Eykh92, Khal94]
has to synchronize concurrent operations and using superpages requires a redesign of the
synchronization protocols. Some file systems assume that the page size is smaller than the file
block size, and so on. In moving Foxtrot to a multiple—pa§e-size framework, I had to modify
large parts of the virtual memory system and file systems”. The key data structure change re-
quired is to allow physical pages descriptors to describe either a base physical page or a
physical page block—much of the operating system operates on physical pages and the phys-
ical page structure is often a parameter.

The second problem is with physical pages that have both base page and superpage map-
pings. When different processes share physical page blocks the operating system may have to
support operations on individual base physical pages, e.g., locking one base page, adding a
base page mapping to the mapping list. There are at least three ways to support such opera-
tions: a) demote the physical page blocks to base pages or b) promote the base page opera-
tions to operate on the full page block or ¢) maintain individual subblock-fields in the page
structure. However, UNIX semantics do not always make it possible to demote page blocks or
promote base page operations to page blocks, and maintaining subblock-fields is not much

3. 1 did not complete it as it was easier to implement the mechanisms within a single-page-size framework.
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different from using the original single-page-size framework.

The other option is to use the single-page-size framework in the operating system and im-
plement all the new mechanisms to coexist with the old mechanisms. The key is to remember
that a superpage size is an attribute of the virtual address and not the physical address. Super-
page and partial-subblock support can be added to an operating system by only requiring the
virtual memory system to properly place pages in physical memory—e.g., using page reserva-
tion or using gather operations—and a page table manager that can recognize and coalesce
base page PTEs into superpage or partial-subblock PTEs. Foxtrot, for example, implements al-
locating a page block as allocating a set of base pages from the freelist, implements page res-
ervation as adding multiple base pages to existing hash tables, and, implements page
promotion as fetching unreferenced base pages within the page block 1nto prereserved base
physical pages. This has the advantage that the changes can be localized*. It has two disad-
vantages. First, the operations incur no less overhead than in a single-page-size system. An
operating system with a multiple-page-size framework can employ several optimizations,
e.g., acquire a single lock for a superpage, or initiate a single disk I/O for a superpage. Sec-
ond, operations that operate on sets of pages acquire multiple locks and could cause dead-
locks. Foxtrot uses a single-page-size framework and required changes to segment drivers
and the physical memory layer.

A clustered page table, I propose in Section 7.3, is especially suited for constructing super-
page and partial-subblock PTEs in an incremental fashion and for coalescing base page map-
pings into superpage mappings. Adding superpage mappings to a set of base physical pages
also complicates the design of the mappings lists, or synonym table. Section 7.5 describes
how a synonym table can be modified to support an arbitrary mix of superpage and partial-
subblock mappings to a set of base physical pages.

Partial-subblock TLBs are especially easy to support without using a multiple-page-size
framework—they require only variable size freelist management and proper physical memo-
ry allocation. Superpage TLBs can use a multiple-page-size framework to implement some
operations efficiently but require substantial operating system modifications.

6.3 Interactions with other OS mechanisms and policies

The page-size assignment policy and the mechanisms described in Sections 6.1 and 6.2 are
sufficient to incorporate superpage and partial-subblock support in an operating system. The
effectiveness of superpage and partial-subblock TLBs can be improved by properly managing
interactions with the virtual address allocation policy, shared objects, copy-on-write imple-
mentation, file system read-ahead and clustering, page replacement policy, and page coloring
that a conventional operating system already implements.

6.3.1 Virtual address allocation

Many operating systems support mapped files or the flexibility to specify starting ad-
dresses of segments or both. Choosing the correct virtual address is important to be able to
use superpages or partial-subblocking. Assigning starting virtual addresses aligned with re-

4. “Localized” changes is a relative term. In implementing Foxtrot, | had to modify about 100 source files in Solaris
2.1 and rewrote all of the physical page layer argelaarts of the virtual memory system. | chose to emulate the
superpage TLBs and did not modify the page tables (hat layer). In retrospect, it is possible to restrict the changes to
the physical page layer by accepting a slightlyfioieit implementation.
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spect to the largest superpage size expected to map the object, allows superpages to be used
more often than the default random virtual address allocation. Mapping a 4MB frame buffer
at VA 0x4000, for example, prevents the use of a 4MB superpage (even if with properly
aligned physical pages). The same mapping at VA 0x40000 allows the use of one 4MB super-
page. Virtual address allocation is more important than proper physical memory allocation as
virtual addresses once allocated cannot be changed—gather operations can correct erroneous
physical memory allocations. Paged-segmented architectures [Radi82, Chan90, Lee89b] can
reassign virtual addresses by modifying the segment table but cannot avoid the problem
completely as the segment offset cannot be changed.

Foxtrot chooses a virtual address aligned with respect to the largest page size that is
smaller than the size of the object, if the user does not specify a fixed address. This does not
choose the optimal alignment for a growing segment (e.g., heap). Instead, user programs, can
use UNIX library libmapmalloc (or mmap /dev/zero) to allocate large data structures to
trigger Foxtrot’s heuristics for allocating aligned virtual addresses to increase the effective-
ness of superpage usage. The naive solution of always allocating objects at virtual addresses
aligned with respect to the largest supported superpage size (e.g., 16MB) is not attractive as it
results in very sparse address space usage that can affect page table performance, e.g., in a
linear page table.

6.3.2 Shared Objects and Libraries

Many processes share mapped files, dynamically-linked libraries, and SystemV shared
memory pages. This raises three interesting problems in page-size-assignment.

First, the first process that maps a shared object (e.g., libc) will result in the operating sys-
tem allocating properly placed physical memory for superpages with respect to the virtual
address this process uses. Processes which map the same object later must choose aligned vir-
tual addresses with respect to the superpage mapping established by the first process or else
must use base page mappings. Foxtrot’s virtual address allocation based on the file size allo-
cates correctly aligned virtual addresses in each process without any inter-process coordina-
tion, when mapping the full file.

Second, the dynamic linker in Solaris 2.1 maps only the first page of the shared library
and later maps the full file (after reading the header information). This two-step process
breaks superpage memory allocation for shared files. On the first mmap of a single base page,
page-size assignment would allocate a random base physical page as it cannot distinguish
this from any other base page-sized mapped file. When mapping the full file later, this first
base page causes page promotion to fail or requires a gather operation. Foxtrot optimizes this
common case by doing page-reservation for a full page block when the first page of a file is
mapped—this allows the use of a superpage for the full file.

Third, a page-size assignment policy monitors the memory usage or TLB miss rate using
virtual addresses of a single process. Shared objects share the same physical pages across
multiple processes and a good page-size assignment policy accounts for such sharing while
calculating memory usage or TLB miss cost. Most shared libraries can be mapped with super-
pages as the first process already properly places the file in physical memory. Foxtrot does
not account for this sharing as it implements page-size assignment policy in segment drivers,
which are per-virtual address space entities. This results in each process independently exe-
cuting the page-size assignment policy and deciding whether to map the shared file with su-
perpages. An alternate implementation would be to maintain per-file usage counts that can
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account for such sharing and incurs less overhead. The disadvantage, however, is the modifi-
cations needed to multiple file system implementations, e.g., ufs, nfs, cachefs, afs, tmpfs,
swapfs.

Shared files also result in multiple virtual addresses per physical page, aliases. Alias man-
agement becomes complicated if some processes use superpage mappings and others use
base page mappings for the same physical pages. Section 7.5 describes three solutions to han-
dle this situation.

The above situations occur when processes sharing pages are simultaneously active. Page-
size assignment is also affected when a process uses pages created by another process, e.g., a
compiler creates an executable that executes soon after. If the compiler process used random
base pages for output files, a gather operation is required to use superpages for the text seg-
ment when executing the program. This situation occurs quite frequently but it is not practi-
cal to coordinate the virtual addresses and physical addresses used by two non-
contemporaneous programs.

6.3.3 Copy-on-write

Many operating systems use the copy-on-write optimization [Rash88] to reduce memory
demand by sharing read-only pages until written (e.g., program data segment). A copy-on-
write operation remaps a virtual page to a copy of the original physical page adding read-
write permissions. As this changes both the protection and PPN for one base page within a
page block, a copy-on-write causes page demotion and has two implications on superpage
use:

First, the page-size assignment policy must account for possible remapping of base pages
in page blocks mapped copy-on-write. If a page block is expected to be rarely written (e.g.,
program text), then the default policy for the file can be used. If a page block is expected to
be sparsely overwritten (e.g., program data segment), then either avoid page promotion or in-
voke page demotion on the first copy-on-write. If a page block is expected to be completely
or mostly overwritten (e.g., bss segment), then a copy-on-write operation on the full super-
page is more efficient than individual base page copy-on-writes. In partial-subblock systems,
the page block is initially properly placed in physical memory. Copy-on-written pages get
randomly allocated base pages but other base pages continue to share a single TLB block. A
further optimization would be to properly place all the destination copy-on-write pages also.
Thus, two partial-subblock TLB blocks suffice—the original, unwritten pages share one TLB
block and the written pages share another—while a superpage TLB would use all base page
mappings. Foxtrot implements page demotion on first copy-on-write always and does not im-
plement further optimizations.

Second, a copy-on-write operation that results in a page demotion in one process results
in a physical page having some superpage and some base page mappings. If the operating
system does not support that, one solution is to demote the superpage in all processes shar-
ing the page block, which has the undesirable characteristic of one process affecting other
processes’” TLB performance. Another solution is to do copy-on-write for the full superpage
always, which wastes memory. The naive solution of never using superpages for copy-on-
write regions is not acceptable as many text segments allow copy-on-write for self-modifying
code or dynamic linking and data segments are inherently copy-on-write. Copy-on-write op-
erations also occur frequently when starting processes using the UNIX fork system call.
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6.3.4 File system read-ahead and clustering

Operating systems include some file system read-ahead and clustering to prefetch neigh-
boring base pages. There are two reasons for such file system implementations. First, pro-
grams are likely to access neighboring base pages soon due to spatial locality and prefetching
often helps reduce page fault latency on later page faults. Second, some file systems cluster 1/
O operations to store files contiguously on disk and prefetching the next sector often comes
for free in a disk I/O. This interacts with superpages in two ways:

First, read-ahead operations make it likely that base pages reserved on the first page fault
to a page block will be used soon. Thus if the read-ahead is likely to result in bringing in a su-
perpage worth of data, page reservation is a better alternative to allocating random base pag-
es immediately followed by a page promotion and a gather. Solaris 2.1 implements
straightforward read-ahead but Foxtrot implements read-around—reads base pages that are
within the same page block instead of blindly reading from the next page block. For example,
on a page fault to VA 0x45000, Foxtrot initiates read-around for VA ranges 0x40000..0x44fff
and 0x46000..0x4ffff.

Second, some read-ahead operations result in prefetching base pages that belong to a
page block not yet referenced by the program. As Foxtrot does page reservation only on page
faults to the page block, these pages may be loaded into random base pages. Foxtrot prevents
such read-ahead. Other options include doing page reservation on demand or allocating ran-
dom base pages followed by a gather operation during page promotion.

6.3.5 Page replacement

LRU-based replacement policies, e.g., Clock [East79], work as in a single-page-size system
if superpage mappings duplicate the reference and modified bits in all the base physical page
descriptors. Thus, base pages with superpage mappings are treated similarly—all replaced or
none replaced. An optimization would be to replace all the base pages in one atomic opera-
tion, which may result in efficient disk I/O. If a page block has a mix of base and superpage
mappings, the reference bits may be such that it replaces only some base pages within a su-
perpage, causing page demotions.

The main interaction with page-size assignment is that page replacement resets the policy
for a page block. Page replacement frees all the mappings and physical memory. A later page
fault restarts the page-size assignment policy usage counts. Another option is to remember
the old page-size assignment policy outcome and reuse it for the life of the program. This has
the advantage of avoiding the overhead of redetermining the optimal page size but has the
disadvantage that page blocks once promoted, never get demoted.

Page replacement also could interact with variable-size freelist management to reduce ex-
ternal fragmentation. By preferentially freeing pages that would create free page blocks, for
example, page replacement can help freelist management to have more physical page blocks
to allocate. I have not explored this interaction or its effect on system performance.

6.3.6 Page Coloring
Page coloring [Tayl90, Kess92, Chiu92] also carefully selects physical pages for virtual ad-

dresses but for a different purpose and in a different way than page reservation. Page color-
ing for physical-indexed physical-tagged caches seeks to reduce cache conflict misses by
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partitioning virtual and physical pages into equivalence classes and reducing the probability
of allocating virtual pages from different VPN equivalence classes to the same PPN equiva-
lence class. Page coloring for virtual-indexed physical-tagged caches seeks to reduce cache
flushes by attempting to allocate physical pages to the same VPN equivalence class as the
previous mapping to the physical page.

Page coloring, however, does not attempt to place consecutive virtual pages into consecu-
tive physical pages, as page reservation does. The page coloring algorithm in Solaris 2.1 uses
a round-robin scheme but also searches ahead 100 buckets to allocate a page from the least-
used bucket. This randomizes physical memory allocation and, even if consecutive page
faults occur to consecutive virtual pages, rarely allocates consecutive physical pages. Foxtrot
disables page coloring in superpage and partial-subblock systems. I have not studied the ef-
fect of this on cache behavior.

6.4 Conclusion

Superpage and partial-subblock TLBs are completely ineffective if operating systems do
not support them. Worse, set-associative superpage and partial-subblock TLB implementa-
tions have significantly worse performance than equivalent conventional single-page-size
TLBs. This chapter makes two important contributions.

First, I identify the operating system policies and mechanisms required to support such
TLBs. In particular, a new policy and upto six new mechanisms may be required (Table 6-1).
Besides describing alternate policies and implementations for the mechanisms, I list their in-
teractions with existing operating systems policies and mechanisms.

Second, I propose a new physical memory allocation algorithm, page reservation, that al-
locates physical memory such that superpage and partial-subblocks mappings can be used
without incurring the cost of copying base pages into contiguous memory.

Foxtrot, my operating system prototype, implements a functional set of policies and
mechanisms to support two page sizes and partial subblocking.
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Chapter 7 Page Table Structures

7.1 Introduction

A page table stores translation, protection, attribute, and status information for virtual ad-
dresses [Huck93, Chan88, Levy82, Silh93, Lee89b]. A page table entry (PTE) stores the informa-
tion for one page. The TLB miss handler accesses the page table on a TLB miss to load the
appropriate PTE into the TLB. An ideal page table would facilitate a fast TLB miss handler, use
little virtual or physical memory, and flexibly support aliases. Section 7.2 reviews conventional
page tables—linear, forward-mapped, and hashed—and discusses the challenges of extending
conventional page tables to support 64-bit address spaces. It explains why both linear and
hashed page tables are viable, and why forward-mapped page tables are probably impractical
as each TLB miss requires about seven memory references. Many processors now support TLB
miss handling in software with some hardware assist, e.g., MIPS [Kane92], Alpha [Site93], Ul-
traSPARC [Yung95], PA7100 [Aspr93]. This makes page table design an operating system issue
and gives operating system designers more flexibility than traditional hardware-defined page
tables.

Section 7.3 introduces the main contribution of this chapter: a clustered page table. It is a new
page table structure that can be viewed as a hashed page table augmented with subblocking, in
a manner analogous to subblocking for TLBs (Chapters 4 and 5). Hashed page tables associate
a tag with every base page PTE. Clustered page tables associate a single tag for a page block.
Clustered page tables are effective when spatial locality makes it likely that consecutive pages
are in contemporaneous use. For the assumptions in Section 7.3, for example, clustered page
tables with sixteen pages per page block use less memory than hashed page tables if, on aver-
age, six or more pages are populated. Experimental results (Table 7-6) show that clustered
page tables use less memory than the best conventional page tables—linear page tables for
dense address spaces and hashed page tables for sparse address spaces. Clustered page tables
will be included in an upcoming release of Solaris, a commercial operating system from Sun
Microsystems [Khal95a].

Chapters 3, 4, and 5 described use of superpages and subblocking in TLBs. These techniques
are very effective at improving TLB performance. However, without support in the page table
to store superpage and subblock PTEs or a TLB handler to traverse such page tables, these TLB
techniques are completely ineffective.

Section 7.4 presents the second contribution of this chapter: extending page tables to sup-
port superpage and subblock PTEs. Replicating the superpage or partial-subblock PTEs at
each base PTE site extends any conventional page table to support the new PTE formats with-
out affecting TLB miss penalty. I discuss alternate solutions that have drawbacks but are us-
able in specific situations. I then show how clustered page tables are ideal for supporting
medium superpages or subblocks, as they result in smaller page tables, while retaining fast
TLB miss handling and flexibility. . When TLBs do not support superpages or subblocking,
page tables can use superpage or partial-subblock techniques to reduce page table size by an
order of magnitude (Table 7-6)

Operating systems using a private address space model, e.g., UNIX [Thom74], maintain
one page table per process or associate a process identifier with each PTE in a shared page ta-
ble. Operating systems using a private address space model must support mappings for
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shared objects, e.g., shared libraries [Ging87a]. When two different virtual pages map to a
physical page, the two virtual pages are known as synonyms (or aliases). An operating system
data structure, which I call the synonym table, keeps track of these aliases. Section 7.5 explores
ways to incorporate superpage and partial-subblock PTEs in a synonym table.

The page table techniques described in this chapter are equally applicable to single address
space systems, e.g., Opal [Chas94] or MONADS [Rose85], and segmented systems that use glo-
bal effective virtual addresses, e.g, HP [Lee89b]. Hashed and clustered page tables are especial-
ly attractive in these systems as they have a very sparse address space.

Section 7.6 gives performance numbers, where I show that clustered page tables use less
memory than any other page table and are faster to access when using superpage or subblock
PTEs. Section 7.7 reiterates the contributions.

7.2 Conventional Page Tables for 64-bit Address Spaces

This section reviews commonly-used page tables—linear, forward-mapped, and hashed—
and discusses extending them to support 64-bit virtual addresses. A detailed description can
be found in Huck and Hays [Huck93]. For all page table designs, 64-bit address mapping in-
formation will require eight bytes, e.g., PowerPC [May94], Alpha [Site92], UltraSPARC
[Yung95]. The upper-right corner of Figure 7-1 illustrates example mapping information that
contains one valid bit, a 28-bit PPN (40-bit physical address with 4KB pages), 12 bits of soft-
ware or hardware attributes, and PAD bits for future use.

Figure 7-1: Linear Page &able Organizations and PTE format
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A linear page table conceptually stores all PTEs for a process in a single array. The virtual
page number(VPN) indexes the array, as shown in Figure 7-1. Complete linear page tables are
very large and are only partially populated. Consequently, they reside in virtual address space,
using page faults to populate the table dynamically (e.g., VAX-11 [Levy82], MIPS R4000
[Kane92], Alpha [Site92]). As PTEs are allocated a page at a time, space overhead is high if an
address space usage is sparse. A separate data structure stores mappings to the page table it-
self, e.g., a multi-level tree of linear page tables. Ultrix uses a two-level tree and OSF/1 uses a
three-level tree on the MIPS R3000 [Nagl94b]. A straightforward extension of linear page ta-
bles to 64-bit addresses uses a virtual array with 4 x 101 entries and a six-level tree. This de-
sign is practical, as a portion of the TLB is reserved for mappings to the page tables [Nagl94b]
and the tree is rarely traversed. Alternatively, a linear page table could be backed by other data
structures, e.g., a hashed page table or a forward-mapped page table [Site92], described next.
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Forward-mapped page tables store PTEs in n-ary trees, with each level of the tree indexed us-
ing fixed address fields in the VPN (Figure 7-2). The leaf nodes store PTEs while intermediate
nodes store pointers to the next level, page table pointers (PTPs) (e.g., SPARC Reference MMU
[SPAR91]). A 64-bit address space extends the number of levels to seven (a 32-bit address space
uses three). Forward-mapped page tables are impractical for 64-bit address spaces, as an over-
head of seven memory accesses for every TLB miss is not acceptable. There are techniques to
short-circuit some levels. Guarded page tables [Lied95] are sometimes effective but would still
require three to four levels. An intermediate node cache can accelerate page table access, ¢.g.,
PTP cache in SuperSPARC [Blan92], Region Lookaside buffer in HaL [Chan95].

Figure 7-2: Forward Mapped Page @bles
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Large address space systems often use hashed (inverted) page tables [Lee89b, Chan88,
Huck93, May94] as they use memory proportional to the number of active virtual pagesl. A
simple implementation uses an open hash table and a hash function that maps a VPN to a
bucket, e.g., h(PID,VPN) = ((((PID «4) O (VPN))mod (nbuckets)) x sizeof(PTE)) + HashBase. Each PTE
in the hash table stores mapping information for one base page, a tag identifying the VPN, and
a next pointer. The hash table handles overflows with open chaining (Figure 7-3). The hash
function indexes into an array of hash nodes, the first elements of the hash buckets, and
traverses the hash bucket for a PTE with a tag matching the faulting address:

for (ptr = &hash_table[h(VPN)]; ptr != NULL; ptr = ptr->next)
if (tag_match(ptr, faulting tag)) return(ptr->mapping);

pagefault();
Figure 7-3: Hashed Pagedbles and PTE format
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1. In the absence of aliases, hashed page tables use memory proportional to the number of physical pages.
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Extending hashed page tables to 64-bit addresses is straightforward. A drawback is that
the tag and next pointer are now eight bytes each, resulting in sixteen bytes of overhead for
each eight bytes of mapping information. One optimization is to pack both into eight bytes by
using a shorter next pointer and not storing tag bits that can be inferred from indexing the ta-
ble [Huck93]. This optimization restricts page table placement and can slow software TLB miss
handling. I do not consider it further, because clustered page tables—proposed in Section 7.3—
offer more effective ways to reduce overhead.

Two variations of hashed page tables include inverted page tables and software TLBs. In-
verted page tables, e.g., in IBM System /38 [IBM78], hash to an array of pointers that when deref-
erenced obtain the first element of the hash bucket (Figure 7-4). The extra level of indirection
slows TLB miss handling as it often results in one additional cache miss [Huck93]. There are
two advantages of the indirection [Rama81]. Inverted page tables usually use the physical
page descriptors as the hash nodes. They can save memory by not storing the PPN in a PTE as
it can be inferred from the position of the page descriptor in the array. Also, page table access
time improves by dynamically moving the most recently accessed element to the head of the
hash bucket list [Rama81, Huck93]. An inverted page table easily incorporates this optimiza-
tion by maintaining the hash buckets as circular lists and updating the head pointer after every
page table lookup.

Figure 7-4: An Inverted Page &able
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Software TLBs (e.g., swTLB[Huck93], TSB [Yung94], STLB[Bala94], PowerPC’s page table
[May94]) eliminate a hashed page table’s next pointers by pre-allocating few PTEs per bucket.
Figure 7-5 shows a software TLB with associativity two. They are so-named, because they can
be viewed as memory-resident level-two TLBs with overflow handled in many ways, e.g.,
hash-rehash schemes [Agar88, Thak86] or set replacement [May94]. While software TLBs can
be the native page table structure, e.g., page tables for the PowerPC, they are more popular—
and effective also—as a cache of recently used translations. They may reside between the TLB
and a native page table to reduce average access time for a slow native page table, e.g., a for-
ward-mapped page table [Huck93, Bala94, Yung95]. The extensions I develop for hashed page
table, described next, are applicable to inverted page tables and software TLBs also, as I show
in Section 7.4.7.

95



Figure 7-5: A Softwae TLB
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Which page table should 64-bit systems use? Linear page tables work well when most
PTEs in each page of the page table are valid, but perform poorly for sparse address spaces.
Hashed page tables have fixed overhead—regardless of whether address space use is dense or
sparse—but this overhead is 200% (sixteen bytes for eight bytes). An ideal page table would
have the low-overhead of linear page tables in the common case of dense address space use,
while retaining the more graceful degradation of hashed page tables for sparse use. I next in-
troduce clustered page tables to achieve this goal.

7.3 Clustered Page Table

Clustered page tables are hashed page tables that store mapping information for several
consecutive pages (e.g., sixteen) with a single tag and next pointer. Thus, for dense address
space use, spatial overheads are much less than with hashed page tables. For sparse address
space use, overheads are much less than with linear page tables because few (e.g., sixteen) not
many (e.g, 512 = 4KB/8B) mappings need be allocated. In addition, clustered page tables per-
form ideally in cases where several consecutive pages are used together (e.g., medium-sized
objects and buffers). This section introduces clustered page tables for 4KB base pages.
Section 7.4.5 extends them to work with superpage- and subblock-TLBs.

Clustered page tables use subblocking to extend hashed page tables. Each node in the hash
table stores one tag but stores mappings for multiple base pages that belong to the same page
block—similar to a complete-subblock TLB (Chapter 4). The number of base pages in a page
block is the subblock factor. Figure 7-6 shows the format of a clustered PTE with a subblock fac-
tor of four and an open hash table constructed using them. Many page table operations are
similar to those in a hashed page table. During page table lookup, the virtual page number
splits into a virtual page block number (VPBN) and a block offset (Boff). The VPBN partici-
pates in the hash function and the block offset indexes into the array of mappings in the PTE
with a matching tag. The TLB miss handler is identical with that of a hashed page table when
traversing the hash list and differs only after finding a PTE with matching tag;:

for (ptr = &hash_table[h(VPBN)]; ptr != NULL; ptr = ptr->next) /* hashed page table: h(VPN) */
if (tag_match(ptr, faulting_tag))
return(ptr->mapping[Boff]); [*hashed page table: return(ptr->mapping) */
pagefault();
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Figure 7-6: Format of Base Clustexd PTE (subblock factor 4) and Hash @ble
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Figure 7-6 uses a subblock factor of four to simplify the illustration. Real implementations
may use a larger subblock factor (e.g., sixteen) determined by two issues. First, larger subblock
factors reduce memory overhead when most entries are used, but increase memory overhead
when mappings are sparse. Second, larger subblock factors pack mappings for consecutive
pages close together, improving their spatial locality and potentially reducing cache misses
while servicing TLB misses. If the size of the array of mappings is larger than a cache line,
however, it may place the VPBN tag and mapping information in two different cache lines, po-
tentially causing an additional cache miss during TLB miss handling.

Clustered page tables have at least four advantages over hashed page tables.

¢ TFirst, they amortize per-PTE overhead over many potential mappings. Page table size is
smaller if enough mappings within a page block are used. For subblock factor sixteen, for ex-
ample, a clustered page table uses the same memory as a hashed page table when six map-
pings are used, and about one-third the memory if all are used. This has an analogy to a
complete-subblock TLB requiring smaller chip area than a single-page-TLB with the same TLB
reach (Section 4.4.1).

¢ Second, storing mappings for multiple base pages in a single PTE reduces the number of
PTEs in a page table. This results in shorter hash table lists, a hash table with fewer buckets, or
both. Shorter hash table lists reduce hash table search time on TLB misses [Knut68b, Morr68,
Johné61].

® Third, clustered page tables amortize the overhead of allocating memory for a PTE and in-
serting in the hash list over multiple PTE insertions. Hashed page tables incur a fixed overhead
of memory allocation, list insertion and tag initialization for each PTE added to the page table.
A clustered PTE amortizes this overhead over multiple base page mappings that belong to the
same page block. This is a significant benefit as page table manipulations are expensive, espe-
cially in multi-threaded operating systems where multiple locks must be acquired [Khal94].

¢ TFourth, operations on a virtual address range are more efficient. The operating system of-
ten updates PTEs for a contiguous range of addresses, e.g., unmapping an object or changing
protections for a segment. Hashed page tables require one page table traversal per base page,
whereas clustered page tables require one per page block. It is also efficient to do range opera-
tions in linear and forward-mapped page tables with a linear array scan or a depth-first tree
search.
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Clustered page tables can perform worse than hashed page tables, however, if address
space use is very sparse or if cache performance on TLB misses is worse when tag and map-
ping information reside in separate cache lines. Experimental results, however, show that the
advantages of clustered page tables overcome their disadvantages. Before presenting these re-
sults (Section 7.6), however, I next discuss extending page tables to support superpage and
subblock TLBs. This will demonstrate additional advantages of clustered page tables.

7.4 Adapting Page Tables for Superpage and Subblock PTEs

This section presents the second contribution of this chapter: discussing page table changes
to make superpage and subblock TLBs effective. There are two potential advantages of adding
support for these TLBs. First, using the new TLBs reduces the number of TLB misses by 50% to
99% (Chapters 2-4). Second, superpage and partial-subblock PTEs (described below) store
mapping information more compactly than conventional PTEs, and can decrease page table
memory usage. This section examines adapting conventional and clustered page tables to sup-
port superpages, partial-subblocking, and preloading into complete-subblock TLBs.

7.4.1 Superpage and Partial-Subblock PTEs

The naive way to service TLB misses in superpage and partial-subblock TLBs stores only
base page PTEs in the page table. The TLB miss handler scans PTEs for neighboring base virtu-
al pages to construct superpage or subblock mappings dynamically. As explained in Sections
3.3 and 5.3.1, this is very inefficient and can more than offset any performance benefits from a
reduction in the number of TLB misses.

A simple solution is to have the operating system construct and store special superpage
and partial-subblock PTEs in the page table. This simplifies the TLB miss handler as it can load
a PTE into a TLB without additional processing. As TLB misses occur more frequently than
page table updates, the impact of an efficient TLB miss handler is more significant. Further, the
operating system often can decide when to use such PTEs, e.g., during page promotion, or can
construct such PTEs lazily, e.g., during garbage collection.

Figure 7-7 shows sample superpage and partial-subblock PTEs that I propose storing in the
native page table. A superpage PTE adds a size field that specifies a power-of-two size that the
PTE maps. A s-bit field can specify one of 2° different page sizes. Multiple base page PTEs, or a
single superpage PTE if possible, map a page block. A partial-subblock PTE adds a valid bit
vector that specifies a subset of base pages within a page block that this PTE maps. A s-bit field
allows a page block size of upto s base pages. It is possible to map a page block using either
multiple base page PTEs, or a single partial-subblock PTE, or multiple partial-subblock PTEs
with disjoint valid bit vectors, or a combination of base page and partial-subblock PTEs. The S
field—for Subblock/Superpage—distinguishes a partial-subblock and superpage PTEs from
base page PTEs and each other, since all reside in the same page table.

Figure 7-7:. Superpage and Partial-subblock PTE format (mapping portion)

Superpage Mapping [v|sz| paD| s| PPN [2] ATTR |

(any power of two size - SZ) 63 59 40 12 0 Unused bits
Partial-Subblock Mapping |Vis.o | PAD| S| PPN [4| ATTR | in PPN
subblock factor 16 63 48 40 12 0

The new PTE formats, however, require a page table able to store such mappings and a TLB
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miss handler that can traverse such page tables. The page tables must support finding a PTE
on a TLB miss using the faulting address (without apriori knowing the page size) and without
significantly increasing the TLB miss penalty. To the best of my knowledge, current commer-
cial operating systems do not include such page table support, rendering the hardware TLB ex-
tensions useless.

Superpage and partial-subblock PTEs significantly reduce page table size and can result in
faster TLB miss handling or better CPU cache behavior. A software TLB miss handler allows a
page table to store PTE formats different from the hardware TLB block format with some extra
work in the TLB miss handler to transform the PTE. For example, using superpage or partial-
subblock PTEs with a hardware single-page-size TLB or using superpage PTEs with page sizes
larger (e.g., 16MB) than the maximum supported page size (e.g., 4MB) reduce page table size
with little affect on the TLB miss handler.

7.4.2 Supporting Superpages

Here I discuss adapting conventional page tables to support superpage PTEs. There are, at
least, two solutions for supporting superpages that work for any page table: Replicate PTEs and
Multiple Page Tables.

Replicate PTEs. This solution stores a superpage PTE at the page-table site of every base-
page PTE covered by the superpage. Thus, the information for a 64KB superpage gets repeated
at sixteen base page sites. On a TLB miss, the handler finds the mapping as if the address has a
base page size, but loads a mapping for the whole superpage. Figure 7-8 shows a 16KB super-
page PTE, mapping the virtual address range 0x0..0x3fff, stored in a linear and a hashed page
table using this approach.

This simple solution is satisfactory. It results in better TLB performance than with conven-
tional TLBs by permitting superpage PTEs to reduce the frequency of TLB misses without af-
fecting the TLB miss penalty. It has two drawbacks. First, it does not allow use of superpages
to make page tables smaller. Second, the replicated PTEs make adding a superpage PTE or
atomic PTE update more complex, especially in multi-threaded, multiprocessor operating sys-
tems [Eykh92, Clar95, May94].

Figure 7-8: Storing superpage mapping for (%3-VAO) in a hashed page table

3[O16KB | 5300] At ] e 16K/O0X3]—,
2 [0[16KB | 5300] Attr | e TBKIOX2—, 51%53&2%551)1\1
1[0[16KB | 5300] At | e T6K/OXT}—,
0|0[16KB | 5300 Atr | e I6K/OXO—  Linear PTE
Linear Page Table Hashed Page Table shows V, SZ, PPN, Attr

Multiple Page Tables. This solution creates separate page tables for each page size in use.
On a TLB miss, the handler accesses and searches the page tables in some predetermined or-
der. The page tables probably should be sequenced from the page size most- to least-likely to
cause a TLB miss—often the order is the smallest to the largest page size.

This solution appears less good than the first solution. Its principal disadvantage is that it
will make TLB miss handling slower, unless most TLB misses go to one page size. Further-
more, the spatial overhead of supporting many page tables mitigates its potential to improve
page table size. With linear page tables, PTEs for different page sizes cannot share page table
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pages. With hashed page tables, hash buckets must be set up for each page size. Alternatively,
all logical page tables could share the same buckets at a cost of longer hash chains. This ap-
proach maybe attractive for storing superpage PTEs in software TLBs where a superscalar pro-
cessor can execute a TLB miss handler for two page sizes in comparable time to a single page
size TLB miss handler [Kong92, Yung95, Khal93a].

There are also some superpage strategies that only work for specific page tables.

Linear Intermediate Nodes. Linear page tables that use a multi-level tree structure can
store superpage PTEs at intermediate tree nodes. With 4KB base pages and eight byte PTEs, for
example, each entry in the last level of intermediate nodes points to a page of 512 PTEs. This
solution allows the intermediate node entry to store a superpage PTE covering the same virtu-
al space (2MB = 512*4KB).

This solution supports superpages with a modest increase in TLB miss handling time (to
decide whether an intermediate node is a superpage PTE or points to the next level). The TLB
miss handler would, however, still first access the base page PTE site and incur a nested TLB
miss. Its key disadvantage is the lack of flexibility. It only supports page sizes that correspond
to intermediate nodes, e.g., 2MB, 1GB, 512GB, 256TB, and 64PB. In particular, it supports no
medium-size superpages.

Figure 7-9: Forward Mapped Page @ble with Superpage mappings (64KB and 256KB PTES)
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16TB Level 6 Tables
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Level 7 tables
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Forward-Mapped Intermediate Nodes. Forward-mapped page tables are a multi-level tree
structure and can store superpage PTEs at intermediate tree nodes. A level 6 table entry, for ex-
ample, could store a 256KB superpage PTE, as shown in Figure 7-9. Furthermore, the tree’s
branching factor can be altered to support any superpage size. The branching factor of a soft-
ware-traversed forward-mapped page table is flexible (unlike linear page tables where the
number of PTEs per page fixes the branching factor or hardware traversed page tables that
have fixed branching factors). In Figure 7-9, for example, the branching factor for level 7 can be
either four or sixty-four depending on whether a 256KB region uses 64KB PTEs or 4KB PTEs.
Implementing the forward-mapped page table as a B-tree [Come79] allows each intermediate
node to map a variable amount of memory and can result in fewer levels. However, a B-tree re-
quires a binary search at each level of the tree instead of indexing with fields from the virtual
address. I have not explored the tradeoff further.

Superpage-Index Hashed. One way to support superpages in conventional hashed page
tables is to always assume a specific superpage size in the hash function and to associate with
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a bucket all appropriate superpage and base page PTEs. Chapter 3 describes a similar scheme
for hardware superpage TLBs, where set-associative TLBs support two page sizes using the su-
perpage index. When hashing on 64KB superpages, for example, a particular 64KB region
could be mapped by (a) one 64KB superpage, (b) sixteen 4KB base pages, or (c) two 16KB su-
perpages and eight base pages. This would result in one, sixteen, or ten PTEs chained to the
same bucket (besides any other PTEs mapping to the same bucket). This solution is not so
good, because the longer hash chains will increase TLB miss handling time. In addition, super-
pages larger than the size selected for hashing must be handled another way. The performance
of this solution depends on the ability of the operating system to use superpages. If application
or memory constraints restrict use of superpages, the hash lists get very long with base page
PTEs and the performance is worse than a conventional hashed page table. Set-associative su-
perpage TLBs show similar performance (Table 3-2).

In summary, the replicated-PTE method is probably the best method so-far for supporting
medium-sized superpages in conventional page tables. It decreases frequency of TLB misses
without increasing the TLB miss penalty. Large superpages can use any of the other methods
described also, as there are few such mappings and they miss less often in a TLB.

7.4.3 Supporting Partial-Subblocking

This subsection applies superpage page tables to supporting partial-subblock PTEs (bot-
tom of Figure 7-7). Page table support for partial-subblock PTEs is similar to supporting a base
page size and a single superpage size equal to the base page size times the subblock factor. A
partial-subblock PTE resides in a page table exactly where a corresponding superpage PTE
would have resided. Page blocks that cannot use partial-subblock PTEs can use base page
PTEs. Another option is use multiple partial-subblock PTEs or a combination of base page
PTEs and partial-subblock PTEs to map a page block. This is analogous to a partial-subblock
TLB that use multiple TLB blocks to store incompatible mappings for a page block(Section 5.1).
Section 7.4.6 shows more complex optimizations.

The advantages of supporting partial-subblock PTEs over superpage PTEs are four-fold.
First, partial-subblock TLBs are more effective than superpage TLBs (Chapter 5). Second, par-
tial-subblock PTEs reduce page table size more effectively than superpage PTEs (Table 7-6).
Third, partial-subblocking requires simpler operating system support than superpages
(Chapter 6). Fourth, a partial-subblock PTE is a natural intermediate format for page tables
that construct superpage PTEs incrementally. The disadvantage is that large subblock factors,
e.g., 32 or larger, are not practical due to the limited number of valid bits in a PTE. The exten-
sions described in Section 7.4.2 for superpage PTEs are also applicable to storing partial-sub-
block PTEs.

Replicate PTEs. This solution stores a partial-subblock PTE with multiple valid bits set at
the page table site of every base page PTE covered by the partial-subblock PTE, just as a super-
page PTE. This solution is, however, less attractive for partial-subblock PTEs than for super-
page PTEs. Superpage PTEs require modification of multiple PTEs only during relatively
infrequent operating system directed page promotion or demotion operations. When an oper-
ating system adds or deletes base page mappings from the page table, it can create and main-
tain partial-subblock PTEs incrementally. This requires modifying multiple PTEs on almost
every page table operation.

Multiple page tables. This solution creates one page table for base pages and another for
the page block size (along with any for larger superpage sizes). Since a partial-subblock PTE
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can often store superpage PTEs of a smaller superpage size than the page block size, fewer
page tables are needed than the number of superpage sizes supported and improves page ta-
ble access time. Further, with support for proper physical memory placement, the order of
searching the page tables should favor the partial-subblock PTEs over the base page table as
partial-subblock PTEs will be accessed more often than base page PTEs.

Linear/Forward-mapped intermediate nodes. Linear and forward-mapped page tables
can rarely store partial-subblock PTEs at their intermediate nodes. First, partial-subblock PTEs
have a small subblock factor (8 or 16) while common branching factors for the lowest level of
the tree are much larger (64 or 512). Second, all the other solutions allow base page PTEs to be
used for mappings that cannot share the partial-subblock PTE. Replacing the intermediate
node with a partial-subblock PTE forces use of base pages for the full page block if even one
mapping is incompatible. While this is no worse than the equivalent superpage PTE solution,
it does not exploit all uses of partial-subblock PTEs.

Superpage-index hashed. Partial-subblock PTEs reduce the length of the hash lists even
when using superpages. Multiple base page PTEs that could not use a superpage PTE add to
the same hash bucket. One or two partial-subblock PTEs can often replace the base page PTEs,
shortening the lists. However, when the operating system does not do proper physical memo-
ry allocation, long hash lists for base page mappings will still occur.

7.4.4 Preloading Support for Complete-Subblock TLBs

Another hardware technique for increasing the address space mapped by a TLB is com-
plete-subblocking. A complete-subblock TLB requires no special operating system or page ta-
ble support. On a TLB miss, the handler merely searches any page table for the base page PTE
and loads it into the TLB—exactly as in a single-page-size system.

A complete-subblock TLB, however, incurs block misses and subblock misses (Section 4.2).
Block misses allocate a new TLB block, often replacing an old TLB block. Subblock misses add
a new PPN and attribute information to an existing TLB block, without causing a replacement.
Subblock misses can be eliminated, however, if each block miss preloads all mappings associ-
ated with its tag, as the MIPS R4000 does for two PTEs [Kane92]. Subblock preloading never
pollutes a TLB by replacing more useful mappings, because it never causes extra replacements
[Hill87], but reduces the number of TLB misses significantly (Chapter 4).

A drawback of subblock preloading is the increased time to service TLB block misses. This
penalty is large for hashed page tables, as it requires multiple hash probes. This penalty is rea-
sonable for linear, forward-mapped, and clustered page tables, as the additional mappings re-
side in adjacent page table memory. The penalty reduces further if the clustered PTE format
matches the format of the hardware complete-subblock TLB block.

7.4.5 Partial-Subblock and Superpage PTEs in Clustered Page Tables

The section first examines incorporating partial-subblocking into clustered page tables.
This step is natural, since a node in a clustered page table (for base pages only) strongly resem-
bles a complete-subblock TLB block. This section then incorporates superpages into clustered
page tables.

The match between partial-subblock TLBs and clustered page tables is best when both use
the same subblock factor. Figure 7-10 (left) illustrates a base clustered PTE with subblock factor
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four, and, therefore, has an array of four base page mappings. Figure 7-10 (center) illustrates a
partial-subblock PTE. A partial-subblock PTE is used if all the valid mappings within a base
clustered PTE are properly placed and have the same attributes. On a TLB miss, the handler
hashes on the VPBN and walks the hash chain as usual. On a tag match, the handler consults
the new S field and then reads the appropriate mapping. The key here is that the TLB miss
handler sees no difference from a base clustered page table while traversing the hash list
matching tags and only differs when reading the mapping. Thus, servicing TLB misses to both
partial-subblock and base page PTEs does not increase the TLB miss penalty, but uses less
memory for partial-subblock PTEs.

for (ptr = &hash_table[h(VPBN)]; ptr != NULL; ptr = ptr->next)
if (tag_match(ptr, faulting_tag))
return(ptr->mapping[0].S ? ptr->mapping[0] : ptr->mapping[Boff]);
pagefault();

Figure 7-10: Storing partial-subblock and superpage PTEs in a clusted page table

Base PTE Partial-subblock PTE Superpage PTE
VPBN_tag VPBN tag VPBN_tag
next next next
V| PAD [S|PPNO| ATTRO| [V3.d PAD|[S[PPN [ ATTR V[ SZ|PAD § PPN | ATTR
V| PAD |s| pPN1| ATTR1
V| PAD |g|PPN2 ATTR2
V| PAD |S PPN3 ATTR3

Virtual Addr ess VPBN | Boff | Offset |

Hash Base Open Hash Table

Superpage support is also straightforward. Figure 7-10 (right) illustrates support for a me-
dium-sized superpage, whose size is the same as the virtual page block. The superpage PTE is
similar to a partial-subblock PTE, except it only has one valid bit. A superpage PTE replaces a
base clustered PTE if all mappings in a base clustered PTE are valid and can be condensed to a
superpage PTE. The TLB miss handler sees no difference between the three variations of clus-
tered PTEs while checking tags and traversing the hash lists.

Superpage PTEs for page sizes smaller than or equal to the page block size can co-reside in
a clustered page table without replication. Further, there is no increase in TLB miss penalty
when accessing the superpage PTEs. Smaller superpages use the SZ field to identify them. The
above example also could allow a node with two 8KB superpages. One also can mix smaller
superpage and base page mappings to map a page block by using multiple clustered PTEs
(Section 7.4.6).

Storing superpage PTEs for page sizes larger than the page block size involves a space/
time tradeoff as in conventional page tables but clustered page tables are more efficient. Larger
superpages can be supported in at least two ways. First, one can use the “Replicate PTEs” solu-
tion, but replicate once per clustered PTE instead of once per base page PTE. For subblock fac-
tor sixteen, for example, a clustered page table supports large superpages with a factor of
sixteen less overhead than conventional page tables. Second, the multiple page table approach
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is a reasonable alternative. As explained in the previous paragraph, a single clustered page ta-
ble can store superpage PTEs with page sizes less than or equal to the subblock factor times the
base page size. A second clustered page table can store PTEs for a range of larger superpage
sizes (e.g., upto IMB). Conventional page tables would require as many page tables as the
number of page sizes supported, e.g., five in the MIPS R4000.

Supporting superpages and partial-subblocks in clustered page tables offers several advan-
tages over extending hashed page tables. First, its hash chain remains short, whereas hashed
page tables require longer hash chains when using base pages. Second, partial-subblock and
superpage PTEs reduce both hashed and clustered page table size but clustered page tables do
not increase TLB miss penalty whereas hashed page tables do. Third, clustered page tables
simplify incremental creation of partial-subblock and superpage PTEs by storing mappings for
consecutive base pages together. If the operating system, notices that all base page mappings
in a node are valid, it could decide to promote them to a superpage. Gathering this informa-
tion in hashed page tables is less efficient.

In summary, clustered page tables for base pages use less memory than hashed page tables
by combining mappings for neighboring base virtual pages that have nearly identical tags into
a single PTE with a single tag. In this section, I took clustered page tables one step further to
support superpages and partial-subblocking as well by combining mappings for neighboring
base virtual pages that also have nearly identical PPNs into a single mapping.

7.4.6 Generalized Clustered Page Table

Clustered page tables are quite flexible and can store base page PTEs, base clustered PTEs,
superpage PTEs, and partial-subblock PTEs—each with different subblock factors and super-
page sizes—in various combinations. A generalized clustered PTE has a VPBN_tag, a next
pointer and an array of mappings each having a fixed PTEpagesize—the number of base pages
mapped by one mapping. A clustered PTE can either store an array of base page mappings
(PTEpagesize of 4KB) or a combination of superpage and partial-subblock mappings (super-
page size equal to 4KB times subblock factor of partial-subblock PTE). Mappings that belong
to the same page block but have different PTEpagesize use different clustered PTEs, e.g., super-
page PTEs of 8KB and 16KB page sizes use different clustered PTEs. PTEpageblocksize is the
number of base pages mapped by the VPBN_tag—PTEpagesize times the size of the array. The
64KB page block (at VPN 0x450) shown in Figure 7-11, for example, has two 8KB superpage
PTEs, one 16KB superpage PTE, and three 4KB base PTEs that can share a partial-subblock
PTE with subblock factor 4. At right is a clustered page table storing the mappings in two clus-
tered PTEs—PTE X has a PTEpageblocksize of 64KB with PTEpagesize of 8KB and PTE Y has a
PTEpageblocksize of 32KB with PTEpagesize of 16KB. The key to storing arbitrary combina-
tions of PTEs is that clustered page tables can store multiple hash nodes that map overlapping
virtual address ranges, e.g., both PTE X and PTE Y could store a mapping for VPN 0x454.

for (each of multiple page tables, with different page block size)
for (ptr = &hash_table[h(VPBN)]; ptr != NULL; ptr = ptr->next)
if ((ptr->VA <= faultVA) && (ptr->VA + ptr->PTEpageblocksize > faultVA)) {
pte = ptr->mapping[(faultVA - ptr->VA)/ptr->PTEpagesize];
if pte_valid(pte, faultVA, ptr->VA, ptr->PTEpageblocksize, ptr->PTEpagesize)
return(pte);
}
pagefault();
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Figure 7-1: Generalized clusteed page table (Example)
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There are four parts of TLB miss handling that an operating system can independently con-
tigure. First, the hash function determines a maximum page block size for a hash table. Each
hash table stores PTEs with PTEpageblocksize less than or equal to this maximum page block
size. Two clustered page tables, for example, suffice to support all combinations of page sizes
(or subblock factors) from 4KB to 1MB. The operating system is free to choose any subblock
factor for each virtual address region. Second, when traversing the hash list, The TLB miss
handler checks each PTE’s tag for a match with the faulting address. This can be simplified if
all clustered PTEs in a hash table have the same PTEpageblocksize. This does not restrict
PTEpagesize and the operating system still has flexibility to choose mappings of any super-
page size. Third, if all mappings in a clustered PTE have the same PTEpagesize, simple index-
ing chooses the appropriate mapping from the array. Fourth, the valid bit in the PTE must be
verified. This is required as there can be more than one PTE in the page table that could store
the mapping, e.g., both PTE X and PTE Y could have stored the mapping for VPN 0x454 and
the search cannot terminate after a tag match that fails to find a valid mapping. Base page, su-
perpage, and partial-subblock mappings differ only in the valid bit check and are otherwise
handled identically.

7.4.7 Two-Level and Software TLB variations of Clustered Page Tables

I described clustered page tables, so far, to use an array of PTEs directly indexed by the
hash function with open chaining to handle overflow. There are at least two possible variations
that may be better suited for some implementations—Two-Level and Software TLB.

Hash tables can be either one-level (e.g., hashed page tables) or two-level (e.g., inverted
page tables), depending on whether the hash function accesses the first element of a hash
bucket or a pointer to the first element respectively. Two-level clustered page tables (Figure 7-
12) have the disadvantage of taking an extra memory access during page table traversal but
have two advantages. First, two-level tables save memory for buckets that are empty or have
only superpage or partial-subblock PTEs. A base clustered PTE (e.g., 144 bytes) is larger than a
pointer (e.g., 8 bytes), a superpage PTE, or a partial-subblock PTE (e.g., 24 bytes). Second, two-
level tables allow easy movement of the most recently referenced PTE to the head of a hash
bucket using circular lists [Rama81]. This optimization is important for clustered page tables
with single-page-size TLBs where spatial locality makes it likely that mappings for neighbor-
ing base pages in the same PTE will be referenced soon.
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Figure 7-12: Wwo-Level clustered page table
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Subblocking techniques are also applicable to software TLBs. A clustered software TLB,
analogous to set-associative hardware subblock TLBs (Chapters 4 and 5), consists of two preal-
located arrays in memory—tag and data arrays. The TLB miss handler first reads the tags from
the selected bucket and on a tag match reads the corresponding mapping from the data array.
The left half of Figure 7-13 illustrates a clustered software TLB with maximum bucket size two
(associativity) and subblock factor 4. Separating the tag and data allows multiple tags in a
bucket to fit in a single cache line as the tags are much smaller than base clustered PTEs. While
this results in an extra memory access to fetch the data, the number of memory accesses for the
tags reduces and can result in fewer overall number of memory accesses. A single superpage
or partial-subblock PTE can replace multiple base PTEs corresponding to a tag, as shown in the
left half of Figure 7-13. This, however, does not save any memory in the preallocated data ar-

ray.

Figure 7-13: Base Clustard Software TLB variations
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Another way to construct clustered software TLBs stores with the tag a pointer to the map-
pings for a page block. The right half of Figure 7-13 illustrates this for tagy of buckety using a
subblock factor 4. This scheme seems less attractive than the first scheme as it uses more mem-
ory in the tag array. It, however, has advantages when storing superpage or partial-subblock
PTEs. The tag can store the mapping itself—instead of a pointer—if a single superpage, par-
tial-subblock, or base page PTE maps a page block (the right half of Figure 7-13). This clustered
software-TLB has properties similar to a superpage-indexed hashed page table (or software
TLB) but avoids long hash lists (or conflict misses in software TLBs) by using clustered PTEs
for page blocks using multiple base page PTEs.
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7.5 Synonym Table

A page table and a synonym table are two indices built on a database of translation infor-
mation, the PTEs. A page table accesses PTEs using a virtual address as the key and uses data
structures as described in Section 7.2. A synonym table accesses PTEs using a physical address
as the key, e.g., during page replacement to collect reference and modified information or dur-
ing PTE insertion to determine cacheability of aliases in virtually-indexed caches [Whee92].
This section first describes the basic structure used for synonym tables and then addresses
how to store superpage and partial-subblock PTEs in the synonym table.

A synonym table is trivial in a global address space model as it disallows aliases and each
physical page descriptor stores the corresponding virtual address [Chan88]. In implementa-
tions that support aliases, the synonym table builds a one-to-many relation with a physical
page descriptor storing either multiple alias descriptors or a pointer to a list of alias descrip-
tors. An alias descriptor has a pointer to the PTE or a copy of the PTE itself. Each PTE either
includes the virtual address or the virtual address can be inferred from the position of a PTE in
the page table. Alias lists are straightforward to implement and require one alias pointer (two
for doubly linked list) per alias descriptor.

Hardware defined page tables usually do not include enough space in a PTE to store the
alias pomter and force the operating system to maintain the synonym table using a pointer to
the PTE2. This is inefficient to store and update as often a PTE and a pointer are not much dif-
ferent in size, e.g., four or eight bytes. Software-defined page tables can change the PTE format
to add alias pointers per mapping. This combines the page table and synonym table in a single
data structure. While this increases page table size, by eight bytes per PTE, it saves memory
compared to separate tables. Figure 7-14 shows a combined hashed page table and synonym
table. The solid lines represent the virtual address hash list pointers and the dotted lines repre-
sent alias list pointers.

Figure 7-14: Combined Hashed Pageable and Synonym &ble
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Figure 7-15 shows base PTE formats for different page tables with added alias pointers. A
clustered PTE has only one next pointer for a page block but has multiple alias pointers for a

2. An alternative approach is to allocate memory for alias descriptors and PTEs such that the address of one can be
determined from the othé€Fhis can increase internal fragmentation in linear page tables, or restrict dynamic allocation
of PTEs or have a worse cache performance than the combined approach.
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page block?. Adding the alias pointers increases the break-even point for clustered page tables
by requiring 9, instead of 6, mappings to be used within a page block for the clustered page ta-
bles to use less memory than hashed page tables. In the next two sections, I discuss how to in-
clude superpage and partial-subblock PTEs in a synonym table. The solutions I discuss can be
used with either separate synonym tables or with the combined page table/synonym table de-
scribed in this section.

Figure 7-15: Base PTE formats with alias pointers
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7.5.1 Naive Synonym tables for Superpage and Partial-subblock PTEs

Superpage and partial-subblock PTEs map multiple physical pages and reside on the alias
lists of multiple physical page descriptors. A naive way to include these PTEs in the synonym
table is to attach multiple alias pointers, one per base page, with each superpage or partial-
subblock PTE. Using the multiple alias pointers per PTE, it is straightforward to store super-
page or partial-subblock PTEs in a synonym table. Figure 7-16 shows the synonym table with
base PTEs, 8KB, and 16KB superpage PTEs.

Figure 7-16: Synonym table with mixed base and superpage PTEs
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Superpage PTEs stored using the replicated PTE approach, store the corresponding base
page’s alias pointer in each PTE but replicate the mapping information (left figure in Figure 7-
17). Superpage PTEs stored using approaches that allow a single copy add multiple alias
pointers per PTE (center and right figures in Figure 7-17). The format for partial-subblock PTEs
is identical with superpage PTEs except for the valid bit vector.

Introducing superpage and partial-subblock PTEs (in any page table type) complicates the
synonym table in three ways. First, a PTE can be on multiple alias lists and requires storage for
multiple alias pointers. Solaris, for example, associates 64 alias descriptors with a 256KB su-

3. The alias pointers are not interspersed with the mappings. This allows fitteateireloading of mappings into a
subblock TLB e.qg, all four mappings are less likely to be in a single cache line if the alias pointers were interspersed.
This also allows the TLB miss handler to be independent of the alias pointers.
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perpage PTE and is part of the alias lists for 64 base physical pages. Second, adding or deleting
a PTE may require atomic update of multiple pointers. Third, traversing an alias list requires
choosing the correct alias pointer for every PTE. Traversing the alias list for physical page 3,
for example, requires choosing alias3 pointer for the 16K PTE and alias1 pointer for the 8K
PTE. The next section explores ways to reduce alias pointer overhead for superpage and par-
tial-subblock PTEs.

Figure 7-17: Superpage PTE formats with alias pointers
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7.5.2 Alternate ways to store superpage and partial-subblock aliases

In this section, I discuss three ways to store superpage and partial-subblock PTEs in a syn-
onym table such that they require a single alias pointer per PTE. The first restricts physical pag-
es to having mappings with the same page sizes or same subblock valid bit vectors. The next
two solutions allow a general alias structure but are more complex to maintain. The main ad-
vantage of all these schemes is the significant memory savings from using a single alias pointer
per superpage or partial-subblock PTE.

The first solution restricts aliases to a physical page to have the same page size or the same
subblock valid bit vectors. The left figure in Figure 7-18 shows a synonym table with three su-
perpage PTEs attached to pages 0 and 1, assuming aligned virtual addresses. The synonym ta-
ble handles partial-subblock PTEs similarly, as shown at the right of Figure 7-18. The main
advantage is the simplicity of the synonym table, which looks similar to a single-page-size
synonym table. There are two disadvantages. First, the physical page descriptors correspond
to different amounts of physical memory, which requires substantial modifications to an oper-
ating system that assumes a physical page descriptor per base page (Section 6.2.6). Second, it
does not allow mappings to different sizes to be mixed, e.g., adding an 8K superpage mapping
to cover physical pages 2-3 requires either removing existing base page PTEs or demoting the
8K PTE to base page PTEs.

Figure 7-18: Synonym table with fixed size superpage or partial-subblock mappings
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The second solution attaches superpage PTEs to only a single physical page descriptor that
is part of the superpage and sets flags in other physical page descriptors to indicate that they
have superpage mappings not directly attached to their alias lists. The left of Figure 7-19
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shows the 8KB superpage mappings attached only to the physical page descriptor of page 0.
The physical page descriptor for page 1 has a flag indicating that there are some superpage
mappings on page 0’s alias list that also belong to page 1. The advantage of this approach is
that it allows any combination of superpage or base page aliases for a physical page. The main
disadvantage is that multiple alias lists need to be traversed. If a physical page had aliases of
multiple superpage sizes, one alias list per superpage size is traversed and each physical page
descriptor stores one flag per supported superpage size. Traversing the alias list for physical
page 1, for example, encounters some aliases for physical page 0 also and requires additional
checks to skip them. The solution can be extended to partial-subblock PTEs also as shown at
the right of Figure 7-19.

Figure 7-19: Synonym table with mixed base and superpage mappings
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The third solution avoids the multlple list traversals of the previous solution but requires
alias lists to be kept sorted in order of increasing page size® . Figure 7-20 shows the synonym ta-
ble with aliases of three different page sizes for physical pages 0-3. This approach has two ad-
vantages. First, the traversal of an alias list is simple as there is a single path from the head to
the tail of the list. Second, it requires multiple pointer updates only when inserting or deleting
the first superpage mapping in a list—deleting the superpage mapping in bold is no different
from deleting the base page mapping in bold. The main disadvantage is that deleting a super-
page mapping sometimes requires updating multiple pointers—with similar complexity to
maintaining the flags in the previous scheme.

Figure 7-20: Synonym tables with sorted alias lists
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The same techniques used for superpages apply to inserting partial-subblock PTEs in the
alias lists. Partial-subblock PTEs reside in the sorted list after base PTEs but before superpage
PTEs. Figure 7-21 illustrates a complicated example, where the top figure shows the alias lists
with multiple alias pointers per partial-subblock PTE and the bottom figure shows the same
using the sorted alias list approach. When traversing alias lists, the valid bits must be checked
to see if each PTE does have a mapping for the physical page in question.

4. This idea comes from Bill Shannon at Sun Microsystems.
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Figure 7-21: Synonym &ble example with superpage and partial-subblock PTEs
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In summary, a synonym table is an essential part of an operating system that supports
aliases. I show that there exists a simple solution to store superpage and partial-subblock PTEs
in the alias lists—by maintaining multiple alias pointers per PTE. I also show three ways to
structure a synonym table such that superpage and partial-subblock PTEs require a single alias
pointer, saving memory but complicating the synonym table management.

7.5.3 Concurrent access to a page table

In a multi-threaded, multi-processor operating system (e.g., [Eykh92]) it is important that
the page table and synonym table support concurrent accesses in parallel. The operating sys-
tem uses a locking protocol to synchronize concurrent accesses (e.g., [Bala92, May94]) and has
a significant impact on performance [Khal94]. Some results in the study of concurrent access to
database index data structures may be applicable to page tables [Come79, Baye77, Litw93,
Elli87, Fagi79, Hsu86, Kuma90, Gutt84]. A page table synchronization protocol has to address
at least three issues. First, both the page table and the synonym table must be updated atomi-
cally (e.g., with two-phase locking). Second, TLB miss handlers access the page table asynchro-
nously without acquiring any locks, requiring more elaborate page table algorithms [May94].
TLB miss handlers both read (load translation info) and write the page table (update refer-
ence/modified bits). Third, all the TLBs in a multiprocessor must be kept consistent with page
table updates, requiring a TLB consistency algorithm (e.g., TLB shootdown [Blac89, Tell90]) as
part of the synchronization protocol. Addition of superpage and partial-subblock PTEs com-
plicates the synchronization protocol. In practice, certain kinds of TLB-TLB and TLB-PTE in-
consistencies are not fatal to the operation of the system and can be allowed. When changing a
PTE’s permissions from read-only to read-write, for example, TLBs storing a stale copy need
not be kept consistent always during the modification. Such optimizations are important as
they allow use of more efficient page table synchronization protocols. I do not pursue this top-
ic further.

7.6 Performance Evaluation

This section presents performance results for the page tables discussed so far. I use Foxtrot
to obtain estimates of page table access time (the TLB miss penalty) and page table size
(Chapter 1). My numbers are approximate, for example, because I do not compute the cache
misses saved by a smaller page table. Nevertheless, I show that clustered page tables use less
space and can be accessed faster than conventional page tables. Further, their performance rel-
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ative to conventional page tables improves even more when supporting superpages or partial-
subblocking.

7.6.1 Page Table Access Time: Methodology, Metric & Results

This section extends the trap-driven simulation used for the TLB simulations described in
Section 2.1—that counted TLB misses—to also estimate page table access time. Here I assume
64-block fully-associative TLBs, 4KB base pages, and—as appropriate—subblock factor sixteen
and superpage size 64KB. I assume 4096 hash buckets in hashed and clustered page tables.
Both subblock TLBs—partial and complete—assume preloading in the TLB miss handler. I as-
sume a 256-byte (level-two) cache line size for accessing page tables and later discuss the effect
of cache line size. I use Foxtrot’s page reservation and page-size assignment policy (Chapter 6)
when considering superpages and partial-subblocking.

My metric for page table access time is the average number of cache lines accessed to han-
dle one TLB miss. This metric would be proportional to page table access time if the (level two)
cache rarely contains page table data and other overheads are small. There are at least three
drawbacks to this metric. First, and most important, it ignores that some page table data may
still be in cache, particularly for page tables that are smaller and store PTEs to exploit spatial
locality. Yoo and Rogers [Yo093], for example, observed a 10% improvement in execution time
mostly due to cache/TLB effects of reducing the page table size for a commercial database
workload. Thus, I expect the access times for clustered page tables, which use less page table
memory, to be better than the results reported here. Second, the metric ignores the initial over-
head of a TLB miss, but this penalty is independent of page table type. Third, it neglects the
time to execute the TLB miss handler instructions to process page table information. This al-
lows the metric to account for hardware TLB miss handlers that typically take time proportion-
al to the number of memory accesses. Even with software TLB miss handling, instruction
overhead for hand-coded TLB miss handlers is expected to be small on next generation super-
scalar processors that can execute three, four, or more instructions per cycle, compared to a
main memory access of about a hundred cycles.

I estimate the average number of cache lines accessed on a TLB miss as follows. I modified
Foxtrot to maintain hashed and clustered page tables exactly (in parallel with each other and
the native page table). On each TLB miss, Foxtrot traps to the operating system, providing the
faulting address and an exact page table traversal calculates the number of cache lines access-
ed. I estimate the cache lines by further assuming each PTE starts on a cache line boundary.
Linear page tables always access one cache line and occasionally access higher tree levels. I ap-
proximate this by reserving eight of 64 TLB blocks for higher tree levels and assuming each
TLB miss to the remaining 56 TLB blocks accesses one cache line. I optimistically assume that
TLB misses for intermediate nodes in a linear page table incur zero memory accesses. I assume
forward-mapped page tables access one cache line for each tree level without using any short-
circuiting optimizations. When storing superpage and partial-subblock PTEs, I assume that
linear and forward-mapped page tables use the replicate PTE approach, and hashed page ta-
bles use separate page tables for 4KB base pages and 64KB page blocks, with the 4KB page ta-
ble searched first.

I discuss page table access time (on TLB misses) for various workloads and page tables us-
ing the coarse metric: average number of cache lines accessed to handle a TLB miss. Each table as-
sumes a different TLB design. Table 7-1 assumes a conventional single-page-size TLB, i.e., no
TLB support for superpages or subblocks. Results show that forward-mapped page tables per-
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form unacceptably but other designs are similar. This is not surprising since the metric does
not reward the more-compact clustered page tables. Clustered page tables have shorter hash
lists than hashed page tables reducing the number of accesses, e.g., ML and compress. Results
for linear page tables are optimistic due to the assumptions discussed in Section 7.6.1.

Table 7-1: Average Number of cache lines accessed (single page size TLB)

Workload Linear Forward- Hashed Clustered
mapped

coral 1.06 7.00 1.02 1.01
nasa7 1.16 7.00 1.01 1.00
compress 1.30 7.00 1.41 1.00
fftpde 1.00 7.00 1.03 1.03
waveb 1.01 7.00 1.00 1.00
mp3d 1.05 7.00 1.01 1.00
spice 1.50 7.00 1.00 1.01
pthor 1.03 7.00 1.05 1.00
ML 1.18 7.00 1.20 1.01
gcc 1.36 7.00 1.00 1.00

Table 7-2 present results when the TLB and page table support superpages. Not shown is
that the use of superpages reduces TLB miss frequency by 50% to 99%, which is the main rea-
son for supporting superpage PTEs in the page table. Table 7-2 shows the average number of
cache lines accessed by the remaining misses. Results are modestly worse for linear page tables
(due to the availability of fewer TLB blocks), unchanged for forward-mapped, and much
worse for hashed page tables. Hashed page tables take longer to access superpage PTEs as I
first search the 4KB page table and then the 64KB page table. For example, the poor perfor-
mance of hashed page tables for coral and fftpde is due to a higher fraction of TLB misses to
superpage PTEs than for gcc or compress. Results for clustered page table continue to be close
to 1.0, showing that they handle the remaining TLB misses without increasing TLB miss penal-

ty..
Table 7-2: Average Number of cache lines accessed (4KB/64KB superpage TLB)
Workload Linear Forward- Hashed Clustered
mapped

coral 1.10 7.00 2.28 1.03

nasa’7 1.59 7.00 1.67 1.02

compress 1.43 7.00 1.59 1.22

fftpde 1.02 7.00 2.28 1.05

waveb 1.03 7.00 1.44 1.03

mp3d 1.26 7.00 1.80 1.02

spice 1.63 7.00 1.74 1.05

pthor 1.09 7.00 2.34 1.02

ML 1.35 7.00 1.98 1.04

gcc 1.83 7.00 1.36 1.01

Table 7-3 presents results for a partial-subblock TLB. To the first order, they are similar to
results using a superpage TLB. However, as the workloads use partial-subblock PTEs more of-
ten than superpages, hashed page tables have worse performance. For these workloads tra-
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Table 7-3: Average Number of cache lines accessed (partial-subblock TLB subblock factor 16)

Forward-

Workload Linear Hashed Clustered
mapped

coral 1.10 7.00 2.16 1.03
nasa’ 1.37 7.00 2.22 1.05
compress 1.02 7.00 3.05 1.07
fftpde 1.02 7.00 2.17 1.06
waveb 1.03 7.00 2.20 1.02
mp3d 1.33 7.00 2.10 1.02
spice 4.1 7.00 2.17 1.14
pthor 1.1 7.00 2.30 1.01
ML 1.47 7.00 1.86 1.03
gcc 1.38 7.00 2.20 1.01

Table 7-4: Average Number of cache lines accessed (complete-subblock TLB subblock factor 16)

Forward-

Workload Linear Hashed Clustered
mapped

coral 1.10 7.00 16.82 1.02
nasa7 1.25 7.00 32.06 1.04
compress 1.08 7.00 48.38 1.01
fftpde 1.01 7.00 17.71 1.05
waveb 1.01 7.00 21.91 1.02
mp3d 1.30 7.00 18.11 1.02
spice 1.50 7.00 36.12 1.23
pthor 1.10 7.00 17.50 1.00
ML 1.42 7.00 19.08 1.02
gcc 1.00 7.00 27.81 1.00

versing the page tables in reverse order—the 64KB page table followed by the 4KB page
table—would be a better option. Further, with partial-subblock TLBs, linear page tables could
have used fewer reserved TLB blocks. Partial-subblock TLB blocks allow page table allocation
size to be 4KB whereas superpage PTEs are usable only after populating all base pages in 64KB
of the page table array.

Finally, Table 7-4 gives complete-subblock TLB results, assuming the preloading as de-
scribed in Section 7.4.4. As expected, hashed page tables perform terribly due to the high cost
of multiple probes (sixteen). Linear and clustered page tables continue to be close to 1.0 as they
place the mappings for consecutive base pages nearby.

The performance of hashed and clustered page tables can be improved further in two
ways. First, the load factor of the hash table can be reduced by increasing the number of hash
buckets. Reducing the load factor reduces the average number of hash nodes searched during
a traversal but increases the amount of memory used if some buckets are empty. Second, con-
structing hashed or clustered page tables as a software-TLB can reduce the number of cache
lines accessed. A disadvantage of hashed and clustered page tables is the unpredictability of
the hash table distribution that depends on the state of the current set of active processes. One
solution is to use a per-process or per-process group page table instead of a single shared page
table.
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A clustered page table’s access time is sensitive to the cache line size. A superpage or par-
tial-subblock PTE occupies 24 bytes but a base clustered PTE occupies 144 bytes (subblock fac-
tor 16) and may span multiple cache lines. This would increase the average number of cache
lines accessed when using base clustered PTEs, e.g., by 0.625 for 64 byte cache lines. However,
the good news is that using superpage or partial-subblock PTEs in a clustered page table, even
with a single-page-size or complete-subblock TLB, eliminates most of this penalty. Table 7-5
shows the average number of cache lines accessed for different clustered page tables assuming
64-byte cache lines and different TLBs. The superpage and partial-subblock TLBs see modest
increases in the average number of cache lines accessed but far smaller than the reduction in
the number of TLB misses. Another solution is to use a smaller subblock factor, e.g., 4 or 8,
which makes the space/time tradeoff of increasing memory usage to reduce TLB miss penalty.
In practice, the performance is better than illustrated here as the expected cache hit rate is
higher for clustered page tables, which use less memory.

Table 7-5: Arerage Number of cache lines accessed for diféert 64-block fully-associative TLBs with
variations of clustered page tables (assuming 64-byte cache lines)

single-page-size TLB superpage partial- complete-subblock TLB

Workload Base superpage PSB TLB Su?fémk Base superpage PSB
coral 1.63 1.01 1.01 1.04 1.04 3.02 1.05 1.04
nasa’7 1.62 1.02 1.04 1.41 1.31 3.05 2.85 1.60
compress 2.17 1.65 1.65 1.83 1.37 3.05 2.91 1.86
fftpde 1.67 1.09 1.06 1.07 1.08 3.05 1.08 1.08
waveb 1.62 1.01 1.00 1.44 1.1 3.01 2.39 1.19
mp3d 1.63 1.01 1.01 1.31 1.14 3.02 1.72 1.10
spice 1.61 1.01 1.01 1.22 1.53 3.08 2.96 1.57
pthor 1.65 1.06 1.03 1.12 1.07 3.00 1.12 1.02
ML 1.65 1.10 1.09 1.29 1.28 3.02 1.16 1.10
gcc 1.67 1.17 1.15 1.58 1.33 3.00 2.83 1.62

7.6.2 Page Table Size: Methodology, Metric & Results

The next measure of merit of a page table is the page table size, which I measure in a two
step process. First, I take a snapshot of each program’s mappings—VPNs, PPNs, and at-
tributes—at a point near the program’s maximum memory use. Second, I use this information
to generate alternate page tables using the following additional assumptions. Mapping infor-
mation takes eight bytes. Linear page tables use the minimum possible six-level tree. Table 7-6
also shows “1-level” numbers that assume a data structure that takes zero space to store the in-
termediate nodes. Forward-mapped page tables use a seven-level tree. Hashed and clustered
page tables have an overhead of sixteen bytes per PTE to store a tag and next pointer. I com-
pute page table size for multiprogrammed workloads as the sum of page table sizes for the
constituent programs. I again assume 4KB base pages, subblock factor sixteen and superpage
size 64KB, and Foxtrot’s page-size assignment policy.

The first column of Table 7-6 shows that page table sizes are not large enough to cause ad-
ditional page faults, but they can significantly affect cache behavior. When using a private ad-
dress space model and per-process page tables, smaller page table size for each process
translates to significant savings on a large server system with thousands of active processes.
Table 7-6 displays relative page table sizes for various workloads—normalized by the size for a
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hashed page table using only base page mappings. The size of a hashed page table is directly
proportional to the number of active virtual pages. Base clustered page tables use less memory
than the best conventional page tables for all the workloads. For dense address spaces, e.g.,
coral, ML, kernel, a clustered page table is comparable or better than linear and forward-
mapped page tables. For sparse address spaces, e.g., gcc and compressS, clustered page tables
use less memory than hashed page tables als.

Table 7-6: Memory used by diffeent page tables for 4KB base pages

Hashed Page Linear Forward- Clustered

Workload Table Size 6-level Llevel mapped Hashed (subblock

factor 16)
coral 119KB 1.02 0.54 0.64 1.00 0.40
nasa7 21KB 4.27 1.53 2.04 1.00 0.44
compress 8KB 27.63 7.65 12.70 1.00 0.81
fftpde 88KB 1.29 0.64 0.74 1.00 0.39
waveb 86KB 1.32 0.65 0.75 1.00 0.40
mp3d 29KB 3.07 1.10 1.55 1.00 0.42
spice 22KB 4.28 1.66 2.03 1.00 0.47
pthor 92KB 1.23 0.61 0.74 1.00 0.39
ML 194KB 0.54 0.38 0.45 1.00 0.38
gcc 34KB 26.62 8.17 11.82 1.00 0.84
kernel space 186KB 0.65 0.56 0.51 1.00 0.48

Table 7-7 shows the relative page table sizes when storing mappings to multiple base pages
in the superpage variation of hashed page tables and superpage or partial-subblock variations
of clustered page tables. Use of superpage PTEs in clustered page tables reduces memory us-
age upto 75% and with partial-subblock PTEs by upto 80%. Further, as Tables 7-2 and 7-3 show,
clustered page tables support superpage and partial-subblock mappings without increasing
the TLB miss penalty. Hashed page tables also can use superpage or partial-subblock PTEs to
reduce page table size—with multiple page tables or multiple probes to the same page table—
but with increased TLB miss penalty (Tables 7-2 and 7-3). Corresponding reductions in page
table size are not possible in linear or forward-mapped page tables as I assume they replicate
superpage and partial-subblock PTEs.

In summary, clustered page tables improve significantly on hashed page tables by support-
ing superpage and subblock TLB architectures without increasing the TLB miss penalty while
reducing page table size.

7.7 Conclusion

As the computer industry makes the transition from 32-bit to 64-bit systems, TLBs and
page tables are affected. While linear and hashed page tables are still practical, forward-
mapped page tables are not because accessing them is too slow. Linear page tables have fast
and simple TLB miss handling but incur significant memory overhead and TLB pollution for
sparse address spaces. Hashed page tables seem the logical choice for sparse 64-bit address
spaces, but have a large per-PTE memory overhead. This thesis makes two key contributions
in the area of page table design.

5. These workloads have a sparse address space as they had multiple active processes, many of which were small. The
other workloads measure page table usage of a single program wgk hdap.
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Table 7-7: Memory used by hashed and clusted page tables for 4KB base pages and 64KB
superpages or partial subblocking with subblock factor 16

Hashed Clustered (subblock factor 16)

Workload
Base superpage Base superpage PSB
coral 1.00 0.12 0.40 0.10 0.08
nasa7 1.00 0.20 0.44 0.17 0.12
compress 1.00 0.63 0.81 0.65 0.32
fftpde 1.00 0.10 0.39 0.09 0.07
waveb 1.00 0.1 0.40 0.10 0.08
mp3d 1.00 0.16 0.42 0.13 0.09
spice 1.00 0.27 0.47 0.22 0.13
pthor 1.00 0.10 0.39 0.09 0.07
ML 1.00 0.12 0.38 0.09 0.07
gcc 1.00 0.71 0.84 0.71 0.40
kernel space 1.00 0.39 0.48 0.27 0.27

The main contribution is a new page table organization, the clustered page table, which aug-
ments hashed page tables with subblocking to address their disadvantages. Specifically, clus-
tered page tables are hashed page tables that store mapping information for several
consecutive pages (e.g., sixteen) with a single tag and next pointer. Clustered page tables use
less memory than other page table organizations, are often faster to access during TLB miss
handling and are flexible to changes needed to support operating system needs.

The second contribution is a study of how to store superpage and partial-subblock PTEs in
different page tables. In chapters 2, 3, and 4, I evaluate the use of superpages and subblocking
in TLBs to increase the TLB reach of a TLB block. These TLB enhancements are largely useless
if page tables and operating systems do not support them with proper memory allocation and
TLB miss handling. This chapter shows that there exists a straightforward way to store such
mappings in a page table—replicate the mappings—that uses the new TLB architectures to re-
duce the number of TLB misses and does not increase the TLB miss penalty. This chapter also
shows that clustered page tables support medium superpage and partial-subblock TLBs with-
out increasing the TLB miss penalty and—at the same time—reduce page table size. This chap-
ter also shows how a synonym table, in systems that support aliases, can store superpage and
partial-subblock PTEs while reducing memory usage.

It remains to be seen if commercial operating systems will incorporate the memory alloca-
tion and page-size assignment support needed for these new TLBs. Nevertheless, I suggest the
use of superpage and partial-subblock PTEs in a page table even if the TLB does not require
such support. The advantage being that using these mappings can result in smaller page tables
that are faster to access. Clustered page tables provide natural support to store such PTEs and
get the memory savings without increasing TLB miss penalty.
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Chapter 8 Conclusion and Future Work

8.1 Conclusions

Various workload, technology, and architecture trends have exposed the limitations of
conventional single-page-size TLBs. In particular, cycle time restrictions constrain hardware
designers from building large single-page-size TLBs to accommodate several important appli-
cations. Hardware designers are supporting superpages as a way to increase TLB reach. Large
superpages (= 256KB) are useful in some applications. My thesis addresses the issues in-
volved in using medium-sized superpages and suggests two subblock TLB architectures as
alternate ways to increase TLB reach.

Superpages can be used only when all base pages within a page block are properly placed
in physical memory and have the same attributes. To make this happen, however, requires
substantial operating system support, including a page-size assignment policy and upto six
new mechanisms. My thesis studies the issues involved in building superpage TLBs, shows
their effectiveness at reducing the number of TLB misses, suggests operating systempolicies
and mechanisms that are required to support medium-sized superpages, and revisits page ta-
ble design (including proposing a new page table) to store superpage PTEs. Most micropro-
cessors support superpages in some fashion. While I amnot aware of a commercial operating
system that supports them for general use, there is some evidence that upcoming releases of
some commercial operating systems will.

Subblock TLBs associate a single tag with a page block andallow base pages within a
page block to share a single TLB block. Subblock TLBs are attractive because they require
simpler (or no) operating system support and incur fewer TLB misses than medium-sized su-
perpage TLBs—fully-associative subblock TLBs easily support large superpages also.

The straightforward subblock-TLB, which I call a complete-subblock TLB, provides space
to store individual base page mappings in each TLB block. Complete-subblock TLBs exploit
spatial locality, a natural property of many programs, to reduce the amount of tag memory
over a single-page-size TLB of similar TLB reach. Microprocessor designers are unable to use
an increasing amount of chip area and transistors available to them to build larger single-
page-size TLBs due to cycle time constraints. Complete-subblock TLB designs can use the ex-
tra chip area to increase TLB reach without significant increases in access time. In particular, I
show that for large chip areas, complete-subblock TLBs are faster to access and incur fewer
TLB misses than single-page-size TLBs of comparable chiparea. To their advantage, com-
plete-subblock TLBs require no additional operating systemor page table support.

My main contribution to TLB architecture is the partial-subblock TLB design. Apartial-
subblock TLB block stores a single tag for a page block, individual valid bits for the base pag-
es, and a single PPN and attribute field for the page block. If the operating systemproperly
places base pages in physical memory, the base pages can share a single TLB block. Base pag-
es with different attributes or improperly placed base pages can still coreside in the TLB but
use a different TLB block. My thesis studies the issues involved in building a partial-subblock
TLB, handling TLB misses, providing the operating systemsupport, and storing partial-sub-
block PTEs in a page table. Partial-subblock TLBs are much smaller and faster than complete-
subblock TLBs of equal TLB reach but have comparable performance. Partial-subblock TLBs
have similar implementation complexity as superpage TLBs but require simpler operating
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system support—only physical memory management—and incur fewer TLB misses than su-
perpage TLBs.

Table 8-1 summarizes the comparison between the different TLBs. All the TLBs (except
the n-block single-page-size TLB) have the same TLB reach but have different cost and TLB
performance profiles. I rank the rows in each column from 1 through 5, where 1 is the best
and 5 is the worst for that metric. Complete-subblock TLBs have a double ranking depending
on whether they use preloading. Partial-subblock TLBs assume use of preloading as preload-
ing results in simpler hardware and better performance. TLB miss penalty is same for all the
TLBs when using replication to store superpage and partial-subblock PTEs in a single-page-
size page table. Set-associative implementations of superpage and partial-subblock TLBs are
not attractive when the operating system does not use superpages or properly place pages in
physical memory, as they have worse performance than a single-page-size TLB with the same
number of blocks and associativity.

Table 8-1: Simplified comparison of the diffeent TLB types

Effective . Set-
TLB Type Area Aﬁ(riqe; ©oTe rfirsljszs TI_eBnrzaTL]IItSS suosort Assoc
reach P y PP TLBs
Single Page Sizei(blocks) 1 1 5 5 1 1 YES
Single Page Size
(11 * 5 blocks) 5 5 1 1 1 1 YES
Complete-subblock 4 !
P 4 4 2 2 if pre- 5if pre- 1 YES
(n blocks, subblock facta) . .
loading loading
Partial-subblock
(1 blocks, subblock facta) | ° 3 3 2 ! 4 NO
Superpage
(n blocks,s * base page sizeg) 2 2 4 3 ! 5 NO

I illustrate the performance advantages of the new TLB architectures by comparing three
alternate fully-associative TLBs that occupy comparable area and have comparable access
time to a 64-block fully-associative single-page-size TLB. Table 8-2 shows the normalized exe-
cution time speedup relative to when using a 64-block fully-associative single-page-size
(4KB) TLB—a 62-block superpage TLB that supports a 4KB base page size and a 32KB super-
page size, a 57-block partial-subblock TLB with subblock factor 16 and preloading in the TLB
miss handler, and a 35-block complete-subblock TLB with subblock factor four and no pre-
loading.

Table 8-2: Key TLB performance results—normalized execution time speedupefative to using 64-
block fully-associative single-page-size (4KB) TLB

64-block 62-block 57-block partial-  35-block complete
Single-page-size Superpage subblock TLB subblock TLB
(4KB) TLB (4KB/32KB) TLB  (subblock factor 16) (subblock factor 4)
1.00 1.18 1.21 1.04

The important conclusion from Table 8-2 is that there are alternate TLB designs to a
monolithic single-page-size TLB that are of comparable implementation complexity but can
deliver good execution time speedups. The speedups are not gigantic (4% to 21%), however,
even with my overemphasis on workloads that spend significant time in TLB miss handling.
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The new TLB architectures are important as future 64-bit and object-oriented workloads that
have larger and sparser address spaces, may spend more time in TLB miss handling and have
potential for higher speedups. Today’s microprocessors are used in a range of designs from
laptops to servers and it is important that the TLBs support large workloads.

I intentionally chose workloads that spend significant time in TLB miss handling. My re-
sults overemphasize the execution time speedups and reduction in the number of TLB misses
for workloads and systems that have many small processes. While the new TLB architectures
do not help improve the execution time of small and short-lived programs, it is important to
note they do not slow them down either.

Another important contribution of my thesis is in operating system design. Superpage
and partial-subblock TLBs are largely ineffective if operating systems do not support them. I
identify the new policies and mechanisms required to support these TLBs and their interac-
tions with other operating system policies and mechanisms. I have also implemented a work-
ing version of the policies and mechanisms in a commercial operating system, Solaris 2.1. I
also propose a new physical memory allocation algorithm, page reservation, that places phys-
ical pages in their “proper place” when first allocating them instead of allocating them ran-
domly and copying into contiguous memory later.

My thesis also makes important contributions in the area of page table design. I study
ways to store superpage and partial-subblock PTEs in conventional page tables. One alterna-
tive, replicating the superpage or partial-subblock PTE at each base page PTE, supports the
new TLBs without increasing TLB miss penalty. I also propose a new page table, clustered
page table, that is smaller in size, has faster access times, and is more efficient at storing su-
perpage and partial-subblock PTEs than conventional page tables. A clustered page table is a
hashed page table augmented with subblocking and uses techniques similar to those used by
superpage, complete-subblock, and partial-subblock TLBs.

Table 8-3 summarizes the key results of my thesis. There are two factors that influence
TLB performance: operating system support, and chip area used for the TLB. If operating sys-
tem changes are inappropriate, complete-subblock TLBs give the best performance. If the
physical memory manager in the operating system can be modified, partial-subblock TLBs
will reduce TLB area or perform better than complete-subblock TLBs. While very large super-
pages are useful, my results show that supporting medium-sized superpages is not worth-
while, because they require more operating systems changes and perform less well than
partial-subblock TLBs.

Table 8-3: Key Results

TLB performance

TLB Type Additional OS |\ iy fixed chip
support
area
Single-page-size None Worst
Complete-subblock None Medium
Partial-subblock Best-efort Best
Superpage Invasive Good

8.2 Future Work

My thesis suggests and evaluates revolutionary changes to TLB architecture that increase
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TLB reach within chip area and access time constraints. Incorporating such support to in-
crease TLB reach, even in the simplest form as described here, in future microprocessors
would nearly eliminate all but compulsory TLB misses for many applications. Use of large
superpages would address most of the remaining applications’ needs. Much work, however,
remains to be done in operating systems to use the increased TLB reach—through support for
superpages or partial-subblocking—and page table designs to reduce TLB miss penalty. The
operating system and page table studies in my thesis identify the issues involved in imple-
menting the policies and mechanisms to support these TLBs and provide “a” working set of
policies and mechanisms that use the larger TLB reach. There are many potential areas of re-
search to explore, a few of which I list in this section.

TLBs can benefit from a significant body of research in cache design. My thesis shows
how subblocking, a feature often used in cache design, can improve TLB and page table per-
formance. Other cache optimizations may be reexamined in the context of TLBs.

Operating system support for superpage and partial-subblock TLBs is an open research
area. One must study the behavior of the mechanisms, policies and TLBs when the system is
paging, i.e., there is insufficient physical memory. Research to date assumes sufficient physi-
cal memory to prevent paging. Further research is required to find a page-size assignment
policy that incurs low overhead, can choose between multiple page sizes, and can adapt to
changing reference patterns or available physical memory. In particular, with an operating
system that supports the mechanisms needed for superpages, user-level policies that have in-
timate knowledge of the workload seem attractive. An important first step in enabling such
research is a commercial operating system that implements and supports the mechanisms
identified in my thesis.

Reducing the number of TLB misses only addresses part of the problem and ways to re-
duce the TLB miss penalty are another avenue for research. Two issues are of particular inter-
est—efficient software TLB miss handling and page table design. Software TLB miss handling
allows flexible page table design, but pays a penalty over hardware TLB miss handling, e.g.,
overhead to drain the pipeline, calculating the PTE address in a trap handler. Pipeline designs
that handle TLB misses without draining the pipeline or in parallel to other operations can re-
duce TLB miss handling costs more than increasing the TLB reach does. A linear page table,
for example, often takes only one memory access to fetch the PTE—a few cycles on cache
hits—but trap overheads can take an order of magnitude more number of cycles! Calculating
the address of the PTE requires bit manipulations—additions, bit masking, bit extraction,
hashing—that result in sequences of dependent operations with little instruction-level-paral-
lelism in a TLB miss handler. Designing hardware that can do such address calculations effi-
ciently without restricting the software to a single page table design is a topic for research.

Page table design also includes some interesting areas of research. First, TLB miss han-
dlers (hardware or software) typically access (and update) page tables without acquiring
locks. With multi-processor systems and multi-threaded operating systems or applications, an
integral part of page table design is a synchronization protocol that updates the page table in
a manner consistent with unsynchronized TLB miss handler accesses while maintaining
multi-processor TLB consistency—a hard problem. Second, operating systems typically store
alias descriptors in a separate synonym table and it remains to be seen if there are benefits to
combining the page table and synonym table. Third, new page tables that can store super-
page and partial-subblock PTEs could borrow ideas from database research in indices that
support range queries.
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Appendix A: Sample Memory Cell Designs

This appendix shows some standard custom VLSI circuits that could be used in fully-as-
sociative and set-associative TLBs. I illustrate only static designs throughout the thesis. Dy-
namic designs are more popular. They primarily differ by adding precharge and discharge
transistors [West88].

Figure A-1 shows a conventional CAM cell that implements the XNOR function [West88],
a 6-transistor RAM cell, and a CAM cell word composed of x CAM cells. Multiple such CAM
words combine to form a CAM array—bitlines pass through all the CAM words. The bitlines
carry the tag portion of the virtual address to be compared with the contents of the CAM
words. The BIT lines carry the inverted address bits and the BIT lines carry the non-inverted
address bits. If any of the bits in the virtual address do not match the tag bits stored in the
CAM cell array, the previously precharged match line discharges. Therefore, the MATCH line
is asserted only if all the bits stored in the CAM match the input.

Figure A-1: fully-associative TLB memory cells.
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I next show three ways to implement a valid bit in fully-associative TLBs (Figure A-2). A
valid bit CAM cell (the top of Figure A-2) can combine with the CAM cell word of Figure A-
1 and discharges the MATCH line if the bit stored is 0, i.e., invalid. This, however, increases
the capacitance on the MATCH line and slows the tag comparison. Simpler implementations
are possible by storing the valid bits in a separate RAM or registers, as the next two options
illustrate. The middle of Figure A-2 illustrates the use of a pass gate controlled by the valid
bit stored separately [Lee89a]. Pass gates, however, degrade signals passing through them
and require more powerful drivers or precharge circuitry. The bottom of Figure A-2 shows a
third alternative that combines the valid bit as part of a standard multi-stage wordline driver
circuit. Drivers use multi-stage circuitry instead of a single large driver to reduce input capac-
itance and increase fanout capabilities of the driver. Incorporating simple logic functions,
such as combining the valid bit, into a multi-stage driver adds little or no overhead. I model
the valid bit CAM cell for fully-associative TLBs and the other designs presented here may be
faster and cheaper alternatives.
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Figure A-2: Valid bit implementation alternatives (fully-associative TLB)
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Set-associative TLBs can use similar techniques in the tag comparator. However, if the tag
array is on the critical path, a faster access time is possible by storing valid bits in the data ar-
ray and combining them with the multiplexor driver logic. This optimization is not popular
in cache designs where the tag array is often not on the critical path.

A superpage TLB includes don’t-care cells for the low-order tag bits. Each don’t-care
CAM cell (Figure A-3) stores two bits—a tag bit and a mask bit—and implements three
states—match, no match, don’t-care. If the mask bit is “1” then the cell never discharges the
MATCH line, irrespective of the value of the tag bit stored in this cell. Such don’t-care cells
can be part of the CAM cell word. The additional transistor on the discharge path increases
the capacitance and resistance, affecting the RC time constant and access time. Further, the
don’t-care cells add a significant amount of capacitance due to a longer MATCH line that has
to pass through both the bits and affect tag compare time.

The area and timing models in Section 2.2 and Section 2.3 assume that the Ig>(superpage
size/base page size) low-order bits use don’t-care cells for the MASK bits. Such a configura-
tion can support more than two page sizes—all power-of-two sizes between the base page
size and the maximum superpage size. I, however, assume the use of only two of the support-
ed page sizes in superpage TLBs. One can optimize the design when supporting fewer page
sizes. When supporting superpage sizes that are multiples of four of each other, for example,
a single MASK bit can control two neighboring CAM cells. This halves the number of MASK
bits in the CAM cell array. However, it would require larger transistors to drive an increased
fanout of the MASK signal.
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Figure A-3: Don't-care XNOR-CAM cell
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Appendix B: Implementation of subblock-valid bits

Most single-page-size TLB implementations assume that only a single TLB block can suc-
ceed in tag comparison during TLB lookup. This assumption allows for simpler circuitry on
the data side of the TLB. Hardware or software typically guarantees that two or more TLB
blocks will not have the same tag. Further, a valid bit in each TLB block disables any spurious
matches due to invalid blocks (Section 1.5). In a subblock TLB there are multiple subblock-
valid bits per TLB block. The decoded block offset field of the virtual address selects the ap-
propriate subblock-valid bit. This appendix discusses three alternate implementations of the
subblock-valid bits. A simple block-valid bit approach suffices for complete-subblock TLBs,
but partial-subblock TLBs require the subblock-valid bits to be incorporated in the tag com-
parator.

A complete-subblock TLB block can store in the tag a block-valid bit that stores the logical
OR of the subblock-valid bits. This suffices to prevent invalid blocks from generating spuri-
ous matches. Further, hardware or software must guarantee that more than one TLB block
will not have the same tag. Subblock miss checking (Section 4.2), for example, can provide
this guarantee. A partial-subblock TLB, on the other hand, must allow for multiple TLB
blocks with the same tag, but disjoint subblock-valid bits, to be present in the TLB simulta-
neously (Chapter 5). Thus, a single block-valid bit in the tag does not suffice to prevent two
TLB blocks from succeeding in tag comparison. The subblock-valid bits must be incorporated
in the tag comparator.

The block-valid bit approach, which is the best choice for a fully-associative complete-
subblock TLB, is to use a single block-valid bit as part of the tag. The block-valid bit stores
the logical OR of the individual subblock-valid bits. The block valid bit can be either part of
the tag memory or combined with the wordline driver as in a single-page-size TLB
(Appendix A). The data RAM stores the subblock valid bits and reads out only the subblock
valid bit and mapping corresponding to the subblock (Figure 4-4 in Chapter 4). The subblock
valid bit determines if the access was a TLB hit or a subblock miss. On a TLB hit it enables the
output driver. The subblock valid bit access and output driver enable path is likely to be in
the critical path for TLB access. A set-associative TLB can use the same mechanism if the data
RAM access is on the critical path. The block-valid bit approach has area and access time ad-
vantages over the two alternatives I discuss next that combine the subblock-valid bits with
the tag comparator. The main disadvantage is that multiple TLB blocks with the same tag but
disjoint subblock valid bits are not supported—hardware and/or software must guarantee
against this happening during TLB miss handling.

For complete-subblock TLBs that do not implement subblock-miss checking and for par-
tial-subblock TLBs, the block-valid bit approach is not sufficient and the subblock-valid bits
must participate in the tag comparison. This appendix next discusses two alternate imple-
mentations. The first alternative, valid bit tag comparator, stores the subblock-valid bits in the
tags and extends the tag comparison logic to use the decoded block offset to select the appro-
priate valid bit. The tag comparator implements the function: (VPBN == Tag-VPBN) && ((De-
coded block-offset & Tag.Valid_bits) != 0)—where VPBN is the tag to be looked up, Tag-
VPBN and Tag.Valid_bits are stored in the tag. The second alternative, valid bit RAM, opti-
mizes the design by observing that a decoded block offset is a one-hot encoding, i.e., it choos-
es only one subblock valid bit. It uses a separate RAM indexed by the decoded block offset to
store the subblock valid bits. This allows tag comparison and valid bit selection to proceed in
parallel.
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Figure B-1 illustrates one way to extend a fully-associative tag comparator to include mul-
tiple subblock-valid bits. In fully-associative TLBs, a conventional CAM cell implements the
XNOR function. A CAM cell can be modified to discharge the match line if (V && BIT)—
where the cell stores value V and the other operand is driven onto BIT. Subblock-valid CAM
cells combine to discharge the match line if the valid bit corresponding to the decoded block
offset is not set. The combined tag array, with subblock valid bits and regular XNOR-CAM
cells, implements the function: (A == B) && ((C & D) != 0), where C has only one bit setl.

Figure B-1: Fully-associative ¥lid bit tag comparator array
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Figure B-2: A fully-associative complete-subblock TLB with valid bit tag compags
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1. A Decoded d§et, by definition, has only one bit set. The circuit behaves as follows in other situations: If a decoded
offset has no bits set, the valid bits do nothing and the tag match is the result of the XOR. If a désmtdeasahore
than one bit set, the match succeeds only if ALL the corresponding valid bits are set.
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Figure B-2 illustrates a fully-associative TLB implementation of the valid bit comparator
approach. The tag memory stores Tag.VPBN in standard XNOR-CAM cells and subblock val-
id bits in the special CAM cells. The tag to be looked up is driven to the XNOR-CAM bitlines
and the decoded block-offset bits are driven to the subblock-valid-CAM BIT lines (Figure B-
1).

A set-associative TLB’s tag compare circuitry can be similarly modified to account for the
subblock valid bits (Figure B-3). The tag bits (t;..ty) read out of the tag RAM are compared
with the VPN bits (a;..ay). The valid bits (v1..vy) also read out of the tag RAM, inverted, com-
bine with the decoded block offset bits (do;..doy) to complete the MATCH function. Figure B-
4 shows the structure of the set-associative TLB with valid bits moved to the tag RAM and
the comparators replaced by the special comparator array shown in Figure B-3. The final im-
plementation is very close to that of a single-page-size set-associative TLB (Figure 1-5).

Figure B-3: Set-associative tag comparator with valid bits in the tag
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Figure B-4: Structure of a set-associative complete-subblock TLB with valid bits in the tag
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Combining the valid bits with tag comparison, however, increases the TLB access time as
TLB tag comparison is typically in the critical path. Table B-5 illustrates the percentage reduc-
tion in TLB access time for complete-subblock TLBs using the block valid bit compared to us-
ing the valid bit tag comparators. Note that the access time estimate in Table B-5 does not
include the time taken to decode the block-offset field, which must be done BEFORE tag com-
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parison can begin2 in fully-associative TLBs. In a set-associative TLB, the decode occurs in
parallel to the tag-RAM access.

Table B-5: Reduction in access time for complete-subblock TLBs with block valid bits compeat to
implementation with subblock-valid bit tag comparators

subblock factor
LB 2 4 8 16
64-block fully-associative 0.2% 0.7% 1.6% 3.3%
128-block fully-associative 0.2% 0.6% 1.5% 3.1%
256-block fully-associative 0.1% 0.6% 1.4% 2.9%
512-block fully-associative 0.1% 0.5% 1.2% 2.5%
128-block 4-way set-associative | 0.2% 0.9% 2.3% 4.5%
256-block 4-way set-associative | 0.2% 0.9% 2.3% 4.4%

The valid bit comparator described above is, however, an overkill. Only one subblock val-
id bit is required to participate in tag comparison. This observation allows an optimization
that uses a separate valid bit RAM to store the subblock-valid bits and combines the selected
valid bit with the tag compare output. The decoded block offset field indexes this RAM.

Figure B-6 illustrates the fully-associative implementation of the valid bit RAM approach.
Parallel to the fully-associative tag lookup, a decoder decodes the block-offset field of the vir-
tual address and selects the appropriate valid bit for each TLB block. The wordline driver
then combines the valid bit with the match signal from the tag comparator (Appendix A).
This implementation does not add to the critical path if the valid-bit RAM delay (t1) is less
than the tag match delay (t2).

Figure 4-5 in Chapter 4 shows the set-associative implementation of the valid bit RAM ap-
proach with the valid bits implemented in the data RAM itself. The multiplexor driver com-
bines the valid bit and the tag compare output. This option is very, attractive for set-
associative TLBs where the tag match delay is often in the critical path and including the
subblock valid bits in this fashion does not affect the access time. Instead, it reduces access
time—the subblock TLB tags are shorter making both the tag RAM access and tag compare
times shorter and reduces the critical path.

2. The block dket bits may be predecoded in the preceding CPU pipeline stage by combining a decoder with pipeline
latches or logic as suggested to me by RobemgYSun Microsystems Laboratories.

3. This is not true for caches where the data RAM is often on the critical pé®8Wsubblock-cache typically store

the subblock valid bits along with the tag.
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Figure B-6: A fully-associative complete-subblock TLB with separate valid bit RAM
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The separate valid bit RAM has two key advantages over the valid bit tag comparator.
First, a valid bit RAM occupies less area than a fully-associative valid bit CAM implementa-
tion. Second, it results in a faster tag comparison as the tags are shorter without the valid bits.

In my thesis, access time and area models for set-associative and fully-associative com-
plete-subblock TLBs assume the use of block-valid bits. Access time and area models for set-
associative and fully-associative partial-subblock TLBs assume the valid bit tag comparator
approach. I do not model the valid bit RAM approach in my area and access time models. I
instead use the slower and more expensive valid bit tag comparator approach for partial-sub-
block TLBs, which make my results pessimistic.

In summary, there are three different ways subblock valid bits can be stored in a subblock
TLB—using block-valid bits, valid bit tag comparators or in a valid bit RAM. In set-associa-
tive TLBs, storing the subblock valid bits as part of the data RAM is often the best option. In
fully-associative complete-subblock TLBs, use of block valid bits and storing the subblock
valid bits in the data RAM is the best option. In fully-associative partial-subblock TLBs, using
the valid bit RAM is often the best option.
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Appendix C: Implementation of subblock multiplexor

A subblock multiplexor selects the appropriate subblock mapping from a complete-sub-
block TLB block (Figure 4-3) read out of the data RAM. Decoded block-offset bits from the
virtual address control this multiplexor. The decode occurs in parallel to the row decode and
is not on the TLB access critical path. The multiplexor itself is often on the critical path. I dis-
cuss two alternate implementations in this section.

First, the multiplexor can be placed between the data RAM sense amps and the output
driver. Often a multiplexor exists already here to support bypass-mode or large superpage
physical address generation and the subblock multiplexor can be combined with it. However,
this multiplexor is on the critical path and adding more inputs impacts access time.

RAM designs sometimes include a column multiplexor with the bitlines. Column multi-
plexors help divide the address decoding logic between the rows and columns instead of a
single large row decode. Complete-subblock TLBs can use column multiplexors to select the
appropriate subblock. Figure C-1 shows how this scheme works using a single column multi-
plexor to select one of four bitlines. A column multiplexor, while on the critical path for fully-
associative TLBs, adds less overhead than extending the output multiplexor. Further, in a
complete-subblock TLB, only a fraction of the bits read out of the data RAM are useful. In a
TLB with subblock factor of 16, for example, only 6% of the bits are useful. The savings in
sense amps from using column multiplexors is significant.

The key to using column multiplexors lies in the format used to store multiple mappings
in one word of the data RAM. An efficient way to store the mappings is to use an interleaved
format as illustrated in Figure C-2. All the valid bits are stored contiguously, bitg of all the
PPN fields are stored together, and so on. The interleaved format allows all four valid bits to
share a single sense amp. A non-interleaved format would require criss-crossing wires to use
column multiplexors, which is impractical to implement.

The advantages of using column multiplexors are many. First, they add less delay to the
bitlines and data RAM access time, than a full fledged multiplexor would. Second, with s
times fewer sense amps, the area savings are significant. Alternatively, the sense amps can be
made s times larger and larger sense amps are faster. Third, in set-associative TLBs the output
multiplexor is on the critical path whereas the data RAM access is not and adding column
multiplexors often does not affect overall TLB access time. Table C-3 illustrates the percentage
reduction in TLB access time with the use of column multiplexors compared to using the out-
put multiplexor. Set-associative TLBs show a dramatic reduction than fully-associative TLBs
because the output multiplexor driver is in the critical path whereas the column multiplexor
adds delay to a non-critical path. All measurements in my thesis assume the use of column
multiplexors in complete-subblock-TLBs.
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Figure C-1: Column Multiplexor use in complete-subblock TLBs
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Figure C-2: Interleaved Layout of Data RAM

| Vo| PPNg(36 bits) | V1| PPNy (36 bits) | Vo| PPNy (36 bits) | V3| PPN3(36 bits) |

Non-Interleaved storage

| VoV1VaV3 | PPNg.gPPNy.)PPNp.PPN3.g|

Interleaved storage

Table C-3: Reduction in access time for complete-subblock TLBs with column multiplexors

| PPNg_35PPN;_35PPNo.35PPN3.35

TLB

subblock factor

2 4 8 16
64-block fully-associative 0.1%  0.6% 15%  3.0%
128-block fully-associative 0.2% 0.7% 1.5% 3.0%
256-block fully-associative 0.2% 0.7% 1.5% 3.0%
512-block fully-associative 0.2% 0.6% 1.3% 2.7%
128-block 4-way set-associative | 2.6% 8.0% 15.8% 26.5%
256-block 4-way set-associative | 2.6% 7.9% 15.5% 26.2%
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Appendix D: Preventing loading multiple copies in preloading

If a base page is not present in memory when mappings for a page block are preloaded
into a subblock TLB, a subsequent reference to the base page causes a TLB miss. If the TLB
miss handler blindly preloads all the mappings to the page block, it can load multiple copies
of a mapping in the TLB. This causes electrical problems in most TLB implementations.

Figure D-1 illustrates this. State-1 shows the TLB block after a TLB miss to page 001, when
page 002 was not present in physical memory. The TLB miss handler preloads all the map-
pings to pages in the page block except for page 002. Later when the program references page
002, a TLB miss occurs. Blindly preloading all mappings to the page block (page 002 is now
in memory) will result in the TLB having two copies of the mappings for pages 000, 001 and
003 (State-2).

Figure D-1: Preloading on subblock miss

| 00 0 | PPNy ATTRg
0 | PPNg ATTR 1
State 1 - After TLB miss on page 001 O
0O | PPNg ATTR3
00 0 | PPNy ATTRg
0 | PPNy ATTR1
d
0 | PPN3 ATTR3
00 O | PPNy ATTR
U PPN¢ ATTR1
State 2 - After TLB miss on page 002 | 1 | PPN, ATTR>
0O | PPNg ATTR3

This problem can be addressed in two ways—by invalidating existing mappings before
preloading (or when loading a superpage mapping) or using a separate non-preloading TLB
miss handler for subblock misses. The invalidation option requires the TLB miss handler to
issue a demap explicitly or hardware to implement an implicit demap during load_TLB opera-
tions®. The separate miss handler requires hardware to recognize that a subblock miss has oc-
curred.

4. It is not suficient for hardware to demap the TLB block when the TLB miss occurs, if the software can preload
mappings that are not from the same page block [Bala94].
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Appendix E: Storing superpage mappings in complete-subblock TLBs

Complete-subblock TLBs can store superpage mappings too. A superpage mapping is
more efficient for preloading mappings for a page block than a complete-subblock TLB miss
handler. Complete-subblock TLB blocks continue to support efficiently the cases were super-
pages cannot be used. There are three categories of superpage mappings that need to be con-
sidered—where the superpage size is equal to, less than or greater than the page block size of
the complete-subblock TLB.

A complete-subblock TLB block can store superpage mappings with the superpage size
equal to the page block size by replicating the superpage mapping in all subblocks and ad-
justing the PPN fields—the low-order bits set equal to the virtual block offset (Figure E-1).

Figure E-1: Superpage mapping in complete-subblock TLB (superpage size = page block size)

Superpage TLB block | 10010XX [ 16K | O | [ m10xx | ATTR [1 |
(superpage size = 4 base pages)

| 10010 | 0 | [ o] 111000 ATTR

Complete-subblock TLB block 0 | 111001 ATTR
(subblock factor 4) 0 | 111010 ATTR
0 | mon ATTR

A complete-subblock TLB block similarly stores superpage mappings where the super-
page size is smaller than the page block size. The PPN bits are adjusted with the virtual block
offset field using the superpage size. Figure E-2 shows how a complete-subblock TLB block
with subblock factor of 4 stores two 8KB superpage mappings. Both fully-associative and set-
associative complete-subblock TLBs can store superpage mappings of any size less than or
equal to the page block size. This is important because set-associative superpage TLBs sup-
porting multiple superpage sizes are not practical.

Figure E-2: Superpage mapping in complete-subblock TLB (superpage size < page block size)

Superpage TLB blocks 100100X 8K | O 10100X ATTRA |1
(superpage size = 2 base pages) | 100101X 8K | O 11100X ATTRB |1
| 10010 | 0 ][O0 [ 101000 ATTRA

Complete-subblock TLB block 0 | 101001 ATTRA
(subblock factor 4) 5 111000 ATTRE
U 111001 ATTRB

Finally, support for large superpage mappings can be included in fully—associative5 com-

plete-subblock TLBs. Such large superpage mappings are useful for many applications. Two
modifications can be borrowed from superpage TLBs. First, the VPBN in the tag is made up
of don’t-care bits storing the MASK field as in superpage TLBs. The low-order x tag bits are
implemented as don’t-care bits to support superpage sizes upto 2* * page block size. Second,
it adds a page size attribute that controls a multiplexor used in physical address generation to
select the low order bits of PPBN from either the virtual address or the PPN read from the
TLB. A superpage mapping can be stored in a complete-subblock TLB block by duplicating it
in all the subblocks such that all virtual address within the superpage, irrespective of the

5. Set-associative complete-subblock TLBs cannot logd Buperpage mappings due to thialtifty in choosing the
set index for these mappings—same problem faced by superpage TLBs.
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block offset, read the same mapping (Figure E-3).

Figure E-3: Superpage mapping in complete-subblock TLB (superpage size > page block size)

Superpage TLB block
(superpage size = 64 base pages)| LIXXXXXX | 256K [0 | [ LOXXXXXX | ATTR |1 ]

| 1xxxx 256K | O || O] 10xxxxxx | ATTR | 256K

Complete-subblock TLB block O | 10XXXXXX ATTR | 256K
(subblock factor 4) O | LOXXXXXX ATTR | 256K
O

LOXXXXXX ATTR | 256K

The key support needed in all three cases is to modify the TLB miss handler to be able to
traverse a page table that includes superpage mappings and transforming the mapping to fit
in the complete-subblock TLB block. The transformation can be done either in hardware or
software, but software transformations are inefficient. The complete-subblock TLB hardware
implementation does not have to be modified to support superpage mappings for superpage
sizes < page block size.

Even in a complete-subblock TLB system, there are benefits to using superpage mappings
in the page table. First, the page table may use less storage to store superpage mappings than
storing separate mappings required for the single-page-size and complete-subblock TLBs.
Second, loading superpage mappings is an efficient way of preloading in the TLB miss han-
dler—only a single PTE for the page block needs to be fetched from the page table. The TLB
miss handler, however, must now traverse a page table that supports superpages and expand
the superpage mappings for the complete-subblock TLB.

Another alternative for supporting superpage mappings is to use a separate fully-associa-
tive TLB to store superpage mappings. The PowerPC, for example, has two TLBs—one for su-
perpages and another for base pages. The advantage of this approach is that it allows the two
TLBs to be independently optimized, e.g., the base page TLB can be set-associative. It, howev-
er, adds a multiplexor to the TLB critical path and can suffer from load imbalance if the ratio
of base page to superpage mappings does not correspond to the hardware resources.

In summary, complete-subblock TLBs easily support mappings for multiple medium-
sized superpages less than or equal to the page block size. Large superpage support can be
added to complete-subblock TLBs for a similar complexity of adding superpage support to
single-page-size TLBs. A complete-subblock TLB is a waste of hardware resources if the oper-
ating system supports and frequently uses superpages. However, in systems where the oper-
ating system uses only few superpage mappings—either large or small—a complete-subblock
TLB can easily support them.
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Appendix F: Complete-subblocking for superpage TLBs

This appendix explores the option of building a complete-subblock superpage TLB—
where each TLB block has the same subblock factor but varies the page block size. The MIPS
R4000 processor, for example, has a complete-subblock TLB with subblock factor two that
supports seven page sizes also. Figure F-1 shows how a 64KB region of virtual address space
may be mapped using 16KB superpages and 4KB base pages. A regular superpage TLB
would use 5 TLB blocks to store the mappings, but a complete-subblock superpage TLB re-
quires only two TLB blocks. Just as Chapter 4 shows that complete-subblocking and preload-
ing is very effective for base page mappings, similar arguments can be made for superpage
mappings also. However, this requires the operating system to allocate superpage mappings
for neighboring virtual page blocks to make the complete-subblock superpage TLB effective.

Figure F-1: Complete-subblock Superpage TLB example

—» 16KB superpage mapping page block d

— 4KB base page mapping

page block ¢ ]

page block x1

page block x10

e block b
page block x01

Page block x00 I I page block a

Virtual Addr ess Space Physical Address Space
XXX | 16K | O O | aXX| attr |O O bXX | attr |0 | dXX | attr
x01 | 4K U 0 g b00 | attr | O c02 | attr | O

Complete-subblock TLB storing mappings for above

Implementing such a TLB, however, is not straightforward. A single-page-size TLB easily
extends to include complete subblocking by adding logic and subblock multiplexors to select
the appropriate subblock from the data RAM—the block offset bits control the subblock mul-
tiplexor. To modify a superpage TLB, however, the block-offset bits are unknown when start-
ing the lookup. They depend on the page size and is different for each TLB block. In the
above example, for page block x00 bits 15 and 14 form the block offset field, and for page
block x01 bits 13 and 12 form the block offset field. Thus, the matching TLB block must be
known to determine the page-size and block-offset bits uniquely.
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Figure F-2: A fully-associative complete-subblock superpage TLB
| PID/VPBN | BI.Off] Offset | VA

VPN-lo
MUX
DECODER
VPBN T, BITLINES
WORDLINES
MASK VAL D
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s
CQ&gMNMU S
SENSE AM si VPN-low
4>
OUTPUT DRIVERS

DATA OUTPUT

Figure F-2 illustrates the basic operation of one possible implementation of a fully-asso-
ciative complete-subblock superpage TLB. The CAM array uses the VPBN as the compare in-
put. The MASK field (shown as a separate block for clarity) works as a mask for the tag
comparators as in a superpage TLB. The CAM array also outputs the MASK field of the
matching TLB block to control two multiplexors. One multiplexor controls physical address
generation as in a superpage TLB. Another multiplexor selects bits from the virtual address
that form the Block Offset, which after decoding controls the subblock multiplexors. This so-
lution requires that the subblock valid bits be in the data and not part of the tag compare.

This solution is expensive because it serializes decoding of the block-offset and tag com-
parison. Though the multiplexor controls can be set up in parallel to the wordline drivers and
the data RAM access, it may add to the critical path. Further, a standard CAM implementa-
tion does not allow bits to be read during a comparison—this implementation requires it.
This solution does not work if more than one TLB block can have the same tag and requires
the subblock valid bit to determine a hit—as is true in the valid bit RAM and valid bit tag
comparator approaches (Appendix B).

Further, it is not practical to implement a partial-subblock TLB that supports subblocking
for multiple superpage sizes, i.e., varying the page block size for each TLB block in a partial-
subblock TLB®. The solution described above for complete-subblock TLBs uses a block valid
bit and is not practical for partial-subblock TLBs, which must support multiple identical tags.
Partial-subblock TLBs require the block-offset bits to select a subblock valid bit and complete
the tag match but the block-offset bits cannot be uniquely determined unless the tag match
completes—a circular dependency!

6. Supporting lage superpages in partial-subblock TLB varies the page block size for each TLB block but it requires
ALL subblock valid bits to be set.
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Appendix G: Subblock miss checking in partial-subblock TLBs

Subblock miss checking determines if a mapping, to be loaded into the TLB, can be stored
in an existing TLB block. In a partial-subblock TLB, it involves checking all the TLB blocks to
see if the new mapping has the same tag, is properly placed with respect to other mappings
in that TLB block and has the same attributes. Unaligned mappings always fail subblock miss
checking. If any of the TLB blocks succeeds the checks, the new mapping can be loaded into
the TLB by simply setting the appropriate valid bit. The pseudo-code for subblock miss
checking is as follows:

if (unaligned(mapping)) return(FAIL);
fori=1ton{ /*n is number of blocks in the TLB set */
if ((Block[i].tag == mapping.VPBN) && (Block[i].SB == mapping.SB) &&
(Block[i].Attr == mapping.Attr) && (Block[i].PPBN == mapping.PPBN))
eturn (OK);
} return(FAIL);

Implementing subblock miss checking is neither easy nor efficient. There are at least four
ways to implement subblock miss checking—fully-associative hardware lookup, software,
first-tag-hit, or first-tag-hit combined with software.

A fully-associative lookup in hardware uses a CAM for the data part of the TLB also. Dur-
ing TLB lookup the data part functions as a RAM. During subblock miss checking both tag
and data CAMs participate in the comparison—the valid bits do not. If any of the TLB blocks
match, it sets the corresponding valid bit. This is similar to implementing a writable CAM
with the VPBN and data fields as the key and the valid bit as the data to be written. This so-
lution has the advantage that subblock miss checking and loading the new mapping can be
completed in a single operation. The disadvantage is the significant hardware cost of imple-
menting a fully-associative data field.

The second alternative executes subblock miss checking in software. The TLB miss han-
dler would read the TLB blocks from either the TLB or a software copy and compare them
with the new mapping. However, the TLB miss penalty increases significantly—proportional
to the number of TLB blocks.

The third alternative, first-tag-hit, checks a single TLB block instead of all possible TLB
blocks. Tag comparison logic compares the tags (VPBN), without valid bits, of the TLB blocks
with the VPBN of the new mapping. If a single tag matches, which is the common case, then
that TLB block is a candidate for subblock miss checking. If more than one tag matches, it
chooses one of the blocks as a candidate for subblock miss checking, eg., the TLB block in the
lowest numbered slot. The data field of the candidate TLB block is read and compared with
the new mapping to determine a subblock miss. The advantage of this solution is that the
data part of the TLB can use a RAM. The main disadvantage of this approach is that it may
result in more TLB replacements than in a solution that checks all the TLB blocks. TLB simu-
lations show that using first-tag-hit subblock miss checking does not result in significantly
higher number of TLB misses (often less than a 1% increase).

The fourth alternative combines first-tag-hit hardware checking with software miss check-
ing in the uncommon case. In the first-tag-hit check, when there are multiple TLB blocks with
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matching tags, one is chosen to complete the subblock miss check. If that fails, a software TLB
miss handler can check the other matching TLB blocks. However, instead of scanning all the
TLB entries, software need compare fewer blocks, e.g., TLB blocks numbered higher than the
block with the first matching tag. The advantage of this approach is that hardware handles
the common case fast with simple hardware, leaving the complicated uncommon case to soft-
ware.

In summary, subblock miss checking is complicated in a partial-subblock TLB. A hard-
ware-only or software-only solution results in complicated hardware or slow TLB miss han-
dling. The first-tag-hit approach implements imperfect checking using simpler hardware and
with performance comparable to perfect hardware. Software can augment this approach to
implement perfect checking but the cost of a higher TLB miss penalty.
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Appendix H: Storing superpage mappings in partial-subblock TLBs

Partial-subblock TLBs can store superpage mappings in a manner similar to how com-
plete-subblock TLBs store superpage mappings (Appendix E). There are three categories of
superpage mappings that need to be considered—where the superpage size is equal to, less
than or greater than the page block size.

A partial-subblock TLB block stores a superpage mapping with the superpage size equal
to the page block size by setting all the valid bits and SB attribute and copying the PPN and
Attr fields from the superpage mapping (Figure H-1). Both fully-associative and set-associa-
tive partial-subblock TLBs can store such superpage mappings.

Figure H-1: Superpage mapping in partial-subblock TLB (superpage size = page block size)

| 10010XX [16K] O | | 1110%X | ATTR |1 |
Superpage TLB block (superpage size = 4 base pages)
| 10010 |oooo | | 111000 | ATTR [1 |

Partial-subblock TLB block (subblock factor 4)

A single partial-subblock TLB block cannot always store a superpage mapping with a su-
perpage size smaller than the page block size. Superpages use physical base pages properly
placed with respect to the superpage size. However, the same physical base pages are unlike-
ly to be properly placed with respect to a larger page block size also. Figure H-2 shows a par-
tial-subblock TLB with subblock factor 4 storing two superpage mappings (8KB superpage
size). The first superpage mapping has properly placed physical pages with respect to a page
block size of 16K while the second one does not.

Figure H-2: Superpage mapping in partial-subblock TLB (superpage size < page block size)
Superpage TLB blocks

100101X 8K | O | 10100X | ATTR [1 |
110101X 8K | O | 10100x | ATTR [1 |
10010 nooo 101000 ATTR |1
Partial-subblock TLB blocks 11010 oooo 101000 ATTR |0
11010 0000 101001 ATTR |0

Finally, support for large superpage mappings can be included in fully—associative7 par-
tial-subblock TLBs. Two modifications can be borrowed from superpage TLBs into partial-
subblock TLB implementations. First, the VPBN in the tag is made up of don’t-care bits stor-
ing the MASK field, as in superpage TLBs. The low-order x tag bits are implemented as don't-
care bits to support superpage sizes upto 2X * page block size. Second, it adds a page size at-
tribute that controls a multiplexor used in physical address generation to select the low order
bits of PPBN from either the virtual address or the PPN read from the TLB. Note that the
multiplexor used to select the block-offset bits based on the SB bit remains unchanged. Now
the superpage mapping can be stored in the partial-subblock TLB by copying the VPBN,
pagesize, PPN and Attr fields from the superpage mapping, setting the SB bit and all the sub-
block valid bits (Figure H-3).

7. Set-associative partial-subblock TLBs cannot stogelauperpage mappings due to théddifty in choosing the
set index for these mappings—as in superpage TLBs (S&c8d®).
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Figure H-3: superpage mapping in partial-subblock TLB (superpage size > page block size)

| 1XXxXXX_ | 256K [0 ] [ 210XXXXXX | ATTR [1]
Superpage TLB block (superpage size = 64 base pages)
| 1xxxX | 256K |0D000 || LOXXXXXX | ATTR [1]1 |

Partial-subblock TLB block (subblock factor 4)

If a page table stores partial-subblock PTEs, then support for medium-size superpages is
unnecessary—a partial-subblock page table is a superset of a superpage page table (with cor-
rect physical memory allocation). Preloading in the partial-subblock TLB is a superior way to
loading superpage mappings. Table H-4 shows the percent reduction in the number of TLB
misses for a 64-block fully-associative partial-subblock TLB through use of two different en-
hancements to the TLB miss handler. The first uses preloading. The second does not use pre-
loading but uses superpage mappings whereever possible. Preloading is more effective at
reducing TLB misses than superpagess. The TLB miss penalty and page table memory re-
quirements for preloading and superpages are roughly comparable. Thus, it is preferable to
use preloading and storing partial-subblock PTEs in the page table instead of supporting me-
dium-sized superpages. This is important since many microprocessors support superpages
and operating systems are being modified to support superpage mappings in the page tables.

Table H-4: Reduction in number of TLB misses in a 64-block fully-associative partial-subblock TLB
with preloading or with superpage mappings

subblock factor 2 subblock factor 4 subblock factor 8 subblock factor 16

preloading superpagespreloading superpagespreloading superpagespreloading superpages

coral | 16.61%  16.60% | 30.38%  30.10% | 37.5/% 36.77% | 49.15% 47.47% |
nasa7 | 42.33% 42.30% 69.96% 69.84% 81.81% 25.16% 69.98% 54.77%
compress 41.42% 37.96% 37.27% 35.44% 27.90% 16.91% 26.33% 9.45%
fftpde 0.35% 0.34% 0.53% 0.51% 0.64% 0.62% 49.24% 49.19%
waveb | 43.44% 43.45% 65.52% 65.15% 76.02% 74.68% 79.42% 76.66%
mp3d | 23.69% 22.30% | 59.56% 59.52% | 66.38%  65.62% | 88.84%  86.50%
spice 30.78% 30.78% 64.42% 64.19% 83.90% 81.95% 87.07% 69.66%
pthor 25.16% 25.15% 47.30% 46.82% 64.54% 62.69% 76.05% 74.77%
ML 24.17% 23.78% 46.40% 42.82% 62.43% 60.91% 76.74% 73.18%
gcc 27.12% 27.20% 54.54% 50.92% 51.14% 37.44% 42.30% 15.96%

Workload

In summary, partial-subblock TLBs with preloading are slightly better than medium-size
superpage mappings. Fully-associative partial-subblock TLBs can easily include support for
larger superpage sizes.

8. Foxtrot did NOT do page promaotion in this experiment—the page table only considers fully-populated page blocks
for superpages. If the operating system used page promotions, superpages would be used more often.
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Appendix I: Detailed Speedup Tables

This appendix includes execution time speedups for all the workloads. It includes data for
each of the tables in the main text where only the weighted average across all the workloads
was presented. The behavior of individual workloads is shown here. Tables in this appendix
are numbered to show their correspondence to tables in the body of the thesis. Tables 12-3a
throughl2-3¢ for example, correspond Table2-3 in Chapter2.

Table 12-3a: Sensitivity to TLB miss penalty—execution time speedup for alternate fully-associative
TLBs relative to 64-block fully-associative single-page-size (4KB) TLB (TLB miss penalty = 30

cycleg

128-block single-page123-block superpage 114-block partial- - 72-block complete-
Workload size (4KB) TLB (4KB/32KB) TLB subblock TLB subblock TLB

(subblock factor 16) (subblock factor 4)
coral 1.105 1.368 1.461 1111
nasa’ 1.008 1.419 1.419 1.115
compress 1.184 1.193 1.193 1.193
fftpde 1.000 1.001 1.182 1.000
waveb 1.042 1.110 1.110 1.109
mp3d 1.035 1.089 1.090 1.085
spice 1.044 1.053 1.053 1.052
pthor 1.006 1.034 1.039 1.006
ML 1.015 1.030 1.031 1.017
gcc 1.013 1.016 1.016 1.015
Wt. Avg. 1.045 1.132 1.161 1.072

Table 12-3b: Sensitivity to TLB miss penalty—execution time speedup for alternate fully-associative
TLBs relative to 64-block fully-associative single-page-size (4KB) TLB (TLB miss penalty = 40
cycleg

128-block single-page-123-block superpage 114-block partial- 72-block complete-
Workload size (4KB) TLB (4KB/32KB) TLB subblock TLB subblock TLB

(subblock factor 16) (subblock factor 4)
coral 1.145 1.559 1.726 1.153
nasa7 1.011 1.649 1.649 1.160
compress 1.262 1.275 1.275 1.274
fftpde 1.000 1.002 1.258 1.000
waveb 1.056 1.152 1.152 1.151
mp3d 1.047 1.123 1.123 1.117
spice 1.059 1.073 1.073 1.071
pthor 1.008 1.045 1.052 1.008
ML 1.021 1.040 1.042 1.022
gcc 1.017 1.021 1.021 1.020
Wt. Avg. 1.061 1.185 1.227 1.098
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Table 12-3c: Sensitivity to TLB miss penalty—execution time speedup for alternate fully-associative
TLBs relative to 64-block fully-associative single-page-size (4KB) TLB (TLB miss penalty = 50
cycleg

128-block single-page-123-block superpage 114-block partial-  72-block complete-
Workload size (4KB) TLB (4KB/32KB) TLB subblock TLB subblock TLB

(subblock factor 16) (subblock factor 4)
coral 1.188 1.812 2.110 1.200
nasa7 1.013 1.969 1.969 1.208
compress 1.350 1.368 1.368 1.368
fftpde 1.000 1.002 1.344 1.000
waveb 1.071 1.197 1.197 1.197
mp3d 1.059 1.158 1.158 1.150
spice 1.075 1.092 1.092 1.090
pthor 1.010 1.057 1.066 1.011
ML 1.026 1.051 1.053 1.028
gcc 1.022 1.026 1.026 1.026
Wt. Avg. 1.078 1.242 1.301 1.125

Table 12-5: Sensitivity to TLB replacement policy—execution time speedupglative to 64-block
fully-associative single-page-size (4KB) TLB using Go-down-stack (GODSplacement policy

Workload Clock Random FIFO
coral 0.993 0.957 0.941
nasa’7 1.001 0.987 0.984

compress 0.992 0.950 0.955
fftpde 1.000 1.022 0.987
waveb 0.999 1.024 1.005
mp3d 1.000 0.977 0.979
spice 0.991 0.949 0.963
pthor 0.999 0.992 0.993

ML 0.998 0.985 0.989
gcc 0.998 0.986 0.988
Wt. Avg. 0.997 0.981 0.975

Table 13-1a: Execution time speedups for fully-associative superpage TLBslative to single-page-
size (4KB) TLBs with same number of blocks (64- and 128-blocks)

Workload 64-block (superpage size) 128-block (superpage size)
8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB
coral 1.150 1.295 1.430 1.564 1.171 1.254 1.369 1.533

nasa’7 1.207 1.441 1.645 1.649 1.266 1.632 1.632 1.632
compress| 1.263 1.274 1.274 1.271 1.010 1.010 1.010 1.010
fftpde 1.001 1.001 1.001 1.117 1.001 1.001 1.001 1.258
waveb 1.087 1.152 1.152 1.152 1.090 1.090 1.090 1.090
mp3d 1.035 1.100 1.122 1.123 1.066 1.072 1.073 1.073
spice 1.053 1.071 1.072 1.072 1.012 1.013 1.013 1.013
pthor 1.016 1.029 1.039 1.044 1.015 1.027 1.038 1.044
ML 1.017 1.028 1.035 1.039 1.010 1.016 1.019 1.021
gcc 1.015 1.020 1.021 1.021 1.003 1.004 1.004 1.004
Wt. Avg. 1.090 1.148 1.183 1.212 1.072 1.114 1.127 1.172
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Table 13-1b: Execution time speedups for fully-associative superpage TLBslative to single-page-
size (4KB) TLBs with same number of blocks (256-blocks)
256-block (superpage size)

8KB 16KB 32KB 64KB
coral 1.065 1.134 1.259 1.384
nasa’ 1.366 1.366 1.366 1.366
compress| 1.000 1.000 1.000 1.000
fftpde 1.001 1.002 1.002 1.002
waveb 1.000 1.000 1.000 1.000
mp3d 1.004 1.005 1.005 1.005
spice 1.001 1.001 1.001 1.001
pthor 1.016 1.030 1.040 1.041
ML 1.007 1.011 1.012 1.013
gcc 1.000 1.000 1.000 1.000
Wit. Avg. 1.047 1.057 1.071 1.082

Workload

Table 13-2a: Execution time speedups for 256-block 4-way set-associative superpage TLéative to
single-page-size (4KB) TLBs (superpage index)

with OS support base pages only
Workload | g, 5 16KB  32KB  64KB 8KB 16KB  32KB  64KB
coral 1060 1147 1274 1358 | 0975 0004 0699  0.687

nasa’7 1.498 1.503 1.498 1.478 1.159 1.181 0.879 0.850
compress| 1.000 1.000 0.981 0.812 0.999 0.992 0.682 0.540
fftpde 1.000 1.192 1.214 1.434 1.000 1.190 1.210 1431
waveb 1.000 1.000 1.000 0.996 0.995 0.959 0.744 0.672
mp3d 1.009 1.010 1.010 1.010 0.998 0.996 0.934 0.896
spice 1.003 1.003 1.003 1.003 0.992 0.975 0.876 0.794

pthor 1.016 1.022 1.029 0.863 0.999 0.988 0.982 0.823
ML 1.008 1.012 1.010 1.007 0.998 0.992 0.972 0.953
gce 1.001 1.000 0.934 0.853 0.999 0.993 0.947 0.818

Wt. Avg. 1.058 1.092 1.098 1.070 1.013 1.018 0.871 0.809

Table 13-2b: Execution time speedups for 256-block 4-way set-associative superpage TL&ative
to single-page-size (4KB) TLBs (exact index)
with OS support

8KB 16KB 32KB 64KB
coral 1.069 1.145 1.279 1.408
nasa’ 1.497 1.503 1.503 1.503
compress| 1.000 1.000 1.000 1.000
fftpde 1.011 1.214 1.243 1.442
waveb 1.000 1.000 1.000 1.000
mp3d 1.009 1.010 1.010 1.010

Workload

spice 1.003 1.003 1.003 1.003
pthor 1.016 1.031 1.038 1.040
ML 1.008 1.012 1.014 1.014
gce 1.001 1.001 1.001 1.001

Wt. Avg. 1.060 1.095 1.113 1.143
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Table 13-3a: Execution time speedups for superpage TLBeglative to set-associative single-page-size

(4KB) TLBs of comparable chip area (256-block 4-way set-associative)

Single
Page Size 4KB/32KB Superpage TLB 4KB/64KB Superpage TLB
TLB
Workload - e ok 156-block fully- | 256-block set- | 154-block fully- | 256-block set-
fully- associative associative associative associative
associative with OS  no OS | withOS noOS | withOS no OS | withOS no OS
coral 0.929 1185 0.923 | 1.274 0.699 1330 0.921 1358 0.687
nasa7 0.978 1503 0966 | 1.498 0.879 1503 0.961 1478  0.850
compress| 0.997 1.000 0.996 | 0981 0.682 1.000 0.996 | 0.812 0.540
fftpde 1.439 1.442 1.439 1.214 1.210 1.442 1.439 1.434 1.431
waveb 0.990 1.000 0.990 1.000 0.744 1.000 0.990 0.996 0.672
mp3d 0.963 1.010 0.960 1.010 0.934 1.010 0.958 1.010 0.896
spice 0.996 1.003 0.996 1.003 0.876 1.003 0.995 1.003 0.794
pthor 0.994 1.031 0.994 1.029 0.982 1.039 0.993 0.863 0.823
ML 0.997 1.013 0996 | 1.010 0.972 1.014  0.996 1.007  0.953
gce 0.998 1.001 0.998 | 0.934  0.947 1.001 0998 | 0.853 0.818
Wit. Avg. 1.020 1.120 1.017 1.098 0.871 1.136 1.016 1.070  0.809
Table 13-3b: Execution time speedups for superpage TLB®lative to set-associative single-page-size

(4KB) TLBs of comparable chip ara (512-block 4-way set-associative)
Single
Page Sizg 4KB/32KB Superpage TLB 4KB/64KB Superpage TLB
TLB
Workload 57 ok 293-block fully- | 512-block set- | 290-block fully- | 512-block set-
fully- associative associative associative associative
associative with OS  no OS | withOS no OS | withOS no OS | with OS no OS
coral 0.932 1.167 0.927 1.248 0.663 1.264  0.925 1.223 0.652
nasa’ 0.755 1.003 0.748 1.000 0.593 1.003  0.753 0.986 0.567
compress| 1.000 1.000 1.000 | 0.981 0.682 1.000 1.000 | 0.812 0.541
fftpde 1.435 1.438 1.435 1.437 1.431 1.438 1.435 1.435 1.431
waveb 1.000 1.000 1.000 1.000 0.751 1.000 1.000 | 0.996 0.674
mp3d 0.999 1.002 0.999 1.002 0.928 1.002 0.999 1.002 0.898
spice 0.999 1.000  0.999 1.000 0.876 1.000  0.999 1.000 0.792
pthor 0.984 1.020  0.983 1.014 0.976 1.020 0.983 0.848 0.81
ML 0.997 1.008  0.997 1.006 0.974 1.009 0.997 1.000 0.953
gcc 1.000 1.000 1.000 | 0.934 0.886 1.000 1.000 | 0.852 0.774
Wt. Avg. 1.000 1.065 0.998 1.061 0.836 1.074  0.998 1.006 0.765
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Table 14-1a: Execution time speedups for complete-su

bblock TLBelative to single-page-size (4KB)

TLBs with same number of blocks (64-block fully-associative)

(NO preloading) subblock factor

Workload 2 4 3 16

(with preloading) subblock factor
2 4 8 16

coral 1.064 1.134 1.245 1.334
nasa7 1.009 1.115 1.648 1.649
compress| 1.257 1.274 1.274 1.274
fftpde 1.000 1.000 1.000 1.003
waveb 1.043 1.151 1.151 1.152
mp3d 1.015 1.083 1.121 1.122

spice 1.047 1.068 1.072 1.073
pthor 1.003 1.007 1.01 1.018
ML 1.01n 1.019 1.027 1.034
gcc 1.014 1.020 1.021 1.021

Wt. Avg. 1.044 1.089 1.157 1.170

1.151 1.299 1.439 1.578
1.207 1.442 1.649 1.649
1.265 1.275 1.275 1.275
1.001 1.001 1.002 1.14
1.088 1.152 1.152 1.152
1.038 1.107 1.122 1.123
1.054 1.071 1.072 1.073
1.017 1.031 1.041 1.048
1.018 1.031 1.038 1.041
1.016 1.021 1.021 1.021

1.091 1.150 1.185 1.214

Table 14-1b: Execution time speedups for complete-su

TLBs with same number of blocks (128-block fully-associative)

bblock TLB®lative to single-page-size (4KB)

(NO preloading) subblock factor

Workload 5 4 8 16

(with preloading) subblock factor
2 4 8 16

coral 1.135 1.174 1.224 1.335
nasa’ 1.100 1.631 1.632 1.632
compress| 1.010 1.010 1.010 1.010
fftpde 1.000 1.000 1.000 1.257
waveb 1.090 1.090 1.090 1.090
mp3d 1.064 1.071 1.072 1.073

spice 1.01 1.012 1.013 1.013
pthor 1.003 1.008 1.020 1.039
ML 1.005 1.010 1.015 1.019
gcc 1.003 1.004 1.004 1.004

Wt. Avg. 1.048 1.101 1.109 1.152

1.172 1.257 1.377 1.547
1.267 1.632 1.632 1.632
1.010 1.010 1.010 1.010
1.001 1.001 1.002 1.258
1.090 1.090 1.090 1.090
1.067 1.072 1.073 1.073
1.012 1.013 1.013 1.013
1.015 1.028 1.039 1.047
1.01 1.017 1.020 1.021
1.003 1.004 1.004 1.004
1.073 114 1.129 1.173

Table 14-1c: Execution time speedups for complete-su

bblock TLBelative to single-page-size (4KB)

TLBs with same number of blocks (256-block 4-way set-associative)

(NO preloading) subblock factor
Workload 5 4 3 16

(with preloading) subblock factor
2 4 8 16

coral 1.036 1.078 1.170 1.385
nasa’ 1.494 1.503 1.503 1.503
compress| 1.000 1.000 1.000 1.000
fftpde 1.000 1.191 1.214 1.443
waveb 1.000 1.000 1.000 1.000
mp3d 1.008 1.009 1.010 1.010
spice 1.002 1.003 1.003 1.003

pthor 1.008 1.024 1.035 1.040
ML 1.004 1.009 1.013 1.014
gcc 1.001 1.001 1.001 1.001

Wt. Avg. 1.052 1.084 1.099 1.141

1.070 1.150 1.287 1.418
1.499 1.503 1.503 1.503
1.000 1.000 1.000 1.000
1.000 1.192 1.215 1.443
1.000 1.000 1.000 1.001
1.009 1.010 1.010 1.010
1.003 1.003 1.003 1.003
1.017 1.032 1.039 1.040
1.008 1.013 1.014 1.015
1.001 1.001 1.001 1.001
1.058 1.094 11m 1.143
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Table 14-3a: Effect of preloading in complete-subblock TLBs (64-block fully-associative)

subblock factor 2

subblock factor 4

subblock factor 8

subblock factor 16

critical critical critical critical

Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss

penalty penalty penalty penalty

coral 1.082 1.20 1.145 1.43 1.156 1.61 1.183 1.96
nasa7 1.197 1.72 1.294 3.33 1.001 6.67 1.000 1.82
compress| 1.006 1.75 1.000 1.79 1.000 1.75 1.000 1.89
fftpde 1.001 1.00 1.001 1.01 1.002 1.01 1.11 1.96
waveb 1.043 1.79 1.000 2.94 1.000 4.17 1.000 5.00
mp3d 1.023 1.30 1.022 2.63 1.002 3.23 1.001 10.00
spice 1.008 1.45 1.003 2.86 1.001 6.67 1.000 1.85
pthor 1.013 1.35 1.024 1.96 1.029 2.86 1.029 4.55
ML 1.007 1.32 1.01n 2.08 1.01 3.45 1.007 6.67
gcc 1.002 1.43 1.001 2.27 1.000 1.69 1.000 1.75
Wt. Avg. 1.045 1.333 1.056 1.649 1.024 1.409 1.038 2.047

Table 14-3b: Effect of preloading in complete-sub

block TLBs (128-block fully-associative)

subblock factor 2

subblock factor 4

subblock factor 8

subblock factor 16

Workload crit?cal crit?cal crit?cal crit_ical
Speedup  miss Speedup  miss Speedup  miss Speedup  miss

penalty penalty penalty penalty

coral 1.033 11 1.071 1.28 1.125 1.67 1.159 2.78
nasa’ 1.152 1.67 1.000 3.23 1.000 1.43 1.000 1.56
compress 1.000 1.43 1.000 1.61 1.000 1.72 1.000 1.79
fftpde 1.001 1.00 1.001 1.01 1.002 1.01 1.001 7.69
waveb 1.000 1.79 1.000 2.86 1.000 3.85 1.000 4.55
mp3d 1.003 1.54 1.001 2.56 1.001 5.56 1.000 1.08
spice 1.001 1.89 1.000 3.57 1.000 1.47 1.000 1.56
pthor 1.012 1.39 1.020 2.04 1.019 3.03 1.007 4.55
ML 1.005 1.52 1.006 2.44 1.005 5.00 1.002 10.00
gcce 1.000 1.49 1.000 1.52 1.000 1.67 1.000 1.72
Wt. Avg. 1.024 1.255 1.012 1.200 1.017 1.363 1.018 2.852

Table 14-3c: Effect of preloadin

g in complete-subblock TLBs (256-block

4-way set-associative)

subblock factor 2

subblock factor 4

subblock factor 8

subblock factor 16

critical critical critical critical
Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss
penalty penalty penalty penalty
coral 1.033 1.14 1.067 1.35 1.100 2.00 1.024 4.17
nasa’7 1.003 1.96 1.000 1.37 1.000 1.47 1.000 1.52
compress| 1.000 1.39 1.000 1.67 1.000 1.82 1.000 1.85
fftpde 1.000 1.00 1.001 1.01 1.001 1.01 1.000 1.06
waveb 1.000 1.75 1.000 2.78 1.000 3.70 1.000 1.27
mp3d 1.001 1.67 1.000 3.33 1.000 1.12 1.000 1.20
spice 1.000 1.85 1.000 2.70 1.000 1.47 1.000 154
pthor 1.009 1.39 1.008 2.00 1.004 3.45 1.000 1.92
ML 1.004 1.67 1.004 3.03 1.002 5.56 1.000 7.14
gcc 1.000 1.33 1.000 1.52 1.000 1.67 1.000 1.72
Wt. Avg. 1.006 1.076 1.009 1.21 1.01n 1.393 1.002 4.026
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Table 14-3d: Effect of preloading in complete-subblock TLBs (512-block 4-way set-associative)

subblock factor 2 subblock factor 4 subblock factor 8 subblock factor 16
critical critical critical critical
Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss
penalty penalty penalty penalty
coral 1.025 1.16 1.040 1.43 1.012 2.38 1.000 1.15
nasa7 1.000 1.14 1.000 1.37 1.000 1.43 1.000 1.52
compress| 1.000 1.37 1.000 1.61 1.000 1.75 1.000 1.82
fftpde 1.001 1.00 1.000 1.00 1.000 1.04 1.000 1.05
waveb 1.000 1.72 1.000 2.63 1.000 1.19 1.000 1.18
mp3d 1.000 1.85 1.000 1.06 1.000 1.09 1.000 1.1
spice 1.000 1.56 1.000 1.37 1.000 1.47 1.000 1.54
pthor 1.002 1.37 1.001 2.27 1.000 1.54 1.000 1.12
ML 1.002 1.82 1.001 3.33 1.000 4.35 1.000 1.27
gcc 1.000 1.28 1.000 1.49 1.000 1.64 1.000 1.72
Wt. Avg. 1.003 1.090 1.005 1.164 1.001 2.321 1.000 1.446

Table 14-5a: Execution time speedupsalative to single-page-size (4KB) TLBs of equal aa (64-
block single-page-size TLB)

Superpage TLB Complete-subblock TLB Complete-subblock TLB
Workload (32KB) (NO preloading) (with preloading)
0s NO OS 2 4 8 16 2 4 8 16

coral 1.422 0993 | 1.032 1.025 0.959 0.874 | 1.123 1.227 1.283 1.217
nasa’7 1.639 0999 | 1.005 1.040 1.053 0.915| 1.205 1405 1518 1.285
compress 1.274 0.984 | 1.183 1.255 1.243 0.850 | 1.217 1.268 1.267 1.126
fftpde 1.001 1.000 | 1.000 1.000 1.000 1.000| 1.001 1.001 1.002 1.112
waveb 1.152 1.000 | 1.01 1.055 1.073 0.843 | 1.066 1.121 1.135 1.005
mp3d 1.122 0999 | 0.999 0.991 0977 0.907 | 1.020 1.030 1.024 0.950
spice 1.072 0991 | 1.022 1.014 0899 0.471 | 1.035 1.038 0.964 0.580
pthor 1.039 1.000 | 1.001 0.999 0975 0.823 | 1.014 1.025 1.009 0.879
ML 1.034 0998 | 1.001 0.995 0968 0.819 | 1.010 1.0 0.997 0.880
gcce 1.020 0.998 | 1.006 1.009 0.978 0.807 | 1.010 1.015 1.010 0.939
Wt. Avg. | 1.182 0.996 | 1.025 1.036 1.008 0.813 | 1.076 1.120 1.125 0.984

Table 14-5b: Execution time speedupsalative to single-page-size (4KB) TLBs of equal aa (128-
block single-page-size TLB)

Superpage TLB Complete-subblock TLB Complete-subblock TLB
Workload (32KB) (NO preloading) (with preloading)
0s NO OS 2 4 8 16 2 4 8 16

coral 1361 0988 | 1.013 1.007 0.983 0.913 | 1.0/8 1.146 1.205 1.222
nasa’ 1632 0999 | 1.075 1.148 1315 1314 | 1250 1449 1582 1.606
compress 1.010 0.999 | 1.010 1.010 1.010 1.004 | 1.010 1.010 1.010 1.010
fftpde 1.002 1.000 | 1.000 1.000 1.000 1.000| 1.001 1.001 1.002 1.113
waves 1.090 0987 | 1.086 1.090 1.090 1.087 | 1.087 1.090 1.090 1.089
mp3d 1.073 0997 | 1.024 1.067 1.069 1.042| 1.041 1.070 1.071 1.067
spice 1.013 0998 | 1008 1011 1011 1011 | 1.010 1.012 1.013 1.013
pthor 1.037 1.000 | 1.001 1.001 0.999 0.992 | 1.013 1.024 1.030 1.031
ML 1.019 0999 | 1.002 1.002 0.998 0.980 | 1.008 1.012 1.01  1.003
gcc 1.004 1.000 | 1.002 1.003 1.003 1.000 | 1.003 1.004 1.004 1.004
Wt. Avg. | 1.127 0996 | 1.023 1.036 1.048 1.030| 1.056 1.087 1.104 1.120
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Table 14-5¢: Execution time speedupsalative to single-page-size (4KB) TLBs of equal ea (256-
block single-page-size TLB)

Superpage TLB Complete-subblock TLB Complete-subblock TLB
Workload (32KB) (NO preloading) (with preloading)
0s NO OS 2 4 8 16 2 4 8 16

coral 1252 0994 | 1.003 0.987 0965 0.921 | 1.033 1.056 1.090 1.102
nasa’ 1366 0997 | 1192 1366 1366 1.366 | 1.273 1366 1.366 1.366
compress 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
fftpde 1.002 1.000 | 1.000 1.000 0.797 0.804 | 1.001 1.002 0.798 0.891
waves 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
mp3d 1.005 0.998 | 1.003 1.003 1.003 1.003 | 1.004 1.004 1.005 1.005
spice 1.001 1.000 | 1.001 1.001 1.001 1.001| 1.001 1.001 1.001 1.001
pthor 1.040 0999 | 1.002 1.003 1.002 0.997 | 1.013 1.022 1.027 1.031
ML 1.012 1.000 | 1.002 1.003 1.0038 1.001| 1.006 1.009 101 1011
gcc 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
Wt. Avg. | 1.070 0.999 | 1.022 1.034 1.007 1.000 | 1.035 1.046 1.026 1.041

Table 14-5d: Execution time speedupsalative to single-page-size (4KB) TLBs of equal aa (512
block single-page-size TLB)

Superpage TLB Complete-subblock TLB Complete-subblock TLB
Workload (32KB) (NO preloading) (with preloading)
0s NO OS 2 4 8 16 2 4 8 16

coral 1231 0994 | 0.996 0.977 0962 0939 | 1.023 1.036 1.074 1.103
nasa’ 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
compress 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
fftpde 1.003 1.000 | 1.000 1.000 1.001 1.001 | 1.001 1.002 1.002 1.002
waveb 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
mp3d 1.002 1.000 | 1.000 1.002 1.002 1.002 | 1.001 1.002 1.002 1.002
spice 1.001 1.000 | 1.001 1.001 1001 1001 | 1.001 1.001 1.001 1.001
pthor 1.021 0998 | 1.010 1.014 1.007 1.000 | 1.013 1.018 1.016 1.016
ML 1.008 1.000 | 1.002 1.004 1.005 1.005| 1.005 1.007 1.007 1.008
gcc 1.000 1.000 | 1.000 1.000 1.000 1.000 | 1.000 1.000 1.000 1.000
Wt. Avg. | 1.027 0999 | 1.001 0.999 0.997 0.993 | 1.005 1.007 1.01 1.014

Table 14-6a: Execution time speedups for complete-subblock TLBelative to single-page-size (4KB)
TLBs with same TLB reach (256-block fully-associative)

Complete-subblock Complete-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
128:2 64:4 32:8 16:16 128:2 64:4 32:8 16:16
coral 0.938 0.818 0.761 0.693 0.968 0.937 0.967 0.972

nasa’ 0.921 0.923 0.934 0.929 1.061 1.194 1.277 1.318
compress| 1.000 1.000 0.990 0.984 1.000 1.000 0.998 0.998
fftpde 0.797 0.797 0.797 0.797 0.797 0.798 0.798 0.887
waveS 1.000 1.000 0.999 0.967 1.000 1.000 1.000 0.978
mp3d 0.996 0.970 0.915 0.876 0.999 0.991 0.973 0.944

spice 1.000 0.997 0.990 0.832 1.001 1.000 0.997 0.914
pthor 0.995 0.992 0.987 0.957 1.008 1.015 1.019 0.997
ML 0.997 0.990 0.976 0.939 1.002 1.002 0.994 0.972
gcc 1.000 0.999 0.998 0.988 1.000 1.000 1.000 0.996

Wt. Avg. 0.958 0.937 0.920 0.878 0.981 0.989 0.998 0.995
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Table 14-6b: Execution time speedups for complete-subblock TLB®lative to single-page-size (4KB)
TLBs with same TLB reach (512-block fully-associative)

Complete-subblock Complete-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
256:2 128:4 64:8 32:16 256:2 128:4 64:8 32:16
coral 0.921 0.864 0.800 0.710 0.949 0.925 0.925 0.927

nasa’ 1.000 1.000 0.999 0.958 1.000 1.000 1.000 0.997
compress| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.000 0.797 0.797 0.797 1.001 0.798 0.798 0.887
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mp3d 1.000 1.000 0.999 0.999 1.001 1.001 1.001 1.001
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.988 0.981 0.977 0.973 0.997 1.001 1.005 1.008
ML 0.999 0.997 0.993 0.984 1.003 1.004 1.004 1.000
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Wt. Avg. 0.988 0.956 0.945 0.923 0.994 0.967 0.968 0.979

Table 14-6¢: Execution time speedups for complete-subblock TLBglative to single-page-size (4KB)
TLBs with same TLB reach (256-block 4-way set-associative)

Complete-subblock Complete-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
128:2 64:4 32:8 16:16 128:2 64:4 32:8 16:16
coral 0.920 0.837 0.766 0.699 0.965 0.958 0.975 0.965

nasa’ 0.946 0.937 0.930 0.922 1.049 1.127 1.175 1.198
compress| 1.000 0.998 0.992 0.982 1.000 1.000 0.998 0.998
fftpde 0.994 0.982 0.960 0.920 0.994 0.983 0.964 0.996
waves 1.000 0.999 0.997 0.881 1.000 1.000 0.999 0.932
mp3d 0.991 0.969 0.931 0.882 0.997 0.989 0.973 0.939
spice 0.993 0.976 0.927 0.724 0.995 0.983 0.951 0.809
pthor 0.994 0.989 0.968 0.918 1.006 1.012 1.003 0.966
ML 0.995 0.984 0.962 0.903 1.001 0.998 0.983 0.945
gce 0.999 0.996 0.988 0.966 1.000 0.999 0.994 0.982
Wt. Avg. 0.979 0.958 0.930 0.866 1.001 1.005 1.003 0.974

Table 14-6d: Execution time speedups for complete-subblock TLB®lative to single-page-size (4KB)
TLBs with same TLB reach (512-block 4-way set-associative)

Complete-subblock Complete-subblock with preloading

Workload N blocks: s subblock factor N blocks: s subblock factor
256:2 128:4 64:8 32:16 256:2 128:4 64:8 32:16
coral 0.922 0.852 0.779 0.703 0.952 0.930 0.935 0.936

nasa’ 0.997 0.992 0.981 0.961 1.000 1.000 1.000 1.000
compress| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 0.997 0.991 0.979 0.960 0.997 0.991 0.982 1.050
waveS 1.000 1.000 1.000 0.994 1.000 1.000 1.000 0.997
mp3d 1.000 0.999 0.997 0.987 1.001 1.001 1.000 0.997

spice 1.000 1.000 1.000 0.992 1.000 1.000 1.000 0.997
pthor 0.989 0.981 0.973 0.961 0.997 1.000 1.002 0.999
ML 0.998 0.996 0.990 0.976 1.002 1.003 1.002 0.995
gcc 1.000 1.000 0.999 0.998 1.000 1.000 1.000 1.000

Wt. Avg. 0.988 0.976 0.960 0.936 0.994 0.991 0.990 0.997
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Table 14-9a: Execution time speedups for complete-subblock TLB&lative to superpage TLBs (64-
block fully-associative)

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.925 0.876 0.870 0.853 1.001 1.003 1.006 1.009
nasa7 0.836 0.774 1.002 1.000 1.000 1.001 1.002 1.000
compress| 0.995 1.001 1.000 1.003 1.001 1.001 1.000 1.003
fftpde 0.999 0.999 0.999 0.897 1.000 1.000 1.001 0.997
waveb 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.981 0.985 0.999 0.999 1.003 1.007 1.000 1.000
spice 0.994 0.998 0.999 1.000 1.001 1.000 1.000 1.000
pthor 0.988 0.978 0.973 0.975 1.001 1.002 1.002 1.003
ML 0.994 0.991 0.992 0.995 1.002 1.003 1.002 1.002
gcc 0.999 1.000 1.000 1.000 1.001 1.001 1.000 1.000
Wt. Avg. 0.958 0.948 0.978 0.965 1.001 1.002 1.002 1.002

Table 14-9b: Execution time speedups for complete-subblock TLB®lative to superpage TLBs (128-
block fully-associative)

Workload subblock factor:superpage size

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.969 0.936 0.894 0.871 1.001 1.003 1.006 1.010
nasa7 0.869 1.000 1.000 1.000 1.001 1.000 1.000 1.000
compress| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 0.999 0.999 0.999 0.999 1.000 1.000 1.001 1.000
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.998 0.999 0.999 1.000 1.001 1.000 1.000 1.000
spice 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.988 0.981 0.983 0.995 1.001 1.001 1.001 1.003
ML 0.995 0.994 0.996 0.998 1.001 1.001 1.001 1.000
gce 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 0.977 0.989 0.984 0.983 1.000 1.001 1.001 1.001

Workload subblock factor:superpage size

Table 14-9¢: Execution time speedups for complete-subblock TLB®lative to superpage TLBs (256-
block 4-way set-associative)

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.969 0.940 0.918 1.020 1.001 1.003 1.010 1.044
nasa7 0.997 1.000 1.003 1.017 1.000 1.000 1.003 1.017
compress| 1.000 1.000 1.019 1.231 1.000 1.000 1.020 1.231
fftpde 1.000 0.999 1.000 1.006 1.000 1.000 1.001 1.006
wave5 1.000 1.000 1.000 1.004 1.000 1.000 1.000 1.004
mp3d 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.992 1.002 1.006 1.204 1.001 1.010 1.010 1.204
ML 0.996 0.997 1.002 1.008 1.000 1.001 1.004 1.008
gcc 1.000 1.000 1.071 1.174 1.000 1.000 1.071 1.174
Wt. Avg. 0.995 0.992 1.000 1.066 1.000 1.001 1.012 1.069

Workload subblock factor:superpage size
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Table 15-1a: Execution time speedup with partial-subblock TLBs elative to single-page-size (4KB)

TLBs with same number of blocks (64-block fully-associative)

Partial-subblock

Partial-subblock with preloading

Workload subblock factor subblock factor
2 4 8 16 2 4 8 16
coral 1.064 1.132 1.239 1.324 1.150 1.297 1.435 1.570
nasa7 1.009 1.114 1.647 1.649 1.207 1.442 1.649 1.649
compress| 1.256 1.273 1.274 1.274 1.264 1.274 1.275 1.275
fftpde 1.000 1.000 1.000 1.008 1.001 1.001 1.001 117
waveb 1.042 1.151 1.151 1.152 1.087 1.152 1.152 1.152
mp3d 1.012 1.068 1.120 1.121 1.036 1.100 1.122 1.123
spice 1.047 1.068 1.072 1.072 1.054 1.071 1.072 1.073
pthor 1.003 1.007 1.010 1.015 1.016 1.030 1.040 1.046
ML 1.010 1.018 1.024 1.031 1.017 1.029 1.036 1.040
gcc 1.013 1.019 1.021 1.021 1.015 1.020 1.021 1.021
Wt. Avg. 1.044 1.087 1.156 1.169 1.090 1.149 1.184 1.214
Table 15-1b: Execution time speedup with partial-subblock TLBs elative to single-page-size (4KB)

TLBs with same number of blocks (128-block fully-associative)

Partial-subblock

Partial-subblock with preloading

Workload subblock factor subblock factor
2 4 8 16 2 4 8 16

coral 1.134 1.172 1.221 1.327 1.171 1.255 1.373 1.539
nasa7 1.100 1.631 1.632 1.632 1.266 1.632 1.632 1.632
compress| 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010
fftpde 1.000 1.000 1.000 1.257 1.001 1.001 1.001 1.258
waveb 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090
mp3d 1.062 1.071 1.072 1.073 1.066 1.072 1.073 1.073
spice 1.01 1.012 1.013 1.013 1.012 1.013 1.013 1.013
pthor 1.003 1.007 1.019 1.030 1.015 1.027 1.038 1.045
ML 1.005 1.009 1.014 1.017 1.010 1.016 1.020 1.021
gcc 1.003 1.004 1.004 1.004 1.003 1.004 1.004 1.004
Wt. Avg. 1.047 1.101 1.109 1.150 1.072 1.114 1.128 1.172

Table 15-1c: Execution time speedup with partial-subblock TLBs elative to single-page-size (4KB)

TLBs with same number of blocks (256-block 4-way set-associative)

Partial-subblock Partial-subblock with preloading
Workload subblock factor subblock factor
2 4 8 16 2 4 8 16

coral 1.036 1.077 1.166 1.366 1.070 1.148 1.282 1.408
nasa7 1.494 1.503 1.503 1.503 1.498 1.503 1.503 1.503
compress| 1.000 1.000 1.000 0.964 1.000 1.000 1.000 0.964
fftpde 1.000 1.191 1.214 1.441 1.000 1.192 1.214 1.441
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.008 1.009 1.010 1.009 1.009 1.010 1.010 1.010
spice 1.002 1.003 1.003 1.003 1.003 1.003 1.003 1.003
pthor 1.007 1.022 1.032 0.904 1.016 1.031 1.037 0.908
ML 1.004 1.008 1.009 1.007 1.008 1.012 1.01 1.009
gcc 1.001 1.001 0.998 0.985 1.001 1.001 0.999 0.987
Wt. Avg. 1.052 1.083 1.097 1.115 1.058 1.093 1.110 1.120
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Table 15-3a: Effect of preloading in partial-subblock TLBs (64-block fully-associative)

subblock factor 2

subblock factor 4

subblock factor 8

subblock factor 16

critical critical critical critical
Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss
penalty penalty penalty penalty
coral 1.081 1.20 1.145 1.43 1.158 1.61 1.186 1.96
nasa7 1.197 1.72 1.293 3.33 1.001 5.56 1.000 3.33
compress| 1.006 1.69 1.000 1.59 1.000 1.39 1.000 1.35
fftpde 1.001 1.00 1.001 1.01 1.001 1.01 1.109 1.96
waveb 1.043 1.75 1.000 2.94 1.000 4.17 1.000 4.76
mp3d 1.024 1.32 1.030 2.50 1.002 2.94 1.001 9.09
spice 1.008 1.45 1.003 2.78 1.001 6.25 1.000 7.69
pthor 1.013 1.33 1.023 1.89 1.029 2.86 1.031 4.17
ML 1.008 1.32 1.01 1.85 1.01n 2.63 1.009 4.35
gcc 1.002 1.37 1.001 2.22 1.000 2.04 1.000 1.72
Wit. Avg. 1.045 1.332 1.057 1.649 1.024 1.409 1.038 2.045
Table 15-3b: Effect of preloading in partial-subblock TLBs (128-block fully-associative)

subblock factor 2 subblock factor 4 subblock factor 8 subblock factor 16

Workload crit?cal crit?cal crit?cal crit_ical
Speedup  miss Speedup  miss Speedup  miss Speedup  miss

penalty penalty penalty penalty
coral 1.033 1.10 1.071 1.27 1.124 1.64 1.159 2.70
nasa’ 1.151 1.67 1.000 3.12 1.000 1.23 1.000 141
compress 1.000 1.23 1.000 1.23 1.000 1.27 1.000 1.27
fftpde 1.001 1.00 1.001 1.01 1.001 1.01 1.001 6.67
waveb 1.000 1.75 1.000 2.78 1.000 3.85 1.000 4.35
mp3d 1.004 1.56 1.001 2.50 1.001 5.56 1.000 1.15
spice 1.001 1.89 1.000 3.45 1.000 1.64 1.000 1.43
pthor 1.012 1.37 1.020 1.96 1.019 2.94 1.014 4.55
ML 1.005 1.49 1.007 2.50 1.006 4.35 1.003 6.67
gcc 1.000 1.45 1.000 1.43 1.000 1.56 1.000 1.56
Wt. Avg. 1.024 1.254 1.012 1.200 1.017 1.360 1.019 2.79

Table 15-3c: Effect of preloading in partial-subblock TLBs (256-block

fully-associative)

subblock factor 2

subblock factor 4

subblock factor 8

subblock factor 16

critical critical critical critical

Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss

penalty penalty penalty penalty
coral 1.030 1.12 1.062 1.33 1.097 1.96 1.032 3.85
nasa’7 1.000 1.64 1.000 1.25 1.000 1.35 1.000 1.41
compress| 1.000 1.23 1.000 1.19 1.000 1.22 1.000 1.23
fftpde 1.001 1.85 1.002 3.45 1.001 4.76 1.000 1.01
waveb 1.000 1.69 1.000 2.70 1.000 3.57 1.000 1.25
mp3d 1.001 1.69 1.001 3.33 1.000 1.05 1.000 1.14
spice 1.000 1.92 1.000 1.30 1.000 1.37 1.000 1.45
pthor 1.009 1.39 1.010 2.00 1.001 3.03 1.000 2.38
ML 1.004 1.69 1.004 3.03 1.002 5.00 1.001 7.14
gcc 1.000 1.22 1.000 1.39 1.000 1.56 1.000 1.56
Wt. Avg. 1.005 1.155 1.009 1.377 1.01n 1.995 1.003 3.756
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Table 15-3d: Effect of preloading in partial-subblock TLBs (256-block 4-way set-associative)

subblock factor 2 subblock factor 4 subblock factor 8 subblock factor 16
critical critical critical critical
Workload Speedup  miss Speedup  miss Speedup  miss Speedup  miss
penalty penalty penalty penalty
coral 1.033 1.14 1.066 1.33 1.099 1.96 1.031 3.23
nasa’ 1.003 1.92 1.000 2.13 1.000 1.75 1.000 1.04
compress 1.000 1.14 1.000 1.30 1.000 1.33 1.000 1.00
fftpde 1.000 1.00 1.001 1.01 1.000 1.00 1.000 1.05
waveb 1.000 1.72 1.000 2.70 1.000 3.57 1.000 1.56
mp3d 1.001 1.67 1.001 2.86 1.000 2.33 1.001 3.12
spice 1.000 1.85 1.000 2.63 1.000 1.22 1.000 1.30
pthor 1.009 1.37 1.009 1.92 1.005 2.86 1.005 1.04
ML 1.004 1.59 1.004 2.50 1.002 1.56 1.002 1.27
gcc 1.000 1.23 1.000 141 1.001 1.28 1.002 1.15
Wit. Avg. 1.006 1.076 1.009 1.209 1.012 1.383 1.004 1.190
Table 15-3e: Effect of preloading in partial-subblock TLBs (512-block 4-way set-associative)
subblock factor 2 subblock factor 4 subblock factor 8 subblock factor 16
Workload crit?cal crit?cal crit?cal crit_ical
Speedup  miss Speedup  miss Speedup  miss Speedup  miss
penalty penalty penalty penalty
coral 1.025 1.15 1.040 1.43 1.014 2.13 1.004 2.33
nasa7 1.000 1.18 1.000 1.30 1.000 1.32 1.000 1.04
compress 1.000 1.16 1.000 1.23 1.000 1.35 1.004 1.1
fftpde 1.001 1.00 1.000 1.00 1.000 1.03 1.000 1.06
waveS 1.000 1.72 1.000 2.56 1.000 1.61 1.000 1.25
mp3d 1.000 1.85 1.000 1.52 1.000 1n 1.000 1.15
spice 1.000 1.59 1.000 1.30 1.000 1.35 1.000 1.28
pthor 1.002 1.33 1.002 2.08 1.001 2.63 1.004 1.03
ML 1.002 1.69 1.001 2.63 1.000 1.23 1.000 1.01
gcc 1.000 1.22 1.000 141 1.000 1.02 1.000 1.00
Wit. Avg. 1.003 1.088 1.005 1.165 1.002 1.809 1.001 1.059
Table 15-4a: Execution time speedups for partial-subblock TLBs (with peloading) relative to
similar single-page-size (4KB) TLBs (64-block fully-associative)
Partial-subblock subblock factor Partial-subblock subblock factor
Workload With OS support Without OS support
2 4 8 16 2 4 8 16
coral 1.150 1.297 1.435 1.570 1.000 1.000 1.000 1.000
nasa7 1.207 1.442 1.649 1.649 1.001 1.002 1.000 1.000
compress| 1.264 1.274 1.275 1.275 0.999 0.999 1.000 0.999
fftpde 1.001 1.001 1.001 1.117 1.000 1.000 1.000 1.000
waveS 1.087 1.152 1.152 1.152 1.000 1.000 1.000 1.000
mp3d 1.036 1.100 1.122 1.123 1.001 1.001 1.000 1.000
spice 1.054 1.071 1.072 1.073 1.000 1.000 1.000 1.000
pthor 1.016 1.030 1.040 1.046 1.000 1.000 1.000 1.000
ML 1.017 1.029 1.036 1.040 1.000 1.000 1.000 1.000
gcc 1.015 1.020 1.021 1.021 1.000 1.000 1.000 1.000
Wit. Avg. 1.090 1.149 1.184 1.214 1.000 1.000 1.000 1.000
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Table 15-4b: Execution time speedups for partial-subblock TLBs (with peloading) relative to

similar single-page-size (4KB) TLBs (256-block 4-way set-associative)

Partial-subblock subblock factor Partial-subblock subblock factor
Workload With OS support Without OS support

2 4 8 16 2 4 8 16
coral 1.070 1.148 1.282 1.408 0.975 0.906 0.710 0.688
nasa7 1.498 1.503 1.503 1.503 1.162 1.186 0.880 0.850
compress| 1.000 1.000 1.000 0.964 1.000 0.993 0.683 0.542
fftpde 1.000 1.192 1.214 1.441 1.000 1.190 1.210 1.431
waveb 1.000 1.000 1.000 1.000 0.994 0.959 0.744 0.673
mp3d 1.009 1.010 1.010 1.010 0.998 0.996 0.935 0.896
spice 1.003 1.003 1.003 1.003 0.992 0.975 0.876 0.794
pthor 1.016 1.031 1.037 0.908 0.999 0.988 0.982 0.823
ML 1.008 1.012 1.01 1.009 0.998 0.991 0.972 0.954
gcc 1.001 1.001 0.999 0.987 0.999 0.993 0.886 0.774
Wt. Avg. 1.058 1.093 1.110 1.120 1.013 1.019 0.868 0.806

Table 15-7a: Execution time speedupselative to single-page-size (4KB) TLBs of equal aa (64-

block single-page-size TLB)

Superpagé Partial-subblock Complete-subblock

Workload) = 35,m) " [ 5 4 8 16 2 4 8 16
coral 1.422 1.064 1.130 1.211 1.296 1.032 1.025 0.959 0.874
nasa’7 1.639 1.009 1.109 1.554 1.649 1.005 1.040 1.053 0.915
compress 1.274 1.256 1.273 1.274 1.274 1.183 1.255 1.243 0.850
fftpde 1.001 1.000 1.000 1.000 1.009 1.000 1.000 1.000 1.000
waveb 1.152 1.042 1.151 1.151 1.152 1.01n 1.055 1.073 0.843
mp3d 1.122 1.012 1.062 1.120 1.121 0.999 0.991 0.977 0.907
spice 1.072 1.047 1.068 1.072 1.072 1.022 1.014 0.899 0.471
pthor 1.039 1.003 1.006 1.009 1.012 1.001 0.999 0.975 0.823
ML 1.034 1.010 1.017 1.023 1.028 1.001 0.995 0.968 0.819
gcc 1.020 1.013 1.019 1.020 1.021 1.006 1.009 0.978 0.807
Wit. Avg. 1.182 1.044 1.085 1.145 1.165 1.025 1.036 1.008 0.813

Table 15-7b: Execution time speedupsalative to single-page-size (4KB) TLBs of equal aa (128-

block single-page-size TLB)

Superpagg Partial-subblock Complete-subblock

Workload| = 351g) 2 4 8 16 2 4 8 16
coral 1.361 1133 1170 1213 1288 | 1.013 1.007 0.983 0.913
nasa’ 1.632 1.098 1631 1632 1632 | 1075 1148 1315 1314
compress 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.004
fftpde 1.002 1.000 1000 1000 1.256 | 1.000 1.000 1.000 1.000
waveb 1.090 1.090 1090 1090 1.090 | 1.086 1.090 1.090 1.087
mp3d 1.073 1.061 1071 1072 1.073 | 1.024 1.067 1.069 1.042
spice 1.013 101 1.012 1013 1013 | 1008 1.01 101 101
pthor 1.037 1.003 1007 1017 1027 | 1.001 1.001 0.999 0.992
ML 1.019 1.005 1009 1014 1017 | 1.002 1.002 0.998 0.980
gcc 1.004 1.003 1004 1004 1004 | 1.002 1003 1.003 1.000
Wit. Avg. 1.127 1.047 1100 1107 1145 | 1.023 1036 1.048 1.030
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Table 15-7¢: Execution time speedupsalative to single-page-size (4KB) TLBs of equal ea (256-
block single-page-size TLB)

Superpagé Partial-subblock Complete-subblock
Workload) = 3518y [ 2 4 8 16 2 4 8 16
coral 1.252 1.034 1065 1.139 1.308 | 1.003 0.987 0.965 0.921

nasa’ 1.366 1.366 1.366 1.366 1.366 1.192 1.366 1.366 1.366
compress 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.002 1.000 1.000 1.001 1.002 1.000 1.000 0.797 0.804
waves 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.005 1.003 1.004 1.005 1.005 1.003 1.003 1.003 1.003
spice 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
pthor 1.040 1.007 1.019 1.040 1.040 1.002 1.003 1.002 0.997
ML 1.012 1.004 1.007 1.010 1.01n 1.002 1.003 1.003 1.001
gcec 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 1.070 1.041 1.047 1.058 1.075 1.022 1.034 1.007 1.000

Table 15-7d: Execution time speedupsalative to single-page-size (4KB) TLBs of equal aa (512-
block single-page-size TLB)

Superpage Partial-subblock Complete-subblock
Workload) = 35,p) " [ 5 4 8 16 2 4 8 16
coral 1.231 1.035 1.087 1.210 1.249 0.996 0.977 0.962 0.939

nasa’ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
compress 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.003 1.000 1.002 1.002 1.003 1.000 1.000 1.001 1.001
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.002 1.001 1.002 1.002 1.002 1.000 1.002 1.002 1.002
spice 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
pthor 1.021 1.018 1.020 1.021 1.021 1.010 1.014 1.007 1.000
ML 1.008 1.003 1.006 1.008 1.008 1.002 1.004 1.005 1.005
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 1.027 1.006 1.013 1.025 1.028 1.001 0.999 0.997 0.993

Table 15-8a: Execution time speedups using ptoading in subblock TLBs Elative to single-page-size
(4KB) TLB of equal area (64-block single-page-size TLB)

Superpage Partial-subblock Complete-subblock
Workload) = 35, ) 2 4 8 16 2 4 8 16
coral 1.422 1.150 1.295 1.423 1.543 1.123 1.227 1.283 1.217

nasa’ 1.639 1.207 1.439 1.639 1.649 1.205 1.405 1.518 1.285
compress 1.274 1.264 1.274 1.275 1.275 1.217 1.268 1.267 1.126
fftpde 1.001 1.001 1.001 1.001 1.118 1.001 1.001 1.002 112
waveb 1.152 1.087 1.152 1.152 1.152 1.066 1121 1.135 1.005
mp3d 1.122 1.036 1.097 1.122 1.123 1.020 1.030 1.024 0.950
spice 1.072 1.054 1.071 1.072 1.072 1.035 1.038 0.964 0.580
pthor 1.039 1.016 1.030 1.039 1.046 1.014 1.025 1.009 0.879
ML 1.034 1.017 1.029 1.035 1.039 1.010 1.01n 0.997 0.880
gce 1.020 1.015 1.020 1.021 1.021 1.010 1.015 1.010 0.939
Wt. Avg. 1.182 1.090 1.148 1.182 1.21n 1.076 1.120 1.125 0.984
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Table 15-8b: Execution time speedups using pfoading in subblock TLBs elative to single-page-size
(4KB) TLB of equal area (128-block single-page-size TLB)

Superpagé Partial-subblock Complete-subblock
Workload) ~ 3518y [ 2 4 8 16 2 4 8 16
coral 1.361 1.170 1.253 1.364 1.508 1.078 1.146 1.205 1.222

nasa’ 1.632 1.266 1.632 1.632 1.632 1.250 1.449 1.582 1.606
compress 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010
fftpde 1.002 1.001 1.001 1.001 1.258 1.001 1.001 1.002 1113
waves 1.090 1.090 1.090 1.090 1.090 1.087 1.090 1.090 1.089
mp3d 1.073 1.065 1.072 1.073 1.073 1.041 1.070 1.071 1.067
spice 1.013 1.012 1.013 1.013 1.013 1.010 1.012 1.013 1.013
pthor 1.037 1.015 1.027 1.038 1.044 1.013 1.024 1.030 1.031
ML 1.019 1.010 1.016 1.019 1.021 1.008 1.012 1.01n 1.003
gcc 1.004 1.003 1.004 1.004 1.004 1.003 1.004 1.004 1.004
Wt. Avg. 1.127 1.072 1.14 1.127 1.169 1.056 1.087 1.104 1.120

Table 15-8c: Execution time speedups using ptoading in subblock TLBs elative to single-page-size
(4KB) TLB of equal area (256-block single-page-size TLB)

Superpage Partial-subblock Complete-subblock
Workload) = 35,p) " [ 5 4 8 16 2 4 8 16
coral 1.252 1.064 1.133 1.254 1.375 1.033 1.056 1.090 1.102

nasa’ 1.366 1.366 1.366 1.366 1.366 1.273 1.366 1.366 1.366
compress 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.002 1.001 1.002 1.002 1.003 1.001 1.002 0.798 0.891
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.005 1.004 1.005 1.005 1.005 1.004 1.004 1.005 1.005
spice 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
pthor 1.040 1.016 1.030 1.040 1.041 1.013 1.022 1.027 1.031
ML 1.012 1.007 1.01 1.012 1.013 1.006 1.009 1.01n 1.01n
gce 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 1.070 1.046 1.057 1.070 1.081 1.035 1.046 1.026 1.041

Table 15-8d: Execution time speedups using pfoading in subblock TLBs elative to single-page-size
(4KB) TLB of equal area (512-block single-page-size TLB)

Superpage Partial-subblock Complete-subblock
Workload) = 35, ) 2 4 8 16 2 4 8 16
coral 1.231 1.060 1.131 1.231 1.249 1.023 1.036 1.074 1.103

nasa’ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
compress 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.003 1.001 1.002 1.003 1.003 1.001 1.002 1.002 1.002
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.002 1.001 1.002 1.002 1.002 1.001 1.002 1.002 1.002
spice 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001
pthor 1.021 1.019 1.021 1.021 1.021 1.013 1.018 1.016 1.016
ML 1.008 1.005 1.007 1.008 1.008 1.005 1.007 1.007 1.008
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 1.027 1.010 1.018 1.027 1.028 1.005 1.007 1.01n 1.014

156



Table 15-9a: Execution time speedups using base pagesative to single-page-size (4KB) TLBs of
equal area (without preloading) (64-block single-page-size TLB)

Superpage Partial-subblock Complete-subblock

Workload) ~ 3518y [ 2 4 8 16 2 4 8 16
coral 0.993 0.999 0.997 0.990 0.984 1.032 1.025 0.959 0.874
nasa’ 0.999 1.001 1.001 0.998 0.941 1.005 1.040 1.053 0.915
compress 0.984 1.000 0.992 0.976 0.946 1.183 1.255 1.243 0.850
fftpde 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
waves 1.000 1.000 1.000 0.999 0.997 | 1.01 1.055 1.073 0.843
mp3d 0.999 1.000 0999 0998 0995 | 0.999 0.991 0.977 0.907
spice 0.991 0.997 0.994 0988 0973 | 1.022 1.014 0.899 0.471
pthor 1.000 1.000 1.000 0.999 0.999 | 1.001 0999 0975 0.823
ML 0.998 1.000 1.000 0.997 0993 | 1.001 0.995 0.968 0.819
gce 0.998 1.000 0.999 0.997 0.994 1.006 1.009 0.978 0.807
Wt. Avg. 0.996 1.000 0.998 0.994 0.980 1.025 1.036 1.008 0.813

Table 15-9b: Execution time speedups using base pagedative to single-page-size (4KB) TLBs

equal area (without preloading) (128-block single-page-size TLB)

Superpage Partial-subblock Complete-subblock

Workload) = 35,p) " [ 5 4 8 16 2 4 8 16
coral 0.988 0.997 0.995 0.988 0.981 1.013 1.007 0.983 0.913
nasa’7 0.999 1.000 1.000 0.999 0.997 1.075 1.148 1.315 1.314
compress 0.999 1.000 0.999 0.999 0.997 1.010 1.010 1.010 1.004
fftpde 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
waveb 0.987 0.996 0.993 0.985 0.981 1.086 1.090 1.090 1.087
mp3d 0.997 0.999 0.999 0.996 0.990 1.024 1.067 1.069 1.042
spice 0.998 0.999 0.999 0.998 0.995 1.008 1.01 1.01 1.01
pthor 1.000 1.000 1.000 1.000 0.999 1.001 1.001 0.999 0.992
ML 0.999 1.000 0.999 0.999 0.998 1.002 1.002 0.998 0.980
gcc 1.000 1.000 1.000 1.000 0.999 1.002 1.003 1.003 1.000
Wt. Avg. 0.996 0.999 0.998 0.996 0.993 1.023 1.036 1.048 1.030

of

Table 15-9¢: Execution time speedups using base pageative to single-page-size (4KB) TLBs of
equal area (without preloading) (256-block single-page-size TLB)

Superpagg Partial-subblock Complete-subblock

Workload| = 351g) 2 4 8 16 2 4 8 16
coral 0.994 0.999 0998 0991 0981 | 1.003 0.987 0.965 0.921
nasa’ 0.997 0.999 0998 0994 0986 | 1.192 1.366 1.366 1.366
compresg  1.000 1.000 1000 1.000 1.000 | 1.000 1.000 1.000 1.000
fftpde 1.000 1.000 1000 1.000 1.000 | 1.000 1.000 0.797 0.804
waveb 1.000 1.000 1000 1000 1.000 | 1.000 1.000 1.000 1.000
mp3d 0.998 1.000 0999 0998 0993 | 1.003 1.003 1.003 1.003
spice 1.000 1.000 1.000 1.000 0.999 1.001 1.001 1.001 1.001
pthor 0.999 1.000 1.000 0.999 0.998 1.002 1.003 1.002 0.997
ML 1.000 1.000 1.000 1.000 0.999 1.002 1.003 1.003 1.001
gce 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 0.999 1.000 0.999 0.998 0.995 1.022 1.034 1.007 1.000
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Table 15-9d: Execution time speedups using base pagedative to single-page-size (4KB) TLBs of
equal area (without preloading) (512-block single-page-size TLB)

Superpagé Partial-subblock Complete-subblock
Workload) ~ 3518y [ 2 4 8 16 2 4 8 16
coral 0.994 0.999 0.997 0992 0980 | 0.996 0.977 0.962 0.939

nasa’ 1.000 1.000 1.000 0.998 0.938 1.000 1.000 1.000 1.000
compress 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.001
waves 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.002 1.002
spice 1.000 1.000 1.000 1.000 1.000 1.001 1.001 1.001 1.001
pthor 0.998 1.000 0.999 0.997 0.994 1.010 1.014 1.007 1.000
ML 1.000 1.000 1.000 1.000 0.999 1.002 1.004 1.005 1.005
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 0.999 1.000 1.000 0.999 0.990 1.001 0.999 0.997 0.993

Table 15-11a: Execution time speedups for partial-subblock TLBs elative to single-page-size (4KB)
TLBs with same TLB reach (256-block fully-associative)

Partial-subblock Partial-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
128:2 64:4 32:8 16:16 128:2 64:4 32:8 16:16
coral 0.937 0.817 0.759 0.689 0.968 0.936 0.963 0.962

nasa’ 0.921 0.923 0.929 0.918 1.060 1.194 1.274 1.312
compress| 1.000 0.999 0.985 0.966 1.000 1.000 0.997 0.992
fftpde 0.797 0.797 0.797 0.797 0.797 0.798 0.798 0.886
waveb 1.000 1.000 0.997 0.965 1.000 1.000 0.999 0.977
mp3d 0.995 0.955 0.899 0.864 0.998 0.984 0.960 0.912
spice 1.000 0.997 0.988 0.797 1.001 1.000 0.996 0.889
pthor 0.995 0.991 0.984 0.874 1.007 1.014 1.016 0.948
ML 0.996 0.989 0.967 0.915 1.002 1.000 0.985 0.950
gcce 1.000 0.998 0.989 0.893 1.000 1.000 0.995 0.921
Wt. Avg. 0.957 0.935 0.915 0.853 0.980 0.988 0.994 0.972

Table 15-11b: Execution time speedups for partial-subblock TLBs elative to single-page-size (4KB)
TLBs with same TLB reach (512-block fully-associative)

Partial-subblock Partial-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
256:2 128:4 64:8 32:16 256:2 128:4 64:8 32:16
coral 0.921 0.863 0.796 0.706 0.948 0.924 0.922 0.923

nasa’ 1.000 0.999 0.999 0.957 1.000 1.000 1.000 0.997
compress| 1.000 1.000 1.000 0.998 1.000 1.000 1.000 0.999
fftpde 1.000 0.797 0.797 0.797 1.001 0.798 0.798 0.887
waveS 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
mp3d 1.000 1.000 0.999 0.998 1.001 1.001 1.001 1.000

spice 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
pthor 0.988 0.981 0.976 0.969 0.997 1.000 1.005 1.006
ML 0.999 0.996 0.991 0.973 1.003 1.003 1.001 0.991
gcc 1.000 1.000 1.000 0.992 1.000 1.000 1.000 0.996

Wt. Avg. 0.988 0.955 0.944 0.920 0.994 0.967 0.967 0.977
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Table 15-11c: Execution time speedups for partial-subblock TLBs elative to single-page-size (4KB)
TLBs with same TLB reach (256-block 4-way set-associative)

Partial-subblock Partial-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
128:2 64:4 32:8 16:16 128:2 64:4 32:8 16:16
coral 0.920 0.835 0.763 0.698 0.964 0.955 0.970 0.961

nasa’ 0.946 0.936 0.929 0.843 1.048 1.126 1.173 1.094
compress| 0.999 0.997 0.987 0.936 1.000 0.999 0.996 0.948
fftpde 0.993 0.982 0.923 0.886 0.994 0.983 0.924 0.950
waveS 1.000 0.998 0.994 0.882 1.000 0.999 0.997 0.922
mp3d 0.989 0.960 0.917 0.777 0.994 0.981 0.960 0.807

spice 0.992 0.976 0.868 0.714 0.995 0.983 0.900 0.726
pthor 0.994 0.980 0.869 0.637 1.005 1.004 0.903 0.668
ML 0.994 0.980 0.944 0.860 1.000 0.991 0.966 0.894
gcc 0.998 0.968 0.916 0.808 0.999 0.973 0.930 0.867

Wt. Avg. 0.978 0.954 0.901 0.794 1.000 1.000 0.972 0.880

Table 15-11d: Execution time speedups for partial-subblock TLBs elative to single-page-size (4KB)
TLBs with same TLB reach (512-block 4-way set-associative)

Partial-subblock Partial-subblock with preloading
Workload N blocks: s subblock factor N blocks: s subblock factor
256:2 128:4 64:8 32:16 256:2 128:4 64:8 32:16
coral 0.922 0.851 0.777 0.701 0.952 0.928 0.931 0.927

nasa’ 0.997 0.991 0.980 0.957 1.000 1.000 1.000 0.999
compress| 1.000 1.000 0.997 0.942 1.000 1.000 0.999 0.955
fftpde 0.997 0.991 0.941 0.923 0.997 0.991 0.942 1.001
waves 1.000 1.000 0.999 0.992 1.000 1.000 1.000 0.995
mp3d 1.000 0.994 0.988 0.935 1.001 0.998 0.996 0.955
spice 1.000 1.000 0.997 0.928 1.000 1.000 0.999 0.951
pthor 0.988 0.978 0.968 0.767 0.997 0.997 0.997 0.802
ML 0.998 0.994 0.979 0.946 1.002 1.001 0.993 0.968
gce 1.000 1.000 0.989 0.951 1.000 1.000 0.993 0.961
Wt. Avg. 0.988 0.974 0.950 0.889 0.994 0.989 0.981 0.949

Table 15-13a: Execution time speedups for partial-subblock TLBselative to superpage TLBs (64-
block fully-associative)

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.925 0.874 0.867 0.846 1.000 1.001 1.003 1.004
nasa7 0.836 0.773 1.001 1.000 1.000 1.000 1.002 1.000
compress| 0.994 1.000 1.000 1.003 1.001 1.000 1.000 1.003
fftpde 0.999 0.999 0.999 0.902 1.000 1.000 1.000 1.000
wave5 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.978 0.971 0.998 0.999 1.001 1.000 1.000 1.000
spice 0.994 0.998 0.999 1.000 1.001 1.000 1.000 1.000

Workload subblock factor:superpage size

pthor 0.987 0.978 0.972 0.972 1.000 1.000 1.001 1.002
ML 0.993 0.990 0.989 0.992 1.001 1.001 1.000 1.001
gcc 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

Wt. Avg. 0.958 0.946 0.977 0.964 1.000 1.000 1.001 1.001
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Table 15-13b: Execution time speedups for partial-subblock TLBselative to superpage TLBs (128-
block fully-associative)

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.969 0.935 0.892 0.866 1.000 1.001 1.003 1.004
nasa7 0.868 1.000 1.000 1.000 1.000 1.000 1.000 1.000
compress| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
waveb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.996 0.999 0.999 1.000 1.000 1.000 1.000 1.000
spice 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.988 0.981 0.982 0.987 1.000 1.000 1.000 1.001
ML 0.995 0.993 0.995 0.997 1.000 1.000 1.000 1.000
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 0.976 0.988 0.983 0.982 1.000 1.000 1.000 1.001

Workload subblock factor:superpage size

Table 15-13c: Execution time speedups for partial-subblock TLBselative to superpage TLBs (256-
block 4-way set-associative)

With preloading
subblock factor:superpage size
2:8KB 4:16KB  8:32KB  16:64KB | 2:8KB 4:16KB  8:32KB  16:64KB
coral 0.969 0.939 0.915 1.006 1.000 1.001 1.006 1.037
nasa7 0.997 1.000 1.003 1.017 1.000 1.000 1.003 1.017
compress| 1.000 1.000 1.019 1.187 1.000 1.000 1.019 1.186
fftpde 1.000 0.999 1.000 1.005 1.000 1.000 1.000 1.005
waveb 1.000 1.000 1.000 1.004 1.000 1.000 1.000 1.004
mp3d 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.991 1.000 1.003 1.046 1.000 1.009 1.008 1.052
ML 0.996 0.996 0.999 1.000 1.000 1.000 1.001 1.002
gce 1.000 1.000 1.068 1.155 1.000 1.000 1.069 1.158
Wt. Avg. 0.994 0.992 0.999 1.043 1.000 1.001 1.010 1.047

Workload subblock factor:superpage size

Table 15-15a: Execution time speedups for partial-subblock TLBsalative to complete-subblock
TLBs with same subblock factor number of blocks and associativity (64-block fully-associative)

subblock factor With preloading subblock factor
Workload | -, 4 8 16 2 4 8 16
coral 1.000 0.998 0.996 0.992 0.999 0.999 0.997 0.995

nasa’ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
compress| 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000
fftpde 1.000 1.000 1.000 1.005 1.000 1.000 1.000 1.002
waveS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.997 0.985 1.000 1.000 0.998 0.993 1.000 1.000
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999
ML 0.999 0.998 0.998 0.997 0.999 0.998 0.998 0.999
gcc 0.999 0.999 1.000 1.000 0.999 1.000 1.000 1.000
Wt. Avg. 0.999 0.998 0.999 0.999 0.999 0.999 0.999 0.999
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Table 15-15b: Execution time speedups for partial-subblock TLBselative to complete-subblock
TLBs with same subblock factor number of blocks and associativity (128-block fully-associative)

subblock factor With preloading subblock factor
Workload | -, 4 8 16 2 4 8 16
coral 0.999 0.999 0.998 0.994 0.999 0.998 0.997 0.994

nasa’ 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000
compress| 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
fftpde 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
waves 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 1.000 0.999 0.999 0.992 0.999 0.999 0.999 0.998
ML 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000
gcc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wt. Avg. 1.000 1.000 0.999 0.998 1.000 1.000 0.999 0.999

Table 15-15c¢: Execution time speedups for partial-subblock TLBselative to complete-subblock
TLBs with same subblock factor number of blocks and associativity (256-block 4-way set-
associative)

subblock factor With preloading subblock factor
Workload | -, 4 8 16 2 4 8 16
coral 1.000 0.999 0.997 0.986 1.000 0.998 0.996 0.994

nasa’ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
compress| 1.000 1.000 1.000 0.964 1.000 1.000 1.000 0.964
fftpde 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.999
waves 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mp3d 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
spice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
pthor 1.000 0.998 0.997 0.869 0.999 0.999 0.999 0.873
ML 1.000 0.999 0.997 0.993 1.000 0.999 0.997 0.994
gcc 1.000 1.000 0.998 0.984 1.000 1.000 0.998 0.986
Wt. Avg. 1.000 1.000 0.999 0.978 1.000 1.000 0.999 0.979
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Appendix J: Tables with absolute number of TLB misses

This appendix shows the absolute number of TLB misses for each workload and TLB con-
figuration that I consider in this thesis. All the numbers are rounded to the nearest thousand.
These tables are useful for recalculating the execution times for different TLB miss penalty or
recalculating the weights used in calculating the normalized speedups or comparing the num-
ber of TLB misses for different TLBs. Most of the tables group data for TLBs of similar type that
differ in the number of TLB blocks. For example, Table J-1 lists the number of TLB misses for all

fully-associative single-page-size TLBs.

Table J-1: Fully-associative single-page-size (4KB) TLBs

Workload Number of fully-associative TLB blocks

64 128 162 256 304 512

coral 85975 63525 48969 36666 33085 22712
nasa7 152357 148312 126002 85896 77234 18
compress| 21348 818 250 29 28 27
fftpde 11281 11280 117 110 108 107
waveb 1451 8652 1053 46 45 37
mp3d 4050 2396 1599 160 88 55
spice 41923 7442 3789 818 664 323
pthor 2581 2217 2117 1862 1692 961

ML 38424 19303 16119 11610 10240 7334
gcc 2441 449 304 60 43 34

Table J-2: Set-associative (4-way) single-page-size (4KB) TLBs

ks

Workload Number of 4-way set-associative TLB bloc

128 256 512

coral 59431 38980 24648
nasa7 212513 118016 695
compress 842 41 28

fftpde 19739 19348 19156
waveb 6179 48 38
mp3d 2401 331 56
spice 16241 1663 238
pthor 2284 1830 930

ML 24565 13259 7829
gcc 1012 101 37
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Table J-3: 64-block fully-associative single-page-size (4KB) TLBs (varyingplacement policy)

Replacement policy

Workload | 5 5ps Clock Random FIFO

coral 85975 87267 93883 97137
nasa7 152357 151797 157625 158655

compress 21348 22157 26608 25967
fftpde 11281 11279 1o0n17 11998
waveb 1451 14629 11978 13969

mp3d 4050 4059 4908 4846
spice 41923 47624 75532 65518

pthor 2581 2617 2993 2898
ML 38424 39915 52502 49408

gcc 2441 2688 4167 3859

Table J-4: Fully-associative superpage TLBs (superpage sizes 8KB and 16KB)

#blocks in Superpage TLB (4KB/8KB)

#blocks in Superpage TLB (4KB/16KB)
Workload 64 128 256 64 128 256
coral 62829 40942 28911 45652 32244 21606
nasa’ 85957 67749 43 33965 65 3
compress 709 25 22 76 25 24
fftpde 11241 11237 59 11221 11215 30
waveb 5687 27 21 17 14 12
mp3d 2814 221 34 696 26 9
spice 10504 560 181 1021 107 3
pthor 1834 1532 1106 1213 960 478
ML 22816 10023 4985 12534 4499 1797
gcc 649 70 29 147 28 25
Table J-5: Fully-associative superpage TLBs (superpage size 32KB)
#blocks in Superpage TLB (4KB/32KB)

Workload | ¢, 64 123 128 156 247 256 293 494
coral 33434 32762 22505 21889 18718 10947 10361 8123 1397
nasa’7 1457 601 4 4 3 3 3 3 3

compress 64 50 25 25 24 24 24 23 22
fftpde 11207 11206 11187 11197 17 11 10 7 5

waveb 11 11 9 9 9 9 9 8 6
mp3d 32 29 8 7 4 2 2 2 2
spice 103 98 5 5 3 3 3 3 3
pthor 801 790 508 481 403 20 18 14 7
ML 6941 6130 1734 1658 1196 578 516 413 105
gcc 75 62 25 25 24 23 23 23 23
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Table J-6: Fully-associative superpage TLBs (superpage size 64KB)

#blocks in Superpage TLB (4KB/64KB)
Workload | ¢, 128 154 256 290
coral 2219 981 6744 1252 490
nasa’ 22 3 3 3 3
compress| 264 25 25 24 24
fftpde 5502 9 6 6 5
waveb 8 8 7 7 6
mp3d 8 2 2 2 2
spice 28 3 3 3 3
pthor 554 221 50 7 7
ML 2827 599 435 177 109
gcc 53 25 24 23 23

Table J-7: 256-block 4-way set-associative superpage TLBs

Superpage size in exact-index TLB

Workload Superpage size in superpage-index TLB
8KB 16KB 32KB 64KB 8KB 16KB 32KB 64KB
coral 30555 22514 10620 1279 30542 22344 10999 4712
nasa’7 964 3 3 3 739 13 756 3997
compress 25 24 25 24 26 1527 17982
fftpde 18677 8242 7004 12 19342 9188 8232 251
waveb 12 9 7 23 13 50 415
mp3d 7 2 2 44 11 7 15
spice 147 17 3 3 165 16 36 123
pthor 1080 416 94 15 1081 810 512 9303
ML 5879 2116 626 199 5935 2412 3750 7092
gcc 26 24 24 32 55 8215 2010

Table J-8: Fully-associative superpage TLBs (superpage sizes 32KB and 64KB) using base pages

#blocks in Superpage TLB (4KB/32KB) #t%'l‘_’éks in Superpagp
; (4KB/64KB)
Workload using base pages only using base pages only
62 123 156 247 293 494 154 290
coral 87200 65336 49851 37417 33801 23423 50141 34023
nasa? 152755 148807 130573 86991 80092 22 132180 78026
compress| 22960 878 343 29 29 27 363 28
fftpde 11280 11268 116 113 108 107 119 108
wave5 14555 10044 1055 47 45 37 1056 45
mp3d 4105 2522 1733 21 93 56 1778 94
spice 47734 8595 4164 882 687 330 4357 687
pthor 2597 2237 2134 1890 1729 1066 2139 1737
ML 40222 20184 16904 11912 10629 7607 17129 10831
gcc 2636 483 327 67 46 34 335 47

164



Table J-9: 4-way Set-associative superpage TLBs with superpage index (superpage sizes 32KB and

64KB) using base pages only

256-block s_et-associative Superpage TLB 512-2:?F§:é<r;§gzs_l'_sfé:latlve
Workload using base pages only using base pages only
8KB 16KB 32KB 64KB 32KB 64KB
coral 42299 52751 95075 98138 83438 86404
nasa’ 69508 63955 166338 180153 162444 180155
compress 146 647 36221 66226 36245 65895
fftpde 19379 9295 8388 359 228 218
waveb 538 4088 33005 46577 31638 46187
mp3d 414 454 2675 4190 2630 3803
spice 6422 16441 83467 152467 82312 152458
pthor 1892 2419 2709 11959 2082 11737
ML 15356 21096 40136 59033 31804 53043
gcc 184 942 6517 25868 14941 33855

Table J-10: Fully-associative complete-subblock TLBs (subblock factor 2) - nogipading

Workload

#blocks in complete-subblock TLB (subblock factor 2)

51 64 102 128 206 256 413
coral 80450 75252 61506 45151 36343 32400 23145
nasa7 | 150306 148932 121493 113464 34296 18 4
compress| 6072 1100 48 30 27 27 25
fftpde 11279 11279 11280 11278 111 109 103
waveb 13324 10013 412 46 40 37 33
mp3d 4068 3517 1565 282 71 58 40
spice 28796 14328 2880 1000 456 323 4
pthor 2553 2419 2182 2077 1754 1520 521
ML 37452 28114 17776 14368 9903 8377 5572
gcc 1738 785 237 88 36 34 34

Table J-11: Fully-associative complete-subblock TLBs (subblock factor 2) - with gloading

#blocks in complete-subblock TLB (subblock factor 2)

Workload | o 64 102 128 206 256 413
coral | 66524 62715 52379 40847 32507 28834 20155
nasa7 | 86637 85870 71825 67501 17242 12 3

compress| 3666 623 33 21 20 19 18
fiipde | 11240 11239 11240 11237 61 59 55

wave5 | 7709 5653 308 26 23 21 19
mp3d | 3328 2704 1012 183 45 34 21
spice | 20723 9915 1713 530 241 172 3
pthor | 1906 1789 1590 1505 1261 1088 369
ML 28904 21278 11906 9539 6040 4779 3104
gee 1316 553 156 59 28 27 26
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Table J-12: Fully-associative complete-subblock TLBs (subblock factor 4) - nogloading

#blocks in complete-subblock TLB (subblock factor 4)

Workload | 64 72 128 147 297
coral 81637 65055 62427 40627 38306 25424
nasa’7 137416 112547 99065 121 15 3

compress| 1226 36 32 28 27 25
fftpde 11280 11279 11279 11274 111 95
waveb 8754 47 47 38 37 31
mp3d 4382 1205 183 63 56 3
spice 33337 2423 947 323 287 3
pthor 2620 2239 2183 1842 1710 337

ML 43003 20429 17891 9773 8728 3853
gcc 1336 125 77 35 34 34
Table J-13: Fully-associative complete-subblock TLBs (subblock factor 4) - with ploading
#blocks in complete-subblock TLB (subblock factor 4)

Workload | 5o 64 72 128 147 297
coral 53269 45247 43790 31893 29907 18769
nasa’ 40876 33766 29579 38 6 3

compress 396 20 19 17 17 16
fftpde 11222 11219 11220 11214 35 28

waveb 2659 16 16 13 13 12
mp3d 2961 462 99 25 20 2
spice 19334 860 275 91 79 3
pthor 1427 1145 1110 908 840 158
ML 27766 9902 8257 3997 3126 1214
gcc 679 56 38 23 23 23

Table J-14: Fully-associative complete-subblock TLBs (subblock factor 8) - nogdpbading

Workload #blocks in complete-subblock TLB (subblock factor 8)
20 64 92 128 188
coral 93477 76671 66249 51195 41272 35245 27260
nasa7 | 132846 108599 56674 216 10 3 3
compress| 2002 812 29 27 27 26
fftpde 11282 11279 11280 11276 11264 11258 80
waveb 7061 139 39 35 31 30
mp3d 4933 3248 113 74 51 26 2
spice 111680 6715 870 396 58 3 3
pthor 3813 2504 2256 2053 1783 1273 652
ML 70097 34052 21579 13624 8570 5731 3184
gcc 5125 329 69 36 34 34 34
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Table J-15: Fully-associative complete-subblock TLBs (subblock factor 8) - with ploading

Workload #blocks in complete-subblock TLB (subblock factor 8)
20 32 44 64 92 128 188
coral 46897 41064 37284 31983 26161 21175 14900
nasa’ 20281 16461 7367 34 4 3 2
compress| 495 153 18 17 16 16 15
fftpde 11194 11188 11188 11184 11177 11173 14
waveb 1389 63 1 10 9 8 8
mp3d 3167 1086 61 24 10 5 2
spice 65097 2432 144 61 11 3 2
pthor 2153 968 818 710 598 423 213
ML 41532 17132 9273 3965 1965 1128 562
gcc 1241 104 29 22 21 21 20

Table J-16: Fully-associative complete-subblock TLBs (subblock factor 16) - nogloading

Workload #blocks in complete-subblock TLB (subblock factor 16)
9 16 23 32 51 64 107 128
coral 111589 93184 78236 69193 47665 41637 30153 24706
nasa7 | 188088 110246 56837 10408 1 4 3 3
compress| 38772 1296 534 35 29 28 27 26
fftpde 11287 11280 11278 11278 10821 11131 72 52
waveb 35009 3268 332 42 34 32 29 28
mp3d 7865 4853 991 91 50 39 2 2
spice 738567 117707 1327 563 63 4 3 3
pthor 12910 3984 2599 2265 1979 1738 937 445
ML 246857 71705 37760 22605 10598 7103 3081 2353
gcc 30591 1492 428 40 35 34 34 34

Table J-17: Fully-associative complete-subblock TLBs (subblock factor 16) - with gloading

Workload #blocks in complete-subblock TLB (subblock factor 16)
9 16 23 32 51 64 107 128
coral 54348 40381 35397 31626 24829 21159 12104 8854
nasa7 66542 8637 3763 678 3 2 2 2
compress| 10238 183 73 17 16 15 14 15
fftpde 5727 5710 5709 5704 5472 5629 9 7
waveS 13932 2157 140 8 7 7 7 6
mp3d 6001 2113 171 31 7 4 2 2
spice 491353 55210 167 48 21 2 2 2
pthor 9188 2005 769 574 458 390 208 97
ML 167066 38062 16398 7622 1892 1042 342 226
gcc 10106 561 41 21 20 20 19 20
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Table J-18: 4-way set-associative complete-subblock TLBs (subblock factor 2)

without preloading with preloading
Workload | o6 256 512 | 128 256 512
coral 50232 34427 19946 | 43729 30453 17247
nasa7 | 138182 1368 3 101631 693 3
compress 74 28 26 32 21 19
fftpde 19760 19370 8608 19729 19337 8573
waveb 66 39 32 42 23 19
mp3d 638 62 23 419 37 12
spice 6041 283 11 4664 152 7
pthor 2100 1458 367 1533 1052 269
ML 17586 9222 4478 12535 5572 2475
gcc 197 38 34 136 29 27

Table J-19: 4-way set-associative complete-subblock TLBs (subblock factor 4)

without preloading with preloading
Workload |-, 128 256 512 64 128 256
coral 64365 44670 29555 13590 | 44683 33354 21984
nasa’ 141920 2664 3 3 78394 678 3
compress 167 30 27 25 70 18 16
fftpde 20507 19757 9239 8062 20461 19710 9184
waveb 140 44 32 28 74 16 12
mp3d 1383 84 23 2 706 35 7
spice 15924 361 18 3 11735 108 7
pthor 2370 1824 744 94 1259 925 368
ML 27816 11767 5101 1527 15268 4733 1696
gcc 571 40 34 34 165 25 23

Table J-20: 4-way set-associative complete-subblock TLBs (subblock factor 8) - nelmading

Workload #blocks in complete-subblock TLB (subblock factor 8
32 64 128 256 512
coral 78790 57433 37893 20058 1941
nasa’ 144691 5176 4 3 3
compress 651 32 28 26 25
fftpde 21976 20506 10421 8232 5
waveb 347 65 33 28 6
mp3d 2780 147 26 2 2
spice 47427 477 28 3 3
pthor 3381 2197 1254 247 9
ML 49542 16829 6424 1872 181
gcc 1453 120 35 34 34
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Table J-21: 4-way set-associative complete-subblock TLBs (subblock factor 8) - withefwading

Workload #blocks in complete-subblock TLB (subblock factor 8
32 64 128 256 512
coral 42302 32641 21906 9990 819
nasa? 65575 659 3 2 2
compress 171 22 15 14 14
fftpde 21702 20331 10261 8190 4
wave5 181 21 9 8 5
mp3d 1243 47 5 2 2
spice 31677 88 6 2 2
pthor 1708 840 427 72 6
ML 29013 6416 1490 339 41
gcc 775 23 21 21 21
Table J-22: 4-way set-associative complete-subblock TLBs (subblock factor 16) - nelpading
Workload #blocks in complete-subblock TLB (subblock factor 16)
16 32 64 128 256 512
coral 95012 73534 49184 25367 2875 7
nasa’7 147647 10361 4 3 3 3
compress| 1441 59 29 27 25 25
fftpde 24820 21770 11367 8550 5 5
waveb 12930 638 36 28 6 6
mp3d 4771 498 31 2 2 2
spice 222483 4812 101 3 3 3
pthor 6061 2797 1706 465 11 6
ML 111782 30352 8960 2373 252 19
gcc 4187 232 62 34 34 34

Table J-23: 4-way set-associative complete-subblock TLBs (subblock factor 16) - withefading

Workload #blocks in complete-subblock TLB (subblock factor 16)
16 32 128 256 512
coral 43729 32581 9228 682 6
nasa’ 59724 666 2 2 2
compress 203 24 14 14 14
fftpde 19585 16192 8475 4 4
waveb 7003 367 7 5 5
mp3d 2502 148 2 2 2
spice 138139 1919 2 2 2
pthor 3484 994 89 6 5
ML 67032 12683 275 36 15
gcc 2265 24 20 20 20
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Table J-24: Fully-associative partial-subblock TLBs (subblock factor 2) - no mloading

#blocks in partial-subblock TLB (subblock factor 2)

Workload | ¢, 127 128 255 256 509
coral 75333 45389 45232 32527 32447 18846
nasa7 | 148958 11410 113542 71 66 3

compress| 1148 32 31 28 27 25
fftpde 11279 11260 11277 109 109 101

wave5 | 10057 47 47 37 36 31
mp3d 3620 381 345 58 58 27
spice 14336 1041 1003 346 338 3
pthor 2449 2096 2092 1538 1531 126
ML 29427 14909 15008 8395 8383 4480
gcc 889 102 99 35 35 34

Table J-25: Fully-associative partial-subblock TLBs (subblock factor 2) - with peloading

#blocks in partial-subblock TLB (subblock factor 2)

Workload | - ¢/ 127 128 255 256 509
coral | 62822 41088 40042 28983 28910 16277
nasa7 | 85910 67886 67749 39 40 3

compress| 673 27 25 23 22 22
fitpde | 11240 11221 11237 59 59 54

wave5 | 5688 27 27 22 22 18
mp3d | 2763 241 220 34 34 15
spice 9924 557 533 180 177 3
pthor | 1833 1533 1532 1108 1105 89
ML 22314 9844 10006 4962 4949 2462
gee 648 71 69 29 29 28

Table J-26: Fully-associative partial-subblock TLBs (subblock factor 4) - no moading

Workload #blocks in partial-subblock TLB (subblock factor 4)
63 64 126 128 252 256 504
coral 65552 65287 41105 40810 28833 28503 13597
nasa’ 114361 112620 162 156 4 3 3
compress| 111 90 29 29 27 27 25
fftpde 11280 11279 11276 11274 102 100 35
waveb 48 48 38 38 32 31 29
mp3d 1878 1714 66 65 28 27 2
spice 2712 2467 367 344 3 3 3
pthor 2281 2271 1898 1882 971 955 38
ML 22708 21850 11057 10709 5340 5199 1734
gcc 248 236 37 37 34 34 34
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Table J-27: Fully-associative partial-subblock TLBs (subblock factor 4) - with peloading

Workload #blocks in partial-subblock TLB (subblock factor 4)
63 64 126 128 252 256 504
coral 45661 45455 32344 32101 21677 21468 9554
nasa’ 34344 33827 53 50 3 3 3
compress 68 56 23 23 23 23 21
fftpde 11221 11220 11216 11214 30 30 12
waveb 17 17 14 14 12 12 1
mp3d 775 694 27 26 9 8 2
spice 1010 878 104 101 3 3 3
pthor 1205 1197 960 951 482 474 17
ML 12220 11713 4470 4315 1759 1702 569
gcc 112 107 26 26 25 25 25

Table J-28: Fully-associative partial-subblock TLBs (subblock factor 8) - no mloading

Workload #blocks in partial-subblock TLB (subblock factor 8)
32 61 64 122 128 244 256 489
coral 77163 55157 51814 36422 35552 21105 19804 2938
nasa7 110512 14460 304 7 3 3 3 3
compress| 1191 34 32 28 28 27 26 25
fftpde 11280 11279 11276 11266 11265 54 45 7
waveb 296 40 40 33 32 28 28 7
mp3d 3870 84 79 38 29 2 2 2
spice 7959 540 448 7 4 3 3 3
pthor 2639 2131 2103 1443 1340 55 49 12
ML 42640 17351 15904 6929 6611 2627 2367 485
gcc 1348 73 61 35 35 34 34 34

Table J-29: Fully-associative partial-subblock TLBs (subblock factor 8) - with peloading

Workload #blocks in partial-subblock TLB (subblock factor 8)
32 61 64 122 128 244 256 489
coral 41546 33345 32346 22267 21540 10834 10031 1326
nasa’ 17055 1436 56 3 3 3 2 2
compress| 305 24 23 22 22 22 22 21
fftpde 11208 11207 11204 11198 11197 11 10 5
waveb 173 10 10 9 9 8 8 6
mp3d 1549 31 27 6 5 2 2 2
spice 3055 87 73 3 3 3 3 3
pthor 1105 776 746 490 456 18 16 7
ML 25264 6754 5975 1681 1520 530 468 99
gcc 665 35 30 23 22 22 22 22
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Table J-30: Fully-associative partial-subblock TLBs (subblock factor 16) - no gloading

#blocks in partial-subblock TLB (subblock factor 16)

Workload | ¢ 32 57 64 114 128 228 256 456
coral | 94424 70067 45581 42647 28983 25434 6630 3987 7
nasa7 | 114520 10549 15 9 3 3 3 3 3

compress| 2775 160 31 30 27 27 27 26 25
fipde | 11281 11279 10776 10864 69 46 18 5 5

wave5 | 3503 89 35 33 29 28 21 7 6
mp3d | 5359 108 51 46 3 2 2 2 2
spice | 148595 662 80 18 3 3 3 3 3
pthor | 8646 2420 2000 1879 960 812 20 15 7
ML 97375 32979 12293 10196 4199 3497 1188 882 117
gee 13895 917 64 46 34 34 34 34 34

Table J-31: Fully-associative partial-subblock TLBs (subblock factor 16) - with prloading

#blocks in partial-subblock TLB (subblock factor 16)

Workload |, o 32 57 64 114 128 228 256 456
coral | 41776 32260 23650 21687 11495 9407 1815 1030 6
nasa7 | 9602 708 4 3 2 2 2 2 2

compress| 671 120 22 22 22 22 21 21 20
fipde | 5731 5724 5465 5515 9 8 5 5 4

wave5 | 2308 35 7 7 7 7 6 6 5
mp3d | 3349 49 7 6 2 2 2 2 2
spice 73293 66 8 3 3 2 2 2 2
pthor | 4448 697 494 450 220 183 7 7 6
ML 60194 15522 3201 2372 629 524 194 120 24
gce 9942 536 34 27 22 22 22 22 22

Table J-32: 4-way set-associative partial-subblock TLBs (subblock factor 2)

without preloading with preloading
Workload | o5 256 s12 | 128 256 512
coral 50363 34493 20002 | 43879 30494 17327
nasa’7 138202 1426 4 101755 738 3
compress 89 30 27 68 26 23
fftpde 19766 19372 8610 19735 19340 8575
waveb 88 39 32 62 23 19
mp3d 704 72 23 531 44 13
spice 6069 294 12 4682 160 8
pthor 2123 1479 386 1579 1080 291
ML 18655 9562 4505 13363 5982 2641
gcc 333 39 34 256 31 28
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Table J-33: 4-way set-associative partial-subblock TLBs (subblock factor 4)

without preloading with preloading
Workload | ¢, 128 256 512 64 128 256 512
coral 64672 44870 29698 13761 | 45046 33577 22181 9697
nasa7 | 141992 2835 25 4 78502 763 12 3
compress| 289 42 30 28 148 31 23 23
fftpde 20520 19764 9241 8064 20473 19717 9187 8051
waveb 199 50 33 28 120 21 13 1
mp3d 1701 255 29 5 985 138 11 3
spice 15975 386 20 3 11768 121 8 3
pthor 2787 1979 812 161 1649 1068 419 78
ML 3251 13614 5933 2036 21883 6883 2388 774
gcc 3871 86 36 34 3361 53 26 25

Table J-34: 4-way set-associative partial-subblock TLBs (subblock factor 8) - nogioading

Workload #blocks in partial-subblock TLB (subblock factor 8)

32 64 128 256 512

coral 79408 57915 38801 20436 2411
nasa7 145137 5525 56 5 3
compress| 1065 228 148 32 33
fftpde 24612 23115 12743 8245 48
waveb 600 94 35 29 9
mp3d 3351 462 48 10 2
spice 89489 2247 56 4 3
pthor 8937 2474 1351 368 65

ML 67709 27004 10297 4991 2253
gcc 10739 1272 325 309 313

Table J-35: 4-way set-associative partial-subblock TLBs (subblock factor 8) - with eloading

Workload #blocks in partial-subblock TLB (subblock factor 8)
32 64 128 256 512
coral 43016 33179 22404 10384 1141
nasa’ 65938 770 15 3 3
compress 389 92 91 24 25
fftpde 24554 23057 12673 8228 46
waveb 346 34 10 8 6
mp3d 1733 198 13 5 2
spice 65747 1003 13 3 3
pthor 6910 1089 505 130 25
ML 45703 14228 5356 3208 1823
gcc 8855 833 307 240 307
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Table J-36: 4-way set-associative partial-subblock TLBs (subblock factor 16) - nogloading

#blocks in partial-subblock TLB (subblock factor 16)

Workload | ¢ 32 64 128 256 512
coral 95154 73894 50608 26164 4167 596
nasa’7 183738 11146 109 52 22 22

compress| 5333 4775 3127 3113 2943 3100
fftpde 27451 24409 13925 8575 49 5

waveb 12868 801 90 32 10 7
mp3d 9868 2372 238 92 26 6
spice 234301 44963 134 15 5 5
pthor 28786 15016 10006 7790 6869 6773

ML 163489 60306 22242 11592 6951 6186
gcc 27639 6010 3366 2983 1874 2992

Table J-37: 4-way set-associative partial-subblock TLBs (subblock factor 16) -

#blocks in partial-subblock TLB (subblock factor 16)

Workload | -, o 32 64 128 256 512
coral | 44323 33785 22539 0908 1283 257
nasa7 | 87826 899 32 26 21 21

compress| 4304 3721 2950 2939 2946 2783
fitpde | 22636 19070 12965 8549 46 5

wave5 | 8117 525 34 9 7 6
mp3d | 8289 1602 105 40 8 5
spice 220069 30277 28 9 4 4
pthor | 25326 12391 8390 7101 6607 6556
ML | 122028 37577 12966 8887 5487 6142
gcc | 17776 4724 3365 3009 1633 2982

with @loading

Table J-38: Partial-subblock TLBs with preloading and no OS support

Workload 64-block fully-associative 256-block 4-way set-associative
2 4 8 16 2 4 8 16
coral 85987 85987 85987 85955 | 42300 52440 92215 98035
nasa7 | 152043 151558 152377 152379| 68763 62763 165964 180172
compress| 21403 21401 21382 21406 71 603 36038 65789
fftpde 11282 11282 11282 11282 | 19379 9295 8389 359
waveb 14491 14513 14531 14469 619 4158 33007 46559
mp3d 4035 4035 4051 4051 414 454 2651 4189
spice 41936 41894 41960 41941 6434 16406 83435 152477
pthor 2581 2581 2577 2580 1893 2420 2709 11962
ML 38337 38767 38494 38110 | 15338 21422 40055 58018
gcc 2441 2439 2440 2440 184 936 1491 33791
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Table J-39: Fully-associative partial-subblock TLBs without peloading and no OS support

(subblock factors 2 and 4)

#blocks in partial-subblock TLB #blocks in partial-subblock TLB
Workload subblock factor 2 subblock factor 4
64 127 255 509 63 126 252 504
coral 86095 63997 36747 22834 | 86575 64366 36933 23016
nasa7 | 152155 148193 86257 18 152094 148201 86701 18
compress| 21347 853 29 27 22171 877 29 27
fftpde 11281 11281 111 107 11280 11275 11 107
waveb 1451 9029 47 37 14536 9423 47 37
mp3d 4050 2423 165 55 4078 2448 179 55
spice 43589 7772 830 321 45696 7981 833 334
pthor 2581 2222 1866 981 2588 2227 1874 1013
ML 38531 19425 11548 7418 38884 19777 11741 7496
gcc 2443 452 61 34 2536 456 63 34

Table J-40: Fully-associative partial-subblock TLBs without peloading and no OS support
(subblock factors 8 and 16)

#blocks in partial-subblock TLB #blocks in partial-subblock TLB
Workload subblock factor 8 subblock factor 16
61 122 244 489 57 114 228 456
coral 87753 65462 37830 23631 | 88757 66501 39157 25003
nasa7 | 153111 148734 87764 435 176535 149646 90532 15576
compress| 23754 916 29 27 26953 1066 30 27
fftpde 11281 11278 114 107 11280 11279 118 107
waveb 14576 10216 47 37 14793 1071 47 38
mp3d 4133 2546 233 57 4242 2742 393 59
spice 49629 8627 880 337 59453 10372 1194 369
pthor 2606 2240 1899 1088 2647 2272 1943 1260
ML 40810 2013 12047 7574 44629 21625 12939 7928
gcc 2750 489 70 34 3187 552 85 35
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