1688

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

A VLSI Chip Set for a Multiprocessor
Workstation—Part I: An RISC
Microprocessor with Coprocessor
Interface and Support for
Symbolic Processing

DAVID D. LEE, MEMBER, IEEE, SHING 1. KONG, MARK D. HILL, MEMBER, IEEE, GEORGE S. TAYLOR,
DAVID A. HODGES, FeLLOW, IEEE, RANDY H. KATZ, SENIOR MEMBER, IEEE, AND
DAVID A. PATTERSON, SENIOR MEMBER, 1EEE

Abstract —This two-part paper describes two key components used in
building a 40-70 MIPS multiprocessor workstation. In the first part, VLSI
implementation of the central processing unit (CPU) chip, based on
reduced instruction set computer (RISC) architecture and with support for
LISP is described. The 1.3-cm*> CPU chip uses a direct-mapped 512-byte
on-chip instruction cache, and 138 40-bit registers organized in eight
overlapping windows to achieve 10 MIPS per processor peak performance
with a 10-MHz, four-phase clock.

The second part of the paper [1] describes the memory management unit
and cache controller (MMU/CC) chip. System-level design issues such as
multiprocessor cache coherency and synchronization among chip sets are
also considered in the second part. Both chips are implemented in a
1.6-pm double-layer-metal CMOS technology, and are being used in a
multiprocessor workstation (SPUR) successfully executing a UNIX-like
network-based operating system called Sprite as well as many applications
including LISP programs.

[. INTRODUCTION

PUR (Symbolic Processing Using RISC’s) is a multi-
processor workstation developed at the University of
California at Berkeley as a testbed for research on parallel
processing, particularly in LISP [2]. The SPUR worksta-

Manuscript received April 10, 1989; revised July 6, 1989. This work
was supported by DARPA under Contract 482427-25840, California
MICRO, Texas Instruments, National Semiconductor, Cypress Semicon-
ductor, Tektronix, and Hewlett-Packard.

D. D. Lee was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA. He is now
with Xerox Palo Alto Research Center, Palo Alto, CA"94304.

S. 1. Kong was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA. He is now
with Sun Microsystems, Mountain View, CA 94043

M. D. Hill was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA. He is now
with the Computer Sciences Department, University of Wisconsin, Madi-
son, WI 53706.

G. S. Taylor was with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA. He is now
with MIPS Computer Systems, Sunnyvale, CA 94086.

D. A. Hodges, R. H. Katz, and D. A. Patterson are with the Depart-
ment of Electrical Engineering and Computer Sciences, University of
California, Berkeley, CA 94720

IEEE Log Number 8930831.

SHARED
MEMORY
< | SPUR BUS [>
[cachE | L. CACHE |
PROCESSOR 61012 PROCESSOR

i T To SPUR BUS Tl

18 32

MMU/ 38 CACHE
cc RAMs

38
< Ias

ADDRESS %32 64 { 64
BUS 40

64
I DATA BUS
>

CPU FPU

Coprocessor

Interface

Fig. 1. SPUR multiprocessor workstation.

tion, shown in Fig. 1, can have 6 to 12 identical processors,
each of which consists of a 128-kbyte cache, a central
processing unit (CPU), a floating-point coprocessor, and a
memory management unit and cache control (MMU /CC)
that assures cache coherency among multiple processors. A
photograph of a fully populated SPUR processor board is
shown in Fig. 2. This paper describes the VLSI implemen-
tation on the CPU chip, a 32-bit RISC multiprocessor.
The SPUR CPU supports a multilevel cache scheme that
includes a prefetching on-chip instruction cache, a copro-
cessor interface, and support for fast execution of LISP
programs through a tagged 40-bit architecture. The copro-
cessor interface uses 27 pins to implement a low-overhead
interface supporting concurrent CPU and FPU operations.

0018-9200,/89 /1200-1688%01.00 ©1989 IEEE

LEE et al.: VLSI CHIP SET FOR MULTIPROCESSOR WORKSTATION — PART I 1689

agnosilc Ind

FI1EEEEE

Snoop Tag RAMs

B

Fig. 2. SPUR processor board.

TABLE I
CHIP STATISTICS

Number of Transistors 115,214

Number of PLA's 13

..

COUNTER, i

Package 208-pin PGA (40 pins for power supply)

Die Size 11.5mm x 11.5mm § PROGRAM ER)

SHIFTER

Process Double-Metal 1.6um N-Well CMOS

UCR'BE

Operating Frequency 10MHz, with 5V supply and at 25°C

Power Dissipation 0.8W at 10MHz with 5V Supply

!

I

£l

[
i
[}

The chip, implemented in 1.6-pm double-metal CMOS
technology, contains 115K transistors. The chip statistics
are summarized in Table I, and a chip photomicrograph is
shown in Fig. 3. An on-chip clock generator, based on a
charge-pump phase-locked loop with tapped delay line,
provides an accurate phase relationship with the board
clock and also with clock phases of the other chips [3].
Nominal operating frequency with a four-phase nonover-
lapping clock (18-ns nominal per phase and 7-ns nonover- ,
lap time between phases) is 10 MHz (12.5 MHz max, with Fig. 3. Chip photomicrograph.

o
P
%

1690

a 5-V supply at 25°C). The dual-ported register file and
the on-chip instruction cache, operating at different points
in each cycle, require four-phase nonoverlapping clocking,
A SPUR uniprocessor running LISP programs (Gabriel
benchmarks) at 10 MHz can provide 2X performance
improvement on the average over the Symbolics 3600 or
VAX 8650, according to simulation [4]. A multiprocessor
SPUR workstation with 6 to 12 processors is predicted to
yield a sustained throughput of 40 to 70 MIPS, respec-
tively. A prototype multiprocessor workstation configured
with three processors has been developed. It runs a
UNIX-like network-based operating system called Sprite
as well as many applications.

The organization of the paper is as follows. Section II
gives an overview of the CPU architecture and execution
pipeline. Section III focuses on the hardware required to
implement various features of the SPUR CPU architec-
ture. Section IV describes the design, verification, and
testing methodologies of the full-custom SPUR CPU chip.
Finally, the summary and conclusion are given in Sec-
tion V.

II. AN OverviEw OF THE SPUR CPU
ARCHITECTURE

The SPUR CPU is a third-generation RISC micropro-
cessor developed at the University of California at Berke-
ley. It is specifically designed to be used in the SPUR
multiprocessor workstation. The architecture is similar to
those of previous RISC projects at U.C. Berkeley [5], [6],
but significant new features have been added. These in-
clude coprocessor interface to support floating-point com-
putation, an efficient interface to the MMU/CC, and
run-time hardware tag checking for fast execution of LISP
programs. The instruction set of the SPUR CPU is care-
fully chosen such that an efficient implementation of the
single-cycle execution of all instructions is possible.

Like previous RISC processors, the SPUR CPU is a
load-store machine. Memory is accessed only through
load and store instructions. All other instructions are regis-
ter-to-register or immediate-to-register oriented. There are
four generic instruction types: register-to-register, store,
compare-and-branch, and call-jump. Load and return in-
structions are special cases of register-to-register in which
R, + R, or R; +immediate is used as an effective ad-
dress. The R, field specifies the register to be loaded for
the load instruction type and is not used for the return
instruction type. All instructions (40 integer and 20 float-
ing point) are 32 bits wide and use fixed formats. The
seven instruction formats are shown in Fig. 4. For simplic-
ity of decoder, opcode and register specifiers are in the
same positions in all formats. The three-register format
(RRR) is used for load, register-to-register operations,
special register operations, and coprocessor operations.
The two-register and one-immediate (RRI) format is used
for load and register-to-register operations. Compare-and-

1EEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

Register-Register: Rd, Rs1, Rs2

T T T
opcode ! Rd : Rsl 1 O: Rs2 1 unused J

L " L M

31 24 19 14 8 0

Regi Register. Rd, Rs1, I di

I opcode i Rd I Rsl E L Immediate —I
s . .

31 24 19 14 0

Store: Rs2, Rs1, Immediate

T
opcode | High Imm : Rsl i 1 | Rs2 I Low Imm |

) . I
31 24 19 14 8 0

Compare-Branch: Rst, Rs2

T T T T T
l opcode ! Cond ! Rsl 101 Rs2 ! Branch Offset]
31 24 19 14 8 0

Compare-Branch: Rs1, Short Imm
T 1 1
[opcode | Cond + Rsl 11 ShortImm ! Branch Offset I
L s L L

31 24 19 14 8 0

Compare-Branch: Rs1, Tag Imm
T

opcode i Cond 1 Rsl i Tag Imm | Branch Offsct]
L . ;
31 24 19 14 8 0

Call, Jump: Word Address
[

[opcode 1 ‘Word address within current segment]
I

31 27 0

Fig. 4. SPUR instruction formats.

I I-Fetch I Execute |Mem Accl Write I

| I-Fetch I Execute IMemAcc ‘Write l
\

Delayed branch

r I-Fetch I Execute “Mem Acc| Write I
{

\K‘Double internal forwarding
l I-Fetch rExecme |MemAcc| Write]

Fig. 5. SPUR CPU pipeline.

branch instructions have three slightly different formats
depending on the field specifying the condition.

The CPU registers are organized in eight overlapped
windows (128 registers) and ten global registers accessible
from any window (total 32 registers visible from one
window). The overlapped window scheme considerably
reduces the register save and restore overheads between
procedure calls. Unlike previous Berkeley designs, the reg-
isters are 40-bit registers with 32 bits for data and an 8-bit
tag used for run-time type checking and garbage collec-
tion. The 8-bit tag consists of a 6-bit object’s type tag and
a 2-bit generation number. LISP is supported with three
types of hardware tag checking with traps to a software
trap handler: data type checking for general computations,
pointer type checking for list operations, and generation
number checking for garbage collection based on the gen-
eration scavenging algorithm [7].

The on-chip instruction cache provides the effect of an
extra memory port, allowing simultaneous data memory
reference and instruction fetch by the execution unit (EU).
This leads to a four-stage pipeline (Fig. 5) that eliminates

LEE ef al.: VLSI CHIP SET FOR MULTIPROCESSOR WORKSTATION —PART I

pipeline stalling whenever a load instruction is executed.
Consequently, the CPU can issue and complete one in-
struction per cycle (peak performance rate of 10 MIPS per
processor) as long as there are no instruction or external
data cache misses. Branch conflict in the pipeline is re-
solved by a single-cycle delayed branch with one instruc-
tion in the delayed slot. Data conflicts are resolved by
hardware internal forwarding logic.

To facilitate high-precision floating-point computations
and other possible coprocessing capabilities, the SPUR
CPU incorporates a parallel interface to coprocessors. The
floating-point coprocessor interface (27 pins) implemented
in the current version of the CPU chip supports concurrent
CPU and FPU operations. The FPU tracks CPU instruc-
tions issued by the instruction cache in the CPU via 22
pins carrying opcode and register specifiers. The CPU
sends two control signals to the FPU, and the 3-bit FPU
status is sent to the CPU. The CPU treats all FPU instruc-
tions as illegal instructions when the FPU is disabled.
When the FPU is enabled, all FPU instructions except
FPU load and store are treated by the CPU as NO_OP.
For FPU load and store, the CPU computes the effective
memory address and the FPU reads and writes the data
directly from the external cache.

In the SPUR instruction set, a number of special load
(seven) and store (three) instructions are dedicated to
cache control and virtual memory management. Although
these instructions look almost identical to the CPU, appro-
priate cache operations are provided by the CPU to the
external MMU /CC through the MMU /CC interface. The
interface consists of a 4-bit cache opcode, two bits indicat-
ing the mode of operations (user versus kernel and physi-
cal versus virtual), and nine other status bits of both the
CPU and the MMU /CC.

The unusual conditions that the CPU may face at run
time can be divided into four groups. Unusual conditions
detected inside the CPU are called CPU exceptions: inte-
ger overflow, tag checking, window overflow and under-
flow, and so on. Unusual conditions caused by the FPU
are called floating-point exceptions. All other unusual con-
ditions occurring outside the CPU are called faults and
interrupts. Faults occur in response to the execution of an
instruction, while interrupts are asynchronous events that
come from outside the processor (e.g., an 1/0 interrupt).
The CPU responds to exceptions, faults, and interrupts by
taking a vectored trap. There is a priority ordering for
cases when more than one unusual condition occurs at the
same time. Traps can be disabled or enabled selectively by
controlling the 8 bits in both kernel and user processor
status words (KPSW and UPSW).

III. HARDWARE IMPLEMENTATION OF THE
SPUR CPU

The major functional blocks are shown in Fig. 6 and
outlined in the chip photomicrograph (Fig. 3). They are
the execution unit (EU) and the instruction unit (IU). The

1691

ADDRESS BUS

Memory Address Register "— bus§
-

i
)

i

Cache Trap '

'—[Incrementer ! busD |
T '

|

I

'

.

Controller Logic

Interface

"'[Pipelined Program Counters |—' ‘[

i
1

I

1

I

I

!

i

!

i

1

!

I

I busPC Adder
: Master T T
i

!

1

1

1

1

1

1

1

1

1

1

1

1

1

1—!L Call and Trap PCs

Branch
Cond

Bus Buffers

— l Byte Inserter l-" V
] Control T T
Unit l Byte Extractor }-’
Processor Status Words l T T
|

oo
Saved Widow Pointer I'—’
S

Current Widow Pointer

T busAT

busBT

R T busI t_{

Memory Buffer Register 1

x

'
I
'
'
i
'
.
'
.
|
I
Bus Multiplexors |
I
I
I
I
I
\
I
I
I
I
I
I
I
I
'
t
I
I
I

i
i
I
: Internal [Destination Register 1]l—

Instruction | | Forwarding 3 3
! "'{ Destination Register 2 l
)
I T 3

Unit “
| Clock
I Register File
! Generator
'
|
) .
1 L T busl. Execution Unit
DATA BUS
Fig. 6. SPUR CPU block diagram.

EU is further divided into the upper data path, the lower
data path, and the control. The 30-bit upper data path
contains pipelined program counters and special registers.
It is used for instruction address calculations and special
register references. The 40-bit lower data path is for gen-
eral computation on the tagged registers.

A. The Register File

The SPUR CPU has a total of 138 general-purpose
registers organized in eight overlapped windows and ten
global registers. Thirty-two registers are visible to the
compiler at any one time: ten globals, ten locals, six
overlapped with caller window, and six overlapped with
callee window. Each register is 40 bits wide having a 6-bit
tag, 2 bits for generation number, and 32 bits for data. The
six-transistor (6T) CMOS SRAM cell is used for the regis-
ter cell (single-ended access for two reads per cycle and
differential access for a write) [8]. The layout of a SRAM
cell is constrained by the pitches of the data-path bit slice
and the register decoders (two decoders per register). The
result is a large but fast SRAM cell that does not require a
sense amplifier.

The SPUR CPU architecture is register oriented and
requires two reads and one write per cycle. The register
read and write operations are time multiplexed and
pipelined to minimize the critical path. Bit lines are de-
coded and precharged in the same phase, and the register
array is accessed in the following phase by driving the

1692

Access Enable (phil)

Word Line Driver

'Wp: Parent (caller) window pointer

We: Child (callec) window pointer

N<3:0>: Same for both registers in caller’s and callee’s windows
N4: MSB of caller’s register is complement of that of callee’s

(@)

phi3 -

Destination Reg Addr
H_r
phid phi Source Reg Addr

phi2

Enable Internal Forwarding (phil)

Register File

busA

—

Temp Reg
(b)

Fig. 7. (a) Overlapped window register decoder. (b) Internal forwarding
logic.

word line. The access time of the register-file read is the
critical path of the chip. It is measured to be under 14 ns
with a 5-V supply at 25°C. For registers in the overlapped
window, a special decoder shown in Fig. 7(a) is used to
map two different register addresses (one from the caller’s
window and the other from the callee’s window) to one
register [5].

In the pipelined execution of the instruction stream,
data interdependencies among instructions in the pipeline
may arise. In the SPUR CPU, these interdependencies are
detected and resolved by the hardware which forwards the
results from preceding instructions to the following in-
structions (internal forwarding) before being written back
to the register file, as indicated by the arrows in Fig. 5. In
the case of a four-stage pipeline like the SPUR CPU, the
data interdependencies may exist among three consecutive
instructions since the write-back stage of the pipeline is
delayed by two cycles after the execution stage. The result
available from each instruction’s execution stage, there-
fore, needs to be stored in temporary registers for two
cycles and then forwarded to the following instructions if
necessary. When both operands are registers, each register
address is compared to the destination register address of
the two preceding instructions. This may result in double
internal forwarding, in that both operands are results of
two preceding instructions and hence supplied from the
temporary registers.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

The hardware internal forwarding logic is in the critical
path of the register-file access, and it must be implemented
without slowing down the cycle time. Like decoding and
accessing the register array, it is also pipelined. Address
comparisons are done in parallel with the decoding of the
register file, and internal forwardings are made if necessary
while the register file is accessed. Four address compar-
isons are necessary to detect all possible data dependen-
cies. The address comparator must be fast to keep the
cycle time short, and it must be compact to fit in the area
between register decoders and temporary registers, as seen
in Fig. 3 (block IF). Bit-wise comparison is done using a
dynamic XOR, shown in Fig. 7(b), and then the outputs are
fed into the domino circuit for an address match. Since
this XOR does not require complementary inputs, the rout-
ing and area required are significantly reduced. A special
multiplexor, shown in Fig. 7(b), is used to minimize the
signal delay through the internal forwarding logic that lies
between the register file and the functional unit. If internal
forwarding is necessary, the bus from the register file is
disconnected by the transmission gate, and the bus to the
functional unit is driven by the temporary register. The
access time of register-file reading (14 ns) includes the
delay through the internal forwarding logic. '

B. The Instruction Unit

The SPUR IU contains 128 instructions (512 byte), is
direct-mapped (16 blocks of eight instructions per block),
and is addressed by virtual addresses. A novel feature of
the SPUR instruction cache is a valid bit associated with
each instruction word in the cache so that any subset of
instructions within a block may be valid. The SPUR IU
uses this flexibility to reduce demand miss time by loading
only the fetched instruction rather than the entire block
and to permit instruction prefetching to load the rest of a
block in parallel with subsequent instruction fetches [9],
[10]. If subsequent prefetches are successful, the miss
penalty is just two cycles (loading the first instruction) for
the entire block containing the missed instruction.

The IU can operate in three different modes: 1) dis-
abled, 2) enabled without prefetching, and 3) enabled with
prefetching, controlled by two bits in the KPSW. In the
disabled mode, the IU fetches every instruction requested
by the EU from the external cache. The disabled mode is
useful for initial chip testing and for allowing chips with
stuck-at-type errors in the cache or tag array to function
correctly, albeit more slowly. In enabled-without-prefetch-
ing mode, the TU will cache instructions upon demand
misses but will not initiate any prefetches.

The normal mode is the enabled with prefetching. After
the missed instruction is cached, prefetches are made to
subsequent words within the block until another demand
miss occurs or prefetch is blocked by the EU’s external
data access. These prefetches are “free,” as they never
interfere with external cache accesses, such as instruction
fetch and external data reference, by the EU because
prefetch has the lowest priority. If prefetch causes an

LEE et al.: VLSI CHIP SET FOR MULTIPROCESSOR WORKSTATION —PART I

external cache miss, the cache controller simply ignores the
request.

The instruction unit is controlled by two finite-state
machines: one controls the fetching and the other controls
the prefetching of instructions. Two finite state machines
and other random control logic are partitioned into the
total of six PLA’s considering the timing constraints. The
same 6T SRAM cell used in the register file is used in the
IU, except it is accessed differentially for both read and
write. The data portion of the cache is an array of 128
words. Associated with each entry are a 32-bit instruction
word and a valid bit. The tags are stored in a separate
array (16 24-bit words) whose access time is significantly
faster than that of the data array. This allows the tag
comparison to be done while the instruction is being read
out from the data array. Bit-wise comparison using an XOR
gate is used for tag comparison and is followed by dy-
namic logic to determine a hit. The effective access time of
the instruction cache including hit logic is under 12 ns (5-V
supply at 25°C) without using a sense amplifier.

C. The Data Path

The data path is divided into two parts: the upper data
path for program counter logic and special registers, and
the lower data path for general computations on tagged
registers. Functional units in the lower data path include a
byte extractor, a byte inserter, a simple shifter that shifts
up to 3 bits, and an ALU. The ALU provides XOR, OR,
AND, ADD, and SUBTRACT operations and comparison for
two 32-bit operands. The upper data path consists of a
number of program counters to hold instruction addresses
in the pipeline, an address incrementer and adder, and
special registers such as window pointers and processor
status words. All registers and counters are made of
pseudo-static latches, such that each register is refreshed
once per cycle. This is necessary because an indefinite
pipeline stall is possible due to a long external cache miss.

In the SPUR CPU, compare-and-branch instructions are
executed in one cycle with one delay slot. A separate adder
in the upper data path calculates the target addresses for
all the compare-and-branch instructions while the ALU is
used for the comparison. Two different adder designs are
employed. The 32-bit ALU uses four 8-bit carry lookahead
adders implemented in domino logic, and evaluates the
carry within 11 ns (5-V supply at 25°C). The 30-bit ad-
dress adder is more compact because it uses a Manchester
carry chain which has a carry propagation delay of 13.5 ns.

The upper 8-bit slice of the lower data path is for
tag-related operations. Operations on the tag and the data
are logically independent, that is, no information moves
between the two parts by carry propagation or any other
implicit mechanism. For operations, the 6-bit tag type is
checked in parallel with the data operation. If there is a tag
mismatch and the tag-trap enable bit is set in the UPSW,
the CPU traps to the software. Generation tag checking (2
most significant bits) is done when a special store instruc-
tion (ST_40 Ry, Ry, Immediate) is executed. A genera-

1693
TABLE II
CRITICAL PATH TIMING
phase | operation critical patht
phil Register file - read 14.0 nsec
phi2 Instruction Cache - fetch 12.0 nsec
phi3 ALU - 32b carry propagation 11.0 nsec
phi4 Address adder - 30b carry propagation 13.5 nsec

1 with 5V supply and at 25 °C

tion tag exception may occur if the object (Rg,) with a
higher (younger) generation number is stored into the
object (Rg,) with a lower generation number [7]. The
read_tag and write_tag instructions move a tag to and
from the data portion of a register using the byte-extractor
and the byte-inserter, respectively, so that any arithmetic
or logical operations may be performed on it.

To reduce the chip area and improve the circuit speed,
domino logic {11} is heavily used in the design. Potential
charge-sharing problems are prevented by careful layout of
the critical nodes (parasitic capacitance on critical node is
intentionally made much higher than adjacent nodes possi-
bly sharing charge). The SPUR CPU has seven major
buses to provide communications both externally and in-
ternally. Some of these buses have high capacitive load-
ings, and hence precharging is used to improve the speed
of data flow through the highly capacitive buses. The
high-capacitance bus is precharged to high before being
used and discharged conditionally through a strong NMOS
pull-down network. This not only reduces the signal delay
through the bus but also minimizes the chip area required
for a strong, large driver. Some logic function may be
included in the pull-down network as well, further saving
the chip area. The four-phase clock made it easier to
implement these dynamic circuits since precharging can be
hidden and well separated from the evaluation phase.
Precharging current can also be somewhat distributed over
several phases, reducing the current spikes. Critical paths
of the data path, register file, and instruction cache are
summarized in Table II.

D. The Control

Four-phase clocking and a uniform four-stage pipeline
for all SPUR integer instructions make the control section
of the CPU relatively simple. The SPUR CPU uses inter-
nal instructions to handle pipeline interrupts, rather than
requiring complex sequences for those exceptions. These
internal instructions are issued by the control unit when a
cache miss (miss) or trap occurs (trap_call and read_pc).
The use of these internal instructions further simplifies the
control design because they are handled by the EU as if
they are regular user instructions.

1694

Low Level Control Signals

T e e (for Upper Datapath) e . T MMU/CC, FPU
I Special Reg. Control l l PC Control | T
Local decoding logic
IOPCODE High Level Control Signals MMu/CC
p FPU
Master Control -
Interface
Opcode
E M Wi
PLA 7&)! xec Mem T
Ctr 1Y Cr T4 Ctr
Fast |1
Logic Buf Buf Buf
3 50 7 8] Trap
!
High Level Control Signals Logic
Local decoding logic

Register Control J L Func. Units Control —l
T T
l ot Low Level Control Signals c

(for Lower Datapath)

Fig. 8. Block diagram of master control.

The control can be divided into three parts: master
control, trap logic, and the interface to the MMU /CC.
The latter two are separated out from the master control to
simplify the control design. Trap logic detects all unusual
conditions during the pipelined execution of an instruc-
tion. All traps are taken during an instruction’s third
pipeline stage, and hence only one instruction can cause a
trap in any cycle. The MMU /CC interface logic generates
cache opcodes according to the current instruction and the
status of the CPU. It also buffers signals to and from the
MMU /CC.

A block diagram of the master control is shown in Fig.
8. A centralized master control unit controls the processor
sequencing and decodes the opcode into high-level control
signals. Local random logic blocks then decode the high-
level signals into low-level signals. They also provide
buffering of the low-level signal according to the loading
requirement. All signals controlling the data path are indi-
vidually optimized to have equal delays relative to the
clock edges. The separation of master control and local
decoding /buffering significantly reduces the amount of
routing between those two blocks, particularly in CMOS
design where complementary signals are required in con-
trolling the data path.

Most of the control logic in the SPUR CPU is imple-
mented in static PLA’s. The largest PLA is the one that
decodes the opcode. It has 69 product terms with 40
outputs. The simulated propagation delay through this
PLA is about 15 ns, well below the required timing of two
phases or 50 ns. All PLA outputs are evaluated once per
cycle and need to be held in registers until the next cycle.

IV. DESIGN, VERIFICATION, AND TESTING
METHODOLOGY

Methodologies employed in the SPUR CPU design have
been influenced by the following two themes of the SPUR
project: 1) an overall system-wide rather than local opti-
mization, and 2) designing a chip for a working system

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

Behavioral Description
ISP”

Behavioral Simulation
N2

Test Vector

Circuit/Logic
Dia;

Design Rule Checking
and Editing:
magic

,| Layout Verification
bdsim

Layout

Layout extraction
ext2sim

Switch Level Description

Timing Verification: |
crystal, spice

Fig. 9. Design methodology.

rather than an experimental prototype chip. Consequently,
methodologies became very important since the chip being
designed must meet all the functional requirements set for
the system design as well as performance goals.

A. Design Methodology

The design strategy incorporated both top-down and
bottom-up approaches. The top-down flow was as follows:
architecture definition, instruction set design, microarchi-
tecture design, and a detailed functional /behavioral de-
scription of the hardware. The bottom-up flow was the
circuit design of basic components, the layout of basic
cells, the assembly of major blocks using those cells, and
the global placement and interconnections. Both ap-
proaches were taken in parallel from the beginning, in
order to achieve the highest performance for given technol-
ogy and system design goals. For instance, many microar-
chitecture decisions were made after the feasibility of a
given hardware resource was carefully considered. Division
of design tasks followed the same hierarchical boundaries
of design abstractions: architecture and instruction set
design, microarchitecture design, and VLSI implementa-
tion. One- or two-person groups were formed to take
responsibility for each design level. Close interaction
among different groups was necessary to make clean inter-
faces among themselves and design specifications.

Most of the CAD tools used in designing the SPUR
CPU chip were developed at Berkeley, except those for the
behavioral level design. The detailed design started by
describing the behavior of the chip and its interactions
with other components within the system. The functional
behavior was written in ISP’, a hardware description lan-
guage, and simulated using the N.2 simulator [12]. Most
parts of the control design were done using a set of CAD
tools that automatically synthesizes the behavioral descrip-
tion of combinational logic into a PLA [13], [14]. Other
parts of the control logic (sequential) and data paths were
designed manually but aided by another set of tools. These
two approaches are diagrammed in Fig. 9. For the auto-
mated synthesis path, only those parts of the hardware
description containing combinational logic can be synthe-
sized. For the manual part, logic and circuit design were

LEE ef al.: VLSI CHIP SET FOR MULTIPROCESSOR WORKSTATION-—PART 1

done first for each block followed by layout. Layout was
done using an interactive layout editor, Magic [15], with
background design rule checking and hierarchical extrac-
tion. The extracted layout, a switch-level description of the
chip, was simulated using bdsim, a switch-level logic simu-
lator [13].

Timing analysis was done before layout, to make early
trade-offs among the many alternatives, and again after
layout, to perform exact timing analysis with all parasitics
correctly annotated. To estimate critical paths more accu-
rately, and thus to determine the minimum cycle time, a
test chip containing a register file with internal forwarding
was fabricated and tested [16]. The measured critical path
(register-file read) was below 18 ns, and this encouraged us
to set the cycle time goal at 100 ns.

B. Verification Methodology

The verification methodology was constructed following
a bottom-up approach. As each individual module was
designed, a small set of handwritten test vectors was used
to perform switch-level simulations on the extracted lay-
out. Once individual modules were verified, they were
connected and simulated together until the integration
reached the highest level division: execution unit and in-
struction unit. Test vectors up to this point were small and
easy to generate by hand, since the test sequences required
to verify operations on these units separately were rela-
tively simple. After all major blocks were integrated, the
verification effort was directed at both functional and
switch levels.

Functional simulations were performed not only on each
major component, to verify its internal functions, but also
on the external system level, to verify interactions among
major chip sets. The diagnostics for the functional simula-
tion were coded in SPUR instructions, and an instruction-
level simulator called Barb was written to debug the
diagnostics. The diagnostics were intended to be stored in
a start-up ROM on the processor board. The N.2 system
provided simulated memories that could be used to model
ROM or other types of memory. Therefore the diagnostics
were assembled and loaded into the simulated memory.
When the N.2 simulation was started, it was forced to go
through a series of start-up sequences, making the CPU
begin fetching instructions from the simulated ROM con-
taining the diagnostics. The diagnostics were then executed
to completion or failure. The same ROM image was used
to program EPROM’s to be used for on-board testing of
the chip.

Running extensive simulations on the hardware descrip-
tion verified many design ideas and functionalities, but it
was still necessary to extract and simulate the layout of the
entire chip. The extracted description is almost guaranteed
to accurately model the real chip. However, developing
tests and examining their results for a complete switch-level
simulation would be very difficult. To minimize the re-
quired work, the functional simulation was used to drive
the switch-level simulation while automatically verifying

1695
TABLE III
DiAGNoOsTICS
diagnostics test vector length (cycles)
CPU functions 13,113 (24%)
MMU/CC interface 16,356 (29%)
FPU interface 1,543 (3%)
Lisp tags and traps 8,675 (16%)
Boot-up diagnostics 15,829 (28%)

that the two match at every clock cycle. Fortunately, the
N.2 simulator provides a “tracing” capability that logs all
changes to a specified set of signals into a file. By tracing
all inputs and outputs of an N.2 module, it is possible to
obtain a set of switch-level test vectors automatically.
These vectors along with expected results on output nodes
are fed into the switch-level simulation. The switch-level
simulator bdsim sets the input nodes according to the
timing and vectors specified and verifies the output nodes
with the expected results. Any unusual condition is
recorded so as to be used in debugging.

A problem may arise because functional simulation and
switch-level simulation may show different results under
unusual states, such as unknown and initial states. For
example, the functional simulator initializes all nodes to
zero, while all nodes are initially set to unknown in the
switch-level simulation. When the chip is tested, neither of
these initial conditions is correct. To alleviate this prob-
lem, all internal states are initialized explicitly in the
simulations.

In order to have a working system rather than merely a
prototype chip, all aspects of the design had to be verified,
especially the interfaces to external chips. Table III sum-
marizes the diagnostic vectors simulated in both functional
and switch-level simulations. These vectors are mainly for
the CPU chip. Additional system-level verification was
done using extensive functional simulation, and is further
discussed in the companion paper [1].

C. Testing Methodology

Several features were incorporated into the SPUR CPU
chip to increase its testability. Passive scan registers are
attached to all major buses to increase observability. Any
signal put on these buses can be scanned out for examina-
tion. All major blocks are connected and communicate
through these buses, so the diagnostics capability is greatly
improved. Many signals, like state bits of finite state
machines in IU and the LSB’s of the instruction address
bus (busPC), are also routed out to pins to help determine
the status at any time. The CPU sends out an instruction
every cycle to the FPU (via busl). This enables us to
monitor the instruction being executed including internal

1696

instructions. The IU and the EU can be physically sepa-
rated by setting certain diagnostic pins. Using these fea-
tures, instructions can be delivered directly to the EU, in
case the instruction unit is not functional, by monitoring
the instruction address (busPC(10:2)) available on pins.

Initial testing was done on a special board made for the
SPUR CPU chip. The Tektronix DAS 9100 system was
connected to the board and controlled from a SUN work-
station. The same vectors used in the switch-level simula-
tions were converted into test vectors. For short testing,
test vectors were downloaded to the DAS and executed. A
special setup was necessary for long-cycle testing, since the
DAS can hold at most 256 cycles of test vectors. Long
vectors were divided into several parts to fit in the DAS
capacity. The division was made at an instruction access-
ing memory (external cache), and the CPU was deliber-
ately made to stall on cache miss by controlling the
MMU /CC interface pin (cache busy) while the next por-
tion of the vector was being downloaded. All signals
acquired during the testing were transferred back to the
SUN workstation for a cycle-by-cycle verification against
the expected result. Most of the CPU functionalities were
tested using the special test setup rather than the real
processor board. After the debugging was done, the CPU
chip was put on a SPUR processor board to test interac-
tions with other components on the board, especially with
the MMU /CC.

D. Results

First-pass silicon had a few bugs, including circuit de-
sign, layout, and timing errors, but it worked well enough
to be used for initial debugging of the processor board.
The layout errors discovered were well and substrate con-
tacts misplaced onto signals rather than power-supply lines.
These effectively shorted the signal to either the ground or
the power line, resulting in a stuck-at type fault. This fault
was not detected in switch-level simulation because the
well was not explicitly drawn in the layout (Magic layout
editor {15]), hence the layout extraction did not properly
handle well or substrate contacts. Some of these errors
were corrected by isolating the misplaced contacts from
the power supply using a laser restructuring technique
provided by the Information Science Institute (ISI). Either
first-level or second-level metal can be disconnected by
using a laser shot through the passivation layer. The sec-
ond-level (topmost) metal lines with a width of 3 pm were
cut successfully without affecting nearby structures. Other
problems found were timing errors and glitches on signals
controlling the dynamic circuits. The glitch was caused by
excessive ringing on clock lines. The long clock lines (10
mm) had parasitic inductance and capacitance large enough
to cause a substantial ringing, which triggered a hazardous
glitch.

Several electrical-rule checks were performed to avoid
repeating the same errors for the second pass. However,
there was still another layout error discovered after the
second fabrication. A portion of metal wire was missing,

1EEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

leading to a disconnected signal. A focused-ion-beam (FIB)
IC development system, provided by the Seiko instrument
company, was used to fix the problem. Two holes were
drilled on separated wires through the passivation layer to
reach the metal lines, using an ion beam, and connected
using FIB chemical vapor deposition (CVD) metal film
deposition between the two points. The collection of re-
vised and repaired chips was found to be functional. These
chips are currently used in the multiprocessor workstation
configured with three processors, successfully executing
the operating system (Sprite) as well as many applications
including LISP programs. The nominal operating fre-
quency of the chip is 10 MHz, while the maximum operat-
ing frequency is 12.5 MHz (80-ns cycle time), with a 5-V
supply at 25°C.

V. SUMMARY

The SPUR CPU is a single-chip RISC microprocessor
designed for a multiprocessor workstation. It supports a
multilevel cache scheme including a prefetching on-chip
instruction cache, a coprocessor interface, and support for
the fast execution of LISP through a tagged 40-bit archi-
tecture. In order to build a working computer system
based on the SPUR CPU chip, reliable and efficient
methodologies were necessary throughout the design. The
chip, fabricated in a 1.6-pm double-metal CMOS process,
works well in a multiprocessor system prototype, meeting
both functional and performance goals set at the initial
stage of the design. It runs at 10 MHz consistently for all
programs and dissipates less than 0.8 W (5-V supply) of
power.

ACKNOWLEDGMENT

The authors wish to thank all members of the SPUR
project who made it an exciting project to work on, and
acknowledge the technical contributions of R. Duncombe,
W. Koh, K. Lutz, and J. Mak. Wafer fabrication was by
Hewlett-Packard via MOSIS.

REFERENCES

(1] D.-K. Jeong er al., “A VLSI chip set for a multiprocessor worksta-
tion—Part II: A memory management unit and cache controller,”
this issue, pp. 1699-1707.

[2] M. D. Hill er al., “Design decisions in SPUR,” IEEE Computer,
vol. 19, no. 10, pp. 8-24, Nov. 1986.

[3] D. K. Jeong er al., “Design of PLL-based clock generation circuits,”
IEEE J. Solid-State Circuits, vol. SC-22, no. 2, pp. 255-261, Apr.
1987.

[4] G.S. Taylor et al., “Evaluation of the SPUR Lisp architecture,” in
Proc. 13th Int. Symp. Computer Architecture (Tokyo, Japan), June
1986.

[5] M. G. H. Katevenis, “Reduced instruction set computer architec-
tures for VLSI,” Univ. of Calif., Berkeley, Tech. Rep. UCB/CS
Division 83 /141, Oct. 1983.

[6] J. M. Pendleton et al., “A 32-bit microprocessor for Smalltalk,”
IEEE J. Solid-State Circuits, vol. SC-21, no. 5, pp. 741-749, Oct.
1986.

[7] D. Ungar, “Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm,” in ACM Software Engineer-
ing Notes /SIGPLAN Notices Software Engineering Symp. Practical
Software Developmen: Environments (Pittsburgh, PA), Apr. 1984.

LEE et al.: VLSI CHIP SET FOR MULTIPROCESSOR WORKSTATION —PART I

{8] R. W. Sherburne, Jr., M. G. H. Katevenis, D. A. Patterson, and
C. H. Sequin, “A 32b NMOS microprocessor with a large register
file,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 682-689, Oct.
1984.

[91 J.R. Goodman, “Using cache memory to reduce processor memory
traffic,” in Proc. 10th Int. Symp. Computer Architecture (Stock-

holm, Sweden), June 1983, pp. 124-131.

M. D. Hill and A. J. Smith, “Experimental evaluation of on-chip

microprocessor cache memories,” in Proc. 11th Int. Symp. Com-

puter Architecture (Ann Arbor, MI), June 1984, pp. 158-166.

[11] R. H. Krambeck, C. M. Lee, and H. S. Law, “High-speed compact
circuits with CMOS,” IEEE J. Solid-State Circuits, vol. SC-17, pp.
614-619, June 1982.

[12] N.2 Simulator User’s Manual, ENDOT, Inc., Cleveland, OH, 1985,

[13] R. B. Segal, “BDSYN: Logic description translator, BDSIM:
Switch-level simulator,” Electron. Res. Lab., Univ. of Calif., Berke-
ley, Memo. M87/33, May 1987.

[14] OCT Tools Distribution 2.1, Electron. Res. Lab., Univ. of Calif.,
Berkeley, Mar. 1988.

[15] J. K. Ousterhout et al., “The Magic VLSI layout system,” IEEE
Design & Test Computers, vol. 2, pp. 19-30, Feb. 1985.

[16] D. Lee, “Data path design considerations for a high performance

VLSI multiprocessor,” Univ. of Calif., Berkeley, Tech. Rep.
UCB/CS Division 87/318, Nov. 1986.

David D. Lee (S'85-M’88) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
and computer sciences from the University of
California, Berkeley, in 1983, 1986, and 1989,
respectively.

Before joining the SPUR project at Berkeley,
he worked at IBM General Technology Division,
Poughkeepsie, NY (1983-1984). In 1989 he
joined Xerox Palo Alto Research Center, Palo
Alto, CA, as a member research staff. His cur-
rent research interests include VLSI circuits and
systems design, computer architecture, and interactive display technology.

Shing 1. Kong received the B.S. degree in me-
chanical engineering from Washington Univer-
sity, St. Louis, in 1982. Before undertaking
graduate study at the University of California,
Berkeley, he worked for the Computer System
Laboratory at Washington University. In the fall
of 1983, he began his graduate studies at U.C.
Berkeley where he was a circuit designer for the
SOAR project in 1984 and the chief designer of
the SPUR CPU from 1985 to 1989. He received
the M.S. and Ph.D. degrees in electrical engineer-
ing in 1985 and 1989, respectively.

Currently, he works for the advanced development group of Sun
Microsystems at Mountain View, CA.

Mark D. Hill (S80-M'87) received the B.S.E.
degree in computer engineering from the Univer-
sity of Michigan, Ann Arbor, in 1981 and the
M.S. and Ph.D. degrees in computer science from
the University of California at Berkeley in 1983
and 1987, respectively.

He is an Assistant Professor in the Computer
Scieneces Department at the University of Wis-
consin, Madison. His research interests center on
computer architecture, with an emphasis on per-
formance considerations and implementation
factors in memory systems.

Dr. Hill is a member of ACM and a recipient of the National Science
Foundation’s 1989 Presidential Young Investigator award.

1697

George S. Taylor received the B.S. degree in
electrical engineering from Duke University,
Durham, NC, in 1978. He will receive the Ph.D.
degree from the University of California, Berke-
ley, in 1989.

He is a Senior Engineer at MIPS Computer
Systems, Sunnyvale, CA, where most recently he
led the design team for the R6000 ECL RISC
microprocessor. Before joining the SPUR pro-
ject, he designed the floating-point processor for
the ELXSI 6400 minisupercomputer, wrote the
design-rule checker for U.C. Berkeley’s MAGIC VLSI CAD system, and
developed a radix-16 divider for the Lawrence Livermore Laboratory’s
S-1 AAP computer project. His engineering interests include instruction
set architecture, code scheduling, and VLSI packaging.

David A. Hodges (S'59-M’65-SM’71-F’77)
earned the BEE. degree at Cornell University,
Ithaca, NY, and the M.S. and Ph.D. degrees in
electrical engineering at the University of Cali-
fornia at Berkeley.

From 1966 to 1970 he worked at Bell Tele-
phone Laboratories, first in the components area
at Murray Hill, NJ, then as Head of the System
Elements Research Department at Holmdel, NJ.
Now he is Professor of Electrical Engineering
and Computer Sciences at U.C. Berkeley, where
he has been a member of the faculty since 1970. He became Chairman of
the EECS Department on July 1, 1989. Since 1970 he has been active in
teaching and research on microelectronics technology and design. He and
H. G. Jackson are coauthors of Analysis and Design of Digital Integrated
Circuits, a widely used textbook.

Prof. Hodges is founding Editor of the IEEE TRANSACTIONS ON
SEMICONDUCTOR MANUFACTURING. He is a former Editor of the IEEE
JOURNAL OF SOLID-STATE CIRCUITS and a past Chairman of the Interna-
tional Solid-State Circuits Conference. With Robert Brodersen and Paul
R. Gray, he received the 1983 IEEE Morris N. Liebmann Award for
pioneering work on switched-capacitor circuits. He is a Fellow of the
IEEE and a member of the National Academy of Engineering.

Randy H. Katz (§'74-M’80-SM’88) received the
A.B. degree from Cornell University, Ithaca, NY,
in 1976, and the M.S. and Ph.D. degrees from
the University of California at Berkeley in 1978
and 1980, respectively.

After a year in industry, he taught at the
Computer Sciences Department at the Univer-
sity of Wisconsin, Madison, from 1981 to 1983.
He joined the EECS Department at U.C. Berke-
ley in 1983, where he is now a Full Professor. He
is currently the Principal Investigator of a
DARPA/NASA funded research project to build a high-performance
1/0 system for network file servers and very-high-performance com-
puting.

David A. Patterson (M’84-SM’88) received the
Ph.D. degree in computer science from the Uni-
versity of California, Los Angeles, in 1976.

He was first employed by Hughes Aircraft
Company designing and evaluating computers.
Since 1977 he has been a member of the faculty
in the Computer Science Division, Department
of Electrical Engineering and Computer Sciences
at the University of California, Berkeley. He was
named Associate Professor in 1981 and Professor
in 1985. He teaches computer architecture at

1698

both the graduate and undergraduate levels. Recently he has created and
taught a course to introduce liberal art students to computers. This effort
led to a set of books allowing these ideas to be tried at other institutions.
He spent the fall of 1979 on leave of absence at Digital Equipment
Corporation developing microprogram design tools. In the next year he
led the design and implementation of RISC 1, a 45000-transistor micro-
processor that was likely the first VLSI RISC. The following year RISC
II was completed, and this was the first university-built microprocessor
that was accepted for publication at the International Solid-State Circuits
Conference (ISSCC) as well as the second VLSI RISC. He recently
finished leading the Smalltalk On A RISC (SOAR) project, which pro-
duced a 32000-transistor microprocessor that runs the object-oriented
Smalltalk-80 system. These processors are the basis of the commercial

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 24, NO. 6, DECEMBER 1989

RISC computer SPARC, sold by several computer and chip companies
including AT&T, Sun Microsystems, Texas Instruments, and Xerox. He
was most recently Principal Investigator of the Symbolic Processing
Using RISC’s (SPUR) project. This was an effort of six faculty and 25
graduate students to build a multiprocessor workstation based on three
custom VLSI chips and a new operating system that supports both
Common LISP and C as first-class citizens. He is currently working with
Prof. Katz on developing input/output systems to match the increasingly
higher performance of new processors.

Dr. Patterson received the Distinguished Teaching Award from the
Berkeley Division of the Academic Senate of the University of California
in 1982.

