
-- --

Weak Ordering - A New Definition†

Sarita V. Adve
Mark D. Hill

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin 53706

ABSTRACT

A memory model for a shared memory, multipro-
cessor commonly and often implicitly assumed by pro-
grammers is that of sequential consistency. This model
guarantees that all memory accesses will appear to exe-
cute atomically and in program order. An alternative
model, weak ordering, offers greater performance
potential. Weak ordering was first defined by Dubois,
Scheurich and Briggs in terms of a set of rules for
hardware that have to be made visible to software.

The central hypothesis of this work is that pro-
grammers prefer to reason about sequentially consistent
memory, rather than having to think about weaker
memory, or even write buffers. Following this
hypothesis, we re-define weak ordering as a contract
between software and hardware. By this contract,
software agrees to some formally specified constraints,
and hardware agrees to appear sequentially consistent to
at least the software that obeys those constraints. We
illustrate the power of the new definition with a set of
software constraints that forbid data races and an imple-
mentation for cache-coherent systems that is not
allowed by the old definition.

Key words: shared-memory multiprocessor,
sequential consistency, weak ordering.

1. Introduction

This paper is concerned with the programmer’s
model of memory for a shared memory, MIMD mul-
tiprocessor, and its implications on hardware design and
performance. A memory model commonly (and often
�����������������������������������
† The material presented here is based on research supported in
part by the National Science Foundation’s Presidential Young
Investigator and Computer and Computation Research Programs
under grants MIPS-8957278 and CCR-8902536, A. T. & T. Bell
Laboratories, Digital Equipment Corporation, Texas Instru-
ments, Cray Research and the graduate school at the University
of Wisconsin-Madison.

implicitly) assumed by programmers is that of sequen-
tial consistency, formally defined by Lamport [Lam79]
as follows:

[Hardware is sequentially consistent if] the
result of any execution is the same as if the
operations of all the processors were exe-
cuted in some sequential order, and the
operations of each individual processor
appear in this sequence in the order
specified by its program.

Application of the definition requires a specific interpre-
tation of the terms operations and result. We assume
that operations refer to memory operations or accesses
(e.g., reads and writes) and result refers to the union of
the values returned by all the read operations in the exe-
cution and the final state of memory. With these
assumptions, the above definition translates into the fol-
lowing two conditions: (1) all memory accesses appear
to execute atomically in some total order, and (2) all
memory accesses of each processor appear to execute in
an order specified by its program (program order).

Uniprocessor systems offer the model of sequen-
tial consistency almost naturally and without much
compromise in performance. In multiprocessor systems
on the other hand, the conditions for ensuring sequential
consistency are not usually as obvious, and almost
always involve serious performance trade-offs. For four
configurations of shared memory systems (bus-based
systems and systems with general interconnection net-
works, both with and without caches), Figure 1 shows
that as potential for parallelism is increased, sequential
consistency imposes greater constraints on hardware,
thereby limiting performance. The use of many perfor-
mance enhancing features of uniprocessors, such as
write buffers, instruction execution overlap, out-of-
order memory accesses and lockup-free caches [Kro81]
is heavily restricted.

The problem of maintaining sequential con-
sistency manifests itself when two or more processors
interact through memory operations on common vari-

- 2 -

-- --

� ���

Initially X = Y = 0

P 1 P 2

X = 1 Y = 1
if (Y == 0) kill P 2 if (X == 0) kill P 1

Result - P 1 and P 2 are both killed

Figure 1. A violation of sequential consistency.

Sequential consistency is violated since there does not ex-
ist a total order of memory accesses that is consistent with
program order, and kills both P 1 and P 2 . Note that there
are no data dependencies among the instructions of either
processor. Thus simple interlock logic does not preclude
the second instruction from being issued before the first in
either processor.

Shared-bus systems without caches - The execution is
possible if the accesses of a processor are issued out of
order, or if reads are allowed to pass writes in write
buffers.

Systems with general interconnection networks
without caches - The execution is possible even if
accesses of a processor are issued in program order, but
reach memory modules in a different order [Lam79].

Shared-bus systems with caches - Even with a cache
coherence protocol [ArB86], the execution is possible if
the accesses of a processor are issued out-of-order, or if
reads are allowed to pass writes in write buffers.

Systems with general interconnection networks and
caches - The execution is possible even if accesses of a
processor are issued and reach memory modules in pro-
gram order, but do not complete in program order. Such a
situation can arise if both processors initially have X and
Y in their caches, and a processor issues its read before its
write is propagated to the cache of the other processor.

� ���
ables. In many cases, these interactions can be parti-
tioned into operations that are used to order events,
called synchronization, and the other more frequent
operations that read and write data. If synchronization
operations are made recognizable to the hardware, and
actions to ensure sequential consistency could be res-
tricted to such operations, then higher overall perfor-
mance might be achieved by completing normal reads
and writes faster. These considerations motivate an
alternative programmer’s model that relies on synchron-
ization that is visible to the hardware to order memory
accesses. Dubois, Scheurich and Briggs have defined
such systems in terms of conditions on hardware and
have named them weakly ordered [DSB86,DSB88,
Sch89].

We believe that weak ordering facilitates high
performance implementations, but that programmers
prefer to reason about sequentially consistent memory
rather than weaker memory systems or even write
buffers. Hence, a description of memory should not
require the specification of the performance enhancing
features of the underlying hardware. Rather, such
features should be camouflaged by defining the memory
model in terms of constraints on software which, if
obeyed, make the weaker system appear sequentially
consistent.

After surveying related work in Section 2, we
give a new definition of weak ordering in Section 3. We
illustrate the advantages of this definition with an exam-
ple set of software constraints in Section 4 and an exam-
ple implementation in Section 5. Finally, in Section 6,
we use these example constraints and example imple-
mentation to analyze our framework and compare it
with that given by Dubois, et al. For the convenience of
the reader, the key definitions used throughout the paper
are repeated in Appendix C.

2. Related Work

This section briefly describes relevant previous
work on sequential consistency (Section 2.1) and weak
ordering (Section 2.2). A more detailed survey of the
subject appears in [AdH89].

2.1. Sequential Consistency

Sequential consistency was first defined by Lam-
port [Lam79], and discussed for shared memory sys-
tems with general interconnection networks, but no
caches. For single bus cache-based systems, a number
of cache-coherence protocols have been proposed in the
literature [ArB86]. Most ensure sequential consistency.
In particular, Rudolph and Segall have developed two
protocols, which they formally prove guarantee sequen-
tial consistency [RuS84]. The RP3 [BMW85, PBG85] is
a cache-based system, where processor memory com-
munication is via an Omega network, but the manage-
ment of cache coherence for shared writable variables is
entrusted to the software. Sequential consistency is
ensured by requiring a process to wait for an ack-
nowledgement from memory for its previous miss on a
shared variable before it can issue another access to
such a variable. In addition, the RP3 also provides an
option by which a process is required to wait for ack-
nowledgements on its outstanding requests only on a
fence instruction. As will be apparent later, this option
functions as a weakly ordered system.

Dubois, Scheurich and Briggs have analyzed the
problem of ensuring sequential consistency in systems
that allow caching of shared variables, without impos-

- 3 -

-- --

ing any constraints on the interconnection network
[DSB86, DSB88, ScD87, Sch89]. A sufficient condition
for sequential consistency for cache-based systems has
been stated [ScD87, Sch89]. The condition is satisfied if
all processors issue their accesses in program order, and
no access is issued by a processor until its previous
accesses have been globally performed. A write is glo-
bally performed when its modification has been pro-
pagated to all processors. A read is globally performed
when the value it returns is bound and the write that
wrote this value is globally performed.

The notion of strong ordering as an equivalent of
sequential consistency was defined in [DSB86]. How-
ever, there do exist programs that can distinguish
between strong ordering and sequential consistency
[AdH89] and hence, strong ordering is not strictly
equivalent to sequential consistency. Strong ordering
has been discarded in [Sch89] in favor of a similar
model, viz., concurrent consistency. A concurrently
consistent system is defined to behave like a sequen-
tially consistent system for most practical purposes.

Collier has developed a general framework to
characterize architectures as sets of rules, where each
rule is a restriction on the order of execution of certain
memory operations. [Col84, Col90]. He has proved that
for most practical purposes, a system where all proces-
sors observe all write operations in the same order
(called write synchronization), is indistinguishable from
a system where all writes are executed atomically.

Shasha and Snir have proposed a software algo-
rithm to ensure sequential consistency [ShS88]. Their
scheme statically identifies a minimal set of pairs of
accesses within a process, such that delaying the issue
of one of the elements in each pair until the other is glo-
bally performed guarantees sequential consistency.
However, the algorithm depends on detecting
conflicting data accesses at compile time and so its suc-
cess depends on data dependence analysis techniques,
which may be quite pessimistic.

The conditions for sequential consistency of
memory accesses are analogous to the serialization con-
dition for transactions in concurrent database systems
[BeG81, Pap86]. However, database systems seek to
serialize the effects of entire transactions, which may be
a series of reads and writes while we are concerned with
the atomicity of individual reads and writes. While the
concept of a transaction may be extended to our case as
well and the database algorithms applied, practical rea-
sons limit the feasibility of this application. In particu-
lar, since database transactions may involve multiple
disk accesses, and hence take much longer than simple
memory accesses, database systems can afford to incur
a much larger overhead for concurrency control.

2.2. Weak Ordering

Weakly ordered systems depend on explicit,
hardware recognizable synchronization operations to
order the effects of events initiated by different proces-
sors in a system. Dubois, Scheurich and Briggs first
defined weak ordering in [DSB86] as follows:

Definition 1: In a multiprocessor system,
storage accesses are weakly ordered if (1)
accesses to global synchronizing variables
are strongly ordered, (2) no access to a syn-
chronizing variable is issued by a processor
before all previous global data accesses
have been globally performed, and if (3) no
access to global data is issued by a proces-
sor before a previous access to a synchron-
izing variable has been globally performed.

It was recognized later in [ScD88, Sch89] that the above
three conditions are not necessary to meet the intuitive
goals of weak ordering. In Section 3, we give a new
definition that we believe formally specifies this intui-
tion.

Bisiani, Nowatzyk and Ravishankar have pro-
posed an algorithm [BNR89] for the implementation of
weak ordering on distributed memory systems. Weak
ordering is achieved by using timestamps to ensure that
a synchronization operation completes only after all
accesses previously issued by all processors in the sys-
tem are complete. The authors mention that for syn-
chronization operations that require a value to be
returned, it is possible to send a tentative value before
the operation completes, if a processor can undo subse-
quent operations that may depend on it, after receiving
the actual value. In [AdH89], we discuss how this
violates condition 3 of Definition 1, but does not violate
the new definition of weak ordering below.

3. Weak Ordering - A New Definition.

We view weak ordering as an interface (or con-
tract) between software and hardware. Three desirable
properties for this interface are: (1) it should be for-
mally specified so that separate proofs can be done to
ascertain whether software and hardware are correct
(i.e., they obey their respective sides of the contract),
(2) the programmer’s model of hardware should be sim-
ple to avoid adding complexity to the already difficult
task of parallel programming, and (3) the hardware
designer’s model of software should facilitate high-
performance, parallel implementations.

Let a synchronization model be a set of con-
straints on memory accesses that specify how and when
synchronization needs to be done.

- 4 -

-- --

Our new definition of weak ordering is as follows.

Definition 2: Hardware is weakly ordered
with respect to a synchronization model if
and only if it appears sequentially con-
sistent to all software that obey the syn-
chronization model.

This definition of weak ordering addresses the
above mentioned properties as follows. (1) It is for-
mally specified. (2) The programmer’s model of
hardware is kept simple by expressing it in terms of
sequential consistency, the most frequently assumed
software model of shared memory. Programmers can
view hardware as sequentially consistent if they obey
the synchronization model. (3) High-performance
hardware implementations are facilitated in two ways.
First, hardware designers retain maximum flexibility,
because requirements are placed on how the hardware
should appear, but not on how this appearance should
be created. Second, the framework of this definition
allows new (and better) synchronization models to be
defined as software paradigms and hardware implemen-
tation techniques evolve.

However, there are some disadvantages of
defining a weakly ordered system in this manner. First,
there are useful parallel programmer’s models that are
not easily expressed in terms of sequential consistency.
One such model is used by the designers of asynchro-
nous algorithms [DeM88]. (We expect, however, it will
be straightforward to implement weakly ordered
hardware to obtain reasonable results for asynchronous
algorithms.)

Second, for any potential performance benefit
over a sequentially consistent system, the synchroniza-
tion model of a weakly ordered system will usually con-
strain software to synchronize using operations visible
to the hardware. For some algorithms, it may be hard to
recognize which operations do synchronization. Furth-
ermore, depending on the implementation, synchroniza-
tion operations could be much slower than data
accesses. We believe, however, that slow synchroniza-
tion operations coupled with fast reads and writes will
yield better performance than the alternative, where
hardware must assume all accesses could be used for
synchronization (as in [Lam86]).

Third, programmers may wish to debug programs
on a weakly ordered system that do not (yet) fully obey
the synchronization model. The above definition allows
hardware to return random values when the synchroni-
zation model is violated. We expect real hardware,
however, to be much more well-behaved. Nevertheless,
hardware designers may wish to tell programmers
exactly what their hardware may do when the synchron-
ization model is violated, or build hardware that offers

an additional option of being sequentially consistent for
all software, albeit at reduced speed.

Alternatively, programmers may wish that a syn-
chronization model be specified so that it is possible and
practical to verify whether a program, or at least an exe-
cution of a program, meets the conditions of the model.
Achieving this goal may add further constraints to
software and hardware.

To demonstrate the utility of our definition, we
next give an example synchronization model. In Section
5, we discuss an implementation of a system that is
weakly ordered with respect to this synchronization
model, but is not allowed by Definition 1.

4. A Synchronization Model: Data-Race-Free-0

In this section, we define a synchronization model
that is a simple characterization of programs that forbid
data races. We call this model Data-Race-Free-0
(DRF0) and use it only as an example to illustrate an
application of our definition. In Section 6, we indicate
how DRF0 may be refined to yield other data-race-free
models that impose fewer constraints, are as realistic
and reasonable as DRF0, but lead to better implementa-
tions. In defining DRF0, we have avoided making any
assumptions regarding the particular methods used for
synchronization or parallelization. The knowledge of
any restrictions on these methods (for example, sharing
only through monitors, or parallelism only through do-
all loops) can lead to simpler specifications of data-
race-free synchronization models.

Intuitively, a synchronization model specifies the
operations or primitives that may be used for synchroni-
zation, and indicates when there is "enough" synchroni-
zation in a program. The only restrictions imposed by
DRF0 on synchronization operations are: (1) the opera-
tion should be recognizable by hardware, and (2) the
operation should access only one memory location.
Thus, a synchronization operation could be a special
instruction such as a TestAndSet that accesses only a
single memory location, or it could be a normal memory
access but to some special location known to the
hardware. However, an operation that swaps the values
of two memory locations cannot be used as a synchroni-
zation primitive for DRF0.

To formally specify the second feature of DRF0,
viz., an indication of when there is "enough" synchroni-
zation in a program, we first define a set of happens-
before relations for a program. Our definition is closely
related to the "happened-before" relation defined by
Lamport [Lam78] for message passing systems, and the
"approximate temporal order" used by Netzer and
Miller [NeM89] for detecting races in shared memory

- 5 -

-- --

parallel programs that use semaphores.

A happens-before relation for a program is a par-
tial order defined for an execution of the program on an
abstract, idealized architecture where all memory
accesses are executed atomically and in program order.
For such an execution, two operations initiated by dif-
ferent processors are ordered by happens-before only if
there exist intervening synchronization operations
between them. To define happens-before formally, we
first define two other relations, program order or po ,
and synchronization order or so . Let op 1 and op 2 be
any two memory operations occurring in an execution.
Then,

op 1
po op 2 iff op 1 occurs before op 2 in pro-

gram order for some process.

op 1
so op 2 iff op 1 and op 2 are synchronization

operations accessing the same location and op 1

completes before op 2 in the execution.

A happens-before relation or hb is defined for
an execution on the idealized architecture, as the
irreflexive transitive closure of po and so , i.e., hb

= (po ∪ so)+ .

For example, consider the following chain of
operations in an execution on the idealized architecture.

op (P 1,x) po S(P 1,s) so S(P 2,s) po

S(P 2,t) so S(P 3,t) po op(P 3,x)

op (Pi ,x) is a read or a write operation initiated by pro-
cessor Pi on location x. Similarly, S(Pj ,s) is a syn-
chronization operation initiated by processor Pj on loca-
tion s. The definition of happens-before then implies
that op (P 1,x) hb op (P 3,x).

From the above definition, it follows that hb

defines a partial order on the accesses of one execution
of a program on the idealized architecture. Since, in
general, there can be many different such executions of
a program (due to the many possible so relations),
there may be more than one happens-before relation
defined for a program.

To account for the initial state of memory, we as-
sume that before the actual execution of a program, one
of the processors executes a (hypothetical) initializing
write to every memory location followed by a (hy-
pothetical) synchronization operation to a special loca-
tion. This is followed by a (hypothetical) synchroniza-
tion operation to the same location by each of the other
processors. The actual execution of the program is as-
sumed to begin after all the synchronization operations
are complete. Similarly, to account for the final state of
memory, we assume a set of final reads and synchroni-
zation operations analogous to the initializing opera-
tions for the initial state. Henceforth, an idealized exe-

cution will implicitly refer to an execution on the ideal-
ized architecture augmented for the initial and final state
of memory as above, and a happens-before relation will
be assumed to be defined for such an augmented execu-
tion.

The happens-before relation can now be used to
indicate when there is "enough" synchronization in a
program for the synchronization model DRF0. The
complete formal definition of DRF0 follows.

Definition 3: A program obeys the syn-
chronization model Data-Race-Free-0
(DRF0), if and only if

(1) all synchronization operations are
recognizable by the hardware and each
accesses exactly one memory location, and

(2) for any execution on the idealized sys-
tem (where all memory accesses are exe-
cuted atomically and in program order), all
conflicting accesses are ordered by the
happens-before relation corresponding to
the execution.

Two accesses are said to conflict if they access
the same location and they are not both reads. Figures
2a and 2b show executions that respectively obey and
violate DRF0.

DRF0 is a formalization that prohibits data races
in a program. We believe that this allows for faster
hardware than an unconstrained synchronization model,
without reducing software flexibility much, since a large
majority of programs are already written using explicit
synchronization operations and attempt to avoid data
races. In addition, although DRF0 specifies synchroni-
zation operations in terms of primitives at the level of
the hardware, a programmer is free to build and use
higher level, more complex synchronization operations.
As long as the higher level operations use the primitives
appropriately, a program that obeys DRF0 at the higher
level will also do so at the level of the hardware primi-
tives. Furthermore, current work is being done on
determining when programs are data-race-free, and in
locating the races when they are not [NeM89].

5. An Implementation for Weak Ordering w.r.t.
DRF0

In the last section, we gave an example synchron-
ization model to illustrate the use of the new definition
of weak ordering. This section demonstrates the flexi-
bility afforded to the hardware designer due to the for-
malization of the synchronization model and the ab-
sence of any hardware prescriptions in Definition 2. We
give a set of sufficient conditions for implementing
weak ordering with respect to DRF0 that allow a viola-

- 6 -

-- --

� ���

W(x)

R(x)

W(y)

S(a)
S(a)

R(y)

W(z)

S(b)
S(b)

S(c)
S(c)

R(z)

P0 P1 P2 P3 P4 P5

(a)

so so

so

po po

po

po

po

po

W(y)

S(a)

S(b)

R(y)

S(a)
W(y)

S(b)

W(x)

R(x)

W(x)

P0 P1 P2 P3 P4

(b)

so

so

po po

po
po

po

Figure 2. An example and counter-example of DRF0.

Two executions on the idealized architecture are
represented. The Pi’s denote processors. R(x), W(x) and
S(x) respectively denote data read, data write and syn-
chronization operations on the variable x. Time flows
downward. An access by processor Pi appears vertically
below Pi, in a position reflecting the time at which it was
completed. (a) - The execution shown obeys DRF0 since
all conflicting accesses are ordered by happens-before. (b)
- The execution does not obey DRF0 since the accesses of
P0 conflict with the write of P1 but are not ordered with
respect to it by happens-before. Similarly, the writes by P2
and P4 conflict, but are unordered.

� ���
tion of Definition 1 (Section 5.1). To illustrate an appli-
cation of these conditions, we describe for a fairly gen-
eral cache-coherent system (Section 5.2), an example
implementation that does not obey the second or the
third conditions of Definition 1 (Section 5.3).

5.1. Sufficient Conditions

An implementation based on Definition 1 requires
a processor to stall on a synchronization operation until
all its previous accesses are globally performed. This
serves to ensure that any other processor subsequently
synchronizing on the same location will observe the ef-
fects of all these accesses. We propose to stall only the
processor that issues the subsequent synchronization

operation until the accesses by the previous processor
are globally performed. Thus, the first processor is not
required to stall and can overlap the completion of its
pending accesses with those issued after the synchroni-
zation operation. Below, we give a set of sufficient con-
ditions for an implementation based on this notion.

For brevity, we will adopt the following conven-
tions in formalizing our sufficient conditions. Unless
mentioned otherwise, reads will include data (or ordi-
nary) read operations, read-only synchronization opera-
tions, and the read component of synchronization opera-
tions that both read and write memory. Similarly,
writes will include data writes, write-only synchroniza-
tion operations, and the write component of read-write
synchronization operations.

A commit point is defined for every operation as
follows. A read commits when its return value is
dispatched back towards the requesting processor. A
write commits when its value could be dispatched for
some read. A read-write synchronization operation
commits when its read and write components commit.
Similarly, a read-write synchronization operation is glo-
bally performed when its read and write components are
globally performed. We will say that an access is gen-
erated when it ‘‘first comes into existence’’.

Hardware is weakly ordered with respect to
DRF0 if it meets the following requirements.

1. Intra-processor dependencies are preserved.

2. All writes to the same location can be totally or-
dered based on their commit times, and this is the
order in which they are observed by all proces-
sors.

3. All synchronization operations to the same loca-
tion can be totally ordered based on their commit
times, and this is also the order in which they are
globally performed. Further, if S 1 and S 2 are
synchronization operations and S 1 is committed
and globally performed before S 2, then all com-
ponents of S 1 are committed and globally per-
formed before any in S 2.

4. A new access is not generated by a processor un-
til all its previous synchronization operations (in
program order) are committed.

5. Once a synchronization operation S by processor
Pi is committed, no other synchronization opera-
tions on the same location by another processor
can commit until after all reads of Pi before S (in
program order) are committed and all writes of Pi

before S are globally performed.

To prove the correctness of the above conditions,
we first prove in Appendix A, a lemma stating a
(simpler) necessary and sufficient condition for weak

- 7 -

-- --

ordering with respect to DRF0. We then show in Ap-
pendix B that the above conditions satisfy the condition
of Lemma 1.

The conditions given do not explicitly allow pro-
cess migration. Re-scheduling of a process on another
processor is possible if it can be ensured that before a
context switch, all previous reads of the process have
returned their values and all previous writes have been
globally performed.

5.2. An Implementation Model

This section discusses assumptions for an exam-
ple underlying system on which an implementation
based directly on the conditions of Section 5.1 will be
discussed. Consider a system where every processor has
an independent cache and processors are connected to
memory through a general interconnection network. In
particular, no restrictions are placed on the kind of data
a cache may contain, nor are any assumptions made re-
garding the atomicity of any transactions on the inter-
connection network. A straightforward directory-based,
writeback cache coherence protocol, similar to those
discussed in [ASH88], is assumed. In particular, for a
write miss on a line that is present in valid (or shared)
state in more than one cache, the protocol requires the
directory to send messages to invalidate these copies of
the line. Our protocol allows the line requested by the
write to be forwarded to the requesting processor in
parallel with the sending of these invalidations. On re-
ceipt of an invalidation, a cache is required to return an
acknowledgement (ack) message to the directory (or
memory). When the directory (or memory) receives all
the acks pertaining to a particular write, it is required to
send its ack to the processor cache that issued the write.

We assume that the value of a write issued by
processor Pi cannot be dispatched as a return value for a
read until the write modifies the copy of the accessed
line in Pi’s cache. Thus, a write commits only when it
modifies the copy of the line in its local cache. Howev-
er, other copies of the line may not be invalidated.

Within a processor, all dependencies will be as-
sumed to be maintained. Read and write components of
a read-write synchronization operation will be assumed
to execute atomically with respect to other synchroniza-
tion operations on the same location. All synchroniza-
tion operations will be treated as write operations by the
cache coherence protocol.

5.3. An Implementation

We now outline an example implementation
based on the conditions of Section 5.1 for the cache-
based system discussed in Section 5.2.

The first condition of Section 5.1 is directly im-
plemented in our model system. Conditions 2 and 3 are
ensured by the cache coherence protocol and by the fact
that all synchronization operations are treated as writes,
and the components of a synchronization operation are
executed atomically with respect to other synchroniza-
tion operations on the same location. For condition 4,
all operations are generated in program order. In addi-
tion, after a synchronization operation, no new accesses
are generated until the line accessed is procured by the
processor in exclusive (or dirty) state, and the operation
performed on this copy of the line. To meet condition
5, a counter (similar to one used in RP3) that is initial-
ized to zero is associated with every processor, and an
extra bit called the reserve bit is associated with every
cache line. The condition is satisfied as follows.

On a cache miss, the corresponding processor
counter is incremented. The counter is decremented on
the receipt of a line in response to a read request, or to a
write request for a line that was originally in exclusive
state in some processor cache. The counter is also de-
cremented when an ack from memory is received indi-
cating that a previous write to a valid or shared line has
been observed by all processors. Thus a positive value
on a counter indicates the number of outstanding
accesses of the corresponding processor. When a pro-
cessor generates a synchronization operation, it cannot
proceed until it procures the line with the synchroniza-
tion variable in its cache. If at this time, its counter has a
positive value, i.e., there are outstanding accesses, the
reserve bit of the cache line with the synchronization
variable is set. All reserve bits are reset when the
counter reads zero, i.e., when all previous reads have
returned their values, and all previous writes have been
globally performed1. When a processor Pi proceeds
after a synchronization operation, it has the exclusive
copy of the line with the synchronization variable in its
cache. Hence, unless Pi writes back the line, the next re-
quest for it will be routed to Pi . When a synchroniza-
tion request is routed to a processor, it is serviced only
if the reserve bit of the requested line is reset, otherwise
the request is stalled until the counter reads zero2. Con-
dition 5 can be met if it is ensured that a line with its
reserve bit set, is never flushed out of a processor cache.
A processor that requires such a flush is made to stall
until its counter reads zero. However, we believe that
such a case will occur fairly rarely and will not be detri-
�����������������������������������

1. This does not require an associative clear. It can be imple-
mented by maintaining a small, fixed table of reserved blocks.

2. This might be accomplished by maintaining a queue of
stalled requests to be serviced when the counter reads zero, or a
negative ack may be sent to the processor that sent the request,
asking it to try again.

- 8 -

-- --

mental to performance. Thus for the most part, proces-
sors will need to block only to commit synchronization
operations3.

While previous accesses of a processor are pend-
ing after a synchronization operation, further accesses
to memory will also increment the counter. This implies
that a subsequent synchronization operation awaiting
completion of the accesses pending before the previous
synchronization operation, has to wait for the new
accesses as well, before the counter reads zero and it is
serviced. This can be avoided by allowing only a limit-
ed number of cache misses to be sent to memory while
any line is reserved in the cache. This makes sure that
the counter will read zero after a bounded number of in-
crements after a synchronization operation is commit-
ted. A more dynamic solution involves providing a
mechanism to distinguish accesses (and their acks) gen-
erated before a particular synchronization operation
from those generated after [AdH89].

Though processors can be stalled at various points
for unbounded amounts of time, deadlock can never oc-
cur. This is because the primary reason a processor
blocks is to wait for some set of previously generated
data reads to return, or some previously generated data
writes and committed synchronization operations to be
globally performed. Data read requests always return
with their lines. Data writes also all always return with
their lines, and their invalidation messages are always
acknowledged. Hence, data writes are guaranteed to be
globally performed. Similarly, a committed synchroni-
zation request only requires its invalidations to be ack-
nowledged before it is globally performed. Since in-
validations are always serviced, committed synchroni-
zation operations are also always globally performed.
Hence a blocked processor will always unblock and ter-
mination is guaranteed.

6. Discussion

In this section, we analyze the effectiveness of the
new definition for weak ordering (Definition 2) as op-
posed to the old definition (Definition 1). We perform
this analysis by comparing the example hardware im-
plementation (Section 5.3) and the example set of
software constraints (DRF0), with the hardware and
software allowed by the old definition.

We first claim that the hardware of Definition 1 is
weakly ordered by Definition 2 with respect to DRF0.
Definition 1 implicitly assumes that intra-processor
dependencies are maintained, and that writes to a given
�����������������������������������

3. To allow process migration, a processor is also be re-
quired to stall on a context switch until its counter reads zero.

location by a given processor are observed in the same
order by all processors [DSB86]. We assume that con-
dition 1 of Definition 1 requires synchronization opera-
tions to be executed in a sequentially consistent manner,
and not just strongly ordered. With these additional
conditions, our claim can be proved formally in a
manner analogous to the proof of Appendix B.

We next determine if the example implementation
for the new definition can perform better than an imple-
mentation that is also allowed by the old definition.
One reason the example implementation may perform
better is that with Definition 1 a synchronization opera-
tion has global manifestations - before such an opera-
tion is issued by a processor, its previous accesses
should have been observed by all processors in the sys-
tem. With Definition 2 and DRF0, on the other hand,
synchronization operations need only affect the proces-
sors that subsequently synchronize on the same location
(and additional processors that later synchronize with
those processors).

Figure 3 illustrates how the example implementa-
tion exploits this difference when two processors, P 0

and P 1, are sharing a data location x, and synchronizing
on location s. Assume P 0 writes x, does other work,
Unsets s, and then does more work. Assume also that
after P 0 Unsets s, P 1 TestAndSets s, does other work
and then reads x. Assume further that the write of x
takes a long time to be globally performed.
	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

R(x)

Def. 1 stalls P0

W(x)

P0 P1

Unset(s)

TestAndSet(s)

...

...

Def. 2 w.r.t. DRF0
need never stall P0

...

Both stall P1

Figure 3. Analysis of the new implementation.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Definition 1 allows P 0 to issue and globally per-
form data accesses in parallel with the unfinished write
of x until it wishes to issue the Unset of s. At that time
P 0 must stall until the write of x is globally performed.
Furthermore, P 1’s TestAndSet of s cannot succeed until
the Unset of s, and hence also the write of x, is globally
performed.

The example implementation allows P 0 to contin-
ue to do other work after it has committed the Unset of

- 9 -

-- --

s. P 0’s further progress is limited only by implementa-
tion restrictions, such as, a cache miss that needs to re-
place the block holding s. P 1’s TestAndSet of s, howev-
er, will still be blocked until P 0’s write is globally per-
formed, and Unset of s commits. Thus, P 0 but not P 1

gains an advantage from the example implementation.

One very important case where the example im-
plementation is likely to be slower than one for
Definition 1 occurs when software performs repeated
testing of a synchronization variable (e.g., the Test from
a Test-and-TestAndSet [RuS84] or spinning on a barrier
count). The example implementation serializes all these
synchronization operations, treating them as writes.
This can lead to a significant performance degradation.

The unnecessary serialization can be avoided by
improving on DRF0 to yield a new data-race-free
model. In particular, a distinction between synchroniza-
tion operations that only read (e.g., Test), only write
(e.g., Unset), and both read and write (e.g., TestAndSet)
can be made. Then DRF0 can be modified so that a pro-
cessor cannot use a read-only synchronization operation
to order its previous accesses with respect to subsequent
synchronization operations of other processors. This
does not compromise on the generality of the software
allowed by DRF0 but will allow optimizations that lead
to higher performance. In particular, for the example
implementation, the read-only synchronization opera-
tions need not be serialized, and are not required to stall
other processors until the completion of previous
accesses.

Finally, we compare the software for which im-
plementations based on Definition 1 appear sequentially
consistent, and the software allowed by DRF0.
Although the data-race-free model captures a large
number of parallel programs, there exist some programs
that use certain restricted kinds of data races for which
implementations of Definition 1 appear sequentially
consistent. Spinning on a barrier count with a data read
is one example. We emphasize however, that this
feature is not a drawback of Definition 2, but a limita-
tion of DRF0. To allow such races, a new synchroniza-
tion model can be defined.

7. Conclusions

Most programmers of shared memory systems
implicitly assume the model of sequential consistency
for the shared memory. This model precludes the use of
most performance enhancing features of uniprocessor
architectures. We advocate that for better performance,
programmers change their assumptions about hardware
and use the model of weak ordering, which was origi-
nally defined by Dubois, Scheurich and Briggs in terms
of certain conditions on hardware. We believe, howev-

er, that this definition is unnecessarily restrictive on
hardware and does not adequately specify the
programmer’s model.

We have re-defined weak ordering as a contract
between software and hardware where hardware prom-
ises to appear sequentially consistent at least to the
software that obeys a certain set of constraints which we
have called the synchronization model. This definition
is analogous to that given by Lamport for sequential
consistency in that it only specifies how hardware
should appear to software. The definition facilitates
separate analyses and formal proofs of necessary and
sufficient conditions for software and hardware to obey
their sides of the contract. It allows programmers to
continue reasoning about their programs using the
sequential model of memory. Finally, it does not inflict
any unnecessary directives on the hardware designer.

To illustrate the advantages of our new definition,
we have specified an example synchronization model
(DRF0) that forbids data races in a program. We have
demonstrated that such a formal specification makes
possible an implementation not allowed by the old
definition, thereby demonstrating the greater generality
of our definition. Finally, we have indicated how some
constraints on DRF0 may be relaxed to improve the per-
formance of our implementation.

A promising direction for future research is an ap-
plication of the new definition to further explore alterna-
tive implementations of weak ordering with respect to
data-race-free models. A quantitative performance
analysis comparing implementations for the old and
new definitions of weak ordering would provide useful
insight.

Another interesting problem is the construction of
other synchronization models optimized for particular
software paradigms, such as, sharing only through mon-
itors, or parallelism only from do-all loops, or for
specific synchronization primitives offered by specific
systems, e.g., QOSB [GVW89]. These optimizations
may lead to implementations with higher performance.

8. Acknowledgements

We would like to thank Vikram Adve, William
Collier, Kourosh Gharachorloo, Garth Gibson, Richard
Kessler, Viranjit Madan, Bart Miller, Robert Netzer,
and Marvin Solomon for their valuable comments on
earlier drafts of this paper. We are particularly grateful
to Kourosh Gharachorloo for bringing to our attention
an error in an earlier version of the proof in Appendix B
and to Michel Dubois for pointing out some of the limi-
tations of DRF0. These had been overlooked by us in
[AdH89].

- 10 -

-- --

9. References

[AdH89] S. V. ADVE and M. D. HILL, Weak Ordering - A
New Definition And Some Implications,
Computer Sciences Technical Report #902,
University of Wisconsin, Madison, December
1989.

[ASH88] A. AGARWAL, R. SIMONI, M. HOROWITZ and J.
HENNESSY, An Evaluation of Directory Schemes
for Cache Coherence, Proc. 15th Annual
International Symposium on Computer
Architecture, Honolulu, Hawaii, June 1988, 280-
289.

[ArB86] J. ARCHIBALD and J. BAER, Cache Coherence
Protocols: Evaluation Using a Multiprocessor
Simulation Model, ACM Transactions on
Computer Systems 4, 4 (November 1986), 273-
298.

[BeG81] P. A. BERNSTEIN and N. GOODMAN, Concurrency
Control in Distributed Systems, Computing
Surveys 13, 2 (June, 1981), 185-221.

[BNR89] R. BISIANI, A. NOWATZYK and M. RAVISHANKAR,
Coherent Shared Memory on a Distributed
Memory Machine, Proc. International
Conference on Parallel Processing, August 1989,
I-133-141.

[BMW85] W. C. BRANTLEY, K. P. MCAULIFFE and J. WEISS,
RP3 Process-Memory Element, International
Conference on Parallel Processing, August 1985,
772-781.

[Col84] W. W. COLLIER, Architectures for Systems of
Parallel Processes, Technical Report 00.3253,
IBM Corp., Poughkeepsie, N.Y., 27 January
1984.

[Col90] W. W. COLLIER, Reasoning about Parallel
Architectures, Prentice-Hall, Inc., To appear
1990.

[DeM88] R. DELEONE and O. L. MANGASARIAN,
Asynchronous Parallel Successive Overrelaxation
for the Symmetric Linear Complementarity
Problem, Mathematical Programming 42, 1988,
347-361.

[DSB86] M. DUBOIS, C. SCHEURICH and F. A. BRIGGS,
Memory Access Buffering in Multiprocessors,
Proc. Thirteenth Annual International Symposium
on Computer Architecture 14, 2 (June 1986),
434-442.

[DSB88] M. DUBOIS, C. SCHEURICH and F. A. BRIGGS,
Synchronization, Coherence, and Event Ordering
in Multiprocessors, IEEE Computer 21, 2
(February 1988), 9-21.

[GVW89] J. R. GOODMAN, M. K. VERNON and P. J. WOEST,
Efficient Synchronization Primitives for Large-
Scale Cache-Coherent Multiprocessors, Proc.
Third International Conference on Architectural
Support for Programming Languages and
Operating Systems, Boston, April 1989, 64-75.

[Kro81] D. KROFT, Lockup-Free Instruction
Fetch/Prefetch Cache Organization, Proc. Eighth
Symposium on Computer Architecture, May 1981,
81-87.

[Lam78] L. LAMPORT, Time, Clocks, and the Ordering of
Events in a Distributed System, Communications
of the ACM 21, 7 (July 1978), 558-565.

[Lam79] L. LAMPORT, How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs, IEEE Trans. on Computers C-28, 9
(September 1979), 690-691.

[Lam86] L. LAMPORT, The Mutual Exclusion Problem,
Parts I and II , Journal of the Association of
Computing Machinery 33, 2 (April 1986), 313-
348.

[NeM89] R. H. B. NETZER and B. MILLER, Detecting Data
Races in Parallel Program Executions, Computer
Sciences Technical Report #894, University of
Wisconsin, Madison, November 1989.

[Pap86] C. PAPADIMITRIOU, The Theory of Database
Concurrency Control, Computer Science Press,
Rockville, Maryland 20850, 1986.

[PBG85] G. F. PFISTER, W. C. BRANTLEY, D. A. GEORGE,
S. L. HARVEY, W. J. KLEINFELDER, K. P.
MCAULIFFE, E. A. MELTON, V. A. NORTON and J.
WEISS, The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture,
International Conference on Parallel Processing,
August 1985, 764-771.

[RuS84] L. RUDOLPH and Z. SEGALL, Dynamic
Decentralized Cache Schemes for MIMD Parallel
Processors, Proc. Eleventh International
Symposium on Computer Architecture, June 1984,
340-347.

[ScD87] C. SCHEURICH and M. DUBOIS, Correct Memory
Operation of Cache-Based Multiprocessors, Proc.
Fourteenth Annual International Symposium on
Computer Architecture, Pittsburgh, PA, June
1987, 234-243.

[ScD88] C. SCHEURICH and M. DUBOIS, Concurrent Miss
Resolution in Multiprocessor Caches,
Proceedings of the 1988 International Conference
on Parallel Processing, University Park PA,
August, 1988, I-118-125.

[Sch89] C. E. SCHEURICH, Access Ordering and Coherence
in Shared Memory Multiprocessors, Ph.D. Thesis,
Department of Computer Engineering, Technical
Report CENG 89-19, University of Southern
California, May 1989.

[ShS88] D. SHASHA and M. SNIR, Efficient and Correct
Execution of Parallel Programs that Share
Memory, ACM Trans. on Programming
Languages and Systems 10, 2 (April 1988), 282-
312.

- 11 -

-- --

Appendix A4: A necessary and sufficient condition
for weak ordering w.r.t. DRF0.

Lemma 1: A system is weakly ordered
with respect to DRF0 if only if for any
execution E of a program that obeys DRF0,
there exists a happens-before relation hb ,
defined for the program such that (1) every
read in E appears in hb , (2) every read in

hb appears in E, and (3) a read always re-
turns the value written by the last write5 on
the same variable, ordered before it by

hb .

Proof of necessity

In proving necessity, we do not consider pro-
grams for the executions of which an equivalent seriali-
zation of accesses can be found as a result of the nature
of the initial values of variables and the immediate
operands in the code. Instead, we only concern our-
selves with general programs where the immediate
operands and the initial values may be looked upon as
variables which could be assigned arbitrary values and
still result in serializable executions.

The proof proceeds by contradiction. Suppose
there exists a system which is weakly ordered with
respect to DRF0 but does not obey the above condition.
Then for any execution E of a program that obeys
DRF0, there must be a total ordering T of all its
accesses which produces the same result as E, and
which is consistent6 with the program order of all the
processes comprising E.

Since T is consistent with program order, there
corresponds an execution E ′ on the idealized architec-
ture that produces the same result as T. Consider the
happens-before relation hb corresponding to E ′. In
E ′, the partial ordering of accesses as defined by hb is
consistent with the order in which accesses are execut-
ed. Since all conflicting accesses are ordered by hb ,
they are all executed in the order determined by hb .
This implies that a read in E ′ always returns the value of
the write ordered last (this is unique for DRF0) before it
�����������������������������������

4. Throughout Appendices A and B, unless mentioned other-
wise, reads and writes include synchronization operations. An
execution is assumed to be augmented for the initial and final
state of memory, as in Section 4.

5. Strictly speaking, with synchronization operations that
read and modify memory, sufficiency is guaranteed only if the
read of a synchronization operation occurs before its write. Oth-
erwise, the read should be required to return a modification of
the last write, where the modification depends on the synchroni-
zation operation.

6. Two relations A and B are consistent if and only if A ∪ B
can be extended to a total ordering [ShS88].

by hb . Since the result of an execution depends on
the value returned by every read, it follows that for E
and E ′ to have the same result, a read in E must appear
in hb and vice versa, and a read in E must return the
value of the last write ordered before it by hb . This
contradicts our initial hypothesis.

�

Proof of sufficiency

We now prove that a system that obeys the given
condition is weakly ordered w.r.t. DRF0. From the
given condition, there exists a happens-before relation

hb corresponding to any execution E of a program
that obeys DRF0, such that every read in E occurs in

hb and vice versa, and a read in E returns the value of
the write ordered last before it by this happens-before.
Consider the execution E ′ on the idealized architecture,
to which this happens-before corresponds.

The order of execution of accesses in E ′ is con-
sistent with hb . Since all conflicting accesses are or-
dered by hb , it follows that a read in E ′ always re-
turns the value of the write ordered last before it by

hb . This implies that the result of E is the same as
that of E ′. Hence it suffices to show that there exists a
total ordering of the accesses in E ′ that is consistent
with program order. This is trivially true since E ′ is an
execution on an architecture where all memory accesses
are executed atomically and in program order.

Appendix B: Proof of sufficiency of the conditions in
Section 5.1 for weak ordering w.r.t. DRF0

We prove that the conditions of Section 5.1 are
sufficient for weak ordering with respect to DRF0 by
showing that a system that obeys these conditions also
satisfies the necessary and sufficient condition of Lem-
ma 1 in Appendix A.

Consider a program P that obeys DRF0. Let E be
an execution of P on a system that obeys the conditions
of Section 5.1. Consider the set of accesses A(t)
comprising of all the accesses in E that are committed
before or at (wall-clock) time t. Define the relations

po(t) and so(t) on the accesses in A(t) as follows: op 1
po(t) op 2 if and only if op 1 occurs before op 2 in pro-

gram order for some processor. op 1
so(t) op 2 if and

only if op 1 and op 2 are synchronization operations that
access the same memory location and op 1 commits be-
fore op 2

7. Define xo(t) as the irreflexive, transitive
closure of po(t) and so(t) . Intuitively, xo(t) reflects
the state of the execution E at time t.

�����������������������������������
7. Condition 3 ensures that so(t) defines a total order for all

synchronization operations to the same location in A(t).

- 12 -

-- --

Let the entire execution complete at some time T.
We will show that xo(T) is a happens-before relation,
and a read in E returns the value of the write ordered
last before it by this happens-before relation. Because
of the way xo(T) is constructed, every read in E ap-
pears in xo(T) and vice versa, and hence, by Lemma 1,
the proposition will be proved.

The proof proceeds by contradiction. Suppose
the above claim is not true. Then, either xo(T) is not a
happens-before relation for P, or else a read in E does
not return the value of the last write ordered before it by

xo(T) . Let t′ be the maximum value such that for all t
< t′, xo(t) could have lead to a xo(T) that is a
happens-before relation, and every read that appears in

xo(t) returns the value of the last write ordered before
it by this happens-before relation. Denote the set of
happens-before relations that could have been produced
just before time t′ as H(t′-).

The time t′ is the earliest time at which it can be
detected that the system is not sequentially consistent.
Hence at t′, some data read or some read-only or read-
write synchronization operation R, must have commit-
ted such that either (i) R does not appear in any of the
happens-before relations in H(t′-) or (ii) the value re-
turned by R is from a write that is not ordered last be-
fore it by any of the happens-before relations in H(t′-).

We first prove by contradiction that (i) above is
not possible. Suppose R does not appear in any of the
happens-before relations in H(t′-). The memory
accesses generated by a processor are totally governed
by the values its reads return. Before t′, all the reads
that committed returned values that could have lead to
some sequentially consistent execution. Hence, these
reads could not have lead to the generation of R. Reads
that returned values before t′ but did not commit are
components of read-write synchronization operations.
Condition 4 ensures that a processor cannot generate an
access until its previous synchronization accesses are
committed. Thus, synchronization operations that re-
turned a value but were not committed before t′ also
cannot result in the generation of R. Thus, we have
proved that R does indeed appear in all the happens-
before relations in H(t′-).

In the rest of the proof, we show (again by con-
tradiction) that (ii) above is not possible. The argument
for (i) also implies that all accesses generated before t′
appear in all the happens-before relations in H(t′-).
Thus xo(t ′) can lead to at least one of the happens-
before relations in H(t′−). Let one of these relations be

hb . Denote the program order and synchronization
order relations corresponding to hb by po and so

respectively. Let W ′ be the write whose value R re-
turns8. Since R reads the value written by W ′, W ′ must

be committed before or at t′. Hence, W ′ appears in
xo(t ′) and in hb . Therefore, W ′ is ordered with

respect to R by hb . But by hypothesis, W ′ is not the
last write ordered before R by hb . Let W be the last
write ordered before R by hb . (DRF0 ensures that
this is unique.) Thus, either W hb R hb W ′ or W ′

hb W hb R. We will prove that R cannot return the
value written by W ′ in either of these cases.

We first prove the following simple results.
Below, Si’s are synchronization operations.

(a) If Si
hb Sj , and Sj committed before or at t′, then

Si committed before Sj .

Proof - If Si
so Sj and Si did not commit before Sj ,

then since Si appears in so(t ′) , so(t ′) cannot be the
same as so , and hence xo(t ′) cannot lead to hb , a
contradiction.

If Si
po Sj , and if Si did not commit before Sj ,

then either Si will commit later or Si will not occur in
the execution. The former violates condition 4 and the
latter implies that xo(t ′) cannot lead to hb ,

Since hb is the transitive closure of so and
po , it follows that if Si

hb Sj , then Si committed be-
fore Sj .

(b) If A is a data access that committed before or at t′
and Si

hb A, then Si committed before A was generat-
ed.

Proof - Either Si
po A or Si

hb Sj
po A. Suppose

Si
po A and Si is not committed before A is generated.

Then either Si commits after A is generated, or Si does
not occur in E. The former violates condition 4 and the
latter implies that xo(t ′) cannot lead to hb . Hence if
Si

po A, Si is committed before t′. Now suppose that
Si

hb Sj
po A. Then from the above argument Sj

must have committed before A is generated. Therefore,
Si must have committed before A is generated (result a).

(c) If Ai and Aj are conflicting accesses by different pro-
cessors such that Ai

hb Aj , and Aj commits before or
at t′, then Ai commits before Aj .

If Ai is a synchronization access, then the result follows
from results (a) and (b). If Ai is a data access, then ei-
ther Ai

po S 1
so S 2

hb Aj or Ai
po S 1

so Aj .
For the former case, S 2 must commit before Aj is gen-
erated (result b), and so S 1 must commit before S 2

(result a), and so Ai must commit before S 2 (condition 5
and because xo(t ′) can lead to hb). Thus Ai commits
before Aj is generated, and hence before it is commit-
ted. A similar argument can be applied to the latter
case.
�����������������������������������

8. We assume that a read always returns the value of some
write in the augmented execution.

- 13 -

-- --

(d) If Ai and Aj are conflicting data accesses by dif-
ferent processors such that Ai

hb Aj , Ai is a write
operation and Aj commits before or at t′, then Ai is glo-
bally performed before Aj is generated.

Proof - The argument used in result (c) for the case
where Ai and Aj are data accesses applies.

We now use the above results to prove that for
each of the cases W hb R hb W ′, and W ′ hb W

hb R, R cannot return the value written by W ′.
Case I - W hb R hb W ′

If R po W ′, then since condition 1 requires
intra-processor dependencies to be maintained, R cannot
return the value written by W ′.

If R and W ′ are from different processors, then
result (c) requires that R commit before t′. This is a con-
tradiction.

Case II - W ′ hb W hb R

We show that (i) W commits before or at t′, and
(ii) R cannot return the value of a write that committed
before W. From result (c) or from conditions 1 and 2, it
will follow that W ′ commits before W, and hence we
will conclude that R cannot return the value written by
W ′.

Suppose W po R. If W is not committed before
or at t′, then since intra-processor dependencies have to
be maintained, it is either known at time t′ that W will
not be generated, or it is known that W cannot affect the
value returned by R. Either of these conditions implies
that xo(t ′) cannot generate hb . Thus W must be
committed before or at t′. Conditions 1 and 2 then im-
ply that R cannot return the value of a write that com-
mitted before W.

If R and W are from different processors, then
since W is the last write ordered before R, either both R
and W are data operations or both are synchronization
operations. If they are both data operations, then from
result (d) and condition 2, R cannot return the value of a
write committed before W. Result (d) also implies that
W is committed before t′.

If R and W are both synchronization operations,
then W commits before R (result c), and so R is globally
performed after W (condition 3), and so R cannot return
the value of a write that committed before W (condition
2).

Thus, we have proved that W always commits be-
fore t′, and R never returns the value of a write commit-
ted before W. It follows that R cannot return the value
from W ′ (result c).

From Case I and Case II, R cannot return the
value from W ′. This contradicts our hypothesis and
completes the proof. �

Appendix C: Glossary of key definitions

[Hardware is sequentially consistent if] the result of any
execution is the same as if the operations of all the pro-
cessors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by its program.

Definition 1: In a multiprocessor system, storage
accesses are weakly ordered if (1) accesses to global
synchronizing variables are strongly ordered, (2) no ac-
cess to a synchronizing variable is issued by a processor
before all previous global data accesses have been glo-
bally performed and if (3) no access to global data is is-
sued by a processor before a previous access to a syn-
chronizing variable has been globally performed.

Definition 2: Hardware is weakly ordered with respect
to a synchronization model if and only if it appears
sequentially consistent to all software that obey the syn-
chronization model.

Definition 3: A program obeys the synchronization
model Data-Race-Free-0 (DRF0), if and only if

(1) all synchronization operations are recognizable by
the hardware and each accesses exactly one memory lo-
cation, and

(2) for any execution on the idealized system (where all
memory accesses are executed atomically and in pro-
gram order), all conflicting accesses are ordered by the
happens-before relation corresponding to the execution.

- 14 -

-- --

