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PUR (Symbolic Processing Using
RISCs) 15 a muliiprocessor wark-
station being developed ar the
University of Callfornla ar Berkeley 1o
condecl paralkel processing research. 1is
development is part ol a multi-year elfor
to study hardware and software issiees in
mubltiprocessing, in general, and paralle]
processing in Lisp, in particular.* This
articks concentrates om the imitkal ar-
chitectural research and development of
SPUR
Two key observations motivated the
architecture of SPUR. First, although
parallel processing hardware has existed
for many wvears, these systems have been
difficult 1o program. Often the architec-
tural features of a parallel machine, par
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ticularly the interconnpection network
berween the processors, had to be consid-
ered during programming. ! The com-
plexity of managing sach details has left
parallel processing a novelry, rather than
the norm. Conseguently, we are design-
ing SPUR to simplify parallel processing
software by providing a single global
memaory that can be shared, with
uniform access lmes. Implementing a

high-performance shared memory sys- -

tem increases the sysiem’s hardware
complexity, but we beli=ve the shared
memory software maodel Facilitates the
rapid development of parallel processing
spftware and permits implementation of
ather, more restricted, sharing para
digms {such as message passing)

Second, hardware is more difficull 1o
design, construct, debug, and modily
than most software. Conssquently, most
SPUR hardware features arg simple, fre
guently-used primitives, We migraie fea-
tures from softwares into hardware only if

AR | OHERER ] 1981 11

Design
Decisions

SPUR

Ten superminicomputer processors
for your desk will come packaged as
a VLSI workstation called SPUR,
once the team at UC Berkeley finds a
partner to transfer their upcoming

prototype to indusiry.

doing so achieves a slgnificant perfor-
mence gain in retum for reasonable design
and implementation costs. The complex
hardware features included in SPUR
cither facilitate parallel processing (o
example, hardware-hased cache comss-
tency) or make large contributions to
performance (for example, the instruc-
uos buffer and Lisp data-type tags).

The SPUR processor extends the work
of reduced instruction set computers
(R1SC)? and Smalltalk on a RISC
(S0AR)Y with some special support for
fwo emerging standards: Common Lisp*
and IEEE Standard T24-1983 for binary
floating=point arithmetlc. * We desipned
the Lisp and Moating-point support so
that software that does not wse (hese ex-
tensions i oot penalized by their exis-
tempe, Thuas, the SPLIR processors ane
general-purpose processors with some
support for Lisp and floating-poiat,
rather than special-purpose Lisp or float
ing-point processors,
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The SPUR project consists of SPUR
workstation development and research
efforts in integrated circuits, computer
architecture, operating systems, and pro-
gramming languages. Integrated circuit
researchers are examining complemen-
tary metal oxide semiconducior (CMOS)
design styles, the effects of scaling very
large scale integration (VLSI) circuits,
and control and clocking issues. Com-
puter architecture researchers are study-
ing multiprocessor address trace analy-
sis, cache consistency, virtually-tagged
caches, in-cache address translation, mul-
ti-level cache design, coprocessor inter-
faces, instruction delivery, Lisp hardware
support, and floating-point implementa-
tions. Operating systems researchers are
investigating network file systems, net-
work page servers, the effects of large
physical memories on virtual memory im-
plementations, and workload distribu-
tion. Programming languages researchers
are examining parallel garbage collection
algorithms, techniques for specifying par-
allel programs, and methods of compiling
parallel Lisp programs.

System overview

SPUR contains 6 to 12 high-perfor-
mance homogeneous processors (see Fig-
ure 1). The number of processors is large
enough to permit parallel processing ex-
periments, but small enough to allow
packaging as a personal workstation.

The processors are connected to each
other, to standard memory, and to
input/output devices with a modified Nu-
Bus. Using a commercial bus reduces pro-
totype design time by allowing the use of
standard subsystems and memory.

SPUR supports sharing between coop-
erating processes with a global, shared
memory. System performance is im-
proved by placing 128K-byte caches on
each processor to reduce bus traffic,
memory contention, and effective mem-
ory access time. Each of these caches is
accessed with virtual addresses, rather
than physical addresses, so that address
translation is not necessary on cache hits.
On cache misses, virtual addresses are
translated into physical addresses before
accessing shared memory.

The caches are supplemented with
hardware that guarantees that copies of
the same memory location in different
caches always contain the same data.
This enables programmers to write soft-
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Figure 1. SPUR workstation system. SPUR is a shared-bus multiprocessor. The sys-
tem supports several identical high-performance processors on a modified Texas
Instruments NuBus. Each of the custom processors contains a large cache to reduce
the bandwidth required from the bus and shared memory.
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Figure 2. SPUR processor board. A SPUR processor is implemented on a single board
that contains three custom VLSI chips and 200 standard chips. The three custom
chips are the cache controller (CC), the CPU, and the floating-point coprocessor
(FPU). Standard chips are used to hold the state, address tags, and data of the cache
(cache RAMs), and to connect functional components together (not shown). Memory
addresses and data are handled on separate buses. The address bus is 38 bits wide to
accommodate global virtual addresses. The data bus is 64 bits wide to handle floating-
point data. The FPU tracks instructions executed by the CPU with a special 22-bit
connection. Some infrequently used data paths are not shown here.

ware without considering the existence of
cache memory.

The high level architecture of SPUR
(multiple processors communicating
through shared memory over a common
bus) is comparable to a few commercial
multiprocessors, such as the Sequent
Balance 8000 and the Elxsi 6400. How-
ever, since neither commercial machine
was intended to be a low-cost worksta-
tion, the differences in their more de-
tailed architectures are fairly significant.

The Sequent is built from 10-MHz Na-
tional Semiconductor 32032 central pro-
cessor unit chips communicating over a
pipelined, packet-switched bus. The high
speed of the bus (relative to that of the
CPUs) enables the Sequent to support
between 2 and 12 processors with rela-
tively small caches (8K bytes) and a write-
through write policy.

The Elxsi 6400 processors and bus in-
terface logic have been implemented with
emitter-coupled logic (ECL) gate arrays.
The bus is also packet switched, witha 25
ns cycle time, and easily supports up to
eight CPUs. Cache consistency in the
16K-byte, two-way set associative caches

10

is maintained by a variety of software
techniques. 6

Processor overview

A SPUR processor is a general-
purpose RISC processor that provides
support for Common Lisp and IEEE
floating-point. A processor is imple-
mented on a single board with about 200
standard chips and three custom two-
micron CMOS chips: the cache con-
troller (CC), the CPU, and the floating-
point coprocessor (FPU). (See Figure 2.)

The CC chip manages the cache. This
includes handling cache accesses by the
CPU, performing address translation,
accessing shared memory over the SPUR
bus, and maintaining cache consistency.

The CPU chip is a custom VLSI chip
based on the Berkeley RISC architec-
ture.”-2 Like the RISC II implementa-
tion,® the SPUR CPU uses a simple
uniform pipeline, hard-wired control,
and a large register file. It attempts to
issue a new instruction every cycle. The
SPUR CPU differs from RISC Il be-

cause of the addition of a 512-byte in-
struction buffer, a fourth execution pipe-
line stage, a coprocessor interface, and
support for Lisp tagged data.

The final custom chip is the floating-
point coprocessor, which supports the
full IEEE standard 754 for binary float-
ing-point arithmetic without microcode
control. The FPU executes common
operations under hard-wired control. In-
frequent operations cause traps and are
handled by software.

Initial results with small Lisp bench-
marks show that a single SPUR pro-
cessor is comparable to the VAX 8600
CPU and the Symbolics 3600 CPU? (see
Table 1).

The memory system

The SPUR memory system appears to
software as flat, global, shared memory,
but is implemented with a hierarchy of
levels. The fastest level, the instruction
buffer, is an instruction cache on the
CPU chip. The second level, the cache, is
a cache on the processor board for in-
structions and data. If information is not
found in either of these local memories,
then the virtual address is translated into
a physical address and a global memory
access is made via the SPUR bus. Both
the virtual and physical addresses are
transmitted on SPUR bus transactions.
Off-the-shelf memory and I/0O control-
lers use the physical address. Other cache
controllers ‘use the virtual address to
preserve software’s view of global,
shared memory.

The memory model. SPUR presents
software with a 256G-byte global virtual
address space, divided into 256 1G-byte
segments. Every process has direct access
to four segments via a 32-bit process-spe-
cific virtual address. (The segments of a
SPUR process resemble VAX-11 regions.)
This address is mapped into a 38-bit global
virtual address in parallel with the first part
of a cache access (Figure 3).

A process’s four segments will normal-
ly be used for system code and data, uscr
code, a private stack, and a shared heap.

Two or more processes that want to shane
information must share an entire scy
ment. Support for sharing at the grinn
larity of a segment is a compromise be

tween using a single shared virtual
address space and supporting shaiitg ol
arbitrary-size objects at this level. We re
jected the former extreme because i doee.
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not permit hardware-guaranteed isola-
tion of unrelated jobs. We rejected the
latter because it is not clear that the
benefits justify the hardware cost.

The memory system, except the in-
struction buffer, uses global virtual ad-
dresses instead of process-specific virtual
addresses so that information can be
manipulated independently of processor
and process identifiers. For this reason,
cache flushes are not necessary on a con-
text switch or when a process is migrated
to a different processor.

We set the global virtual address space
limit of 256 segments by balancing the
projected needs of software against the
cost of hardware implementation. The
segment limit does not constrain the
number of lightweight processes, !0
which use the address space of their
parent. This is important because we ex-
pect the parallel processing Lisp system
to make extensive use of lightweight pro-
cesses. This limit does, however, restrict
the number of concurrently active
heavyweight processes (such as Unix
shell processes) depending on the num-
ber of segments shared. The limit ranges
from 64 processes with no sharing to 253
processes with three segments shared.

The instruction buffer: an on-chip in-
struction cache. The instruction buffer is
a 512-byte instruction cache on the CPU
chip. It reduces contention for the cache
so that data references can use the single
cache port without stalling the execution
pipeline. By enabling instruction fetches
and data references to be satisfied in par-
allel, the instruction buffer creates the il-
lusion of a second cache port.

The instruction buffer also reduces ef-
fective instruction access time. This ef-
fect has little importance in SPUR
because the cache can be accessed in ap-

proximately one cycle. Nevertheless, this-

effect will become increasingly impor-
tant as technological improvements
reduce cycle times faster than inter-chip
communication times, thereby making it
difficult to access off-chip caches in a
single cycle.

The instruction buffer caches 128
32-bit instructions in 16 direct-mapped
blocks. Each block contains eight in-
structions, divided into ecight single-
instruction sub-blocks'':1? (see Figure
4). Preliminary estimates show that the
instruction buffer satisfies at least 75 per-
cent of instruction fetches without cache
accesses. 13
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Table 1. Gabriel benchmark results.

This table presents execution times for Gabriel benchmarks on the DEC
VAX 8600, Symbolics 3600 with instruction fetch unit, and a single SPUR pro-
cessor. The times for the 8600 and the 3600 are from Gabriel’s Performance and
Evaluation of Lisp Systems. 10 The preliminary SPUR times are gathered with a
functional-level simulator of a single processor, assuming a 150-ns cycle time,
single-cycle access to a 128K-byte cache, and 15-cycle cache miss time.

The last two columns compare SPUR with the 8600 and 3600. SPUR is
slower for the ratios shown in bold. The geometric mean is used to combine the
ratios in a manner that gives each benchmark equal weight. Garbage collection
time is not included for any of the machines. The 8600 results were gathered
with data-type declarations to reduce run-time type checking.

Execution time (seconds) Execution time ratio
Gabriel DEC Symbolics SPUR 8600/ 3600/
benchmark 8600 3600 (projected) SPUR SPUR
boyer 12.18 9.40 4.47 2.72 2.10
dderiv 6.58 3.89 1.13 5.82 3.44
deriv 4.27 3.79 0.99 4.31 3.83
destru 2.10 2.18 0.46 4.57 4.74
div2 1.65 1.51 2.77 0.60 0.55
fft(single) 9.08 3.87 9.47 0.96 0.41
frpoly(bignum) 1.40 2.10 7.17 0.20 0.29
frpoly(fixnum) 4.13 2.65 1.76 2.35 1.51
frpoly(flonum) 5.84 3.04 2.57 2.27 1.18
puzzle 15.53 11.04 7.47 2.08 1.48
stak 1.41 2.30 1.00 1.41 2.30
tak 0.45 0.43 0.13 3.46 3.31
takl 2.03 4.95 1.01 2.01 4.90
takr 0.81 0.43 0.23 3.52 1.87
traverse 46.77 41.71 18.12 2.58 2.30
triangle 99.73 116.99 66.55 1.50 1.76
geometric mean 1.97 1.73

Process specific virtual address

Virtual page number Offset

A 4
Segment number Virtual page number Offset

Global virtual address

Figure 3. Virtual memory structure. All processes access virtual memory using a 32-bit
process-specific virtual address. This address is converted into a 38-bit global virtual
address during the cache lookup. The high-order two bits of the process-specific vir-
tual address are used to select one of four segments from the 256 segments (eight bits)
in the global virtual address space. The other 30 bits are used directly for the displace-
ment within the selected 1G-byte segment.
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Figure 4. Cache block with sub-blocks. A conventional cache block (top) has three parts: the cache state bits (labeled bv for block
valid bits), the address tag, and the cache data block. The state bits record whether the information in the block is valid (or dirty for

a daia cache); the address iag hoids ihe biock’s memory address; and ihe d
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ata area holds the information cached. The instruction
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buffer’s block (bottom) is divided into eight single-instruction sub-blocks (1abeled instruction-0to -7). Additional state bits, called
word valid bits (1abeled wv), are associated with each instruction so that only a single instruction, instead of the entire block, must

be loaded on a miss.

The instruction buffer handles misses
differently than most caches. Instead of
loading an entire block on each miss, it
loads only the fetched instruction. The
advantage of fetching single-instruction
sub-blocks is that a miss can be com-
pleted more quickly. The disadvantages
are that the state bits must be extended to
include a valid bit for each sub-block in
the block and control must handle both
block misses (the address tag does not
match) and sub-block misses (the tag
matches, but the sub-block is not valid).
We believe the advantage of using sub-
blocks justifies the small increase in chip
area and design time needed to imple-
ment them. 12

The instruction buffer miss ratio is
reduced by using prefetching from the
cache to create the illusion that the entire
32-byte block is loaded on a miss. For ex-
ample, near the end of a miss to the third
instruction in a block, the prefetcher at-
tempts to prefetch instructions 4, §, 6, 7,
0, 1, and 2. Unless prefetches are blocked
by data references, instructions 4
through 7 will be loaded into the instruc-
tion buffer before they will be accessed
by the execution unit. If the execution
unit fetches an instruction that misses in
another block, the prefetcher begins
prefetching in that block even if the old
block is not completely loaded. The
prefetcher never hurts performance be-
cause it never replaces instructions
already in the instruction buffer or in-
terferes with data references or instruc-
tion fetch misses.

The cache. A 128K-byte cache for in-
structions and data on every processor
board reduces SPUR bus traffic. For a
fixed transfer size, bus traffic can be re-

12

duced by increasing a cache’s size or
complexity (degree of associativity). !4
Memory chip technology makes it possi-
ble to build larger, unsophisticated
caches with fewer packages than smaller,
more complex ones. Consequently, the
SPUR cache is simple, although larger
than the caches in most mainframes. It is
direct-mapped, does not permit unaligned
accesses, and uses 32-byte blocks to trans-
fer and cache information. It does not
prefetch blocks from memory, because
prefetching increases bus traffic. Instruc-
tion buffer prefetches that miss in the
cache are terminated without a memory
reference. Simulation results find cache
miss ratios under two percent (see the col-
umn labeled ¢“Ideal’’ in Table 2). 13

The SPUR cache associates virtual ad-
dress tags, rather than physical address
tags, with blocks of data. A virtually-
tagged cache is accessed directly, without
address translation. In contrast, physi-
cally-tagged caches require that address
translation be done before or in parallel
with the first part of a cache lookup.

Unfortunately, schemes that permit
parallel address translation limit the size
of the cache, constrain the mapping of
virtual pages to physical page frames, or
require support for fast reverse mapping
(translating physical addresses back to
virtual addresses). For a physically-
tagged cache access to proceed in parallel
with address translation, the cache must
be indexed with bits that do not change in
address translation. These bits are usual-
ly within the page offset, because systems
designers are unwilling to constrain the
mapping of virtual pages to physical page
{frames so that some bits of the virtual
page number do not change. The bits
used to index a cache will be within the

page offset only if the cache size divided
by its degree of associativity is equal to or
smaller than the page size. Consequently,
we believe that as cache sizes increase,
virtually-tagged caches will become more
commonly used.

Another benefit of virtually-tagged
caches is that the address translation time
does not affect cache hit time since ad-
dress translation is necessary only for
cache misses. Therefore, address transla-
tion can be done more slowly in a system
with a virtually-tagged cache than in one
with a physically-tagged cache where ad-
dress translation must be less than the
cache access time. SPUR exploits this
freedom by eliminating the traditional
translation buffer.

Most commercial computers use phys-
ically-tagged caches rather than virtually-
tagged caches. This is because current
commercial architectures include three
features that make the implementation
of virtually-tagged caches difficult. The
rest of this section explains how the use
of a single, segmented virtual address
space and a dual-address bus allows
SPUR to avoid the problems commercial
implementors have encountered.

Problems implementing virtually-
tagged caches. The first problem is
handling the virtual address space
changes associated with most context
switches. A virtual address space change
means that virtual addresses refer to new
locations. A virtually-tagged cache must
guarantee that references to the new vir-
tual address space are not accidentally
satisfied by data from the old locations.

Address space changes can be handled
in a virtually-tagged cache by flushing
old data on every context switch or by at-
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taching address space identifiers to
cached data. The former method reduces
performance for large caches. The latter
increases the size of cache address tags
and can increase cache complexity if
synonyms, described in the next para-
graph, are allowed. SPUR avoids the
problems of virtual address space
changes by using a global segmented vir-
tual address space that does not change
after a context switch. This results in an
increase in tag size comparable to adding
address space identifiers, but permits
sharing without synonyms.

The second problem for implementors
of virtually-tagged caches is that of cor-
rectly handling synonyms (aliases).
Synonyms are multiple virtual addresses
that map to the same physical address.
They present a problem when the same
physical location is read into a virtually-
tagged cache twice with two different vir-

tual addresses, and then one of the copies
is modified. To preserve the program-
mer’s model of memory, the virtually-
tagged cache must guarantee that a read
with the other virtual address gets the
new value.

This problem is hard to solve in a
single virtually-tagged cache, and even
harder to solve in a multiprocessor sys-
tem with many such caches. SPUR
avoids this problem by disallowing
synonyms. Instead, two or more pro-
cesses share information by puttingitina
shared segment at the same displacement
(the same global virtual address). Soft-
ware resolves the location of static,
shared information at load-time and uses
operating system calls that allocate new
storage to establish the location of dy-
namic, shared information.

The third problem with virtually-
tagged caches is updating cache data that

Table 2. In-cache address translation versus translation buffers.

is being written by an 1/0 device using a
physical address. In the long run, the
problem of mapping physical I/0 ad-
dresses back into virtual addresses can be
avoided by having both 1/0 devices and

memory use virtual addresses.

We rejected this approach in SPUR be-
cause we wanted to use off-the-shelf,
physically-addressed memory boards.
Instead, the SPUR bus associates a virtu-
al and a physical address with most bus
transactions. The virtual address is used
by other cache controllers for maintain-
ing cache consistency. The physical ad-
dress is used by memory and 170 control-
lers. The reverse mapping problem is
solved by not permitting an I/0 buffer to
be cached while it is being written by an
I/0 device. The operating system can
guarantee this by putting the buffer on a
non-cacheable page or by flushing the
buffer from all caches before I/0 begins.

This table compares SPUR in-cache translation with translation using translation buffers. The metric used, the aggregate
miss ratio, is the number of cache misses plus the number of translation misses divided by the number of processor
references. Smaller values of this metric predict better performance if the cost of cache and translation misses are com-
parable (as they are in SPUR). Numbers in parentheses give the magnitude of the aggregate miss ratio relative to the SPUR
in-cache aggregate miss ratio. Three comparisons are made. The first two are application programs running on a VAX-11
under Unix 4.2 BSD. Liszt is an address trace of the Franz Lisp compiler compiling a portion of itself. Vaxima is a trace of
an algebraic systém executing a representative repertoire of commands. The final trace, MVS; is a series of system calls exe-
cuted by the MVS operating system on an Amdahl 470 machine.

This table assumes that each of the translation mechanisms are invoked only after a reference misses in the SPUR cache,
which is 128K bytes large, has 32-byte blocks, and is direct-mapped. The first alternative, 1deal, sets the aggregate miss ratio
to the cache miss ratio and assumes translation without cost. The second alternative, SPUR in-cache, uses the cache to hold
PTEs for 4K-byte pages. The last three alternatives use translation buffers to do translation. The third uses half of the
VAX-11/780 translation buffer (128 entries, 512-byte pages, and two-way set-associative) because the VAX-11 restricts pro-
cess and system entries to different halves of the buffer. The fourth uses the VAX 8600 translation buffer (512 entries,
512-byte pages, and one-way set-associative) in the same manner. The last alternative uses the IBM 3033 translation
lookaside buffer (128 entries, 4K-byte pages, two-way set-associative). In all but one case, shown bold, SPUR in-cache
translation performs slightly better than systems that include translation buffer hardware.

Aggregate miss ratio with identical caches

but alternative address translation mechanisms

metric: (cache misses + translation misses) / references

Trace

Ideal
Liszt 0.00584
Vaxima 0.01844
MVS 0.01677
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SPUR in-cache

SPUR cache plus translation via:

VAX-11/780 TB

0.00610 0.00775
(1.000) (1.270)
0.01875 0.02432
(1.000) (1.297)
0.01981 0.02208
(1.000) (1.115)

VAX 8600 TB IBM 3033 TLB
0.00784 0.00614
(1.285) (1.006)
0.02404 0.02001
(1.282) (1.067)
0.02287 0.01769
(1.154) (0.893)
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The latter does not imply a complete
cache flush because the cache supports
flushing of individual blocks.

Adadress translation without a transla-
tion buffer. The mapping of virtual ad-
dresses to physical addresses is usually
maintained in a structure called a page
table. !5 The appropriate page table entry
(PTE) is referenced during the address
translation process.

Most computers use a special-purpose
cache for PTEs, called the translation
buffer, to reduce address translation
time. Translation buffers are important
in systems with physically-tagged caches,
which require address translation on
every reference.

Fast address translation is less impor-
tant with SPUR’s virtually-tagged cache,
because address translation is necessary
only on cache misses. Consequently,
rather than using a translation buffer, the
SPUR address translation mechanism al-
ways uses cache accesses to reference
PTEs logically in shared memory. 16

The performance of SPUR in-cache
translation compares to that with fixed-
size translation buffers. Moreover, in-
cache translation has two advantages.
First, it avoids the design and implemen-
tation costs of a translation buffer. Sec-
ond, it keeps PTEs consistent (transla-
tion buffer consistency) without special
support.

Because traditional translation buffers
are merely special-purpose cache memo-
ries, multiprocessors that use them suffer
from a translation consistency problem
(analogous to the data cache consistency
problem). Solving this problem requires
an increase in either hardware or operat-
ing system complexity. The SPUR in-
cache translation mechanism avoids this
problem by eliminating the translation
buffer and storing the PTEs only in the
cache, where they are kept consistent by
the regular consistency mechanism.

In-cache address translation is invoked
when data referenced is not in the cache.
(In this discussion, data refers to instruc-
tions and data in contrast to address
translation information such as PTEs.)
The cache controller performs address
translation with the following steps.
First, a page table base register and the
virtual address of the data are used to
construct the virtual address of the PTE.
Second, the PTE is read from the cache.
Third, the physical page address in the
PTE and the page offset from the origi-
nal virtual address are combined to form
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the physical address of the data. Fourth,
a SPUR bus access for the data is made
with both the virtual and physical ad-
dresses. Last, the data is loaded into the
cache and passed on to the CPU.

On rare occasions, the PTE reference
will also miss in the cache. Since SPUR
places the first level of page tables in
pageable virtual memory, a second trans-
lation effort is necessary to service the
first-level PTE miss.

The second level of page tables is also
in virtual memory and thus may be found
in the cache. This level, however, is in
nonpageable virtual memory at known
locations. The physical addresses of sec-
ond-level PTEs are computed by the
cache controller to end the address trans-
lation process if the cache access for the
second-level PTE misses. SPUR uses the
two-level paging mechanism to reduce
the physical memory dedicated to PTEs
from 256M bytes to 256K bytes.

In-cache address translation works well
for the traces shown in Table 2. Transla-
tion performance with in-cache transla-
tion is comparable to that achieved with
translation buffers. In addition, other
results show that the presence of PTEs in
the cache does not significantly affect
cache performance for data (non-PTE)
references. The data miss ratio for Vax-
ima increased by only 0.00004, from
0.01844 to 0.01848. The increase for MVS
was larger than with Vaxima, but still not
significant (0.00142, from 0.01677 to
0.01819).

Cache consistency hardware. The
problem of maintaining the shared mem-
ory model in multiprocessor systems with
cache shared, writable data is referred to
as the cache consistency or cache coher-
ency problem. Inconsistencies arise when
two or more processors have copies of
the same shared memory location in their
private caches, and one processor modi-
fies the location but fails to communicate
the change to the other processors.

Cache consistency algorithms prevent
the old data, called stale data, from being
used. The two approaches traditionally
used are (1) to update main memory and
cause cache invalidations on each write,
or (2) to use software assists. The first ap-
proach, called write-through with invali-
dation, generates bus traffic proportion-
al to the number of writes. This seriously
degrades performance in a system with
several high-performance processors. !’
The second approach requires software
to identify whether data is potentially

shared and makes use of noncacheable
pages or write-through with invalidation
to keep that data consistent. This gener-
ates more bus traffic than our approach
for unrestricted sharing, because bus
transactions are generated on many ref-
erences to shared pages even if most of
the data is not in simultaneous use.

Other researchers are currently investi-
gating how to improve the effectiveness
of the software approach by using syn-
chronization primitives to delay the
invalidation of stale data. 15:!° The prin-
cipal weakness of the software approach
is that it may require extra effort from
the programmer, possibly discouraging
the development of parallel processing
software.

The cache consistency algorithm used
in SPUR, called Berkeley Ownership, is
based on the concept of ownership of
cache blocks.20 The responsibility for
maintaining consistency is distributed
among the caches. If a cache owns a
block, then no copies of the block occur
in any other caches. The owner may up-
date the cached entry locally without
broadcasting its actions. If a cache does
not own a block, it must first obtain
ownership before it can update the
block. Ownership is obtained by a broad-
cast to other caches, causing them to
invalidate their copies of the block. In
addition to the local update privilege,
ownership carries the obligation to up-
date main memory on block replacement

"(copy-back) and the responsibility of

overriding main memory if another
cache requests the block.

SPUR implements Berkeley Owner-
ship with standard memory, a dual-ad-
dress bus, and snooping caches. The bus
broadcasts ownership requests and trans-
fers cache blocks. Most bus transactions
begin with a type field (such as read or
read-for-ownership) and a block address
(both virtual and physical), and end with
a data transfer. 2!

Each processor cache controller is sup-
plemented with hardware, called the
snoop, that monitors the bus for trans-
actions involving blocks that it has
cached. The snoop compares the virtual
addresses of all bus transactions with a
second copy of the cache’s address tags.
If a match occurs, the snoop may have to
invalidate its copy of the block or over-
ride main memory and provide the data
to complete the bus transaction. The lat-
ter action only occurs for blocks that
have been modified and are simulta-
neously shared by processes on more
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than one processor. While we have little
data on sharing, we expect this to occur
on a small fraction of all transactions.

Berkeley Ownership, implemented in
hardware with snooping caches, serves
the goals of SPUR in several ways. First,
it preserves the shared memory model.
This model facilitates parallel processing
experiments by providing a simple, flexi-
ble mechanism for sharing data between
processes. Second, it simplifies parallel
processing software by relieving pro-
grammers of the responsibility of under-
standing shared caches. Third, the Berke-
ley Ownership protocol has good mul-
tiprocessor performance because it can
be restricted to generate extra bus trans-
actions only when two or more pro-
cessors are simultaneously accessing
writable shared data. For example, our
protocol allows semaphores to be cached.
No bus traffic is needed to modify a
semaphore if only one process happens to
be using the semaphore for some period
of time, or if all the processes using the
semaphore are on the same processor.
Other methods generate bus transactions
after shared data has been modified even
if no processes on other processors are
trying to access the same data. Fourth,
our protocol yields good uniprocessor
performance. When no interprocessor
sharing can occur, no consistency-
preserving bus transactions will be made.
Fifth, the algorithm is not difficult to im-
plement. It requires an additional state
machine in the cache controller, two ad-
ditional state bits for each 32-byte cache
block, a second copy of all cache state
bits and address tags, and a change to the
system bus to permit snooping. It does
not require centralized control or any
memory board modifications.

The CPU and floating-
point coprocessor

The SPUR CPU design evolved from
the RISC II design.® Like RISC II,
SPUR has a streamlined instruction set
and a large register file with multiple,
overlapping register windows to speed up
procedure calls. For several reasons, the
instruction set is well-suited for a high-
performance VLSI implementation with-
out microcode. First, the instructions are
easy to decode because of their fixed size
and few formats. Second, computational
instructions operate exclusively on
registers, while memory can be accessed
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Figure 5. SPUR registers. SPUR’s registers divide into three groups: general purpose,
special, and floating point. The general-purpose registers are organized into fixed-size
overlapping windows so that the output registers of one window become the input
registers of the next window after a procedure call. Only one 32-register window is
visible at a time. The entire general-purpose register file contains eight windows (not
shown) for a total of 138 registers. The general-purpose registers are 40 bits wide, con-
sisting of an 8-bit tag and 32 bits of data. The special registers include the user and
kernel processor status words, register window pointers, and several program
counters. The floating-point registers are 87 bits wide to accommodate SPUR’s
representation of IEEE extended-precision numbers. The representation includes a
three-bit type tag to simplify detection of infrequent floating-point types (such as
Not-a-Number). The 15 floating-point registers and the floating-point processor
status word (a special register) are implemented on the FPU chip rather than on the
CPU chip to improve operand access time for floating-point instructions. Multiple
windows of these registers were not implemented because of insufficient FPU chip

area.

only with load and store instructions.
Register-to-register instructions execute
quickly and deterministically because
they cannot generate cache misses or page
faults once they begin execution. Third,
the instructions perform simple opera-
tions implemented in a short, uniform
pipeline. Every instruction uses a par-
ticular resource in the same pipeline
stage. For example, all SPUR instruc-
tions use the arithmetic and logic unit
(ALU) to combine operands or calculate
an effective address in the second stage of
the pipeline. This simplifies the hardware
by predetermining the scheduling of
resources.

The differences between SPUR and
RISC 1II are products of technological

improvements and the new goals of sup-
porting Lisp and floating-point arith-
metic. Technological improvements in
the past few years have increased the
number and speed of transistors possible
on a VLSI chip. In SPUR, the additional
transistors are used in an on-chip instruc-
tion cache, for tagging Lisp data, and in
a low-overhead interface to a floating-
point coprocessor.

General-purpose features

The register set. The SPUR register
set, shown in Figure 5, includes 32 gener-
al-purpose registers. Like the RISC II
chip, the SPUR CPU contains several
copies of the general-purpose register set
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Figure 6. RISC II and SPUR pipelines. RISC II used a three-stage pipeline (top) that
required the pipeline to stall one cycle on every data memory reference so that precise-
ly one memory reference (instruction fetch or data access) was done every cycle. The
first stage fetched the next instruction from memory; the second read two registers
and performed an ALU operation; the final stage wrote the result into a register.
SPUR uses a four-stage pipeline (bottom) so that an instruction can be issued every
cycle. Memory-accessing instructions use the additional stage to do a cache access.
Register-to-register instructions do nothing in the additional stage. All instructions
write the register file in the fourth stage to guarantee that no two instructions try to
write at the same time. Pipeline hardware guarantees that the result of a register-to-
register instruction can be used by the subsequent instruction even though the result
has not yet been written into the register file. However, software must guarantee that
the result of a load instruction is not used by the instruction that (dynamically) follows

the load.

(not shown in Figure 5) so that these reg-
isters do not have to be saved in memory
and restored on most procedure calls and
returns. In addition, the register win-
dows for a caller and a callee overlap by
six registers so that most arguments and
returned values can be passed in-place in
registers instead of in memory. For both
reasons, overlapped register windows
reduce the time required for procedure
calls and returns. The primary cost of the
multiple register sets is a significant
amount of chip area and, to a lesser ex-
tent, slower register access time and in-
creased process switching overhead.

The execution pipeline. The SPUR
execution pipeline is one stage longer
than the three-stage RISC II pipeline (see
Figure 6). RISC II could issue a register-
to-register instruction every cycle. It used
resources efficiently: in every cycle two
registers were read, one was written, the
ALU was utilized, and the path to mem-
ory was used to fetch an instruction. Un-
fortunately, this arrangement left no
memory bandwidth for data references.
Consequently, loads and stores had to
stall the pipeline one cycle to use the path
to memory. Thus, RISC II did a memory
reference per cycle rather than complet-
ing an instruction per cycle.
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SPUR uses an instruction buffer and a
four-stage pipeline to attempt to issue
and complete an instruction every cycle.
The instruction buffer satisfies most in-
struction fetches without cache accesses.
The new pipeline stage allows memory
referencing instructions to make cache
accesses without stalling the pipeline, but
forces register-to-register instructions to
delay their register write for one stage.
All instructions modify the general-pur-
pose register file in the fourth pipeline
stage, thereby avoiding write conflicts.
Internal forwarding is done by the hard-
ware so that the result of a register-to-
register instruction can be used by the
next instruction even though that result
has not yet been written into the register
file.

In practice, SPUR will not be able to
execute one instruction every cycle, prin-
cipally because of instruction buffer and
cache misses. On simulations with the
Gabriel benchmarks (see Table 1), SPUR
executed an instruction every 1.59 cycles
with instruction buffer and cache miss
ratios of 14 and 1 percent. Performance
varied across the benchmarks from 1.03
to 1.99 cycles per instruction. Larger
programs are likely to have more cycles
per instruction because of poorer locality
of reference. Even if the instruction buf-

fer and cache miss ratio double, however,
SPUR still executes an instruction every
2.06 cycles.

The instruction set. This section
focuses on a few important decisions in
the SPUR instruction set. (See Taylor’s
“SPUR Instruction Set Architecture’’ 22
for the complete design.) To simplify de-
coding, all instructions are four bytes
long and use fixed positions for the op-
code and register specifiers. Most in-
structions use either two source registers
and one destination register or a source
register, an immediate constant, and a
destination register. Table 3 lists the basic
instruction set, not including instructions
for Lisp and floating-point operations.

Memory accesses are made with loads
and stores. The effective address for a
load is either the sum of two registers or
the sum of an immediate displacement
and a register. SPUR uses a delayed load,
which requires software to guarantee
that the result of a load instruction is not
used by the instruction that (dynamical-
ly) follows the load. Cache misses on
data references stall the entire pipeline
and thus are not visible to software. The
effective address for a store is always a
register plus immediate displacement, so
that a two-port register file suffices (one
register for the address and one for the
data). A store stalls the execution pipe-
line for one cycle, because less-common
cache writes take longer than cache
reads.

Cache reads access cache data in paral-
lel with examining cache address tags.
Cache writes begin in a similar fashion,
but cannot write into a cache block until
after the address tag has been examined.
In our initial design, stores did not stall
the pipeline because we set the cycle time
to the cache write time. We were able to
improve performance by reducing the cy-
cle time to the cache read time, thus forc-
ing the less frequent cache writes to take
two cycles.

SPUR supports synchronization with
a test-and-set instruction implemented in
the cache. Under the best of conditions it
does not require any bus transactions. To
simplify the cache interface, SPUR does
not have load or store instructions that
manipulate individual bytes. A load-byte
instruction would increase the cache ac-
cess time, and a store-byte instruction
would increase cache complexity. In-
stead, byte insert and extract instructions
assist in loading and storing individual
bytes.
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SPUR adopted the delayed branch
from RISC II. The execution of a branch
instruction on most pipelined processors
requires that the branch target be fetched
and the execution pipeline flushed before
the target instruction is executed. A
branch instruction on SPUR allows—in
fact, requires—the next sequential in-
struction to be executed while the branch

Table 3. Basic SPUR instructidns.

target is fetched. A delayed branch saves
program execution time if a useful in-
struction can be scheduled in this delay
slot. Gross found this could be done on
63 percent of delayed branches dynami-
cally encountered in the traces studied. 23
Gross also found that delayed branches
did not significantly increase code size
since 87 percent of the statically exam-

ined delayed slots contained useful
instructions.

SPUR also includes a canceling com-
pare and branch instruction, which dy-
namically turns the instruction in the de-
lay slot into a no-op if the branch is not
taken. The technique is also being used in
the Lawrence Livermore S-1 AAP. This
variant of the delayed branch makes it

This table lists the basic SPUR instruction set. The column Cycles shows the minimum number of cycles consumed by an
instruction. Many instructions operate on two sources (srcl and ri) and write a result into a destination (dest). Srcl and dest
are five-bit register specifiers. Riis either a 5-bit register specifier or a 14-bit signed immediate constant. Rci stands for a five-
bit register specifier or a five-bit unsigned immediate constant. Pc stands for the program counter. The Action column
describes what happens in the data portion of the destination and source registers. Exceptional conditions and Lisp tag
manipulation are described in the SPUR instruction set architecture.?3

Instruction Operands Action Cycles

Load/Store

load_32 dest, srcl, ri dest —M [srcl +ri} 1

load _external dest, srcl, ri dest —external (cache) state 1

test_and_.set dest, srcl, ri dest—M [srcl +ri}; M [srcl +ri] < 00> —1 2

store_32 src2, srcl, imm src2—M [srcl +imm] 2

store_external src2, srcl, imm src2 —external (cache) state 1

Compute

add, subtract dest, srcl, ri dest —srcl op ri 1

add(no traps) dest, srcl, ri dest —srcl +ri 1

and, or, xor dest, srcl, ri dest—srcl opri 1

sll, srl, sra dest, srcl, 1i dest —srcl op ri<01:00> 1

extract dest, srcl, ri dest < 07:00 > —one byte from srcl selected by ri 1

insert dest, srcl, ri dest —ri<07:00> inserted into one byte of srcl 1

Branch/Jump

cmp_branch _delayed cond, srcl, rci, offset if (srcl cond rci) pc—pe + signed word offset 1

cmp _branch _likely cond, srcl, rci, offset if (srcl cond rci) pc —pc + signed word offset 1
else change next instruction into no-op

jump address pc—word address (in same segment) 1

jump_ register srcl, ri pc+srcl +ri 1

Call/Return

call, call _kernel address increment current window pointer; 1
save pc; pc—word address

return, return_trap srcl, ri pc—srcl +ri 1
decrement current window pointer

Access Specials

read _special dest, srcl dest —special register srcl 1

write _special dest, srcl, ri special register dest —srcl +ri 1

read _kernel_psw dest dest —kernel psw 1

write_kernel _psw srcl, ri kernel psw—srcl +ri 1
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Table 4. SPUR Lisp instructions.

This table lists Lisp instructions. The column Cycles shows the minimum number of cycles consumed by an instruction.
Load_40and store _40 move tagged words into and out of registers. Car and cdr are special forms of load 40 that check fora
proper list element. Read _tag and write_tag move a tag to and from the data part of a register. Compare_and _branch _
delayed and compare -and_branch_likely, presented in Table 3, compare the tags and values of two Lisp data items. In
addition, tag__compare_and _branch _delayed and tag_compare _and _branch _likely are available to determine the value of a
tag (by comparing it with an immediate constant). Compare_.and _trap and tag _compare_and _trap are used to test for error

conditions.

Instruction

load _40

car/cdr

store_40

read _tag

write_tag
tag_cmp__branch_delayed

tag _cmp. branch _likely

compare_and _trap

Operands

dest, srcl, ri

dest, srcl, ri

src2, srcl, imm

dest, srcl

dest, ri

cond, srcl, tag_imm, offset

cond, srcl, tag _imm, offset

cond, srcl, rci

Action Cycles
dest —M [srcl +ri] 1
dest —M [srcl +ri] 1
src2—M [srel +imm] 2
dest < 07:00> —srcl tag 1
dest tag —ri <07:00 > 1
if (srcl <tag>cond tag_imm) 1

pc—pc +signed word offset

if (srcl <tag>cond tag_imm) 1
pc—pc + signed word offset

else change next instruction into no-op

if (srcl cond rci) trap 1

tag_compare_and _trap

easier to schedule a useful instruction in
the delay slot. The natural use of this in-
struction is at the bottom of a loop, with
the branch target set to the loop’s second
instruction and the delay slot filled with a
copy of the loop’s first instruction.

An arbitrary shift instruction was not
included, because most shifting done in
high-level language programs is for ef-
fective address computation in arrays
and records.® SPUR provides shift in-
structions only to shift one bit right and
one, two, and three bits left. Shift opera-
tions are not needed for integer multipli-
cation or division since these operations
are done with the FPU.

Supporting Lisp. The Lisp program-
ming language has some features diffi-
cult to implement efficiently on conven-
tional computers. These include frequent
function calls and returns, polymorphic
operations, and automatic garbage col-
lection. Most machines designed to run
Lisp use a stack-based architecture with
extensive microcode support (such as the
Symbolics 3600,2* LMI Lambda, ?* and
the Xerox D-Machines. 26) Our approach
emphasizes a simple, regular instruction
set, overlapping register windows, and
tagged data.”® Table 4 lists the instruc-
tions tailored for Lisp.

Fast function calls and returns are par-
ticularly important for Lisp, because
Lisp programs are constructed from
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cond, srcl, tag_imm

many small functions. SPUR provides
fast function calls and returns through
the overlapping register window mecha-
nism. Studies have shown that this mech-
anism, developed for C, effectively
speeds up Lisp calls and returns. ?’ The
complicated argument options allowed
by Common Lisp (such as default and
keyword parameters) are handled by
software rather than by special-purpose
instructions or microcode. This ap-
proach increases the size of functions
that use these options, but ensures that
simple function calls execute rapidly.

Tagged architecture. Lisp uses
polymorphic functions with operands
whose type is not known until run-time.
A polymorphic function operates on ar-
guments of more than one data type. 28
For example, the addition operator (+)
is a polymorphic operator in most high-
level languages because it is defined to
operate on both integers and floating-
point numbers. Lisp complicates the im-
plementation of polymorphic operations
because it associates the type of data with
the data values instead of the program
variables. For example, a variable is not
an integer variable, known at compile-
time, but rather a variable that may con-
tain an integer at run-time. When a Lisp
function is evaluated, the types of oper-
ands must be determined before the ap-
propriate routine is executed.

if (src1 cond rci) trap 1

SPUR handles polymorphic opera-
tions by manipulating the 6-bit data-type
tags of operands in parallel with operat-
ing on the 32-bit data values (see Figure
7). Type checking in SPUR, like several
other machines, %3 assumes that most
arithmetic operands are integers. For ex-
ample, a polymorphic add operation in
SPUR is implemented with an add in-
struction that begins by adding the 32-bit
operands as if they were integers and, in
parallel, checking the data-type tags to
verify that they are integers. If both
operands are integers, the instruction
finishes by writing the sum into the result
register. Otherwise, the register write is
suppressed and the instruction traps to
software that determines the types of the
operands and performs the appropriate
form of addition.

The power of SPUR to manipulate
data-type tags is increased by several in-
structions that allow conditional traps
and branches based on tag values (see
Table 4). The conditional traps allow ef-
ficient checking of error conditions. Ex-
plicit tag comparison instructions are
used to implement polymorphic opera-
tions in the more complicated cases not
handled by the hardware.

Data-type tags also assist list manipu-
lation, which is fundamental in Lisp. A
list is a sequence of elements (such as (a b
¢)). The Lisp functions that manipulate
lists are called car and cdr. Car returns
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the first element of a list (¢) and cdr
returns the rest of the list ((b ¢)).

Car and cdr can be implemented with
load instructions because lists are stored
as linked lists in main memory. However,
the semantics of Common Lisp strongly
encourage generation of an exception if
the argument of car or cdr is not a list.
Conventional architectures must execute
one or more instructions to check this
condition even though the arguments of
all car’s and cdr’s in a correct program
are lists.

SPUR provides a car/cdr instruction
that checks the data-type tag in parallel
with the load. A trap is generated if the
type of the operand is inappropriate.
This is an ideal use of parallel tag check-
ing because it allows SPUR to execute car
and cdr at the same speed as a load and
still generate exceptions on €rrors.

SPUR also uses part of the tag field to
assist in garbage collection. Lisp en-
courages programmers to dynamically
create and use data structures in memory.
Automatic garbage collection reclaims
structures that are no longer in use. This
feature relieves the Lisp programmer of
the responsibility of explicitly discarding
obsolete structures, a task that leads to
subtle bugs and complicated program-
ming. SPUR stores a two-bit generation
number in the tag to assist a generation
scavenging garbage collection algorithm
(see Figure 7).3 The algorithm exploits a
property of dynamic data: new data
structures are likely to become garbage
soon and old data structures are likely to
stay in use. Therefore, most garbage col-
lection activity focuses on the new data.
The generation number records the num-
ber of garbage collections that an item
has survived and hence its age.

Poor data density. We designed the
SPUR architecture with more emphasis
on speed and simplicity than concern for
code or data density. The prototype im-
plementation has particularly poor Lisp
data density because we decided not to
build a complete 40-bit system.

The CPU manipulates 40-bit data (an
8-bit tag and 32-bit data). That data must
often be loaded from and stored to the
cache and the rest of the memory system.
Three approaches exist for doing this:

(1) build the whole system with 40-bit
words,

(2) allow unaligned cache accesses, or

(3) place 40-bit words in aligned 64-bit
words.
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We rejected a 40-bit-word memory sys-
tem because it would preclude the use of
many off-the-shelf subsystems, which
would substantially delay completion of
the prototype. It would also have com-
plicated non-Lisp software in such areas
as string manipulation and file transfer
with non-SPUR machines. We rejected
unaligned cache accesses because of the
complexity they would add to the cache.
An unaligned access can cross a cache
block boundary, possibly forcing the
cache to handle two cache misses and the
associated address translation. Conse-
quently, we chose to store 40-bit Lisp
words in aligned 64-bit words. The other
24 bits are wasted for tagged Lisp data,
but not for instructions, data for other
languages, and some Lisp data struc-
tures. At worst, this storage strategy uses
60 percent more Lisp data memory than
the first two schemes, but it allows us to
explore ideas more quickly by simplify-
ing the design of the prototype.

Floating-point support. SPUR im-
plements the IEEE 754 binary floating-
point standard’ with a mixture of hard-
ware and software. Floating-point in-
structions are executed on the floating-
point coprocessor chip (FPU). The FPU
hardware is optimized to execute com-
mon floating-point operations quickly.
Effective use of the FPU depends on a
low-overhead floating-point interface
and support for concurrent execution of
floating-point and CPU instructions.

The SPUR FPU is one of the first im-
plementations of IEEE floating-point
that does not use any microcoded con-
trol. The Fairchild Clipper CPU also has
a hard-wired IEEE floating-point unit.

The floating-point coprocessor.
Floating-point instructions are either
register-to-register instructions or loads
and stores (see Table 5). The register-to-
register instructions include add, sub-
tract, multiply, and divide. Except for
multiply (7 cycles) and divide (19 cycles),
a new floating-point instruction can be
issued every four cycles.

Data are transferred between the FPU
and the cache with floating-point load
and store instructions. Floating-point
load instructions convert all single (32
bits) and double (64 bits) precision num-
bers to extended precision to simplify the
computational instructions. A convert
instruction must be executed before a
store to perform the inverse operation.
For example, an extended_to_single con-

6 bits

2 bits 32 bits

Figure 7. Lisp tagged data. SPUR
augments Lisp data words with an eight-
bit tag that includes a six-bit data-type tag
and two-bit generation number. Lisp
integers and characters are represented as
immediate data. All other types of Lisp
objects are referenced by typed pointers.
Some of the tag values are used by the
hardware to do tag checks in parallel with
data operations. Other tag values are inter-
preted only by software. The generation
number is used to implement a generation-
scavenging garbage-collection algorithm.

vert instruction must be executed before
a store_single instruction.

The FPU contains 15 87-bit floating-
point registers organized as a single
register set (see Figure 5). There is no
analog to the overlapping windows used
for the general-purpose registers because
of insufficient FPU chip area to imple-
ment more registers. Furthermore, more
research is needed to determine how to
use overlapping windows for floating-
point registers.

The floating-point register set is in-
dependent of the general-purpose reg-
ister set for four reasons:

(1) to reduce access time for floating-
point operands,

(2) to allow more freedom in setting the
width of floating-point registers,

(3) to permit concurrent execution of in-
teger and floating-point operations,
and

(4) to permit implementation of a
separate FPU chip.

SPUR divides the floating-point stan-
dard into two parts. One part is im-
plemented by a set of instructions (see
Table 5) with hard-wired control and the
other is implemented by software trap
handlers. The standard defines six types
of floating-point numbers: zeros, nor-
malized numbers, denormalized num-
bers, infinities, and two types of Not-a-
Number symbols. The FPU manipulates
normalized numbers and zeros entirely in
hardware. The other four less-common
types require software assistance.

The FPU manipulates single (32 bits),
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Table 5. SPUR floating-point instructions.

This table lists SPUR floating-point instructions. The column Cycles shows the minimum number of cycles consumed by an
instruction in normal operating mode. If the FPU and CPU are operated concurrently, a CPU instruction can begin one cycle
after an FPU instruction has started (see the section labeled Floating-point coprocessor interface). There are floating-point load
and store instructions for each floating-point format and for integers. Extended-precision numbers require two different loads
and two different stores to move the first 64 bits and the last 64 bits. Loads do implicit conversion to extended precision, but
stores merely copy bits. Store _single, store_double, and store_integer must be preceded by the corresponding convert instruc-
tion (such as extended_to_ single). The to_cpu and from_cpu instructions transfer integers directly between the integer and
floating-point register sets so that the FPU can be used effectively for integer multiply and divide. A eonditional branch based
on floating-point data is done in two steps. First, the CPU executes an femp instruction to set a bit in the floating-point pro-
cessor status word (FP PSW). Second, the CPU executes a conditional branch instruction that tests this bit. Most floating-
point operations execute in four cycles using the add/subtract hardware. Multiply and divide use additional special-purpose
hardware. A sync instruction is-used when the CPU and FPU are executing instructions in parallel. It forces the CPU to stop
executing new instructions until the FPU completes its current instruction (if any). This can be used to guarantee that the store
of a floating-point result does not begin before the result has been computed.

Instruction Operands Action Cycles
load _single dest, srcl, ri FPU dest — (convert to extended) M [srcl +ri} 1
load _double dest, srcl, ri FPU dest — (convert to extended) M [srcl +ri} 1
load _extended] dest, srcl, ri FPU dest—M [srcl +ri] 1
load _extended2 dest, srcl, ri FPU dest —M [srcl +ri] 1
load _.integer dest, scrl, ri FPU dest<63:32> —M [srcl +71i] 1
store _single src2, srcl, i FPU src2—M [srcl +i} 2
store _double src2, srcl, i FPU src2—M [srcl +i] 2
store_extended1 src2, srcl, i FPU src2—M [srcl +1i] 2
store _extended2 src2, srcl; i FPU src2—M [srcl +i] 2
store_integer src2, srcl, i FPU src2—M [srcl +1i] 2
from _fpu dest, src2 CPU dest —FPU src2<63:32> 1
to_fpu dest, src2 FPU dest <63:32> —CPU src2 1
fadd, fsub dest, srcl,src2 FPU dest — FPU srcl op FPU src2 4
fmul dest, srcl, src2 FPU dest —FPU src1* FPU src2 7
fdiv dest, srcl, src2 FPU dest—FPU srcl/FPU src2 19
fcmp srcl, src2 FP _PSW < branch _bit > — (FPU srcl cond FPU src2) 4
fnegate dest, srcl FPU dest —FPU srcl with opposite sign 4
fabs dest, srcl FPU dest —FPU srcl with positive sign 4
fmov dest, srcl FPU dest —FPU srcl 4
int_to_extended dest, scrl FPU dest —(convert to extended) FPU srcl <63:32> 4
extended _to_int dest, srcl FPU dest<63:32> «—(convert to integer) FPU srcl 4
extended _to_single dest, srcl FPU dest —(convert to single) FPU srcl 4
extended _to_double dest, srcl FPU dest — (convert to double) FPU srcl 4
sync CPU waits until FPU is not busy 1

double (64 bits), and extended-precision
numbers (at least 79 bits) in a common
87-bit format to reduce hardware com-
plexity. SPUR enlarges the minimum
extended-precision format in four ways.

First, a three-bit tag identifies the type
of a number. This tag reduces the time
needed by a load instruction to convert
numbers to extended-precision by allow-
ing the load to handle exponents for all
types of numbers in a uniform fashion.
In addition, the hardware for compu-
tational instructions can determine
whether software assistance is necessary
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by examining the three-bit tag rather
than the entire number.

Second, SPUR expands the exponent
by two bits so that trap handlers can ad-
just denormalized operands. This en-
ables SPUR to multiply and divide
denormalized numbers using hardware
designed for normalized operands.

Third, two rounding bits are added so
that SPUR can mimic rounding from an
infinitely-precise result to a precision
shorter than extended precision. This
feature is necessary to correctly handle a

denormalized number produced by an
underflow exception.

Fourth, one bit is used to hold the
most significant fraction bit in explicit
form.

The floating-point coprocessor inter-
Jface. The FPU is sufficiently fast that the
performance of floating-point opera-
tions is sensitive to the overhead asso-
ciated with starting floating-point opera-
tions and the overhead of transferring
floating-point operands to and from the
FPU. Consequently, 28 CPU pins are
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used to implement a low-overhead inter-
face between the CPU and the FPU. Un-
fortunately, the close coupling of the two
chips may make it difficult to use the
SPUR FPU without the SPUR CPU.

To reduce the overhead of starting
floating-point operations, the FPU
tracks all CPU instructions using 22 pins
dedicated to carrying opcode, register
specifiers, and other control information
to the FPU (and possibly other coproces-
sors). Some commercial floating-point
coprocessors track instructions by moni-
toring CPU instruction fetches to memo-
ry (such as the Intel 8087). However, this
will not work in SPUR because the CPU
fetches most instructions from the on-
chip instruction buffer.

The SPUR floating-point interface
reduces operand overhead in three ways.
First, the floating-point registers reside
on the FPU. Since all floating-point
computation instructions operate with
operands in these registers, intermediate
results can be efficiently used.

Second, floating-point load and store
instructions transfer data directly be-
tween the FPU and the cache. In con-
trast, many commercially available inter-
faces require floating-point data to be
transferred through the CPU. The
following sequence occurs when a float-
ing-point load instruction is issued by the
CPU: the FPU recognizes the floating-
point load instruction and saves the
destination register specifier; the CPU
calculates the effective memory address
and sends the address to the cache; the
cache sends the data to both the FPU and
the CPU; the FPU reads the data and
loads it into the appropriate floating-
point register; the CPU ignores the data,
but recognizes that the load is complete.

Third, the data path between the FPU
and the memory system is 64 bits wide, in
constrast to more commonly used §-,
16-, and 32-bit interfaces. This allows
load and store instructions to move
single and double-precision numbers
with a single transfer and extended-
precision numbers with two transfers.
SPUR’s wide FPU interface reduces the
probability that operand movement will
limit floating-point throughput, which
can easily occur for double-precision
computations.

The coprocessor interface also allows
concurrent CPU and FPU operation.
Subject to some software constraints, the
CPU can continue executing general-
purpose instructions, Lisp instructions,
and floating-point loads and stores while
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the FPU is busy. Overlapping operand
movement/index calculations with float-
ing-point operations can halve the
execution time of many inner loops of
floating-point intensive programs. 30
However, software must restrict the in-
teraction between concurrently executed
instructions by reordering instructions or
by inserting sync instructions. For exam-
ple, a sync instruction must be inserted
between a floating-point operation and
an instruction that stores the result of the
operation in memory if the store could
read the result register before it is
written.

Status

The implementation of SPUR is in
progress. As of September 1986 the
custom components and processor board
have been described at the register-trans-
fer level with a variant of the ISP lan-
guage and simulated with a software
package called N.2. The layouts of the
custom chips are near completion. They
all use four-phase nonoverlapping clocks
with a projected cycle time of 100 to 150
nanoseconds. The processor board has
been designed, simulated with N.2, and
is nearly ready for physical implementa-
tion. We expect to have working com-
ponents by early 1987 and a working sys-
tem later in the year.

PUR is a multiprocessor research
S vehicle, but we have not as yet

been able to run multiprocessing
experiments. Nevertheless, we have some
preliminary results.

First, selected architectural changes
can significantly ease implementation
and, at the same time, improve perfor-
mance. For example, disallowing syno-
nyms enabled us to build virtually-tagged
caches without complex reverse-trans-
lation mechanisms. Virtually-tagged
caches improved performance by reduc-
ing cache access time and permitting slow
address translation.

Second, in-cache address translation
keeps PTEs consistent and offers perfor-
mance comparable to a translation buf-
fer at less cost.

Third, cache consistency can be main-
tained in hardware at reasonable cost
and without any modifications to main
memory boards.

Fourth, Lisp can be supported without
a stack-based architecture and without a

microcoded implementation. However,
data-type tags or some other direct sup-
port of Lisp’s dynamically-typed data
are advantageous.

Fifth, IEEE standard floating-point
can be implemented without microcoded
control if software handles the less com-
mon cases.

Sixth, floating-point coprocessor in-
terfaces can be designed to significantly
reduce operand-movement overhead by
putting the floating-point registers on the
floating-point coprocessor and loading
these registers directly from a cache using
a 64-bit data path.

The goal of the first phase of the
SPUR project is to design and implement
several working prototypes. If the proto-
types meet our expectations, we hope to
find partners to help us transfer SPUR
from academia to industry. (]
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