
Appears in International Journal On Semantic Web and Information Systems - Special Issue on Web-Scale Knowledge Extraction, 2012

Elementary: Large-scale Knowledge-base Construction
via Machine Learning and Statistical Inference

Feng Niu, Ce Zhang, Christopher Ré, and Jude Shavlik
Computer Sciences Department

University of Wisconsin-Madison
{leonn, czhang, chrisre, shavlik}@cs.wisc.edu

Researchers have approached knowledge-base construction (KBC) with a wide range of data
resources and techniques. We present Elementary, a prototype KBC system that is able to
combine diverse resources and different KBC techniques via machine learning and statistical
inference to construct knowledge bases. Using Elementary, we have implemented a solution to
the TAC-KBP challenge with quality comparable to the state of the art, as well as an end-to-end
online demonstration that automatically and continuously enriches Wikipedia with structured
data by reading millions of webpages on a daily basis. We describe several challenges and
our solutions in designing, implementing, and deploying Elementary. In particular, we first
describe the conceptual framework and architecture of Elementary, and then discuss how we
address scalability challenges to enable Web-scale deployment. First, to take advantage of
diverse data resources and proven techniques, Elementary employs Markov logic, a succinct
yet expressive language to specify probabilistic graphical models. Elementary accepts both
domain-knowledge rules and classical machine-learning models such as conditional random
fields, thereby integrating different data resources and KBC techniques in a principled manner.
Second, to support large-scale KBC with terabytes of data and millions of entities, Elementary
leverages high-throughput parallel computing infrastructure such as Hadoop, Condor, and
parallel databases. Furthermore, to scale sophisticated statistical inference, Elementary
employs a novel decomposition-based approach to Markov logic inference that solves routine
subtasks such as classification and coreference with specialized algorithms. We empirically
show that this decomposition-based inference approach achieves higher performance than prior
inference approaches. To validate the effectiveness of Elementary’s approach to KBC, we
experimentally show that its ability to incorporate diverse signals has positive impacts on KBC
quality.

Keywords: Knowledge-base construction, natural language understanding, information
extraction, machine learning, statistical inference, systems

Introduction

Knowledge-base construction (KBC) is the process of
populating a knowledge base (KB) with facts (or assertions)
extracted from text. It has recently received tremendous
interest from academia (Weikum & Theobald, 2010),
e.g., CMU’s NELL (Carlson et al., 2010; Lao, Mitchell,
& Cohen, 2011), MPI’s YAGO (Kasneci, Ramanath,
Suchanek, & Weikum, 2008; Nakashole, Theobald, &
Weikum, 2011), and from industry (Fang, Sarma, Yu, &
Bohannon, 2011), e.g., IBM’s DeepQA (Ferrucci et al.,
2010) and Microsoft’s EntityCube (Zhu, Nie, Liu, Zhang,
& Wen, 2009). To construct high-quality knowledge
bases from text, researchers have considered a wide
range of data resources and techniques; e.g., pattern
matching with dictionaries listing entity names (Riloff,
1993), bootstrapping from existing knowledge bases like

Freebase and YAGO (Suchanek, Kasneci, & Weikum, 2007),
disambiguation using web links and search results (Hoffart et
al., 2011; Dredze, McNamee, Rao, Gerber, & Finin, 2010),
rule-based extraction with regular expressions curated by
domain experts (DeRose et al., 2007; Chiticariu et al., 2010),
training statistical models with annotated text (Lafferty,
McCallum, & Pereira, 2001), etc. All these resources are
valuable because they are complementary in terms of cost,
quality, and coverage; ideally one would like to be able
to use them all. To take advantage of different kinds of
data resources, a major problem that KBC systems face
is coping with imperfect or conflicting information from
multiple sources (Weikum & Theobald, 2010). (We use
the term “information” to refer to both data and algorithms
that can be used for a KBC task.) To address this issue,
several recent KBC projects (Carlson et al., 2010; Kasneci
et al., 2008; Nakashole et al., 2011; Zhu et al., 2009; Lao et

1

2 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Figure 1. Architecture of Elementary. Elementary takes as input diverse data resources, converts them into relational
evidence, and then performs statistical inference in Markov Logic to construct knowledge bases. Elementary may invoke
machine learning techniques in both feature extraction and the process of constructing the MLN program.

al., 2011) use statistical inference to combine different data
resources.

Motivated by the above observation, we present
Elementary, a prototype system that aims to enable quick
development and scalable deployment of KBC systems that
combine diverse data resources and best-of-breed algorithms
via machine learning and statistical inference (Niu, 2012).
This article provides an overview of the motivation and
advantages of the Elementary architecture, while only
briefly touching on individual technical challenges that
are addressed in our other publications. We structure
our presentation around two main challenges that we face
in designing, implementing, and deploying Elementary:
(1) how to integrate conflicting information from multiple
sources for KBC in a principled way, and (2) how to scale
Elementary for Web-scale KBC.

Challenge 1: How do we handle conflicting
information from multiple sources of data and
algorithms for a KBC task in a principled way?
To perform knowledge-base construction with multiple
sources of information, a critical challenge is the
ability to handle imperfect and conflicting information
(Challenge 1a). Following several recent KBC projects
such as StatSnowball/EntityCube (Zhu et al., 2009) and
SOFIE/Prospera (Suchanek, Sozio, & Weikum, 2009;
Nakashole et al., 2011), Elementary uses a probabilistic
logic language called Markov logic (Richardson &
Domingos, 2006) that has been applied to a wide range
of text-related applications (Poon & Domingos, 2007;
Suchanek et al., 2009; Zhu et al., 2009; Andrzejewski,
Livermore, Zhu, Craven, & Recht, 2011). In Markov logic,
one can write first-order logic rules with weights (that
intuitively model our confidence in a rule); this allows one to
capture rules that are likely, but not certain, to be correct. A

Markov logic program (aka Markov logic network, or simply
MLN) specifies what data are available, what predictions to
make, and what constraints and correlations there are.

Elementary adopts the classic Entity-Relationship (ER)
model (P. Chen, 1976; Calì, Gottlob, & Pieris, 2010) for
the target KB. While there is a direct map between the ER
model and predictions in Markov logic, a crucial challenge is
how to accommodate information from diverse sources when
developing a KBC system (Challenge 1b). To address this
issue, Elementary uses a two-phase architecture: as shown
in Figure 1, Elementary first runs a feature extraction step
to convert input data resources into relational signals called
evidence; it then feeds evidence into a Markov logic engine
where Elementary performs statistical inference to construct
a knowledge base. Besides evidence, one may also translate
a source of information into MLN rules. For example, we can
translate machine-learning models like logistic regression
and conditional random fields (Lafferty et al., 2001) into
MLN rules in a straightforward manner. One could also
directly add MLN rules to capture prior beliefs, constraints,
or correlations over the evidence and the target KB. For
directly supplied rules, one may either heuristically specify
the weights or perform weight learning (Lowd & Domingos,
2007). To obtain training data for learning, one could
either use existing examples such as annotations (if any) or
acquire silver-standard examples with the distant-supervision
technique (Zhang, Niu, Ré, & Shavlik, 2012).

Although Elementary provides the mechanism to
combine different data and algorithms for KBC, the
output quality still depends on what input resources are
used and how they are combined. Thus, a third challenge
is how to debug and tune a KBC system built using
Elementary (Challenge 1c). Specifically, a developer
needs to select or tune data sources, feature extraction

ELEMENTARY 3

algorithms, the MLN rule set, and MLN rule weights. From
our experience of building KBC systems, we find that an
effective approach is iterative manual error analysis of the
output. To facilitate error analysis, we have developed
different tools in Elementary that provide insights about
the how each component of a KBC system impacts output
quality.

Challenge 2: How do we scale Elementary to Web-scale
KBC tasks? Elementary processes a KBC task by
performing two sequential steps: feature extraction and
statistical inference. To scale Elementary to terabytes
of input data, the first challenge is to scale feature
extraction (Challenge 2a). Toward that goal, we employ
high-throughput parallel computing frameworks such as
Hadoop1 and Condor (Thain, Tannenbaum, & Livny,
2005) that can schedule computationally intensive jobs
on both cluster machines and idle workstations. For
example, using Condor, we were able to utilize hundreds
of thousands of machine-hours to perform deep linguistic
feature extraction (including named entity recognition and
dependency parsing) on a 500M-doc web corpus within one
week.

Web-scale KBC involves billions of prediction variables,
and so a second challenge is to scale statistical inference
in Elementary (Challenge 2b). Following the Tuffy
system (Niu, Ré, Doan, & Shavlik, 2011), we leverage
mature database technology by implementing data
manipulation operations and MLN inference on top of
a parallel relational data management system (RDBMS)
from Greenplum, Inc. Still, we find that state-of-the-art
approaches to MLN inference often do not scale to the
amount of data and rich structures involved in a large-scale
KBC task. We observe that a KBC task often contains
routine subtasks such as classification and coreference
resolution; these subtasks have specialized algorithms with
high efficiency and quality. Thus, instead of solving a whole
Markov logic program with generic inference algorithms,
we could split the program into multiple parts and solve
subtasks with corresponding specialized algorithms (Niu,
Zhang, Ré, & Shavlik, 2011). However, because different
subtasks may share the same relation, there may be conflicts
between predictions from different subtasks. There are
many message-passing schemes for resolving such conflicts,
e.g., loopy belief propagation (Ihler, Fisher, & Willsky,
2006), expectation propagation (Minka, 2001), and dual
decomposition (Wolsey, 1998; Sontag, Globerson, &
Jaakkola, 2010). We choose dual decomposition for two
reasons: (1) it has stable convergence behavior, and (2) it
can provide dual certificates (i.e., lower or upper bounds
to inference quality) and thereby stopping conditions for
inference.

To summarize, we address the following challenges in
designing, implementing, and deploying Elementary:

• To design a KBC system that is able to take advantage
of diverse data resources and best-of-breed algorithms,
we address the following challenges:

Challenge 1a: How do we handle imperfect and
inconsistent information?
Solution: Elementary employs the probabilistic logic
language Markov logic.

Challenge 1b: How do we handle the diversity of
information sources?
Solution: Elementary uses a two-phase architecture
with feature extraction and statistical inference.

Challenge 1c: How do we debug and tune a KBC
system?
Solution: Elementary provides tools to facilitate
manual error analysis.

• To deploy Elementary to large-scale KBC tasks,
we address the following scalability and efficiency
challenges:

Challenge 2a: How do we scale feature extraction?
Solution: Elementary leverages mature
infrastructures such as Hadoop and Condor.

Challenge 2b: How do we scale statistical inference
in Markov logic?
Solution: Elementary integrates specialized
algorithms for subtasks in KBC.

Evaluations. We perform two types of evaluations.
First, to evaluate the efficiency and scalability of
Elementary’s decomposition-based approach to MLN
inference, we compare Elementary with state-of-the-art
systems for MLN inference. We experimentally show that
Elementary’s inference approach has higher scalability and
efficiency than stat-of-the-art MLN inference approaches.
Second, a fundamental rationale of Elementary is to support
combination of diverse data resources and proven KBC
techniques. Our hypothesis is that more data and algorithms
help improve KBC quality. We validate this hypothesis by
measuring changes in KBC quality as we alter the input to
Elementary on several KBC tasks.

Deployment. As a proof of concept, we used
Elementary to implement a solution for the TAC-KBP
challenge2 and obtained result quality that is comparable
to the state of the art (Ji, Grishman, Dang, Griffitt, & Ellis,
2010): we achieve a F1 score of 0.80 for entity linking, and
a F1 score of 0.31 for slot filling. Furthermore, Elementary
scales the TAC-KBP task to a 500M-webpage corpus with

1http://hadoop.apache.org/
2http://nlp.cs.qc.cuny.edu/kbp/2010/. TAC means

Text Analysis Conference; KBP means Knowledge-base
Population.

4 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

2TB of plain English text; from 7B entity mentions and 20B
mention pairs, Elementary produced 114M high-probability
relationship mentions within 3 days. In addition, we
have deployed Elementary to an online demonstration
system that continuously enriches Wikipedia with facts (and
provenance) extracted from millions of webpages crawled
on a daily basis.3

Background

KBC is a challenging research topic that researchers have
attacked with diverse data resources and many different
techniques. We briefly survey some common types of data
resources and a few representative techniques that combine
them in different ways. Our goal is not to be exhaustive
– for more comprehensive surveys, please refer to, e.g.,
Sarawagi (2008) and Weikum and Theobald (2010) – but
to illustrate the diversity of signals used for KBC. We then
illustrate Markov logic with an example, and briefly describe
dual decomposition, a classic optimization technique that
underlies Elementary’s inference approach.

Data Resources for KBC

We briefly recall two common types of data resources
that are valuable for achieving high quality in KBC:
mention-level data that deal with the structure in text,
and entity-level data that deal with the structure in the
target knowledge base (e.g., typing of relation arguments
and constraints among relations). The distinction between
mentions and entities is illustrated in Figure 2.

Mention-level Data. Mention-level data are textual data
with mentions of entities, relationships, events, etc., or
linguistic resources modeling a (natural) language itself.
Mentions in a natural language are the raw data from which
KBC data is primarily extracted. They provide examples
of the variety of ways humans, writing for other humans,
encode knowledge. Mention-level data are usually primary
input to a KBC task; they are often in the form of raw
text corpora and sometimes also include annotated text.
One could use annotated text to train statistical information
extraction models, e.g., CRFs (Lafferty et al., 2001). There
are also unsupervised methods to make use of less structured
mention-level data: a natural-language text corpus could
be used to build statistical language models (Lin & Pantel,
2001); one could derive from anchor texts (of Wikipedia
pages or general webpages) how frequently an expression is
used to refer to an entity and use this information to help
disambiguate entity mentions (Hoffart et al., 2011).

Entity-level Data. Entity-level data are relational data
over the domain of conceptual entities (as opposed to
language-dependent mentions). They include what are
usually called knowledge bases, ontologies, and gazetteers,
e.g., YAGO (Nakashole et al., 2011) and Freebase4. On
the one hand, entity-level data are typical output of KBC

systems. On the other hand, existing entity-level data
resources are also valuable input for building KBC systems.
For example, one could use comprehensive ontologies
like YAGO to extract mentions of entities such as people
and organizations with pattern matching. One could also
use an existing knowledge base to type-check extraction
results (Suchanek et al., 2009); e.g., the second argument
of the relation EmployedBy must be an organization.
Entity-level models refer to (first-order) logical statements
that encode common-sense (or domain-expertise) constraints
and rules over relations of interest. For example, rules
like “marriage is symmetric” and “a person’s birth date
is unique” intuitively would help improve biographical
relation extraction. Indeed, such high-level constraints
have been shown to have significant impacts on KBC
quality (Nakashole et al., 2011).

Common Techniques for KBC

We discuss several common techniques to make
use of the above data resources for KBC: classical
rule-based approaches, classical statistical approaches,
distant supervision, and human feedback.

Classical Rule-based Approaches. Classical rule-based
approaches to KBC – e.g., DBLife (DeRose et al.,
2007; Shen, Doan, Naughton, & Ramakrishnan, 2007)
and SystemT (Chiticariu et al., 2010; Michelakis,
Krishnamurthy, Haas, & Vaithyanathan, 2009) – build
on the observation that, for many KBC tasks, there are
often a small number of rules that can achieve both high
precision and high recall. For example, to identify mentions
of people in the database research community, DBLife
performs string matching between the corpus and heuristic
variations of a dictionary of canonical person names (e.g.,
abbreviations and first/last name ordering). Because these
heuristics cover most commonly used variation types, and
because person-name ambiguities are rare, DBLife is able to
achieve both high recall and high precision in this subtask.
The development process of rule-based KBC systems is
increasingly being assisted by statistical techniques (Arasu
& Garcia-Molina, 2003; Mooney, 1999; Michelakis et al.,
2009).

Statistical Machine Learning Approaches. Statistical
machine learning approaches (Lafferty et al., 2001; F. Chen,
Feng, Christopher, & Wang, 2012; Mintz, Bills, Snow, &
Jurafsky, 2009), on the other hand, target KBC tasks that
cannot be reasonably covered by a small set of deterministic
rules. For example, to extract HasSpouse relationships from
English text, one would be hard pressed to enumerate a set
of possible expressions with high precision and high recall.
To address this issue, classical statistical approaches employ

3http://research.cs.wisc.edu/hazy/deepdive
4http://freebase.com

ELEMENTARY 5

Figure 2. Illustrating mentions in text of the entity Barack Obama.

machine learning models such as logistic regression and
conditional random fields (Lafferty et al., 2001; Sutton &
McCallum, 2006) to learn model parameters from training
examples, e.g., annotations of sentences that mention a
HasSpouse relationship. A trend in classical statistical KBC
approaches is to incorporate high-level knowledge (rules)
such as “similar text spans are more likely to have the same
label” (Sutton & McCallum, 2004; Finkel, Grenager, &
Manning, 2005).

Distant Supervision. High-quality annotation data are
usually scarce and expensive to obtain. Distant supervision
is an increasingly popular techique to use entity-level data
to generate (silver-standard) annotations from mention-level
data (Hearst, 1992; Brin, 1999; Mintz et al., 2009; Zhang
et al., 2012). The idea is to use the facts in an existing
knowledge base to heuristically identify fact mentions in a
text corpus via entity-mention mapping. For example, to
populate a relation about people’s birth places, one may
start with a small set of tuples such as BirthPlace(Obama,
Hawaii). Then one could consider sentences mentioning both
“Obama” and “Hawaii” (e.g., “Obama was born in Hawaii”)
as positive examples. Textual patterns like “was born in”
would then emerge as being indicative for the BirthPlace
relation and be used to extract more facts. The significance
of this technique is that we can get large amounts of training
data without human input. While distant supervision often
generates noisy examples, the hope is that machine learning
techniques – e.g., `1-regularization (Zhu et al., 2009) – help
reduce such noisiness and select truly indicative patterns.
Furthermore, as demonstrated by StatSnowball (Zhu et al.,
2009), one may integrate a classical machine-learning model
trained via distant supervision into an MLN program.

Human Feedback. Developing KBC systems should
be a continuous process – a KBC system is built and
deployed, and then iteratively improved as more and more
human feedback is integrated. Human feedback may
come from different sources, e.g., developers who can spot
and correct systematic errors, end-users who can provide
low-level (e.g., sentence-level) feedback, and workers on
crowdsourcing platforms who can generate large volumes
of annotations. We can directly incorporate such human

feedback to improve KBC result quality. Furthermore, we
may use human feedback as additional training data (e.g., on
top of distant-supervision training data) to improve the KBC
system itself.

Markov Logic Networks

To illustrate how MLNs can be used for knowledge-base
construction, we walk through a program that extracts
affiliations between people and organizations from Web text.
In KBC, a typical first step is to use standard NLP toolkits
to generate raw data such as plausible mentions of people
and organizations in a Web corpus and their co-occurrences.
But transforming such raw signals into high-quality and
semantically coherent knowledge bases is a challenging task.
For example, a major challenge is that a single real-world
entity may be referred to in many different ways, e.g.,
“UCB” and “UC-Berkeley”. To address such challenges,
MLNs provide a framework where we can express logical
assertions that are only likely to be true (and quantify such
likelihood). Below we explain the key concepts in this
framework by walking through an example.

The inference engine of Elementary takes as input a
standard MLN program, performs statistical inference, and
outputs its results into one or more relations that are stored
in a relational database (PostgreSQL). An MLN program
consists of three parts: schema, evidence, and rules. To
tell Elementary what data will be provided or generated,
the user provides a schema. Some relations are standard
database relations, and we call these relations evidence.
Intuitively, evidence relations contain tuples that we assume
are correct. In the schema of Figure 3, the first eight
relations are evidence relations. For example, we know
that ‘Ullman’ and ‘Stanford Univ.’ co-occur in some
webpage, and that ‘Doc201’ is the homepage of ‘Joe’. Other
evidence includes string similarity information. In addition
to evidence relations, there are also relations whose content
we do not know, but we want the MLN program to predict;
they are called query relations. In Figure 3, affil is a
query relation since we want the MLN to predict affiliation
relationships between persons and organizations. The other
two query relations are pCoref and oCoref, for person and

6 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Figure 3. An example MLN program that performs three tasks jointly: 1. discover affiliation relationships between people
and organizations (affil); 2. resolve coreference among people mentions (pCoref); and 3. resolve coreference among
organization mentions (oCoref). The remaining eight relations are evidence relations. In particular, coOccurs stores
person-organization co-occurrences; ∗Sim∗ relations are string similarities.

organization coreference, respectively.
In addition to schema and evidence, Elementary also

requires a set of MLN rules that encode our knowledge
about the correlations and constraints over the relations. An
MLN rule is a first-order logic formula associated with a real
number (or infinity) called a weight. Infinite-weighted rules
are called hard rules, which means that they must hold in any
prediction that the MLN system makes. In contrast, rules
with finite weights are soft rules: a positive weight indicates
confidence in the rule’s correctness.5

Example 1 An important type of hard rule is a standard
SQL query, e.g., to transform the results for use in the
application. A more sophisticated example of a hard rule
is to encode that coreference has the transitive property,
which is captured by the hard rule F3. Rules F8
and F9 use person-organization co-occurrences (coOccurs)
together with coreference (pCoref and oCoref) to deduce
affiliation relationships (affil). These rules are soft since

co-occurrence does not necessarily imply affiliation.

Intuitively, when a soft rule is violated, we pay a
cost equal to the absolute value of its weight (described
below). For example, if coOccurs(‘Ullman’, ‘Stanford
Univ.’) and pCoref(‘Ullman’, ‘Jeff Ullman’), but not
affil(‘Jeff Ullman’, ‘Stanford Univ.’), then we pay a cost
of 4 because of F9. The goal of an MLN inference algorithm
is to find a global prediction that minimizes the sum of such
costs.

Similarly, affiliation relationships can be used to deduce
non-obvious coreferences. For instance, using the fact that
‘Mike’ is affiliated with both ‘UC-Berkeley’ and ‘UCB’,

5Roughly speaking, these weights correspond to the log odds
of the probability that the statement is true. (The log odds of
probability p is log p

1−p .) In general, these weights do not have
a simple probabilistic interpretation (Richardson & Domingos,
2006).

ELEMENTARY 7

Elementary may infer that ‘UC-Berkeley’ and ‘UCB’ refer
to the same organization (rules on oCoref are omitted
from Figure 3). If Elementary knows that ‘Joe’ co-occurs
with ‘UCB’, then it is able to infer Joe’s affiliation with
‘UC-Berkeley’. Such interdependencies between predictions
are sometimes called joint inference.

Semantics. An MLN program defines a probability
distribution over possible worlds. Formally, we first fix a
schema σ (as in Figure 3) and a domain D. Given as input a
set of formulae F̄ = F1, . . . , FN with weights w1, . . . ,wN ,
they define a probability distribution over possible worlds
as follows. Given a formula Fk with free variables x̄ =

(x1, · · · , xm), for each d̄ ∈ Dm we create a new formula
gd̄ called a ground formula where gd̄ denotes the result of
substituting each variable xi of Fk with di. We assign the
weight wk to gd̄. Denote by G = (ḡ,w) the set of all such
weighted ground formulae of F̄. Essentially, G forms a
Markov random field (MRF) (Koller & Friedman, 2009) over
a set of Boolean random variables (representing the truth
value of each possible ground tuple). Let w be a function
that maps each ground formula to its assigned weight. Fix
an MLN F̄, then for any possible world (instance) I we say
a ground formula g is violated if w(g) > 0 and g is false in I,
or if w(g) < 0 and g is true in I. We denote the set of ground
formulae violated in a world I as V(I). The cost of the world
I is

costMLN(I) =
∑

g∈V(I)

|w(g)| (1)

Through costMLN, an MLN defines a probability
distribution over all instances using the exponential
family of distributions that are the basis for graphical
models (Wainwright & Jordan, 2008):

Pr[I] = Z−1 exp {−costMLN(I)}

where Z is a normalizing constant.
Inference. There are two main types of inference with

MLNs: MAP (maximum a posterior) inference, where we
want to find a most likely world, i.e., a world with the
lowest cost, and marginal inference, where we want to
compute the marginal probability of each unknown tuple.
Both types of inference are intractable, and so existing MLN
systems implement generic (search or sampling) algorithms
for inference. Although Elementary supports both types
of inference, we focus on MAP inference to simplify the
presentation.

Learning Weights. Weight learning takes as input an
MLN program with unweighted rules and an instance of all
relations (including evidence and queries), and tries to find
an assignment of rule weights that maximizes the probability
of the given instance. In Elementary, weights can be set by
the user or automatically learned. Elementary implements
state-of-the-art MLN weight learning algorithms (Lowd &
Domingos, 2007), but we focus on inference in this article.

There are also algorithms for learning rule structures from
scratch (Kok & Domingos, 2005); it is future work to
implement structure learning inside Elementary.

Dual Decomposition

We illustrate the basic idea of dual decomposition with
a simple example. Consider the problem of minimizing a
real-valued function f (x1, x2, x3). Suppose that f can be
written as

f (x1, x2, x3) = f1(x1, x2) + f2(x2, x3).

Further suppose that we have black boxes to solve f1 and f2
(plus linear terms). To apply these black boxes to minimize
f we need to cope with the fact that f1 and f2 share the
variable x2. Following dual decomposition, we can rewrite
minx1,x2,x3 f (x1, x2, x3) into the form

min
x1,x21,x22,x3

f1(x1, x21) + f2(x22, x3) s.t. x21 = x22,

where we essentially made two copies of x2 and enforce
that they are identical. The significance of such rewriting
is that we can apply Lagrangian relaxation to the equality
constraint to decompose the formula into two independent
pieces. To do this, we introduce a scalar variable λ ∈ R
(called a Lagrange multiplier) and define g(λ) =

min
x1,x21,x22,x3

f1(x1, x21) + f2(x22, x3) + λ(x21 − x22).

For any λ, we have g(λ) ≤ minx1,x2,x3 f (x1, x2, x3).6

Thus, the tightest bound is to maximize g(λ); the problem
maxλ g(λ) is a dual problem for the problem on f . If the
optimal solution of this dual problem is feasible (here, x21 =

x22), then the dual optimal solution is also an optimum of the
original program (Wolsey, 1998, p. 168).

The key benefit of this relaxation is that, instead of a
single problem on f , we can now compute g(λ) by solving
two independent problems (each problem is grouped by
parentheses) that may be easier to solve:

g(λ) = min
x1,x21

(f1(x1, x21) + λx21) + min
x22,x3

(f2(x22, x3) − λx22) .

To compute maxλ g(λ), we can use standard techniques
such as projected subgradient (Wolsey, 1998, p. 174). Notice
that dual decomposition can be used for MLN inference if
xi are truth values of ground tuples and one defines f to be
costMLN(I) as in Equation 1.

Challenge 1: Knowledge-base Construction with
Elementary

We describe the conceptual challenges in the Elementary
approach to KBC and how Elementary addresses them.

6One can always take x21 = x22 = x2 in the minimization, and
the value of the two objective functions are equal.

8 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Figure 4. An illustration of the KBC model in Elementary.

Challenges 1a: Markov Logic in Elementary

A fundamental rationale of Elementary is to embrace
all data resources and algorithms that may contribute to a
given KBC task. An immediate challenge to this approach
is that we need a way to handle imperfect and inconsistent
information from multiple sources. To address this issue
in a principled manner, we adopt the popular Markov
logic language. In addition to the syntax and semantics
described in the previous section, from our three years’
experience of building KBC applications with Markov logic,
we have found two language extensions to be instrumental to
Elementary: scoping rules and parameterized weights.

Scoping Rules. By default, the arguments in an MLN
predicate are considered to be independent to each other;
i.e., for a predicate of arity a, there are |D|a possible ground
tuples where D is the domain. Thus, given a query predicate
AdjacentMentions(mention, mention), a typical MLN
system – e.g., Alchemy7 or Tuffy (Niu, Ré, et al., 2011)
– would enumerate and perform inference on #mentions2

ground tuples instead of only the #mention−1 truly adjacent
mention pairs. To address this issue, Elementary allows a
developer to explicitly scope a query predicate with rules of
the form

AdjacentMentions(m1,m2) :=
Mentions(m1, p1) ∧ Mentions(m2, p2) ∧ p1 = p2 − 1

where the evidence relation Mentions lists all mentions and
their positional indexes (consecutive integers). Elementary
implements scoping rules by translating them into SQL
statements that are used to limit the content of the in-database
representation of MLN predicates.

Parameterized Weights. As we will see, an MLN can
express classical statistical models such as logistic regression
and conditional random fields (Lafferty et al., 2001). Such
classical statistical models usually have simple structure but
many parameters. To compactly represent these models in

MLN, we introduce parameterized weights, i.e., weights that
are functions of one or more variables in an MLN rule. For
example, a logistic regression model on the TokenLabel
relation may have a parameter for each word-label pair; we
can represent such a model using the following MLN rule

wgt(w, l) :
Tokens(tok) ∧ HasWord(tok,w) => TokenLabel(tok, l)

where wgt(w, l) is a parameterized weight that depends on
the word variable w and the label variable l. Besides
compactness, a key advantage of parameterized weights is
that one can write a program that depends on the input
data without actually providing the data. Another benefit
is that of efficiency: a rule with parameterized weights
may correspond to hundreds of thousands of MLN rules;
because there can be non-negligible overhead in processing
an MLN rule (e.g., initializing in-memory or in-database data
structures), without this compact representation, we have
found that the overhead of processing an MLN program
can be prohibitive. Elementary implements parameterized
weights by storing functions like wgt(w, l) as look-up tables
in a database that can be joined with predicate tables.

Challenge 1b: Conceptual Model and Architecture for
KBC

Markov logic is a generic language for statistical
inference. To use it for KBC tasks, we need to set up
a development environment, including (1) a conceptual
model for KBC that is compatible with MLN, and (2) an
architecture that is able to accommodate diverse information
sources. We describe them in turn.

A KBC Model. We describe a simple but general model
for KBC (see Figure 4). To represent the target KB, we
adopt the classic Entity-Relationship (ER) model (P. Chen,
1976; Calì et al., 2010): the schema of the target KB is

7http://alchemy.cs.washington.edu/

ELEMENTARY 9

Figure 5. Probability calibration results of a well-trained relation-extraction model on TAC-KBP. Each prediction has an
associated probability. We partition all predictions into ten uniform-width probability bins, and measure the accuracy (left)
and frequency (right) of each bin. The dashed line in the left figure indicates the ideal curve where the estimated probabilities
exactly match the actual accuracy.

specified by an ER graph G = (Ē, R̄) where Ē is one or more
sets of entities, and R̄ is one or more relationships. Define
E(G) = ∪E∈Ē E, i.e., the set of known entities. To specify a
KBC task to Elementary, one provides the schema G and a
corpus of documents D. Each document di ∈ D consists of a
set of possibly overlapping text spans (e.g., tokens, phrases,
or sentences) T (di). Define T (D) = ∪di∈DT (di). Our goal is
to accurately populate the following tables:

• Entity-mention tables ME(E,T (D)) for each entity
type E ∈ Ē.8

• Relationship-mention tables MRi ⊆ T (D)k+1 for each
Ri ∈ R̄, where k is the arity of Ri, the first k
attributes are entity mentions, and the last attribute is a
relationship mention.

• Relationship tables Ri ∈ R̄.

Note that Ri can be derived from ME and MRi . By the same
token, ME and MRi provide provenance that connects the KB
back to the documents supporting each fact. Intuitively, the
goal is to produce an instance J of these tables that is as
large as possible (high recall) and as correct as possible (high
precision). Elementary populates the target KB based on
signals from mention-level structures (over text spans) and
entity-level structures (over the target KB). Conceptually,
we characterize text spans with a relation Fm(T (D),Vm)
where Vm is the set of possible features for each text
span. There could be many types of features, e.g., relative
position in a document, contained words, matched regular
expressions, web search results, etc. Similarly, we introduce
entity-level structures with a relation Fe(E(G),Ve) where Ve

is the set of possible feature values for an entity. Examples
of Ve include canonical names and known entity attributes
(e.g., age, gender, alias, etc.). Furthermore, one may also
introduce feature relations that involve multiple mentions

(e.g., consecutive mention pairs) or multiple entities (e.g.,
entity pairs that frequently co-occur). Depending on the
data sources and the feature-extraction process, there may
be errors or inconsistencies among the feature values.
Elementary makes predictions about the target KB via
machine learning and statistical inference over these features.
A key issue for machine learning is the availability of training
data, and an increasingly popular technique addressing this
issue is distant supervision. We found that scaling the input
data resources is indeed an effective approach to improving
the quality of KBC via distant supervision (Zhang et al.,
2012).

Elementary Architecture. Markov logic operates on
relational data. To accommodate diverse information
sources, Elementary employs a two-phase architecture when
processing a KBC task: feature extraction and statistical
inference (see Figure 1). Intuitively, feature extraction
concerns what signals may contribute to KBC and how
to generate them from input data resources (e.g., pattern
matching and selection), while statistical inference concerns
what (deterministic or statistical) correlations and constraints
over the signals are valuable to KBC and how to efficiently
resolve them. All input data resources are first transformed
into relational data via the feature-extraction step. For
example, one may employ standard NLP tools to decode
the structure (e.g., part-of-speech tags and parse trees)
in text, run pattern matching to identify candidate entity
mentions, perform topic modeling to provide additional
features for documents or text spans, etc. If a KBC
technique (e.g., a particular learning or inference algorithm)
can be expressed in MLNs, one can also translate them

8For simplicity, in this conceptual model we assume that all
entities are known, but Elementary supports generating novel
entities for the KB as well (e.g., by clustering “dangling” mentions).

10 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

into MLN rules. Otherwise, one can execute the technique
in the feature-extraction step and “materialize” its result
in evidence or MLN rules. Once we have converted
all signals into relational evidence, the second step is to
perform statistical inference to construct a knowledge base
as described in the above KBC model. From our experience
of building large-scale knowledge bases and applications on
top of them, we have found that it is critical to efficiently
process structured queries over large volumes of structured
data. Therefore, we have built Elementary on top of a
relational database management system (RDBMS).

Challenge 1c: Debugging and Tuning

The ability to integrate different data and algorithms
for KBC does not directly lead to high-quality results: a
developer still needs to decide what signals to use and how
to combine them. When training data are available (through
either direct supervision or distant supervision), machine
learning techniques can help tune system parameters. For
example, one can integrate into an MLN trained statistical
models such as logistic regression and conditional random
fields, or perform weight learning on an entire MLN.
In addition to machine learning, we have also found
error analysis on the output of a KBC system to be an
effective method for debugging and tuning. For example,
when developing solutions to the TAC-KBP challenge, we
improved the slot-filling F1 score from 0.15 to 0.31 with
several iterations of error analysis. In each iteration, we
identify errors in samples of Elementary’s output, trace
them back to input signals through a provenance utility
in Elementary’s inference engine, classify the errors by
causes (e.g., noise in an evidence relation or pathological
MLN rules), and then apply appropriate remedies. As
we will see, different signals do have different impacts on
the result quality for a KBC task. Thus, to facilitate the
development process, we have been equipping Elementary
with utilities to help a developer debug and fine-tune
a KBC system. For example, in a debugging mode,
Elementary reports provenance about each prediction it
generates – it outputs related MLN rules and grounding
that lead to each prediction. In addition, Elementary
also performs aggregation on such provenance to help
identify spurious data sources or MLN rules. As another
example, to evaluate whether a statistical model functions
properly, Elementary can output probability calibration
results, including the ground-truth accuracy and frequency
distribution over different probability levels (see Figure 5).

Putting It All Together

The high-level steps in applying Elementary to a KBC
task are as follows:

1. Choose the entities and relationships to recognize in
text.9

2. Choose a corpus of documents, and collect all data
resources that may help with the current KBC task.

3. Perform feature extraction on the input data by running
standard NLP tools, machine learning algorithms, or
custom code to create a relational representation of all
input data, i.e., evidence.

4. Create an MLN program that integrates existing
machine-learning models, domain-knowledge rules, or
other sources of information on the evidence and the
target KB. If needed, perform weight learning.

5. Run statistical inference with the MLN program and
the evidence to make predictions for the target KB.

6. Inspect results and if appropriate, go to (3) or (4).

To demonstrate the flexibility of Elementary for KBC, we
use several examples to illustrate how Elementary integrates
diverse data resources and different techniques for KBC.
Recall that there are two phases in Elementary: feature
extraction and statistical inference. When integrating an
existing KBC technique, one needs to decide what goes into
feature extraction and what goes into statistical inference.
To illustrate, we consider several common techniques for
entity linking, relation extraction, and incorporating domain
knowledge, respectively.

Entity Linking. Entity linking is the task of mapping
text spans to entities, i.e., populating the ME(E,T (D)) tables
in the formal model. To identify candidate mentions of
entities, there are several common techniques, e.g., (1)
perform string matching against dictionaries; (2) use regular
expressions or trigger words (e.g., “Prof.” for person
mentions); (3) run named-entity-recognition tools. All these
techniques can be implemented in the feature-extraction
phase of Elementary. Sometimes a mention may correspond
to multiple candidate entities. To determine which entity is
correct, one could use various techniques and data resources.
For example, a heuristic is that “if the string of a mention is
identical to the canonical name of an entity, then this mention
is likely to refer to this entity”; one can express this heuristic
in a (soft or hard) MLN rule:

MentionText(mention, string)
∧ EntityName(entity, string)

=> ME(entity,mention).

When a named-entity-recognition (NER) tool is used in
feature extraction, one can use the mention types output by

9We leave open information extraction (Wu & Weld, 2010) as
future work.

ELEMENTARY 11

the tool as a constraint for entity linking. For example,
let NerMentionType(mention, type) be an evidence relation
storing NER output; then we can add the constraint

MPERSON(entity,mention)
=> NerMentionType(mention, PERSON).

As another example, suppose there is an evidence relation
Anchor(string, entity, f req) indicating how frequently
(measured by the numeric attribute f req) an anchor text
string links to the Wikipedia page representing entity entity.
Then one could use these signals for entity disambiguity
with the rule

wgt(f req) : Anchor(string, entity, f req)
∧MentionText(mention, string)

=> ME(entity,mention).

where the wgt(f req) syntax means that the rule weight is a
function of the f req attribute of Anchor. Note that one can
also adapt Anchor for other data resources, e.g., web search
results with mention phrases as queries and Wikipedia links
as proxies for entities. Another common technique for entity
linking is coreference. For example, let SamePerson(m1,m2)
be an equivalence relation indicating which pairs of person
mentions are coreferent, i.e., referring to the same entity.
Then one can use the following heuristics to propagate entity
linking results between coreferent mentions10:

MentionText(m1, s) ∧MentionText(m2, s)
∧ InSameDoc(m1,m2) ∧ FullName(s)

=> SamePerson(m1,m2).
MentionText(m1, s1) ∧MentionText(m2, s2)
∧ InSamePara(m1,m2) ∧ ShortFor(s1, s2)

=> SamePerson(m1,m2).
MPERSON(e,m1) ∧ SamePerson(m1,m2)

=> MPERSON(e,m2).

Relation Extraction. Relation extraction is the task
of determining whether a relationship is mentioned in a
text span, i.e., populating the relationship mention tables
MRi . For natural-language text, the most common approach
is to perform classification based on linguistic patterns.
Researchers have found many different kinds of linguistic
patterns to be helpful; e.g., shallow features such as
word sequences and part-of-speech tags between entity
mentions (Carlson et al., 2010; Zhu et al., 2009), deep
linguistic features such as dependency paths (Lin & Pantel,
2001; Wu & Weld, 2010; Mintz et al., 2009), and other
features such as the n-gram-itemset (Nakashole et al., 2011).
To improve coverage and reduce noisiness of these patterns,
researchers have also invented different feature selection and

expansion techniques; e.g., frequency-based filtering (Wu
& Weld, 2010; Nakashole et al., 2011), feature selection
with `1-norm regularization (Zhu et al., 2009), and feature
expansion based on pattern similarity (Lin & Pantel, 2001;
Nakashole et al., 2011). In Elementary, one can implement
different combinations of the above techniques in the feature
extraction phase, and incorporate the signals with (soft or
hard) rules of the form

WordSequence(s,m1,m2, “was born in′′)
=> MBirthPlace(m1,m2, s).

where s is a sentence and m1 and m2 are two entity mentions
(i.e., text spans) within s.

To learn the association between linguistic patterns and
relationships, there are two common approaches: direct
supervision and distant supervision (Mintz et al., 2009). In
direct supervision, one uses mention-level annotations of
relationship mentions as training data to learn a statistical
model between patterns and relationships (Lafferty et al.,
2001). As mention-level annotations are usually rare and
expensive to obtain, an increasingly popular approach is
distant supervision, where one uses entity-level relationships
and entity linking to heuristically collect silver-standard
annotations from a text corpus (Mintz et al., 2009; Zhu
et al., 2009; Nakashole et al., 2011; Carlson et al.,
2010). To illustrate, let KnownBirthPlace(person, location)
be an existing knowledge base containing tuples like
KnownBirthPlace(Barack_Obama, Hawaii), then one can
perform distant supervision in Elementary by learning
weights for MLN rules of the form

wgt(pat) : WordSequence(s,m1,m2, pat)
∧ MPERSON(per,m1)
∧ MLOCATION(loc,m2)

=> KnownBirthPlace(per, loc).

where w(pat) is a parameterized weight that depends on the
pattern pat; intuitively it models how indicative this pattern
is for the BirthPlace relationship. For example, Elementary
may learn that “was born in” is indicative of BirthPlace based
on the tuple KnownBirthPlace(Barack_Obama, Hawaii), the
sentence s =“Obama was born in Hawaii,” and entity linking
results such as MPERSON(Barack_Obama, Obama).

Domain Knowledge. Several recent projects (Zhu et al.,
2009; Nakashole et al., 2011; Carlson et al., 2010) show that
entity-level resources can effectively improve the precision
of KBC. For example, Prospera (Nakashole et al., 2011)
found that validating the argument types of relationships
can improve the quality of relation extraction. One can
incorporate such constraints with rules like

∞ : MBirthPlace(m1,m2, s) => ∃ e1 MPERSON(e1,m1)

10The weights are not shown for clarity.

12 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

which enforces that the first argument of a BirthPlace
mention must be a person entity. Besides typing, one can
also specify semantic constraints on relationships such as “a
person can have at most one birth place” and “HasChild and
HasParent are symmetric”:

∞ : BirthPlace(p, l1) ∧ l1 , l2 => BirthPlace(p, l2).
∞ : HasChild(p1, p2) <=> HasParent(p2, p1).

Another type of domain knowledge involves corrections
to systematic errors in the statistical extraction models. For
example, from sentences like “Obama lived in Hawaii for
seven years,” distant supervision may erroneously conclude
that the linguistic pattern “lived in” is strongly indicative of
BirthPlace. Once a developer identifies such an error (say via
debugging), one could correct this error by simply adding the
rule

∞ : WordSequence(s,m1,m2, “lived in′′)
=> ¬MBirthPlace(m1,m2, s).

Note that this rule only excludes mention-level
relationships. Thus, if there are sentences “X lived in
Y” and “X was born in Y”, the final (entity-level) KB may
still contain the tuple BirthPlace(eX , eY) based on the
second sentence, where eX (resp. eY) denotes the entity
referred to by X (resp. Y).

Challenge 2: Scalability of Elementary

We discuss the scalability challenges in Elementary. We
first briefly describe how we scale feature extraction with
high-throughput parallel computing infrastructure such as
Hadoop11 and Condor (Thain et al., 2005). We then explain
how to scale up MLN inference by integrating specialized
algorithms with dual decomposition.

Challenge 2a: Scaling Feature Extraction

To scale the Elementary architecture to Web-scale
KBC tasks, we employ high-throughput parallel computing
frameworks such as Hadoop and Condor. We use the Hadoop
File System for storage and MapReduce (Dean & Ghemawat,
2004) for feature extraction. However, when trying to
deploy Elementary to Web-scale KBC tasks that involve
terabytes of data and deep natural-language-processing
features, we found a 100-node Hadoop MapReduce cluster
to be insufficient. The reasons are two-fold: (1)
Hadoop’s all-or-nothing approach to failure handling hinders
throughput, and (2) the number of cluster machines for
Hadoop is limited. Fortunately, the Condor infrastructure
supports a best-effort failure model, i.e., a job may
finish successfully even when Condor fails to process
a small portion of the input data. Moreover, Condor
can schedule jobs on both cluster machines and idle

Figure 6. Elementary breaks a Markov logic program, Γ,
into several, smaller subtasks (shown in Panel a), while prior
approaches are monolithic (shown in Panel b).

workstations. This allows us to simultaneously leverage
thousands of machines from across a department, an entire
campus, or even the nation-wide Open Science Grid.12 For
example, using Condor, we were able to utilize hundreds
of thousands of machine-hours to perform deep linguistic
feature extraction (including named entity recognition and
dependency parsing) on the 500M-doc ClueWeb09 corpus13

within a week. For statistical inference, we use the parallel
RDBMS from Greenplum, Inc.

Challenge 2b: (Part 1) Scaling MLN Inference with
Specialized Tasks

We observe that a KBC task usually involves routine
subtasks such as classification and coreference resolution.
Moreover, such subtasks may correspond to a subset of rules
in an MLN program. Thus, instead of running a generic
MLN inference algorithm on the entire program (as done by
state-of-the-art MLN inference algorithms, see Figure 6), we
can partition the rule set into subtasks and invoke specialized
algorithms for corresponding subtasks (Niu, Zhang, et al.,
2011). In this section, we describe several such tasks that
are common in KBC tasks (see Table 1). For each task, we
describe how it arises in an MLN, a specialized algorithm,
and an informal argument of why being aware of the special
structure may outperform generic inference approaches.

Classification. Classification is a fundamental inference
problem and ubiquitous in applications. Classification arises
in Markov logic as a query predicate R(x, y) with hard rules
of the form

R(x, y1) ∧ y1 , y2 => ¬R(x, y2),

which mandates that each object (represented by a possible
value of x) can only be assigned at most one label
(represented by a possible value of y). If the only query
relation in a subprogram Γi is R and R is mentioned at
most once in each rule in Γi (except the rule above), then

11http://hadoop.apache.org/
12http://www.opensciencegrid.org
13http://lemurproject.org/clueweb09.php/

ELEMENTARY 13

Table 1. Example specialized tasks and their implementations in Elementary.

Task Implementation
Classification Logistic Regression (Boyd & Vandenberghe, 2004)
Segmentation Conditional Random Fields (Lafferty et al., 2001)
Coreference Correlation Clustering (Ailon, Charikar, & Newman, 2008)

Γi is essentially a (multi-class) logistic regression (LR)
model. The inference problem for LR is trivial given model
parameters (here rule weights) and feature values (here
ground formulae). For example, logistic regression models
can be used for entity linking – one can view all candidate
entities as classification labels. Below are some sample rules
for person entity linking:

∞ : MPERSON(entity1,mention) ∧ entity1 , entity2
=> ¬MPERSON(entity2,mention).
2 : MentionString(mention, string)
∧ EntityString(entity, string)

=> MPERSON(entity,mention).
5 : MentionString(m, str)
∧ StringContains(str, “Mr.′′)
∧ IsFemale(ent)

=> ¬MPERSON(ent,m).

On the other hand, prior inference approaches would
operate on the MRF (i.e., ground network) generated from
the input MLN. Suppose there are N objects and K labels.
Then it would require N

(
K
2

)
factors to represent the above

unique-label rule in an MRF. For tasks such as entity linking
(e.g., mapping textual mentions to Wikipedia entities), the
value of K could be in the millions.

Segmentation. Segmentation is the task of partitioning
sequence data (e.g., word sequences) while classifying each
partition with a set of labels. Examples include segmenting
an English sentence into different types of phrases (noun
phrases, verb phrases, etc.) and segmenting a citation line
into different fields (authors, title, etc.). A popular approach
to segmentation is linear-chain conditional random fields
(CRFs) (Lafferty et al., 2001), a machine-learning model
that can be solved efficiently with dynamic programming
algorithms. A linear-chain CRF model consists of unigram
features and bigram features. In Markov logic, unigram
features have the same form as LR rules, while bigram
features are soft rules of the form

wgt(y1, y2) : L(x1, x2) => R(x1, y1) ∧ R(x2, y2),

where R is a classification predicate and L is an evidence
relation containing correlated object pairs (e.g., consecutive
tokens in a sentence). For example, when segmenting
sentences into phrases, R may be TokenInPhrase(token,

phrase) and L may be FollowedBy(token1, token2), where
the argument “phrase” takes values from NounPhrase,
VerbPhrase, etc. If the correlation structure L represents
chains over the objects (i.e., x values), then we can solve a
subproblem with unigram and bigram rules like these with
the Viterbi algorithm (Lafferty et al., 2001).

Coreference. Another common task is coreference
resolution (coref), e.g., given a set of strings (say phrases
in a document) we want to decide which strings represent
the same real-world entity. This arises in MLNs as a query
relation R that is subject to hard rules encoding an equivalent
relation, including the reflexivity, symmetry, and transitivity
properties. The input to a coreference task is a single relation
B(o1, o2,wgt) where wgt = βo1,o2 ∈ R indicates how likely
the objects o1, o2 are coreferent (with 0 being neutral). In
Elementary, B is indirectly specified with rules of the form

1.5 : Similar(o1, o2) => R(o1, o2)

where Similar is an evidence relation but, in general, the
left hand side can be a subformula involving any number of
evidence relations. The above rule essentially adds all tuples
in Similar to B with a weight 1.5. The output of a coreference
task is an instance of relation R(o1, o2) that indicates which
pairs of objects are coreferent. Assuming that βo1,o2 = 0 if
(o1, o2) is not covered by the relation B, then each valid R
incurs a cost (called disagreement cost)

costcoref(R) =
∑

o1,o2:(o1,o2)<R
and βo1,o2>0

|βo1,o2| +
∑

o1,o2:(o1,o2)∈R
and βo1,o2<0

|βo1,o2|.

In Figure 3, F1 through F5 can be mapped to a coreference
task for the relation pCoref. F1 through F3 encode
the reflexivity, symmetry, and transitivity properties of
pCoref, and the ground formulae of F4 and F5 specify the
weighted-edge relation B. The goal is to find a relation R
that achieves the minimum cost.

Coreference is a well-studied problem (Fellegi & Sunter,
1969), and there are approximate inference techniques for
coreference resolution (Ailon et al., 2008; Arasu, Ré, &
Suciu, 2009; Singh, Subramanya, Pereira, & McCallum,
2011). Elementary implements both correlation clustering
algorithms (Ailon et al., 2008) and the sampling algorithm
of Singh et al. (2011). In contrast, explicitly representing
a coreference task in an MRF may be inefficient: a direct
implementation of transitivity requires N3 factors where N is
the number of objects.

14 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Task Detection. In our prototype Elementary system,
we allow a user to manually decompose an MLN program
and specify a specific inference algorithm to be run on each
subprogram. We have also implemented pattern-matching
heuristics to detect structures in an MLN program and
instantiate the algorithms described above (Niu, Zhang,
et al., 2011). Our heuristics successfully detected the
decomposition schemes in our experiments. If the user
does not provide an algorithm for a subprogram and
Elementary cannot automatically match this subprogram to
any specialized algorithm, we run a generic MLN inference
algorithm, namely WalkSAT (Kautz, Selman, & Jiang,
1997).14

Challenge 2b: (Part 2) Resolving Inconsistencies with
Dual Decomposition

Although program decomposition allows Elementary
to integrate specialized algorithms for MLN inference, a
crucial challenge is that, because a query relation may be
shared by multiple tasks, there may be inconsistencies
between predictions from different tasks. There are
several general inference schemes to address this issue,
e.g., (loopy) belief propagation (Ihler et al., 2006),
expectation propagation (Minka, 2001), and dual
decomposition (Wolsey, 1998; Sontag et al., 2010). We
choose dual decomposition for the following reasons: (1)
dual decomposition’s convergence behavior has theoretical
guarantees, whereas belief propagation and expectation
propagation do not; and (2) dual decomposition provides the
possibility of dual certificates (i.e., lower or upper bounds
to inference quality) and thereby stopping conditions for
inference.15 To perform dual decomposition for MLNs,
Elementary takes as input the (first-order) rule set of an
MLN program, and partitions it into multiple tasks each of
which can be solved with different algorithms. One design
decision that we make in Elementary is that entire relations
are shared or not – as opposed to individual ground tuples.
This choice allows Elementary to use an RDBMS for all
data movement, which can be formulated as SQL queries;
in turn this allows us to automatically scale low-level
issues such as memory management. Dual decomposition
introduces auxiliary variables called Lagrange multipliers;
they are used to pass messages between different tasks so as
to iteratively reconcile conflicting predictions. We illustrate
dual decomposition in Elementary with an example.

Example 2 Consider a simple MLN Γ modeling the impact
of news on companies’ stock performance:

1 GoodNews(p) => Bullish(p) φ1

1 BadNews(p) => Bearish(p) φ2

5 Bullish(p) <=> ¬Bearish(p) φ3

where GoodNews and BadNews are evidence and the other
two relations are queries. Consider the decomposition

Figure 7. A program-level decomposition for Example 2.
Shaded boxes are evidence relations. Solid arrows indicate
data flow; dash arrows are control.

Γ1 = {φ1} and Γ2 = {φ2, φ3}. Γ1 and Γ2 share the relation
Bullish; so we create two copies of this relation: Bullish1
and Bullish2, one for each subprogram. We introduce
Lagrange multipliers λp, one for each possible ground tuple
Bullish(p). We thereby obtain a new program Γλ:

1 GoodNews(p) => Bullish1(p) φ′1
λp Bullish1(p) ϕ1

1 BadNews(p) => Bearish(p) φ2

5 Bullish2(p) <=> ¬Bearish(p) φ′3
−λp Bullish2(p) ϕ2

where each ϕi (i = 1, 2) represents a set of singleton rules,
one for each value of p (i.e., for each specific person in
a given testbed). This program contains two subprograms,
Γλ1 = {φ′1, ϕ1} and Γλ2 = {φ2, φ

′
3, ϕ2}, that can be solved

independently with any MLN inference algorithm.

As illustrated in Figure 7, the output of our decomposition
method is a bipartite graph between a set of subprograms
and a set of relations. Elementary attaches an inference
algorithm to each subprogram; we call this pair of algorithm
and subprogram a task.

Message Passing. We apply the master-slave message
passing scheme (Komodakis, Paragios, & Tziritas, 2007)
to coordinate tasks. The master-slave approach alternates
between two steps: (1) perform inference on each part
independently to obtain each part’s predictions on shared
variables, and (2) a process called the Master examines the
(possibly conflicting) predictions and sends messages in the
form of Lagrange multipliers to each task.

The Master chooses the values of the Lagrange multipliers
via an optimization process (Komodakis et al., 2007). In
particular, we can view the Master as optimizing maxλ g(λ)
using an iterative solver, in our case projected subgradient
ascent (Wolsey, 1998, p. 174). Specifically, let p be a tuple
of a query relation r; in the given decomposition, p may be
shared between k subprograms and so there are k copies of

14We focus on MAP inference in this work, though Elementary
is able to run marginal inference as well.

15We leave a more detailed study of dual certificates in
Elementary to future work.

ELEMENTARY 15

p – call them p1, . . . , pk. For i = 1, . . . , k, let pt
i ∈ {0, 1}

denote the value of p predicted by task i at step t and λt
i

denote the corresponding Lagrange multiplier. At step t, the
Master updates λt

i by comparing the predicted value of pi by
task i to the average value for p output by all inference tasks.
This leads to the following update rule:

λt+1
i := λt

i + αt

(
pt

i −
|{ j : p j = 1}|

k

)
,

where αt is the step size for this update. For example, one
may choose the divergent step sizes αt = 1/t that have
theoretical convergence guarantees (Anstreicher & Wolsey,
2009). The subgradient ascent procedure stops either when
all copies have reached an agreement or when Elementary
has run a pre-specified maximum number of iterations.

A novelty of Elementary is that we can leverage a
RDBMS to efficiently compute the subgradient on an entire
relation. To see why, let λi

p be the multipliers for a shared
tuple p of a relation r; λi

p is stored as an extra attribute in
each copy of r. For simplicity, assume that p is shared by
two tasks. Note that at each iteration, λi

p changes only if the
two copies of r do not agree on p (i.e., exactly one copy has
p missing). Thus, we can update the entire vector λr with an
(outer) join between the two copies of r using SQL.

Producing a Solution. If a shared relation is not subject
to any hard rules, Elementary takes majority votes from the
predictions of related tasks. (If all copies of this relation have
converged, the votes would be unanimous.) To ensure that
hard rules in the input MLN program are not violated in the
final output, we insist that for any query relation r, all hard
rules involving r (if any) be assigned to a single task, and that
the final value of r be taken from this task. This guarantees
that the final output is a possible world for Γ (provided that
the hard rules are satisfiable).

Related Work

There is a trend to build KBC systems with increasingly
sophisticated statistical inference. For example, CMU’s
NELL (Carlson et al., 2010) integrates four different
extraction components that implement complementary
techniques and consume various data resources (e.g.,
natural-language text, lists and tables in webpages, and
human feedback). MPI’s SOFIE/Prospera (Suchanek et
al., 2009; Nakashole et al., 2011) combines pattern-based
relation extraction approaches with domain-knowledge
rules, and performs consistency checking against
the existing YAGO knowledge base. Microsoft’s
StatsSnowball/EntityCube (Zhu et al., 2009) performs
iterative distant supervision while using the `1-norm
regularization technique to reduce noisy extraction patterns;
similar to Elementary, StatsSnowball also incorporates
domain knowledge with Markov logic and observed quality
benefit in doing so. Finally, behind IBM’s DeepQA

project’s remarkable success at the Jepardy Challenge,
there is a “massively parallel probabilistic evidence-based
architecture” that combines “more than 100 different
techniques” (Ferrucci et al., 2010).

Researchers have proposed different approaches to
improving MLN inference performance in the context of text
applications. In StatSnowball, Zhu et al. (2009) demonstrate
high quality results of an MLN-based approach. To address
the scalability issue of generic MLN inference, they make
additional independence assumptions in their programs. In
contrast, the goal of Elementary is to automatically scale
up statistical inference while sticking to MLN semantics.
Theobald, Sozio, Suchanek, and Nakashole (2010) design
specialized MaxSAT algorithms that efficiently solve MLN
programs of special forms. In contrast, we study how
to scale general MLN programs. Riedel (2008) proposed
a cutting-plane meta-algorithm that iteratively performs
grounding and inference, but the underlying grounding
and inference procedures are still for generic MLNs. In
Tuffy, Niu, Ré, et al. (2011) improve the scalability of
MLN inference with an RDBMS, but their system is still
a monolithic approach that consists of generic inference
procedures. Elementary specializes to MLNs. There
are, however, other statistical-inference frameworks such
as PRMs (Friedman, Getoor, Koller, & Pfeffer, 1999),
BLOG (Milch et al., 2005), Factorie (McCallum, Schultz,
& Singh, 2009; Wick, McCallum, & Miklau, 2010), and
PrDB (Sen, Deshpande, & Getoor, 2009). Our hope is
that the techniques developed here can be adapted to these
frameworks as well.

Dual decomposition is a classic and general technique
in optimization that decomposes an objective function into
multiple smaller subproblems; in turn these subproblems
communicate to optimize a global objective via Lagrange
multipliers (Bertsekas, 1999). Recently dual decomposition
has been applied to inference in graphical models such
as MRFs. In the master-slave scheme (Komodakis et
al., 2007; Komodakis & Paragios, 2009), the MAP
solution from each subproblem is communicated and the
Lagrange multipliers are updated with the projected gradient
method at each iteration. Our prototype implementation
of Elementary uses the master-slave scheme. It is
future work to adapt the closely related tree-reweighted
(TRW) algorithms (Wainwright, Jaakkola, & Willsky, 2005;
Kolmogorov, 2006) that decompose an MRF into a convex
combination of spanning trees each of which can be
solved efficiently. Researchers have also applied dual
decomposition in settings besides graphical models. For
example, Rush, Sontag, Collins, and Jaakkola (2010) employ
dual decomposition to jointly perform tagging and parsing
in natural language processing. Elementary can be viewed
as extending this line of work to higher-level tasks (e.g.,
classification).

16 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Table 2. Dataset sizes. The first five columns are the number of relations in the input MLN, the number of MLN rules,
the number of evidence tuples, and the number of MRF factors after grounding with Tuffy, and the size of in-database
representation of the MRF. The last four columns indicate the number of tasks of each type in the decomposition used by
Elementary (see Table 1).

Relations Rules Evidence MRF DB LR CRF Coref WalkSAT
IERJ 18 357 150K 564K 44MB 1 0 1 1
KBP 7 6 4.3M 20M 1.6GB 2 0 0 1
KBP+ 7 6 240M 64B 5.1TB 2 0 0 1

Figure 8. High-level performance results of Elementary and Tuffy. For each dataset and each system, we plot a time-cost
curve. Tuffy was not able to produce feasible solutions, and the corresponding curves were obtained by “softening” hard
rules to have weight 100.

Empirical Evaluations

We empirically evaluate Elementary by validating
the following two main hypotheses: (1) the
decomposition-based approach to Markov logic inference
enables Elementary to have higher scalability and efficiency
than prior inference approaches; and (2) we can significantly
improve the quality of KBC tasks by integrating more data
resources and techniques with statistical inference inside
Elementary. Since scalability and efficiency is a premise for
Elementary’s ability to produce high-quality KBC results,
we present the efficiency experiments first, and then the
quality experiments.

Efficiency Experiments

A main hypothesis is that Elementary’s
decomposition-based approach to statistical inference in
Markov logic outperforms prior inference approaches
in terms of efficiency and scalability. To validate
this, we compare the performance of Elementary with
state-of-the-art MLN systems, namely Tuffy (Niu, Ré, et
al., 2011) and Alchemy on two datasets. We show that
Elementary indeed has higher efficiency than prior inference
approaches.

Datasets and MLNs. We use a publicly available MLN
testbed called IERJ from Alchemy’s website16, and one
MLN that we developed for the TAC-KBP challenge
(Table 2): (1) IERJ, where one performs joint segmentation
and entity resolution on Cora citations; see the “Jnt-Seg-ER”
program in (Poon & Domingos, 2007); and (2) KBP, which

is our implementation of the TAC-KBP (knowledge-base
population) challenge of populating a KB with 34 relations
from a 1.8M-doc corpus by performing two related tasks:
a) entity linking: extract all entity mentions and map them
to entries in Wikipedia, and b) slot filling: determine
relationships between entities. We use an MLN that performs
entity linking, slot filling, entity-level knowledge-base
population, and fact verification from an existing partial
knowledge base. In KBP, we use a 116K-doc subset of the
TAC-KBP corpus. To test the scalability of Elementary, we
also run the KBP program on the full 1.8M-doc TAC-KBP
corpus (“KBP+”).

Methodology. We run Tuffy (Niu, Ré, et al., 2011)
and Alchemy as state-of-the-art monolithic MLN inference
systems. We implement Elementary on top of our
open-source Tuffy system.17 As Tuffy has similar or
superior performance to Alchemy on each dataset, here
we use Tuffy as a representative for state-of-the-art MLN
inference. In Elementary, we use the sampling algorithm
of Singh et al. (2011) for coref tasks. Elementary’s
decomposition scheme for each dataset can be found in
Table 2.

Both Tuffy and Elementary are implemented in Java and
use PostgreSQL 9.0.4 as the underlying database system.
Unless specified otherwise, all experiments are run on a
RHEL 6.1 server with four 2.00GHz Intel Xeon CPUs (40
total physical cores plus hyperthreading) and 256 GB of
RAM. Although all three approaches can be parallelized

16http://alchemy.cs.washington.edu/
17http://research.cs.wisc.edu/hazy/tuffy

ELEMENTARY 17

Table 3. Performance and quality comparison on individual tasks. “Initial” (resp. “Final”) is the time when a system
produced the first (resp. converged) result. “F1” is the F1 score of the final output. For system-task pairs with infinite cost,
we also “soften” hard rules with a weight 100, and report corresponding cost and F1 in parentheses. Each cost/F1 value is
an average over five runs.

Task System Initial Final Cost F1

LR
Elementary 21 s 21 s 2.4e4 0.79
Tuffy 58 s 59 s 2.4e4 0.79
Alchemy 3140 s 3152 s 3.4e4 0.14

CRF
Elementary 35 s 35 s 4.6e5 0.90
Tuffy 148 s 186 s ∞ (6.4e5) 0.14 (0.14)
Alchemy 740 s 760 s 1.4e6 0.10

CC
Elementary 11 s 11 s 1.8e4 0.35
Tuffy 977 s 1730 s ∞ (2.0e4) 0.33 (0.32)
Alchemy 2622 s 2640 s ∞ (4.6e5) 0.54 (0.49)

on most datasets, we use single-thread runtime when
plotting graphs. Following standard practice in numerical
optimization (Anstreicher & Wolsey, 2009), we use the
diminishing step-size rule αk = 1/k (where k is the number
of iterations) for Elementary. We found that alternative step
size rules may result in faster convergence. We run MAP
inference on each system with each dataset and plot the MLN
cost against runtime.

Results. Recall that the goal of MAP inference is
to lower the MLN cost as quickly as possible. From
Figure 8 we see that Elementary achieves dramatically better
performance compared to Tuffy: while Tuffy fails to find
a feasible solution (i.e., a solution with finite cost) after
5000 seconds on IERJ and 5 hours on KBP, Elementary
converges to a feasible solution within minutes on each
dataset. There are complex structures in these MLNs; e.g.,
transitivity for entity resolution and uniqueness constraints
for entity linking in KBP. Tuffy were not able to find
feasible solutions that satisfy such complex constraints,
and the corresponding curves were obtained by replacing
hard rules with a “softened” version with weight 100.
Still, we see that the results from Tuffy are substantially
worse than Elementary. From the above comparison, we
conclude that the decomposition-based approach to inference
is able to achieve significantly higher efficiency than prior
(monolithic) approaches.

Scalability. To test scalability, we also run Elementary
on the large KBP+ dataset with a parallel RDBMS (from
Greenplum Inc.). This MLN converges within a few
iterations; an iteration takes about five hours in Elementary.

Specialized Tasks. We validate that the ability to
integrate specialized tasks into MLN inference is key to
Elementary’s high efficiency and quality. To do this,
we demonstrate that Elementary’s specialized algorithms
outperform generic MLN inference algorithms in both
quality and efficiency when solving specialized tasks. To
evaluate this claim, we run Elementary, Tuffy, and Alchemy

on three MLN programs that each encode one of the
following tasks: logistic regression-based classification
(LR), linear-chain CRF-based classification (CRF), and
correlation clustering (CC). To measure application-level
quality (F1 scores), we select some datasets with ground
truth: we use a subset of the Cora dataset18 for CC, and a
subset of the CoNLL 2000 chunking dataset19 for LR and
CRF. As shown in Table 3, while it always takes less than a
minute for Elementary to finish each task, the other three
approaches take much longer. Moreover, both inference
quality (i.e., cost) and application-level quality (i.e., F1) of
Elementary are better than Tuffy and Alchemy.20

Quality Experiments

A second main hypothesis of this paper is that one can
improve KBC result quality by combining more signals
while resolving inconsistencies among these signals with
statistical inference. Although the experiment results of
several recent KBC projects have suggested that this is the
case (Carlson et al., 2010; Kasneci et al., 2008; Nakashole
et al., 2011; Zhu et al., 2009), we use several more datasets
to validate this hypothesis with Elementary. Specifically, we
use Elementary to implement solutions to six different KBC
tasks and measure how the result quality changes as we vary
the the amount of signals (in the form of input data resources
or MLN rules) in each solution. We find that overall more
signals do tend to lead to higher quality in KBC tasks.

Datasets and MLNs. We consider six KBC tasks for the
quality experiments:

1. TAC, which is the TAC-KBP challenge as described in
the previous subsection. The MLN combines signals

18 http://alchemy.cs.washington.edu/data/cora
19 http://www.cnts.ua.ac.be/conll2000/chunking/
20The only exception is Alchemy’s F1 on CC, an indication that

the CC program is suboptimal for the application.

18 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

Table 4. Signals in the four versions of MLN programs for each KBC task. DS means “distant supervision”; EL means “entity
linking”; RE means “relation extraction.”

Base Base+EL Base+RE Full
TAC string-based EL, DS for RE +web search +domain knowledge all
CIA string-based EL, DS for RE +name variations +domain knowledge all
IMDB string-based EL, DS for RE +erroneous names +domain knowledge all
NFL CRF-based winner/loser labeling N/A +domain knowledge all
Enron person-phone co-occurrence heuristic +person coref +domain knowledge all
DBLife person-org co-occurrence heuristic +name variations +relaxed co-occurrences all

from Standord NER21, dependency paths from the
Ensemble parser (Surdeanu & Manning, 2010), web
search results from Bing22 (querying mention strings),
and developers’ feedback on linguistic patterns (in
the form of MLN rules). For relation extraction,
we perform distant supervision with Freebase as the
training KB; Freebase is disjoint from the TAC-KBP
benchmark ground truth. Elementary’s quality for
TAC-KBP is comparable to the state of the art (Ji et
al., 2010) – we achieved a F1 score of 0.80 on entity
linking (the best score in KBP2010 was 0.82; human
performance is about 0.90) and 0.31 on slot filling
(the best score in KBP2010 was 0.65, but all the other
teams were lower than 0.30).

2. CIA, where the task is to populate the ternary
person-title-in-country (PTIC) relation by processing
the TAC corpus. The MLN combines signals
such as a logistic regression model learned from
distant supervision on linguistic patterns between
entity mentions (including word sequences and
dependency paths), name variations for persons,
titles, and countries, and developer’s feedback on the
linguistic patterns. The ground truth is from the
CIA World Factbook.23 Following recent literature
on distant supervision (Mintz et al., 2009; Yao,
Riedel, & McCallum, 2010; Hoffmann, Zhang, Ling,
Zettlemoyer, & Weld, 2011), we randomly split the
World Factbook KB into equal-sized training set and
testing set, and perform distant supervision with the
training set to obtain a relation-extraction model. We
measure output quality on the testing set portion of
the KB. We will also report results after swapping the
training and testing sets.

3. IMDB, where the task is to extract movie-director
and movie-actor relationships from the TAC corpus.
The MLN combines signals such as a logistic
regression-based distant supervision model using
linguistic patterns between entity mentions (including
word sequences and dependency paths), a manually
crafted list of erroneous movie names, and developer’s
feedback on linguistic patterns. The ground truth

is from the IMDB dataset.24 For relation-extraction
model training and quality evaluation, we follow the
same methodology as in CIA.

4. NFL, where the task is to extract National Football
League game results (winners and losers) in the
2006-07 season from about 1.1K sports news articles.
The MLN combines signals from a CRF-based team
mention extractor, a dictionary of NFL team-name
variations, and domain knowledge such as “a team
cannot be both a winner and a loser on the same day.”
The CRF component is trained on game results from
another season. The weights of the other rules are
heuristically set. We use the actual game results as
ground truth.25

5. Enron, where the task is to identify person mentions
and associated phone numbers from 680 emails in the
Enron dataset.26 The MLN is derived from domain
knowledge used by a rule-based IE system (Chiticariu
et al., 2010; Liu, Chiticariu, Chu, Jagadish, & Reiss,
2010) – it combines signals such as a list of common
person names and variations, regular expressions for
phone numbers, email senders’ names, and domain
knowledge that “a person doesn’t have many phone
numbers.” The rule weights are heuristically set;
no weight learning is involved. We use our manual
annotation of the 680 emails as ground truth.

6. DBLife, where the task is to extract persons,
organizations, and affiliation relationships between
them from a collection of academic webpages.27 The
MLN is derived from domain knowledge used by
another rule-based IE system (DeRose et al., 2007) – it
combines signals such as person names and variations

21http://nlp.stanford.edu/software/index.shtml
22http://www.bing.com/toolbox/bingdeveloper/
23https://www.cia.gov/library/publications/

the-world-factbook/
24http://www.imdb.com/interfaces
25http://www.pro-football-reference.com/
26http://www.cs.cmu.edu/~einat/datasets.html
27http://dblife.cs.wisc.edu

ELEMENTARY 19

Figure 9. Result quality of KBC tasks improves as we add more signals into Elementary. On each of the six tasks, we run
four versions of Elementary programs and plot the precision-recall curves for each version: Base is the baseline version,
Base+EL has enhanced signals (see Table 4) for entity linking, Base+RE has enhanced signals (see Table 4) for relation
extraction, and Full has enhanced signals for both entity linking and relation extraction. Recall axes with integer labels
correspond to datasets where we use the true positive count to measure recall; the reason is that the corpus covers only a
small portion of the ground-truth KB. NFL has only two curves because we do not have enhanced EL signals.

(e.g., first/last name only, titles), organization names
and a string-based similarity metric, and several
levels of person-organization co-occurrence (adjacent,
same-line, adjacent-line, etc.). The rule weights are
heuristically set; no weight learning is involved. We
use the ACM author profile data as ground truth.28

Methodology. For each of the above KBC tasks, we
consider four versions of MLN programs with different
amounts of signals (Table 4): Base is a baseline, Base+EL
(resp. Base+RE) has enhanced entity-linking (EL) (resp.
relation-extraction (RE)) signals, and Full has all signals.
For each task, we run each version of MLN program with
marginal inference on Elementary until convergence. We
then take the output (sorted by marginal probabilities) and
plot a precision-recall curve. In precision-recall curves,

higher is better.
Results. As shown in Figure 9, the overall result is

that more signals do help improve KBC quality: on
each task, the quality of either Base+EL or Base+RE
improves upon Base, and the Full program performs the
best among all four versions. Specifically, on the TAC
task, enhancing either EL or RE signals improves both
precision and recall; furthermore, the combination of such
enhancements (resulting in the Full program) achieves even
higher quality than all the other three settings. These results
suggest that integrating signals with statistical inference is a
promising approach to KBC challenges such as TAC-KBP.
On the single-relation KBC tasks CIA, NFL, and Enron,
we observe even more significant quality improvement as

28http://www.acm.org/membership/author_pages

20 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

more signals are used by Elementary: on each dataset, the
Full program has almost twice as high precision at each
recall level compared to the Base program. On IMDB, the
addition of enhanced EL signals slightly but consistently
improves precision (Base+EL over Base, and Full over
Base+RE); the addition of enhanced RE signals effectively
helps segregate high-confident results from low-confident
results (the slope of the curve becomes steeper). On DBLife,
the enhanced EL or RE signals help improve the precision
of the most-confident results (the first 500 predictions or
so), while extending the largest recall value substantially.
From the above results, we conclude that one can improve
the quality of KBC tasks by integrating diverse data and
signals via statistical inference. To further verify the above
observations, we also swap the training and testing sets
for IMDB and CIA. On either IMDB or CIA, we obtained
essentially the same results as in Figure 9.

Conclusion and Future Work

Motivated by several recent knowledge-base construction
projects, we study how to build KBC systems with machine
learning and statistical inference to combine data and
algorithms from multiple sources. We describe a Markov
logic-based KBC model and architecture, and demonstrate
how to integrate different kinds of data resources and KBC
techniques. Operationally, Elementary consists of two main
processing steps: feature extraction and statistical inference.
We scale to handle feature extraction from terabytes of
text with mature parallel-computing infrastructure such as
Hadoop and Condor. To scale up statistical inference,
we propose a decomposition-based approach to MLN
inference. We experimentally show that our approach has
higher efficiency and scalability than prior MLN inference
approaches. To evaluate the overall Elementary approach
to KBC, we empirically show that, as we introduce more
signals into Elementary, the result quality improves across
tasks.

Elementary is an evolving prototype, and there are many
more challenges we plan to address in future work. Below
are some examples:

• To incorporate a KBC technique, it must either
fit in the MLN language (e.g., CRFs, LRs, and
rules expressible with SQL joins), or we have to
somehow transform the technique into relational
evidence. Thus, it may be difficult to accommodate
certain KBC techniques (especially those involving
continuous variables and complex aggregation steps).
An interesting challenge is to find a way to support
these techniques. For example, we could consider
extending Markov logic to support more general factor
graphs. Another possible direction is to introduce
elements from imperative programming languages

such as conditioning and looping (McCallum et al.,
2009).

• Another interesting topic is how to automatically
perform MLN decomposition and select inference
algorithms based on the structure of the MLN. Also,
currently inference on subtasks is repeatedly executed
from scratch at each iteration; how do we improve this,
say, with incremental inference or warm-start?

• A valuable feature for Elementarywould be additional
support for debugging: to facilitate the development
process, ideally we would like Elementary to be able
to help a developer understand the connection between
adding/dropping a particular signal and changes in
the output. Possible approaches to such functionality
include feature selection, active learning (Settles,
2012), and crowdsourcing.

Acknowledgement

We gratefully acknowledge the support of the Defense
Advanced Research Projects Agency (DARPA) Machine
Reading Program under Air Force Research Laboratory
(AFRL) prime contract no. FA8750-09-C-0181. CR is
also generously supported by NSF CAREER award under
IIS-1054009, ONR award N000141210041, and gifts or
research awards from Google, Greenplum, Johnson Controls,
Inc., LogicBlox, and Oracle. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
view of DARPA, AFRL, or the US government. We are
thankful for the generous support from the Center for High
Throughput Computing, the Open Science Grid, and Miron
Livny’s Condor research group at UW-Madison. All URLs
in this paper are active as of July 20, 2012.

References

Ailon, N., Charikar, M., & Newman, A. (2008). Aggregating
inconsistent information: Ranking and clustering.
Journal of the ACM, 55, 23:1–23:27.

Andrzejewski, D., Livermore, L., Zhu, X., Craven, M., &
Recht, B. (2011). A framework for incorporating
general domain knowledge into latent Dirichlet
allocation using first-order logic. In Proceedings
of the International Joint Conferences on Artificial
Intelligence (pp. 1171–1177).

Anstreicher, K., & Wolsey, L. (2009). Two well-known
properties of subgradient optimization. Mathematical
Programming, 120(1), 213–220.

Arasu, A., & Garcia-Molina, H. (2003). Extracting
structured data from web pages. In Proceedings of
the 2003 ACM SIGMOD international conference on
Management of data (pp. 337–348).

ELEMENTARY 21

Arasu, A., Ré, C., & Suciu, D. (2009). Large-scale
deduplication with constraints using Dedupalog. In
Proceedings of the International Conference on Data
Engineering (pp. 952–963).

Bertsekas, D. (1999). Nonlinear Programming. Athena
Scientific.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization.
New York: Cambridge University Press.

Brin, S. (1999). Extracting patterns and relations from the
world wide web. In Proceedings of the International
Conference on World Wide Web (pp. 172–183).

Calì, A., Gottlob, G., & Pieris, A. (2010). Query answering
under expressive entity-relationship schemata.
Conceptual Modeling–ER 2010, 1, 347–361.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B.,
Hruschka Jr, E., & Mitchell, T. (2010). Toward
an architecture for never-ending language learning.
In Proceedings of the Conference on Artificial
Intelligence (pp. 1306–1313).

Chen, F., Feng, X., Christopher, R., & Wang, M. (2012).
Optimizing statistical information extraction programs
over evolving text. In Proceedings of the International
Conference on Data Engineering (p. 870-881).

Chen, P. (1976). The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database
Systems, 1, 9–36.

Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S.,
Reiss, F., & Vaithyanathan, S. (2010). SystemT:
An algebraic approach to declarative information
extraction. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (pp.
128–137).

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters. In Proceeding of
the USENIX Symposium on Operating Systems Design
and Implementation (p. 137-150).

DeRose, P., Shen, W., Chen, F., Lee, Y., Burdick, D.,
Doan, A., et al. (2007). DBLife: A community
information management platform for the database
research community. In Proceeding of the Conference
on Innovative Data Systems Research (pp. 169–172).

Dredze, M., McNamee, P., Rao, D., Gerber, A., & Finin,
T. (2010). Entity disambiguation for knowledge base
population. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (pp.
277–285).

Fang, L., Sarma, A. D., Yu, C., & Bohannon, P. (2011,
November). Rex: Explaining relationships between
entity pairs. Proc. VLDB Endow., 5(3), 241–252.

Fellegi, I., & Sunter, A. (1969). A theory for record linkage.
Journal of the American Statistical Association, 64,
1183-1210.

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,

Kalyanpur, A., et al. (2010). Building Watson: An
overview of the DeepQA project. AI Magazine, 31(3),
59–79.

Finkel, J., Grenager, T., & Manning, C. (2005).
Incorporating non-local information into information
extraction systems by Gibbs sampling. In Proceedings
of the Annual Meeting of the Association for
Computational Linguistics (pp. 363–370).

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A.
(1999). Learning probabilistic relational models. In
Proceedings of the International Joint Conferences on
Artificial Intelligence (pp. 307–333).

Hearst, M. (1992). Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the
14th Conference on computational linguistics-volume
2 (pp. 539–545).

Hoffart, J., Yosef, M. A., Bordino, I., FâĹŽÂžrstenau,
H., Pin, M., Spaniol, M., et al. (2011). Robust
disambiguation of named entities in text. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (p. 782-792).

Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., & Weld,
D. (2011). Knowledge-based weak supervision for
information extraction of overlapping relations. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (pp. 541–550).

Ihler, A., Fisher, J., & Willsky, A. (2006). Loopy belief
propagation: Convergence and effects of message
errors. Journal of Machine Learning Research, 6(1),
905–936.

Ji, H., Grishman, R., Dang, H., Griffitt, K., & Ellis, J. (2010).
Overview of the TAC 2010 knowledge base population
track. In Text Analysis Conference.

Kasneci, G., Ramanath, M., Suchanek, F., & Weikum, G.
(2008). The YAGO-NAGA approach to knowledge
discovery. SIGMOD Record, 37(4), 41–47.

Kautz, H., Selman, B., & Jiang, Y. (1997). A general
stochastic approach to solving problems with hard and
soft constraints. The Satisfiability Problem: Theory
and Applications, 17, 573–586.

Kok, S., & Domingos, P. (2005). Learning the structure
of Markov logic networks. In Proceedings of the
22nd international conference on Machine learning
(pp. 441–448).

Koller, D., & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. The MIT Press.

Kolmogorov, V. (2006). Convergent tree-reweighted
message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 28(10), 1568–1583.

Komodakis, N., & Paragios, N. (2009). Beyond pairwise
energies: Efficient optimization for higher-order
MRFs. In Proceeding of the IEEE Conference

22 FENG NIU, CE ZHANG, CHRISTOPHER RÉ, AND JUDE SHAVLIK

on Computer Vision and Pattern Recognition (pp.
2985–2992).

Komodakis, N., Paragios, N., & Tziritas, G. (2007).
MRF optimization via dual decomposition:
Message-passing revisited. In Proceeding of the
IEEE International Conference on Computer Vision
(pp. 1–8).

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the
International Conference on Machine Learning (pp.
282–289).

Lao, N., Mitchell, T., & Cohen, W. (2011). Random
walk inference and learning in a large scale knowledge
base. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(pp. 529–539).

Lin, D., & Pantel, P. (2001). DIRT-discovery of inference
rules from text. Knowledge Discovery and Data
Mining, 1, 323-328.

Liu, B., Chiticariu, L., Chu, V., Jagadish, H., & Reiss, F.
(2010). Automatic rule refinement for information
extraction. In Proceedings of International Conference
on Very Large Data Bases (pp. 588–597).

Lowd, D., & Domingos, P. (2007). Efficient weight
learning for Markov logic networks. In European
Conference on Principles of Data Mining and
Knowledge Discovery (pp. 200–211).

McCallum, A., Schultz, K., & Singh, S. (2009).
Factorie: Probabilistic programming via imperatively
defined factor graphs. In Proceedings of the Annual
Conference on Neural Information Processing Systems
(p. 285-âĂŞ292).

Michelakis, E., Krishnamurthy, R., Haas, P., &
Vaithyanathan, S. (2009). Uncertainty management
in rule-based information extraction systems. In
Proceedings of the SIGMOD International Conference
on Management of Data (pp. 101–114).

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong,
D., & Kolobov, A. (2005). BLOG: Probabilistic
models with unknown objects. In Proceedings
of the International Joint Conferences on Artificial
Intelligence (pp. 1352–1359).

Minka, T. (2001). Expectation propagation for
approximate Bayesian inference. In Proceeding of the
Conference on Uncertainty in Artificial Intelligence
(pp. 362–369).

Mintz, M., Bills, S., Snow, R., & Jurafsky, D. (2009).
Distant supervision for relation extraction without
labeled data. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (pp.
1003–1011).

Mooney, R. (1999). Relational learning of pattern-match

rules for information extraction. In Proceedings
of the Sixteenth National Conference on Artificial
Intelligence (pp. 328–334).

Nakashole, N., Theobald, M., & Weikum, G. (2011).
Scalable knowledge harvesting with high precision
and high recall. In Proceedings of the Web Search and
Data Mining (pp. 227–236).

Niu, F. (2012). Web-scale Knowledge-base Construction
via Statistical Inference and Learning (tentative title).
Unpublished doctoral dissertation, Computer Sciences
Department, University of Wisconsin-Madison.

Niu, F., Ré, C., Doan, A., & Shavlik, J. (2011).
Tuffy: Scaling up statistical inference in Markov
logic networks using an RDBMS. In Proceedings of
International Conference on Very Large Data Bases
(pp. 373–384).

Niu, F., Zhang, C., Ré, C., & Shavlik, J. (2011).
Felix: Scaling inference for Markov logic with an
operator-based approach. ArXiv e-prints.

Poon, H., & Domingos, P. (2007). Joint inference in
information extraction. In Proceedings of the AAAI
Conference on Artificial Intelligence (pp. 913–918).

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Machine Learning, 62, 107–136.

Riedel, S. (2008). Improving the accuracy and efficiency of
MAP inference for Markov logic. In Proceeding of the
Conference on Uncertainty in Artificial Intelligence
(pp. 468–475).

Riloff, E. (1993). Automatically constructing a dictionary
for information extraction tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence (pp.
811–811).

Rush, A., Sontag, D., Collins, M., & Jaakkola, T. (2010).
On dual decomposition and linear programming
relaxations for natural language processing. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (pp. 1–11).

Sarawagi, S. (2008). Information extraction. Foundations
and Trends in Databases, 1(3), 261–377.

Sen, P., Deshpande, A., & Getoor, L. (2009).
PrDB: Managing and exploiting rich correlations
in probabilistic databases. In Proceedings of
International Conference on Very Large Data Bases
(pp. 1065–1090).

Settles, B. (2012). Active Learning. Morgan & Claypool.
Shen, W., Doan, A., Naughton, J., & Ramakrishnan,

R. (2007). Declarative information extraction
using datalog with embedded extraction predicates.
In Proceedings of International Conference on Very
Large Data Bases.

Singh, S., Subramanya, A., Pereira, F., & McCallum, A.
(2011). Large-scale cross-document coreference using
distributed inference and hierarchical models. In

ELEMENTARY 23

Proceeding of the Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies (pp. 793–803).

Sontag, D., Globerson, A., & Jaakkola, T. (2010).
Introduction to dual decomposition for inference.
Optimization for Machine Learning, 1, 1–11.

Suchanek, F., Kasneci, G., & Weikum, G. (2007). Yago:
A core of semantic knowledge. In Proceedings of
the International Conference on World Wide Web (pp.
697–706).

Suchanek, F., Sozio, M., & Weikum, G. (2009). SOFIE: A
self-organizing framework for information extraction.
In Proceedings of the International Conference on
World Wide Web (pp. 631–640).

Surdeanu, M., & Manning, C. (2010). Ensemble
models for dependency parsing: cheap and good?
In Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics (pp. 649–652).

Sutton, C., & McCallum, A. (2004). Collective segmentation
and labeling of distant entities in information
extraction (Tech. Rep. No. 04-49). Department of
Computer Science, University of Massachusetts.

Sutton, C., & McCallum, A. (2006). An introduction
to conditional random fields for relational learning.
In L. Getoor & B. Taskar (Eds.), Introduction to
statistical relational learning. MIT Press.

Thain, D., Tannenbaum, T., & Livny, M. (2005).
Distributed computing in practice: The Condor
experience. Concurrency and Computation: Practice
and Experience, 17(2-4), 323–356.

Theobald, M., Sozio, M., Suchanek, F., & Nakashole, N.
(2010). URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules (Tech.
Rep.). MPI.

Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP
estimation via agreement on trees: message-passing
and linear programming. IEEE Transactions on
Information Theory, 51(11), 3697–3717.

Wainwright, M., & Jordan, M. (2008). Graphical Models,
Exponential Families, and Variational Inference. Now
Publishers.

Weikum, G., & Theobald, M. (2010). From information to
knowledge: Harvesting entities and relationships from
web sources. In Proceedings of the ACM Symposium
on Principles of Database Systems (pp. 65–76).

Wick, M., McCallum, A., & Miklau, G. (2010). Scalable
probabilistic databases with factor graphs and MCMC.
In Proceedings of International Conference on Very
Large Data Bases (p. 794-804).

Wolsey, L. (1998). Integer Programming. Wiley.
Wu, F., & Weld, D. (2010). Open information

extraction using Wikipedia. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (pp. 118–127).

Yao, L., Riedel, S., & McCallum, A. (2010). Collective
cross-document relation extraction without labelled
data. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(pp. 1013–1023).

Zhang, C., Niu, F., Ré, C., & Shavlik, J. (2012). Big data
versus the crowd: Looking for relationships in all the
right places. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Zhu, J., Nie, Z., Liu, X., Zhang, B., & Wen, J.
(2009). Statsnowball: A statistical approach to
extracting entity relationships. In Proceedings of the
International Conference on World Wide Web (pp.
101–110).

