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Abstract

Prior knowledge, in the form of linear inequalities that need to be satisfied over multiple polyhedral
sets, is incorporated into a function approximation generated by a linear combination of linear or
nonlinear kernels. In addition, the approximation needs tosatisfy conventional conditions such as
having given exact or inexact function values at certain points. Determining such an approximation
leads to a linear programming formulation. By using nonlinear kernels and mapping the prior poly-
hedral knowledge in the input space to one defined by the kernels, the prior knowledge translates
into nonlinear inequalities in the original input space. Through a number of computational exam-
ples, including a real world breast cancer prognosis dataset, it is shown that prior knowledge can
significantly improve function approximation.

Keywords: function approximation, regression, prior knowledge, support vector machines, linear
programming

1. Introduction

Support vector machines (SVMs) play a major role in classification problems (Vapnik, 2000, Cherkassky
and Mulier, 1998, Mangasarian, 2000). More recently, prior knowledge has been incorporated into
SVM classifiers, both to improve the classification task and to handle problems where conventional
data may be few or not available (Schölkopf et al., 1998, Fung et al., 2003b,a). Although SVMs
have also been extensively used for regression (Drucker et al., 1997, Smola and Scḧolkopf, 1998,
Evgeniou et al., 2000, Mangasarian and Musicant, 2002), prior knowledge on properties of the func-
tion to be approximated has not been incorporated into the SVM function approximation as has been
done for an SVM classifier (Fung et al., 2003b,a). In this work, we introduce prior knowledge in the
form of linear inequalities to be satisfied by the function on polyhedral regions of the input space
for linear kernels, and on similar regions of the feature space for nonlinear kernels. These inequal-
ities, unlike point-wise inequalities or general convex constraints that havealready been treated
in approximation theory (Mangasarian and Schumaker, 1969, 1971, Micchelli and Utreras, 1988,
Deutsch, 2001), are inequalities that need to be satisfied over specific polyhedral sets. Such “prior
knowledge” does not seem to have been treated in the extensive approximation theory literature.

We outline the contents of the paper now. In Section 2 we define the prior knowledge formu-
lation for a linear kernel approximation in the input space of the problem which leads to a linear
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programming formulation in that space. In Section 3 we approximate the functionby a linear com-
bination of nonlinear kernel functions and explicitly map the polyhedral prior knowledge in the
input space to one defined by the kernel functions. This leads to a linear programming formulation
in that space. In Section 4 we demonstrate the utility of our results on a number of synthetic approx-
imation problems as well as a real world breast cancer prognosis datasetwhere we show that prior
knowledge can improve the approximation. Section 5 concludes the paper witha brief summary
and some possible extensions and applications of the present work.

We describe our notation now. All vectors will be column vectors unless transposed to a row
vector by a prime′. The scalar (inner) product of two vectorsx andy in then-dimensional real space

Rn will be denoted byx′y. Forx∈ Rn, ‖x‖1 denotes the 1-norm:
n

∑
i=1

|xi |. The notationA∈ Rm×n will

signify a realm×n matrix. For such a matrix,A′ will denote the transpose ofA, Ai will denote thei-
th row ofA andA· j the j-th column ofA. A vector of ones in a real space of arbitrary dimension will
be denoted bye. Thus fore∈ Rm andy∈ Rm the notatione′y will denote the sum of the components
of y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. ForA∈Rm×n and
B∈ Rn×k, akernel K(A,B) mapsRm×n×Rn×k into Rm×k. In particular, ifx andy are column vectors
in Rn then,K(x′,y) is a real number,K(x′,A′) is a row vector inRm andK(A,A′) is anm×mmatrix.
We shall make no assumptions on our kernels other than symmetry, that isK(x′,y)′ = K(y′,x),
and in particular we shall not assume or make use of Mercer’s positive semidefiniteness condition
(Vapnik, 2000, Scḧolkopf and Smola, 2002). The base of the natural logarithm will be denoted
by ε. A frequently used kernel in nonlinear classification is the Gaussian kernel (Vapnik, 2000,
Cherkassky and Mulier, 1998, Mangasarian, 2000) whosei j th element,i = 1. . . ,m, j = 1. . . ,k,
is given by: (K(A,B))i j = ε−µ‖Ai

′−B· j‖
2
, whereA ∈ Rm×n, B ∈ Rn×k andµ is a positive constant.

Approximate equality is denoted by≈, while the abbreviation “s.t.” stands for “subject to”. The
symbol∧ denotes the logical “and” while∨ denotes the logical “or”.

2. Prior Knowledge for a Linear Kernel Approximation

We begin with a linear kernel model and show how to introduce prior knowledge into such an
approximation. We consider an unknown functionf from Rn to R for which approximate or exact
function values are given on a dataset ofm points inRn denoted by the matrixA ∈ Rm×n. Thus,
corresponding to each pointAi we are given an exact or inexact value off , denoted by a real number
yi , i = 1, . . . ,m. We wish to approximatef by some linear or nonlinear function of the matrixA with
unknown linear parameters. We first consider the simple linear approximation

f (x) ≈ w′x+b, (1)

for some unknown weight vectorw ∈ Rn and constantb ∈ R which is determined by minimizing
some error criterion that leads to

Aw+be−y≈ 0. (2)

If we considerw to be a linear combination of the rows of A, i.e.w = A′α, α ∈ Rm, which is similar
to the dual representation in a linear support vector machine for the weightw (Mangasarian, 2000,
Scḧolkopf and Smola, 2002), we then have

AA′α+be−y≈ 0. (3)
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This immediately suggests the much more general idea of replacing the linear kernel AA′ by some
arbitrary nonlinear kernelK(A,A′) : Rm×n×Rn×m −→ Rm×m that leads to the following approxima-
tion, which is nonlinear inA but linear inα:

K(A,A′)α+be−y≈ 0. (4)

We will measure the error in (4) componentwise by a vectors∈ Rm defined by

−s≤ K(A,A′)α+be−y≤ s. (5)

We now drive this error down by minimizing the 1-norm of the errors together with the 1-norm ofα
for complexity reduction or stabilization. This leads to the following constrainedoptimization prob-
lem with positive parameterC that determines the relative weight of exact data fitting to complexity
reduction:

min
(α,b,s)

‖α‖1 +C‖s‖1

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
(6)

which can be represented as the following linear program:

min
(α,b,s,a)

e′a+Ce′s

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a.

(7)

We note that the 1-norm formulation employed here leads to a linear programmingformulation
without regard to whether the kernelK(A,A′) is positive semidefinite or not. This would not be
the case if we used a kernel-induced norm onα that would lead to a quadratic program. This
quadratic program would be more difficult to solve than our linear program especially when it is
nonconvex, which would be an NP-hard problem, as is the case when the kernel employed is not
positive semidefinite.

We now introduce prior knowledge for a linear kernel as follows. Suppose that it is known
that the functionf represented by (1) satisfies the following condition. For all pointsx ∈ Rn, not
necessarily in the training set but lying in the nonempty polyhedral set determined by the linear
inequalities

Bx≤ d, (8)

for someB ∈ Rk×n, the function f , and hence its linear approximationw′x+ b, must dominate a
given linear functionh′x+ β, for some user-provided(h,β) ∈ Rn+1. That is, for afixed(w,b) we
have the implication

Bx≤ d =⇒ w′x+b≥ h′x+β, (9)

or equivalently in terms ofα, wherew = A′α:

Bx≤ d =⇒ α′Ax+b≥ h′x+β. (10)

Thus, the implication (10) needs to be added to the constraints of the linear program (7). To do that
we make use of the following equivalence relationship that converts the implication (10) to a set of
linear constraints that can be appended to the linear program (7). A similar technique was used in
(Fung et al., 2003b, Proposition 2.1) to incorporate prior knowledge into linear classifiers.
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Proposition 2.1 Prior Knowledge Equivalence. Let the set{x | Bx≤ d} be nonempty. Then for
a fixed(α,b,h,β), the implication (10) is equivalent to the following system of linear inequalities
having a solution u∈ Rk:

B′u+A′α−h = 0, −d′u+b−β ≥ 0,u≥ 0. (11)

Proof The implication (10) is equivalent to the following system having no solution(x,ζ) ∈ Rn+1:

Bx−dζ ≤ 0, (α′A−h′)x+(b−β)ζ < 0, −ζ < 0. (12)

By the Motzkin theorem of the alternative (Mangasarian, 1994, Theorem2.4.2) we have that (12) is
equivalent to the following system of inequalities having a solution(u,η,τ):

B′u+(A′α−h)η = 0, −d′u+(b−β)η− τ = 0, u≥ 0, 0 6= (η,τ) ≥ 0. (13)

If η = 0 in (13), then we contradict the nonemptiness of the knowledge set{x | Bx≤ d}. Because,
for x∈ {x | Bx≤ d} and(u,τ) that solve (13) withη = 0, we obtain the contradiction

0≥ u′(Bx−d) = x′B′u−d′u = −d′u = τ > 0. (14)

Henceη > 0 in (13). Dividing (13) byη and redefining(u,α,τ) as( u
η , α

η , τ
η) we obtain (11).�

Adding the constraints (11) to the linear programming formulation (7) with a linearkernel
K(A,A′) = AA′, we obtain our desired linear program that incorporates the prior knowledge im-
plication (10) into our approximation problem:

min
(α,b,s,a,u≥0)

e′a+Ce′s

s.t. −s ≤ AA′α+be−y ≤ s,
−a ≤ α ≤ a,

A′α+B′u = h,
−d′u ≥ β−b.

(15)

Note that in this linear programming formulation with a linear kernel approximation,both the
approximationw′x+ b = α′Ax+ b to the unknown functionf as well as the prior knowledge are
linear in the input dataA of the problem. This is somewhat restrictive, and therefore we turn now to
our principal concern in this work, which is the incorporation of prior knowledge into anonlinear
kernel approximation.

3. Knowledge-Based Nonlinear Kernel Approximation

In this part of the paper we will incorporate prior knowledge by using a nonlinear kernel inboth
the linear programming formulation (7) as well as in the prior knowledge implication(10). We
begin with the latter, the linear prior knowledge implication (10). If we again considerx as a linear
combination of the rows ofA, that is

x = A′t, (16)

then the implication (10) becomes

BA′t ≤ d =⇒ α′AA′t +b≥ h′A′t +β, (17)
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for a given fixed(α,b). The assumption (16) is not restrictive for the many problems where a
sufficiently large number of training data points are available so that any vector in input space can
be represented as a linear combination of the training data points.

If we now ”kernelize” the various matrix products in the above implication, we have the impli-
cation

K(B,A′)t ≤ d =⇒ α′K(A,A′)t +b≥ h′A′t +β. (18)

We note that the two kernels appearing in (18) need not be the same and neither needs to satisfy
Mercer’s positive semidefiniteness condition. In particular, the first kernel of (18) could be a linear
kernel which renders the left side of the implication of (18) the same as that of (17). We note
that for a nonlinear kernel, implication (18) is nonlinear in the input space data, but is linear in
the implication variablet. We have thus mapped the polyhedral implication (9) into a nonlinear
one (18) in the input space data. Assuming for simplicity that the kernelK is symmetric, that is
K(B,A′)′ = K(A,B′), it follows directly by Proposition 2.1 that the following equivalence relation
holds for implication (18).

Proposition 3.1 Nonlinear Kernel Prior Knowledge Equivalence. Let the set
{t | K(B,A′)t ≤ d} be nonempty. Then for a given(α,b,h,β), the implication (18) is equivalent to
the following system of linear inequalities having a solution u∈ Rk:

K(A,B′)u+K(A,A′)α−Ah= 0, −d′u+b−β ≥ 0,u≥ 0. (19)

We now append the constraints (19), which are equivalent to the nonlinear kernel implication (18), to
the linear programming formulation (7). This gives the following linear program for approximating
a given function with prior knowledge using a nonlinear kernel:

min
(α,b,s,a,u≥0)

e′a+Ce′s

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a,

K(A,B′)u+K(A,A′)α = Ah,
−d′u ≥ β−b.

(20)

Since we are not certain that the prior knowledge implication (18) is satisfiable, and since we wish
to balance the influence of prior knowledge with that of fitting conventional data points, we need to
introduce error variablesz andζ associated with the last two constraints of the linear program (20).
These error variables are then driven down by a modified objective function as follows:

min
(α,b,s,a,z,(u,ζ)≥0)

e′a+Ce′s+µ1e′z+µ2ζ

s.t. −s ≤ K(A,A′)α+be−y ≤ s,
−a ≤ α ≤ a,
−z ≤ K(A,B′)u+K(A,A′)α−Ah ≤ z,

−d′u+ζ ≥ β−b,

(21)

where(µ1,µ2) are some positive parameters. This is our final linear program for a singleprior
knowledge implication. If we have more than one such implication, then the last twosets of con-
straints are repeated for each implication. For the sake of simplicity we omit thesedetails. The
values of the parametersC, µ1, andµ2 are chosen so as to balance fitting conventional numerical
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data versus the given prior knowledge. One way to choose these parameters is to set aside a “tuning
set” of data points and then choose the parameters so as to give a best fit of the tuning set. We also
note that all three kernels appearing in (21) could possibly be distinct kernels from each other and
none needs to be positive semidefinite. In fact, the kernelK(A,B′) could be the linear kernelAB′

which was was actually tried in some of our numerical experiments without a noticeable change
from using a Gaussian kernel.

We now turn to our numerical experiments.

4. Numerical Experiments

The focus of this paper is mainly theoretical. However, in order to illustrate thepower of the
proposed formulation, we tested our algorithm on three synthetic examples and one real world
example with and without prior knowledge. Two of the synthetic examples are based on the “sinc”
function which has been extensively used for kernel approximation testing (Vapnik et al., 1997,
Baudat and Anouar, 2001), while the third synthetic example is a two-dimensional hyperboloid.
All our results indicate significant improvement due to prior knowledge. Theparameters for the
synthetic examples were selected using a combination of exhaustive searchand a simple variation
on the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) that uses only reflection, with
average error as the criterion. The chosen parameter values are given in the captions of relevant
figures.

4.1 One-Dimensional Sinc Function

We consider the one-dimensional sinc function

f (x) = sinc(x) =
sinπx

πx
. (22)

Given data for the sinc function includes approximate function values for 52 points on the intervals
−3≤ x≤ −1.4303 and 1.4303≤ x≤ 3. The endpoints±1.4303 are approximate local minima of
the sinc function. The given approximate function values forsinc(x) are normally perturbed around
the true values, with mean 0 and standard deviation 0.5. In addition, there arealso three given values
atx = 0. One of these values is 1, which is the
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Figure 1: The one-dimensional sinc functionsinc(x) = sinπx
πx (dashed curve) and its Gaussian kernel

approximationwithoutprior knowledge based on the 55 points shown by diamonds. The
nine solid diamonds depict the “support” points used by the nonlinear Gaussian kernel
in generating the approximation ofsinc(x). That is, they are the rowsAi of A for which
αi 6= 0 in the solution of the nonlinear Gaussian kernel approximation of (7) forf (x):
f (x) ≈ K(x′,A′)α +b. The approximation has an average error of 0.3113 over a grid of
100 points in the interval[−3,3]. Parameter values used:µ= 7,C = 5.
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Figure 2: The one-dimensional sinc functionsinc(x) = sinπx
πx (dashed curve) and its Gaussian ker-

nel approximationwith prior knowledge based on 55 points, shown by diamonds, which
are the same as those of Figure 1. The seven solid diamonds depict the “support” points
used by the nonlinear Gaussian kernel in generating the approximation ofsinc(x). The
prior knowledge consists of the implication−1

4 ≤ x ≤ 1
4 ⇒ f (x) ≥ sin(π/4)

π/4 , which is
implemented by replacingf (x) by its nonlinear kernel approximation (23). The ap-
proximation has an average error of 0.0901 over a grid of 100 points in the interval
[−3,3], which is less than 1

3.4 times the error of Figure 1. Parameter values used:
µ= 1,C = 13,µ1 = 5,µ2 = 450.
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Figure 3: The exact product sinc functionf (x1,x2) = sinπx1
πx1

sinπx2
πx2
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Figure 4: Gaussian kernel approximation of the product sinc functionf (x1,x2) = sinπx1
πx1

sinπx2
πx2

based
on 211 exact function values plus 2 incorrect function values, butwithout prior knowl-
edge. The approximation has an average error of 0.0501 over a grid of 2500 points in the
set{[−3,3]× [−3,3]}. Parameter values used:µ= 0.2,C = 106.
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Figure 5: Gaussian kernel approximation of the product sinc function based on the same 213
function values as Figure 4plusprior knowledge consisting of(x1,x2) ∈ {[−0.1,0.1]×

[−0.1,0.1]}} ⇒ f (x1,x2) ≥ (sin(π/10)
π/10 )2. The approximation has an average error of

0.0045 over a grid of 2500 points in the set{[−3,3]× [−3,3]}, which is less than 1
11.1

times the error of Figure 4. Parameters areµ= 1,C = 16000,µ1 = 15000,µ2 = 5·106.
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actual limit of the sinc function at 0. The other values atx = 0 are 0 and−1 which are intended to
be misleading to the approximation.

Figure 1 depictssinc(x) by a dashed curve and its approximationwithout prior knowledge by
a solid curve based on the 55 points shown by diamonds. The nine solid diamonds depict “sup-
port” points, that is rowsAi of A for which αi 6= 0 in the solution of the nonlinear Gaussian kernel
approximation of (7) forf (x):

f (x) ≈ K(x′,A′)α+b. (23)

The approximation in Figure 1 has an average error of 0.3113. This error is computed by averaging
over a grid of 100 equally spaced points in the interval[−3,3].

Figure 2 depictssinc(x) by a dashed curve and its much better approximationwith prior knowl-
edge by a solid curve based on the 55 points shown, which are the same as those of Figure 1.
The seven solid diamond points are “support” points, that is rowsAi of A for which αi 6= 0 in
the solution of the nonlinear Gaussian kernel approximation (23) of (21) for f (x). The approx-
imation in Figure 2 has an average error of 0.0901 computed over a grid of 100 equally spaced
points on[−3,3]. The prior knowledge used to approximate the one-dimensional sinc function is
−1

4 ≤ x ≤ 1
4 ⇒ f (x) ≥ sin(π/4)

π/4 . The valuesin(π/4)
π/4 is the minimum ofsinc(x) on the knowledge

interval [−1
4, 1

4]. This prior knowledge is implemented by replacingf (x) by its nonlinear kernel
approximation (23) and then using the implication (18) as follows:

K(I ,A′)t ≤
1
4
∧ K(−I ,A′)t ≤

1
4

=⇒ α′K(A,A′)t +b≥
sin(π/4)

π/4
. (24)

4.2 Two-Dimensional Sinc Function

Our second example is the two-dimensionalsinc(x) function forx∈ R2:

f (x1,x2) = sinc(x1)sinc(x2) =
sinπx1

πx1

sinπx2

πx2
. (25)

The given data for the two-dimensional sinc function includes 210 points in the region{(x1,x2)|(−3≤
x1 ≤−1.4303∨1.4303≤ x1 ≤ 3)∧ (−3≤ x2 ≤−1∨1≤ x2 ≤ 3)}. This region excludes the largest
bump in the function centered at(x1,x2) = (0,0). The given values are exact function values. There
are also three values given at(x1,x2) = (0,0), similar to the previous example with the one dimen-
sional sinc. The first value is the actual limit of the function at(0,0), which is 1. The other two
values are 0 and−1. These last two values are intended to mislead the approximation.

Figure 3 depicts the two-dimensional sinc function of (25). Figure 4 depictsan approximation
of sinc(x1)sinc(x2) withoutprior knowledge by a surface based on the 213 points described above.
The approximation in Figure 4 has an average error of 0.0501. This value is computed by averaging
over a grid of 2500 equally spaced points in{[−3,3]× [−3,3]}.

Figure 5 depicts a much better approximation ofsinc(x1)sinc(x2) with prior knowledge by a
surface based on the same 213 points. The approximation in Figure 5 has anaverage error of
0.0045. This value is computed by averaging over 2500 equally spaced points in
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Figure 6: The exact hyperboloid functionf (x1,x2) = x1x2.
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Figure 7: Gaussian kernel approximation of the hyperboloid functionf (x1,x2) = x1x2 based on 11
exact function values along the linex2 = x1,x1 ∈ {−5,−4, . . . ,4,5}, but without prior
knowledge. The approximation has an average error of 4.8351 over 2500 points in the set
{[−5,5]× [−5,5]}. Parameter values used:µ= 0.361,C = 145110.

−5
0

5

−5
0

5
−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 8: Gaussian kernel approximation of the hyperboloid functionf (x1,x2) = x1x2 based on the
same 11 function values as of Figure 7plusprior knowledge consisting of the implications
(27) and (28). The approximation has an average error of 0.2023 over 2500 points in the
set{[−5,5]× [−5,5]}, which is less than 1

23.9 times the error of Figure 7. Parameter
values used:µ= 0.0052,C = 5356,µ1 = 685,µ2 = 670613.
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{[−3,3]× [−3,3]}. The prior knowledge consists of the implication

(x1,x2) ∈ {[−0.1,0.1]× [−0.1,0.1]}⇒ f (x1,x2) ≥ (
sin(π/10)

π/10
)2.

The value(sin(π/10)
π/10 )2 is equal to the minimum value ofsinc(x1)sinc(x2) on the knowledge set

{[−0.1,0.1]× [−0.1,0.1]}. This prior knowledge is implemented by replacingf (x1,x2) by its non-
linear kernel approximation (23) and then using the implication (18).

4.3 Two-Dimensional Hyperboloid Function

Our third example is the two-dimensional hyperboloid function

f (x1,x2) = x1x2. (26)

For the two-dimensional hyperboloid function, the given data consists of 11 points along the
line x2 = x1,x1 ∈ {−5,−4, . . . ,4,5}. The given values at these points are the actual function values.

Figure 6 depicts the two-dimensional hyperboloid function of (26). Figure7 depicts an approx-
imation of the hyperboloid function,withoutprior knowledge, by a surface based on the 11 points
described above. The approximation in Figure 7 has an average error of 4.8351 computed over a
grid of 2500 equally spaced points in{[−5,5]× [−5,5]}.

Figure 8 depicts a much better approximation of the hyperboloid function by a nonlinear surface
based on the same 11 points aboveplus prior knowledge. The approximation in Figure 8 has an
average error of 0.2023 computed over a grid of 2500 equally spaced points in{[−5,5]× [−5,5]}.
The prior knowledge consists of the following two implications:

(x1,x2) ∈ {(x1,x2)|−
1
3

x1 ≤ x2 ≤−
2
3

x1}⇒ f (x1,x2) ≤ 10x1 (27)

and

(x1,x2) ∈ {(x1,x2)|−
2
3

x1 ≤ x2 ≤−
1
3

x1}⇒ f (x1,x2) ≤ 10x2. (28)

These implications are implemented by replacingf (x1,x2) by its nonlinear kernel approximation
(23) and then using the implication (18). The regions on which the knowledgeis given are cones
on whichx1x2 is negative. Since the two implications are analogous, we explain (27) only. This
implication is justified on the basis thatx1x2 ≤ 10x1 over the knowledge cone{(x1,x2)|−

1
3x1 ≤ x2 ≤

−2
3x1} for sufficiently largex2, that isx2 ≥ 10. This is intended to capture coarsely the global shape

of f (x1,x2) and succeeds in generating a more accurate overall approximation of the function.

4.4 Predicting Lymph Node Metastasis

We conclude our numerical results with a potentially useful application of knowledge-based ap-
proximation to breast cancer prognosis (Mangasarian et al., 1995, Wolberg et al., 1995, Lee et al.,
2001). An important prognostic indicator for breast cancer recurrence is the number of metastasized
lymph nodes under a patient’s armpit, which could be as many as 30. To determine this number, a
patient must undergo optional surgery in addition to the removal of the breast tumor. If the predicted
number of metastasized lymph nodes is sufficiently small, then the oncological surgeon may decide
not to perform the additional surgery. Thus, it is useful to approximate the number of metastasized
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lymph nodes as a function of thirty available cytological features and one histological feature. The
cytological features are obtained from a fine needle aspirate during the diagnostic procedure while
the histological feature is obtained during surgery. Our proposed knowledge-based approximation
can be used to improve the determination of such a function,f : R31 −→ R, that predicts the num-
ber of metastasized lymph nodes. For example, in certain polyhedral regions of R31, past training
data indicate the existence of a substantial number of metastasized lymph nodes, whereas certain
other regions indicate the unlikely presence of any metastasis. This knowledge can be applied to
obtain a hopefully more accurate lymph node functionf than that based on numerical function
approximation alone.

We have performed preliminary experiments with the Wisconsin Prognostic Breast Cancer
(WPBC) data available from (Murphy and Aha, 1992). In our experiments we reducedR31 to R4

and predicted the number of metastasized lymph nodes based on three cytological features: mean
cell texture, worst cell smoothness, and worst cell area, as well as thehistological feature tumor
size. The tumor size is an obvious histological feature to include, while the three other cytological
features were the same as those selected for breast cancer diagnosis in(Mangasarian, 2001). Thus,
we are approximating a functionf : R4 −→ R. Note that the online version of the WPBC data con-
tains four entries with no lymph node information which were removed for our experiments. After
removing these entries, we were left with 194 examples in our dataset.

To simulate the procedure of an expert obtaining prior knowledge from past data we used the
following procedure. First we took a random 20% of the dataset to analyze as “past data”. Inspecting
this past data, we choose the following background knowledge:

x1 ≥ 22.4 ∧ x2 ≥ 0.1 ∧ x3 ≥ 1458.9 ∧ x4 ≥ 3.1 =⇒ f (x1,x2,x3,x4) ≥ 1, (29)

wherex1,x2,x3, andx4 denote mean texture, worst smoothness, worst area, and tumor size respec-
tively. This prior knowledge is based on a typical oncological surgeon’s advice that larger values
of the variables are likely to result in more metastasized lymph nodes. The constants in (29) were
chosen by taking the average values ofx1, . . . ,x4 for the entries in the past data with at least one
metastasized lymph node.

We used ten-fold cross validation to compare the average absolute error between an approxima-
tion without prior knowledge and an approximation with the prior knowledge ofEquation (29) on
the 80% of the data that was not used as “past data” to generate the constants in (29). Parameters
in (21) using a Gaussian kernel were chosen using the Nelder-Mead algorithm on a tuning set taken
from the training data for each fold. The average absolute error of the function approximation with
no prior knowledge was 3.75 while the average absolute error with prior knowledge was 3.35, a
10.5% reduction. The mean function value of the data used in the ten-fold crossvalidation exper-
iments is 3.30, so neither approximation is accurate. However, these results indicate that adding
prior knowledge does indeed improve the function approximation substantially. Hopefully more
sophisticated prior knowledge, based on a more detailed analysis of the dataand consultation with
domain experts, will further reduce the error.

We close this section with a potential application to a reinforcement learning task(Sutton and
Barto, 1998), where the goal is to predict the value of taking an action at agiven state. Thus, the
domain of the function to be approximated is the Cartesian product of the set of states and the set of
actions. In particular, we plan to use theKeep-Awaysubtask of the soccer game developed in (Stone
and Sutton, 2001). The state description includes measurements such as distance to each of the
opposing players, distance to the soccer ball, distances to the edges of thefield, etc. Actions include
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holding the ball and attempting a pass to a teammate. It has been demonstrated thatproviding
prior knowledge can improve the choice of actions significantly (Kuhlmann etal., 2004, Maclin and
Shavlik, 1996). One example of advice (that is, prior knowledge) that has been successfully used in
this domain is the simple advice that “if no opponent is within 8 meters, holding the ball is a good
idea.” In our approach we approximate a value functionv as a function of states and actions. Advice
can be stated as the following implication, assuming two opponents:

d1 ≥ 8 ∧ d2 ≥ 8 ∧ a = h =⇒ v≥ c, (30)

whered1 denotes the distance to Opponent 1,d2 the distance to Opponent 2,a = h the action of
holding the ball,v the predicted value, andc is some constant. It is hoped that this “advice” can
help in generating an improved value functionv based on the current description of the state of the
soccer game.

5. Conclusion and Outlook

We have presented a knowledge-based formulation of a nonlinear kernel SVM approximation. The
approximation is obtained using a linear programming formulation with any nonlinear symmetric
kernel and with no positive semidefiniteness (Mercer) condition assumed.The issues associated
with sampling the knowledge sets in order to generate function values (that is,a matrix A and
a corresponding vectory) in situations where there are no conventional data points constitute an
interesting topic for future research. Additional future work includes refinement of prior knowledge
and applications to medical problems, computer vision, microarray gene classification, and efficacy
of drug treatment, all of which have prior knowledge available.
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B. Scḧolkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support vector kernels. In
M. Jordan, M. Kearns, and S. Solla, editors,Advances in Neural Information Processing Systems
10, pages 640 – 646, Cambridge, MA, 1998. MIT Press.
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