
Abstract
Reinforcement learning (RL) methods have diffi-
culty scaling to large, complex problems. One ap-
proach that has proven effective for scaling RL is
to make use of advice provided by a human. We
extend a recent advice-giving technique, called
Knowledge-Based Kernel Regression (KBKR), to
RL and evaluate our approach on the KeepAway
subtask of the RoboCup soccer simulator. We pre-
sent empirical results that show our approach can
make effective use of advice. Our work not only
demonstrates the potential of advice-giving tech-
niques such as KBKR for RL, but also offers in-
sight into some of the design decisions involved in
employing support-vector regression in RL.

1 Introduction
Reinforcement learning (RL) techniques such as Q-learning
and SARSA [Sutton and Barto, 1998] are effective learning
techniques, but often have difficulty scaling to challenging,
large-scale problems. One method for addressing the com-
plexity of such problems is to incorporate advice provided
by a human teacher. The approach of using advice has
proven effective in a number of domains [Lin, 1992;
Gordon and Subramanian, 1994; Maclin and Shavlik, 1994;
Andre and Russell, 2001; Kuhlmann et al., 2004].

Recently, Mangasarian et al., [2004] introduced a method
called Knowledge-Based Kernel Regression (KBKR) that
allows a kernel method to incorporate advice given in the
form of simple IF-THEN rules into a support vector method
for learning regression (i.e., real-valued) problems. Their
technique proved effective on the simple regression prob-
lems on which they tested it. In this article we extend the
general KBKR approach to RL and test it on a complex
game from the RoboCup soccer simulator [Noda et al.,
1998] – KeepAway [Stone and Sutton, 2001].

In applying the KBKR approach to KeepAway we found
that we had to make a number of adjustments and exten-
sions, both to the KBKR method and to our representation
of the problem. These adjustments and extensions proved
critical to effectively learning in the KeepAway task.

In the next section of the paper we present the basic
KBKR method. In Section 3 we present the RoboCup simu-

lator and KeepAway in particular, and discuss some of the
difficulties for this game. In Section 4 we discuss how a
support-vector regressor can be used in Q-learning and then
present our reformulation of the KBKR method and some of
the issues we had to address in order to get good results.
Following that we present results of experiments using our
new approach on KeepAway. The final sections discuss
related research, future directions, and conclusions.

2 Knowledge-Based Support Vector Regression
In this section we present the basics of Knowledge-Based
Kernel Regression [Mangasarian et al., 2004].

2.1 Support Vector Regression
A linear regression problem involves trying to find a set of
weights (w) and a offset (b) to learn a function of the form
f(x) = wTx + be, where T indicates the transpose of a vector,
x is a vector of numeric features describing a particular in-
stance (e.g., values describing the soccer field as seen from
the player’s point of view), f(x) is the value that instance is
labeled with (e.g., the Q value of taking action HoldBall),
and e denotes a vector of ones. From now on, for clarity we
will omit e, with the understanding that b is a scalar.

For a particular set of observed input vectors (a set of
states observed during learning) and a corresponding set of
f(x) values (the current Q estimates for each of those states),
we find a solution to the equation:

Aw + b = y
where A is the set of states, one row for each input vector,
one column for each feature, and y is the set of expected f(x)
values, one for each input vector. Since an exact solution is
often infeasible, this equation is generalized to:

Aw + b ≈ y (1)
Solutions to this problem are ranked by how well they meet
some performance criterion (such as minimum error with
respect to the y values).

In a kernel approach, the weight vector w is replaced with
its dual form ATα, which converts Eq. 1 to:

AATα + b ≈ y
This formulation is then generalized by replacing the AAT
term with a kernel, K(A,AT), to produce:

K(A,AT)α + b ≈ y (2)
However, in this article we simply use Eq. 1 above, since

linear models are more understandable and scale better to

Knowledge-Based Support-Vector Regression for Reinforcement Learning

Richard Maclin†, Jude Shavlik‡, Trevor Walker‡, Lisa Torrey‡
University of Minnesota – Duluth† University of Wisconsin – Madison‡

Computer Science Department Computer Sciences Department
1114 Kirby Dr, Duluth, MN 55812 1210 W Dayton St, Madison, WI 53706

 rmaclin@d.umn.edu {shavlik,torrey,twalker}@cs.wisc.edu

Appears in the Proceedings of the IJCAI'05 Workshop on
Reasoning, Representation, and Learning in Computer Games, Edinburgh, Scotland.

large numbers of training examples. We use tile coding (an
example is shown below) to produce the non-linearity in our
models. The reader should note that using Eq. 1 is not iden-
tical to simply using a linear kernel (K) in Eq. 2.

To use a linear programming (LP) method to learn a
model we simply have to indicate the expression to be
minimized when producing a solution. One common for-
mulation for linear regression models is the following,
which we call LP1 so we can refer to it again later:

In this formulation we use slack variables s to allow the
solution to be inaccurate on some training examples, and we
penalize these inaccuracies in the objective function that is
to be minimized. We then minimize a weighted sum of the
s slack terms and the absolute value of weights and the b
term (the one-norm, ||·||1, computes the sum of absolute val-
ues). This penalty on weights (and b) penalizes the solution
for being more complex. C is a parameter for trading off
how inaccurate the solution is (the s terms) with how com-
plex the solution is (the weights and b). The resulting
minimization problem is then presented to a linear program
solver, which produces an optimal set of w and b values.

2.2 Knowledge-Based Kernel Regression
In KBKR, a piece of advice or domain knowledge is repre-
sented in the notation:

Bx ≤ d ⇒ f(x) ≥ hTx + β (3)
This can be read as:

If certain conditions hold (Bx ≤ d), the output, f(x),
should equal or exceed some linear combination of
the inputs (hTx) plus a threshold term (β).

The term Bx ≤ d allows the user to specify the region of
input space where the advice applies. Each row of matrix B
and its corresponding d values represents a constraint in the
advice. For example, a user might give the rule:

IF (distanceA + 2 distanceB) ≤ 10
THEN f(x) ≥ 0.5 distanceA + 0.25 distanceB + 5

For this IF-THEN rule, matrix B would have a single row with
a 1 in the column for feature distanceA and a 2 in the col-
umn for distanceB (the entry for all other features would be
0), and the d vector would be a scalar with the value 10.

In general, the rows of B and the corresponding d values
specify a set of linear constraints that are treated as a con-
junction and define the polyhedral region of the input space
to which the right-hand side of the advice applies. The vec-
tor h and the scalar β then define a linear combination of
input features that the predicted value f(x) should match or
exceed. For the above rule, the user advises that when the
left-hand side condition holds, the value of f(x) should be
greater than ½ distanceA plus ¼ distanceB plus 5. This
would be captured by creating an h vector with coefficients
of 0.5 and 0.25 for the features distanceA and distanceB (0
otherwise), and setting β to 5.

In this advice format, a user in a reinforcement-learning
task can define a set of states in which the Q value for a
specific action should be high (or low). We later discuss
how we numerically represent “high Q.”

Mangasarian et al. prove that the advice implication in
Eq. 3 is equivalent to the following set of equations having a
solution (we have converted to non-kernel form):

BTu + w – h = 0, -dTu + b - β ≥ 0, u ≥ 0 (4)
“Softening” the first two of these leads to the following op-
timization problem in the case of linear models (LP2):

The z and ζ are slack terms associated with the advice;
they allow Eq. 4 to be only approximately satisfied. The μ1
and μ2 parameters specify how much to penalize these
slacks. In other words, these slacks allow the advice to be
only partially followed by the learner.

Mangasarian et al., [2004] tested their method on some
simple regression problems and demonstrated that the re-
sulting solution would incorporate the knowledge. How-
ever, the testing was done on small feature spaces and the
tested advice placed constraints on all of the input features.
In this article we apply this methodology to a more complex
learning problem based on RL and the RoboCup simulator.

3 RoboCup Soccer: The Game KeepAway
We experimented on the game KeepAway in simulated Ro-
boCup soccer [Stone and Sutton, 2001]. In this game, the
goal of the N “keepers” is to keep the ball away from N-1
“takers” as long as possible, receiving a reward of 1 for each
time step they hold the ball (the keepers learn, while the
takers follow a hand-coded policy). Figure 1 gives an ex-
ample of KeepAway involving three keepers and two takers.

To simplify the learning task, Stone and Sutton chose to
have learning occur only by the keeper who currently holds
the ball. When no player has the ball, the nearest keeper
pursues the ball and the others perform hand-coded moves
to “get open” (be available for a pass). If a keeper is hold-
ing the ball, the other keepers perform the “get open” move.

The learnable action choice then is whether to hold the
ball or to pass it to another keeper. Note that passing re-
quires multiple actions in the simulation (orienting the body,
then performing multiple steps of kicking), but these low-
level actions are managed by the simulator and are not ad-
dressed in Stone and Sutton’s, nor our, experiments.

The policy of the takers is simple; if there are only two
takers they pursue the ball. When there are more than two
takers, two pursue the ball and the others “cover” a keeper.

For our work we employ the feature representation used
by Stone and Sutton. They measure 13 values that define
the state of the world from the perspective of the keeper that
currently has the ball. These 13 features record geometric
properties such as the pair-wise distances between players
and the angles formed by sets of three players.

The task is made more complex because the simulator in-
corporates noise into the information describing the state.
In addition, the actions of the agents contain noise. For ex-
ample, there is a chance the keeper passing the ball to an-
other keeper will misdirect the ball, possibly sending it out

sybAwsts

sCbw
s

≤−+≤−

++
≥

 ..

||||||||||||min 1110 - b ud
zhwuBz

sybAwsts

zsCbw

T

T

zus

βζ

ζμμ
ζ

≥+−

≤−+≤−

≤−+≤−

++++
≥≥≥≥

 ..

||||||||||||||||min 2111110,0,0,0

of bounds or towards one of the takers. The overall score of
a keeper team is measured in terms of how long they are
able to hold onto the ball.

Stone and Sutton [2001] demonstrated that this task can
be learned with RL. They employed SARSA learning with
replacing eligibility traces, and used CMAC’s as their func-
tion approximator. They used a tile encoding of the state
space, where each feature is discretized several times into a
set of overlapping bins. For example, one could divide a
feature that ranges from 0 to 5 into four overlapping bins of
width 2: one bin covering values [0,2], one [1,3], one [2,4]
and one [3,5]. This representation proved very effective in
their experiments and we use it also.

4 Using KBKR for KeepAway
In order to use regression for RL we must formulate the
problem as a regression problem. We represent the real-
valued Q function as a set of learned models, one for each
action. The input to each model is the state and each model
makes a prediction of the Q value for the action. We use
one-step SARSA to estimate the Q value.

Since incremental training algorithms are not well devel-
oped for support vector machines, we employ batch train-
ing. We save the series of states, actions, and reinforce-
ments experienced over each set of 100 games, we then stop
to train our models, and then use the resulting models in the
next chunk of 100 games. When we create training exam-
ples from old data, we use the current model to compute the
Q values for the next state in one-step SARSA learning since
these estimates are likely to be more accurate than those
obtained when these old states were actually encountered.

This batch approach is effective but leads to a potential
problem. As the game continues data accumulates, and
eventually the sets of constraints in LP1 and LP2 become
intractably large for even commercial LP solvers. In addi-
tion, because the learner controls its experiences, older data
is less valuable than newer data.

Hence, we need a mechanism to choose which training
examples to use. We do this by taking a stochastic sample
of the data. We set a limit on the number of training exam-
ples (we currently set this limit to 1500 and have not ex-
perimented with this value). If we have no more examples
than this limit, we use them all. When we need to discard
some examples, we keep a (uniformly) randomly selected

750 (i.e., half our limit) and discard others according to their
age. The probability we select an as yet unselected example
is ρage (ρ raised to the power age) and we set ρ to a value in
[0,1] to produce a data set of our specified maximum size.

In our initial experiments on KeepAway we employed
kernel-based regression directly using the 13 numeric fea-
tures used by Stone and Sutton without tile encoding. In
these experiments, we found that both Gaussian and linear
kernels applied to just these 13 features performed only
slightly better than a random policy (the results stay right
around 5 seconds – compare to Figure 3’s results).

Using Stone and Sutton’s tile coding led to substantially
improved performance, and we use that technique for our
experiments. We provide to our learning algorithms both
the 13 “raw” numeric features as well as binary features that
result from (separately) tiling each of the 13 features. We
create 32 binary features per raw feature. We keep the nu-
meric features to allow our methods to explore a wide range
of possible features and also since the numeric features are
more easily expressed in advice.

One critical adjustment we found necessary to add to the
KBKR approach (LP2) was to append additional constraints
to the constraints defined by the B matrix and d vector of
Eq. 3. In our new approach we added for each feature not
mentioned in advice constraints of the form:

min(featurei) ≤ featurei ≤ max(featurei)
For example, if distanceC ranges from 0 to 20, we add the
constraint: 0 ≤ distanceC ≤ 20.

This addresses a severe limitation in the original KBKR
method. In the original KBKR approach the advice, when
unmodified with slack variables, implies that the right-hand
side must be true in all cases (no matter what the values of
the other features are). For example, if we advise “when
distanceA is less than 10 we want the output to be at least
100,” but do not place any restrictions on the other features’
values, the KBKR algorithm cannot include any other fea-
tures in its linear model, since such a feature could hypo-
thetically have a value anywhere from –∞ to +∞, and one of
these extremes would violate the THEN part of advice. By
specifying the legal ranges for all features (including the
Booleans that result from tiling), we limit the range of the
input space that KBKR has to consider to satisfy the advice.

For this reason, we also automatically generate con-
straints for any of the binary features constrained to be true
or false by advice about numeric feature. For example, as-
sume the advice says distanceA>10. We then add con-
straints that capture how this information impacts various
tiles. If we had two tiles, one checking if distanceA is in
[0,10], and a second checking if distanceA is in [10,20], we
would add constraints that the first tile must be false for this
advice and the second tile must be true.

If we tile a feature into several bins where more than one
tile might match the constraint – imagine that distanceA was
divided into tiles [0,5], [5,10], [10,15] and [15,20] – we
would add constraints indicating that each of the first two
must be false for the constraint (distanceA>10) and one of
the last two must be true. This last constraint equation (that
one of the last two tiles must be true) would be:

distanceA[10,15] + distanceA[15,20] = 1

Figure 1. A sample KeepAway game where there are
three keepers (light gray with black outlines), two takers
(black with gray outlines), and the ball (currently held by
the keeper in the upper right). A game continues until one
of the takers holds the ball for at least 5 time steps (0.5 sec)
or if the ball goes out of bounds (beyond the white lines).

where distanceA[X,Y] denotes the feature value (0 or 1) for
the tile of distanceA covering the range [X,Y].

In cases where a tile only partially lines up with a con-
straint included in advice – for example if distanceA was
covered by tiles [0,4], [4,8], [8,12], [12,16] and [16,20] and
the advice included distanceA>10, we would still add con-
straints to indicate that the first two tiles ([0,4] and [4,8])
must be false and then add a constraint that one of the other
three tiles must be true (as in the equation shown above).
These cases will often occur, since we cannot count on ad-
vice lining up with our tiling scheme. Since we conjoin the
constraints on the tiles with the original constraint on the
numeric feature, it is safe to include tiles that span beyond
the original advice’s constraint on the numeric feature.

We also needed to extend the mechanism for specifying
advice in KBKR in order to apply it to RL. In the original
KBKR work the output values are constrained by a linear
combination of constants produced by the user (see Eq. 3).
However, in RL advice is used to say when the Q for some
action should be high or low. So we need some mechanism
to convert these terms to numbers. We could simply define
high to be, say, ≥ 100 and low to be ≤ 50, but instead we
decided to let the training data itself specify these numbers.
More specifically, we allow the term averageQ to be used in
advice and this value is computed over the examples in the
training set. Having this term in our advice language makes
it easier to specify advice like “in these states, this action is
10 units better than in the typical state.”

As briefly mentioned earlier, our linear programs penalize
the b term in our models. In our initial experiments, how-
ever, we found the b term led to underfitting of the training
data. Recall that our training data for action A’s model is a
collection of states where A was applied. As training pro-
gresses, more and more of the training examples come from
states where executing action A is a good idea, (i.e., action A
has a high Q value in these states). If the b term is used in
the learned models to account for the high Q values, then
when this model is applied to a state where action A is a bad
choice, the predicted Q may still be high.

For instance, imagine a training set contains 1000 exam-
ples where the Q is approximately 100 and 10 examples
where the Q is 0. Then the constant model Q = 100 might
be the optimal fit to this training set, yet is unlikely to lead
to good performance when deployed in the environment.

One way to address this weakness is to include in the
training set more states where the Q for action A is low, and
we partly do this by keeping some early examples in our
training set. In addition we address this weakness by highly
penalizing non-zero b terms in our linear programs (for clar-
ity we did not explicitly show a scaling factor on the b term
earlier in our linear programs). The hypothesis behind this
penalization of b is that doing so will encourage the learner
to instead use weighted feature values to model the Q func-
tion, and since our objective function penalizes having too
many weights in models, the weights used to model the set
of high Q values will have captured something essential
about these states that have high Q’s, thereby generalizing
better to future states. Our improved empirical evidence
after strongly penalizing b supports our hypothesis. In gen-

eral, one needs to carefully consider how to choose training
examples when using a non-incremental learner in RL.

5 Experimental Results
We performed experiments on the KeepAway task using our
approach for incorporating advice into a learner via the
KBKR method. As an experimental control, we also con-
sider the same support-vector regressor but without advice.
In other words, LP2 described in Section 2 is our main algo-
rithm and LP1 is our experimental control, with both being
modified for RL as explained in Section 4. We measure our
results in terms of the length of time the keepers hold the
ball. Our results show that, on average, a learner employing
advice will outperform a learner not using advice.

5.1 Methodology
Our experiments were performed on 3 versus 2 KeepAway
(3 keepers and 2 takers). The takers employed a fixed pol-
icy as described in Section 3. The keepers were all learning
agents and pooled their experience to learn a single model
which is shared by all of the keepers.

The reinforcement signals the learners receive are 0.1 for
each step in the game and a 0 when the game ends (when
the takers control the ball or the ball goes out of bounds).
Our discount rate is set to 1, the same value used by Stone
and Sutton [2001]. For our action-selection process we used
a policy where we performed an exploitation action (i.e.,
chose the action with the highest value) 99% of the time and
randomly chose an action (exploration) the remaining time,
again following Stone and Sutton. We report the average
total reinforcement for the learners (the average time the
keepers held the ball) over the previous 1000 games.

We set the values of C, µ1, and µ2 in LP1 and LP2 to be
100/#examples, 10, and 100 respectively. By scaling C by
the number of examples, we are penalizing the average er-
ror on the training examples, rather than the total error over
a varying number of examples. Since the number of
weights is fixed in LP1 and LP2, we do not want the penalty
due to data mismatch to grow as the number of training ex-
amples increases. We tried a small number of settings for C
for our non-advice approach (i.e., our experimental control)
and found this value worked best. We use this same value

8 m

Hold Advice Pass Advice
Figure 2. The two pieces of advice involve a suggestion
when to hold the ball (if the nearest taker is at least 8m
away) , and when to pass the ball (if a taker is closing in,
the teammate is further away than the takers and there
is a large passing lane - the value of Θ is ≥ 45°).

Θ

for our KBKR approach. We simply chose the µ1 and µ2
values and have not experimented with different settings.

Each point in our results graphs is averaged over ten runs.
The results are reported as a function of the number of
games played, although since games are of different length,
the amount of experience differs. This result is somewhat
mitigated in that we provide at most 1500 state and action
pairs to our learners, as discussed above.

5.2 Advice We Used
We employed two pieces of advice. The advice is based on
advice used in Kuhlman et al., [2004]. The first rule sug-
gests the keeper with the ball should hold it when the near-
est taker is at least 8m away (see Fig. 2 left). When this ad-
vice applies, it suggests the Q for holding should exceed the
average for holding by 1 second for each meter the closest
taker is beyond 8 meters. The advice in our notation is:

 IF distanceNearestTaker ≥ 8
THEN Q(hold) ≥ averageQ + distanceNearestTaker - 8
The second piece of advice indicates when to pass the

ball (see Figure 2 right). This advice tests whether there is a
taker closing in, whether there is a teammate that is further
away than either of the takers and whether there is a passing
lane (a value of Θ that is at least 45 degrees) to that team-
mate. When this advice applies, it suggests that the Q for
passing to the nearest teammate exceeds the average by 0.1
seconds for each degree (up to 60 degrees, and by 6 seconds
for angles larger than 60 degrees).

5.3 Results and Discussion
Fig. 3 presents the results of our experiments. These results
show that a learner with advice obtains gains in performance
due to that advice and retains a sizable advantage in per-
formance over a large number of training examples. Figure
3 indicates that advice-taking RL based on KBKR can pro-
duce significant improvements for a reinforcement learner
(p < 0.01 for an unpaired t-test on the performance at 2500
games played). Although other research has demonstrated
the value of advice previously (see next section), we believe

that the advantages of using a support-vector based regres-
sion method make this a novel and promising approach.

Our results are not directly comparable to that in Stone
and Sutton [2001] because we implemented our own Ro-
boCup players, and their behavior, especially when they do
not have the ball, differs slightly. We also tile features dif-
ferently than they do. Stone and Sutton’s learning curves
start at about 6 seconds per game and end at about 12 after
about 6000 games (our results are initially similar but our
keepers games last longer – possibly due to somewhat dif-
ferent takers). We have not implemented Stone and Sut-
ton’s method, but our LP1 is a good proxy for what they do.
Our focus here is on the relative impact of advice, rather
than a better non-advice solution.

6 Related Work
A number of researchers have explored methods for pro-

viding advice to reinforcement learners. These include
methods such as replaying teaching sequences [Lin, 1992],
extracting information by watching a teacher play a game
[Price and Boutilier, 1999], and using advice to create rein-
forcement signals to “shape” the performance of the learner
[Laud and DeJong, 2002]. Though these methods have a
similar goal of shortening the learning time, they differ sig-
nificantly in the kind of advice provided by the human.

Work that is more closely related to the work we present
here includes various techniques that have been developed
to incorporate advice in the form of textual instructions (of-
ten as programming language constructs). Gordon and
Subramanian [1994] developed a method that used advice in
the form IF condition THEN achieve goals that adjusts the
advice using genetic algorithms. Our work is similar in the
form of advice, but we use a significantly different approach
(optimization by linear programming) to incorporate advice.

In our previous work [Maclin and Shavlik, 1994], we de-
veloped a language for providing advice that included sim-
ple IF-THEN rules and more complex rules involving multi-
ple steps. These rules were incorporated into a neural net-
work, which learned from future observations. In this ear-
lier work new hidden units are added to the neural network
that represent the advice. In this article, a piece of advice
represents constraints on an acceptable solution.

Andre and Russell [2001] developed a language for creat-
ing RL agents. Their language allows a user to specify par-
tial knowledge about a task using programming constructs
to create a solver, but also includes “choice” points where
the user specifies possible actions. The learner then ac-
quires a policy to choose from amongst the possibilities.
Our work differs from theirs in that we do not assume the
advice is correct.

In Kuhlmann et al., [2004], advice is in the form of rules
that specify in which states a given action is good (or bad).
When advice is matched, the predicted value of an action in
that state is increased by some fixed amount. Our work
differs from this work in that our advice provides constraints
on the Q values rather than simply adding to the Q value.
Thus our learner is better able to make use of the advice
when the advice is already well represented by the data. We

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Games Played

D
ur

at
io

n
(s

ec
)

With Advice (LP2)

Without Advice (LP1)

Figure 3. Results of standard support vector linear regres-
sion versus a learner that receives at the start of learning
the advice described in the text.

tested the Kuhlmann et al. method with our no-advice algo-
rithm (LP1), but found it did not improve performance.

A second area of related research is work done to employ
support vector regression methods in RL agents. Both Diet-
terich and Wang [2001] and Lagoudakis and Parr [2003]
have explored methods for using support vector methods to
perform RL. The main limitation of these approaches is that
these methods assume a model of the environment is avail-
able (or at least has been learned) and this model is used for
simulation and Q-value inference. Our approach is a more
traditional “model-free” approach and does not need to
know the state-transition function.

7 Conclusions and Future Directions
We presented and evaluated an approach for applying Man-
gasarian et al.'s [2004] Knowledge-Based Kernel Regres-
sion (KBKR) technique to RL tasks. In our work we have
investigated the strengths and weaknesses of KBKR and
have developed adjustments and extensions to that tech-
nique to allow it to be successfully applied to a complex RL
task. Our experiments demonstrate that the resulting tech-
nique for employing advice shows promise for reducing the
amount of experience necessary for learning in such com-
plex tasks, making it easier to scale RL to larger problems.
The key findings and contributions of this paper are:
1. We demonstrated on the challenging game KeepAway

that a variant of the KBKR approach (LP2) could be
successfully deployed in a reinforcement-learning set-
ting. We also demonstrated that “batch” support-vector
regression (LP1) can learn in a challenging reinforce-
ment-learning environment without needing to have a
model of the impact of actions on its environment.

2. We found that in order for the advice to be used effec-
tively by the KBKR algorithm, we had to specify the le-
gal ranges for all input features. Otherwise advice had
to be either absolutely followed or “discarded” (via the
slack variables of LP2) since, when the model includes
any input feature not mentioned in the advice, the THEN
part of advice (Eq. 3) can not be guaranteed to be met
whenever the current world state matches the IF part.
We also augment advice about numeric features by mak-
ing explicit those constraints on the associated binary
features that results from tiling the numeric features.

3. We found that it was critical that our optimization not
only penalize the size of the weights in the solution, but
that a sizable penalty term should also be used for the
“b” term (of the “y = wx + b” solution) so that the
learner does not simply predict the mean Q value.

4. Because little work has been done on incremental sup-
port vector machines, we chose to learn our Q models in
a batch fashion. For a complex problem, this large set of
states quickly results in more constraints than can be ef-
ficiently solved by a linear-programming system, so we
had to develop a method for selecting a subset of the
available information with which to train our models.

5. We found that without tile coding, we were unable to
learn in KeepAway. One advantage of using tile coding
is that we did not need to use non-linear kernels; the
non-linearity of tile coding sufficed.

6. Finally, we looked at simple ways to extend the mecha-
nism used for specifying advice in KBKR. We found it
especially helpful to be able to refer to certain “dy-
namic” properties in the advice, such as the average Q
value, as a method of giving advice in a natural manner.

Our future research directions include the testing of our re-
formulated version of KBKR on additional complex tasks,
the addition of more complex features for the advice lan-
guage (such as multi-step plans) and the use of additional
constraints on the optimization problem (such as directly
including the Bellman constraints in the optimization for-
mulation and the ability to give advice of the form “in these
world states, action A is better than action B”). We believe
that the combination of support-vector techniques and ad-
vice taking is a promising approach for RL problems.

Acknowledgements
This research was supported by DARPA IPTO grant HR0011-
04-1-0007 and US Naval Research grant N00173-04-1-G026.

References
[Andre and Russell, 2001] D. Andre and S. Russell, Programma-
ble reinforcement learning agents, NIPS ‘02.

 [Dietterich and Wang, 2001] T. Dietterich and X. Wang, Support
vectors for reinforcement learning, ECML ‘01.

[Gordon and Subramanian, 1994] D. Gordon and D. Subramanian,
A multistrategy learning scheme for agent knowledge acquisition,
Informatica 17: 331-346.

[Kuhlmann et al., 2004] G. Kuhlmann, P. Stone, R. Mooney and J.
Shavlik, Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer, AAAI ‘04 Workshop on
Supervisory Control of Learning and Adaptive Systems..

[Lagoudakis and Parr, 2003] M. Lagoudakis and R. Parr, Rein-
forcement learning as classification: Leveraging modern classifi-
ers, ICML ‘03.

[Laud and DeJong, 2002] A. Laud and G. DeJong, Reinforcement
learning and shaping: Encouraging intended behaviors, ICML ‘02.

[Lin, 1992] L-J. Lin, Self-improving reactive agents based on rein-
forcement learning, planning, and teaching, Machine Learning,
8:293-321.

[Maclin and Shavlik, 1994] R. Maclin and J. Shavlik, Incorporat-
ing advice into agents that learn from reinforcements, AAAI ‘94.

[Mangasarian et al., 2004] O. Mangasarian, J. Shavlik and E.
Wild, Knowledge-based kernel approximation. Journal of Ma-
chine Learning Research, 5, pp. 1127-1141.

[Noda et al., 1998] I. Noda, H. Matsubara, K. Hiraki and I. Frank,
Soccer server: A tool for research on multiagent systems, Applied
Artificial Intelligence 12:233-250.

[Price and Boutilier, 1999] B. Price and C. Boutilier, Implicit imi-
tation in multiagent reinforcement learning, ICML ‘99.

[Stone and Sutton, 2001] P. Stone and R. Sutton, Scaling rein-
forcement learning toward RoboCup Soccer, ICML ‘01.

[Sutton and Barto, 1998] R. Sutton and A. Barto, Reinforcement
Learning: An Introduction. MIT Press.

