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ABSTRACT

World Health Organization estimates of health care expenditure reveal a
global trend of increasing costs, and health care systems need to become
more efficient at treating patients to slow this trend. Incentives are in
place to develop information-based health care systems, and I claim that
using machine learning tools in medicine will lead to improvements in pa-
tient care. My work demonstrates new methods to improve collaboration
between machine learning experts and clinicians, and new methods for
modeling individual responses to treatment.

My work in collaboration with clinical experts involves the adaptation
of machine learning models to address the challenging task of identifying
benign breast cancer biopsies that cannot be definitively diagnosed. I first
adapt an inductive logic programming learner to prefer rules that do not
misclassify malignant cases, and show promising results that both adhere
to the clinical objective and provide insight into the task. I later present a
framework for collaboration between clinical and machine learning experts,
leveraging clinician expertise to build and refine a model that meets the
conservative objective of missing no malignant cases.

My work on estimating individual responses to treatment takes lessons
from the marketing domain, applying uplift modeling to two primary
medical tasks. One task is to identify patients at greater risk of heart attack
due to treatment with COX-2 inhibitors, and another is understanding char-
acteristics of in situ breast cancer specific to older women. I first present a
statistical relational learner that constructs Bayesian networks to maximize
area under the uplift curve (AUU), and show that the learned networks
capture clinically-relevant characteristics of indolent, in situ breast can-
cer. I next present a support vector machine for maximizing AUU and
show promising results on both the COX-2 inhibitor and breast cancer

tasks, as well as a synthetic marketing task. Finally, I present a collabora-



Xix

tion showing strong evidence that machine learning for individualized
treatment effect estimation improves upon current methods in multiple
ways. Overall, I present multiple works that demonstrate improved clini-
cal collaboration and new methods for modeling individual responses to

treatment within machine learning.



1 INTRODUCTION

Good health care is one of the most important factors that can contribute
to the personal well-being of everyone in the modern world. Unfortu-
nately, health care is also costly. The World Health Organization (WHO)
estimates that total health care spending in the United States was 17.0% of
gross domestic product (GDP) in 2012, the highest in the world (World
Health Organization, 2015). Expenditure as percentage of GDP in the
United States is also growing, with the same estimate being 13.1% in 1990.
Moreover, this trend of increasing costs is not unique to the United States.
The WHO estimates that France spent 11.6% of GDP on health care in 2012,
up from 10.1% in 1990. Germany spent 11.3%, up from 10.4%. Canada
increased spending to 10.9% from 8.7%. The United Kingdom spent 9.3%,
up from 6.9%. Overall, the trend represents a global phenomenon with
few exceptions.

The current trend in health care costs cannot be maintained indefinitely.
Health care systems across the globe will need to become more efficient at
treating patients and reducing costs. As part of a much larger process to
address this problem, the United States established the Health Informa-
tion Technology for Economic and Clinical Health (HITECH) Act in 2009.
HITECH introduced incentives for care providers to make meaningful
use of electronic health records (EHR) with the ultimate goal of creating
a more information-based, higher-quality health care system (Blumen-
thal, 2010). Since then, care providers have collected vast quantities of
structured and unstructured data, but we have only begun to capitalize on
the opportunity that new data and technology present to improve patient

care.



1.1 Precision Medicine

In 2015, the President of the United States announced the Precision Medicine
Initiative as part of the State of the Union address. As defined by the Na-
tional Research Council (National Research Council, 2011):

“Precision medicine” refers to the tailoring of medical treat-
ment to the individual characteristics of each patient. It does
not literally mean the creation of drugs or medical devices that
are unique to a patient, but rather the ability to classify indi-
viduals into subpopulations that differ in their susceptibility to
a particular disease, in the biology and/or prognosis of those
diseases they may develop, or in their response to a specific

treatment.

The idea of making medical decisions and choosing treatment strategies
based on individual variations is certainly not new, but with growing col-
lections of EHR data, dropping costs in genomic sequencing, and greater
access to computational resources, there has never been a better time to
start such an initiative (Collins and Varmus, 2015). The precision medicine
initiative is a call to arms, and the research community of clinicians, biolo-
gists, computer scientists, and more will need to work together to realize
its full potential. While the initiative itself is specific to the United States,
the potential impact is global.

1.2 Machine Learning in Medicine

The incentives are in place to develop an information-based health care
system, but the challenge facing researchers then is what to do with all of
the data and technology becoming available. The proliferation of larger
medical datasets that include more relational, temporal, unstructured, and

overall more complex data from multiple sources, urges the development



of new tools to make practical use of such heterogeneous datasets. Machine
learning offers new tools that can be used to improve patient care (Page,
2015).

Machine learning (Mitchell, 1997) is a subfield of artificial intelligence
focused on algorithms that “learn” from data to construct models that
can be used to make predictions and decisions. Most people encounter
machine learning every day, perhaps without even knowing it. For exam-
ple, Google uses machine learning in its search engine to predict what
pages are most relevant to user search keywords. Amazon uses machine
learning to decide what products to suggest to a user based on which they
are most likely to buy. Machine learning has already demonstrated global
impact in business with companies like Google and Amazon, but it has

yet to show a similar impact in clinical practice.

1.3 Thesis Statement

This dissertation focuses on developing new techniques in machine learn-

ing to improve patient care and investigates the following statement:
g p P & g

Machine learning results can be made more clinically-relevant
by tailoring current approaches to meet clinical objectives through
the development of new algorithms to model individual re-
sponse to treatment, and by incorporating clinical expertise

into model development and refinement.

Many machine learning approaches are designed to optimize performance
measures that are broadly applicable. In order to translate machine learn-
ing models to useful clinical applications, we need to reconsider and
modify standard measures of performance to meet clinical objectives. In
my work, I demonstrate new methods to improve collaboration between

machine learning experts and clinicians, leveraging clinician expertise to



develop models that more effectively address real clinical objectives. I also
develop new methods for modeling individual responses to treatment,
building off of machine learning approaches originally developed in the
marketing domain (Radcliffe and Surry, 1999).

1.4 Dissertation Organization
My dissertation is organized as follows.

Chapter 1 introduces the big picture problem and opportunity for apply-
ing machine learning in medicine. It is this chapter.

Chapter 2 introduces the basic machine learning background required to
understand later chapters.

Chapter 3 introduces the basic medical background required to under-
stand how machine learning can be applied effectively in a clinical
setting.

Chapter 4 describes the three medical tasks that serve as the primary
motivating applications in this dissertation.

Chapter 5 presents a study wherein we used inductive logic program-
ming techniques to infer rules that could be used in clinical practice
to determine when patients with suspicious mammogram findings

might safely avoid surgery.

Chapter 6 presents a study for which we designed a framework of collab-
oration between computer science and clinical experts to leverage
expert knowledge to produce machine learning models that more
effectively meet clinical objectives.



Chapter 7 presents a study in which we developed a novel uplift modeling
algorithm ! to build models that capture characteristics of in situ
breast cancer that are specific to older patients.

Chapter 8 presents a study in which we developed another novel uplift
modeling algorithm to again capture characteristics of in situ breast
cancer specific to older patients, and to capture characteristics of
heart attack victims who had taken drugs called COX-2 inhibitors.

Chapter 9 presents a recent study in which we argue for the use of ma-
chine learning models in clinical studies in favor of more traditional

models like logistic regression.

Chapter 10 discusses a few potential directions for future work, as well
progress we have already made in these directions.

Chapter 11 wraps up this dissertation by briefly summarizing contribu-
tions.

1Uplift modeling is an approach from marketing used to assess individual responses
to marketing activity.



2 COMPUTATIONAL BACKGROUND

Some basic understanding of various algorithms, evaluation metrics, and
modeling approaches is required to understand much of this dissertation.
In this chapter, we briefly review some basic machine learning concepts
that show up in more detail in later chapters.

2.1 Bayesian Networks

A Bayesian network is a probabilistic graphical model that represents the
conditional dependencies among a set of random variables. Each node in
the network represents one of the variables while, edges between nodes
represent conditional dependencies between the respective variables. The
edges are directed and, given an edge that points from some node A to
some other node B, A is referred to as a “parent” of B, and B is considered
to be conditionally dependent on A.

Each node has an associated conditional probability table (CPT), or
other conditional probability estimate, that represents the distribution over
the values of the node variable, conditioned on the values of its “parents.”
To understand how this works, consider Figure 2.1. If we want to compute
the joint probability of the four variables, p(A, B, C, D), we can use the
chain rule of probability to calculate it in terms of conditional probabilities.

P(A,B,C,D) =P(D|C,B,A)P(C|B,A)P(BIA)P(A)

Given the network in Figure 2.1, we know that some of the variables
are conditionally independent of one another, given their parents. For
example, we can see the D is conditionally independent of A, given B and
C. This allows us to reduce the joint probability calculation.

P(A,B,C,D) = P(DI|C, B)P(C|A)P(BIA)P(A)
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Figure 2.1: A Bayesian network.

The network is thus a compact representation of the joint probability
distribution of the variables (Mitchell, 1997). Often in machine learning, a
training set is used to learn the values in the CPTs given some network
structure. Assuming that one of the variables is a class or outcome variable
that we would like to estimate, the network can then be used to infer a
distribution over the values of that class variable, given values for the
other variables. There are, of course, methods for learning the structure
of a network given a training dataset (Koller and Friedman, 2009), but
the task is complicated, and we do not address it in depth here. Instead,
we present two common approaches that make simplifying assumptions
about the structure of the network.

2.1.1 Naive Bayes

Because learning the structure of a Bayesian network is difficult, a Naive
Bayesian (NB) network makes the strong assumption that all variables are



dependent on the class variable, but are conditionally independent of one
another, given the class label (see Figure 2.2a). To see how this assumption
affects the model, consider Bayes’ theorem.

P(BJA)P(A)

PAB) = =5

2.1)

In a typical binary supervised learning problem, we want to know the
probability of the positive label given the features. If Y is our binary class

variable and our features are X;, we wish to compute the following:
P(YpOS’Xl/ cees Xn)

Bayes’ theorem tells us that we can compute that probability as:

P(Xll Y Xn|Ypos)P(Ypos)
P(X1, ..., Xn)

The numerator can be expanded using the chain rule and the denomi-

nator can be rewritten as a marginal over the positive and negative labels
(i.e. the possible values for Y):

P(XllYpos)P(X2|YpOS/ Xl)"'P(XYL’YpOS/ Xl/ Y anl)P(Ypos)

i P(X1[Y)P(XalY’, X1)...P(XnlY’, X1, o, Xn—1)P(Y")
Applying the assumption that all features are conditionally indepen-
dent given the class label simplifies all of the conditional probabilities to
depend only on the class label:

P(XllYpos)P(X2|Ypos)--'P(Xn|Ypos)P(Ypos)

Y
2_P(XiY)P(X]Y).. P(Xn [Y)P(Y)
This makes computing the label distribution for any example easy

because it can simply be computed from the relative frequencies of its vari-
able settings in the dataset. Despite this strong, simplifying assumption,



NB has a proven history of good performance (Mitchell, 1997; Domingos
and Pazzani, 1997).

2.1.2 Tree-Augmented Naive Bayes

Tree-Augmented Naive Bayes (TAN) is a modification of Naive Bayes
with the strong independence assumption relaxed (Friedman et al., 1997).
Specifically, all of the non-class variables are still dependent on the class
variable, but may also be dependent on one other non-class variable (see
Figure 2.2b). This relaxation is accomplished by constructing a maximum-
weight spanning-tree amongst all of the non-class variables. The weights of
the edges used to construct the tree are the conditional mutual information
of the two connected variables, conditioned on the class variable.

By building the maximum-weight spanning-tree on the graph of con-
ditional mutual information between non-class variables, and by allowing
non-class variables to be dependent on at most one other variable, TAN

accomplishes two important properties.
1. It produces the maximum likelihood tree, given the data.

2. The tree can be learned in polynomial time.

2.2 Artificial Neural Networks

Artificial neural networks (ANN) are models used in machine learning
that are inspired by the networks of neurons that make up a brain (Mitchell,
1997). They are typically represented by a network of nodes, organized
into layers connected by edges. Each node in the network acts as a “neuron”
that produces some output value based on the weighted sum of its inputs
and an activation function. Each edge then acts as a weighted input to a
node. For example, in Figure 2.3 the node labeled h; has four incoming
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(a) Naive Bayes model. (b) Tree-Augmented Naive Bayes model.

Figure 2.2: Simplified Bayesian network models

edges from each of the nodes in the input layer. The input to h; is then a
weighted sum of the input values.

Iny, = xyw1 + XoWy + X3W3 + XgWy

The output of h; is the result of an activation function on the weighted
sum. For example, the logistic function is often used as an activation

function, making the output of h;:

1

QW = ey

It becomes clear then that the outputs from the hidden layer serve as
the inputs to the ouput layer, which acts identically. Note that Figure 2.3
only shows a single node in the output layer, but ANNs can be trained
using an arbitrary number of outputs as needed by the task being learned.

The training process is one of learning the weights in the network such
that the correct output is produced in the output layer. For one of the
common ANN model types, multilayer perceptrons, this is accomplished
using an algorithm called backpropagation (Mitchell, 1997).

At a high level, backpropagation works by first feeding the input from
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Output

Y

Figure 2.3: A simple feed-forward artificial neural network.

a training example (or examples) forward through the network to produce
the final network output. The error is then computed based on the pro-
vided output for the training example. This error is propagated backward
through the network, updating the weights along the way to reduce the
erTor.

The goal of backpropagation is to find network weights that minimize
the error, which is often accomplished using the gradient descent opti-
mization method. With gradient descent, each weight in the network is
updated according to the partial derivative of the error with respect to the
weight. In order to accomplish this, the error function and activation func-
tion both need to be differentiable. Intuitively, gradient descent dictates
that output error can be represented as a surface defined by input weights.
For any particular point on the error surface, the slope can be computed
and the weights can be updated to move downward on the error surface.
This process is repeated until some minimum error is found. To avoid
overfitting ! to the training data, the process may be stopped early when

! A model is overfit when it demonstrates better accuracy on the training examples
than on unseen examples, often because the model is overly complex.
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error fails to reduce on a tuning set, rather than the training set.

2.3 Genetic Algorithms

Genetic algorithms are search algorithms that are modeled after natural
selection (Mitchell, 1997). These algorithms are used to search through a
space of candidate models to find one that performs the best according to
some criteria. What defines the best model is a pre-specified numerical
“fitness” function that can be used to rank models within the search space.
Fitness functions vary from problem to problem, but one simple example
might be the number of training examples a model correctly classifies in
a training dataset. Models that correctly classify many examples in this
scenario would then have greater fitness than other models that do not.

Implementations vary, but Algorithm 2.1 details a general genetic al-
gorithm structure. First, an initial population of models is generated and
their fitnesses calculated. This population is used to start an iterative
process similar to natural selection. On each iteration, a top portion of the
population is chosen to produce offspring through crossover and muta-
tion operations somewhat analogous to real genetic processes. This new
generation of offspring is then evaluated and replaces or is included in the
current population. The iterative process continues like this until some
number of epochs have passed or some stopping criterion is met.

A fundamental requirement for genetic algorithms is designing a ge-
netic representation for the models being trained. One simple possibility
is to represent models as a vector of weights that can be used to produce
a linear combination of training example inputs. The crossover of model
pairs can then be as simple as producing a new vector of weights of the
same length as the parents, but with each weight being chosen randomly
from one of the parents. This is very similar, in fact, to the approach we

take for our experiments in Section 10.2.
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Algorithm 2.1 Simple Genetic Algorithm

Pop < GetRandModels(); > Init model population
Evaluate(Pop); > Compute initial fitness
for 1 to MaxEpochs do
Top < SelectBestK(Pop); > Select models for crossover
Pop’ < Crossover(Top); > Crossover pairs of models
Mutate(Pop’); > Small amount of random mutation
Evaluate(Pop’); > Compute new fitness
Pop < Pop’;
if StopCriterionMet(Pop) then > May stop early
break;
end if
end for
M < SelectBest1(Pop) > Select final model
return M,

The possibility of overfitting the training set is a concern when using
genetic algorithms for supervised machine learning. For example, the
population may become crowded with similar individuals relatively with
high fitness (Mitchell, 1997). Without diversity in the population, the
algorithm may then stagnate and make no further progress toward other
solutions with better fitness. This may be combated by changing the
selection process for crossover, or by introducing new random models
into the population occasionally.

2.4 Support Vector Machines

Traditional support vector machines (SVM) are two-class supervised learn-
ing models that are often used for classification (Cortes and Vapnik, 1995).
Given a set of training data, an SVM constructs a maximum-margin hy-
perplane separating the two classes in the dataset. There may be many
possible hyperplanes that separate the two classes, but the maximum-
margin hyperplane is chosen to reduce overfitting. This hyperplane can
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Figure 2.4: A simple SVM. The light line is the inferred decision boundary,
and the dashed line shows the margin, where no examples lie.

then subsequently be used to classify new data, based on the side of the
hyperplane that the new data point lies. Conveniently, if the training data
are not linearly separable in the original feature space, the problem can be
mapped to a higher-dimensional space using a kernel function, effectively
allowing for a non-linear hyperplane in the original feature space.

As a brief introduction, consider the standard definition of the maxi-

mum margin classifier (Vapnik, 1998). This classifier minimizes:
1 N
2
§||W|| +C ; & (2.2)

Subject to & > 0. The formulation tries to minimize the two-norm of
the weight vector, and hence maximize the margin, while softly allowing
some errors, &;, whose cost depends on the tunable parameter C. Errors
here are distances from the decision boundary of examples that lie on the

wrong side of the boundary.
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2.5 Inductive Logic Programming

ILP is a machine learning approach that induces a set of rules (a theory)
in first-order logic that predict some outcome based on a given dataset. It
does this by searching through a rule search space built from a collection of
background facts and rules. Rules within the search space are scored and
are added to the current theory if they meet specified acceptance criteria.
This search process continues until some stopping criteria are met. There
are many different scoring functions that may be used to score candidate
rules. Often, the scoring function is some form of coverage, whereby the
learner attempts to induce rules that entail many positive examples and
few (ideally zero) negative examples. Just as there are many possible
scoring functions, there are a variety of search algorithms that may be
used, such as breadth-first or depth-first search (Lavrac and Dzeroski,
1994).

See Figure 2.5 for a simple example where the goal is to induce the
definition of the uncle relationship. In this example, relationships between
individuals are defined by predicates. For example Parent(A, B) can be
read as “A is the parent of B”. In this problem, the goal is to induce a
general definition of Uncle(A, B) using the facts provided, along with
positive and negative examples of the uncle relationship.

ILP may be preferable over standard classification algorithms for a
number of reasons. One important advantage is that ILP is capable of
working on multi-relational data (De Raedt, 2008), which is prevalent in
domains where the datasets come directly from database systems. This
can reduce the need to collapse (i.e. propositionalize) a rich, relational
dataset into a standard format using summarization or other techniques
that may lose information (De Raedt, 2008). Another advantage is that the
rules in a theory are expressed in an if-then fashion, making them easy to
understand and reason about. This can be particularly important when

the goal is knowledge discovery.
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Positive Examples Facts
Uncle(George, Carl) Parent(Alan, Heather)
Uncle(George, Heather)  Parent(Alan, Carl)
Uncle(lan, Beth) Parent(Fran, Beth)
Parent(Eric, Fran)
Negative Examples Parent(Eric, Debra)
Uncle(Alan, Heather) Parent(Eric, lan)
Uncle(Debra, Beth) Sister(Heather, Carl)
Uncle(Eric, Beth) Sister(Debra, Fran)
Brother(lan, Fran)
Theory Brother(Carl, Heather)
Uncle(A, B) «? Brother(George, Alan)

‘Uncle(A, B) « Brother(A, C) A Parent(C, B) ‘

Figure 2.5: A simple ILP example showing facts and examples that may
be used to learn a logical definition of the uncle relationship.

2.6 Receiver Operating Characteristic

Equally important to the algorithms that are used to train models from
data, are the methods used to evaluate the trained models. The receiver
operating characteristic (ROC) curve is a plot that can be used to under-
stand the predictive performance of a binary classifier (Hastie et al., 2009).
Specifically, the ROC curve illustrates the true positive rate (or recall) a
classifier achieves versus false positive rate when varying the classifier’s
discrimination threshold. Each point on an ROC curve then represents a
threshold for classification and defines the proportion of positive examples
that the classifier correctly labels as positive at the threshold, versus the
proportion of negative examples it incorrectly labels as positive.

Figure 2.6 shows two examples of ROC curves based on two separate
rankings of five positive and five negative examples. As an intuitive simpli-
fication, one can imagine constructing an ROC curve by stepping through
a classifier’s ranking of positive and negative examples from those labeled
most likely to be positive, to those least likely to be positive. Each step
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that has a positive example moves the curve up, and each step that has a
negative example moves the curve to the right. A perfect ranking of all
positive examples followed by all negative examples then achieves the
optimal ROC curve that moves from the bottom left, straight up to the top
left, and then straight to the top right.

While each point within an ROC curve has important implications for
understanding a classifier’s performance, the area under the ROC (AUC)
curve is often used as a performance metric in place of evaluating at a
fixed threshold of discrimination (Hanley and McNeil, 1982). A perfect
ranking has an AUC of 1.0, and a random ranking has an expected area of
0.5.
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Figure 2.6: Two different ROC curves based on the ranking of five positive
and five negative examples. Below each curve is the ranking that defines
the curve, where the left-most example is labeled most positive.
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2.7 Uplift Modeling

Differential prediction is motivated by studies where one submits two dif-
ferent subgroups from some population to stimuli. The goal is to gain
insight on the different reactions by producing, or simply identifying, a
classifier that demonstrates significantly better predictive performance on
one subgroup (the target subgroup) over another (the control subgroup).
Seminal work in sociology and psychology used regression to study the
factors accounting for differences in the academic performance of students
from different backgrounds (Cleary, 1968; Linn, 1978; Young, 2001). Uplift
modeling is a popular technique in marketing studies. It measures the im-
pact of a campaign by comparing the purchases made by a subgroup that
was targeted by some marketing activity versus a control subgroup (Lo,
2002; Hansotia and Rukstales, 2002; Radcliffe, 2007).

In marketing, customers can be broken into four categories (Radcliffe
and Simpson, 2008):

Persuadables Customers who respond positively (e.g. buy a product)

when targeted by marketing activity.

Sure Things Customers who respond positively regardless of being tar-
geted.

Lost Causes Customers who do not respond (e.g. not buy a product)

regardless of being targeted or not.

Sleeping Dogs Customers who do not respond as a result of being tar-
geted.

Thus, targeting Persuadables increases the value produced by the mar-
keting activity, targeting Sleeping Dogs decreases it, and targeting cus-
tomers in either of the other groups has no effect, but is a waste of money.
Ideally then, a marketing team would only target the Persuadables and
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avoid targeting Sleeping Dogs whenever possible. Unfortunately, the group
to which a particular individual belongs is unknown and is not readily
observable. An individual cannot be both targeted and not targeted to
determine their response to marketing activity directly. Only the customer
response and whether they were in the target or control group can be

observed experimentally (see Table 2.1).

Table 2.1: Customer groups and their expected responses based on target-
ing. Only the shaded region can be observed experimentally.

Target Control
Response No Response Response No Response
Persuadables, | Sleeping Dogs, | Sleeping Dogs, | Persuadables,
Sure Things Lost Causes Sure Things Lost Causes

In this scenario, since we cannot observe customer groups beforehand,
standard classifiers appear less than ideal. For example, training a stan-
dard classifier to predict response, ignoring the differences in response
between the target and control subgroups is likely to result in a classifier
that identifies Persuadables, Sure Things, and Sleeping Dogs because they
represent the responders when the target and control subgroups are com-
bined. Recall, however, that targeting Sure Things is a waste of money, and
targeting Sleeping Dogs is harmful. Even training on just the target sub-
group (“response modeling”) is likely to produce a classifier that identifies
both Persuadables and Sure Things (Lo, 2002).

The point of uplift modeling is then to quantify the difference between
the target and control subgroups, producing a classifier that maximizes
predictive performance on the target subgroup over the control subgroup
(i.e. maximize uplift). The idea is that such a classifier characterizes
properties that are specific to the target subgroup, thereby making it
effective at identifying Persuadables. That is, such a classifier will produce

a larger output for customers who are more likely to respond positively
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as a direct result of targeting, and a smaller output for those who are
unaffected or are more likely to respond negatively. The classifier could
then be used in subsequent marketing campaigns to select who should
be targeted and who should not. To validate that uplift modeling can, in
fact, produce models that separate the Persuadables from other customer
groups, we ran experiments using a simulated marketing campaign (see
Sections 4.4 and 8.5.1).
Sure Things,

Persuadables I Lost Causes I Sleeping Dogs

A
- 1 1

Increasing probability of response from targeting

Figure 2.7: Ideal ranking of uplift model.

Seminal work includes Radcliffe and Surry’s true response model-
ing (1999), Lo’s true lift model (2002), and Hansotia and Rukstales” incre-
mental value modeling (2002). As an example, Hansotia and Rukstales
construct a regression and a decision tree, or CHART, model to identify
customers for whom direct marketing has sufficiently large impact. The
splitting criterion is obtained by computing the difference between the
estimated probability increase for the attribute on the target set and the
estimated probability increase on the control set.

In some applications, especially medical decision support systems,
gaining insight into the underlying classification logic can be as important
as system performance. Developments include tree-based approaches to
uplift modeling (Radcliffe and Surry, 2011; Rzepakowski and Jaroszewicz,
2012), although ease-of-interpretation was not an objective in their moti-
vating applications. Wanting to maximize rule interpretability, Nassif et al.
(2012a) opted for ILP-based rule learning instead of decision-trees because
the latter is a special case of the former (Blockeel and De Raedt, 1998).
To the best of our knowledge, the first application of uplift modeling in
medical domains is due to Jaskowski and Jaroszewicz (2012), who adapt
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standard classifiers by using a simple class variable transformation. Their
transformation avoids using two models by assuming that both sets have

the same size and combining the examples into a single set.

2.7.1 Uplift and Lift

The common evaluation metric used in uplift modeling is the uplift mea-
sure. Lift, like ROC, is a measure that can be used to evaluate the predictive
performance of a binary classifier (Tufféry, 2011). Let P be the number
of positive examples and N the number of negative examples in a given
dataset D. Lift represents the number of true positives detected by a model
amongst the top-ranked fraction p. Varying p € [0, 1] produces a lift curve.

The area under the lift curve (AUL) for a given model and data becomes:

P+N
AUL = [Lift(D,p)dp~ 5 3 (prss — pul(LIfH(D, pis) + Lift(D, pi)

! (2.3)

The uplift curve compares the difference between the model M over

two groups, target T and controls C (Rzepakowski and Jaroszewicz, 2010).

Recall that the uplift modeling desires to produce a classifier that maxi-

mizes the predictive performance on the target subgroup of the control
subgroup. The uplift curve quantifies that difference. It is defined by:

Uphft(MT, Mc, p) = LiftMT(T, p) - LiftMC (C, p) (24)

Since each point in the uplift curve is a function of a single value for p,
the area under the uplift curve (AUU) is the difference between the areas
under the lift curves of the two models (see Figure 2.8 for an example).

AUU = AULy — AULc (2.5)

Uplift modeling is effectively a differential prediction approach aimed
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Figure 2.8: A simple example of two lift curves for target and control
subgroups, and a corresponding uplift curve.

at maximizing uplift (Hansotia and Rukstales, 2002; Lo, 2002; Radcliffe
and Surry, 1999).

2.7.2 Relation of Lift to ROC

In order to obtain more insight into the uplift measure it is beneficial to
compare lift curves with ROC curves. Recall that AUL is the area under
the lift curve, and AUC is the area under the ROC curve. There is a strong

connection between the lift curve and the ROC curve. If we let T = HLN
be the prior probability for the positive class or skew, then:
AUL =P x (g + (1 —m) AUC) (Tufféry, 2011, p. 549). (2.6)

In uplift modeling, the aim is to optimize for uplift over two sets, that
is, obtaining new classifiers such that AUU* > AUU, where AUU =
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AULy — AULc. The equation AUU* > AUU can be expanded into:
AULT — AUL: > AULy — AULc. (2.7)

Further expanding and simplifying:

Pr(5 + (1= mr)AUCT) — Pe( - — (1 - M) AUCE) >
7T 7T
PT(TT + (1 —71)AUCT) — PC(TC — (1 —mc)AUCC)

PT(l — ﬂT)AUC? — Pc(l — ﬂc)AUC*C > PT(l — WT)AUCT — Pc(l — ﬂc)AuCC
PT(l — WT)(AUC? — AUCT) > PT(]. — WT)(AUC*C — AUCC)

and finally
Aqu;— — AUCT PC 1-— Tt

AUCL —AUCc ~ Pr1—mr

(2.8)

In a balanced dataset, tc = 1 = % and Pc = P, so that i:ﬁi =
In fact, if the target and control groups have the same skew, maximizing
the difference in AUL implies maximizing the difference in AUC as well.
If the target and control groups do not have the same skew, we can not
make this conclusion. In general, the conclusion is that the two tests are
related, but that uplift is sensitive to variations of dataset size and skew.
In other words, uplift is more sensitive to variations in coverage when the

two groups have different size.
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3 MEDICAL BACKGROUND

We next discuss some basic insights into how some clinical practice works
and how it might be improved. In particular, we discuss how tools may be
employed to assist in clinical decision-making, how treatment decisions
are currently made, how modeling might improve clinicians’ ability to

choose treatment.

3.1 Clinical Decision Support

Clinicians may have to deal with many different patients and may also
have a great deal of information about patients available to them. It is the
clinician’s job to use that information to correctly diagnose patients, and
to correctly treat patients. In order to know how to use that information,
however, clinicians must obtain and maintain a vast pool of knowledge
about diseases, treatments, expected outcomes, and more. Substantial
research in clinical trials and systematic reviews help to guide clinical
practice, but the task is monumental, and critically important for providing
good patient care. Furthermore, the proliferation of electronic health
records (EHR) presents both a benefit and a burden to clinicians. The
benefit is that information can be recorded in more structured formats for
later use, but the burden is that clinicians have yet another skill set that
must to be learned and maintained. It is perhaps unsurprising then that
medical care is variable and often suboptimal across health care systems
(Roshanov et al., 2013). Clinical decision support systems, systems that
assist clinicians in diagnosing and appropriately treating patients, have a
great opportunity to improve upon current patient care. In fact, research
has already shown the potential of such systems to assist with problems
in clinical practice, increase clinician adherence to protocol, and improve

health care systems overall (Roshanov et al., 2013; Kawamoto et al., 2005;
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Chaudhry et al., 2006; Ash et al., 2012). These tools may come in different
forms, but we focus on the growing field of machine learning in clinical
decision support.

3.2 Clinical Trials

One of the fundamental challenges faced in public health and patient care
is estimating the risk of disease that can be attributed to various exposures
or treatments. Researchers run clinical trials to study these exposures
or treatments (Friedman et al., 2010), with randomized controlled trials
(RCT) being considered the gold standard for estimating average treat-
ment effects (ATE). In an RCT, study patients are randomized to different
treatment arms (e.g. a treatment and control arm), after which the rate or
probability of some outcome is measured (see Figure 3.1). Randomization
is important as it balances confounding variables, leading to measures
of treatment effect that are free of bias. The difference in outcome rates
between treatment and control determines the average treatment effect,
as shown in Equation 3.1. Treatment can demonstrate either a positive
or a negative ATE, with success being determined by the desirability of
the measured outcome. The treatment arm with the best success rate is
selected as the preferred treatment. However, while the ATE is indicative
of the true treatment effect, we can expect a diversity of effects in individ-
uals. This makes ATE estimates less applicable for individual patients.
Furthermore, the ATE is population-distribution dependent, so it inher-
ently lacks generalizability to alternative test distributions. It would be
far more useful to estimate the individualized treatment effects, which

provides the effect per individual instead of at the population level.

ATE = P(Y = true|Treat = true) — P(Y = true[Treat = false) (3.1)
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28.6% 57.1%

ATE: 28.6% - 57.1% = -28.5 percentage points

Figure 3.1: The observed average treatment effect (ATE) of a randomized
controlled trial. Striping here indicates the occurrence of some outcome
of interest (e.g. heart attack), while the others do not experience the out-
come of interest. The control group exhibits a 57.1% rate of the measured
outcome, and the treatment group shows a 28.6% rate. The ATE is then a
reduction in the rate of the outcome of interest.

3.3 Individualized Treatment Effects

Modeling individualized treatment effects (ITE) considers individuals
separately based on the features or characteristics associated with that
individual. That is, the ITE acknowledges the fact that individuals vary in
important ways that may affect how the treatment or exposure affects dis-
ease outcome (see Figure 3.2). Equation 3.2 shows the difference between
the ITE and the ATE, where the ITE does not marginalize over individual
features, X. With an ITE model, information about a future individual
can then be leveraged to determine the optimal treatment choice for that
individual.
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ITE =P(Y = true[Treat = true, X)—P(Y = true|[Treat = false, X) (3.2)

Estimation of the ITE has many important clinical applications. For
example, medications almost certainly have different effects in different
individuals. Hormone replacement therapy treatment effect findings in
RCTs and observational studies were of opposite sign for coronary heart
disease, and advocacy of their use was rescinded when the RCT findings
were released (Manson et al., 2013). Yet, estrogen therapy is still the first
line treatment among women experiencing hot flushes. This raises the
question of whether ITE modeling can help determine subsets of patients
who are still likely to receive benefit. Similarly, many drugs are taken
off the market due to excess harm from adverse drug effects. Accurate
ITE estimation could bring such drugs safely back to market for select
subpopulations.

The limitations of applying population-average effect estimation to
individuals have already been acknowledged (Kent and Hayward, 2007;
Rothwell, 1995), and work on modeling the ITE has already begun (Qian
and Murphy, 2011). Modeling the ITE, however, is a more challenging
task than the ATE, as treatment effects simply cannot be observed at an
individual level. A researcher cannot both treat and not treat an individual
and then measure the difference in outcomes. Once a treatment option is
assigned, the counterfactual outcome, the outcome of the treatment not
given, cannot be observed. Furthermore, unlike ATE estimation, gathering
sufficient data to adequately estimate the counterfactual ITE outcome is
challenging for even modest numbers of individual features, as the state
space grows exponentially. Thus, modeling approaches to estimate the
counterfactual outcome become necessary.

Weiss et al. (2015) suggest leveraging more recent developments in
machine learning to model the conditional probability distribution (CPD)
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Treatment Group Control Group
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Figure 3.2: The individualized treatment effect (ITE) of a randomized
controlled trial. Striping here indicates the occurrence of some outcome of
interest (e.g. heart attack), while the others do not experience the outcome
of interest. The average treatment effect is still a reduction in the rate of
the measured outcome overall, but the ITE shows a decreased rate for
some and an increased rate for others. The pentagon subgroup saw a
large reduction in occurrence, while the triangles and circles saw a small
reduction and increase respectively.

to estimate counterfactual outcomes, rather than using more traditional
techniques like logistic regression. In particular, they suggest using Ad-
aBoost (Freund and Schapire, 1995) because it has consistency ! results
and is a non-parametric 2 learning algorithm. The details of this study are
explained in more detail in Chapter 9.

Of note is the similarity of the ITE estimation problem and that of

1 As a consistent learner is given more data examples, its estimates converge toward
the true distribution of the data.

ZParametric models make assumptions about the distribution from which data are
drawn, whereas non-parametric models do not.
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uplift modeling (see Section 2.7). Ideally, in marketing, we would be able
to estimate the change in probability that a person will buy a product after
having been targeted by some marketing activity versus having not been
targeted. Once again, this difference is unobservable because once an in-
dividual has been targeted with the marketing activity, the counterfactual
cannot be observed. The analogous equation then would be that found in
Equation 3.3.

Marketing ITE = P(Buy = true|Target = true, X) (3.3)
— P(Buy = true[Target = false, X)

Persuadables are individuals for which the marketing ITE is positive.
That is, their probability of buying after having been targeted with market-
ing activity is greater than their probability of buying if they had not been
targeted. Similarly, Sleeping Dogs are individuals for which the marketing
ITE is negative. That is, their probability of buying after having been
targeted with marketing activity is less than their probability of buying
otherwise. Sure Things and Lost causes have a marketing ITE of 0. Their
probability of buying is independent of whether or not they are targeted
with marketing activity. As described in section 2.7 though, the marketing
domain tries to address this ITE estimation by optimizing for the uplift
metric. Instead of modeling the CPD, the goal is to build a model that
captures information specific to Persuadables by separating the treatment
and control groups. Optimizing for the uplift metric then can be seen as

an alternative approach to estimating the ITE.



30

4  APPLICATIONS AND DATASETS

There are certainly many potential applications of machine learning in
medicine, but most of our work has focused on three particular tasks, two
related to breast cancer, and one to adverse drug events. In one task, the
goal is to determine appropriate treatment for patients who have received
breast biopsies with a non-definitive ! diagnosis. In another, the goal is
to determine factors that differentiate the more indolent in situ breast
cancer of older patients from that of younger patients when predicting
the progression of breast cancer. In our third task, the goal is to identify
patients who are most susceptible to the adverse reactions from taking
COX-2 inhibitors.

We also refer to three other applications and datasets to a lesser extent
in some chapters. One is dataset generated by simulating a marketing cam-
paign on a simulated customer population. Another is a synthetic dataset
that represents the use of statins to reduce the occurrence of myocardial in-
farction (heart attack). Finally, the last is a real dataset from a randomized
controlled trial investigating the effect of using D-penicillamine to treat
primary biliary cirrhosis ?. This chapter describes all of these applications

in more detail.

4.1 Upgrade Prediction

When a patient presents with a suspicious breast lesion, a diagnostic
mammogram and possibly ultrasound are performed to further define
the abnormality. If the finding remains suspicious, a core needle biopsy

(CNB) is often recommended (Bevers et al., 2009). In this procedure, a

LA biopsy is non-definitive if radiologists and pathologists cannot together make a
conclusive benign or malignant diagnosis.
2Primary biliary cirrhosis is an autoimmune disease of the liver.
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1 : 2 : 3 4
Mammogram : Needle Biopsy : Radiologic-Histologic Excision
: . Correlation

Abnormality . | Benign Tissue| . | Non-definitive Diagnosis | | Final Diagnosis

Malignant

“‘Upgrade”

Figure 4.1: The clinical process of a non-definitive biopsy. In Step 1, a
woman presents with suspicious imaging, and a needle biopsy is recom-
mended. In Step 2, the pathologist gives the biopsy a benign diagnosis. In
Step 3, radiologists and pathologists determine that no definitive diagnosis
can be made, and surgery is recommended. Finally, in Step 4, surgery is per-
formed and a final, definitive diagnosis of the abnormality is made. Image
sources: 1) NIH - http://wikimedia.org/wiki/File:Woman_receives_
mammogram. jpg 2) Itayba - http://wikimedia.org/wiki/File:Normal.
jpg 3) UW Hospital and Clinics 4) NIH - http://wikimedia.org/wiki/
File:Surgical_breast_biopsy. jpg

needle is inserted into the breast under imaging guidance to remove small
samples (“cores”) of the targeted breast abnormality. Subsequently a corre-
lation between the histology results and the imaging features (Radiologic-
Histologic correlation) is performed to ensure adequate sampling of these
lesions and avoid cancers being missed (Liberman, 2000). The majority of
breast biopsies will yield definitive results (Bruening et al., 2010). How-
ever, in 5% to 15% of cases, the results are non-definitive (Liberman, 2000),
and surgical excisional biopsy is recommended to determine the final
pathology and rule out the presence of malignancy (see Figure 4.1). If
a malignancy is subsequently confirmed, the case is “upgraded” from


http://wikimedia.org/wiki/File:Woman_receives_mammogram.jpg
http://wikimedia.org/wiki/File:Woman_receives_mammogram.jpg
http://wikimedia.org/wiki/File:Normal.jpg
http://wikimedia.org/wiki/File:Normal.jpg
http://wikimedia.org/wiki/File:Surgical_breast_biopsy.jpg
http://wikimedia.org/wiki/File:Surgical_breast_biopsy.jpg
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Diagnostic Mammogram Diagnostic Mammogram

10,876 15,911
Core Needle Biopsy Core Needle Biopsy
1,414 1,910
Non-Definitive Non-Definitive
96 157
Benign Malignant Benign Malignant
79 17 128 29
(a) Recruitment through 2009. (b) Recruitment through 2011.

Figure 4.2: The case-inclusion process for non-definitive biopsies from the
UW Hospital and Clinics. We included consecutive core needle biopsy
cases recommended from a diagnostic mammogram, and considered those
given a non-definitive diagnosis. There were 96 non-definitive biopsies
from January 1, 2006 through December 31, 2009 (4.2a). There were 157
non-definitive biopsies from January 1, 2006 through December 31, 2011
(4.2b).

non-definitive to malignant (approximately 10-20%). In the US, women
over the age of 20 have an annual breast biopsy utilization rate of 62.6 per
10,000, translating to over 700,000 women undergoing breast core biopsy
in 2010 (CDC, 1998). Knowing this, approximately 35,000 to 105,000 of
these women likely underwent excision, an additional and more inva-
sive procedure. Ultimately, a majority of these women receive a benign
diagnosis.

In the mid-1990s, the American College of Radiology developed the
mammography lexicon, Breast Imaging Reporting and Data System (BI-
RADS), to standardize mammogram feature distinctions and the termi-
nology used to describe them (BIR, 2003), and studies show that BI-RADS
descriptors are predictive of malignancy (Liberman et al., 1998), specific
histology (Burnside et al., 2004), and prognostic significance (Tabar et al.,
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Table 4.1: The upgrade prediction dataset from the UW Hospital and
Clinics. Counts of cases from January 1, 2006 through December 31, 2009
are found in 4.1a, and those through December 31, 2011 are found in 4.1b

(a) January 1, 2006 through December 31, 2009.

Features Total Cases Benign Cases Malignant Cases
70 96 79 17

(b) January 1, 2006 through December 31, 2011.

Features Total Cases Benign Cases Malignant Cases
70 157 128 29

2004). Given that 1) a complex combination of variables predicts upgrade,
2) reliable data including accurate outcomes via cancer registries are avail-
able, and 3) accurate prediction of upgrade would substantially improve
management, this domain is ripe for decision support that would have a
substantial impact on patient care.

The dataset we use for this task is collected from the University of Wis-
consin clinical practice. We are continually growing the dataset through
the prospective collection of new cases and retrospective collection of
new features. Our dataset contains information about demographic risk
factors (e.g. age, personal history of breast cancer), BI-RADS descriptors of
abnormalities in mammograms, description of pathologies, and technical
information about the biopsies as shown in Figure 4.3. Our recruitment
of cases from January 1, 2006 to December 31, 2011 includes a popula-
tion of patients that underwent 1,910 consecutive CNB, as a result of a
diagnostic mammogram. Clinicians prospectively gave a total of 157 of
those biopsies a non-definitive diagnosis, of which 128 (81.5%) were found
to be benign and 29 (18.5%) were found to be malignant (see Table 4.1).
Some of our earlier work included a subset of cases from January 1, 2006
to December 31, 2009. This subset includes 96 non-definitive biopsies, of
which 79 (82.3%) were found to be benign and 17 (17.7%) were found to
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Mammogram Table

Patient Table BI-RADS category
Age Breast composition
Personal history breast cancer — Mass shape
Family history breast cancer Mass margins

Mass density

Mass stability
Calcification shape
Calcification distribution

Registry Table Biopsy Table

Margin status Needle size

Grade Number of samples Pathology Table

Prior radiation Post-proc appearance <4—> Pathology diagnosis
Accurate clip position Non-definitive

Recommendation

Figure 4.3: The breast-imaging database from which all of our examples
are collected. Each box is a table in our database, and arrows represent
relations between the different tables.

be malignant. Figure 4.2 shows the recruitment process in more detail for
both time periods.

4.2 COX-2 Inhibitors

COX-2 inhibitors are a family of non-steroidal anti-inflammatory drugs
(NSAIDs) used to treat inflammation and pain by directly targeting the
COX-2 enzyme, without affecting the COX-1 enzyme. This is a desir-
able property as it significantly reduces the occurrence of various ad-
verse gastrointestinal effects common to other NSAIDs (Russell, 2001).
As such, COX-2 inhibitors, specifically Vioxx, Bextra, and Celebrex, en-
joyed widespread acceptance in the medical community. Unfortunately,
additional patient data later showed that the use of COX-2 inhibitors also
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came with a significant increase in the rate of myocardial infarction (MI),
or “heart attack” (Kearney et al., 2006). As a result, Vioxx and Bextra
were pulled from the market, and Celebrex added a warning to the label.
Physicians must be much more careful when prescribing these drugs. In
particular, physicians want to avoid prescribing COX-2 inhibitors to pa-
tients who may be more susceptible to the adverse effects that they entail.
For this problem, predicting the individualized treatment risk of MI given
treatment with COX-2 inhibitors, versus no treatment, is the appropriate
task to identify the at-risk patients.

Recall the similarity of the uplift modeling goal to individualized
treatment effect estimation (see Section 3.3). An individual cannot both
take the drug and not take the drug to determine its effect. Only the MI
outcome and whether or not the individual took the drug can be observed
experimentally. We propose that training a classifier to identify individuals
for which taking a COX-2 inhibitor increases their risk of Ml is analogous
to identifying Persuadables.

Furthermore, the U.S. Food and Drug Administration (FDA) has re-
cently issued a new warning about all non-aspiring NSAIDs adding cardio-
vascular risk (FDA, 2015). In the near future, it may be desirable to extend
analysis from COX-2 inhibitors to all non-aspirin NSAIDs. In some ways
though, this is more challenging since many NSAIDs are over-the-counter
and records will be incomplete. We do not address this new warning in
our work, but it is important to note as it broadens the potential scope of
this task.

For this task, we use a dataset collected at Marshfield Clinic, which
has been previously used in Davis et al. (2013). The dataset consists of
information from multiple database tables: lab test results (e.g., choles-
terol levels), medications taken (both prescription and non-prescription),
disease diagnoses, and observations (e.g., height, weight and blood pres-

sure). Patients are separated into two equally-sized subgroups: patients
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who have been prescribed COX-2 inhibitors and those who have not. The
group prescribed COX-2 inhibitors has 184 patients who had MI, and 1,776
who did not. The subgroup not prescribed COX-2 inhibitors has the same
number of patients for each outcome (see Table 4.2).

Table 4.2: Composition of the COX-2 dataset from Marshfield Clinic. There
are 12,496 features for each example in this dataset. The group prescribed
COX-2 inhibitors has 184 patients who had MI, and 1,776 who did not.
The subgroup not prescribed COX-2 inhibitors has equal numbers.

COX-2 Inhibitors No COX-2 Inhibitors
Features MI No MI MI No MI
12,496 184 1,776 184 1,776

4.3 Invasive vs. In Situ Breast Cancer

Prediction

Breast cancer is the most common cancer among women (American Cancer
Society, 2009b) and has two basic states: an earlier in situ state where
cancer cells are still localized, and a subsequent invasive state where cancer
cells infiltrate surrounding tissue (see Figure 4.4). Nearly all in situ cases
can be cured (American Cancer Society, 2009a), thus current practice is
to treat in situ occurrences in order to avoid progression into invasive
tumors (American Cancer Society, 2009b). Treatment, surgery sometimes
followed by radiation therapy, is costly and may produce undesirable side-
effects. Moreover, an in situ tumor may never progress to invasive state
in the patient’s lifetime, increasing the possibility that treatment may not
have been necessary. In fact, younger women tend to have more aggressive
cancers that rapidly proliferate, whereas older women tend to have more
indolent cancers (Fowble et al., 1994; Jayasinghe et al., 2005). Because
of this, younger women with in situ cancer should be treated due to a
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greater potential time-span for progression. Likewise, it makes sense to
treat older women who have in situ cancer that is similar in characteristics
to in situ cancer in younger women since the more aggressive nature of
cancer in younger patients may be related to those features. However,
older women with in situ cancer that is significantly different from that
of younger women may be less likely to experience rapid proliferation,
making them good candidates for “watchful waiting” instead of treatment.

The motivating problem at hand can readily be cast as an uplift mod-
eling problem (see Section 2.7). Like the hidden customer types in uplift
modeling, which type of cancer (indolent or aggressive) a patient has is
not directly observable and it is unreasonable to not treat patients in an at-
tempt to determine which have less aggressive varieties. We propose that
training a classifier to identify in situ cancers with features specific to older
patients, and thus less aggressive varieties of cancer, is also analogous to
identifying Persuadables. By maximizing the in situ cases” uplift, we are
identifying the older in situ cases that are most different from younger in
situ cases, and thus are the best candidates for watchful waiting.

(a) In Situ (b) Invasive

Figure 4.4: Examples of in situ and invasive cancer tissue.

The dataset we use for this task comes from the University of California

San Francisco Medical Center. It consists of two cohorts: patients younger
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than 50 years old form the younger cohort, while patients aged 65 and
above form the older cohort. The older cohort has 132 in situ and 401
invasive cases, while the younger one has 110 in situ and 264 invasive
(see Table 4.3). Each case consists of 20 features that describe the mammo-
gram, and 35 relational features that connect a mammogram with related
mammograms, discovered at the same or in prior visits. This is the same
dataset used by Nassif et al. (2010) and Nassif et al. (2012a).

Table 4.3: Composition of the breast cancer dataset from UCSF. There are
55 features in the dataset. The older cohort has 132 in situ cases and 401
invasive, while the younger cohort has 110 in situ cases and 264 invasive.

Older Younger
Features InSitu Invasive InSitu Invasive
55 132 401 110 264

4.4 Simulated Marketing Activity

Recall that the goal of uplift modeling is to be able to predict when a person
is more likely to buy a product after having been targeted by marketing
activity versus having not been targeted. Maximizing the uplift curve
makes some intuitive sense, but the fact that customer groups cannot be
directly observed makes it difficult to understand if it really does help to
produce classifiers that can specifically identify Persuadables. To confirm
that maximizing uplift identifies Persuadables, we generated a synthetic
population of customers and simulated marketing activity to produce
a dataset ® for which we knew the ground truth customer groups. We
present results on this synthetic dataset using algorithms presented in
Chapter 8.

3Available at:  http://ftp.cs.wisc.edu/machine-learning/shavlik-group/
kuusisto.ecmll4.simcustomerdata.zip


http://ftp.cs.wisc.edu/machine-learning/shavlik-group/kuusisto.ecml14.simcustomerdata.zip
http://ftp.cs.wisc.edu/machine-learning/shavlik-group/kuusisto.ecml14.simcustomerdata.zip
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To generate the customer population, we first generated a random
Bayesian network with 20 nodes and 30 edges (see Algorithm 4.1). We
then randomly selected one node with four possible values to be the
customer group feature. Next, we drew 10,000 samples from this network.
This left us with a population of customers for which one feature defined
the group they belonged to and the rest represented observable features.

Algorithm 4.1 Marketing Campaign Simulation

BN < GenBayesNet(); > Random Bayesian network
MarkCustomerNode(BN); > Select (four-value) customer type node
Pop < SampleCustomers(BN); > Sample a customer population
for C € Pop do
if RandomTarget(C) then > Choose to target or not
MarkTargetResponse(C);
else
MarkControlResponse(C);
end if
end for

We then subjected this population to a simulated marketing activity.
We randomly selected roughly 50% of the entire population to be part of
the target subgroup. Next, we produced a response for each customer
based on their customer group and whether or not they were chosen to be
targeted. For this demonstration, we determined each response based on
the strongest stereotypical interpretation of each customer group. That is,
Persuadables always responded when targeted and never responded when
not. Sleeping Dogs never responded when targeted and always responded
when not. Sure Things and Lost Causes always and never responded re-

spectively.
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Table 4.4: Composition of synthetic customer population after simulated
marketing activity. There are 20 features for each customer, including the
hidden customer type.

Target Control
Response No Response | Response No Response
Persuadable 1,219 0 0 1,252
Sure Thing 1,221 0 1,226 0
Lost Cause 0 1,256 0 1,298
Sleeping Dog 0 1,241 1,287 0
Total 2,440 2,497 2,513 2,550

4.5 Statins and Myocardial Infarction
(Synthetic)

Cardiovascular diseases (CVD) are diseases that affect the heart or blood
vessels, and are the leading cause of death globally (Mendis et al., 2011).
Myocardial infarction (MI), or heart attack, is one such disease and affects
one million people each year in the United States (NIH, 2013). High
cholesterol levels have been associated with CVD, and evidence suggests
that statins, drugs used to lower cholesterol, are effective for treatment
of early stage CVD and for those with elevated risk of CVD (Taylor et al.,
2013). Nevertheless, statins still carry risk of side-effects (Naci et al., 2013),
and being able to identify individual responses to treatment would be
valuable. We desire to build machine learning models that can estimate
these individual responses and discuss how they compare with more
traditional methods in Chapter 9. In order to do so, however, we need to
know ground truth effects, which are not available in real data, so we rely
on a synthetic model instead.

We define a synthetic model of MI with thirteen binary variables: age,
gender, smoking status, HDL level, LDL level, diabetes, family history of

cardiovascular disease (CVD), blood pressure, history of angina, history
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Figure 4.5: Causal Bayesian network for myocardial infarction (MI) and
related variables used for synthetic data in our experiments.

Table 4.5: Marginals for each variable in the synthetic model for observa-
tional data (Obs.) and data from the RCT version randomizing on statin
use. Reported values are the probability of a “yes.”

Variable Obs. RCT Variable Obs. RCT
Age (older) 55 55 Blood pressure 30 30
Smoke 28 28 History of angina 35 35
Gender (male) 48 48 History of stroke 5 6
HDL 27 27 History of depression 27 27
LDL 39 39 Statin use 25 50
Diabetes 39 42 Ml 8 9

Family history of CVD 27 27

of stroke, history of depression, statin use, and MI. The joint probabil-
ity distribution is defined by the causal Bayesian network in Figure 4.5
with hand-crafted conditional probability distributions for each variable
informed by medical expertise in Table 4.5. This model was defined and
used in Weiss (2014).
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In addition to needing the ground truth of individualized treatment
effects, we desire to simulate both an observational study and a random-
ized controlled trial (RCT). This synthetic model allows us to do so. For
observational data, we sample directly from this Bayesian network, and
interventions can be simulated by removing incoming edges to the in-
tervention variable and specifying the Bernoulli distribution parameter.
We simulate data from a randomized controlled trial of statin use by re-
moving the edge from LDL to statin and using a conditional probability
distribution for statins with equal probability of “yes” and “no”.

4.6 D-Penicillamine for Primary Biliary

Cirrhosis

Primary biliary cirrhosis (PBC) is an autoimmune disease of the liver
and is characterized by progressive destruction of small bile ducts of the
liver (Hirschfield and Gershwin, 2013). D-Penicillamine was once recom-
mended for treatment of PBC for its copper-chelating and immunological
effects (Epstein et al., 1981). This is no longer the case (Gong et al., 2004),
but we desired to validate our claims in Chapter 9 on a real dataset. Fortu-
nately, there is readily available trial data for the treatment of PBC from
the Mayo Clinic (Therneau and Grambsch, 2000). The trial covers a ten-
year period and randomized patients across treatment with a placebo
versus treatment with D-penicillamine. The data set includes 16 variables,
including demographic information like age and sex, as well as various
lab tests such as serum albumin, serum cholesterol, and triglycerides (see
Table 4.6).

For this RCT dataset we wish to understand the effect of D-penicillamine
use on three-year survival. For the three-year survival period, we censored
the dataset to 288 patients, with 146 in the treatment group and 142 in the
placebo group. At the end of three years, the treatment group experienced
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Table 4.6: Statistics for the primary biliary cirrhosis (PBC) dataset censored
to a three-year survival period. The top half of the table gives counts for
the boolean and categorical features, and the bottom half gives statistics
for the numerical features.

Variable Count (n=288) Yo
Sex female 255 88.5
Ascites 24 8.3
Hepatomegaly 148 51.4
Spider angiomas 84 29.2
Edema

none 241 83.7
untreated or successful 27 9.4
present despite therapy 20 6.9

Histologic stage
1 16 5.6
2 60 20.8
3 112 38.9
4 100 34.7
Variable Mean Std. Dev.
Age in years 50.6 10.5
Serum bilirunbin (mg/dL) 3.3 4.7
Serum cholesterol (mg/dL) 364.4 224.8
Serum albumin (g/dL) 3.5 0.4
Urine copper (ug/day) 96.1 84.9
Alkaline phosphate (U/L) 2021.1 2213.2
Aspartate aminotransferase (U/L) 122.2 58.1
Triglycerides (mg/dL) 124.4 65.4
Platelet count 259.1 96.4
Prothrombin time 10.8 1

Table 4.7: Three-year survival for the PBC dataset.

Treatment Control
Survived Died Survived Died
119 27 110 32

27 (18.5%) deaths out of 146, whereas the placebo group experienced 32
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(22.5%) out of 142. The average treatment effect then is a 4 percentage

point reduction in death over three years.
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5  HIGH-PRECISION RULES FOR NON-DEFINITIVE BREAST

BIOPSY

We first present some of our work on the upgrade prediction task (see
Section 4.1). Here we attempt to reduce the number of benign cases that
go on to excisional biopsy using learned rules. Recall that learned rules
have the advantage of being interpretable (see Section 2.5), though this
can come at the cost of accuracy because predicted outcomes are strictly
binary if-then statements. That is, the inferred rules do not allow for finer
granularity in decision making. To account for this challenge, we here
modify rule scoring to enforce careful selection of rules that meet the

clinical objective (Kuusisto et al., 2013).

5.1 Introduction

Recall from Section 4.1 that when a screening mammogram presents a
suspicious finding, a follow-up diagnostic mammogram is performed to
further define the abnormality. If the finding remains suspicious, a core
needle biopsy (CNB) may be recommended (Bevers et al., 2009). Pathologic
review of biopsy is often definitive, but some are not, and surgical excision
biopsy is recommended to determine the final pathology. A majority of
these women who go on to surgery will receive a benign diagnosis.

In the mid-1990s, the American College of Radiology developed the
mammography lexicon, Breast Imaging Reporting and Data System (BI-
RADS), to standardize mammogram feature distinctions and the termi-
nology used to describe them (BIR, 2003). Studies show that BI-RADS
descriptors are predictive of malignancy (Liberman et al., 1998; Moskowitz,
1983; Swets et al., 1991), specific histology (Burnside et al., 2004; Nassif
et al., 2010), and prognostic significance (Thurfjell et al., 2002; Tabar et al.,

2004; Nakayama et al., 2004). For many reasons then, breast cancer diag-
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nosis is an ideal domain to develop and test machine learning methods
for risk prediction because 1) a standardized lexicon with probabilistic
underpinnings has been established to summarize imaging features, 2)
predictive risk factors are available within the standardized lexicon, and
3) accurate outcomes exist through cancer registries, collections of history,
treatment, and diagnosis data on cancer patients.

In this study, we investigate using machine learning to examine the
ability to predict benign entities in cases where CNB has produced a non-
definitive diagnosis. Prior work in machine learning has demonstrated
potential in predicting upgrade (Dutra et al., 2011) and predicting breast
cancer in general using imaging features (Burnside et al., 2009). These
prior works, however, have not clearly leveraged the potential of rich, multi-
relational data from many sources. Our study considers demographic
risk factors and mammographic features, not just biopsy and pathology
characteristics, to estimate the risk of upgrade. These factors and features
are organized in multiple tables, which makes the dataset suitable for
relational learning (De Raedt, 2008). Additionally, the prior work has
focused on predicting malignancy and has not focused on producing
interpretable models that help to understand what makes these suspicious
cases benign. We generate interpretable classifiers, based on first-order
logic, that capture the correlation between features included in this study
to predict when a patient should not undergo excision.

5.2 Background

In the past, our group developed a Bayesian network based on the ability
of BI-RADS descriptors to convey the level of suspicion of mammographic
abnormalities on a dataset from a different practice than we analyze in
this work. Previously we found an upgrade rate of 1.1% (1 in 92 biopsies).

Our expert system was able to integrate pathologic diagnoses and mam-
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mographic findings to obtain the probability of upgrade, thereby enabling
the identification of malignancy with 100% sensitivity while maintaining
a specificity of 91% (Burnside et al., 2004).

Dutra et al. (2011) demonstrated the potential for improving perfor-
mance of predicting upgrade cases when expert knowledge is provided
to a machine learner prior to training. In one experiment, their results
showed that they were able to correctly identify at most 60% (9/15) of
their malignant cases, while saving 43% (34/79) of the benign cases from
excision. In another experiment, they were able to correctly identify 53.3%
(8/15) of their malignant cases while saving 83.5% (66/79) of the benign
cases from excision. This is a remarkable result for the benign cases, as it
demonstrates a substantial reduction in false positives, but it comes at the
cost of missing half of the malignancies.

Current practice standards at our institution include a conference be-
tween breast radiologists and pathologists about every core needle biopsy
performed to assess whether the biopsy is perceived to be non-definitive.
Factors influencing decision-making include imaging characteristics of the
original lesion, operational factors such as gauge of the needle used and
the number of the samples taken, and clinical characteristics of the patient.
However, given that these factors have been imprecise in accurately pre-
dicting which patients may have an associated malignancy (Fures et al.,
2003; Destounis et al., 2011; Gumus et al., 2012; Rauch et al., 2012), surgi-
cal excision is performed for most patients with non-definitive results to

ensure that no malignancy is missed.

5.3 Methods

Institutional review board approval was obtained prior to the commence-
ment of this retrospective study. Written informed consent of patients was
not required. We used the dataset described in Section 4.1, which includes
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a population of patients that underwent 1,414 consecutive CNB, as a result
of a diagnostic mammogram, from January 1, 2006 through December
31, 2009. Of these biopsies, 96 were prospectively given a non-definitive
diagnosis after discussions in clinical conference meetings (see Figure
4.2). We limited our dataset to this subset. For all 96 cases, we collected
information related to the pathological diagnoses, technical biopsy proce-
dure and materials, as well as patient history, information about previous
mammograms, and BI-RADS descriptors associated with the biopsied
tissue. All 96 cases were women, and all underwent excision. Their mean
age was 56 years (range= 33 — 85 years, sd= 11.23). We use the result of
excisional biopsy (within 6 months after CNB) or a registry match (within
1 year after CNB) as a reference standard for final diagnosis. Of our 96
cases, 79 were ultimately confirmed to be benign while 17 of them (18%)
were found to be malignant.

We use the inductive logic programming (ILP) system, Aleph (Srini-
vasan, 2007), to predict when a patient should not undergo excision. ILP
is a machine learning approach that learns a set of rules in first-order
logic that explain a given dataset (Lavrac and Dzeroski, 1994). We use ILP
because it is well suited for our multi-relational dataset and because the
logical rules produced can be easily interpreted by a human. We chose
to make benign cases our “positive” class because we wish to find highly
accurate rules that predict when this procedure is not needed. Unlike most
machine learning approaches, ILP treats its positive and negative training
asymmetrically, focusing on inducing rules that match many positive ex-
amples and few (ideally zero) negative examples. Readers should be aware
of this wording (“positive” is benign), as it is somewhat counter-intuitive,
but it is a choice motivated by the machine learning approach we employ.

We considered a small number of training parameters. We did not tune
these parameters but instead selected what we and our clinical collabora-

tors considered reasonable values to help achieve our clinical objective of



49

identifying benign cases without missing malignancies. Among the many
parameters Aleph offers, we specified:

minpos The minimum number of positive examples that a rule is required
to cover.

We chose a value of 2 for the minpos parameter, allowing any rules that
correctly identify at least two benign cases in the training set. We chose
2 instead of 1 to require rules that generalize beyond a single case at
minimum, while not assuming anything about how much further Aleph
would be able to generalize.

noise The maximum number of negative examples that a rule is allowed

to cover.

We chose a value of 0 for the noise parameter, disallowing any rules that
incorrectly identify even a single malignant case as benign in the training
set. We chose 0 due to the high cost of missing cancer (Petticrew et al.,
2001).

evalfn The rule-cost evaluation function.

We chose to use an Fg measure (Manning et al., 2008) for the rule evaluation
function because it allows us to balance the importance of true positives
(TP), false positives (FP), and false negatives (FN).

(1+B%) x TP
(1+B2%) x TP + B2 x EN + FP

Fg =

We chose a value of 0.1 for 3, effectively making precision 10 times
as important as recall. This is again because, while we would certainly
like to identify more benign cases, it is more important in the task we are
addressing that we avoid calling malignant cases benign.

TP TP

Precision=-————  Recall = ——
recision P n P eca P i N
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ILP generates a theory that may consist of many different rules, where
each rule is a conjunction of features that together predict the chosen
positive class (i.e. benign in this task). To reduce overfitting on such a
small dataset, we prune the output theory to a single rule. Our pruning
process selects the rule with the best Fg score (as described above) on the
training set. By pruning this way, we hope to reduce each theory to its best
performing rule (see Algorithm 5.1). We ran all of our experiments using
the YAP Prolog compiler (Santos Costa et al., 2012) and Condor (Thain
et al., 2005), a high-throughput computing system.

To evaluate our learned rules, we use stratified 17-fold cross-validation,
each fold including a single malignant case in its test set. We chose 17 folds
instead of the more common ten because we only have 17 malignant exam-
ples, and choosing ten would lead to unbalanced folds. Cross-validation
ensures that cases that were used to learn a rule are not used to evaluate
the rule. Biopsies of the same patient were all placed in the same fold.
In addition to the cross-validation results, we present all of the unique
rules learned along with their individual performance on the full dataset.
This allows us to demonstrate the interpretable nature of the rules, reason
about their clinical significance, and discuss the degree to which they

could affect patients in practice.

Algorithm 5.1 Rule Learning Procedure

for Train, Test € Folds do
Theory < Aleph(Train, minpos = 2,noise = 0, evalfn = Fg); > Induce

theory
Rule* < argmax Fg(Theory, Train); > Select best rule
Evaluate(Rule*, Test); > Evaluate selected rule on test set

end for
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5.4 Results

We first present the overall results from 17-fold cross-validation in Table 5.1.
Recall that we are learning rules to predict benign cases, so true positives
are cases that are correctly identified as benign, and false positives are
malignant cases that are incorrectly identified as benign. Similarly, true
negatives are the malignant cases that are correctly identified as malignant,
and false negatives are the benign cases that were incorrectly identified
as malignant. We also report precision and recall, otherwise known as
positive predictive value and sensitivity respectively. Each row shows the
results, for a single fold, on the examples that were held out from training
in that fold. We compute summary statistics as suggested by Forman and
Scholz (2010).

Each of the 17 folds produced a single theory that was then pruned to
a single rule. In many of the folds, the rule produced was identical to that
of another fold. What follows are the five unique rules that were produced
amongst all the folds, sorted by the number of folds that produced them.
We have manually translated them from first-order logic to English to
make them easier to read (see Table 5.2). The performance of each unique
rule on the full dataset can be found in Table 5.3, along with the number
of folds in which each rule was learned.

Note that the third and fourth rules, learned in 1 fold each, are general-
izations of Rule 2, each including only one of the mass margin descriptors
along with the non-disappearance of the abnormality. These two rules
are less precise, and are the source of the 2 false positives in our cross-

validation results above.

5.5 Discussion

In this experiment, we demonstrate that ILP can derive rules that accurately

predict when a woman may not require excision after a non-definitive core
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Table 5.1: 17-Fold Cross Validation Results

Fold TP FP FN TN Precision Recall Fy;
1 2 0 3 1 1.0 0.40 0.99
2 1 0 3 1 1.0 0.25 0.97
3 4 1 1 0 0.8 0.80 0.80
4 2 0 3 1 1.0 0.40 0.99
5 1 0 3 1 1.0 0.25 0.97
6 4 0 1 1 1.0 0.80 1.00
7 0O O 4 1 0.0 0.00 0.00
8 2 0 3 1 1.0 0.40 0.99
9 4 0 1 1 1.0 0.80 1.00
10 2 0 3 1 1.0 0.40 0.99
11 1 0 4 1 1.0 0.20 0.96
12 1 1 4 0 0.5 0.20 0.49
13 0 O 5 1 0.0 0.00 0.00
14 0 O 5 1 0.0 0.00 0.00
15 0O O 4 1 0.0 0.00 0.00
16 0O O 4 1 0.0 0.00 0.00
17 1 0 3 1 1.0 0.25 0.97
Summary 25 2 54 15 0.93 0.32 0.91

breast biopsy. All five of the rules predict a substantial number of cases
that are benign, and only two of the rules miss a malignancy. Multiple
rules contain both imaging and clinical factors, with features included
falling into three main categories: post-biopsy imaging (a standard part
of the CNB process), mass margin descriptors, and patient history. All of
the included features also have some clinically significant explanation as
confirmed by our multidisciplinary (radiology, pathology, and surgery)
team. Overall, the cross-validation results indicate that we can potentially
reduce the total number of patients with non-definitive diagnosis from
undergoing excision by around 28%, with confidence that 93% of those

patients do not have a malignancy.
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Table 5.2: The five unique learned rules that predict a non-definitive case

is benign.

1 The patient did not have a previous surgery,

imaging did not present a spiculated mass margin,

and the abnormality did not disappear in post-biopsy imaging

2 Imaging did not present an indistinct mass margin,
imaging did not present a spiculated mass margin,

and the abnormality did not disappear in post-biopsy imaging

3 Imaging did not present a spiculated mass margin,

and the abnormality did not disappear in post-biopsy imaging

4 Imaging did not present an indistinct mass margin,

and the abnormality did not disappear in post-biopsy imaging

5 The patient has no personal history of breast cancer,

and the abnormality did not disappear in post-biopsy imaging

Table 5.3: Individual Rule Performance on Full Dataset (# Folds is the

number of folds in which a rule was learned)

Rule #Folds TP FP FN TN Precision Recall Fy;
1 10 30 0 49 17 1.00 0.38 0.98
2 4 29 0 50 17 1.00 0.37 0.98
3 1 3 1 45 16 0.97 043 0.96
4 1 31 1 48 16 0.97 0.39 0.95
5 1 28 0 51 17 1.00 0.35 0.98

When we look at the specific rules generated, additional interesting

observations can be made. Importantly, the two rules that missed single

malignant cases were each only learned in a single fold, whereas the

strongest rule that misses no malignancies (Rule 1) was learned in ten

(of 17) different folds. Similarly, the second strongest rule that misses

no malignancies (Rule 2) was learned in four different folds. This lends

support to the idea that these two rules capture a significant signal across

the entire dataset. When choosing rules to implement clinically, clinicians
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would undoubtedly prefer rules that do not miss a cancer. Our results may
indicate that the combination of fold coverage and clinical judgement may
be a criteria on which to select the most advantageous rules. In our project,
this approach designates the first two rules as the most useful. Whether
these rules will be generalizable to new data remains future work.

When considering features that relate directly to imaging, some predi-
cates stand out. First, all of the rules require that the abnormality does not
disappear in post-biopsy imaging. This is, however, a counter-intuitive re-
quirement. From a clinical perspective, it makes greater intuitive sense to
consider a case likely to be benign if the abnormality disappears, because
it suggests that the entire abnormality was removed by the needle biopsy,
and therefore adequately sampled. However, we believe that this can be
explained by how patients with non-definitive biopsies are identified. All
of our patients underwent a core needle biopsy to provide a definitive
diagnosis of an abnormality identified in imaging. In those patients where
the abnormality did not disappear on post-biopsy imaging, clinicians may
be more concerned that the biopsy did not sample the correct tissue and,
therefore, be more likely to call it non-definitive. This sampling error can
then explain why it was included in our dataset in the first place, whereas
the biopsy may have been deemed definitively benign if the tissue had
been sampled sufficiently.

Mass margin, another predictive imaging descriptor, is included in
Rules 1 through 4. Specifically, the rules indicate that a case is benign if
imaging does not present an indistinct mass margin, or if imaging does
not present a spiculated mass margin. Mass margin has been shown to
be an important predictor of malignancy in prior literature (Liberman
et al., 1998). Rule 2, in particular, suggests that a case is benign if imaging
presents neither an indistinct or spiculated mass margin. Rules 3 and 4
suggest that a case is benign if either is not present, but this proves to be

less precise. Both rules are strong predictors, but they each misclassify
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one malignant case as benign.

Descriptors of patient history are included in Rules 1 and 5. In fact, the
clinical literature indicates that patients with a personal history of breast
cancer are at greater risk (Kurian et al., 2009; Bouchardy et al., 2011). Rule
5 explicitly suggests that a case is benign if the patient has no personal
history of breast cancer, but Rule 1 suggests that a case is benign if the
patient has not had prior breast surgery. Patients undergo breast surgery
not only for cancer but for definitive diagnosis of lesions considered to
be non-definitive (as discussed in this paper). Some entities for which
patients may undergo surgery include high risk lesions such as atypical
ductal hyperplasia or lobular carcinoma in situ. Although not cancers,
these lesions increase an individual’s personal risk of developing cancer in
the future. We posit that history of prior surgery may represent a surrogate
for these high risk lesions, though this must be verified in future work.

The choice to use ILP for learning was valuable not only because it
allows us to leverage our mult-relational data, but also because the learned
rules are interpretable in natural language. This means that clinicians may
be able to consider them in practice easily and immediately to assist in
decision-making when faced with a non-definitive diagnosis. The high
precision at which the rules operate may help to reduce concerns clinicians
may have about missing a malignancy. Interpretability also gives clinicians
the ability to reason about the clinical significance of the features used
in a rule, or even discover new and interesting combinations of features.
Combining physician-generated rules with machine learned rules has
been explored in previous work (Dutra et al., 2011) and we hope to extend
this promising direction of research using both multi-relational data and
a multidisciplinary physician team (rather than a single physician in one
domain).

Despite a small dataset, our approach was able to infer highly accurate

rules. We note that, while several of the rules are derived from imaging
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features, the pathology features are poorly utilized. This is likely because,
in our database, the imaging features are well populated and standardized
using BI-RADS, but most of our pathology results are stored in free text.
This suggests that an important goal is to improve our data collection
process, which may be reflected in an increased use of pathology features

in future work.



57

6 ADVICE-BASED LEARNING FRAMEWORK

Learning from the challenges of working with small training sets, we next
present work on developing a process to best leverage clinical expertise to
improve model performance (Kuusisto et al., 2015). In this work on breast
cancer, we still focus on the upgrade prediction task and demonstrate how

our process improves upon our previous work.

6.1 Introduction

Collaborations between medical domain experts (MDE) and computer
science experts (CSE) often involve the use of machine learning to de-
velop predictive models aimed at improving patient care. Unfortunately,
standardized, complete, and sufficient training data for machine-learning
algorithms is rarely available for a variety of reasons including variability
of practice between physicians as well as institutions, low disease preva-
lence on a population level, and confidentiality issues (Cohen et al., 2014).
The difficulty inherent in collecting large, high quality datasets represents
a major challenge in the development of machine learned models for de-
cision support. One of the solutions to this challenge is to incorporate
the clinical experience and intuition of MDEs, that may help compensate
for a lack of large training datasets (Mitchell, 1997). In fact, some success-
ful cases of integrating expert knowledge with predictive and analytical
models are available in the literature (Gibert et al., 2010; Velikova et al.,
2013). As it is nearly impossible for MDEs, who are not programmers, to
contribute their expertise directly to the software, we argue that there is a
need for a framework that improves close collaboration between MDEs
and CSEs to provide a method for shared dialog. Rather than solely pro-
viding training through a set of examples, it would be much more valuable
if the MDEs could (a) explain what the machine learner is doing wrong
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Figure 6.1: The ABLe Framework. To the left of the dotted line is the first
phase of training where medical domain experts (MDE) and computer
science experts (CSE) collaborate to produce an initial model. The second
phase, to the right, is an iterative process in which the task, variable rela-
tionships, and parameters are refined until the model meets the clinical
objective.

Machine generates
initial model

and (b) explain how to fix the current problem in a manner that will gen-
eralize to similar future cases. This dialog is the basic idea motivating our
development of Advice-Based-Learning (ABLe). In ABLe, MDEs provide
advice, and the learning algorithm is able to decide how best to absorb
it, possibly rejecting the advice or refining it based on the available data.
Based on continual observation of model performance, the MDEs can

provide additional advice.
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6.2 The ABLe Framework

Our ABLe framework (Figure 6.1) includes: (1) definitions and (2) iterative
steps. The definitions are:

Task The problem and scope with quantification of appropriate predictive
variables.

Variable Relationships Combinations of variables that are particularly
important for the task.

Parameter Values Algorithm settings or parameters that best represent
the clinical objective.

In the process of developing a decision support system, definitions
will be unique to the specific clinical goal. Modeling techniques should be
chosen based on both the data and the task, but this framework provides
a way by which the MDEs and CSEs can interact.

Regarding the iterative steps, we follow a similar process to Gibert et al.
(2010). In Steps 1 through 3, the MDEs and CSEs interact to establish an
initial model. In Step 1, the MDEs (physicians in our example) define a task
to address, provide the data, determine what variables will be used from
the data available, and determine what is the desired outcome. At this
point, the CSEs are involved in picking an appropriate machine learning
algorithm based on the task, data, and the needs of the MDE.

In Step 2, the physicians and computer scientists interact to produce an
initial set of variable relationships and value specifications. The variable
relationships correspond with clinician intuition about predicting the
chosen task based on relevant knowledge (e.g. the literature) and available
data. This advice is encoded in a way that allows it to be incorporated
directly into the chosen algorithm. There are multiple ways for prior
knowledge to be incorporated into learning algorithms (Simard et al.,
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1992; Towell and Shavlik, 1994; Lucas, 2001), and the method used for
each application will depend on decisions made in Step 1. For example,
physicians may choose to provide the structure for a Bayesian network
based on their expert knowledge of the variable dependencies. The value
specifications correspond to proper selection of algorithm parameters and
other experimental settings in order to obtain clinical significance. For
example, the physicians can help the computer scientists specify costs of
misclassification or a weighting scheme for importance of examples.

Finally, in Step 3 the initial model is trained and produces results on
an unseen set of data. Ideally, the unseen data will be truly new data, but
this can also mean methods such as cross-validation or bootstrap sam-
pling. The evaluation of the model will depend on the specific task being
addressed. For example, in the upgrade prediction task, the proportion
of malignant cases that are misclassified as benign is the most important
factor in deciding if the model meets the clinical objective. The results
must include such statistics.

Steps 1.x through 3.x show the iterative refinement process that occurs
after initial model production. In Step 1.x, the MDEs consider the results
produced by the model. Another interaction between MDEs and CSEs
takes place, and previous definitions of the task, variable relationships,
or value specifications are then modified in Step 2.x. For example, if the
current task definition proves to be too challenging, the MDEs can redefine
the task in the most fruitful direction. Similarly, the MDEs can modity,
remove, or provide additional variable relationships or value specifications.
Finally, in Step 3.x, a new model is trained and produces results on unseen
data, which again leads to Step 1.x+1. This process continues until the
MDEs are satisfied with the results produced by the model learned.

We next present the use of ABLe on an example task, predicting undi-
agnosed malignancy in the setting of a benign but non-definitive image-

guided breast core biopsy. In the next two sections, we briefly review the
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task and explain how we used ABLe to improve our model performance.
Although we apply it to a specific example, the framework works for a
wide range of medical tasks.

6.3 Task Prediction

For application of this framework, we focus on the upgrade prediction
task described in Section 4.1. Recall, again, that the clinical objective in
this task is to reduce the number of benign lesions that are excised as a
result of a non-definitive core needle biopsy (CNB). As we determined in
previous work, perhaps the greatest challenge in this particular task is the
relative rarity of the event. Though the number of women affected by non-
definitive CNB across the US is substantial, the availability of data to any
particular institution is relatively limited, thus making the development
of decision support systems more difficult.

6.4 Application of ABLe to Upgrade Prediction

In our first meeting to establish a model, the MDEs defined the task (Step
1.0) as predicting upgrade using a dataset of 157 biopsies that were prospec-
tively given a non-definitive diagnosis at radiologic-histologic correlation
conference. To incorporate physician advice about relationships between
variables (Step 2.0), we opted to use a logic-based language. Our vari-
ables consist of imaging findings, demographic information, and some
pathology findings. Physicians and computer scientists hand-coded expert
rules expressing combinations of variables that increase or decrease risk
of upgrade according to physician experience and the literature.

1. Risk of upgrade decreases if imaging features are “typically benign.”

2. Risk of upgrade decreases if BI-RADS category is low (3 or 4A).
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3. Risk of upgrade decreases for atypical/radial scar if the imaging

finding is explained by another pathology.

4. Risk of upgrade increases if imaging features are “high probability

of malignancy.”
5. Risk of upgrade increases if BI-RADS category is high (4C or 5).

6. Risk of upgrade increases in dense breasts on mammography (het-

erogeneously or extremely dense).

7. Risk of upgrade increases if complexity/density of breast tissue is

high (extremely dense).

To incorporate the rules into the model, we took a similar approach
to Dutra et al. (2011), treating them as binary features in our dataset. For
each example, every rule became a feature that was given a value of true
if the rule applied to that example, otherwise it was given a value of false.
We chose to use the Naive Bayes algorithm primarily for its simplicity,
making it more approachable for clinicians, and for its history of good
performance, despite strong independence assumptions (Zhang, 2004).
We also considered logistic regression as an alternative model because it is
generally accepted by the clinical audience, an important detail if a model
is to be put into practice. As shown by Ng and Jordan (2002) though, when
working with smaller datasets, generative models (e.g. Naive Bayes) may
be preferable to discriminative models (e.g. logistic regression) because
they reach their asymptotic error faster.

The initial model (Step 3.0) demonstrated no substantial ability to
identify benign non-definitive cases without misclassifying malignant
cases. Our MDEs considered the results produced by this initial model
(Step 1.1) and formed a hypothesis about what the primary challenge
was. Specifically, they surmised that the non-definitive population as a

whole was too challenging to be addressable with the predictive features
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available in a typical clinical dataset, and that targeting a subpopulation
would be most fruitful.

Non-definitive biopsies can be broken into three subtypes (discordant,
insufficient, and atypical/radial scar), and each subtype has distinct fea-
tures that are likely to predict upgrade. Discordance means that the histo-
logic findings do not provide an acceptable explanation for the imaging
features and indicates that the targeted tissue may not have been sampled
adequately. In this situation, the imaging features are likely to provide the
most influential variables in predicting upgrade. The other two subtypes
focus more on the histologic factors (cellular features) that raise the possi-
bility that abnormal tissue remains in the region of the biopsy, in which
case, pathology features should be more influential in predicting upgrade.

The dataset available to us for the task contains a limited set of pathol-
ogy features, but we use structured reporting in our imaging practice and
adhere to the BI-RADS lexicon, so our experts identified an opportunity to
employ machine learning methods that capitalize on the imaging features.
Thus, we chose to alter the task (Step 2.1) and focus on estimating the
probability of malignancy for discordant cases specifically. Due to the
alteration of the task, our physician experts also reduced the initial set of
variable relationship rules (Step 2.1) to a set of four specifically related
to predicting discordance (Rules 1, 2, 4, and 5 above). This also led us to
begin collecting a larger set of features in our medical practice for the sake
of future work on the other subpopulations. We again tested the model
with cross-validation (Step 3.1).

Evaluation of the next model (Step 1.2) demonstrated a marked im-
provement over the initial model (see Table 6.1). When trained with the
combined base feature set and the binary advice rules, the model showed
improvement over models trained on either feature set alone, though at
the cost of missing malignancies. We thus considered value specifications
that would help the model better address the clinical objective (Step 2.2).
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This led us to specify a highly skewed cost-ratio for false negatives versus
false positives. We selected a skew of 50:1 based on the 50 benign cases in
the discordant set to suggest that the algorithm prefer to misclassify every
benign case before misclassifying a single malignancy (Step 2.2). We again
tested the model with cross-validation (Step 3.2).

Review of the new model (Step 1.3) demonstrated an improvement
over the previous model, but still misclassified a single malignant case.
Upon inspection, this single misclassification was shown to be the result
of incorrectly entered features in our reporting software. These kinds of
errors should be expected in real-world data, which led us to reconsider
our skewed cost-ratio (Step 2.3). Our MDEs suggested an even more
conservative cost-ratio of 150:1 based not just on counts in the dataset, but
on recent work on utility analysis in mammography (Abbey et al., 2013)
(Step 3.3). This led us to our final model, which demonstrated our best

performance.

6.5 Methods

We used the dataset described in Section 4.1, which includes a population
of patients that underwent 1,910 consecutive CNB, as a result of a diagnos-
tic mammogram, from January 1, 2006 to December 31, 2011. Clinicians
prospectively gave a total of 157 biopsies a non-definitive diagnosis at
radiologic-histologic correlation conference, and 60 of these were catego-
rized as discordant. Recall that we have chosen to focus on the discordant
cases. The mean age of these patients was 55.2 years (range= 25 — 83
years, sd= 12.2), all 60 cases were women, and all underwent excision. As
a reference standard for final diagnosis, we use the result of excisional
biopsy (within 6 months after CNB) or a registry match (within 1 year
after CNB). Fifty were confirmed to be benign while 10 (16.7%) were found
to be malignant. A diagram of our case inclusion process can be seen in
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Figure 6.2, with the original numbers from the base dataset on the left and

the discordant subset on the right.

Diagnostic Mammogram Diagnostic Mammogram

15,911 15,911
Core Needle Biopsy Core Needle Biopsy
1,910 1,910
Non-Definitive Discordant
157 60
Benign Malignant Benign Malignant
128 29 50 10

Figure 6.2: Case inclusion diagrams for the entire non-definitive set (left),
and for our subset of interest, the discordant cases (right).

Radiologists described and recorded all mammographic findings us-
ing BI-RADS terms by the interpreting radiologist at the time of mam-
mography interpretation using structured reporting software (PenRad®,
Minnetonka, MN), which is routinely used in the University of Wisconsin
clinical practice. We derive mammography features and demographic risk
factors from the diagnostic mammogram that precedes the biopsy and
has an abnormal BI-RADS assessment category.

We use 10-fold stratified cross-validation for evaluation, and the Weka (Hall
et al., 2009) software package (version 3.7) to train a Naive Bayes (NB)
model for each fold. Note that NB is known to often accurately predict
the most probable label even though its predicted probabilities are not
well calibrated (Zadrozny and Elkan, 2001). We show results with a FN:FP
cost-ratio of 1:1 and a suggested cost ratio of 150:1 drawn from the liter-
ature (Abbey et al., 2013). We also show results when the expert advice
rules are either included or excluded from the dataset at training time to

better assess the importance of the variable relationship advice.
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Table 6.1: 10-fold cross-validated performance of Naive Bayes classifiers
with FN:FP cost-ratio of 1:1 and our final model with cost-ratio 150:1 at
2% threshold of excision.

FN:FP cost-ratio 1:1 FN:FP cost-ratio 150:1
Parameter Baseline Data  Rules Both | Data Rules Both
Biopsy 60 28 42 30 55 55 48
No Biopsy 0 32 18 30 5 5 12
Malignant Excisions 10 7 9 7 10 10 10
Benign Excisions 50 21 33 23 45 45 38
PPV (%) 16.7 25.0 214 23.3 18.2 18.2 20.8
Specificity (%) 0.0 58.0 34.0 540 | 10.0 10.0 24.0
Spec. > 0.0 p-Value - | 0.000%x 0.003%x 0.000% | 0.026 0.026 0.004x

We compare our trained models to the baseline of current standard
practice. For comparison, we consider a 2% threshold of predicted malig-
nancy that would hypothetically be used to decide if the patient should
go on to excisional biopsy. This threshold has been used previously and is
clinically reasonable (Burnside et al., 2009). The baseline current practice is
to excise all discordant cases, so there is no distinction of treatment at any
threshold. For each model, we compare the number of malignant cases
that would be excised, the number of benign cases that would be excised,
the positive predictive value (PPV) of malignancy, and specificity. We use
a one-sided, one-sample t-test at the 99% confidence level to compare the
specificity of the NB classifier to the baseline specificity of 0.0 (i.e. excision

of all cases).

6.6 Results

The results produced by our final model are in the rightmost block of
Table 6.1. This shows the performance of our NB classifier trained on
our discordant cases, with a FN:FP cost-ratio of 150:1, and a threshold for
excision with model output greater than or equal 0.02. The first column of
results shows the baseline performance for comparison, while the subse-
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quent blocks show results when trained on just the data, just the binary
advice features, and the two combined, at different cost-ratios. The left
block of Table 6.1 shows results when the cost-ratio is set to 1:1. We do
not present results of training on all non-definitive biopsies, but initial
experiments showed no significant ability to reduce benign excisions at
an output threshold of 0.02.

6.7 Discussion

We present a framework called ABLe for incorporating expert clinical
knowledge into machine learning models for decision support. The frame-
work consists of three different categories of advice that are used to itera-
tively refine model development. We describe ABLe in detail and illustrate
its application to the upgrade prediction task. For this task, we train Naive
Bayes models to estimate the probability of upgrade following a discordant
core needle biopsy. Note that this differs from work from Chapter 5 in that
we no longer infer logical rules, and instead favor a probabilistic model.
This makes the model less interpretable, but it allows for the possibility of
shared decision making between clinician and model. The clinician can
assess their own personal prediction and weigh it with that of the model.

We train our models using our base dataset, using just the binary rule
features, and the two combined. Additionally, we train our models with
costs skewed such that misclassifying benign cases is far preferable to
misclassifying even a single malignancy. Our results suggest that, by
refining our model with the ABLe process, we can significantly reduce the
number of truly benign discordant cases that go on to excision without
missing a single malignancy. We find these results and the incorporation
of expert knowledge very promising, and our future goals are to collect

more data to improve performance and to further validate our methods.
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'/ STATISTICAL RELATIONAL UPLIFT MODELING

We next take a step back from the upgrade prediction task and see how we
might be able to leverage uplift modeling to improve treatment assignment

in our other breast cancer application (Nassif et al., 2013a).

7.1 Introduction

Recall the breast cancer application introduced in Section 4.3. Breast
cancer has two basic states: an earlier in situ state where cancer cells are
still confined to where they developed, and a subsequent invasive state
where cancer cells infiltrate surrounding tissue. Since nearly all in situ
cases can be cured (American Cancer Society, 2009a), current practice is
to treat in situ occurrences in order to avoid progression into invasive
tumors (American Cancer Society, 2009b). Nevertheless, the time required
for an in situ tumor to reach invasive state may be sufficiently long for an
older woman to die of other causes, raising the possibility that treatment
may not have been necessary.

Cancer occurrence and diagnosis are determined through biopsy, a
costly, invasive, and potentially painful procedure. Treatment, which in-
cludes surgery sometimes followed by radiation therapy, is also costly and
may induce undesirable side-effects. Hence there is a need for pre-biopsy
methods that can accurately identify patient subgroups that would benefit
most from treatment, and especially, those who do not need treatment. For
the latter, the risk of progression would be low enough to employ watchful
waiting (mammographic evaluation at short term intervals) rather than
biopsy (Schnitt, 2010).

The literature confirms that the pre-biopsy mammographic appearance
as described by radiologists can predict breast cancer (Tabar et al., 2004;
Thurfjell et al., 2002). Furthermore, based on age, different pre-biopsy
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mammographic features can be used to classify cancer state (Nassif et al.,
2010).

As described in Section 4.3, younger women tend to have more ag-
gressive cancers that rapidly proliferate, while older women tend to have
more indolent cancers (Fowble et al., 1994; Jayasinghe et al., 2005). We
assume that younger in situ patients should always be treated, due to the
longer potential time-span for cancer progression. We further assume
that older in situ patients whose mammography features are similar to
in situ in younger patients should also be treated, because the more ag-
gressive nature of cancer in younger patients may be conditioned on those
features. On the other hand, older in situ patients whose mammography
features are significantly different from features observed in younger in
situ patients are less likely to experience rapid proliferation, and can thus
be recommended for watchful waiting.

The motivating problem at hand can readily be cast as an uplift mod-
eling problem (see Section 2.7 and Table 7.1). By maximizing the in situ
cases’ uplift, we are identifying the older in situ cases that are most dif-
ferent from younger in situ cases, and thus are the best candidates for
watchful waiting. Exactly like a marketing campaign would want to target
consumers who are the most prone to respond, we want to target the ones

that differ the most from the control group.

Table 7.1: Casting mammography analysis in uplift modeling terms.

Intervention Target Control Positive Negative
Group Group Class Class
Time Older Younger In Situ Invasive
cohort cohort

In recent work, Nassif et al. (2012a) inferred older-specific differentially-
predictive in situ mammography rules. They used Inductive Logic Pro-
gramming (ILP) (Lavrac and Dzeroski, 1994), but defined a differential-
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prediction-sensitive clause evaluation function that compares performance
over age-subgroups during search-space exploration and rule construction.
To assess the resulting theory (final set of rules), they constructed a TAN
classifier (Friedman et al., 1997) using the learned rules and assigned a
probability to each example. They finally used the generated probabilities
to construct the uplift curve to assess the validity of their model.

The ILP-based differential prediction model (Nassif et al., 2012a) had
several shortcomings. First, this algorithm used a differential scoring
function based on m-estimates (Mitchell, 1997) during clause construction,
and then evaluated the resulting theory using the area under the uplift
curve. This may result in sub-optimal performance, since rules with a
high differential m-estimate score may not generate high uplift curves.
Second, it decoupled clause construction and probability estimation: after
rules are learned, a TAN model is built to compute example probabilities.
Coupling these two processes together may generate a different theory
with a lower ILP-score, but with a more accurate probability assignment.
Finally, rules were added to the theory independently of each other, result-
ing in redundancies. Having the addition of newer rules be conditioned
on the prior theory rules is likely to improve the quality and coverage of
the theory.

In this work, we present a novel uplift modeling Statistical Relational
Learning (SRL) algorithm that addresses the above shortcomings. Our
method, Score As You Lift (SAYL), uses the area under the uplift curve
score during clause construction and final theory evaluation, integrates
rule learning and probability assignment, and conditions the addition of
new theory rules to existing ones. This work makes two main contribu-
tions. First, we present the first multi-relational uplift modeling system,
and introduce, implement and evaluate a novel method to guide search
in an SRL framework. Second, we compare our algorithm to previous ap-

proaches, and demonstrate that the system can indeed obtain differential
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rules of interest to an expert on real data, while significantly improving
the data uplift.

7.2 Background

In order to compare SAYL to prior work we first introduce the state of the
art for differential prediction in ILP. We also introduce the SRL algorithm
upon which SAYL is based.

7.2.1 Differential Prediction ILP

The earliest work (Nassif et al., 2012b) in differential relational learning
included a model-filtering method, whereby a standard ILP algorithm is
used to first generate rules trained on the target stratum of the dataset.
The rules are then subsequently filtered, removing those rules that are
also highly predictive in another stratum of the dataset. See Figure 7.1 for
a diagram of the filtration process.

Older In situ
cohort »/ ILP > rules
reports classifier

Younger Differential Oldgr spemflc
cohort . in situ
prediction
reports rules

Figure 7.1: Diagram of the model-filtering approach (Nassif et al., 2012b).

Subsequent work (Nassif et al., 2012a) accomplished differential pre-
diction by modifying the rule-scoring function used in a standard ILP
algorithm, where the score function is designed to be positively correlated
to the performance of a rule over the target stratum and negatively cor-

related to the performance of a rule over the other stratum. This score



72

function then guided the ILP learner to select rules that were differentially
predictive during theory construction, rather than having to select differ-
ential rules as a post-process. Integrating the differential rule selection
process into the theory construction process proved to be much more
effective than the model filtering approach. See Figure 7.2 for a visual
representation of the approach.

DP > Older-specific
sensitive in situ rules
ILP classifier

Figure 7.2: The differential prediction (DP) score function approach (Nassif
et al., 2012a).

Older
stratum
reports

Younger
stratum
reports

7.2.2 The Score as You Use (SAYU) Algorithm

Score As You Use (SAYU) (Davis et al., 2005) is a Statistical Relational
Learner (Getoor and Taskar, 2007) that integrates search for relational
rules and classification. It starts from the well known observation that a
clause or rule r can be mapped to a binary attribute b, by having b(e) =1
for an example e if the rule r matches e, and b(e) = 0 otherwise.

This makes it possible to construct classifiers by using rules as at-
tributes, an approach known as propositionalization (Zelezny and Lavrac,
2006). One limitation, though, is that often the propositional learner has
to consider a very large number of possible rules. Moreover, these rules
tend to be highly correlated, making it particularly hard to select a subset
of rules that can be used to construct a good classifier.

SAYU addresses this problem by evaluating the contribution of rules

to a classifier as soon as the rule is generated. Thus, SAYU generates rules
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using a traditional ILP algorithm, such as Aleph (Srinivasan, 2007), but
instead of scoring the rules individually, as Aleph does, every rule SAYU
generates is immediately used to construct a statistical classifier. If this
new classifier improves performance over the current set of rules, the rule

is added as an extra attribute.

Algorithm 7.1 SAYU

Rs < {}; My < InitClassifier(Rs) > Initialize theory and classifiers
while DoSearch() do

e” « RandomSeed(); > Select seed example
Le+ <+ saturate(e); > Construct bottom clause
while ¢ + reduce(L.+) do > Loop through clause space

M « LearnClassifier(Rs U{c}); > Train classifier with theory

and new clause
if Better(M, M) then © If new clause improves performance

Rs <~ RsU{c}; My <~ M; > Then add new clause to theory
break
end if
end while
end while

Algorithm 7.1 shows SAYU in more detail. SAYU maintains a cur-
rent set of clauses, Rs, and a current reference classifier, M. SAYU ex-
tends the Aleph (Srinivasan, 2007) implementation of Progol’s MDIE algo-
rithm (Muggleton, 1995). Thus, it starts search by randomly selecting a
positive example as seed, e™, generating the corresponding bottom clause!,
L+, and then generating clauses that subsume L .+. For every new such
clause c, it constructs a classifier M and compares M with the current M,.
If better, it accepts ¢ by adding it to Rs and making M the default classifier.
SAYU can terminate search when all examples have been tried without
adding new clauses. In practice, termination is often controlled by a time

limit.

IThe bottom clause refers to the most specific hypothesis covering a particular exam-
ple.
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Quite often, most of the execution time will be spent learning clas-
sifiers. Therefore, it is important that the classifier can be learned in a
reasonable time. Further, the classifier should cope well with many related
attributes. We use the TAN classifier (Friedman et al., 1997) because it is
computationally inexpensive, making it acceptable for SAYU, and because
it compensates well for highly dependent attributes.

Comparing two classifiers is not trivial. SAYU reserves a tuning set for
this task: if the classifier M has a better score on both the initial training
and tuning sets, the new rule is accepted. The scoring function depends on
the problem at hand. Most often SAYU has been used in skewed domains,
where the area under the precision-recall curve is regarded as a good
measure (Boyd et al., 2012), but the algorithm allows for any metric.

The original SAYU algorithm accepts a logical clause as soon as it
improves the network. It may be the case that a later clause would be
even better. Unfortunately, SAYU will switch seeds after selecting a clause,
so the better clause may be ignored. One solution is to make SAYU less
greedy by exploring the search space for each seed, up to some limit on
the number of clauses, before accepting a clause. We call this version of
SAYU exploration SAYU: we will refer to it as e-SAYU, and to the original
algorithm as greedy SAYU, or g-SAYU.

Algorithm 7.2 details e-SAYU. It differs from g-SAYU in that it keeps
track, for each seed, of the current best classifier M.+ and best clause c.+.
At the end, if a clause c.+ was found, we commit to that clause and update

the classifier.

7.3 SAYL: Integrating SAYU and Uplift
Modeling

SAYL is a Statistical Relational Learner based on SAYU that integrates
search for relational rules and uplift modeling. Similar to SAYU, every valid
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Algorithm 7.2 e-SAYU

Rs + {}; Mgy < InitClassifier(Rs)
while DoSearch() do
et « RandomSeed();
Lo+ < saturate(e™);
Cet < T; Me+ +— My;
while ¢ < reduce(L.+) do
M + LearnClassifier(Rs U{c});
if Better(M, M) then © If new clause improves performance

Cet < C; Mo+ — M; > Mark new clause as best
end if
end while
if c.+ # T then > If clause was found
Rs <+~ RsU{Ce+}; Mgy < Me+; > Add new clause to theory
end if
end while

rule generated is used for classifier construction via propositionalization,
but instead of constructing a single classifier, SAYL constructs two clas-
sifiers; one for each of the target and control groups. Both classifiers use
the same set of attributes, but are trained only on examples from their
respective groups. If a rule improves the area under the uplift curve (AUU)
by threshold 6, the rule is added to the attribute set. Otherwise, SAYL
continues the search.

The SAYL algorithm is shown as Algorithm 7.3. Like SAYU, SAYL
maintains separate training and tuning example sets, accepting rules only
when the classifiers produce a better score on both sets. This requirement is
often extended with a specified threshold of improvement 6, or a minimal
rule coverage requirement minpos. Additionally, SAYL also has a greedy
(g-SAYL) and exploratory (e-SAYL) versions that operate in the same
fashion as they do for SAYU.

The key difference between SAYL and SAYU, then, is that SAYL main-

tains a distinction between the groups of interest by using two separate
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Algorithm 7.3 SAYL

Rs + {}; M, M§ < InitClassifiers(Rs)
while DoSearch() do
el <+ RandomSeed();
L+ < saturate(e);
while ¢ < reduce(L.+) do
M3, M€ < LearnClassifiers(Rs U{c}); > Learn two classifiers
if Better(M?®, M€, M§, M§) then i If new clause improves uplift
Rs < Rs U {c}; Mj, M§ + M?*, M; > Add to theory
break
end if
end while
end while

classifiers. This is what allows SAYL to demonstrate differential perfor-
mance as opposed to standard metrics, such as the area under a precision-
recall curve. To compute AUU, SAYL simply computes the area under
the lift curve (AUL) for each of the groups using the two classifiers and
returns the difference.

SAYL and SAYU also differ in selecting a seed example to saturate.
Instead of selecting from the entire set of positive examples, SAYL only
selects seed examples from the positive examples in the target group.
This is not necessary, but makes intuitive sense as clauses produced from
examples in the target set are more likely to produce greater lift on the
target set in the first place.

7.4 Methods and Results

We apply SAYL to the breast cancer data used in Nassif et al. (2012a) and
described in Section 4.3. The data consists of two cohorts: patients younger
than 50 years form the younger cohort, while patients aged 65 and above
form the older cohort. The older cohort has 132 in situ and 401 invasive
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cases, while the younger one has 110 in situ and 264 invasive (see Table
4.3).

We use 10-fold cross-validation, making sure all records pertaining to
the same patient are in the same fold. We run SAYL with a time limit of
one hour per fold. We run folds in parallel. For each cross-validated run,
we use four training, five tuning and one testing folds. For each fold, we
used the best combination of parameters according to a nine-fold internal
cross-validation using four training, four tuning and one testing folds. We
try both e-SAYL and g-SAYL search modes, vary the minimum number
minpos of positive examples that a rule is required to cover between 7
and 13 (respectively 5% and 10% of older in situ examples), and set the
threshold 0 to add a clause to the theory if its addition improves the AUU
to 1%, 5% and 10%. We concatenate the results of each testing set to
generate the final uplift curve.

Table 7.2: 10-fold cross-validated SAYL performance. AUL is the area
under the lift curve and AUU is the area under the uplift curve. Rule
number averaged over the 10 folds of theories. For comparison, we include
results of Differential Prediction Search (DPS) and Model Filtering (MF)
methods (Nassif et al., 2012a). We compute the p-value comparing each
method to DPS, * indicating significance.

Algorithm AUU Older Younger Rules DPS
AUL AUL  Avg# p-value

SAYL 58.10 97.24 39.15 9.3 0.002 *

DPS 27.83 101.01  73.17 37.1 -
MF 2090 100.89  80.99 199 0.0039 *
Baseline 11.00 66.00 55.00 - 0.0020 *

Table 7.2 compares SAYL with the previously published Differential
Prediction Search (DPS) and Model Filtering (MF) ILP methods (Nassif
etal., 2012a), both of which had minpos = 13 (10% of older in situ). A base-

line random classifier achieves an AUU of 11. We use the Mann-Whitney
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test at the 95% confidence level to compare two sets of experiments. We
show the p-value of the 10-fold AUU paired Mann-Whitney of each method
as compared to DPS, DPS being the state-of-the-art in relational differential
prediction. We also plot the uplift curves in Figure 7.3.

90
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Uplift (nb of positives)

20 / '-...' "..".. ...................

10 Baseline
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Figure 7.3: Uplift curves for the ILP-based methods (Differential Prediction
Search (DPS) and Model Filtering (MF), both with minpos = 13 (Nassif
et al., 2012a)), a baseline random classifier, and SAYL with cross-validated
parameters. Uplift curves start at 0 and end at 22, the difference between
older (132) and younger (110) total in situ cases. The higher the curve, the
better the uplift.

SAYL 10-fold cross-validation chose g-SAYL in 9 folds and e-SAYL in 1,
while minpos was 13 (10% of older in situ) in 5 folds, and 7 (5%) in the
remaining 5 folds. Parameter 0 was selected to be 1% in 4 folds, 5% in 3
folds, and 10% in the remaining 3 folds. Table 7.3 shows how sensitive
SAYL is to those different parameters.



79

Table 7.3: 10-fold cross-validated SAYL performance under various param-
eters. Parameter minpos is the minimum number of positive examples
that a rule is required to cover. Parameter 0 is the AUU improvement
threshold for adding a rule to the theory. We also include results of SAYL
using cross-validated parameters and Differential Prediction Search (DPS).
We compute the p-value comparing each method to DPS, * indicating
significance. The maximum values for each column are in bold.

minpos © search AUU Older Younger Rules DPS
(%) mode AUL AUL  Avg# p-value

13 1 g-SAYL 6329 96.79 33.50 16.4 0.002
13 1 eSAYL 4351 83.82 40.31 2.0 0.049
13 5 g-SAYL 58.06 96.14 38.07 59 0.002
13 5 eSAYL 5337 85.66 32.29 1.8 0.027
13 10 g-SAYL 61.68 96.26 34.58 3.6 0.002
13 10 e-SAYL 65.36 90.50 25.14 1.1 0.002

7 1 g-SAYL 65.48 98.82 33.34 18.3 0.002

X X X X X X %

7 1 eSAYL 2550 74.39 48.90 3.0 0.695

7 5 g-SAYL 5891 96.67 37.76 58 0.002 *

7 5 eSAYL 3271 79.52 46.81 25 0.557

7 10 g-SAYL 6198 96.87 34.89 3.6 0.002 *

7 10 e-SAYL 5235 83.64 31.29 1.6 0.002 *

- - SAYL 58.10 97.24 39.15 9.3 0.002 *
13 - DPS 2783 101.01 73.17 37.1 -

7.5 Discussion

We now discuss both the overall model performance as well as the inter-

pretation of the resulting theories.

7.5.1 Model Performance

SAYL significantly outperforms DPS (Table 7.2, Figure 7.3), while ILP-
based runs have the highest older and younger AUL (Tables 7.2, 7.3). This

is because ILP methods use different metrics during clause construction
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and theory evaluation, and decouple clause construction from probability
estimation. SAYL builds models that are slightly less predictive of in situ
vs. invasive over the younger subset, as measured by the slightly lower
older AUL, but on the other hand it effectively maximizes uplift. In fact,
increasing lift on one subset will most often increase lift on the other
subset, since both sets share similar properties. SAYL avoids this pitfall
by selecting rules that generate a high differential lift, ignoring rules with
good target lift that are equally good on the controls. These results confirm
the limitations of a pure ILP approach, demonstrating significantly higher
uplift using SAYL.

The e-SAYL approach explores a larger search space for a given seed
before selecting a rule to add to the theory. This results in smaller theories
than greedy g-SAYL. Increasing 0, the AUU improvement threshold for
adding a rule to the theory, also results in smaller theories, as expected.
Ranging minpos between 7 and 13 does not seem to have a sizable effect
on rule number.

The g-SAYL approach shows performance that remains constant across
all parameters, its AUU varying between 58.06 and 65.48. At the same time,
its theory size ranges from 3.6 to 18.3. This indicates that the number of
rules is not correlated with AUU. Another indication comes from e-SAYL,
whose theory size changes little (1.1 — 3.0), while its performance tends to
increase with increasing minpos and 0. Its AUU jumps from the lowest
score of 25.50, where it is significantly worse than g-SAYL, to nearly the
highest score of 65.36. In fact, g-SAYL outperforms e-SAYL on all runs
except minpos = 13 and 6 = 10%.

The e-SAYL approach is more prone to over fitting, since it explores
a larger search space and is thus more likely to find rules tailored to the
training set with a poor generalization. By increasing minpos and 0, we
are restricting potential candidate rules to the more robust ones, which

decreases the chances of converging to a local minima and overfitting. This
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explains why e-SAYL had the worst performances with lowest minpos
and 0 values, and why it achieved the second highest score of all runs at
the highest minpos and 0 values. These limited results seem to suggest
using e-SAYL with minpos and 6 equal to 10%.

7.5.2 Model Interpretation

SAYL returns two TAN Bayes-net models, one for the older and one for
the younger, with first-order logic rules as the nodes. Each model includes
the classifier node, presented top-most in Figures 7.4 and 7.5, and the
same rules. All rules depend directly on the classifier and have at least
one other parent. Although both models have the same rules as nodes,
TAN learns the structure of each model on its corresponding data subset
separately, resulting in different networks. SAYL identifies the features
that best differentiate amongst target and control positive examples, while
TAN uses these features to create the best classifier over each set.

To generate the final model and inspect the resulting rules, we run
SAYL once with five folds for training and five for tuning. As an example,
Figures 7.4 and 7.5, respectively, show the older and younger cases TAN
models of g-SAYL with minpos = 13 and 6 = 5%. The older cohort graph
shows that the increase in the combined BI-RADS score is a key differential
attribute. The BI-RADS score is a number that summarizes the examining
radiologist’s opinion and findings concerning the mammogram (BIR, 2003)

We then can see two sub-graphs: the left-hand side sub-graph focuses
on the patient’s history (prior biopsy, surgery and family history), whereas
the right-hand side sub-graph focuses on the examined breast (BI-RADS
score, mass size). In contrast, the younger cohort graph is very different:
the graph has a shorter depth, and the combined BI-RADS increase node
is linked to different nodes.

As the number of rules increases, it becomes harder for humans to
interpret the cohort models, let alone their uplift interaction. In ILP-based
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breast category

combined BI-RADS increased up to 3 points over previous @

had previous in situ biopsy at same location breast BI-RADS score = 4

no family history of cancer, and n@ breast has mass size < 13 mm

Figure 7.4: TAN model constructed by SAYL over the older cases: the
topmost node is the classifier node, and the other nodes represent rules
inserted as attributes to the classifier. Edges represent the main dependen-
cies inferred by the model.

breast category

combined BI-RADS increased
up to 3 points
over previous mammogram

no family history of cancer, bre h ize< 13
and no prior surgery reast has mass size < 13 mm

Figure 7.5: TAN model constructed by SAYL over the younger cases. Notice
that is has the same nodes but with a different structure than that of the
older model shown in Figure 7.4.

had previous in situ biopsy
at same location

breast BI-RADS score = 4

differential prediction methods (Nassif et al., 2012a), theory rules are in-
dependent and each rule is an older in situ differential rule. In SAYL,
theory rules are dependent on each other, whereas a rule can be modu-
lating another rule in the TAN graph. This is advantageous because such
modulated rule combinations cannot be expressed in an ILP theory, and
therefore might not be learnable. On the other hand, SAYL individual
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rules are not required to be specific to older patients with in situ breast
cancer. A SAYL rule can predict invasive, or be younger specific, as long
as the resulting model is uplifting older in situ. Which decreases clinical
rule interpretability.

The average number of rules returned by SAYL is lower than ILP-
based methods (Table 7.2). SAYL effectively removes redundant rules by
conditioning the addition of a new rule on previous ones. We also note
that SAYL, like SAYU, tends to select short rules (Davis et al., 2005). DPS
produced five themes amongst its older in situ rules with a significantly
better precision and recall: calcification, prior in situ biopsy, BI-RADS
score increase, screening visit, and low breast density (Nassif et al., 2012a).

For SAYL runs returning small theories, the resulting rules tend to be
differential and fall within the above five themes. For example, g-SAYL

with minpos = 13 and 6 = 10% returns three rules:

1. Current study combined BI-RADS increased up to three points over

previous mammogram.
2. Had previous in situ biopsy at same location.
3. Breast BI-RADS score = 4.

These rules cover two of the five DPS themes, namely prior in situ biopsy
and BI-RADS score increase.

As the number of SAYL returned rules increases, rule interactions
become more complex, individual rules tend not to remain older in situ
differential, and rules are no longer confined to the above themes. In the
Figures 7.4 and 7.5 example, we recover the prior in situ biopsy and BI-
RADS score increase themes, but we also have non-thematic rules like “no
family history of cancer, and no prior surgery”. In the two runs returning
the largest theories, g-SAYL with 0 = 1% and minpos = 7 and 13, we
recover four of the themes, only missing calcification. Note that, as the
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graph size increases, medical interpretation of the rules becomes more
difficult, as well as identifying novel differential themes, since rules are
conditioned on each other.

Although the SAYL rules may not be differential when viewed individ-
ually, the SAYL final model is differential, significantly outperforming DPS
in AUU. DPS, on the other hand, is optimized for mining differential rules,
but performs poorly as a differential classifier. SAYL returns a TAN Bayes
net whose nodes are logical rules, a model that is human interpretable
and that offers insight into the underlying differential process. Greedy g-
SAYL's performance depended little on the parameters, while exploratory
e-SAYL's performance increased when requiring more robust rules.
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8 SUPPORT VECTOR MACHINES FOR UPLIFT MODELING

Building on our experience with creating models to maximize uplift, we
present and evaluate another approach to do so. We introduce uplift
maximization to one of the more popular machine learning approaches,
support vector machines (SVM). This work was published in Kuusisto
et al. (2014).

8.1 Introduction

Section 2.7 introduced the concepts of differential prediction and uplift
modeling. Differential prediction has broad and important applications
across multiple domains, but as specific motivating applications, we con-
sider two medical tasks here. One is the task described in Section 4.3 in
which we want to identify older patients with breast cancer who are good
candidates for “watchful waiting” as opposed to treatment. The other
task, described in Section 4.2, is one in which we want to identify patients
who are most susceptible to adverse effects of COX-2 inhibitors, and thus
not prescribe such drugs for these patients.

In the adverse drug effects task, due to individual variance in response
to drugs, there will be some people at increased risk of MI as a result
of taking the drug, some who are at increased risk of MI regardless of
treatment, some who are at decreased risk regardless, and perhaps even
some who are at decreased risk as a result of taking the drug. Just like in the
marketing task, which group an individual belongs to cannot be directly
observed. We propose that training a classifier to identify individuals for
whom taking a COX-2 inhibitor increases their risk of MI is analogous to
identifying Persuadables.

In the breast cancer task, we know that younger patients often have
aggressive cancers while older patients have both aggressive and indolent
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cancers. Again, like the uplift modeling task, which type of cancer a
patient has is not directly observable. We propose that training a classifier
to identify in situ cancers with features specific to older patients, and thus
likely less aggressive varieties of cancer, is also analogous to identifying
Persuadables.

The adverse drug event task alone is of major worldwide significance,
and the significance of the breast cancer task cannot be overstated. Finding
a model that is predictive of an adverse event for people on a drug versus
not could help in isolating the key causal relationship of the drug to the
event, and using machine learning to uncover causal relationships from
observational data is a big topic in current research. Similarly, finding
a model that can identify patients with breast cancer that may not be
threatening enough in their lifetime to require treatment could greatly
reduce overtreatment and costs in healthcare as a whole.

Several classification and regression algorithms have been proposed
and evaluated according to the uplift measure (Radcliffe and Surry, 2011;
Rzepakowski and Jaroszewicz, 2012; Nassif et al., 2012a; Jaskowski and
Jaroszewicz, 2012; Zaniewicz and Jaroszewicz, 2013). These models were
designed to improve the uplift curve, but do not directly optimize it. We
show that indeed it is possible to directly optimize uplift using a support
vector machine (SVM), and we propose and evaluate our SVM"F' model,
which does so. This model is constructed by applying Joachims” work on
the optimization of multivariate measures (Joachims, 2005) with SVMs.
We evaluate multiple models on our motivating applications and SVM"P!

shows the best performance in differential prediction in most cases.

8.2 Uplift-Agnostic Models

Recall from Section 2.7 that uplift modeling is an approach used in mar-

keting to identify the hidden Persuadable customer types, separating cus-
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tomers into target and control subgroups. For notational convenience, we
refer to the target and control subgroups as A and B respectively.

Section 2.7.1 explained that the lift curve reports the total percentage of
examples that a classifier must label as positive (x-axis) in order to obtain
a certain recall (y-axis), expressed as a count of true positives instead of
a rate. As usual, we can compute the corresponding area under the lift
curve (AUL).

Section 2.7.1 also explained that uplift is the difference in lift produced
by a classifier between subgroups A and B, at a particular threshold per-
centage of all examples. We can compute the area under the uplift curve
(AUU) by subtracting their respective AULs, where higher AUU indicates

an overall stronger differentiation of subgroup A from B:
AUU = AULA — AULg (8.1)

In the following subsections, we first introduce a number of possible
baseline modeling approaches to which we compare our SVM"P! approach.
These baselines are all SVM implementations that can be used to address
the differential prediction task, yet they do not directly optimize the uplift

measure at training time.

8.2.1 Standard SVM

We start with the standard SVM approach as a first baseline of comparison
to SVMYP'. As described in Section 2.4, support vector machines attempt to
find a maximum-margin separating plane between positive and negative

examples. The standard soft-margin definition (Vapnik, 1998) minimizes:

N

1

SIWIE+C) & (8.2)
i=1
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Subject to &; > 0. The formulation tries to minimize the two-norm of the
weight vector, w, and hence maximize the margin, while softly allowing
some errors, &;, whose cost depends on the tunable parameter C. Errors
here are distances from the decision boundary of examples that lie on the
wrong side of the boundary.

For the sake of comparison with SVM"F!, we evaluate the ability of a
standard linear SVM model to produce uplift in our applications of interest
(see Algorithm 8.1).

Algorithm 8.1 Standard SVM Experiment

Input :Train, Test > Given a train and test set

C < CVSelectC(Train); > Use cross-validation to select C
producing best uplift

M +— TrainSVM(Train, C); > Train standard SVM

EvaluateUplift(M, Test); > Measure uplift on test set

8.2.2 Target-Only SVM

Our second baseline is a standard SVM trained on only the target subgroup
of the training set (see Algorithm 8.2). This is the marketing “response
modeling” approach described in Section 2.7. In marketing, the idea is
that a model trained on only the target subgroup will be able to predict
customers that will respond after being targeted with marketing activity.
While this may be true, recall that this approach thus does not distinguish
between Persuadables and Sure Things.

In our applications, this means only training on the data for the older
subgroup of breast cancer patients, or the subgroup of MI patients who
have been prescribed COX-2 inhibitors.

8.2.3 Flipped-Label SVM

Jaskowski and Jaroszewicz (2012) propose a general method for adapting
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Algorithm 8.2 Target-Only SVM Experiment

Input :Train, Test > Given a train and test set

Traina, Traing < GetT&C(Train); > Split training set by target and
control groups

C <« CVSelectC(Traina); > Use cross-validation to select C
producing best uplift

M + TrainSVM(Traina, C); > Train standard SVM

EvaluateUplift(M, Test); > Measure uplift on test set

standard models to increase uplift, which we will use as our third baseline
for comparison. This is accomplished by flipping the classification labels in
the control subgroup during training. In this way, the classifier is trained to
correctly predict the positive class on the target subgroup, A, whereas it is
trained to predict the negative class in control subgroup, B (see Algorithm
8.3). The resulting classifier should then perform better on subgroup A
than subgroup B, thus increasing uplift.

Algorithm 8.3 Flipped-Label SVM Experiment

Input :Train, Test > Given a train and test set

Traina, Traing « GetT&C(Train); > Split training set by target and
control groups

Trainf < SwapPosNegLabels(Traing); > Flip the positive and negative

labels on control group

Train < Traina U Train{3 ; > Combine back into one set

C + CVSelectC(Train); > Use cross-validation to select C
producing best uplift

M + TrainSVM(Train, C); > Train standard SVM

EvaluateUplift(M, Test); > Measure uplift on test set

8.2.4 Two-Cost SVM

Our fourth and final baseline approach is to simply treat the errors on
the target and control subgroups differently (see Algorithm 8.4). Specifi-

cally, we propose the following adaptation of the standard minimization
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problem:
|A| IB|

SIWIP 4 CA Y £ Cs Y g 83)
i=1 j=1
subjectto & > 0,&; > 0,CA > 0and Cg > 0. We also assume C» > Cg,
penalizing errors on the target subgroup more than those on the con-
trol subgroup. Similar to the flipped-label model, the resulting classifier
should then perform better on subgroup A than subgroup B, thus increas-
ing uplift.

Algorithm 8.4 Two-Cost SVM Experiment

Input :Train, Test > Given a train and test set
Traina, Traing « GetT&C(Train); > Split training set by target and
control groups
Ca,Cg + CVSelectC(Traina, Traing); > Use cross-validation to select C A
and Cg producing best uplift
M + TrainSVM(Traina, Traing, Ca, Cg); > Train standard SVM with sepa-

rate costs for target and control
EvaluateUplift(M, Test); > Measure uplift on test set

8.3 Multivariate Performance Measures

Next, before we can define our SVMYP' approach, we briefly review Joachims’
SVMP! approach (Joachims, 2005) to maximize area under the ROC curve
(AUC) (Joachims et al., 2009). Note that we use an (x,y) feature vector
and label pair notation to represent examples throughout. Let tuples
X = (X1,...Xn) and § = (Y1, ..., Yn). Also, let tuple §’ = (yi,...,y},) be
a predicted assignment over the n examples, and let Y be the set of all
possible assignments. This approach proposes that we want to find the
hypothesis that maximizes some objective function over the training data:

argmax f(X, ) + A(Y’, §)
'€y
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where A({’,4) is a problem-specific loss function, and f(x, §) is a score
function.

We first define the loss function for AUC, Aayc. This loss formulation
applies to the AUC when AUC is defined as:

_ BadPairs
N x P

where N is the number of negative examples, P is the number of positive
examples, and BadPairs is the number of pairs (i,j) such thaty; =1,y; =
—1, and y{ < yj. That is, BadPairs is the number of pairs of positive
and negative examples, such that the positive example has a predicted
score lower than that of the negative example. Joachims addresses the
optimization problem in terms of pairs yj;, where y;; is 1 if y{ > y;, and
—1 otherwise. The loss function for AUC is simply the number of swapped
pairs:

PN
Apuc(@’,§) = ZZ 5(1 —U{j) (8.4)

The score function, f(X, 1), is a product of a weight vector, w, and a

function, ¥, of input features and predicted outputs:

u:‘ |

P N
ZZHU wixi — w'x) (8.5)

I\)l*-‘

This score function then increases as pairs of positive and negative ex-
amples are pushed farther apart on correct sides of the decision boundary,
and the loss function penalizes for the number of swapped pairs, thus

optimizing for AUC. Joachims’ algorithm solves for this problem.
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8.4 Maximizing Uplift

Our goal is to find the parameters w that are optimal for maximizing
AUU. Similar to AUC (Joachims, 2005; Zhang et al., 2009; Narasimhan and
Agarwal, 2013), AUL depends on the rankings between pairs of examples.

Recall from Section 2.7.1 the relationship between lift and ROC. As shown

P

in Tufféry (2011), if we define the positive skew of a dataset as m = 5,

the AUL is related to the AUC by:
AUL = P (g F(1- n)AUC) (8.6)

Expanding Equation 8.1 with Equation 8.6:

AUU = PA (%A +(1— nA)AucA) — Pg (% +(1- nB)AUCB) (8.7)

where Pn, P, s, and g are properties of the two subgroups, and thus
independent of the classifier. Removing constant terms we see that maxi-

mizing uplift is equivalent to:

max(AUU) = TTLCLX(PA(l — WA)AUCA — PB(l — WB)AUCB)

Pg (1 —mp)
Defining A = E}‘ig:;i)) we have:
max(AUU) = max(AUCA — AAUC3R) (8.9)

Therefore, maximizing AUU is equivalent to maximizing a weighted dif-
ference between two AUCs.

Equation (8.9) suggests that we can use the AUC-maximizing SVM
formulation to optimize AUU. First, we make AUU maximization into

the maximization of a sum by switching positive and negative labels in
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subgroup B (call this AUCy):

max(AUU) = max(AUCA — A(1 — AUCS))
= max(AUCA + AAUCE) (8.10)

We can now encode our problem using Joachims’ formulation of the
AUC. In this case, we simply have two AUCs. One, as before, is obtained
from the y;; where the (i,j) pairs range over the target subgroup A. The
second corresponds to pairs yix, where the (k, 1) pairs range over B. On
switching the labels, we must consider y;x where k ranges over the posi-
tives in B, and | over the negatives in B.

After switching labels, we can translate Equation 8.4 to obtain our new
loss Aauu as the weighted sum of two AUC losses:

P N

PA Na
Aauu(y’, ) ZZ% —Vyj) +7\ZZ (1 =y (8.11)

k=1 j=1

From Equation 8.5 we construct a corresponding score function:

Pa Pg Ng
w'¥(x,§) :%ZZyllwx1 w'x;) 4+ Az ZZULkWXl w'xy)

i=1 j=1 2o

(8.12)
The optimization is now simply a function of two independent sets of ex-
amples for the same weight vector w, and we can plug these new functions
into SVMP. See Algorithm 8.5 for the experimental process for SVM"P',
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Algorithm 8.5 SVM"F! Experiment

Input :Train, Test > Given a train and test set
Traina, Traing < GetT&C(Train); > Split training set by target and
control groups
C + CVSelectC(Traina, Traing); > Use cross-validation to select C
producing best uplift
M + TrainSVMUYP (Traina, Traing, C); > Train SVMYP!
EvaluateUplift(M, Test); > Measure uplift on test set

8.5 Methods

We implemented our SVM"P! method ! using the SVMP*™ codebase, ver-
sion 3.00%. We implemented the two-cost model using the LIBSVM code-
base (Chang and Lin, 2011), version 3.17°. All other uplift-agnostic ap-

proaches were run using LIBSVM, but required no changes to the code.

8.5.1 Simulated Customer Experiments

As described in Section 2.7 the goal of uplift modeling is to identify the
hidden Persuadable customer group. The fact that customer groups cannot
be directly observed, however, makes it difficult to understand if maxi-
mizing area under the uplift curve really does help to produce classifiers
that can specifically identify Persuadables. To confirm this assumption, we
first present an experiment on the synthetic dataset described in Section
4.4. For this dataset, we generate a synthetic customer population and
subject them to a simulated marketing campaign, where customers are
made to respond stereotypically for their customer group. The dataset is
composed of 10,000 customers (see Table 4.4 for more detail).

The code can be found at: http://ftp.cs.wisc.edu/machine-learning/
shavlik-group/kuusisto.ecmll4.svmuplcode.zip

2http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html

Shttp://www.csie.ntu.edu.tw/~cjlin/libsvm


http://ftp.cs.wisc.edu/machine-learning/shavlik-group/kuusisto.ecml14.svmuplcode.zip
http://ftp.cs.wisc.edu/machine-learning/shavlik-group/kuusisto.ecml14.svmuplcode.zip
http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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We removed the customer group feature from the training set and
trained three different classifiers to demonstrate performance. First, we
trained a standard SVM classifier on the entire dataset. Next, we trained a
target-only SVM on just the target subgroup. Finally, we trained SVM',
We evaluated the results using 10-fold cross-validation and used internal
cross-validation to select parameters.

200
SVM-Upl

150
100 o )

a"
50 et S

Uplift

-50

-100

Dataset Proportion

Figure 8.1: Uplift curves (higher is better) for three different classifiers
on the simulated customer dataset. SVM-Upl is the uplift maximizing
support vector machine presented in Chapter 8. Target-Only is a support
vector machine trained only on the targeted subgroup of the population.
Standard is a support vector machine trained on both the target and control
subgroups with no distinction made between them.

Figure 8.1 shows the uplift curves on the synthetic customer dataset. As
expected, the SVM designed to maximize uplift produces the highest uplift
curve, while the standard SVM trained on the entire dataset produces the

lowest. More importantly, Figure 8.2 shows ROC curves on the synthetic
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Figure 8.2: ROC curves (higher is better) for three different classifiers on
the simulated customer dataset when the hidden Persuadable customer
group is treated as the positive class. Note that the ROC-Opt curve is for
an SVM trained to maximize AUC when trained with the ground truth
Persuadable labels, representing an empirical optimum ROC curve.

customer dataset when the Persuadable customers are considered to be the
positive class. Recall that this feature was unobserved at training time,
but identifying Persuadables is the real goal in the marketing domain. The
ROC-Opt model shown in this second figure is an SVM trained to optimize
the AUC when given the true Persuadable label. This model then represents
an empirical optimum ROC curve that can be achieved when given the
ground truth, which is not otherwise available. As hoped, the SVMYP! has
the highest ROC curve and is quite close to the empirical optimum curve,
whereas the standard SVM trained on the entire dataset hovers around
the diagonal.
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8.5.2 Medical Application Experiments

Recall that our motivating applications are to produce a classifier to predict
in situ breast cancer specific to older patients, and produce a classifier to
predict myocardial infarction (MI) specific to patients who took COX-2
inhibitors. We apply all of the proposed approaches to the breast cancer
data described in Section 4.3 and the COX-2 data described in Section 4.2
(see Tables 4.3 and 4.2 for more detail).

The breast cancer data consists of two cohorts: patients younger than
50 years old form the younger cohort, while patients aged 65 and above
form the older cohort. The older cohort has 132 in situ and 401 invasive
cases, while the younger one has 110 in situ and 264 invasive.

The COX-2 dataset consists of patients separated into two equally-sized
subgroups: patients who have been prescribed COX-2 inhibitors and those
who have not. The group prescribed COX-2 inhibitors has 184 patients
who had MI, and 1776 who did not. The subgroup not prescribed COX-2
inhibitors has the same number of patients for each outcome.

Table 8.1: 10-fold cross-validated performance for all proposed approaches
on the breast cancer dataset (* indicates significance).

Model Older Younger AUU Per-fold Per-fold SVMUP!

AUL AUL AUUpn AUUo p-value

svMmUp! 64.26 45.05 19.21 1.93 0.78 -

Two-Cost 74.30 60.76 13.54 1.45 1.18 0.432
Older-Only  67.70 61.85 5.85 1.03 1.15 0.037 *
Standard 75.35 64.34 11.01 1.26 0.38 0.049 *
Flipped 53.90 49.08 4.82 0.77 0.58 0.020 *
Baseline 66.00 55.00 11.00 1.10 0.21 0.004 *

We use 10-fold cross-validation for evaluation. Cost parameters were
selected for each fold using 9-fold internal cross-validation. For all ap-
proaches, the cost parameter was selected from {10.0, 1.0, 0.1, 0.01, 0.001,
0.0001, 0.00001}. For the two-cost model, C4 and Cg were selected from
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Table 8.2: 10-fold cross-validated performance for all proposed approaches
on the MI dataset (* indicates significance).

Model COX-2 NoCOX-2 AUU Perfold Per-fold SVMUP!

AUL AUL AUUp AUUo p-value
SVMYP! 123.38 72.70 50.68 5.07 2.04 -
Two-Cost  126.23 106.25 19.99 243 1.54 0.004 *
COX-2-Only  151.50 137.70 13.80 1.18 1.52 0.002 *
Standard  147.69 146.49 1.20 -0.16 1.25 0.002 *
Flipped  102.15 73.63 2852 2.97 1.35 0.037 *
Baseline 0.00 0.00  0.00 0.00 0.00 0.002 *

all combinations of values from the set such that C5 > Cg. We plot the
final uplift curves for each approach along with the uplift for a baseline
random classifier in Figures 8.3 and 8.4.

Tables 8.1 and 8.2 compare SVM"P! with every other approach proposed
as well as a fixed baseline random classifier. We use the Mann-Whitney
test at the 95% confidence level to compare approaches based on per-fold
AUU. We show the per-fold mean, standard deviation, and p-value of
the 10-fold AUU paired Mann-Whitney of each method as compared to
SVMYP! (* indicates significance).

8.6 Discussion

We now discuss the overall model performance for both medical applica-

tions, as well as interpretation of the breast cancer model.

8.6.1 Model Performance

The results on the breast cancer dataset in Table 8.1 show that SVM"!
produces significantly greater uplift than all proposed approaches, except
for the two-cost model. This exception may be a result of the higher
variance of the model on this particular dataset. The results on the MI
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dataset in Table 8.2 show that SVM"P! produces the greatest uplift in all
cases.

Figure 8.3 shows SVM"P! with an uplift curve that dominates the rest
of the approaches until around the 0.7 threshold on the breast cancer
dataset. Most other approaches produce curves that sit around or below
the baseline.

Figure 8.4 tells a similar story, with SVM"P' dominating all other meth-
ods across the entire space on the MI dataset. In this dataset, however,
only the standard SVM approach consistently performs below the baseline,
whereas all other methods appear to produce at least modest uplift.

30
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s /i e e 4 Older-Only
> 5 -+ =¥ - -Flipped
A Baseline
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Figure 8.3: Uplift curves (higher is better) for all approaches on the breast
cancer dataset.

8.6.2 Model Interpretation

While the main goal of SVM"' is to develop a model that directly max-
imizes uplift, it is also desirable to be able to interpret learned models,
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Figure 8.4: Uplift curves (higher is better) for all approaches on the MI
dataset. Note that the baseline uplift lies on the x-axis due to the equal
number of patients with MI in each subgroup.

especially from a clinical standpoint. SVMs do not lend themselves easily
to interpretation, but one method of SVM feature selection that can be
used for interpreting feature importance is recursive feature elimination
(RFE) (Guyon et al., 2002). RFE allows for interpretation of the model by
ranking individual features by way of learned model coefficients.

Briefly, RFE operates by training an initial model with all of the features
included in the dataset (see Algorithm 8.6). Once the initial model has been
trained, the feature with the smallest magnitude coefficient is identified
and removed. The removed feature is assumed to be the least important
feature, as it affects the model output the least (assuming feature values
have been normalized). Furthermore, the sign of the coefficient can be
interpreted as determining the directionality of the feature contribution.
After this least important feature is removed from the dataset, a new model
is trained. The coefficient with the smallest magnitude in this model is
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the second least important feature. The process continues in this way,

eliminating features one at a time.

Algorithm 8.6 Recursive Feature Elimination

R+ {} > Init rank list
T < Train; > Init data with full training set
M + TrainSVM(T); > Train initial SVM

while T # () do
f < MinMagnitudeCoeff(M); > Select least important feature

T« T\ > Remove feature
R« RUT; > Add feature to ranking
M < TrainSVM(T); > Train new SVM
end while
return R; > Return feature ranking

We ran RFE experiments with SVMYP! on our breast cancer dataset and
presented the top ranked features to our expert radiologist. The top five
features correlated with in situ breast cancer specific to older women can
be found in Table 8.3. The table includes positive/negative correlation,
as well as assessments made by an expert radiologist, where 10 indicates
a clinically interesting feature and 1 indicates a clinically uninteresting
feature.

As the table shows, SVM"F! was able to pick up on clinically-relevant
features. Remember, the features are not just associated with in situ cancer
in general, but are relevant for understanding in situ breast cancer specific
to older patients. We find these results promising as they demonstrate
even greater potential of uplift modeling for the understanding of disease
and knowledge discovery.

In summary, we have introduced a support vector model directed
toward uplift modeling. The SVM"P approach optimizes uplift by relying
on the relationship between AUL and AUC, and on multivariate function
optimization used in prior work to optimize AUC. Our results suggest that
SVM"P! does indeed achieve better uplift in unseen data than the other
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Table 8.3: The five most important features to predict older-specific in
situ breast cancer as determined by recursive feature elimination. This
table also includes the positive /negative correlation directionality, as well
as a radiologist assessment of relevance (10 = clinically interesting, 1 =
clinically counter-intuitive).

Rank Feature Older In Situ  Radiologist
Correlation ~ Assessment
1 Linear Calc. Distribution Present Positive 10
2 Spiculated Mass Margin Present Negative 10
3 Palpable Lump Present Positive 3
+ Irregular Mass Shape Present Negative 9-10
5 No Family History Negative 8

approaches, and we have demonstrated that interpretation of the model
coefficients demonstrates clinically-relevant feature rankings driven by
uplift modeling.
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O EXPERIMENTS IN INDIVIDUALIZED TREATMENT

ASSIGNMENT

In this chapter, we present work that investigates the use of machine learn-
ing to estimate individualized treatement effects (ITE) as an alternative to
traditional statistical approaches. We do not present new algorithms in
this work, but instead simply argue that machine learning offers tools to
help improve patient care. This is joint work with Jeremy Weiss, and much
of it has already been included in his dissertation (Weiss, 2014). Since his
dissertation was published, we have performed additional experiments
with real data and a successful peer review (Weiss et al., 2015).

9.1 Introduction

Recall from Chapter 3 that estimation of the risk of a disease attributable to
an exposure or treatment is one of the fundamental tasks in epidemiology
and is typically determined using randomized controlled trials (RCTs).
The average treatment effect (ATE)-the primary outcome of an RCT-is the
average difference between treatment arms in the probability of the out-
come, which is then used to recommend future treatments for individual
patients. While ATEs are indicative of true treatment effects even in the
presence of confounders, they have limited applicability for individual
patients because we do not expect the same treatment effect in every per-
son and diversity of effects goes beyond a population’s nonuniform prior
risk. Furthermore, the ATE is population-distribution dependent, so it
inherently lacks generalizability to alternative test distributions. Therefore,
we consider modeling the individualized treatment effect (ITE).

Currently, non-randomized epidemiological studies adopt classical sta-
tistical procedures, such as logistic regression (LR), in seeking to improve
patient outcomes. However, machine learning has developed many alter-
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native models for conditional probability distributions (CPDs). Advances
in machine learning should be leveraged in estimation of the treatment
effect-a crucial epidemiological outcome of interest. Our work proposes
the use of non-parametric algorithms possessing consistency results in
place of logistic regression because of their theoretical ability to accurately
recover the CPDs. Parametric models make assumptions about the distri-
bution from which data are drawn, whereas non-parametric models do not,
and consistent learners’ estimates converge toward the true distribution
of the data as they are given more examples.

In this chapter, we show the value of ITE over ATE as well as the use
of conditional probability models over logistic regression, using both syn-
thetic and real data. We demonstrate our ability to recover the true ITE
in synthetic data, and we show the generalizability of the conditional
probability model to alternative population distributions of increasing
Kullback-Leibler (KL) divergences. We also show that a conditional proba-
bility model learned with a consistent, non-parametric algorithm achieves
a lower mean squared error (MSE) estimate of the ITE than logistic re-
gression. Furthermore, we show that the conditional probability model
produces a better estimate of the ITE than logistic regression on a real RCT
dataset of D-penicillamine use for primary biliary cirrhosis. Additionally,
we show that learning from propensity-score matched (PSM) examples
and stable inverse probability of treatment-weighted ((s)IPT-W) examples
do not improve over unweighted examples for making ITE prediction
when only observational data is available. Thus, by casting treatment
effect estimation in a machine learning framework, we introduce ways
machine learning can be used to develop improved, personalized-risk

estimates and treatment recommendations.
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9.2 Background

Randomized controlled trials randomize patients to different treatment
arms and measure the rate or probability of an outcome. The treatment
arm with the highest success rate determines the preferred treatment.
Randomization is crucial to balance confounders, which are covariates that
lead to the outcome and are associated with the treatment (e.g. smoking
is a confounder for the effect of alcohol consumption on outcomes like
lung cancer). Randomization also balances confounders not measured in
the study, so the conclusion is free of confounding bias in expectation.

In general, one cannot know what will happen to a specific patient
under each treatment arm. The treatment that is given elicits the “true”
outcome, and the treatment(s) not given elicits the “counterfactual” out-
come. The counterfactual outcome is impossible to measure, because a
patient cannot be both given and not given treatment, but with random-
ization and the assumption that patients are drawn from an underlying
population distribution, the expected outcome of patients assigned to a
treatment arm is the same as the expected outcome of patients with the
same treatment, true or counterfactual. Thus, RCTs provide a recommen-
dation about the treatment effect for every treatment arm in the study for
every patient.

The RCT, however, is impractical or infeasible for many exposure-
outcome pairs. For example, randomization to a harmful treatment, such
as smoking, is unethical. In such cases, observational studies are used to
derive risk attribution statements. These include studies that use known-
confounder-modeling (Prentice, 1976), propensity scoring (Austin, 2011;
Rosenbaum and Rubin, 1983), inverse probability of treatment-weighting
(Robins et al., 2000), and doubly-robust estimators (Bang and Robins, 2005).
The two main ideas in these methods are to (1) adjust for confounders by
modeling them, and (2) manipulate the population distribution so that the

treatment is independent of confounders given the outcome. These meth-



106

ods rely upon modeling, but cannot do so effectively if they are missing
important contributors to their model: the unobserved confounders. Thus,
one key assumption in all of these methods is that there are no unobserved
confounders (NUCA), which is difficult to determine in practice. Also,
in most of these approaches, a model is assumed for the CPD of the out-
come given the exposure and covariate. In these cases, the counterfactual
outcomes, which are never observed, are assumed to follow the model
CPD.

A second assumption made in clinical studies is the exclusion of in-
termediate variables—covariates that are on the causal pathway from the
treatment to the disease. If included, the treatment effect is underesti-
mated because the effect can be “explained away” by the intermediate
variable. The exclusion of intermediate variables decreases the richness
of the model, as the intermediate variable may also modify the treatment
effect, and analyses that acknowledge and integrate this information exist
(Robins, 1989).

The ITE provides the effect per individual instead of a population-level
effect, and information about future individuals can be leveraged in de-
termining optimal treatment choices. Unlike in ATE estimation though,
acquiring sufficient counts to estimate the counterfactual ITE outcome is
unachievable for any moderate-sized feature vector because the number
of possible feature states is exponentially large. Therefore, a modeling ap-
proach to estimate the counterfactual outcome becomes necessary. These
can be the same CPD models used in pseudo-randomized ATE estimation,
e.g. logistic regression, but in Section 9.3 we will discuss two reasons to
adopt other machine learning models: non-uniform treatment recommen-
dations and non-parametric consistency.

Modeling of the individualized treatment has been implemented in
several studies. Qian and Murphy (2011) develop the framework of re-

ward modeling and using model predictions to estimate individualized
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treatment rules (ITRs). Our work is related but instead makes statements
about the utility of the ITE, the generalizability of the ITE, and the pref-
erence for using unweighted observational data for ITE estimation, all
with simulations to illustrate these advantages. Our simulations based on
synthetic data have access to a ground truth ITE, which we use to assess
our ITE estimations.

However, it is possible to assess the benefit of ITE without access to
ground truth. Vickers et al. (2007) provides an unbiased method to es-
timate the advantages of using the ITE recommendation over the ATE
recommendation using existing RCT data. They show that by counting
outcomes in the subset of patients where ITE- and ATE- treatment recom-
mendations agree, the expected difference in treatment recommendations
can be estimated. Our experiments include such analyses to show that the
ITE-recommendation can be estimated without access to the counterfac-
tual outcomes.

The methods we adopt do not directly optimize the individualized
treatment recommendation. Instead, we model the conditional probabil-
ity distribution, and then the differences in probability are determined
using the estimates for the treatment effect of the true and counterfactual
treatments. Zhao et al. (2012) develop a method to directly optimize for
the ITR under a surrogate loss function from RCT data. While this method
produces individualized recommendations, we believe a model should
also provide treatment effect estimates under each treatment arm, because

the treatment effect itself is critical information clinically.

9.3 Methods

We first define ITE modeling formally. Let the ITE for an outcomey € {0, 1}
of a patient with features v given treatment u € {0, 1} be the difference in

estimates: p(y = 1ju =1,v)—p(y = 1lu = 0,v). The key assumption made
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in these modeling approaches is that both potential outcomes—the true
outcomes Yy and the counterfactual outcomes y—come from the CPD
model, that is, p(y«lw, v) = p(Yuuwelt, V) = p(ylu,v) for all u and v. The
interpretation of the ITE is only causal if the no unmeasured confounders
assumption (NUCA) is made; otherwise, it is just a statement about the
difference in outcome probability given a new patient described by (u,v).

If we have a correctly specified model and NUCA holds, for any new
patient, we have their ITE that guides our treatment choice. This state-
ment is notably population-distribution free and thus can generalize to
arbitrary population distributions of (u,v). The ATE does not have this
characteristic; its calculation is dependent on the distribution of (u,v) so
its application should be limited to populations with similar covariate
distributions unless the treatment effect is believed to be uniform.

Recalling that the application of the RCT-recommended treatment sug-
gests that every patient should receive that treatment, a logistic-regression-
based model similarly provides a uniform decision. Its decision will be in
agreement with the sign of the treatment parameter. However, in many
cases, and particularly in those where the treatment effect has small mag-
nitude but high variance, the optimal treatment decision is nonuniform.
Thus, we adopt machine learning methods which can estimate the CPD
while also providing nonuniform treatment choices. In particular, we
use AdaBoost because it has consistency results and is a non-parametric
learning algorithm (Freund and Schapire, 1996; Culp et al., 2006). In other
words, AdaBoost will recover the correct CPD given enough examples
(consistent), and will do so regardless of the training (u,v) distribution
provided proper support (non-parametric).

With the adoption of a non-parametric learning algorithm comes the
parametric/non-parametric learning trade-off. Parametric models may
require smaller sample sizes to learn effectively but are not consistent if

misspecified; non-parametric models may require larger sample sizes to
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achieve good CPD estimates but have arbitrary joint distribution consis-
tency results.

Propensity-score matching (PSM) and (stabilized) inverse probability-
of-treatment weighting ((s)IPT-W) are methods to produce pseudo-
randomized data for the estimation of the ATE (Austin, 2011; Rosenbaum
and Rubin, 1983; Robins et al., 2000). With ITE as the target statistic, these
methods become less desirable. In modeling the CPD, PSM and IPT-W
weighting reduce the effective sample size, reducing our numbers for esti-
mation. Thus under the modeling assumption and the goal of modeling
ITE, we argue for unweighted CPD estimation. Table 9.1 compares and
summarizes the advantages and disadvantages of study methods related
to ATE and ITE estimation.

9.4 Experimental Approach

In this section, we restate the claims and reasoning in support of the
individualized risk framework and provide ways to confirm them ex-
perimentally using synthetic data with access to ground truth, or using

observational or RCT data.

Table 9.1: Discussed methodologies with positive and negative character-
istics in green and red respectively. ATE is average treatement effect, ITE is
individualized treatment effect, RCT is randomized controlled trial, PSM
is propensity-score matching, (s)IPT-W is (stabilized) inverse probability-
of-treatment weighting, LR is logistic regression, CPD is conditional proba-
bility distribution, and NUCA is no unmeasured confounders assumption.

Topic Negative Positive

ATE applicability, generalizability clinical trial gold standard
ITE hard to estimate in RCT applicability, generalizability
RCT impractical balanced confounders

PSM, (s)IPT-W  NUCA, decreased effective sample size ~ pseudo-randomized

LR uniform treatment recommendation log odds interpretation

CPD potential outcomes follow model mature machine learning
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As already noted, there is a strong argument for estimating the ITE
over the ATE because the ITE is applicable for patient-specific recommen-
dations as opposed to ATE-based, population-average recommendations.
With correct specification and NUCA, the ITE is also generalizable to
arbitrary population distributions, though it is harder to estimate than
the ATE. The value of the ITE recommendation can be compared against
an alternative—for example, ATE recommendation—using the subset of
randomized patients where treatment recommendations are the same
(Vickers et al., 2007). With these methods, we test the hypothesis of ITE
superiority and illustrate the benefits of ITE estimation on synthetic data.

We suggest that, in preference for generalizability of study outcome,
the conditional probability distribution p(ylu,v) should be modeled with
non-parametric learning algorithms. That is, our goal should be to learn
the correct p(ylu, v) irrespective of the distribution p(u, v) because future
data distributions p’(u, v) may be different. Non-parametric learning algo-
rithms achieve independence from p(u,v) in the limit of increasing data.
We use a synthetic dataset to empirically characterize the recovery of the
ITE varying the training set data size and compare the performance of
parametric and non-parametric learners varying the similarity of train and
test set population distributions. We also use a real RCT dataset to com-
pare the treatment assignment policies of parametric and non-parametric
learners in the presence of a substantial average treatment effect. Addi-
tionally, we use synthetic data to compare ITE estimation generalizability
for parametric and non-parametric learners when the test set distribution
p(u,v) varies from the training set distribution, though the conditional
probability distribution p(ylu, v) remains the same. We also show experi-
mentally that estimating p(yfu, v) directly from the original data distribu-
tion outperforms analogous estimators from propensity-score-weighting
and similarly to stabilized inverse probability-of-treatment weighting.
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Figure 9.1: Average difference in treatment effect using the ITE recommen-
dation in place of the ATE recommendation as a function of training set
size. The estimated difference in the population is shown in 9.1a; the esti-
mated difference in the subpopulation where treatment recommendations
differ is shown in 9.1b. The difference in treatment effect is estimated by
the Vickers et al. (2007) method with a test set of 100,000 examples. The
95% confidence intervals are shown calculated over 100 replications with
different training sets.

9.5 Methods

For our experiments using synthetic data, we use the synthetic model
described in Section 4.5. Refer to Figure 4.5 and Table 4.5 to review details
about the structure and conditional probability distributions of this model.
Briefly, it is a synthetic model of myocardial infarction (MI) with thirteen
binary variables: age, gender, smoking status, HDL level, LDL level, di-
abetes, family history of cardiovascular disease (CVD), blood pressure,
history of angina, history of stroke, history of depression, statin use, and
MI. We simulate both observational and RCT data from this model.

The question we seek to answer for our synthetic model is the effect of
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Figure 9.2: Average difference in treatment effect using the ITE recom-
mendation in place of the ATE recommendation on the PBC dataset. The
estimated difference in the population is shown in 9.2a; the number of
patients given a recommendation to not treat is shown in 9.2b. The 95%
confidence intervals are shown calculated over 100 replications with dif-
ferent sampled training sets.

statin use on heart attack or MI. We test the per-patient recommendations
for or against statin use from logistic regression and boosted trees against
the ATE recommendation of always prescribing statins. Testing uses data
generated from our synthetic, randomized distribution and evaluation
is performed using both the RCT method of Vickers et al. (2007) and by
comparing the predicted ITE to the ground truth ITE calculated exactly
from the Bayesian network. Unless otherwise specified, train and test data
are generated from the RCT distribution where the LDL to statin edge
is removed from the network. When learning our AdaBoost and logistic
regression models, we need to ensure the intermediate and confounder
assumptions described in Section 9.2 are met. Since we are using synthetic

data, there are no unobserved confounders outside our model. However,
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diabetes is on a causal pathway from statins to MI, so we exclude it from
the features available to our models.

With our synthetic model we seek to characterize estimation of the ITE
for each method by looking at error modes of each model and producing
learning curves for the models as a function of training set size. To test
for applicability to an arbitrary test population distribution, we alter the
test distributions by changing CPDs for variables with no parents in the
causal graph. Finally, to evaluate ITE estimation from observational data,
we use training set data from the observational Bayesian network and
compare the estimation from the unweighted training set with estimation
using altered datasets via propensity-score matching and stabilized inverse
probability-of-treatment weighting.

To validate our claims on real data, we run experiments using the trial
data for treatment of primary biliary cirrhosis (PBC) described in Section
4.6. Briefly, the dataset includes 16 variables, including demographic
information like age and sex, as well as various lab tests such as serum
albumin, serum cholesterol, and triglycerides (refer to Table 4.6 for more
detail). The question we seek to answer for this RCT dataset is the effect
of D-penicillamine use on three-year survival. For the three-year survival
period, the dataset is censored to 288 patients, with 146 in the treatment
group and 142 in the placebo group. At the end of three years, the treat-
ment group experienced 27 deaths out of 146, whereas the placebo group
experienced 32 out of 142 (see Table 4.7). The trial thus demonstrates an
average treatment effect of around a 4 percentage point reduction in death
rate over three years.

With the PBC trial data, we compare the estimation of the ITE for each
method against the ATE recommendation to treat all patients. Further-
more, given the strength of the average treatment effect, we compare the
number of times each method suggests that a patient receive no treatment

as opposed to the ATE recommendation. We estimate the average ITE
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Figure 9.3: Learning curves for logistic regression and AdaBoost showing
test set ITE mean-squared error. The 95% confidence intervals are calcu-
lated from 100 replications. Test set ITE MSE is shown as a function of
training set size in 9.3a and as a function of KL-divergence between the
training set distribution and test set distribution in 9.3b.

versus ATE and number of untreated patients for each method by running
100 bootstrap replicates.

We use the ‘ada’ package implementation of AdaBoost in R to learn
the boosted forest (Freund and Schapire, 1996; Culp et al., 2006). Though
the consistency guarantees for AdaBoost require the number of iterations
to grow linearly with the training set size (Bartlett and Traskin, 2007), we
use the square root of the training set size to reduce the computational
burden. Otherwise, we use the default settings from the ‘ada’ package.
Logistic regression models are trained using the ‘glm’ function of R.

9.6 Results

Figure 9.1 shows the utility of adopting the ITE recommendation over
the ATE recommendation on our synthetic model. We want to lower the
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risk of MI, so a negative difference between ITE and ATE is desirable.
From Figure 9.1a, we see that the adoption of the ITE recommendation, as
calculated from the AdaBoost model, lowers the probability of MI by 0.01
on average, provided sufficient training data. That is, the number needed
to treat is about 100, so treating 100 patients with the ITE-recommended
treatment results in one less MI on average than the ATE-recommended
treatment of giving everyone statins. Only AdaBoost is able to provide an
improved recommendation because of its ability to accurately estimate the
conditional probability distribution. Since there are no interaction terms
in our logistic regression model, the recommendation converges to the
ATE recommendation of giving everyone statins, resulting in the observed
difference of 0 for larger training set sizes in Figure 9.1.

Figure 9.1b shows the estimated expected difference in probability
of MI between ITE- and ATE- recommended treatments among patients
where the recommendations disagree on treatment choice. We see that
the ITE recommendation lowers the probability of MI in this subset by
about 0.02, or a NNT of 50. The upturn for AdaBoost as the training set
size approaches 100,000 is likely due to correctly identifying more patients
with small benefits from not taking statins. This dilutes the ITE- and ATE-
difference among those patients where the recommendations disagree,
but the population-wide probability of MI, which is the primary value of
interest, continues to decrease.

Figure 9.2 shows the utility of adopting the ITE recommendation over
the ATE recommendation on the PBC trial data. We want to lower the
rate of death over a three-year period, so a negative difference between
ITE and ATE is desirable, just as it is with our synthetic model. In Fig-
ure 9.2a we see that neither the AdaBoost model nor the logistic regression
model outperform the ATE recommendation to treat all patients. While
we would prefer to see the ITE outperforming the ATE, this result is not

altogether surprising given the effectiveness of treatment. We do, however,
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see that the AdaBoost model roughly matches the ATE and outperforms
the logistic regression model as we hypothesize and demonstrate with our
synthetic data. In Figure 9.2b we show the average number of patients for
which each model recommends no treatment. The AdaBoost model rarely
recommends no treatment, showing that it has effectively learned the treat-
all policy, whereas the logistic regression model frequently recommends
no treatment.

Learning curves for logistic regression and AdaBoost are shown in
Figure 9.3a. These curves show mean-squared error of the ITE predictions
versus training set size. As we expect, the parametric logistic regression
converges to a non-zero error because the model is misspecified (since the
ground truth model is not log-linear in the exposure and covariates). The
error of AdaBoost, however, continues to decrease towards 0 as training
set size increases, showing very accurate estimation of the ITE is possible
with sufficient data. AdaBoost’s approach toward 0 error is in line with
the non-parametric consistency results of Bartlett and Traskin (2007).

We also investigate the generalizability of ITE predictions for AdaBoost
compared to logistic regression. We simulate applying results to differ-
ent populations by adjusting the prevalence of the five variables in our
Bayesian network (refer back to Figure 4.5) with no parents: age, gender,
HDL, depression, family history of CVD. We train on our default RCT
data, but test on modified RCT data with different prevalences of the
aforementioned variables. Thus, we change p(v), but p(yfu, v) remains the
same, so an accurate prediction of CPD, which is exactly p(y[u,v), should
handle the changing test distribution gracefully. Figure 9.3b shows that
the MSE does tend to increase for both logistic regression and AdaBoost
as the KL-divergence between the train and test distribution increases.
However, AdaBoost degrades more slowly, demonstrating that learning a
non-parametric, consistent model provides better generalization to other

populations.
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Figure 9.4: Estimated ITE (black) and ATE (horizontal red) versus the
ground truth ITE for logistic regression (top) and AdaBoost (bottom) for
training set sizes of 10,000 (left) and 100,000 (right). Optimal estimation
(i.e., mean-squared error of 0) is given by the line y = x. Smoothed,
empirical density of the true ITE is shown at the bottom of each plot.

To further investigate the errors in ITE prediction, we show the pre-
dicted ITE versus the ground truth ITE (as calculated from our Bayesian
network) in Figure 9.4. Additionally, we plot the ATE which effectively
predicts an identical treatment effect for all patients. The goal is to have
predictions as close as possible to the true value, i.e., to have points as
close to the y = x line as possible. In agreement with the results of Fig-
ure 9.3a, AdaBoost makes better ITE predictions than logistic regression
and improves noticeably from 10,000 to 100,000 examples. For logistic
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regression (top), all ITE estimates will be above or below the line y = 0 be-
cause the model assumes that a single coefficient determines the direction
of the effect. The four groupings of points extending down (at various
angles) from the origin correspond to various settings of the variables
LDL, HDL, and smoking. This suggests that including interaction terms
among statins, LDL, HDL, and smoking in the logistic regression would
improve its performance. AdaBoost has the capability to learn arbitrary
interactions and can provide individualized recommendations, though
the errors remain greater than zero as shown in the bottom of Figure 9.4.
Indeed, some of the groupings of points lie off the y = x line also corre-
spond to certain patient subpopulations for which the ITE is consistently
misestimated. We expect, due to the consistency of AdaBoost, that these
errors will decrease as more training data is available.

The effect of different data-weighting and matching schemes is shown
in Figure 9.5. The recovery of the CPD model, and thus the ITE, requires
the fewest examples when leaving the examples unweighted or using
stabilized inverse weighting. While propensity score matching produces
worse estimates of ITE, there is no benefit for using stabilized inverse
weighting over no weighting for this task. One important consideration
is that our dataset includes some patients without elevated LDL who
take statins, motivated by the suggestion that there could be therapeutic
benefit of statins even in borderline hypercholesterolemia. However, in a
dataset with fewer normal-LDL statin users, propensity-score matching
and particularly stabilized inverse weighting will impair the CPD model,

because it will attach large excess weight to few examples.

9.7 Discussion

In this work, we illustrated the parallels between the standard clinical

study framework designed to determine the ATE and the burgeoning
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Figure 9.5: Learning curves for AdaBoost trained on observational data.
Test set ITE mean-squared error as a function of training set size is shown
comparing training from unweighted examples (None), propensity-score
matched samples with a 1:1 ratio (PSM), and stabilized inverse probability
of treatment weighted examples (sSIPTW). The 95% confidence intervals
are calculated over 100 replications.

clinical study framework designed to determine the ITE. We highlighted
shortcomings of the ATE; first, that the ATE is an average outcome, when
in practice we usually care about the ITE for future patients, and second,
that the ATE is population-distribution dependent. We then discussed
modeling of the ITE. Notably, logistic regression can only recommend
one treatment arm if we exclude non-linear and exposure-covariate in-
teraction terms because the coefficient for exposure is either negative or
non-negative. Furthermore, unless correctly-specified, logistic regression
is not a consistent learning algorithm, so we cannot always recover the
true conditional probability distribution, even from large populations. In-
stead, we adopted another popular framework, boosted trees. We showed
that the forest-based ITE outperformed the ATE on a synthetic problem
of MI prediction using binary variables, and that the forest-based ITE
outperformed logistic regression-based ITE on a real problem of primary
biliary cirrhosis treatment with D-penicillamine. Additionally, we showed
that the forest-based ITE better generalized to different test set distribu-
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tions than the logistic regression-based ITE. Finally, we showed that the
use of propensity-score matching and inverse-probability-of-treatment
weighting failed to improve the learning of the conditional probability dis-
tribution, suggesting that unweighted samples should be used for learning
a model of the ITE. Modeling of the ITE has large theoretical advantages,
though robustness guarantees and validation of its performance should
be established before large-scale clinical deployment. A few sources of
validation include replication studies and heterogeneity of treatment effect

analyses using ITE model strata.
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10 OTHER EXPERIMENTS AND FUTURE WORK

In this chapter we present some ideas for future directions of investigation
and preliminary experiments working toward them. Note that none of
this work has been peer-reviewed and published, and some is still in active

development.

10.1 Uplift Bayesian Networks

While some of our work has used Bayesian networks in uplift modeling
(see Chapter 7), this work was accomplished by learning separate models
for the differential strata. No method has been developed to perform
single-network structure learning for uplift modeling in a way that is com-
putationally efficient and scalable to much larger datasets. Furthermore,
no method has been developed to perform single-network parameter
learning to maximize uplift.

To address the challenge of structure learning, we have begun initial
steps with a differential Tree-augmented Naive Bayes (TAN) model. Recall
from Section 2.1.2 that TAN relaxes the simplifying assumption made by
Naive Bayes (NB), namely conditional independence between all predictor
variables given the class. TAN allows each predictor to be dependent
on one other variable other than the class and does so by constructing a
maximum-weight spanning tree amongst the predictor variables. The edge
weights that TAN uses to construct the tree are the conditional mutual
information between variables, but the weights could hypothetically be
replaced with another function to suit the needs of uplift modeling.

We replace the edge weights with a differential conditional mutual
information between the variables. That is, the difference in conditional

mutual information between the two variables, based on the separate
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treatment and control strata in the dataset.
IDIFF (A/ B|C1CLSS) = Itreatment (A/ B|Cl(lSS) — Icontrol(A; BIClass)

This function maintains the TAN property that the structure can be
learned efficiently. It does not, however, maintain the property of produc-
ing the maximum likelihood tree, given the data, nor does it make any
guarantees about maximizing uplift.

We implemented this model in Weka and have run experiments on
the simulated customer dataset described in Section 4.4. For comparison,
we ran three algorithms: SVM"P!, TAN, and our newly define differential
TAN (DiffTAN). We used 10-fold cross-validation for evaluation and use a
Wilcoxon signed rank test to compare area under the uplift curve (AUU),
as well as area under the ROC curve (AUC), as compared to SVM'P!, Like
in the customer simulation experiments before (see Section 8.5.1), the ROC
curves are calculated with the hidden Persuadable customer type treated
as the positive class. This allows us to see how well the models identify
the relevant latent information. Results are shown in Table 10.1 and final

curves are shown in Figure 10.1.

Table 10.1: Areas under the ROC curve (AUC) and areas under the up-
lift curve (AUU) for all three models. 10-fold cross-validation p-values
are shown for comparison of both TAN models to SVM"P!. Statistically
significant differences are marked with *.

Algorithm AUC AUC p-value AUU AUU p-value
DiffTAN  0.522 0.002* 13.472 0.002*
TAN 0.503 0.002* -33.649 0.002*
SVM"Pt  0.593 - 95.726 -

Table 10.1 shows DiffTAN does not perform statistically better than
SVM"P'. DiffTAN does appear to produce greater uplift than TAN, how-

ever, and also demonstrates a slight improvement in identifying Persuad-
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Figure 10.1: ROC curves and Uplift curves for all three models. The
ROC curves are constructed with the hidden Persuadable customer type
considered to be the positive class. The higher the ROC curve, the better
the model is at capturing relevant latent information about customer types.

ables over TAN (see Figure 10.1). Overall, DiffTAN may be useful for uplift
modeling, but it does not perform as well as the state-of-the-art.

10.2 Net Benefit Maximization

Uplift modeling has been a large portion of our work so far, and it shows po-
tential for applications in medicine. One flaw, however, is that there is still
fairly limited evidence that it delivers on the promise to identify the latent
factors that cause individualized response. Vickers et al. (2007) presented
the net benefit method for evaluating individualized treatment effect (ITE)
models on randomized controlled trial (RCT) datasets by evaluating on
patients where the treatment recommendations were the same (see Figure
10.2). Certainly, uplift modeling approaches should be evaluated on RCT
datasets in the future with this evaluation method in order to demonstrate
improvement over the average treatment effect (ATE) recommendation.

Having such an evaluation method though, brings another possibility to



124

Patients

RCT » I =
Evaluate

Figure 10.2: The Vickers method of evaluating ITE predictive models on
randomized controlled trial (RCT) data. When an individualized treatment
effect (ITE) model recommends the same treatment as was assigned in the
RCT, the outcome of the recommendation is known and can be used for
evaluation.

the table. If net benefit is a good measure of the clinical objective, new
machine learning approaches should be developed to optimize for that
metric directly.

In order to train models to improve net benefit, we might use any num-
ber of algorithms and select the best parameters for net benefit through
internal cross-validation. Because we want a model that directly optimizes
net benefit, we have chosen to use artificial neural networks (ANN) for
their flexibility. We do not have a differentiable error function for net
benefit though, so we cannot use a standard optimization approach like
gradient descent. Instead, we have implemented a genetic algorithm ap-
proach (see Section 2.3) to train our ANNs. We use a simple algorithm to
train a model for each fold (see Algorithm 2.1). Crossover takes two ANNs
and produces a child ANN with the same structure as the parents, but
each weight value is chosen randomly from one of the parents. See Figure
10.3 for an example of how weight crossover between parents works for
the outgoing weights of a single node in a network. Once a final model
has been selected, we evaluate the net benefit of the model on the test set.

We ran preliminary experiments using the RCT dataset for the treat-
ment of primary biliary cirrhosis (PBC) described in Section 4.6. Recall
that we desire to estimate the effect of D-penicillamine use on three-year

survival. Instead of k-fold cross-validation, we used bootstrap sampling to
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Figure 10.3: Crossover between two parents for a simple artificial neural
network (ANN). The child network has the same structure, but inherits
weights randomly from the parents.

Table 10.2: Individualized treatment effect (ITE) model average reduction
in death rate over three years, as well as the difference from the average
treatment effect (ATE) recommendation to treat all (negative is better).
Neither trained model is superior to the ATE here.

Algorithm Death Reduction ITE vs ATE
Logistic Regression ~ —0.037 £0.061  0.008 & 0.030
Net Benefit ANN —0.015+0.049 0.030 = 0.044
Treat All (ATE) —0.045 + 0.063 -

run 100 experimental folds. We specified a maximum number of epochs
of 100, a population size of 100, a selection size of 50, a tuning set of 50%
of the training set, and an early stopping condition of five epochs with no
improvement in net benefit. We compare our net benefit ANN with the de-
fault Scikit-learn logistic regression model (Pedregosa et al., 2011), as well
as the recommendation to treat all patients. Table 10.2 shows the mean
reduction in death rate and the difference from the ATE recommendation
to treat all patients.

This method does demonstrate the ability to achieve a positive net ben-
efit in our preliminary experiments, but it does not currently outperform

logistic regression or the recommendation to treat all patients. It is too
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early to judge this ongoing work, but the results are promising enough to

warrant further investigation.

10.3 Model Calibration

Much of our work relates to close collaboration between machine learning
experts and clinical experts. We argue that this practice is necessary to
develop machine learning models that meet clinical objectives, and can be
translated into real practice. One less-obvious problem that we have not yet
addressed, however, is model calibration. Consider Chapter 6 wherein we
develop a Naive Bayes (NB) model to predict the probability of a discordant
core needle biopsy being benign. This is valuable because providing
physicians with a probabilistic risk of upgrade is intuitive and may help
facilitate discussions between the physicians and their patients. However
both physician and machine estimated probabilities can be inaccurate.
Without calibrated probabilities, a clinician cannot be certain that a model
prediction of 90% risk really means 90%. In particular, NB is known to
accurately predict the most probable label, but its predicted probabilities
are not well calibrated (Zadrozny and Elkan, 2001).

Figure 10.4 demonstrates the good discrimination and poor calibration
produced by NB. Note the bimodal distribution of outputs of Figure 10.4a.
All of the output “probabilities” are focused near 0.0 and 1.0. Given the
marked benign skew of the dataset, a unimodal output distribution near
0.0 might be more appropriate. Note also the poor calibration in Figure
10.4b. Of the cases that the model scored in the 0.8 to 1.0 range, only
20% are positive resulting in a domed calibration curve. A well-calibrated
model would exhibit a calibration curve that falls on the diagonal.

There are reliable methods for calibration already available, such as
binning (Zadrozny and Elkan, 2001), but the small size of our datasets
necessitates reducing the number of bins used, thereby reducing the gran-
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ularity of predictions that the learned model can make. If using five bins,
the calibrated model can only produce five different predicted probabili-
ties. This is less useful in practice as it disallows finer discrimination of
cases.

In a first attempt to address this issue, we have used a bootstrap sam-
pling approach to build calibration models (see Algorithm 10.1). We used
the same folds, data, and model parameters presented in Chapter 6. For
each fold, we drew 100 bootstrap samples from the training set. For each
bootstrap sample, we trained a model and recorded the predictions on the
out-of-bag examples. We pooled all of the bootstrap predictions and built
a binning calibration model with 100 bins. Next, we trained the main fold
model on the training set, made predictions on the test set, and calibrated
the test set predictions using the calibration model. The results are shown
in Figure 10.5.

The output probabilities of the calibrated model in Figure 10.5a look
somewhat more reasonable than the uncalibrated probabilities in Figure

10.4a because they are more focused near 0.0. The scaled calibration
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Figure 10.4: Calibration figures of published Naive Bayes model for up-
grade prediction (Kuusisto et al., 2015).
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Figure 10.5: Bootstrap calibrated Naive Bayes.
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Figure 10.6: Calibration figures for Random Forest on the upgrade predic-
tion data. These are the results for a standard Random Forest implemen-
tation without any extra steps taken to calibrate the model.

curve in Figure 10.5b shows that the model is slightly improved, but still
poorly calibrated. Perhaps calibration can be further improved by more
sophisticated approaches, but it may also be more reasonable to investigate
other models that tend to be better calibrated in first place. Random Forests

are one such option. Figure 10.6 shows the analogous histogram and curves
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Algorithm 10.1 Bootstrap Calibration Procedure

Input: N < # bootstrap samples, B < # calibration bins;
for Train, Test € Folds do
CalPreds «+ {}; > Init bootstrap predictions
for TuneTrain, TuneTest € BootstrapSample(Train, N) do
TuneM < TrainNB(TuneTrain); > Train bootstrap model
TuneP < Predict(TuneM, TuneTest); > Test bootstrap model
CalPreds < CalPreds U TuneP; © Store bootstrap predictions
end for
CalM <« BuildCalibModel(CalPreds); © Build calibration
model from boot-
strap predictions

M <« TrainNB(Train); > Train main model
TestP < Predict(M, Test); > Get test predictions
CalTestP « Calibrate(CalM, TestP); > Calibrate test predic-
tions
Evaluate(CalTestP); > Evaluate calibrated test predictions
end for

without the use of any extra calibration methods. Notice that the Random
Forest approach looks more similar to the calibrated NB model in Figure
10.5 than to the uncalibrated model in Figure 10.4.
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11 CONCLUSION

The goals of the precision medicine initiative urge the development of new
tools and technology that allow us to capitalize on the increasing collection
of heterogeneous medical data. I believe that machine learning is going to
play an important role in this domain going forward, but current methods
cannot simply be applied as is. Machine learning researchers need to
adapt to the domain. Novel models and methods need to be developed to
address new, challenging objectives.

This thesis presents my work on improving the application of machine
learning to precision medicine. In particular, this thesis presents my work
on adapting standard machine learning methods to meet challenging
clinical objectives by working in close collaboration with clinicians and
leveraging their expertise. This thesis also presents my work on developing
novel uplift modeling algorithms and applying them to the challenging
tasks of treatment assignment and understanding of risk factors.

11.1 Contributions

In this section, I summarize my contributions to the areas of clinical de-
cision support and applications of machine learning to medicine. While
some of this work has led to further investigations (Nassif et al., 2013b;
Elezaby et al., 2015; Gegios et al., 2015), this section only summarizes my
contributions detailed in this dissertation.

11.1.1 Clinical Decision Support

Machine learning models will never translate to clinical use if they do
not meet clinical objectives. My work in decision support has contributed
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to the adaptation of machine learning models to real clinical problems
through collaboration with clinical experts.

In Chapter 5 we adapted an inductive logic programming (ILP) learner
to the challenging task of identifying truly benign cases amongst non-
definitive breast biopsies (Kuusisto et al., 2013). Instead of relying on the
standard rule evaluation functions available to us, we made use of an Fg
measure. Based on our direct interactions with clinicians, we chose a 3
parameter to prefer rules that do not misclassify malignant cases. Through
this work, we were able to infer rules that both adhered to the clinical
objective and provided insight into our motivating task.

In Chapter 6 we presented a framework for collaboration between
clinical and machine learning experts (ABLe) (Kuusisto et al., 2015). The
framework we presented, ABLe, defined an iterative process that can be
used to iteratively improve clinical machine learning models until they
meet the objective of interest. Taking lessons from our previous work, we
used this framework to leverage expert clinical advice to account for the
challenge of limited data. We demonstrated the application of ABLe to
the upgrade prediction task and showed how it can successfully be used
to meet the exceedingly conservative objective of missing no malignant

cases.

11.1.2 Treatment Effect Estimation and Understanding

Estimating the effects treatment and exposure is challenging. My work
takes lessons from the marketing domain, and applies uplift modeling to
this task. My work in uplift modeling has contributed to the development
of new algorithms and the application of uplift modeling to medicine for
knowledge discovery and treatment effects estimation.

In Chapter 7 we developed a novel statistical relational uplift modeling
algorithm (Nassif et al., 2013a). We applied this new approach to a breast
cancer task involving the differences between in situ and invasive cancers.
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Knowing that older patients tend to have more indolent in situ cancers
than younger patients, we mapped older and younger patients to separate
target and control group concepts respectively. We then used this model
to try to understand what factors contribute to the indolent nature of older
in situ breast cancer, and we found that our approach discovers themes
that are clinically interesting.

In Chapter 8 we developed a support vector machine (SVM) model
that optimizes for area under the uplift curve (AUU) Kuusisto et al. (2014).
We first used this approach to validate that building uplift models to max-
imize the AUU captures relevant latent information about the differences
between the target and control groups. To do so, we generated a synthetic
dataset of customers and simulated a marketing campaign. Because the
dataset was synthetic, we knew true customer types. We showed that
our algorithm is better able to identify the Persuadable customer group
than other baseline comparisons. We also applied the model to the task
of identifying patients who are susceptible to risk of heart attack from
taking COX-2 inhibitors. While we do not know the true individual sus-
ceptibilities in this real dataset, we show that we are able to produce
significantly greater uplift on this dataset than other methods. We also
applied the model to the task of identifying the factors associated with in
situ breast cancer specific to older women, just as we did in Chapter 7. In
this task, we again found that our algorithm was capable of discovering
clinically-relevant features.

In Chapter 9 we discussed the importance of investigating new models
to estimate individualized treatment effects and make superior treatment
recommendations to that of the average treatment effect (ATE) (Weiss
et al., 2015). We did not develop new algorithms, but we argued for the
use of machine learning methods in favor of more traditional methods
like logistic regression. We supported this argument by showing how

AdaBoost can improve upon ITE estimation over logistic regression on
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both a synthetic dataset, as well as a real dataset.

11.2 Summary

In my thesis, I present my contributions at the intersection of machine
learning and medicine. I also present suggestions for directions of future
work, along with experiments detailing initial steps in those directions.
My work demonstrates that close collaboration between clinicians and
computer scientists is key to the success of machine learning in precision
medicine. First, leveraging the expertise of clinicians can help to alleviate
challenges of gathering sufficient standardized data to model important,
but relatively rare diseases. Second, close collaboration is essential to
develop models that actually meet clinical objectives, instead of relying on
standard machine learning objectives to meet those needs. Additionally,
my work demonstrates advances in modeling individualized response
to treatment, using multiple potential approaches. To accomplish this, I
demonstrate the potential of leveraging and expanding upon uplift mod-
eling approaches from marketing. In general, my work has contributed to
the advancement of machine learning for use in medicine.
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