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Abstract

Knowledge-based support vector machines (KBSVMSs) incaigoadvice from
domain experts, which can improve generalization sigmifiga A major limita-
tion that has not been fully addressed occurs when the eageite is imperfect,
which can lead to poorer models. We propose a model that éxt€BSVMs
and is able to not only learn from data and advice, but alsalsameously im-
proves the advice. The proposed approach is particuldggtafe for knowledge
discovery in domains with few labeled examples. The progesedel contains
bilinear constraints, and is solved using two iterativerapphes: successive linear
programming and a constrained concave-convex approagberixental results
demonstrate that these algorithms yield useful refinemenexpert advice, as
well as improve the performance of the learning algorithrarail.

1 Introduction

We are primarily interested in learning in domains wheredligonly asmall amount of labeled data
but advice can be provided by a domain expérhe goal is to refine this advice, which is usually
only approximately correct, during learning, in such sec@sato produce interpretable models that
generalize betteandaid knowledge discovenyfor learning in complex environments, a number
of researchers have shown that incorporating prior knogddtbm experts can greatly improve the
generalization of the model learned, often with many fevadeled examples. Such approaches
have been shown in rule-learning methods [16], artificialraEnetworks (ANNSs) [21] and support
vector machines (SVMs) [10, 17]. One limitation of these moels concerns how well they adapt
when the knowledge provided by the expert is inexact or @iricorrect. Many of the rule-learning
methods focus on rule refinement to learn better rules, wki&ls form the rules as portions of
the network which are refined by backpropagation. Furth&iiNAnethods have been paired with
rule-extraction methods [3, 20] to try to understand theltesy learned network and provide rules
that are easily interpreted by domain experts.

We consider the framework of knowledge-based support vecazhines (KBSVMs), in-
troduced by Fung et al. [6]. KBSVMs have been extensivelglisd, and in addition to linear
classification, they have been extended to incorporateskef], nonlinear advice [14] and for ker-
nel approximation [13]. Recently, Kunapuli et al. derivedamline version of KBSVMs [9], while
other approaches such as that of Le et al. [11] modify the thgsis space rather than the optimiza-
tion problem. Extensive empirical results from this priasrlv establish that expert advice can be
effective, especially for biomedical applications suctbesast-cancer diagnosis. KBSVMs are an
attractive methodology for knowledge discovery as theymatuce good models that generalize
well with a small amount of labeled data

Advice tends to be rule-of-thumb and is based on the expactsmulated experience in
the domain; it may not always be accurate. Rather than simplyring or heavily penalizing in-
accurate rules, the effectiveness of the advice camipeovedthrough refinement. There are two
main reasons for this: first, refined rules result in the improent of the overall generalization,
and second, if the refinements to the advice are interpeetabthe domain experts, it will help in
the understanding of the phenomena underlying the apiglitafor the experts, and consequently
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Figure 1:(left) Standard SVM, trades off complexity and loss wrt the datenter) Knowledge-based SVM,
also trades off loss wrt advice. A piece of advice set 1 exdener the margin, and is penalized as the advice
error. No part of advice set 2 touches the margin, i.e., ndribeorules in advice set 2 are useful agpport
constraints (right) SVM that refines advice in two ways: (1) advice set 1 is refisethat no part of is on the
wrong side of the optimal hyperplane, minimizing adviceer(2) advice set 2 is expanded until it touches the
optimal margin thus maximizing coverage of input space.

greatly facilitate the knowledge-discovery process. Thithe motivation behind this work. KB-
SVMs already have several desirable properties that make #n ideal target for refinement. First,
advice is specified as polyhedral regions in input spacese/leonstraints on the features are easily
interpretable by non-experts. Second, it is well-knowrt KBSVMs can learn to generalize well
with small data sets [9], and can even learn from advice d@pé&inally, owing to the simplicity of
the formulation, advice-refinement terms for the rules aaimborporated directly into the model.

We further motivate advice refinement in KBSVMs with the éoling example. Figure 1
(left) shows an SVM, which trades off regularization witle tthata error. Figure 1 (center) illustrates
KBSVMs in their standard form as shown in [6]. As mentionefobe, expert rules are specified
in the KBSVM framework as polyhedraldvice regionsn input space. They introduce a bias to
focus the learner on a model that also includes the advideediormVz, (z € advice region) =
class(z) = 1. Advice regarding the regions for whieluss(x) = —1 can be specified similarly.

In the KBSVM (Figure 1, center), each advice region contauo the final hypothesis in
a KBSVM via itsadvice vectoru' andu? (as introduced in [6]; also see Section 2). The individual
constraints that touch or intersect the margin have nomz?components. As a piece of advice

region1 extends beyond the margin! # 0; furthermore, analogous to data error, this overlap is
penalized as thadvice error As no part of advice set touches the marginy?> = 0 and none of

its rules contribute anything to the final classifier. Againalogous to support vectors, rules with
non-zerOu;'- components are callesipport constraint§s]. Consequently, in the final classifier the
advice sets are incorporated with advice error (advice et are completely ignored (advice set
2). Even though the rules are inaccurate, they are able toovemeneralization compared to the
SVM. However, simply penalizing advice that introduceesrcan make learning difficult as the
user must carefully trade off between optimizing data ori@alioss.

Now, consider an SVM that is capable of refining inaccuratécad(Figure 1, right). When
advice is inaccurate and intersects the hyperplane, itirctited such that it minimizes the advice
error. Advice that was originally ignored is extended to eoas much of the input space as is
feasible. The optimal classifier has now minimized the ewitin respect to the data and the refined
advice and is able to further improve upon the performancetfist the SVM but also the KBSVM.
Thus, the goal is to refine potentially inaccurate expert@dsguring learning so as to learn a model
with the best generalization.

Our approach generalizes the work of Maclin et al. [12], toduce a model that corrects
the polyhedral advice regions of KBSVMs. The resulting reatlatical program is no longer a
linear or quadratic program owing tailinear correction factors in the constraints. We propose
two algorithmic techniques to solve the resulting bilinpasgram, one based on successive linear
programming [12], and the other based on a concave-coneeegure [24]. Before we describe
advice refinement, we briefly introduce our notation and KB&Y

We wish to learn a linear classifiew(x = b) given/ labeled datéx’, yj)le with x7 € R™

and labelg); € {+1}. Data are collected row-wise in the matrix € R**", while Y = diag(y) is
the diagonal matrix of the labels. We assume thatdvice set$D;, d’, z;)™ , are given in addition

to the data (see Section 2), and if théh advice set hag; constraints, we hav®; < RFixn,
d’ € R* andz; = {£1}. The absolute value of a scalais denotedy|, the 1-norm of a vectox



is denoted|x||; = >, |z;|, and theentrywisel-norm of am x n matrix A € RP*¢ is denoted
Al =>0_ =%, |Ai;|. Finally,e is a vector of ones of appropriate dimension.

2 Knowledge-Based Support Vector Machines

In KBSVMSs, advice can be specified abaverypotential data point in the input space that satisfies
certain advice constraints. For example, consider a taaofiing to diagnose diabetes, based on
features such as age, blood pressure, body mass indey,(plasma glucose concentratiai uc),
etc. The National Institute for Health (NIH) provides théldaving guidelines to establish risk for
Type-2 Diabete$: a person who is obeser(i > 30) with gluc > 126 is at strong risk for diabetes,
while a person who is at normal weighini < 25) with gluc < 100 is unlikely to have diabetes.
This leads to two advice sets, one for each class:

(bmi < 25) A (gluc < 100) = —~diabetes; (bmi > 30) A (gluc > 126) = diabetes,

)
where- is the negation operator. In general, rules such as the doee aefine a polyhedral region
of the input space and are expressed as the implication

Dix <d' = z(w'x—b)>1, 2
where theadvice labelz; = +1 indicates that all points that satisfy the constraints for thieth
advice setD;x < d* belong to class-1, while z = —1 indicates the same for the other class. The
standard linear SVM formulation (without incorporatingzaz) for binary classification optimizes
model complexity \ data loss

g>1rolinb w1 + A€, st.Y(Xw—eb)+&>e. (3)
The implications (2), for thé = 1, ..., m, can be incorporated into (3) using the nonhomogeneous

Farkas theorem of the alternative [6] that introduces aglvactorsu’. The advice vectors perform
the same role as the dual multipliexrsn the classical SVM. Recall that points with non-zers
are thesupport vectorsvhich additively contribute tav. Similarly, the constraints of an advice set
which have non-zera’s are calledsupport constraintsThe resulting formulation is the KBSVM,
which optimizesnodel complexity A data losst p advice loss

min wl|1 + Ae'€ + (et 4G
woe i w1 wdimg (€' +G)
s.t. Y(Xw—be)+ & > e,
—n' < Dju' + z;w < 7',
—d'ui— b+ >1,i=1,...,m.

In the case of inaccurate advice, the advice erdrand(; soften the advice constraints analogous
to the data error§. Returning to Figure 1, for advice set#!, ¢; andu' are non-zero, while for
advice set 2u? = 0. The influence of data and advice is determined by the chéitegarameters

A andy which reflect the user’s trust in the data and advice respsgti

(4)

3 Advice-Refining Knowledge-based Support Vector Machines

Previously, Maclin et al. [12] formulated a model to refineviaé in KBSVMs. However, their
model is limited as only the term$’ are refined, which as we discuss below, greatly restricts the
types of refinements that are possible. They only considarerment termd™* for the right hand
side of thei-th advice set, and attempt to refine each rule such that
Dix < (d'—f") = z(wx—-b>1, i=1,...,m. (5)
The resulting formulation adds refinement terms into the ¥BISmodel (4) in the advice con-
straints, as well as in the objective. The latter allows Fa dverall extent of the refinement to be
controlled by theaefinement parameter > 0. This formulation was called Refining-Rules Support
Vector Machine (RRSVM):
: A / m o) f m fi
o wlAE e S (e + G+ v S
s.t. Y(Xw —be)+ & > e,
-n' < D' +zw <0’
—(d*—fYu' —zb+¢G>1, i=1,...,m.

(6)
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This problem is no longer an LP owing to the bilinear terfifis’ which make the refinement con-
straints non-convex. Maclin et al. solve this problem usingcessive linear programming (SLP)
wherein linear programs arising from alternately fixindneitthe advice termd’ or the refinement
termsf? are solved iteratively.

We consider a full generalization of the RRSVM approach aaaetbp a model where it is
possible to refine the entire advice regibsr < d. This allows for much more flexibility in refining
the advice based on the data, while still retaining integiiity of the resulting refined advice.
In addition to the term$?, we propose the introduction of additional refinement tefisto the
model, so that we can refine the rules in as general a mannessaible:

(Dj — F)x < (d" =) = z(w'x—b)>1, i=1,...,m. 7

Recall that for each advice set we have e R¥*™ andd! € R*:, i.e., thei-th advice set contains
k; constraints. The corresponding refinement tefinandf? will have the same dimensions respec-
tively asD; andd?. The formulation (6) now includes the additional refinemtentnsF;, and the
formulation optimizes:

: )\ / m ! ont p m Fi fi
o g Wl R AeE 0 3 (e G+ v D (IF L+ 1)
s.t. Y(Xw—be)+ & > e,

. , , (8)
—-n' < (D; — F;)'u" + zw < n’,

_(di—fi)’ui—zib-i-cz' >1,1=1,...,m.

The objective function of (8) trades-off the effect of refiment in each of the advice sets via the
refinement parameter. This is the Advice-Refining KBSVM (arkSVM); it improves upon the work
of Maclin et al. in two important ways. First, refininiyalone is highly restrictive as it allows only
for the translationof the boundaries of the polyhedral advice; the generalizidement offered
by arkSVMs allows for much more flexibility owing to the fadtat the boundaries of the advice
can be translatednd rotated(see Figure 2). Second, the newly added refinement tefffng, are
bilinear also, and do not make the overall problem more ceryph addition to the successive
linear programming approach of [12], we also propose a ogrcanvex procedure that leads to an
approach based on successive quadratic programming. Wielpiaetails of both approaches next.

3.1 arkSVMs via Successive Linear Programming

One approach to solving bilinear programming problems solge a sequence of linear programs
while alternately fixing the bilinear variables. This appeh is called successive linear program-
ming, and has been used to solve various machine learninifations, for instance [1, 2]. In this
approach, which was also adopted by [12], we solve the LB&grfrom alternatingly fixing the
sources of bilinearity( F;, f)™ , and{u’}™,. Algorithm 1 describes the above approach. At the
t-th iteration, the algorithm alternates between the folihmpsteps:

o (Estimation Step) When the refinement termgft, £i-1)™ are fixed the resulting LP
becomes a standard KBSVM which attempts to find a data-e&iofahe advice vectors
{u’}i, using the current refinement of the advice regioh; — F)x < (d/ — 7).

¢ (Refinement Step When the advice-estimate terrfhia®!} | are fixed, the resulting LP

solves for(F;, £)™, and attempts to further refine the advice regions based onatst
from data computed in the previous step.

Proposition1 |. For ¢ = 0, the sequence of objective values converges to the value
[wlli + Xe’€ + > (0" + &) + v >ty ([[Fill + [|£]1), where the data and advice
errors (€,71°,(;) are computed from any accumulation po{st, b, ii’, F;, f') of the sequence of
iterates(w', bt, u, F*, £1)>°  generated by Algorithm 1.

II. Such an accumulation point satisfies the local minimumdition
(W,b) €  min [wils +Xe'€+p 3200 (e'n' + )

ut>0
w,b,(&,1"¢:>0)
sugject to Y(Xw —be)+&>e,
—n' <(D; — F)'u' + ziw < ',

—(d* — Yl — zb+ G > 1, i=1,...,m.



Algorithm 1 arkSVM via Successive Linear Programming (arkSVM-sla)
1: initialize: t=1,F' =0,f*' =0
2: while feasible do . S
3:  if x notfeasible fo( D; — F{)x < (d’ — )  return failure
4:  (estimation step solve for{a®**t1}7,
min [wlls + e’ +p 3270, (0" +G)
w,b,(§,ut,n?,¢;)>0
s.t. Y(Xw—be)+&>e,
-n' < (Di — F))u' + ziw < 7',
—(d =Y —zb+G>1, i=1,...,m.

5:  (refinement step) solve for(E!F!, fht+ym,

min [wils + A€ +p 7, (' + G) + v X7, (I1Fll + (1))
Wb, Fi £1,(€,m1,¢;)>0
s.t. Y(Xw —be)+ & >e,
_Tli < (D F_)/Ai,t+1 + 4w S ,'72'7
—(d' =Y a T — b+ G >1, i=1,...,m.
(termination test) if 3=, (|| F} — F;™'|| + [Iff — £;!]) < e thenretum solution

6
7 (continue)t =t+1
8: end while

Algorithm 2 arkSVM via Successive Quadratic Programming (arkSVM-sqp)
1: initialize: t=1,F' =0,f*' =0
2: while feasible do
3:  if x not feasible fo D; — F})x < (d7 — f**)  return failure
4:  solve for{a®**11m,

L min I AE S (e 4G+ v S (1)
i, f, (0 >0
w,b,(€,m%¢;>0)

s.t. Y(Xw —be)+ &> e,
eqgns (10-12)i=1,....,m, j=1,...,n

5. (terminationtest) if > (|[F} — F; ||+ [|[ff —£;7'[|) < ¢ then return solution
6: (continue)t =t + 1
7: end while

3.2 arkSVMs via Successive Quadratic Programming

In addition to the above approach we introduce anotherrﬂiign (Algorithm 2) that is based on
successive quadratlc programming. In the constidnt— F;)'u’ + z;w — n* < 0, only the re-
finement termF;u’ is bilinear, while the rest of the constraint is linear. Denitie;j-th components
of w andn’ to bew; andn; respectively. A general bilinear terms, which is non-convex, can be
written as the difference of two convex terndgir + s||* — 1| — s||%. Thus, we have the equivalent
constraint . .
Diju’ + zw; =y + 7|[Fy —u'l|* < 2] Fyy + '], )

and both sides of the constraint above are convex and qiadi# can linearize the right-hand side
of (9) around some current estimate of the bilinear varm@véj, abt

Djjul + zjw; — ) + §[| Fyy — |2 < 3| Ff + ab

. _ . _ _ 10
SR Y (B - )+ - w) .

Similarly, the constraint—(D- — F)'u* — z;w — n* <0, can be replaced by
D’ — zgw; — ik + LBy + wll? < FIEY - 6 ”

FH(E = 0y ((Fy - ) - (w0
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Figure 2:Toy data set (Section 4.1) usinigit) RRSVM (center) arkSVM-sla (ight) arkSVM-sgp. Orange
and green unhatched regions show the original advice. Téleedalines show the margifiw| ... For each
method, we show the refined advice: vertically hatched fas€}-1, and diagonally hatched for Classl.

while d”u’ + zb+ 1 — ¢; — £f'u’ < 0is replaced by
L o i
d'u’ + z;b +1 = G + 3 [[f7 — w2 < [If + a2
+%(fi,t Fanty ((fi,t _ fzt) ¥ (ui— ﬂi,t)) _

The right-hand sides in (10-12) are affine and hence, theeesdt of constraints are now convex.
Replacing the original bilinear non-convex constrainté3)fwith the convexified relaxations results
in a quadratically-constrained linear program (QCLP).Sehguadratic constraints are more restric-
tive than their non-convex counterparts, which leads thsifde set of this problem to be a subset of
that of the original problem. Now, we can iteratively soliie tesulting QCLP. At the-th iteration,
the restricted problem uses the current estimate to catstrnew feasible point and iterating this
procedure produces a sequence of feasible points with agnreobjective values. The approach
described here is essentially the constrained concawergrocedure (CCCP) that has been dis-
covered and rediscovered several times. Most recentlyappeoach was described in the context
of machine learning approaches by Yuille and Rangarajajy 4 Smola and Vishwanathan [19],
who also derived conditions under which the algorithm cogesto a local solution. The following
convergence theorem is due to [19].

(12)

Proposition 2 For Algorithm 2, the sequence of objective values convelgéise value||wl|; +
'€+ S (@ + G) + v S (1Bl + 1E]l), where (w,b,w', F €47, C;) s the
local minimum solution of (8) provided that the constrai(it6—12) in conjunction with the convex
constraintsY (Xw — eb) + &€ > e, £ > 0,u’ > 0, (; > 0 satisfy suitable constraint qualifications
at the point of convergence of the algorithm.

Both Algorithms 1 and 2 produce local minima solutions to aneSVM formulation (8).
For either solution, the following proposition holds, whishows that either algorithm produces
a refinement of the original polyhedral advice regions. Theopis a direct consequence of
[13][Proposition 2.1].
Proposition 3 Let (w, b, u’, I, f*, €, 7", (;) be the local minimum solution produced by Algorithm
1 or Algorithm 2. Then, the following refinement to the adgets holds:

(Di — Fl) < (dl — fl) = Zi(V_V/X — B) > —’f]i/X — Eia
where—7' < 7' < i* such thatD/w’ + w + 7’ = 0.

4 Experiments

We present the results of several experiments that comparpdrformance of three algorithms:
RRSVMs (which only refine thd term in Dx < d), arkSVM-sla (successive linear programming)
and arkSVM-sqp (successive quadratic programming) wih ¢ standard SVMs and KBSVMs.
The LPs were solved usir@SOPT?, while the QCLPs were solved usiSpPT- 3 [22].

4.1 Toy Example

We illustrate the behavior of advice refinement algorithisswussed previously geometrically using
a simple2-dimensional example (Figure 2). This toy data set consis2)0 points separated by
21 + a2 = 2. There are two advice set§S; : (x1,22) >0 = z=+1}, {52 : (x1,22) <0 =

2http: //ww\2. i sye. gat ech. edu/ ~wcook/ gsopt /
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Figure 3: Diabetes data set, Section 4.&f() Results averaged ovéf runs on a hold-out test set df 2
points, with parameters selected by five-fold cross vabaatright) An approximate decision-tree represen-
tation ofDi abet es Rul e 6 before and after refinement. The left branch is chosen if tlegygat a node is
true, and the right branch otherwise. The leaf nodes clad®fdata point according fdi abet es.

z = —1}. Both arkSVMs are able to refine knowledge sets such thatdhgart of S; lies on the
wrong side of the final hyperplane. In addition, the refinenterms allow for sufficient modification
of the advice set®)x < d so that they fill the input space as much as possible, withimleating
the margin. Comparing to RRSVMs, we see that refinement tsigtdge because corrections are
applied only to part of the advice sets, rather than fullyecting the advice.

4.2 Case Study 1: PIMA Indians Diabetes Diagnosis

The Pima Indians Diabetes data set [4] has been studiederaelecades and is used as a standard
benchmark to test many machine learning algorithms. Theigt@apredict the onset of diabetes in
768 Pima Indian womemithin the next 5 yearbased on current indicators (eight features): number
of times pregnant, plasma glucose concentratipru¢), diastolic blood pressure, triceps skin fold
test, 2-hour serum insulin, body mass indéxi(), diabetes pedigree functiopgdf ) and age.
Studies [15] show that diabetes incidence among the Pimiariads significantly higher among
subjects withbrmi > 30. In addition, a person with impaired glucose tolerance ia significant
risk for, or worse, has undiagnosed diabetes [8]. This l¢éatize following expert rules:

(Di abetes Rule 1)  (gluc <126) =-diabetes,
(Di abetes Rule 2) (gluc > 126) A (gluc < 140) A (bmi < 30) =-—diabetes,
(Di abetes Rule 3) (gluc > 126) A (gluc < 140) A (bmi > 30) =- diabetes,
(Di abetes Rule 4) (gluc > 140) = diabetes.

The diabetes pedigree function was developed by Smith L8], and uses genetic information
from family relatives to provide a measure of the expectatketie influence (heredity) on the sub-
ject’s diabetes risk. The function also takes into accoltge of relatives who do have diabetes;
on average, Pima Indians are oslyyears old when diagnosed with diabetes. A subject with high
heredity who is at leas}l is at a significantly increased risk for diabetes in the nextyears:

(Di abetes Rule 5)  (pedf <0.5) A (age < 31) =-—diabetes,
(Di abetes Rule 6) (pedf > 0.5) A (age > 31) = diabetes.

Figure 3 (left) shows that unrefined advice does help itytigspecially with as few a80 data
points. However, as more data points are available, thetaffehe advice diminishes. In contrast,
the advice refining methods are able to generalize muchrhvettefew data points, and eventually
converge to a better solution. Finally, Figure 3 (right)wh@n approximate tree representation of
Di abet es Rul e 6 after refinement. This tree was constructed by sampling pheesaround
refined advice region uniformly, and then training a decisiee that covers as many of the sampled
points as possible. This naive approaciuli@ extraction from refined advide shown here only to
illustrate that it is possible to produce very useful dormaipert-interpretable rules from refinement.
More efficient and accurate rule extraction techniquesiiady SVM-based rule extraction (for
example, [7]) are currently under investigation.
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4.3 Case Study 2: Refining GUI-Collected Human Advice in a Wagus Task

Wargu$ is a real-time strategy game in which two or more playerseyagsources, build bases and
control units in order to conquer opposing players. It haanbgidely used to study and evaluate
various machine learning and planning algorithms. We atelour algorithms on a classification
task in the Wargus domain developed by Walker et al. [23fddllower - def ense (Figure 4,
left). Advice for this task was collected from humans via agrical, human-computer interface
(HCI) as detailed in [23]. Each scenario (example) awer - def ense, consists of a single tower
being attacked by a group of enemy units, and the task is @igirehether the tower will survive
the attack and defeat the attackers given the size and cdtioposf the latter, as well as other
factors such as the environment. The data set consisi8 ffatures including information about
units (eg., archers, ballista, peasants), unit propefigs, map location, health), group properties
(e.g.,#ar cher s, #f oot men) and environmental factors (e.@hasMat ).

Walker et al. [23] used this domain to study the feasibilitiearning from human teachers.
To this end, human players were first trained to identify Wbket tower would fall given a particular
scenario. Once the humans learned this task, they were éslgdvide advice via a GUI-based
interface based on specific examples. This setting lenel$ isry well to refinement as the advice
collected from human experts represents the sum of thegreqces with the domain, but is by no
means perfect or exact. The following are some rules proMigehuman “domain experts”:

(Wargus Rul e 1) (#footmen > 3) A (?hasMoat = 0) =falls,
(Wargus Rul e 2) (#archers > 5) =falls,
(Wargus Rul e 3) (#ballistas > 1) =falls,
(Wargus Rul e 4) (#ballistas = 0) A (#archers = 0) A (?ThasMoat = 1) =>stands.

Figure 4 (right) shows the performance of the various athors on the Wargus data set. As with
the previous case study, the arkSVM methods are able to hotearn very effectively with a small
data set, they are also able to improve significantly on théopeances of standard knowledge-
based SVMs (KBSVMs) and rule-refining SVMs (RRSVMs).

5 Conclusions and Future Work

We have presented two novel knowledge-discovery methodkSVaM-sla and arkSVM-sqp, that
allow SVM methods to not only make use of advice provided bman experts but teefinethat
advice using labeled data to improve the advice. These rdsthre an advance over previous
knowledge-based SVM methods which either did not refineca8] or could only refine simple
aspects of the advice [12]. Experimental results dematestinat our arkSVM methods can make
use of inaccurate advice to revise them to better fit the dataignificant aspect of these learn-
ing methods is that the system not only produces a classifiealbo produces human-inspectable
changes to the user-provided advice, and can do so usingdatebets. In terms of future work, we
plan to explore several avenues of research including ditigrthis approach to the nonlinear case
for more complex models, better optimization algorithmsrigproved efficiency, and interpretation
of refined rules for non-Al experts.

htt p: // di abet es. ni ddk. ni h. gov/ dni pubs/ pi ma/ ki ddi s/ ki ddi s. ht m
“htt p: //war gus. sour cef or ge. net/i ndex. shtm
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