
Appears in the Proc. of the 13th IEEE International Conference on Data Mining (ICDM ’13), Dallas, TX, 2013.

Guiding Autonomous Agents to Better Behaviors
through Human Advice

Gautam Kunapuli
Dept. of Biostat. & Med. Info.

University of Wisconsin-Madison
Madison, WI, USA

kunapg@biostat.wisc.edu

Phillip Odom
School of Info. & Computing

Indiana University
Bloomington, IN, USA

phodom@indiana.edu

Jude W. Shavlik
Dept. of Computer Science

University of Wisconsin-Madison
Madison, WI, USA

shavlik@cs.wisc.edu

Sriraam Natarajan
School of Info. & Computing

Indiana University
Bloomington, IN, USA

natarasr@indiana.edu

Abstract—Inverse Reinforcement Learning (IRL) is an ap-
proach for domain-reward discovery from demonstration, where
an agent mines the reward function of a Markov decision process
by observing an expert acting in the domain. In the standard
setting, it is assumed that the expert acts (nearly) optimally, and
a large number of trajectories, i.e., training examples are avail-
able for reward discovery (and consequently, learning domain
behavior). These are not practical assumptions: trajectories are
often noisy, and there can be a paucity of examples. Our novel
approach incorporates advice-giving into the IRL framework
to address these issues. Inspired by preference elicitation, a
domain expert provides advice on states and actions (features)
by stating preferences over them. We evaluate our approach on
several domains and show that with small amounts of targeted
preference advice, learning is possible from noisy demonstrations,
and requires far fewer trajectories compared to simply learning
from trajectories alone.

I. INTRODUCTION

There has been a renewed surge in developing autonomous
agents based on Reinforcement Learning (RL) [1]. One key
attribute of RL agents is that they interact and learn from the
environment by obtaining quantitative feedback (reward). In
real-world settings, such learning requires a large amount of
experience (that is, acting in the world and gathering feedback)
before converging on optimal decision-making. This has led
to the development of a popular learning paradigm called
learning from demonstration, where the quantitative measure
that influences agent behavior (reward function) is mined from
trajectories. These trajectories are essentially training examples
provided by a demonstrator, often a human domain expert, who
acts according to some optimal reward function without ever
explicitly articulating it to the learner.

Reinforcement learning is concerned with determining a
policy, a conception of how an agent acts in an environment
so that it can maximize some notion of reward. The problem
is modeled within the Markov decision process (MDP) frame-
work, and a wide variety of algorithms have been developed
for finding optimal policies. In this setting, in addition to a
description of states, actions and probability transitions, the
reward is also specified. However, in several domains, it is
hard, if not impossible, to specify the reward explicitly. Such
cases have long been explored through diverse approaches
including learning by observation [2], learning to act [3], pro-
gramming by example [4], inverse reinforcement learning [5],
behavioral cloning [6], imitation learning [7], learning from

demonstrations [8], programming by demonstrations [9], and
several others.

One such framework is inverse reinforcement learning
(IRL), where an agent tries to explicitly learn the reward func-
tion by observing demonstrations. The observations include
the demonstrator’s behavior over time (actions), measurements
of the demonstrator’s sensory inputs, and the model of the
environment. In this setting, IRL was studied by Ng and
Russell [5], who developed algorithms based on linear pro-
gramming (LP) for finite state spaces, and Monte Carlo sim-
ulation for infinite state spaces. Subsequent research extended
their work in different directions including apprenticeship
learning [10], Bayesian frameworks [11], parameter tuning of
reward functions [12], multi-task settings [13], and partially-
observable environments [14].

An important assumption in many of these approaches is
optimality of the training examples, the trajectories, which
are simply sequences of current state and action pairs. With
suboptimal trajectories, it is usually assumed that additional
knowledge in the form of priors, or a large number of trajec-
tories themselves are available for learning. We take a different
approach–we relax the optimality assumption: the demonstra-
tor (who provides the training examples) can be suboptimal,
and there is a domain expert who provides reasonable advice as
preferences in state/action/reward spaces. This is inspired by
the preference elicitation frameworks in RL [15] and IRL [16],
[17] paradigms.

It should be noted that the distinction between a demon-
strator (who provides trajectories) and an expert (who provides
advice) is not always necessary – sometimes, these roles are
can performed by a single teacher. In our setting, the teacher
can make errors in demonstration, leading to noisy trajectories;
for example, driving with distractions in a driving domain.
The teacher also provides reasonably good (but still possibly
noisy) advice. The goal is to learn a reward function from both
demonstration and instruction (advice). This setting is natural
in domains where behaviors are learned from human experts:
a single user demonstrating in real-time makes mistakes, but
can provide advice carefully after taking various factors into
consideration. Such advice can be an especially efficient way to
transfer the teacher’s accumulated experience about the domain
to the learner.

Another motivation is to reduce reliance on demonstration,
and a large number of trajectories. Expert advice can result

Fig. 1. Schematic of the proposed approach. We distinguish between
Demonstrator and Expert to clarify our contributions: preference advice,
provided by an expert. In practice, trajectories and advice can be provided
by a single teacher.

in learning possibly better solutions, with significantly less
data. This has been observed with other advice-taking mining
algorithms such as knowledge-based support vector machines
[18], [19] and advice-taking reinforcement learners [20]. Fi-
nally, learning from both demonstration, as well as instruction
has been shown to be more beneficial than simply learning
via only one or the other, e.g., in cognitive-science studies of
motor-skill acquisition when learning to play sports [21].

We consider preference advice, which is natural to specify
in many domains. This is because an expert can easily tell the
learner about which states/actions are preferable, and which
are avoidable. In different situations, one form of advice (i.e.,
state vs action) may be preferable to others. For instance,
it is natural to specify that the agent avoid certain regions
of a terrain, or that it prefer being closer to certain regions
that are yet unexplored; in this situation state preferences are
more effective. Alternately, while training car-driving agents
in the US, it is natural to specify that turning right but not left
is appropriate at a red light, through action preferences. We
accommodate preference advice of these forms, and pose the
advice-taking IRL problem of learning from trajectories and
advice as a linear program (LP).

The key novelty is that with advice, the learner can tradeoff
between demonstrator and expert based on whoever is more
accurate. After presenting the basic IRL formulation in Section
II, we describe our preference advice framework in Section
III. We evaluate our methods on four different domains under
different settings and show that our proposed approach is
capable of learning reasonable rewards in Section IV. We
also analyze the impact of advice on learning in the presence
of noisy trajectories extensively, and aim to understand the
usefulness of advice in several situations. The schematic of
our approach is shown in Figure 1.

II. BACKGROUND AND NOTATION

Scalars are denoted in lowercase (r), vectors in lowercase
bold (r) and matrices in uppercase (P). A finite MDP is a tuple
(S,A, Psa, γ, r). Here, S is a finite set of n states, A is a finite

set of m actions, Psa are the state transition probabilities upon
taking action a in state s, γ ∈ [0, 1) is the discount factor and
r : S → R is a reward function. A policy is a mapping
π : S → A that determines how the agent acts under the
MDP. The value function vπ : S → R represents the long-
term expected reward for each state s, when executing a policy,
π. The values of a state s, and the values of a state-action pair
(s, a) under π are given by the following Bellman equations:

vπ(s) = r(s) + γ
∑
a π(s, a)

∑
s′

psa(s
′) vπ(s′),

qπ(s, a) = r(s) + γ
∑
s′

psa(s
′) vπ(s′).

(1)

In finite state spaces, the Bellman equations can be written in
vector form [5]:

vπ = (I − γPa∗)−1r, (2)

qπ = r+ γPav
π, (3)

where Pa are the n × n probability transition matrices for
actions a ∈ A, Pa∗ is the expert probability transition matrix
(which is assumed to be optimal in classic IRL), and I is the
n×n identity matrix. Ng and Russell [5, Thm 3] showed that a
policy π is Bellman optimal if and only if, for all non-optimal
actions a ∈ A \ a∗, the reward r satisfies

(Pa∗ − Pa)(I − γPa∗)−1r ≥ 0. (4)

With this characterization IRL can be formulated as an LP.
Many rewards r can satisfy (4); to address this degeneracy
and choose between various solutions, we search for a reward
that maximizes∑

s∈S

(
qπ(s, a∗)− max

a∈A\a∗
qπ(s, a)

)
. (5)

The above equation seeks to maximize the difference between
the value of executing the optimal action and the next best
among all other actions. This leads to the following IRL
formulation, where B = (I − γPa∗)−1:

max
r,ξi

−‖r‖1 + λt

n∑
i=1

ξi

s. t. (P ia∗ − P
i
a)B r ≥ ξi,

∀ a ∈ A \ a∗, i = 1, . . . , n,

ξi ≥ 0, |ri| ≤ rmax, ∀ i = 1, . . . , n.

(6)

The slacks ξi measure the difference between the optimal Q-
value at state i and all other suboptimal Q-values, q(i, a∗) −
q(i, a). The `1-regularization in the objective helps learn sparse
rewards, the effect of which is controlled through λt > 0. Note
that (6) is slightly different from the LP described by Ng and
Russell [5], as it removes several redundant constraints.

III. ADVICE GIVING FOR INVERSE RL

To illustrate the effect of advice, we introduce a 10 × 10
pedagogical grid world (Figure 2). The start state is the bottom
left of the grid, (10, 1). The agent can execute three actions:
goNorth, goEast and goNorthEast, and attempts to
reach the goal, which is the top right of the grid, (1, 10).
In the advice-taking setting, we wish to learn how to act
in a world by observing trajectories (demonstration) and by

Fig. 2. Learned rewards using our proposed approach with various types of advice (introduced in Section III) on a 10× 10 pedagogical domain. The start is
(10, 1) (bottom left) and goal is (1, 10) (top right). (left) With action preferences, which specify that goNorthEast is preferable to other actions for states
on the anti-diagonal from start to goal; (center) With state preferences, which specify for each anti-diagonal state, that neighboring states to the right and above
are less preferable i.e., avoidable; (right) With reward preferences, which specify that rewards for anti-diagonal states nearer the goal should be higher. Our
approach was provided with the trajectories of a suboptimal (in fact, random) demonstrator, and expert advice specified above. Different advice types lead to
different learned rewards, which reflect the nature of the given advice. More specifically, small amounts of targeted advice that specifies preferences over
states and actions can help overcome imperfect and noisy demonstrations effectively.

incorporating explicit advice (instruction). To further illustrate
that preference advice can be very effective, we assume that the
demonstrator acts randomly, that is, the demonstrator’s action
selection is uniformly random, and highly suboptimal. Without
expert advice, in this extreme case of random trajectories, the
formulation (6) (which assumes optimal Pa∗) can only learn
r = 0. Since the reward function is degenerate, the learner
is unable to discriminate between states using trajectories
alone, and learns a policy which involves it acting randomly
in this world. This is not surprising since a randomly-acting
demonstrator also does nothing to discriminate between states
in their demonstration.

However, now consider that in addition to the demonstra-
tor’s trajectories, our learner is also provided with expert ad-
vice: preferences over a small set of actions, states, or rewards.
We show that such natural advice can lead to rewards that
effectively discriminate between states. Furthermore, advice
can help overcome difficulties in learning from a demonstra-
tor that is possibly suboptimal, and from significantly fewer
trajectories. Figure 2, which previews the approach presented
in the succeeding sections, shows the rewards learned from
these random trajectories and each type of preference advice
on this 10× 10 domain.

A. General Form of Advice for IRL

Denote Pref as the set of some expert-specified pre-
ferred states or actions; similarly, denote Avoid as the set
of some expert-specified avoidable states or actions, with
Pref ∩ Avoid = ∅. The general form of advice is as follows:

φ(z; r) − ψ(z′; r) ≥ ζ + δ, ∀ z ∈ Pref, z′ ∈ Avoid. (7)

The variables z, z′ can either be both states or both actions.
The exact nature of this advice depends on φ, ψ, which can
be the Q-values (for action preferences), state values (for state
preferences), or directly, the rewards themselves (for reward
preferences). It is evident from (2–3) that state values (vπ) and
Q-values (qπ) can be expressed as functions of the rewards,
r. Thus, enforcing the constraints (7) enables the expert to
naturally and qualitatively express preference/avoidance for

specific states/actions. The constraints, through the utility
functions, φ and ψ, can then quantitatively enforce these
preferences when incorporated into the IRL framework (6).

The global parameters λ trade-off the influence of pref-
erence advice with the trajectories and sparsity-inducing reg-
ularization in the LP objective. In addition, in (7), the user
can also set advice-specific parameters δ, which control the
hardness of each preference individually. If we set δ > 0, this
enforces a hard margin on the preferences; a larger δ makes
the constraint harder to violate. Alternately, if we set δ ≤ 0, the
constraint becomes softer advice, which is easier to satisfy, or
even violate. Thus, δ reflects how rigorously the expert prefers
the advice to be used, with high values of δ representing greater
emphasis on that rule.

In (7), ζ ≥ 0 are slack variables that measure the differ-
ence between preferred and avoidable states/actions/rewards.
This variable is maximized in the objective to ensure the
best possible discrimination within the learned rewards. The
presence of slack variables also enables the formulation to
handle conflicting advice, which can be common in larger
domains. In our context, conflicting advice refers to situations
in which Pref∩Avoid 6= ∅. When we do have Pref∩Avoid = ∅,
it means that the expert has provided concrete advice and a
violation of this condition is an example of noise in advice.

The slack variables in (7) handle this noisy case; for
instance, consider in the j-th preference, Prefj ∩Avoidj = {s,
s′}, and preference advice is given over states i.e., φ, ψ ≡ vπ .
The optimal solution now depends on the nature of the
trajectories, and their influence via λ. In the optimal solution,
we will have that ζ∗j = 0, and then vπ(s)− vπ(s′) = ζ∗j = 0,
or both states are equally preferable. If further discrimination
is required, we can drop the constraints ζ ≥ 0, which may
have the effect of the optimal solution choosing one state to
the more preferable. The variables ζ function exactly like the
slack variables in support vector machines (for example): they
relax the hardness of the problem to make it feasible from an
optimization perspective, and the extent of the relaxation is
controlled by the regularization parameters, λ.

We now detail the three types of preferences that can be
naturally provided by a domain expert within this framework.

B. Action Preferences

Action preferences are specified for the j-th state by parti-
tioning the available actions into two groups: preferred actions,
a ∈ Prefj ⊆ A(j) and avoidable actions a′ ∈ Avoidj ⊆ A(j).
Here, A(j) is the set of all available actions at state j. Similar
to (5), we can set action preferences by ensuring that the
smallest Q-value of the preferable actions at state i is better
than the largest Q-value of the avoidable actions. This is
enforced by adding the following constraint to (6)

min
a∈Prefj

qπ(j, a)− max
a′∈Avoidj

qπ(j, a′) ≥ ζj + δj , (8)

and maximizing the difference in Q-values for this constraint,
ζi, in the objective. The piecewise-linear constraint (8) can be
rewritten as the following set of constraints,

qπ(j, a) − qπ(j, a′) ≥ ζj + δj , ∀ a ∈ Prefj , a′ ∈ Avoidj .
(9)

Here, each constraint is between a pair of actions for the
state j, one preferred and the second avoidable; the constraints
enumerate that each preferred action is better than each non-
preferred action exhaustively. This may possibly lead to a
combinatorial growth in the number of constraints added into
the LP. However, as we are interested in providing targeted
preference advice over a small subset of states and actions,
the number of pieces of advice will typically be small, and
the constraints added, very manageable for most standard LP
solvers. Also note that the constraint (8) does not give any
information about the relative ordering of the preferable actions
(or avoidable actions); it only requires that the Q-values of all
the preferable actions be at least as good, if not better than
the Q-values of the avoidable actions. If a minimum margin
(or separation) between the Q-values is desired, this can be
enforced by setting δj > 0, making this action-preference
constraint harder. As discussed, previously, the constraint is
softened by the slack variables ζj ≥ 0.

Again setting B = (I − γPa∗)−1 and using (3), we can
write (9) as follows:

(P ja − P
j
a′)B r ≥ ζj + δj , ∀ a ∈ Prefj , a′ ∈ Avoidj . (10)

In general, the expert can specify action preferences inde-
pendently for a set of states Se ⊆ S . Incorporating these
constraints for each j ∈ Se into (6) results in the following
linear program:

max
r,ξi,ζj

−‖r‖1 + λt

n∑
i=1

ξi + λa
∑
j∈Se

ζj

s. t. (P ia∗ − P
i
a)B r ≥ ξi,

∀ a ∈ A \ a∗, i = 1, . . . , n,

(P ja − P
j
a′)B r ≥ ζj + δj ,

∀ a ∈ Prefj , a′ ∈ Avoidj , j ∈ Se,
ζj ≥ 0, ∀ j ∈ Se,
|ri| ≤ rmax, ∀ i = 1, . . . , n.

(11)

Note that we no longer impose ξi ≥ 0 because we are relaxing
the reward optimality condition (4) in (6) in order to ensure
feasibility if the expert’s action preferences possibly contradict

the demonstrator’s trajectories. The parameters λt and λa can
be set by the user, and emphasize the relative importance of
trajectories and action-preference advice respectively, and how
they trade-off with each other, as well as regularization. The
expert can also set the value of each δj and determine the
hardness of each advice constraint.

For the grid world example domain described earlier,
we specify 9 action preferences: one for each state on the
anti-diagonal, excluding the goal (1, 10). That is, for each
state (11 − k, k)9k=1, we partition the actions as Prefk =
{goNorthEast}, Avoidk = {goNorth,goEast}, prefer-
ring that the agent move north-east whenever on an anti-
diagonal state. Thus, we only provide 9 pieces of action prefer-
ence advice, or less than 10% of the states. We set these action
preferences to be soft (δk = 0). The learner was provided
with both the random trajectories, as well as the expert advice.
Figure 2 (left) shows that it is possible to learn a reasonable
reward function (that reflects the nature of the provided advice
accurately) from action-preference advice. More importantly,
the approach is able to overcome the suboptimal effects of the
random trajectories.

C. State Preferences

State preferences are specified between two subsets of
states. For the j-th piece of advice, let Prefj ⊆ S be a subset of
states designated as preferable by the expert, and Avoidj ⊆ S
be another subset of states designated as avoidable. The expert
can specify T such state preferences (j = 1, . . . , T). Similar to
(8), we can enforce these state preferences by ensuring that the
smallest state value of the preferable states in Prefj is better
than the largest state value of the avoidable states in Avoidj .
This can be implemented by adding following constraint to the
formulation (6)

min
s∈Prefj

vπ(s)− max
s′∈Avoidj

vπ(s′) ≥ ζj + δj , (12)

and maximizing the difference in state values for this con-
straint, ζi, in the objective. As before, setting δj > 0 makes
this state preference constraint harder. We denote Bs as the
s-th row of B = (I − γPa∗)−1, corresponding to state s. The
LP below takes into account the state preferences specified by
the expert. :

max
r,ξi,ζj

−‖r‖1 + λt

n∑
i=1

ξi + λs

T∑
j=1

ζj

s. t. (P ia∗ − P
i
a)B r ≥ ξi,

∀ a ∈ A \ a∗, i = 1, . . . , n,

(Bs −Bs′) r ≥ ζj + δj ,

∀ s ∈ Prefj , s′ ∈ Avoidj , j = 1, . . . , T,

ζj ≥ 0, ∀ j = 1, . . . , T,

|ri| ≤ rmax, ∀ i = 1, . . . , n.

(13)

The parameter λs controls the influence of state preferences
and trades-off with trajectories (via λt) and regularization. For
the example grid world domain, we specified T = 9 state
preferences, one for each state on the anti-diagonal, excluding
the goal. Anti-diagonal states are preferred over states immedi-
ately to the right and above. This ensures that when the agent
is in an anti-diagonal state, it will find the next higher anti-
diagonal state (closer to the goal) more appealing than any of

Fig. 3. Experimental Domains: (left, Wumpus World) The agent travels from the start (S) to the goal (G), while avoiding the pits (P). If the agent reaches
any P instead of G, the current trajectory ends in failure; (center, Traffic Signals) Two agent-controlled intersections attempt to regulate traffic, with the signals
S1 near the highway. The state space of each agent is the discretized density of cars, which is higher on the highway, and consequently, at S1. (right, Sailing)
The agent navigates a sailboat from the start to finish, passing through the intermediate waypoints, taking into account the direction of the wind

the surrounding states. Specifically, for k = 1, . . . , 9, Prefk =
{(11−k, k)} and Avoidk = {(10−k, k), (11−k, k+1)}. We
also set δk = 0. Figure 2 (center) shows that state preferences
can learn a more discriminative reward function than action
preferences for this domain. The key takeaway is that we learn
a reasonable reward function with accurate expert advice given
over only a very small subset (10%) of the states.

D. Reward Preferences

For reward preferences, rather than specifying constraints
over the state values, we specify constraints over the immediate
rewards of these states directly. This advice expresses a direct
preference for immediate rewards, r(s), rather than long-term
accumulated rewards as measured by vπ(s). Similar to the
state-preference advice case, let Prefj ⊆ S be a subset of
states designated as preferable by the expert, and Avoidj ⊆ S
be another subset of states designated as avoidable. We would
like that learned rewards for states in Prefj be higher than
rewards for states in Avoidj . This can be achieved by directly
specifying constraints on the rewards:

min
s∈Prefj

r(s)− max
s′∈Avoidj

r(s′) ≥ ζj + δj . (14)

Naturally, the expert can choose to provide T reward prefer-
ences. Again, these constraints can be incorporated into the
formulation (6):

max
r,ξi,ζj

−‖r‖1 + λt

n∑
i=1

ξi + λr

T∑
j=1

ζj

s. t. (P ia∗ − P
i
a)B r ≥ ξi,

∀ a ∈ A \ a∗, i = 1, . . . , n,

r(s)− r(s′) ≥ ζj + δj ,

∀ s ∈ Prefj , s′ ∈ Avoidj , j = 1, . . . , T,

ζj ≥ 0, ∀ j = 1, . . . , T,

|ri| ≤ rmax, ∀ i = 1, . . . , n.

(15)

The reward-preference advice essentially enables the do-
main expert to specify a partial ranking ordering of states
directly. The parameter λr controls the influence of reward
preferences with respect to the trajectories and regularization.
In the grid world domain, we enforce very simple reward
preferences on the anti-diagonal states: r(10, 1) ≤ r(9, 2) ≤
. . . ≤ r(1, 10). We also set δ = 0.15rmax, which requires that
each of the states have an enforced separation of 0.15rrmax.
This makes these reward-preference constraints hard. Note

here that the value of rmax should be set with care in order to
maintain feasibility of the LP.

Figure 2 (right) shows the learned reward function under
these settings. Note that, in the context of this example, the
learned r is optimal to the LP, but sub-optimal from an RL
perspective, that is, there exist reward functions that lead to
better agent behavior. To see this, consider the states with
negative learned rewards; an agent at this state will move off
the anti-diagonal and take longer to eventually reach the goal
state. While we could specify reward advice similar to the state
advice, to train an optimally-acting agent, we do not do so as
our intent is to demonstrate that we can effectively incorporate
the expert’s reward preferences. The learned rewards, in this
example, reflect the expert advice very accurately. The start
state has the lowest reward (r(10, 1) = −rmax), and the
rewards on the anti-diagonal monotonically increase by the
hardness margin δ, and the goal state has the highest reward
(r(1, 10) = rmax).

IV. EXPERIMENTS

We aim to answer the following questions through our
experiments:

Q1: How does combining trajectories with each advice type
compare with learning using only trajectories?

Q2: How do the behaviors of learners given these different
forms of advice compare against each other?

Q3: How sensitive is the method to noisy trajectories?
Q4: How sensitive is the approach to noisy advice?
Q5: In which situations does advice help most?
Q6: How does the choice of parameters λ affect the learned
reward functions?

We conducted experiments in four computer-simulated
domains (Table I) and in each, the rewards were learned from
noisy trajectories, as well as domain-specific advice given as
action, state, and reward preferences. The LPs were solved
using the publicly-available GLPK1 solver. We use δ = 0 for
all experiments, and λt = 103 when learning from trajectories
only. After the rewards were learned, value iteration [1] was
performed, following which the agents acted greedily in their
respective domains.

1http://www.gnu.org/software/glpk

Fig. 4. Results comparing agents that learned from demonstration only, to those that learned from demonstration and preference advice. Performance is
measured for (top left, Wumpus World; bottom left, Sailing) by how often (%) the agent reached the goal; (top right, Traffic Signals) by wait time at a
signal, with lower waiting times being better; (bottom right, Driving) by distance driven on the highway, with higher distances being better. Various preference
advice types uniformly improve performance over all domains.

A. Domains and Experimental Setup

The performance of each advice type (with trajectories)
was compared to a no-advice agent that learned a reward
function using only the trajectories. The IRL problems were
solved for increasing number of trajectories, and their perfor-
mance was averaged over 20 simulations for Wumpus World
and Sailing, and 10 simulations for the Traffic Signals and
Driving. We compute Pa for Traffic Signals by simulating
a random demonstrator in these domains, and applying a
Laplacian correction to the transition function.

TABLE I. EXPERIMENTAL DOMAINS. |S| AND |A| ARE NUMBER OF
STATES AND ACTIONS. |AA|, |SA| AND |RA| REFER TO NUMBER OF

ACTION, STATE AND REWARD ADVICE PIECES RESPECTIVELY.

DOMAIN |S| |A| |AA| |SA| |RA|
Wumpus World 25 4 8 2 1

Sailing 51 4 23 3 3
Traffic Signal 256 16 45 2 -

Driving 400 3 37 2 2

Table I describes the domain sizes and the amount of
advice provided. Each action advice piece represents action

preferences for one distinct state, with the sets Pref and Avoid
being small subsets of action space. In contrast, for state and
reward advice, we specify subsets of preferable and avoidable
states, and each Pref and Avoid pair is counted as a single
piece of advice. This masks the fact that, for state and reward
preferences, the sizes of Pref and Avoid can be large. We
revisit this issue in the Traffic domain.

B. Wumpus World

This is a modification of a classical RL domain [22]; our
Wumpus World consists of a 5 × 5 grid with 4 obstacles
(pits); the agent must navigate from the start to the goal while
avoiding the obstacles. The agent can execute 4 actions: move
in each of the cardinal directions. If the agent enters a pit
space, it dies. Action advice is specified for states adjacent to
the pits: actions that take the agent into the pit are avoidable.
The state (and respectively, reward) advice specifies that the
goal should have the highest value (reward), and that the
pit squares should have lower value (reward) than the other
states. The regularization parameters were set to λt = 1 and
λa = λs = λr = 10.

Performance is measured by the number of times (%) the
agent following the greedy policy (specified by the learned
rewards) is able to reach the goal. Figure 4 (top left) shows
the behavior of agents under these different settings. When
the agent learns rewards using trajectories only, its behavior
is erratic, and it never achieves better than a 50% goal rate.
In contrast, agents that were given advice are able to learn
reasonably close to optimal behaviors, especially as the number
of trajectories increases. Specifying state preferences produces
a very strong performance, and the agent is able to learn to
act optimally with little demonstration. This effect can also be
observed in knowledge-based support vector machines [18],
[19], which are capable of learning reasonable classifiers using
advice and very little data, as long as the advice provided by
the expert was reasonable.

C. Traffic Signals

This domain is an adaptation of the traffic simulator from
Natarajan et al. [13]. It models two traffic intersections, each
with four actions corresponding to the direction that have a
green signal. Hence, the action space of the signals is to allow
traffic in one direction to go straight, right or left in the signal.
The two signals do not have uniformly identical behavior; this
is because of the presence of a highway near the signal S1,
which means that it will have to deal with larger volumes
of traffic. The state space of each signal is the (discretized)
density of cars, {low,high}.

Action advice specifies that at S1, traffic from the highway
gets priority compared to the traffic from other directions.
State advice prefers states in which there is only one direction
at high for each signal. In addition, states that have two
directions at high are preferred over all other states, except
those that have only one direction at high. For state advice,
while the set of preferable states is small, the set of avoidable
states is much larger; this creates a large number of constraints
in the LP, owing to the combinatorial nature of the advice (12).
To overcome this issue, we uniformly sample avoidable states
to maintain a computationally feasible LP. This is in keeping
with our general advice-giving philosophy of providing small
amounts of accurate advice. We set λt = 102 and λa = 103

for action advice, and λt = 10 and λs = 103 for state advice.

Performance is measured by the total wait time for cars
(as measured in domain time steps) before getting a green,
with lower times indicating better performance. In Figure
4 (top right), advice-taking agents outperform the no-advice
agent. The performance of agents with state advice was more
effective than with action advice. This shows that, even when
sampling preferences, it is possible to learn effective reward
functions with fewer trajectories.

D. Sailing

This domain is a modification of the one proposed by
Vanderbei2, in which, given a grid of waypoints connected by
legs, the agent navigates a sailboat from one way point to the
next to reach the finish in the shortest time possible. The key
difference from the original domain is that the wind makes the

2Sailing Strategies: An Application Involving Stochas-
tics, Optimization, and Statistics (SOS); http://
orfe.princeton.edu/∼rvdb/sail/sail.html

result of the actions stochastic and the agent must take wind
direction into account to choose one of 4 actions. The lake has
distinct boundaries and if the agent sails out of these, it crashes
into the shore. The action advice specifies action preferences
around the edges of the lake to avoid this outcome. It also
specifies actions that lead to selecting the shortest path across
the lake, assuming that the wind has no effect on the action
outcomes. The state/reward advice specifies that the middle of
the lake should be preferred over the edges, and the finish state
should be most preferred. For this domain, we used λt = 10,
λa = λs = λr = 102.

In this domain (Figure 4, bottom left), performance is
measured by how often (%) the greedy agent reached the
finish. Agents with each of the three advice types significantly
outperform the no advice agent; the latter does eventually
learn optimal behavior, but requires more trajectories to do so,
highlighting the benefit of giving small amounts of targeted
advice to the learners.

E. Driving

This domain is a modification of the Driving simulator
used by Abbeel and Ng [10], in which an agent must navigate
a car on the highway. The agent’s speed is constant and faster
than all other cars on the highway, and therefore the agent
must change lanes as it drives in order to avoid the other cars.
The agent can occupy one of four lanes (right/left, off road
right/left), and can see only the closest car in each lane (10
possible values). Cars in the right lane appear more often than
in the left lane, and drive at slower speed. The agent must
drive as far as possible on the highway while avoiding crashing
into other cars, and driving off the road as much as possible.
The advice specifies that it is generally better to be in the
left lane as cars will be slower in the right lane. State and
reward advice prefer the agent to come onto the highway if
off-road, and the adjacent highway lane is free. We used λt =
102, λa = λs = λr = 10. In Figure 4 (bottom right) we
see that advice-taking agents outperform the no-advice agent.
More specifically, action preferences are more appropriate for
this domain.

F. Noise-Free Trajectories and Advice

Now, Q1 can be answered affirmatively: in all domains,
the use of advice greatly helps in learning better rewards than
only using trajectories. In three of four domains, giving state
preferences, rather than action preferences is more useful, and
results in learning better rewards. This is especially true when
the number of available trajectories is very small. In such
situations, it is certainly easier to specify state preferences
since the amount of advice required is much smaller than
specifying action preferences. Thus, in answer to Q2, state
advice seems more natural and useful from our empirical
evaluations, particularly when learning with a very small
number of demostrations.

G. Noisy Trajectories and Advice

To answer Q3, Q4 and Q5, we performed additional exper-
iments in two domains – Wumpus World and Driving. First,
we analyze Ng and Russell’s original IRL formulation to see
how well it handles noisy trajectories. The noisy trajectories in

Fig. 5. Results showing the effect of noise in trajectories and advice on reward learning. We show the performance of agents that learned with (left) noisy
trajectories and no advice and (right) optimal trajectories and noisy advice in two domains: Wumpus World (top) and Driving (bottom). For noisy trajectories
and no advice (left) even a small amount of noise in the trajectories leads to inferior rewards being learned, and poorer domain behavior. This is because of the
demonstrator optimality assumption in standard IRL [5]. Alternately, our approach is more robust to noise in advice (right), especially to missing advice.

both domains are generated by choosing an action randomly
(0%, 15%, and 30% of the time). For noisy trajectories and
no advice (left column of Figure 5), performance is not high,
even with a small amount of noise in the trajectories (cf.
Figure 4). This answers Q3: standard IRL without advice
does not handle noisy trajectories well, compared to with-
advice cases. A significant reason for this is the original
IRL assumption of demonstrator optimality; in the original
formulation, the demonstrations are assumed to be the actions
of an agent acting perfectly optimally in the given domain. We
relax this assumption to varying degrees by adding randomness
in the trajectories, and the resulting performance degenerates.
This experiment also provides a glimpse of the answer to Q5:
that advice is particularly useful for noisy trajectories.

The second column of Figure 5 shows performance with
noisy state advice and optimal trajectories. Advice can be
noisy due to two reasons: missing advice where some prefer-
ences are left out, and incorrect advice where some preferences

are perturbed. For both Wumpus World and Driving, we
dropped/perturbed 10% of states in the preferred or non-
preferred sets. In Figure 5, we see that our approach is
reasonably robust to missing advice as it can recover some
of this advice from the (optimal) trajectories. When advice is
incorrect, the method suffers more. To answer Q4, missing
advice can be handled more effectively than incorrect advice
in both domains. Overall, in many real-life situations, we can
expect noise in both trajectories and advice, and our approach
can incorporate both robustly to learn good reward functions.

In order to answer Q5 explicitly, we demonstrate the
importance of advice in a common real-life situation: unvisited
states in domains. In many domains, when there are highly
avoidable states or actions (i.e., those that lead to catastrophic
consequences for the agent), the demonstrator will simply
avoid those states and actions without providing an explanation
to the learner. It is very difficult for a learner to then reasonably
infer the avoidability of such states. For these unseen states,

Fig. 6. Results showing the behavior three different agents in (left) Wumpus World, and (right) Driving, when certain states are not seen in the demonstrator
trajectories. The first agent uniformly samples the actions space at a given state, when if it finds itself in a state not visited previously by the demonstrator. The
second agent picks a random action uniformly once, and then its policy is skewed towards this random policy in future visits to the unseen state. The third agent,
unlike the first two, has access to a domain expert’s action-preference advice at the unseen states, which it incorporates in reward learning, and consequently in
learning to act.

it is far easier to specify the states and actions to be avoided
through advice, rather than demonstrate the negative conse-
quences. This is the scenario we consider in this experiment:
we explicitly provide action advice at unseen states, i.e., for
states that are never visited during the demonstration (shown
as advice in Figure 6.

We compare this advice to two agents which have to select
appropriate actions from the same demonstrations, but without
advice. The first samples actions from a uniform distribution,
and the second samples one action randomly, and then updates
the demonstrator policy so that the distribution is skewed
towards this action that is, we simulate an expert such that
they are more likely to choose from this skewed distribution.
We call this agent uniform sampling plus update. Put another
way, the first agent employs a uniform distribution over the
policy of unseen states, and the second agent skews the policy
towards a random policy.

The performance of all three agents are shown in Figure 6.
Giving advice for unseen states significantly improves learned
behaviors, answering Q5; advice is most useful in unvisited or
suboptimal states as observed from the demonstrator policy.
This is another key reason why advice can be crucial – to
avoid risk states [23] in unseen trajectories that are otherwise
unavoidable without any advice.

H. The Effect of Parameters λt, λa

Finally, to answer Q6, we investigate the effect of regu-
larization parameters on learned rewards, and the consequent
behavior of the agents. We return to the 10× 10 pedagogical
grid world, in which an agent moving from the start (10, 1)
to goal (1, 10) optimally can do so in a trajectory of length 9.
In this experiment, we consider a demonstrator that provides
trajectories with 30% noise and action advice, as specified pre-
viously. Rewards were learned for uniformly sampled values
of λt, λa ∈ [2−5, 25]. Figure 7 summarizes these results.

We found that, except certain “poor values” of λt and λa,
learned rewards (and resulting agent behavior) are similar, for
“reasonable values” of these parameters. Poor parameter values
are those that result in degenerate or non-informative rewards
such as r = 0 or r = ±rmax1. These solutions typically
arise when λ values are very small, and are poor because
they are unable to discriminate between various states. For
reasonable values, usually in the range: λ ∈ [2−1, 23], the
quality of behavior induced by the learned rewards did not
change dramatically. Similar behavior was observed in the
other domains as well.

For these experiments, note that we set δ = 0. Degenerate
solutions may indicate that the constraints in the problem are
not restrictive enough. In such situations, it would be helpful to
set a value of δ > 0, in order to harden the constraints and force
discrimination between the learned rewards. However, these
observations are very preliminary, and the subtle interaction
between various parameters, including the hardness δ deserves
deeper study, which is beyond the scope of this work.

V. CONCLUSIONS AND FUTURE WORK

We propose a novel methodology for incorporating expert
advice into the inverse reinforcement learning framework.
This, our key contribution, arises from the relaxation of the
assumption of demonstrator optimality, which is common
in most IRL approaches to date. Our approach provides a
framework within which preferences over states and actions,
specified a non-AI domain expert can be incorporated into the
IRL problem. Our approach is able to combine such natural
advice with demonstrator trajectories to learn rewards, which
can then be used to determine how to act in the domain.
This approach enables learning in situations where the agent
observes a possibly noisy and suboptimal demonstrator, but can
use expert advice (which is also possibly noisy) to learn good
behavior. Our experiments show that it is possible to learn to

Fig. 7. Results showing the effect of the parameters λt and λa on (left) sparsity of the reward r, and (right) quality of the learned rewards, when acting in
the 10 × 10 grid domain (Figure 2), under a greedy policy as measured by the average path length to goal. Rewards that are too sparse or too dense are not
very useful in discriminating states. Such degenerate or non-discriminative rewards are learned for “poor” choices of the regularization parameters, that is, very
small values of λ. The behaviors of agents that learn to act using rewards generated with “reasonable” λ values are very similar.

act in such situations, and that advice can help learn with fewer
trajectories. Furthermore, the incorporation of `1-regularization
allows us to learn sparse and discriminative reward functions.
These results serve as a proof-of-concept, and we propose to
further investigate advice giving for more complex domains: in
continuous, possibly infinite-dimensional state-action spaces.

ACKNOWLEDGEMENTS

SN and PO thank Army Research Office grant number
W911NF-13-1-0432 under the Young Investigator Program.
SN and JS gratefully acknowledge the support of the DARPA
DEFT Program under the Air Force Research Laboratory
(AFRL) prime contract no. FA8750-13-2-0039. Any opinions,
findings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the view of the DARPA, AFRL, or the US government.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). Cambridge, MA: The
MIT Press, 1998.

[2] A. Segre and G. DeJong, “Explanation-based manipulator learning:
Acquisition of planning ability through observation,” in IEEE Conf.
on Robotics and Automation, 1985.

[3] R. Khardon, “Learning action strategies for planning domains,” Artifi-
cial Intelligence, vol. 113, no. 1-2, pp. 125–148, 1999.

[4] H. Lieberman, “Programming by example: Introduction,” Communica-
tions of the ACM, vol. 43, no. 3, pp. 72–74, 2000.

[5] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in ICML, 2000, pp. 663–670.

[6] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Imitation in animals
and artifacts,” K. Dautenhahn and C. L. Nehaniv, Eds., 2002, ch.
Learning to fly, pp. 171–189.

[7] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search:
Functional gradient techniques for imitation learning,” Autonomous
Robots, vol. 27, no. 1, 2009.

[8] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, 2009.

[9] S. Calinon, Robot Programming by Demonstration - a Probabilistic
Approach. EPFL Press, 2009.

[10] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in ICML, 2004.

[11] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing,” in IJCAI, 2007.

[12] G. Neu and C. Szepesvári, “Training parsers by inverse reinforcement
learning,” Machine Learning, vol. 77, no. 2-3, pp. 303–337, 2009.

[13] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and
J. Shavlik, “Multi-agent inverse reinforcement learning,” in ICMLA,
2010, pp. 395–400.

[14] J. Choi and K.-E. Kim, “Inverse reinforcement learning in partially
observable environments,” JMLR, vol. 12, pp. 691–730, 2011.

[15] C. Boutilier, “A POMDP formulation of preference elicitation prob-
lems,” in AAAI, 2002, pp. 239–246.

[16] C. Dimitrakakis and C. A. Rothkopf, “Bayesian multitask inverse
reinforcement learning,” in EWRL, 2011.

[17] C. Rothkopf and C. Dimitrakakis, “Preference elicitation and inverse
reinforcement learning,” in ECML-PKDD, 2011.

[18] G. Fung, O. L. Mangasarian, and J. W. Shavlik, “Knowledge-Based
support vector machine classifiers,” in NIPS, 2002, pp. 01–09.

[19] G. Kunapuli, K. P. Bennett, A. Shabbeer, R. Maclin, and J. W. Shavlik,
“Online knowledge-based support vector machines,” in ECML, 2010,
pp. 145–161.

[20] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild, “Giving advice
about preferred actions to reinforcement learners via knowledge-based
kernel regression,” in AAAI, 2005.

[21] N. A. Hodges and I. M. Franks, “Modelling coaching practice: the role
of instruction and demonstration,” Journ. Sports Sci., vol. 20, pp. 793–
811, 2002.

[22] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach,
3rd ed. Pearson Education, 2010.

[23] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning
applied to control under constraints,” JAIR, vol. 24, no. 1, pp. 81–108,
2005.

