
Efficient Learning of Statistical Relational Models

by

Tushar Khot

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 08/18/2014

The dissertation is approved by the following members of the Final Oral Committee:
Jude Shavlik, Professor, Computer Sciences
Sriraam Natarajan, Assistant Professor, Informatics And Computing
David Page, Professor, Biostatistics and Medical Informatics
AnHai Doan, Professor, Computer Sciences
Mark Craven, Professor, Computer Sciences

© Copyright by Tushar Khot 2014
All Rights Reserved

i

To Aai and Baba

ii

acknowledgments

First and foremost, I would like to thank my advisor, Jude Shavlik, for
mentoring and supporting me throughout my PhD. His guidance during
my graduate career has been invaluable and helped me immensely to
improve my technical knowledge and communication skills. I have learned
a lot about my field as well as machine learning, in general, for which I
will always be thankful.

I would also like to thank my co-advisor, Sriraam Natarajan, for pa-
tiently guiding me through my graduate career. His vast knowledge about
the field has always inspired me to keep reading. He has been my friend
and mentor, shaping me into the researcher I am today.

I would like to thank my committee members: David Page, AnHai
Doan and Mark Craven for their inputs on my work. My first machine
learning course was under David Page, which inspired my interest in
first-order logic and eventually led to my work. I have learned a lot about
various topics from my committee members through our discussions. I
want to thank them for their feedback and providing a new perspective
on my work.

My collaborators have made all of the work presented in this thesis
possible and for that I am very thankful. The one collaborator who has
been most influential and essential for my research is Kristian Kersting.
Through many of our discussions in conferences and conference calls, I
have learned a lot about the field, but more importantly about how to
critically analyze problems and potential solutions. I would also like
to thank Chris Ré for guiding and helping me through the problems
with scaling our approaches, especially for the large-scale information-
extraction task. His guidance during my prelims also helped forge the
direction of my research in the final years. Although not directly involved
in my graduate career, I want to thank Dr. Hemalatha Thiagarajan of NIT

iii

Trichy for challenging me and inspiring me during my undergraduate
career, which led me to pursue my PhD.

I am thankful to the smart people from the Machine Learning group
in University of Wisconsin-Madison. Specifically, I want to thank my
office mate, Gautam Kunapuli for the great technical discussions (and
non-technical too). I would like to thank my friends in Madison, especially
Mohit Saxena and Sabareesh Subramaniam, for supporting me during my
graduate career. I am also grateful to my two room mates, Balaji Gopalan
and Phillip Odom, for putting up with me. I would like to thank Indiana
University, Bloomington for hosting me in my final year. I would also like
to acknowledge my friends from Bloomington who made the last year of
my PhD truly memorable.

Last, but not the least, I would like to thank my family for supporting
me and motivating me. Aai and Baba have supported my every decision
and I am grateful of their trust in me. Parna Tai and Dipali Tai have pushed
me to try harder and kept me motivated, for that I will always be grateful.

I gratefully acknowledge the support of the funding agencies that have
supported my education at University of Wisconsin-Madison. My research
has been funded by the DARPA Machine Reading Program and Deep
Exploration and Filtering of Text Program under the Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-C-0181 and FA8750-13-
2-0039 respectively. I am also grateful to Dr. Tanimoto for sponsoring my
Alumni Scholarship, which helped me in my early graduate career.

iv

contents

Contents iv

List of Tables viii

List of Figures x

Abstract xv

1 Introduction 1
1.1 Boosted Statistical Relational Learning 5
1.2 Thesis Statement 6
1.3 Thesis Outline 6

2 Background 9
2.1 Technical Background 9

2.1.1 Representation: First-order logic 9
2.1.2 Uncertainty: Graphical models 10

2.2 Statistical Relational Learning Models 12
2.2.1 Relational Dependency Networks 14
2.2.2 Markov Logic Networks 16

2.3 Learning in SRL Models 19
2.3.1 Parameter learning 19
2.3.2 Structure learning 21
2.3.3 Learning trade-offs 25

2.4 Functional-Gradient Boosting 27
2.5 Evaluation Approach 30

3 Learning Structure for Relational Models 36
3.1 Introduction 36
3.2 Relational Functional Gradient Boosting (RFGB) 37

v

3.3 Adapting RFGB for RDNs 43
3.4 Adapting RFGB for MLNs 45
3.5 Experiments for RFGB 55

3.5.1 Evaluating the boosted RDN approach: WebKB 56
3.5.2 Evaluating the boosted MLN approaches: UW-CSE 57
3.5.3 Evaluating the boosted RDN and MLN methods:

IMDB 59
3.5.4 Additional experiments 61
3.5.5 Interpretability of the resulting trees 75
3.5.6 Probability calibration 77
3.5.7 Learning curves 83

3.6 Discussion and Future Work 84

4 Learning in the Presence of Missing Data 86
4.1 Introduction 86
4.2 Structural EM for Relational Functional Gradients 87

4.2.1 Gradients for hidden groundings 91
4.2.2 Gradients for observed groundings 92

4.3 The RFGB-EM Algorithm 92
4.4 Adaptations of RFGB-EM 96

4.4.1 RDN adaptation 97
4.4.2 MLN adaptation 101
4.4.3 Imitation learning adaptation 103
4.4.4 Wrap up 105

4.5 Discussion and Future Work 106

5 Relational One-Class Classification 108
5.1 Introduction 108
5.2 Propositional OCC 111
5.3 Relational OCC 112

5.3.1 Tree-based distance 114

vi

5.3.2 Density estimation model 115
5.3.3 Model learning 116
5.3.4 Model interpretations 119

5.4 Experiments 121
5.4.1 UW-CSE 122
5.4.2 IMDB 123
5.4.3 NFL 123
5.4.4 Heart 125

5.5 Discussion and Future Work 126

6 Bridging the Gap between Directed and Undirected Models 127
6.1 Causal Independence in Directed Models 128

6.1.1 Decomposable combining functions 129
6.1.2 Combining rules in directed models 130

6.2 Decomposable Combining Rules in MLNs 133
6.2.1 Transformation of combining rules 137
6.2.2 MLN macros 143

6.3 Experiments 145
6.4 Discussion and Future Work 147

7 Additional Explorations 149
7.1 Temporal Relation Extraction 149

7.1.1 TempEval tasks 151
7.1.2 Structure learning for TempEval-2 152
7.1.3 Initial Results 154

7.2 Alzheimer’s Prediction 155
7.2.1 Pipeline design 156
7.2.2 Experimental results 161

7.3 Knowledge Base Acceleration 164
7.3.1 KBA task 166
7.3.2 Our approach 167

vii

7.3.3 Results 170

8 Conclusion 172
8.1 Future Work 176

8.1.1 Directed models 176
8.1.2 Scalable models 178
8.1.3 Adaptable models 180
8.1.4 Efficient inference 181

8.2 Final Wrap-up 182

References 184

viii

list of tables

1.1 Traditional example representation for machine learning. Each
row shows the levels and grades of the courses taken by a given
student as well as whether the student is satisfied with his or
her education. 2

2.1 First-order logic terminology. 11
2.2 Training data with class label c. 29
2.3 Initial regression dataset. 29
2.4 Regression values after tree 1. 29

3.1 Cross-validation results on the WebKB data set. 57
3.2 Cross-validation results on the UW data set. MLN-BT = Boost-

ing with trees, MLN-BC=Boosting with clauses, Motif-S=Motif
with short rules, Motif-L=Motif long rules, A-D=Hand-coded
rules with discriminative learning, LHL=Lifted Hypergraph
learning. 59

3.3 AUC PR values on the IMDB data set. 60
3.4 CLL values on the IMDB data set. 61
3.5 Cross-validation results on the Movie Lens data set. 62
3.6 Cross-validation results on the OMOP data set. 64
3.7 AUC PR on the Cora testbed. 73
3.8 CLL values on the Cora testbed. 74
3.9 Results on WebKB data set with twice the negatives to positives

in the test set. 75
3.10 Results on WebKB data set using all the negative examples in

the test set. 76

4.1 CLL values for UW-CSE . 100
4.2 CLL values for IMDB . 100

ix

4.3 Results on the Cancer dataset. 102
4.4 Results on the Wumpus dataset 105

5.1 Description of terms used in this chapter. 113
5.2 AUC-PR on UW dataset. 122
5.3 Accuracy on UW dataset. 123
5.4 AUC-PR on IMDB dataset. 124
5.5 Accuracy on IMDB dataset. 124
5.6 AUC-PR on NFL dataset. 124
5.7 Accuracy results on NFL dataset. 124
5.8 AUC-PR on Heart dataset. 125
5.9 Accuracy on Heart dataset. 125

6.1 Testset results on the UW-CSE dataset. 146

7.1 Sample facts generated using the Stanford toolkit. 153
7.2 Examples of predicates used in the pipeline. Here, P stands for

a patient and R for a region. The last three predicates are the
query predicates that are predicted by our classifiers. 159

7.3 Mapping between KBP and KBA relations. All extractions of
the relation type on the left were marked as KBA relations of
the type on right. 169

x

list of figures

1.1 Multi-relational data in an university domain. Students take
different number of courses and professors teach different num-
ber of courses. Each relation or table is represented here as a
first-order logic literal shown above each table. 3

2.1 Sample probabilistic graphical models over three variables.
Note that Markov networks do not need to have a potential φ
defined for every clique (assumed to be 1, if undefined). The
dependency network has a cycle among variables A, B and C. 12

2.2 A dependency network. 15
2.3 A relational dependency network. 16
2.4 Sample MLN rule. 17
2.5 A ground Markov network for the rule in Figure 2.4 where

X, Y ∈ {a, b}. Each node in the ground network is a ground
atom. Red (dark) nodes indicate ground atoms that are false
whereas green (light) nodes are true. 17

2.6 Example hypergraph for an university domain. The constants
(professors, students and courses) form the nodes and the rela-
tions (advisedBy, taughtBy and taken) form the edges between
the constants. 25

2.7 Trade-offs between expert’s time and learning time for learning
problems in SRL models. 26

2.8 A sample model for predicting class label c afterm iterations. 30
2.9 The text UI for the simple Wumpus World. W indicates the

wumpus location, S indicates the stench location, and A is the
agent. 35

xi

3.1 Relational Functional Gradient Boosting. This is similar to the
standard FGB where trees are induced in stage-wise manner;
the key difference being that the trees are relational regression
trees. To compute the predictions, a query x, is applied to each
tree in turn, and the numerical values at the leaf reached in
each tree are summed to obtain ψ(x). 41

3.2 Example of learning a relational tree from regression examples. 45
3.3 Sample tree for target(X). 49
3.4 Area under curves for the entity-resolution task in Cora dataset.

The error bars show one standard deviation from the mean. . 67
3.5 Area under curves for the information extraction task in Cite-

seer dataset. The error bars show one standard deviation from
the mean. 69

3.6 RDN learned using Boosting for the Citeseer dataset. The nodes
that are shaded are the query nodes for which the models have
been learned. The set of the nodes that are the parents for the
query nodes are the set of all nodes that appear in the different
regression trees. 70

3.7 Precision-Recall values for the NFL corpora. The results are
presented for RDNs with a single RRT, Bagged RDNs, Boosted
RDNs and Bagged, Boosted RDNs. 72

3.8 A single tree induced from the set of regression trees learned
for predicting the advisedBy relation between a professor and a
student. Note that some of the nodes are conjunctions of predi-
cates with “," denoting the conjunction symbol. The numbers
at the leaves are the probability of the advisedBy relation being
true. 77

3.9 Calibration results on UW-CSE dataset with sub-sampled neg-
atives to be twice the number of positives. 81

xii

3.10 Calibration results on WebKB dataset with sub-sampled nega-
tives to be twice the number of positives. 81

3.11 Calibration results on UW-CSE dataset with no sub-sampling
of training examples. 82

3.12 Calibration results on WebKB dataset with no sub-sampling of
training examples. 82

3.13 Calibration results on a proprietary dataset with 350K training
and 20K test examples. 83

3.14 Learning curves on UW-CSE dataset. 84

4.1 RFGB-EM flowchart. Shaded nodes indicate variables with
unknown assignments, while the white (or black) nodes are as-
signed true (or false) values. The input data has observed (indi-
cated by X) and hidden (Y) groundings. We sample |W| assign-
ments of the hidden groundings using the current model ψt.
We create regression examples based on these samples, which
are used to learn T relational regression trees. The learned trees
are added to the current model and the process is repeated. . . 95

4.2 Synthetic experiment data generation. Predicate r is the hidden
predicate and s is the target predicate. 98

4.3 Results on the Disjunctive dataset. 99
4.5 The text UI for the simple Wumpus World. W indicates the

wumpus location, S indicates the stench location, and A is the
agent. 104

5.1 Relational one-class classification system design. 113
5.2 Density Estimation using Distance measure. 116

6.1 Decomposable combining rules. 129
6.2 Understanding combining rules using multiplexers. The dashed

nodes are the hidden nodes and the multiplexer nodes, while
the solid nodes are observed in the data. 134

xiii

7.1 Sample TempEval-2 annotations. 151
7.2 Flowchart describing our approach for relation-extraction. . . 152
7.3 Dependency graph for a sentence where OVERLAP relation

exists between “said” and“2002.” 154
7.4 Graphical representation of the pipeline. 157
7.5 AAL atlas segmentation showing the different regions of inter-

est in the brain. 158
7.6 Classification performances in terms of “Area under the ROC

curve" of the different algorithms on Alzheimer’s prediction. . 163
7.7 Predictive segments as identified by our pipeline (different

colors indicate different regions). 164
7.8 Overall system design. 170

xiv

list of algorithms

3.1 RFGB(Data):
Relational Functional Gradient Boosting algorithm. 42

3.2 GenExamples(k, Data, F):
Generate regression examples from Data. 42

3.3 FitRelRegressionTree(S, P):
Fit relational regression trees to the regression dataset, S. . 52

3.4 FitRelRegressionClause(S, P):
Fit relational regression clauses to the dataset, S. 53

3.5 SlopedCalibrator(M, T)
Learn a calibration function for model M using the valida-
tion set, T. 80

4.1 RFGB-EM:
Expectation-Maximization algorithm for RFGB to handle
missing data. 93

4.2 updateModel(W, D, ψ):
Update the model ψ based on sampled states, W. 93

4.3 buildDataset(Ep,W,D,ψ):
Build regression dataset for boosting. 94

xv

abstract

Machine Learning has been successfully applied to many prediction prob-
lems in varying domains such as molecular chemistry, medical diagnosis,
social networks, and information extraction. However standard machine
learning techniques assume that the examples or objects are independent
of each other and have the same number of features or attributes. In many
domains, the objects can be inter-related where predictions on one object
can influence the predictions on related object (e.g., predicting hereditary
diseases). Moreover the examples can have different number of features
(e.g., patients with different number of tests) limiting applicability of the
standard fixed-length feature vector representation.

To build probabilistic models over such structured data, Statistical Re-
lational Learning (SRL) methods have been proposed, which combine first-
order logic representation with probabilities. Most applications of SRL use
an expert-defined model and learn the parameters from data. Since such a
model may not be known or easy to specify, structure-learning approaches
have been developed for SRL models. Due to the high expressivity of
these models, there is a large space of possible structures and as a result,
most structure-learning approaches can be computationally intensive.

I present a boosting-based approach that learns multiple weak rules
of thumb instead of a single complex model. My approach, based on
functional-gradient boosting, learns the structure as well as the parame-
ters of the model simultaneously. I extend the basic relational functional-
gradient boosting (RFGB) approach to two different SRL models: Rela-
tional Dependency Networks and Markov Logic Networks. I also experi-
mentally demonstrate that my approach can learn more accurate models in
a fraction of the time as compared to state-of-the-art learning approaches.

To further increase the applicability of my approach, I extend RFGB to
handle missing data by deriving an Expectation-Maximization approach

xvi

for relational models. The Expectation-step computes the expected values
of missing data and the Maximization-step performs functional-gradient
boosting to update the current model based on the expected values. I em-
pirically demonstrate that the EM approach can learn more accurate model
than the traditional closed-world assumption of assuming unobserved
data to be false.

One of the issues with applying my approach to NLP tasks is the
lack of negatively labeled examples, needing an approach for learning
from only one class of examples (one-class classification). Since my EM
approach can not handle completely missing values of one class, I present
a non-parametric approach for relational one-class classification. I develop
a tree-based relational distance measure that can be learned to directly
maximize the one-class classification performance. My approach also has
parallels to standard one-class classification techniques and can be used
for propositionalization.

Apart from learning models, this thesis also explores knowledge repre-
sentation in MLNs. As domain knowledge may be defined using combina-
tion functions, there is a need to be able to translate them into MLN rules
to utilize this knowledge. I present an approach that can convert multi-
level combination functions along with their corresponding parameters
into four classes of MLN clauses. I present an algorithm for converting
two combination functions: noisy-or and weighted-mean, and show the
correctness of my transformation. Empirically, I demonstrate that com-
bination functions can improve the accuracy of the model with a small
number of rules.

Finally this thesis shows how RFGB can be used for Alzhiemer’s disease
prediction from MRI images as well as to augment expert rules for temporal
relation extraction. I present my approach for a large-scale novel relation
extraction task, where I process terabytes of streaming data to detect
changes in extracted relations.

xvii

Overall, this thesis presents multiple structure-learning approaches
for SRL, starting from a boosting-based algorithm, which is extended to
handle missing values via EM. Next, I present a structure-learning ap-
proach for one-class classification by learning a relational distance metric.
I present application of these structure-learning approach on multiple
SRL datasets and real-world tasks. Apart from structure learning, this
thesis presents an approach to convert knowledge from directed models
to MLNs and presents my work on various challenging applications.

1

1 introduction

Supervised Machine Learning (ML), very broadly, can be viewed as pre-
dicting values about instances given other instances with these values
known (Mitchell, 1997). For example, predicting thunderstorms on a
given day based on information from other days or predicting cardiac
risks for a patient based on medical histories of other patients are super-
vised ML tasks. The instances in machine learning (a day or a patient)
are generally called examples. The examples with the known target value
(thunderstorms or cardiac risks) are called training examples and the ex-
amples for which the value is being predicted are called test examples.
The task of supervised machine learning can be defined as:

Given: Training examples with known target values.
Do: Learn a model to predict the target values on unseen

test examples.

Machine learning uses information about the training examples (called
features) to learn a function from the feature values to the target value.
For example to predict the cardiac risks for a patient, a ML model learns
a function from features such as the age, weight, cholesterol levels and
blood pressure to the probability of a cardiac arrest. This learned function
can then be used on a different patient to predict his chance of a cardiac
arrest. The supervised machine learning task can be further detailed as:

Given: Training examples with known target values and a set
of features.

Do: Learn a function from the features to the target value
as the model. Use the model to predict the target values
on test example given its features.

2

Traditional statistical machine learning has been successfully applied
to many real-world problems, such as medical diagnosis, document clas-
sification, and web search. Most of the approaches used to solve these
problems assume the data is simple in its representation. Consider a sam-
ple university domain where we want to predict the satisfaction of every
student. Table 1.1 shows the examples of students from such a domain.
Each column corresponds to a feature of the student and we assume all
students have the same features, albeit with possibly different values.

SID CourseGrade1 CourseLevel1 CourseGrade2 CourseLevel2 ... Satisfied
S01 AB Grad A UnderGrad ... True
S02 AB Grad B Grad ... True
S03 AB UnderGrad C Grad ... False

...

Table 1.1: Traditional example representation for machine learning. Each
row shows the levels and grades of the courses taken by a given student
as well as whether the student is satisfied with his or her education.

However generally data is not available as fixed-length vectors as shown
in the table. Students take different numbers of courses and courses have
different numbers of properties. Figure 1.1 illustrates the complexity of
real-world data in an university domain. As shown in this figure, data is
stored across multiple relations or tables and conversion of such data into
a fixed-length vectors may be non-trivial. Given such data with multiple
relations and inter-related instances, the problem statement needs to be
changed to

Given: Training examples with known target values and the
relationships between the objects in the domain.

Do: Learn a function from the features of the example and
its related objects to the target value. Use the model to
predict the target value on the test example given the
features of the example and its related objects.

3

Figure 1.1: Multi-relational data in an university domain. Students take
different number of courses and professors teach different number of
courses. Each relation or table is represented here as a first-order logic
literal shown above each table.

First-order logic can handle such multi-relational data, for example,
by converting each relation into a predicate. In Figure 1.1, the predicates
corresponding to each relation are shown above the tables. The problem
of learning in relational data can be viewed as learning a first-order hy-
pothesis that would entail most of the positive examples and few of the
negative examples. The hypothesis contains first-order logic rules such
as student(S,N, Y), courseTaken(S,C, “A+”)→ satisfied(S) which pre-
dicts that a student is satisfied if he gets an “A+” grade in some course.
The field of Inductive Logic Programming (ILP) has developed various
techniques to learn such hypothesis (Muggleton and Raedt, 1994). Hence
learning in ILP can be viewed as learning the structure of the rules to pre-
dict the target relation whereas most traditional machine learning methods

4

(e.g., logistic regression) learn the weights corresponding to each feature
in the feature vector.

A drawback of traditional ILP approaches is that the clauses in a learned
model always return Boolean predictions. Typically, there are no confi-
dence measures associated with the learned rules or the examples during
inference. This problem is addressed by introducing probabilities in first-
order logic, which is one view of the field of Statistical Relational Learning
(SRL; Getoor and Taskar 2007). By associating weights with each rule to
indicate the confidence measure associated with that rule, one can now
compute the probability of an example being true. Similar to ILP, the prob-
lem of learning models in SRL then can be viewed as learning the rules,
but now also includes learning the weights of the rules in such models.

Another view of SRL is that it introduces first-order logic to statistical
machine learning. For example, consider a Bayesian Network (Pearl, 1988)
with each node being a predicate. The problem of learning in such models
can be viewed as learning the parents for each node (structure) and the
conditional distributions on each node (parameters).

Additionally, SRL models can jointly infer the class of a set of examples
rather than assuming independence across examples. On tasks such as
webpage or paper classification, this property of SRL allows the model
to ensure that webpages or papers belong to a class similar to the ones
they link or cite. It has been shown that this form of collective classification
(classifying a set of examples collectively) helps improve the predictive
accuracy of the model (Neville and Jensen, 2007). Although I do not
discuss collective classification further, it is an important property of SRL
models that is worth noting.

5

1.1 Boosted Statistical Relational Learning

SRL models allow us to compactly model multi-relational datasets using
first-order logic. However, these models typically have a much more com-
plex structure-learning task than propositional models. For example, if we
are learning the structure for a Markov network with two features a and b,
there is one possible factor1 connecting a and b with four possible param-
eters (one for every Boolean assignment). On the other hand, learning the
structure with two predicates a(X) and b(X) could result in two factors
: < a(X),b(X) > and < a(X),b(Y) >. One can see that the number of
possible factors grows when we have more than one argument for a predi-
cate (e.g., a(X),b(Y,Z)), allow constants in the factors (e.g., a(X),b(Y, c1)),
and when we start considering existential conditions in the factor (e.g.,
∃Ya(X),b(Y, c1)).

Recently, there have been some advances in structure learning for SRL,
especially in the case of Markov Logic networks (Mihalkova and Mooney,
2007; Kok and Domingos, 2009, 2010; Khot et al., 2011). Due to the large
space of possible structures, these approaches use greedy search tech-
niques to learn the model. For every candidate clause that is considered
for addition to the current model, these approaches re-learn the parameters
of the entire model and then decide whether adding the candidate clause
improves the score being optimized. This thesis presents our boosting-
based structure-learning technique that can learn the structure as well
as the parameters simultaneously. We learn a set of relational regression
trees which have a closed-form solution for the parameters at each leaf
and do not require any re-learning of the parameters. We show how this
technique can be used to efficiently learn the structure for two popular
SRL models. We also extend this approach to handle missing data using
structural EM.

1A factor is a function over a set of variables that returns a real number for every
possible set of values taken by the variables.

6

1.2 Thesis Statement

My thesis investigates the claim:

Using boosting to learn the structure of statistical relational models
will produce more accurate models in a fraction of the time than the
current state of the art. Sequential update of the models can also
efficiently handle missing values and learning from only examples of
one class.

Specifically, I present a functional-gradient boosting (Friedman, 2001) ap-
proach for learning the structure of two relational models. I investigate
the predictive performance of our approach on various datasets and the
applicability of our approach on real-world tasks ranging from informa-
tion extraction to Alzheimer’s prediction. Since our boosting approach
sequentially updates the model, our approach can be extended to handle
missing data by updating the structure based on the expected values of
the missing data. For learning from examples with only one class label, I
present an approach which sequentially updates a distance measure so
as to spread out the examples while keeping examples of the same class
close to each other.

1.3 Thesis Outline

My thesis is organized as follows:

• Chapter 2 provides technical background necessary to present my
work. It begins with a brief introduction to first-order logic and
probabilistic graphical models in Section 2.1. This section sets up the
basics for presenting SRL models in the subsequent section. Follow-
ing it, I present the two major learning problems in SRL: parameter

7

and structure learning as well as the associated challenges and re-
lated work. I explain Friedman’s functional-gradient boosting (FGB;
Friedman 2001), which forms the basis of most of my work, in Sec-
tion 2.4. In the final section, I present details about the evaluation
approach used in this thesis and few commonly used datasets.

• Chapter 3 describes the basic algorithm of our relational functional-
gradient boosting (RFGB) approach, which uses FGB to learn struc-
ture of relational models. I then show how RFGB can be applied to
learn the structure of Relational Dependency Networks (Section 3.3)
and Markov Logic Networks (Section 3.4), two popular SRL models.
Finally, I present experimental results of these two approaches on
various standard SRL datasets on tasks ranging from link prediction
to information extraction.

• Chapter 4 presents the extension of our boosting approach to the
task of learning in presence of missing data (missing labels of ground
atoms). I derive a structural-EM algorithm where every E-step calcu-
lates the expected values for the missing data and the M-step updates
the structure using functional-gradients. Since this approach is de-
rived using the basic RFGB algorithm, we can handle missing data
for learning any models that use RFGB. I show how this approach
can be adapted to learn structure of RDNs, MLNs, and relational
policies. I show experimentally that the EM approach can learn
more accurate models than the traditional closed-world assumption
of assuming everything that is unobserved to be false.

• Chaper 5 describes a non-parametric approach developed for learn-
ing relational models using examples of only one class label. Informa-
tion extraction tasks generally only have annotated positive examples
and assume all the others to be negative. Standard propositional
approaches for one-class classification rely on a distance measure to

8

classify all the examples near the labeled examples as also belonging
to the labeled class. I define a tree-based relational distance measure
that is learned specifically for the task of one-class classification. I
show how distances from multiple trees can be combined to get
the final distance measure and how can new trees be added to the
current distance measure to maximize the one-class classification
performance. Our approach can also be viewed as a propositional
one-class classification techniques such as kernel density estimation
(Parzen, 1962) and SVDD (Tax and Duin, 1999) using the learned
relational distance measure.

• Chapter 6 presents a technique to transform knowledge represented
as combining rules from directed models into MLNs. Although
the conditional distributions in directed models can be represented
using MLNs, directed relational models also use combining rules to
merge multiple conditional distributions. I present an algorithm that
can convert combining rules such as noisy-or and weighted-mean
into MLN rules by using four special classes of clauses. I also show
how to transform the parameters of the combining rules into weights
of the MLN clauses in closed form.

• Chapter 7 presents various other explorations performed using RFGB
and otherwise. I present our work on Alzhiemer’s disease prediction
using RFGB via segmentation of MRI images. I present our approach
for temporal relation extraction from text where we utilized expert-
defined rules and features. I present our approach for a large-scale
relation extraction task, namely Knowledge Base Acceleration (KBA),
where we process terabytes of streaming data to detect changes in
extracted relations using the Elementary system (Niu et al., 2012b).

• Chapter 8 concludes my thesis with a review of the contributions
made by my work and promising future research directions.

9

2 background

This chapter presents background on SRL models on which my work is
based. I start with a brief technical background on first-order logic and
graphical models. In Section 2.2, I present an overview of SRL models,
followed by details on two popular SRL models. I then present the learn-
ing challenges in these models and the approaches taken to solve them
in literature. In Section 2.4, I present functional-gradient boosting, an
ensemble approach1, which forms the basis of my learning approaches.
Finally, I present details about the evaluation metrics and datasets I used.

2.1 Technical Background

I first define some notation that is used throughout this thesis. I use
capital letters such as X, Y,Z to represent variables and small letters such
as x,y, z to represent values taken by the variables. I use bold-faced letters
to represents sets. Bold letters such as X, Y, Z represent sets of variables
and x, y, z represent sets of values. I use z−z to denote z \ z, i.e., every
element from z except z. Similarly x−i is used to represent x \ xi.

2.1.1 Representation: First-order logic

A simplistic view of first-order logic (FOL) is that it generalizes proposi-
tional logic by introducing variables as arguments to propositions (p to
p(X)) which can be used to make logical statements about all objects in
the domain (Russell and Norvig, 2003). To avoid confusion with random
variables, I use sans-serif capital letters X, Y, and Z to represent logical
variables. I use lower-case sans-serif letters such as x, y and z to represent

1Ensemble methods learn multiple models instead of one (Bishop, 2006).

10

values taken by logical variables i.e. objects in the domain. The common
logical operators and quantifiers used in this thesis are:

• ∧: AND operator. E.g. p(X)∧q(X) implies both p & q are true for X.

• ∨: OR operator. E.g. p(X)∨ q(X) implies either p or q is true for X.

• ⇒: Condition implies the consequence. E.g., p(X)⇒ q(X) implies
that if p(X) is true, q(X) has to be true.

• ∀: True for all values. E.g., ∀X,p(X) implies p(X) is true for all values
of X.

• ∃: True for at least one value. E.g., ∃X,p(X) implies p(X) is true for
at least one value of X.

All logical variables are implicitly universally quantified (i.e. ∀) unless
explicitly existentially quantified. Table 2.1 presents definitions of standard
first-order logic terms.

2.1.2 Uncertainty: Graphical models

Graphical models (Koller and Friedman, 2009) represent conditional de-
pendence among random variables which can then be used to factor the
joint distribution over these variables. The factored distribution also re-
duces the number of parameters needed to model the joint distribution.
Figure 2.1 shows sample graphical models over three variables. Undi-
rected models such as Markov networks (Kindermann and Snell, 1980)
factor the joint distribution as the product over potentials defined over
cliques in the graph (subject to a normalization term). The potentials are
shown using the function φ and the normalization term using Z.

Directed models such as Bayesian networks (Pearl, 1988) represent
the joint distributions as a product of conditional distributions for each
variable given the parents of the variable (e.g., C is the parent of B in the

11

Constants Represent objects in the domain.
E.g., anna, bob.

Variables A variable can be assigned a value from
a range of constants.
E.g., Variable Xmay take a value from {anna,bob}.

Predicate Represents relations between objects in the domain.
E.g., the Friends predicate captures the friendship
relation.

Atom A predicate along with its arguments.
E.g., Friends(X, Y), Father(bob,anna).

Literal An atom or its negation
E.g., Friends(anna,bob), ¬Father(X, Y).

Grounding Substituting a variable with a constant.
E.g., A possible grounding of Father(X, Y) is
Father(bob,anna).

Ground atom An atom/literal without any variables.
literal E.g., Friend(bob,anna).
Clause A disjunction (i.e., OR) of literals

E.g., Friend(X, Y)∨ Father(X, Y) states that either X
is a friend of Y OR X is the father of Y.

Horn Clause A clause with only one positive literal commonly
represented with an implication (Body⇒ Head)
having one literal in the head.
E.g., Friend(X, Y)∧ Smokes(Y)⇒ Smokes(X) ,
i.e., ¬Friend(X, Y)∨ ¬Smokes(Y)∨ Smokes(X).

Table 2.1: First-order logic terminology.

figure). To ensure the product of conditional distributions represents the
joint distribution, directed models require the model to be acyclic. As can
be seen here, the factored distribution needs five independent parameters
(two for P(B|C) and P(C|A) each and one for P(A)) as compared to the
seven independent parameters needed for the joint distribution (23 − 1).

12

Figure 2.1: Sample probabilistic graphical models over three variables.
Note that Markov networks do not need to have a potential φ defined for
every clique (assumed to be 1, if undefined). The dependency network
has a cycle among variables A, B and C.

Dependency networks (Heckerman et al., 2001) are directed graphical
models that remove this acyclicity condition (e.g., in the figure A,B and C
have a cycle) thereby allowing for faster learning of these models. But the
product of the conditional distributions may not produce a coherent joint
distribution 2. I discuss dependency networks in more detail in Section
2.2.1.

2.2 Statistical Relational Learning Models

As mentioned in the previous chapter, Statistical Relational Learning (SRL)
models combine probabilistic models and first-order logic to model uncer-
tain multi-relational data. Although SRL has recently surged in popularity

2P(A,B) 6= P(A|B)× P(B|A).

13

(with annual workshops since 2000), the idea of incorporating probabilities
with logic was first considered in 1980s. Nilsson (1986) used probabilities
on logic statements to compute probabilities of logical entailments and
thereby constrain the space of consistent distributions. Knowledge Base
Model Construction (KBMC; Wellman et al. 1992) builds a decision model
based on the current problem instance (e.g., FOL query) and knowledge
base (e.g., FOL rules). Although these models did not have any learning
methods, they set the framework for the learnable models that followed.

One such approach was proposed by Haddawy (1994), where the log-
ical statements are used to construct a Bayesian Network. For example,
the definite clause A,B ⇒ C can be used to introduce A and B as the
parents of C in a Bayesian network. This led to the work by Ngo and Had-
dawy (1996) on Probabilistic Logic Programs (PLP), which used definite
FOL clauses and a corresponding probability distribution to define the
structure of a Bayesian Network. PLP allowed multiple FOL clauses for a
predicate and used combining rules to merge the distributions from each
clause. This work was later simplified as Bayesian Logic Programs (BLP;
Kersting and De Raedt 2007) by using Bayesian clauses that separate the
logical (conditions under which the rules apply) and probabilistic (the
conditional distribution) components of the FOL clauses. Object-Oriented
Bayesian Networks (OOBN; Koller and Pfeffer 1997b) and Probabilistic
Relational Models (PRMs; Getoor et al. 2001) defined a Bayesian network
over variables in classes and attributes in a relational schema respectively,
which can then be grounded over all the objects in the domain to generate
a ground Bayesian network.

Rather than introducing relations to graphical models, Poole’s Proba-
bilistic Horn Abduction (PHA; Poole 1993) introduces probabilistic atoms
to deterministic Horn clauses to abduce the probabilities. Due to the inde-
pendence assumptions made by PHA, the probabilities can be computed
as a sum of products. Stochastic Logic Programs (SLP; Muggleton 1996),

14

on the other hand, extend stochastic grammars to handle Horn clauses
as a grammar rule and use SLD resolution to prove the queries. These
models illustrate two views of SRL models: 1) introducing relations in
propositional graphical models or 2) introducing weights or probabilities
to first-order logic.

Adding relations to propositional models Models such as PRMs, BLPs
and Relational Bayesian Networks (RBN; Jaeger 1997) can be viewed as
introducing relations to Bayesian Networks. Similarly Markov Logic Net-
works (MLN; Domingos and Lowd 2009) and Relational Markov Networks
(RMN; Taskar et al. 2002) can be viewed as adding first-order logic to
Markov networks. Relational Dependency Networks (RDN; Neville and
Jensen 2007) do the same for Dependency Networks. Section 2.2.1 presents
more details about RDNs from this perspective.

Softening first-order logic Alternatively, models such as Problog (Raedt
et al., 2007) and SLP can be viewed as introducing probabilities to FOL
rules. MLNs and BLPs can also be viewed as assigning weights and
probabilities to first-order logic rules respectively. While SLP and Problog
use proof theory (think theorem-proving in first-order logic or derivation
in grammars) for computing probabilities, BLP and MLN probabilities are
computed based on propositional networks generated from grounding
FOL statements. Section 2.2.2 presents MLNs from this perspective.

2.2.1 Relational Dependency Networks

Dependency networks (DNs; Heckerman et al. 2001) are graphical models
that approximate a joint probability distribution as a product of conditional
probability distributions (CPDs) (P(X) ≈

∏
i P(Xi | Pa(Xi))). Unlike

Bayesian Networks, DNs allow cycles in the graphical model, as a result
the joint distribution is approximated. For example, DN can have an edge

15

from A to B and vice versa. Applying the chain rule on the product of
the conditional distributions P(A | B)P(B | A) in such a graph does not
necessarily match the joint distribution P(A,B), hence the approximated
joint distribution.

Figure 2.2: A depen-
dency network.

Since DNs may contain cycles, each condi-
tional distribution can be learned independently,
which makes learning DNs much faster. Fig-
ure 2.2 shows a sample dependency network
where P(A,B,C,D) is approximated by the prod-
uct P(B|A)P(C|B,D)P(D|A)P(A|D). Heckerman
et al. (2001) have shown that ordered pseudo-Gibbs
sampling can be used to recover the full joint dis-
tribution from these conditional distributions as

long as each conditional distribution is consistent, i.e., it can be obtained
from the true joint distribution. For the proof and further details, please
refer to Heckerman et al. (2001).

Relational Dependency Networks (RDNs) are a relational extension of
DNs. RDNs are dependency networks where each node is a (first-order)
predicate and the CPDs capture the conditional distribution of a predicate
given a subset of all the other predicates. Similar to DNs, the network
in RDNs can have cycles and hence approximate the joint distribution.
Each predicate has an associated CPD conditioned on the value of its
parents. Each CPD can be compactly represented using models such
as Relational Probability Trees (RPT; Neville et al. 2003a) or Relational
Bayesian Classifiers (RBC; Neville et al. 2003b).

An example RDN is presented in Figure 2.3 for an university domain.
The ovals indicate predicates, while the dotted boxes represent the ob-
jects in the domain. As can be seen, there are professor, student and course
objects with taughtBy and takes as the relations among them. The nodes
avgSGrade and avgCGrade are aggregator functions over grades on students

16

Figure 2.3: A relational dependency network.

and courses respectively. The arrows indicate the probabilistic (or possi-
bly deterministic) dependencies among the predicates. For example, the
predicate grade has difficulty, takes, and IQ as its parents. Also note that
there is a bidirectional relationship between satisfaction and takes. Given
the structure along with the conditional distributions, we can now use or-
dered pseudo-Gibbs sampling (Heckerman et al., 2001) to answer queries
such as the satisfaction of a specific student.

2.2.2 Markov Logic Networks

Markov Logic Networks (MLNs) are relational models represented using
weighted first-order logic rules. These rules provide a template for gener-
ating a Markov network by grounding the variables to all the constants3

3Most work assumes a finite set of constants, as do I in this document. For MLNs for
an infinite domain, refer to Singla and Domingos (2007).

17

in the first-order logic rules. Each rule fi forms a clique in the ground net-
work and its weight wi determine the potential for each clique. Figure 2.4
shows a MLN rule from a simple cancer domain (adopted from Domingos
and Lowd 2009). The corresponding ground Markov network generated
from these rules for a domain with two constants X, Y ∈ {a, b} is shown in
Figure 2.5.

Weight=1.1 Friends(X, Y)∧ Smokes(Y)→ Smokes(X)

Figure 2.4: Sample MLN rule.

Figure 2.5: A ground Markov network for the rule in Figure 2.4 where
X, Y ∈ {a, b}. Each node in the ground network is a ground atom. Red
(dark) nodes indicate ground atoms that are false whereas green (light)
nodes are true.

The joint probability distribution in a MLN is given by the product of
the potentials on each clique, similar to Markov networks. Each clique
potential is defined as the exponentiated weight of the grounded clause.
For a given world state (truth value assignment to all ground atoms), the
clique potential function returns ewi if the ground clause is true, other-
wise it returns 1. Since all the cliques generated by grounding the same
clause have the same weight, the probability of a given world state can be

18

calculated using the number of true groundings of each clause. Hence the
probability of the data is given by:

P(X = x) =
1
Z

exp

(∑
i

wini(x)

)

where ni(x) is the number of times the ith formula is satisfied by the world
x and Z is a normalization constant (as in Markov networks). In Figure 2.5,
the sample MLN clause : ¬Friends(X, Y)∨ ¬Smokes(Y)∨ Smokes(X) is
only false for the grounding {X = a, Y = b} and true for the remaining
three groundings. So in this given world state, ni(x) = 3.

Similar to Markov networks, the normalization term is expensive to
compute since its size is exponential in the number of features. In relational
models, this problem becomes worse since Z is exponential in the number
of ground atoms, which unlike the features grows with the dataset size.
For example in the sample MLN, the Friends predicate would have O(n2)
groundings, where n is the number of people in the dataset. As a result,
most learning methods approximate the likelihood (given above) with the
pseudo-likelihood (PL):

PL(X = x) =
∏
Xi∈X

P(Xi = xi|MB(Xi))

whereMB(Xi) corresponds to the Markov blanket4 of the ground atom,
Xi in the ground Markov network. The pseudo-likelihood term is similar
to the probability distribution of RDNs, which is also defined as a product
of the conditional distributions.

4The Markov blanket of a node xi is all the direct neighbors of xi in the ground
Markov network.

19

2.3 Learning in SRL Models

SRL Models, and graphical models in general, are specified in terms
of the structure of the model and the parameters defined over this struc-
ture. The structure defines the relations among the variables and the
parameters defined the degree of the relationship. For Dependency net-
works, the structure of the model are the edges in the network and the
parameters are the conditional distributions defined for each node based
on this structure. In RDNs, the structure is also defined in terms of
the edges but the nodes in the network are first-order logic predicates.
The parameters in the model are relational conditional distributions (e.g.
P(difficulty(C, D)|avgCGrade(C, G), ratings(P, C, R)). In MLNs, the struc-
ture are the first-order logic rules and the parameters are the weights of
the rules. Next I present prior work on parameter learning in SRL followed
by the same for structure learning.

2.3.1 Parameter learning

Since the parameters of a model are defined with respect to a model
structure, the parameter-learning approaches assume that the structure is
already provided. The parameter-learning problem also depends on the
type of the underlying model, namely directed or undirected models.

Directed models

In case of directed models such as PRMs, BLPs and RDNs, it is assumed
that the parents of every logical predicate is known. Similar to Bayesian net-
works, the problem of parameter learning in these models can be viewed as
learning the conditional distributions for each predicate. In propositional
models, the conditional distributions are commonly represented using a
conditional probability tables (CPT) for every instantiation of the parent
variables. The entries in the table can be calculated in closed-form by using

20

the counts of the variable instantiations in the training data (Koller and
Friedman, 2009). A similar approach is taken in relational models such as
PRMs and BLPs where the counts are computed over all ground atoms
to estimate a relational CPD (Getoor et al., 2001; Kersting and De Raedt,
2007). Since RDNs also learn conditional distributions, a similar approach
can be taken. Natarajan et al. (2005; 2008) present a general approach
for parameter learning in directed models and derive an EM approach to
handle combination functions in these models.

Undirected models

For parameter learning in undirected models, the structure of the model
(which is the cliques in the network) is assumed to be given and the
parameter-learning problem corresponds to learning the clique potentials.
In MLNs, since the first-order logic rules specify the cliques in the network,
the parameter-learning problem corresponds to learning the weights of
the rules. The earliest approaches for learning the weights in MLNs used
gradient descent (Singla and Domingos, 2005) where the gradients for the
weight of the clause fi is given by:

∆wi = ni(x) − Ew[ni]

where ni(x) is the number of times clause fi is true in the data and
Ew calculates the expected number of times it would be true given the
current weights. The expectation term can be calculated as Ew[ni] =∑

x ′ P(x ′;w) · ni(x ′). Since calculating P(x ′;w) requires inference to be
performed using the current weights, inference needs to be performed for
every gradient step. As a result instead of computing the expectation, most
approaches use the counts from the maximum a posteriori 5 (MAP) esti-
mate (Ew[ni] ≈ ni(mx) where mx = arg maxx ′ P(x ′;w)). Following this

5Unlike parameter estimation, MAP estimate defines most likely assignment or most
probable explanation in inference.

21

work, second-order gradient descent approach using diagonal Newton
and scaled conjugate gradients have been developed for MLNs (Lowd and
Domingos, 2007). There have also been margin-based parameter-learning
approaches developed for MLNs (Huynh and Mooney, 2009, 2011). But
all of these approaches perform iterative updates to the weights where
each update computation needs to perform inference. As a result, even
parameter learning in MLNs can be computationally intensive.

2.3.2 Structure learning

Unlike parameter learning, structure-learning approaches search over the
space of possible structures for a model. Generally structure-learning
approaches use a scoring function to evaluate a structure, a hypothesis
space of valid structures to search over and a search strategy to search
within the hypothesis space. Since the number of possible structures for
relational models can be very large (structure learning is NP-Hard even in
propositional models (Chickering, 1996)), most approaches use a greedy
search strategy in the hypothesis space. Since the predictive performance
of a structure (standard scoring function) depends on the parameters too,
the search procedure needs to learn the parameters for every candidate
structure, increasing the computational complexity of structure learning.

Due to the relational nature of data, potentially multiple objects or
attributes might influence a ground atom. For example in a domain with
three predicates, A(X),B(X, Y) and C(Y), suppose the structure-learning
approach selects B(X, Y) to be the parent of A(X). So a grounding of
A(X), say A(x) has the parents: {B(x, y) : y ∈ Y}. Since each ground-
ing of A(X) has |Y| parents, using traditional conditional distribution
tables requires 2|Y| parameters. Hence relational models commonly use
aggregators such as count,max,average, exists, etc. to combine multiple
parents into a single parent to prevent the exponential number of pa-
rameters (Getoor and Taskar, 2007). For example, the exists aggregator

22

function can be computed using ∃Y,B(X, Y)→ Exists(B(X)) and then one
can use Exists(B(X)) as the parent of A(X). Similarly if Y is a numeric or
ordinal variable, one can calculateMaxY(B(x, Y)) as the maximum value
of Y among all the groundings of B(x, Y). Searching over the space of
possible aggregators further increases the cost of learning the structure of
SRL models. I first present prior work on structure learning for directed
models followed by the same for undirected models.

Directed models

BLPs (Kersting and De Raedt, 2007) and PRMs (Getoor et al., 2001) use
a greedy hill-climbing approach based on operators over the structure
similar to the structure-learning approaches for Bayesian networks. BLPs
define operators such as adding or removing literals from clauses, replac-
ing variables by constants or vice versa, and adding or removing clauses.
PRMs, on the other hand, define a set of potential parents for every target
attribute and only considers adding or removing a parent from this set
during the greedy search. To score a candidate structure, both the models
first calculate the parameters based on counts in the data as mentioned
before. The candidate structure with the highest score (calculated based on
the likelihood of the training data) is accepted and the process continues.

A similar approach is taken by the "Score As You Use" (SAYU; Davis
et al. 2007) algorithm, where clauses are proposed using the Aleph (Srini-
vasan, 2004) ILP engine. The clauses are used to create features for a naive
Bayes and scored based on the improvement in area under precision-recall
curve. The learned rules are then used to create new views, i.e., for predi-
cate invention, which are used as features in a tree-augmented naive Bayes
classifier (Friedman et al., 1997).

To learn the structure of RDNs, Neville and Jensen (2007) propose
learning the conditional models directly for every predicate. To model
the conditional distributions, they use two models: Relational Probability

23

Trees (RPT; Neville et al. 2003a) and Relational Bayesian Classifiers (RBC;
Neville et al. 2003b). Since RDNs allow cycles, they can learn models for
each predicate independently with no constraints on the parents. The
conditional models for each predicate can be used to derive the structure
of the RDN, i.e., predicates appearing in the model are the parents in the
RDN. To begin with, they assume all the other predicates to be parents of a
target predicate, i.e., a completely connected graph. When the conditional
models are represented using RBCs, only the parameters of the classifiers
are learned without any selection of parents (Neville et al., 2003b). When
RPTs are used, the tree-learning approach automatically selects the parents
from all the other predicates while learning the tree (Neville et al., 2003a).

Undirected models

For undirected models, since most of the prior work as well as my work fo-
cuses on MLNs, I present structure-learning approaches for MLNs. Struc-
ture learning in MLNs corresponds to learning the clauses along with
the weights of these clauses. The initial approach to learn MLN structure
avoided learning parameters for every structure by learning the struc-
ture, i.e., the clauses of the model first and then learning the parameters
(Richardson and Domingos, 2004). They used CLAUDIEN (Van Laer
et al., 1994), a first-order logic clause learner, to first learn the rules and
then learned the weights of the rules. But this approach does not take
the potential parameters into account before scoring the clauses and as
a result can be sub-optimal. Following this work, Kok and Domingos
(2005) developed a structure-learning approach that searched over the
space of clauses and learned the weights for scoring each candidate struc-
ture. As shown by them experimentally, learning the structure along with
the weights has a better accuracy than just learning the clauses and then
learning the weights. As the search over the space of possible clauses
can be slow, approaches were developed to discover templates from the

24

ground atoms to construct fewer candidate clauses. I briefly describe three
structure-learning approaches below.

Bottom-up structure learning (BUSL; Mihalkova and Mooney 2007).
BUSL starts by creating template nodes (TNodes) using true ground atoms
in the data. For each ground atom of a target predicate, they find atoms that
share a constant and then variablize the atoms. To variablize the ground
atoms, they replace the constants with a variable where the shared con-
stants use the same variable . For example, for a query atom actor(brando),
workedUnder(brando, coppola) shares the constant brando. The TNodes cre-
ated from these atoms are actor(X) and workedUnder(X, Y). The TNodes
are generated for all the ground atoms to create one set of features in a
feature vector. For every ground atom, the TNode feature is set to true,
if there exists some grounding that is true for that atom. For example,
actor(brando) would set the features actor(X) and workedUnder(X, Y) to
true in the example above. Given these feature vectors for every ground
atom, they use the Grow-Shrink Markov Network (GSMN) learning algo-
rithm to learn a propositional Markov network. The cliques in this Markov
network are used to create candidate clauses by combining the TNodes
in a clique. Only the candidate clauses are considered for addition to the
MLN thereby reducing the learning time.

Learning via hypergraph lifting (LHL; Kok and Domingos 2009).
LHL begins by creating a hypergraph from the data where the constants
or objects in the domain form the nodes and the true relations form the
hyperedges. Hyperedges can connect more than two nodes when relations
have more than two arguments. A sample hypergraph is shown in Figure
2.6 on an university domain. Professors, p1 and p2; students s1 and s2;
and courses c1, c2, and c3 form the nodes in the graph. Each relation
is shown by a different edge type. For example, course c1 is taught by
professor p1 and student s2 has taken the course c3. The constants are then

25

clustered using a MLN which prefers clustering constants having the same
relation with the another cluster. Relational path-finding on this lifted
hypergraph is used to obtain candidate MLN clauses. Path-finding tra-
verses the graph in a depth-first manner where every traversed hyperedge
adds the relation to the candidate clause. Similar to BUSL, only the candi-
date clauses are considered for addition to the MLN in the greedy search.

Figure 2.6: Example hy-
pergraph for an university
domain. The constants
(professors, students
and courses) form the
nodes and the relations
(advisedBy, taughtBy and
taken) form the edges
between the constants.

Learning using Structural Motif (LSM;
Kok and Domingos 2010).
Similar to LHL, LSM starts with a ground hy-
pergraph constructed from the training data.
Instead of clustering based on just the neigh-
bors, LSM performs N random walks start-
ing from each node. If the distribution of the
paths in the random walks is similar for two
nodes, they are clustered together. This pro-
cess is repeated till no two clusters are sim-
ilar to create the lifted hypergraph. Again
path-finding over the lifted hypergraph is
used to create the candidate clauses. But in-
stead of using a greedy search as used by the
earlier methods, all the clauses are added to
the MLN and clauses with low weights are
dropped.

2.3.3 Learning trade-offs

Traditionally artificial intelligence relied on
the structure as well as the parameters of the models being specified by an
expert. With the availability of training data, it became possible to learn

26

Figure 2.7: Trade-offs be-
tween expert’s time and
learning time for learning
problems in SRL models.

the parameters of the model using training data while using the structure
defined from the expert.

Parameter learning reduced the amount of effort needed from the expert
and potentially improved the accuracy of the model (by relying on data to
correct mistakes made by experts), but also increased the computational
time. For some domains, the structure of the model may be non-trivial,
not known or insufficient. As a result, both the structure and parameters
of the model need to be learned from the data.

Although structure learning reduces the expert’s effort, it can be com-
putationally intensive due to the large space of possible structures while
including parameter learning as a sub-task. Figure 2.7 shows this trade-off
between the computation cost and expert’s effort. My research has focused
on reducing the learning time while improving the accuracy of structure
learning in SRL models. To achieve this goal, I learn multiple weakly
predictive relational models using functional-gradient boosting (FGB). I
present details about FGB for propositional domains next.

27

2.4 Functional-Gradient Boosting

Most machine learning approaches use a parametric model that optimizes
a specific loss function. For example, the logistic regression model uses a
weight parameterw, and uses gradient descent to find the best parameters
that maximize the likelihood of the data. Let {x1, . . . , xn} be the set of ex-
amples and {y1, . . . ,yn} be their corresponding binary labels (represented
as 1 and -1). In a logistic regression model, the probability of a label for a
given example is given by P(yi|xi;w) = 1/(1 + e−yiw

Txi). Assuming the
examples are independent, the log-likelihood (LL) of the full dataset is
given by

LL(y, x;w) =
∑
xi∈x

log P(yi|xi;w)

The standard method of learning in these models is based on gradient
descent where the learning algorithm starts with initial parametersw0 and
computes the gradient of the log-likelihood (LL) function. The gradient
during themth iteration is given by

∆m =
∂LL(y, x;wm−1)

∂wm−1

and the weight parameter at the end ofm iterations is given by

wm = w0 + ∆1 + . . . + ∆m

Friedman (2001) suggested that instead of using a parametric approach,
apply the numeric optimization in the function space. For example, the
probability of an example can be defined to be P(yi|xi;ψ) = 1/(1 +

e−yiψ(xi)) and the gradients can be computed with respect to the function
ψ. Similar to parametric gradient descent, we start with an initial function

28

ψ0 and compute the gradients with respect to the function ψ:

∆m = Ex,y

[
∂LL(y, x;ψm−1)

∂ψm−1

]
The ψ function at the end ofm iterations is given by

ψm = ψ0 + ∆1 + . . . + ∆m

Since we only have a finite set of examples, rather than computing the
gradients over the entire space of possible examples, Friedman suggests
calculating the gradient for each training example. The gradient for an
example xi is given by∆m(xi) = ∂LL(y, x;ψm−1)/∂ψm−1(xi). We can then
fit a regression function, ĥ(xi) to these gradients, ∆m(xi). Most functional-
gradient approaches learn a regression tree to represent ĥ and minimize
the least-square error:

ĥm = arg min
h

∑
xi

[h(xi) − ∆m(xi)]
2

Since we approximated the gradients (∆m) using a regression function
(ĥm), the potential function ψ after themth iteration is given by:

ψm = ψ0 + ĥ1 + . . . + ĥm

Standard boosting approach (Freund and Schapire, 1996) learns a sequence
of models where the weight on the examples (think importance of the
examples) is updated after every iteration to increase the weight on incor-
rectly classified examples. As a result, every subsequent model attempts
to correct the mistakes in the current model. FGB also learns a sequence
of models (ĥi in this case) where every subsequent model focuses on the
incorrectly classified examples (due to the example’s higher regression
values), hence the boosting in its name.

29

a b c
1 1 0 1
2 0 0 0
3 1 1 0

Table 2.2: Training
data with class label c.

a b ∆1
1 1 0 0.50
2 0 0 -0.50
3 1 1 -0.50

Table 2.3: Initial re-
gression dataset.

a b ∆2
1 1 0 0.50
2 0 0 -0.37
3 1 1 -0.50

Table 2.4: Regression
values after tree 1.

Consider the small dataset with three examples shown in Table 2.2
with two features (a and b) and the class label c. If we assume P(yi =
1|xi;ψ) = 1/(1 + e−ψ(xi)) , the gradients can be shown to be ∆m(x) =

I(yi = ŷi) − P(yi = ŷi|xi;ψm), where I(yi = ŷi) is the indicator function
and ŷi is the true label of xi in the training data. Let us assume the
initial prior ψ0 returns 0 for every example i.e., ψ0(x) = 0, ∀x. Given
this initial prior, all the examples would have the predicted probability of
P(yi = 1|xi;ψ0) = 0.5, based on the current model.

The gradient ∆ for the positive example is 0.5 whereas for the negative
examples is -0.5, as shown in Table 2.3. Hence the gradients for the positive
examples are pushing the ψ function for those examples to a higher value,
thereby pushing the predicted probability closer to 1. Let us assume that
we learn a regression tree with only one node that tests for a being true
or not. The left (true) branch would contain two examples (#1 and #3)
and the right (false) branch would contain only one example (# 2). Since
the mean of the regression values of examples #1 and #3 is zero, the left
leaf would return zero. On the other hand, the right branch would return
−0.50 as the regression value. So the learned regression function ĥ1 to fit
the ∆ values shown in Table 2.3 is:

ĥ1(x) = 0.0 if a = 1

= −0.5 if a = 0

30

Figure 2.8: A sample model for predicting class label c afterm iterations.

Since our ψ0 function returned zero for all the examples, adding ĥ1 to
ψ0 would give us ψ1 = ψ0 + ĥ1 = ĥ1 as our new current model. Given this
model, we can compute the probabilities for the training examples. Since
examples #1 and #3 have ψ1(x) = 0, they still have the same gradients, but
the gradient for example #2 has reduced to -0.37, as shown in Table 2.4.
The next tree learned on this regression dataset would split on feature b
and reduce the gradient on example #3, similar to what we observed in the
previous step with example #2. Hence with each iteration, the gradients
on the examples move closer to zero and our predicted probabilities would
move closer to the observed values in the training data. Figure 2.8 shows
a sample model ψm afterm iterations of boosting.

2.5 Evaluation Approach

Before presenting our work on learning SRL models, I present details about
the evaluation approach used. To show that our approach learns a more
accurate model, we compare the accuracy of the probabilistic predictions
made by the models using three evaluation measures commonly used in
literature. We use the areas under Precision-Recall curve (AUC-PR) and
Receiver Operating Characteristic curve (AUC-ROC; Davis and Goadrich
2006). We also use Conditional Log Likelihood (CLL) 6 which evaluates
how close are the probability values to the true label.

6CLL = ΣilogP(yi = ŷi|x−i)

31

The goal in machine learning is to generalize from the training exam-
ples and not to overfit on the training or test examples. Evaluating on
the training set or repeated evaluation on the same test set could lead to
these overfitting issues. To evaluate the generalization performance of
the classifiers, a common approach used in machine learning is n-fold
cross-validation. In cross-validation, the dataset is first partitioned into
n bins, {S1, . . . ,Sn}. The classifier is trained on a train fold contain n − 1
bins (S−i) and tested on the remaining bin (Si). This process is repeated
n times for different train and test folds (i = 1, . . . ,n) and the results are
averaged across folds.

In propositional datasets, since the examples are independent of each
other, they can be partitioned into n bins easily (by placing 1/n examples
in every bin). When dealing with relational datasets, the objects or exam-
ples are dependent on each other. Partitioning the data could result in
breaking relationships between the examples in different bins. To avoid
this, each network of connected objects, also known as a “mega-example”,
is kept in one bin. For example, a university is a mega-example with
inter-connected student examples. The number of mega-examples in the
dataset are generally used as the number of folds for cross-validation. As
a result, each dataset may use a different number of cross-validation folds
for evaluation. Next, I briefly describe commonly used SRL datasets in
literature that I used in my work.

UW-CSE

The UW-CSE dataset (Richardson and Domingos, 2006) was creating from
University of Washington’s Computer Science and Engineering Depart-
ment’s student database (hence the name). The data set consists of details
about professors, students and courses from five different sub-areas of
computer science (AI, programming languages, theory, system and graph-
ics). The goal is to predict whether a student is advised by a professor

32

using the other predicates. For further details, refer to Section 3.5.2.

Cora

The Cora dataset, now a standard dataset for citation matching, was first
created by McCallum et al. (2000), and later segmented by Bilenko and
Mooney (2003). The dataset was later converted into relational format by
Poon and Domingos (2007). In citation matching, the task is to identify
citations that refer to the same paper, which as a sub-task may include
matching the author, title and venue of citations.

For each citation we have information about the various fields using
predicates such asauthor, title, venue,hasWordAuthor,hasWordTitle,
andhasWordVenue. This task has multiple target predicates (sameAuthor,
sameVenue, sameTitle, and sameBib) for identifying matching authors,
venues, titles and the complete citation.

IMDB

This dataset was created by Mihalkova and Mooney (2007) from IMDB.com
and contains information about actors, movies, directors and the relation-
ships between them. The predicates in this dataset are: actor, director,
workedUnder, genre, and gender. The actor and director predicates
are mutually exclusive predicates (i.e., actor(X) ⇔ ¬director(X)) that
provide type information for the people in the domain.

WebKB

The WebKB dataset was first created by Craven et al. (1998) and contains
information about department webpages and the links between them. It
also contains the categories for each webpage and the words within each
page. This dataset was converted by Mihalkova and Mooney (2007) to

33

contain only the category of each webpage and links between these pages.
The textual information was ignored.

Citeseer

Similar to the Cora dataset, the Citeseer dataset was created by Poon and
Domingos (2007) for performing information extraction using the dataset
from Lawrence et al. (1999). This dataset has 1563 citations and 906 clusters.
It consists of four sections, each on a different topic. The dataset contains
predicates such as the tokens at each position in a citation (token) and
attributes about each token (isDate, isDigit, etc.). Given these facts, the
goal is to predict the field type (Title, Author, Venue) for each position
in the citation.

MovieLens

Xu et al. (2009) created the MovieLens dataset by randomly selecting a
subset of 100 users and 603 movies from the ratings submitted by users on
movielens.org. The task is to predict the preferences of the users on movies.
The users have attributes age, gender, and occupation, while the movies
have released year and genre attributes. The ratings of the movie by the
user were in a 5-star scale. Typically, every user rated (30 − 400) movies
for a total number of 78,445 user-movie ratings.

Adverse Drug Reactions

The Observational Medical Outcomes Partnership (OMOP) designed and
developed an automated procedure to construct simulated datasets7 that
are modeled after real observational data sources, but contain hypothetical
people with fictional drug exposure and health condition occurrence. We

7http://omopcup.orwik.com

34

use the OMOP simulator to generate a dataset of 10, 000 patients that
includes record of drugs and diagnoses (conditions) with dates. The goal
is to predict drug use based on the conditions.

NFL

We create a text-based dataset from the National Football League (NFL)
corpus from the Linguistic Data Consortium8 (LDC). This corpus consists
of articles of NFL games over the past two decades. The idea is to read the
articles and identify concepts such as score, team and game in the text. For
example, in the text, “Green Bay defeated Dallas 28 − 14 in Saturday’s Su-
perbowl game," the goal is to identify Green Bay Packers and Dallas Cowboys
as the teams, and 28 and 14 as their respective scores.

We use the Stanford NLP toolkit9 to create features from the parse trees
obtained from the parser, the tags obtained from the part-of-speech tagger
and the named entity-recognizer, etc. The features were constructed at
different levels: word-level, sentence-level, paragraph-level and article-level.

Cancer

The cancer domain is a popular synthetic task used to evaluate MLNs (Ker-
sting et al., 2009; Domingos and Lowd, 2009). The dataset used in my
work has a friend network with 500 people, where each person has three
attributes: stress(X), cancer(X), and smokes(X). I created a friend net-
work using a symmetric predicate, friends(X,Y). The stress attribute for
each person is set using a Bernoulli distribution. A person is more likely
to smoke if he is stressed or has friends who smoke. Similarly, a person is
likely to have cancer if he smokes or he has a lot of friends who smoke.

8http://www.ldc.upenn.edu
9http://nlp.stanford.edu/software/index.shtml

35

Heart

The Heart dataset 10 is a multivariate data set with 13 attributes. The task
is to predict the presence of heart disease in patients given features such
as age, gender, cholesterol level, and rest electrocardiograph.

Wumpus world

Figure 2.9: The text UI for the
simple Wumpus World. W

indicates the wumpus loca-
tion, S indicates the stench lo-
cation, and A is the agent.

In imitation learning task (Ratliff et al.,
2006), the goal is to learn a policy that
can predict the next optimal action given
the current state by imitating an expert’s
actions. To evaluate imitation learning
on a relational domain, I created a sim-
ple version of the Wumpus task (Russell
and Norvig, 2003). I use a 5x5 grid with a
wumpus placed at a random location. The
wumpus is always surrounded by stench
on all four sides. I did not have any pits or
breezes in our task.

Figure 2.9 shows one instantiation of
the initial grid locations. The agent can perform eight possible actions:
four move actions in each direction and four shoot actions in each direction.
The agent’s task is to move to a cell such that he can fire an arrow to
kill the wumpus. The dataset contains predicates for each cell such as
cellAt, cellRight, and cellAbove and obstacle locations such as wumpus
and stench.

10http://archive.ics.uci.edu/ml/datasets/Heart+Disease

36

3 learning structure for relational models

As described in Section 2.3.2, the problem of structure learning involves
learning the dependencies among the predicates defining the task’s data,
along with the parameters associated with these dependencies. Due to
the large space of possible structures, the task of learning the structure
for relational models is a challenging task which has received attention
(Mihalkova and Mooney, 2007; Biba et al., 2008a; Kok and Domingos,
2009, 2010) lately. As mentioned earlier, most of these structure-learning
approaches first learn the structure for the model and then learn the
parameters for the candidate structures. Based on the success of boosting-
based approaches (Freund and Schapire, 1996; Friedman, 2001; Viola and
Jones, 2001) where finding many rough rules of thumb is a lot easier
and accurate than finding a single, highly accurate model; I propose to
use functional-gradient boosting to learn the structure and parameter for
relational models simultaneously. Our work presented in this chapter has
been published in Machine Learning journal (Natarajan et al., 2012) and
IEEE International Conference on Data Mining (Khot et al., 2011).

3.1 Introduction

Triggered by the intuition that learning many weakly predictive models
can be faster and more accurate than finding a single, highly accurate local
model, I propose to turn the problem of learning relational models into
a series of relational function approximation problems using functional
gradient-based boosting. I represent each conditional probability distri-
bution as a sum of regression models grown incrementally. Instead of
representing the conditional distribution as a single relational probability
tree, I propose to use a set of relational regression trees (Blockeel and
Raedt, 1998).

37

Using functional-gradient boosting for learning the structure has sev-
eral advantages. First, being a non-parametric approach the number of
parameters grows with every boosting iteration. Due to the incremental
updates of the structure and greedy tree-learning, predicates are intro-
duced only as needed; as a result the potentially large search space is not
explicitly considered. Second, such an approach can take advantage of
off-the-shelf regression-tree learners. Moreover, advances made in the tree
learners, such as being able to handle continuous features, can be utilized
easily. Third, the use of functional-gradient boosting makes it possible
to learn the structure and parameters simultaneously, which is an attrac-
tive feature as structure learning in SRL models is computationally quite
expensive. Finally, given the success of ensemble methods in machine
learning (Bell et al., 2007; Viola and Jones, 2001) , it can be expected (and
also shown empirically later in this chapter) that our approach is superior
in predictive performance compared to other6 learning methods.

The chapter is organized as follows. In Section 3.2, I present the basic
approach of Relational Functional Gradient Boosting (RFGB), followed
by the adaptations of RFGB to RDNs and MLNs. In Section 3.5, I present
the experimental results for both these adaptations on various tasks and
compare them to state-of-the-art structure learning approaches.

3.2 Relational Functional Gradient Boosting
(RFGB)

Similar to previous approaches in functional-gradient boosting, we use
the sigmoid function (ex

ex+1) to represent the probability distribution of

38

each example, xi, i.e.,

P(xi = true|Ne(xi)) =
eψ(xi;Ne(xi))

eψ(xi;Ne(xi)) + 1
(3.1)

log P(xi = true|Ne(xi)) = ψ(xi; Ne(xi)) − log
(
eψ(xi;Ne(xi)) + 1

)
where Ne(xi) corresponds to the neighbors of xi that influence xi. In
directed graphs, Ne(xi) is the parents of the variable, whereas for a Markov
network it is the Markov blanket.

For our approach, we define the joint probability distribution as a prod-
uct of conditional distributions. This definition of the joint distribution
can be applied to multiple relational models. As shown in Section 2.2.1,
RDNs approximate the joint model as a product of conditional models.
Although by definition, MLNs define the joint distribution as a product of
potentials normalized over all the world states, optimizing this joint distri-
bution is computationally expensive due to the exponential number of the
world states. Hence learning approaches maximize the pseudo-likelihood
(Domingos and Lowd, 2009; Kok and Domingos, 2009, 2010) which is also
a product of conditional distributions.

The pseudo-log-likelihood (PLL) for x is defined as:

PLL(x) ≡ log P(X = x) = log
∏
xi∈x

P(xi|Ne(xi)) =
∑
xi∈x

log P(xi|Ne(xi))

As described in Section 2.4, functional-gradient boosting first computes
the functional gradients (∂

∂ψ(x)
) of the score that we wish to maximize. In

our case, we wish to learn a model that maximizes the PLL of the examples
in the training data. Hence, we calculate the functional gradient of PLL

39

for every example.

∂ log P(X = x)
∂ψ(xi; Ne(xi))

=
∂ log P(xi|Ne(xi))
∂ψ(xi; Ne(xi))

=
∂
(
ψ(xi; Ne(xi)) − log

(
eψ(xi;Ne(xi)) + 1

))
∂ψ(xi; Ne(xi))

= I(xi = true) −
1

eψ(xi;Ne(xi)) + 1
∂
(
eψ(xi;Ne(xi)) + 1

)
∂ψ(xi; Ne(xi))

= I(xi = true) −
eψ(xi;Ne(xi)))

eψ(xi;Ne(xi)) + 1
= I(xi = true) − P(xi = true; Ne(xi)) = ∆(xi) (3.2)

where I is the indicator function, which returns 1 if xi is a positive example
here, otherwise returns 0. The gradient at each example (∆(xi)) is now
simply the adjustment required for the probabilities to match the observed
value for that example. If xi is a negative example, the gradient for xi 6 0,
thereby pushing the ψ value closer to −∞ and the predicted probability
of the example closer to 0. On the other hand if xi is a positive example,
the gradients push the probabilities closer to 1.

Functional-gradient boosting can also be used to learn from proba-
bilistic examples, i.e., examples with associated probabilities of being true
instead of Boolean values. To handle probabilistic examples, instead of
maximizing the log-likelihood, we minimize the KL-divergence between
the true example probabilities (P̂) and the current model’s predictions (P),
given by

DKL(P̂||P) =
∑
xi∈x

[
P̂(xi) log P̂(xi)

P(xi|Ne(xi))

+ (1 − P̂(xi)) log 1 − P̂(xi)

1 − P(xi|Ne(xi))

]

40

For simplicity, we use P(xi) to represent P(xi = true) here. Minimizing
the KL-divergence is equivalent to maximizing the negative KL-divergence.
Hence, we calculate the functional gradients, as before, on the negative
KL-divergence.

∂−DKL(P̂||P)

∂ψ(xi; Ne(xi))
= −

∂

∂ψ(xi; Ne(xi))

[
P̂(xi) log P̂(xi)

P(xi|Ne(xi))

+ (1 − P̂(xi)) log 1 − P̂(xi)

1 − P(xi|Ne(xi))

]

= P̂(xi)
∂ log P(xi|Ne(xi))
∂ψ(xi; Ne(xi))

+(1 − P̂(xi))
∂ log(1 − P(xi|Ne(xi)))

∂ψ(xi; Ne(xi))

The first gradient term (∂ logP(xi|Ne(xi))
∂ψ(xi;Ne(xi))

) is same as the gradients calcu-
lated for positive examples, i.e., 1−P(xi|Ne(xi)). The second gradient term
is the gradient for negative example, i.e., 0 − P(xi|Ne(xi)). The gradient is
now simplified to:

= P̂(xi)(1 − P(xi|Ne(xi))) + (1 − P̂(xi))(0 − P(xi|Ne(xi)))

= P̂(xi) − P̂(xi)P(xi|Ne(xi))) − P(xi|Ne(xi)) + P̂(xi))P(xi|Ne(xi))

= P̂(xi) − P(xi|Ne(xi))

The gradient for probabilistic examples is the difference between the true
probability and the predicted probability. Since the log-likelihood term can
be re-written as the negative KL-divergence1, the gradients for negative KL-
divergence match the gradients derived earlier for log-likelihood (P̂(xi) = 1
for positive examples and P̂(xi) = 0 for negative examples).

Figure 3.1 shows our relational functional-gradient boosting (RFGB)
approach. Algorithm 3.1 presents the pseudo-code for the same. For each
predicate k, we first generate the examples for a regression-tree learner,

1For a positive example, the second term in DKL is zero and for a negative example,
the first term in DKL is zero since p log p→ 0 as p→ 0.

41

Figure 3.1: Relational Functional Gradient Boosting. This is similar to
the standard FGB where trees are induced in stage-wise manner; the key
difference being that the trees are relational regression trees. To compute
the predictions, a query x, is applied to each tree in turn, and the numerical
values at the leaf reached in each tree are summed to obtain ψ(x).

then we call function FitRelRegressTree to get the new regression tree and
add it to the current model (Fkm−1). This is repeated up to a pre-set number
of iterationsM (in our experiments, typically,M = 20). Alternatively, we
can use a stopping criteria to reduce over-fitting such as a) the average
change in the gradient value between iterations being less than δ or b) for
atleast 1 − ε fraction of examples the change in gradient being less than
δ. Early stopping (Mitchell, 1997) is another common approach to reduce
over-fitting, where we evaluate the accuracy of the model on a held-aside
validation set and stop adding trees when the accuracy decreases.

Note that afterm steps, the current model Fkm will havem regression
trees, each of which approximates the corresponding gradient for the
predicate k. These regression trees serve as the individual components
(∆m(k)) of the final potential functionψ. A key point about our regression
trees is that they are not large trees, which reduces over-fitting while
lowering the learning time. Typically, in our experiments, we limit the

42

Algorithm 3.1 RFGB(Data):
Relational Functional Gradient Boosting algorithm.

1: for 1 6 k 6 K do . Iterate through K predicates
2: for 1 6 m 6M do . Iterate through M gradient steps
3: Sk := GenExamples(k;Data; Fkm−1) . Generate examples
4: . Fit trees to functional gradient
5: ∆m(k) := FitRelRegressTree(Sk,k)
6: Fkm := Fkm−1 + ∆m(k) . Update model
7: end for
8: P(Xk = xk|Ne(xk)) ∝ FkM(xk)
9: end for

10: return

Algorithm 3.2 GenExamples(k, Data, F):
Generate regression examples from Data.

1: S := ∅
2: for 1 6 i 6 Nk do . Iterate over all examples
3: Compute P(xik = true|Pa(xik)) . Probability of an example being true
4: ∆(xik) := I(x

i
k = true) − P(xik = true|Pa(xik)) . Compute Gradient

5: S := S ∪ [(xik),∆(xik))] . Update relational regression examples
6: end for
7: return S . Return regression examples

depth of the trees to be 3 and the number of leaves in each tree is restricted
to be about 8 (the parameter L in FitRelRegressTree). The initial potential F1

0

is set to capture the uniform distribution in all our experiments. However,
it is possible to use more informative initial potentials that can encode
domain knowledge or a prior probability about the target.

The function GenExamples, shown in Algorithm 3.5, is the function
that generates the examples for the regression-tree learner. As can be
seen, it takes as input the current predicate index k, the data, and the
current model F. The function iterates over all the examples and for each
example, computes its probability and gradient. Recall that for computing
the probability of yi, we consider all the trees learned for Yi. For each tree,

43

we compute the regression value based on the path taken by the example
in the tree. The sum of regression values from all the trees is used to
compute the probability of the example. The gradient (computed in line 4
in Algorithm 3.5) is the target regression value for the tree-learning step.

3.3 Adapting RFGB for RDNs

When applying functional gradient boosting to RDNs, the probability of
each example is computed conditioned on its parents. Hence, the gradient
of each example is given by Equation 3.2 with the Ne(xi) replaced with
the parents of xi,Pa(xi).

P(xi|Pa(xi)) =
eψ(xi;Pa(xi))

eψ(xi;Pa(xi)) + 1
∆(xi) = I(xi = true; Pa(xi)) − P(xi = true | Pa(xi))

Representation of Functional Gradients for RDNs As mentioned above,
we represent the function ψ using relational regression trees. Similar to
decision trees, relational trees have tests on each node, but the node tests
can contain a conjunction of literals and share any variable defined by their
ancestor, except under one condition. The variables introduced by a node
can not be used in the subtree under the false branch of that node. This fol-
lows from the way the test conditions are interpreted in relational trees. In
a relational tree for q(X), if a node contains the literal p(X, Y), then the left
or true branch corresponds to the examples {X : p(X, Y) = true} and the
right or false branch corresponds to the examples {X : ∀ Yp(X, Y) = false}.
This definition ensures that any example can take exactly one branch and
thereby partitions the space. Since the false branch does not enforce a
specific set of values that Y should take to follow that branch, Y can not
be used in that subtree. Each example can take exactly one path in the
relational trees and return the regression value at the leaf as theψ function

44

value for that example. (It is possible to also convert the relational trees
into a decision list and return the regression value corresponding to the
first satisfied clause in the list.)

At a fairly high level, the learning of relational regression tree proceeds
as follows: The learning algorithm starts with an empty tree and repeatedly
searches for the best test at a node according to a split criterion. Next,
the examples in the node are split into success and failure according to the
test. For each split, the procedure is recursively applied, further obtaining
subtrees for the splits. We use weighted variance2 as the split criterion and
the average gradient of examples reaching a leaf as its regression value.
These two conditions ensure that we greedily minimize the squared error
at each node. We augment the relational regression-tree learner with the
aggregation functions such as count, max, average in the inner nodes, thus
making it possible to learn complex features for a given target.

An example relational regression tree is shown in Figure 3.2. The
predicates student and paper are available as evidence (shown at the
top) and the regression examples are created for the target predicate,
adviser. The current node being scored is shown with the dotted oval,
i.e., paper(X, Y). Since target(x1) and target(x2) are the only examples
reaching the node, introducing paper(X, Y) only affects their regression
values and only these two examples are used to score the node. Based on
evidence, paper(x1, Y) is true for Y = y1, and so adviser(x1) takes the
true branch. On the other hand, paper(x2, Y) is false for all values of Y,
and it takes the false branch. The values on the leaves are set to the mean
of the regression values reaching the node and the variance computed
based on the leaf values. The variance is computed for every possible test
in this node and the test with the lowest variance is selected.

Since we can learn the models for each predicate independently in
RDNs, we learn all our boosted trees for each predicate simultaneously.

2σw =
∑
i(∆i−µ1)

2 +
∑
j(∆j−µ2)

2 where ∆i (and ∆j) are the gradients of examples
on the true (and false) branch and µ1 (and µ2) is the average gradient of these examples.

45

Figure 3.2: Example of learning a relational tree from regression examples.

Hence, we swap lines 1 and 3 in Algorithm 3.1 and learn all the trees for
one predicate before going on to the next predicate.

3.4 Adapting RFGB for MLNs

While RDNs do not use the number of groundings to compute the probabil-
ity distributions, MLN probability distribution depends on the groundings
of the clause. Hence, all the examples that reach the same leaf may not have
the same distribution due to each example potentially having different
number of groundings of the clause corresponding to the path taken.

Derivation of the Functional Gradient In undirected models, the proba-
bility of an example is independent of the other examples given its Markov
blanket (MB). Hence,Ne(xi) in Equation 3.1 and 3.2 can be replaced with

46

MB(xi) to obtain the gradient for each example, i.e.,

P(xi|MB(xi)) =
exp(ψ(xi; MB(xi)))

exp(ψ(xi; MB(xi))) + 1
(3.3)

∆(xi) = I(xi = true) − P(xi = true | MB(xi))

One of the primary differences between applying functional gradient
boosting to MLNs and other relational models lies in the definition of
the ψ function derived below. In MLNs, the conditional probability of an
example given its Markov blanket is represented as:

P(xi = true|MB(xi)) =
exp

(∑
jwjnj(xi = true;MB(xi))

)∑
x ′ exp

(∑
jwjnj(xi = x

′;MB(xi))
)

=
exp

(∑
jwjntj(xi; MB(xi))

)
exp

(∑
jwjntj(xi; MB(xi))

)
+ 1

(3.4)

where we defined

ntj(xi; MB(xi)) ≡ nj(xi = true; MB(xi)) − nj(xi = false; MB(xi)) (3.5)

nj(x) is the number of true groundings of clause Cj in the ground Markov
network of x. Given our definitions of the probability of an example in
Equations 3.3 and 3.4, we can derive the function ψ.

P(xi|MB(xi)) =
exp(ψ(xi; MB(xi)))

exp(ψ(xi; MB(xi))) + 1
=

exp
(∑

jwjntj(xi; MB(xi))
)

exp
(∑

jwjntj(xi; MB(xi))
)
+ 1

⇒ ψ(xi; MB(xi)) ≡
∑
j

wj ntj(xi; MB(xi)) (3.6)

ntj(xi) is the difference between the number of true groundings of the
clause Cj when an example is true and the groundings when it is false.
If xi appears in the head of a Horn clause Cj, ntj(xi) also corresponds to
the number of non-trivial groundings of xi (Shavlik and Natarajan, 2009).

47

E.g, target(c1) only appears in the head of the clause p(A,B)∧q(B,C)→
target(A) and hence ntj(target(c1)) corresponds to the number of non-
trivial groundings of target(c1).

I now explain non-trivial groundings in terms of the trivial ground-
ings of an example. The trivial groundings are defined as the ground-
ings of a clause that remain true irrespective of the truth value of the
example. E.g., groundings of ¬p(c1,B) ∨ ¬q(B,C) ∨ target(c1) where
¬p(c1,B) ∨ ¬q(B,C) = true satisfy the clause irrespective of the truth
value of target(c1). So the non-trivial groundings of target(c1) that sat-
isfy the clause correspond to the groundings where p(c1,B)∧ q(B,C) =
true (obtained by negating the condition for trivial groundings). In gen-
eral, the non-trivial groundings of an example correspond to the ground-
ings of a clause where the body of the clause is true. For a more detailed
discussion of non-trivial groundings, see Shavlik and Natarajan (2009).

Representation of Functional Gradients for MLNs To apply functional
gradient boosting, we need to find ψ̂ such that the squared error between
ψ̂ and the functional gradient is minimized over all examples, i.e.,

argmin
ψ̂

n∑
i=1

(ψ̂(xi;MB(xi)) − ∆(xi))2 (3.7)

We consider two representations of ψ̂s: trees and clauses.

Tree Representation
For our first representation, we use a relational regression-tree learner to
fit the gradients on each example. Each path from the root to a leaf can be
seen as a clause and the weight at the leaf corresponds to the weight of
the clause. As an example, let us consider adding the literal q(X, Y) to the
tree at a node N. Let the current clause formed by the path from the root
to the node N be p(X)→ target(X). So adding q(X, Y) splits the current

48

clause to two clauses,

C1 : p(X)∧ q(X, Y) → target(X)

C2 : p(X)∧ ∀ Y¬q(X, Y) → target(X)

For all the examples that reach node N (i.e., p(X)=true), let I be the set of
examples that satisfy q(X, Y) and J be the ones that do not. Let w1 and w2

be the regression values that would be assigned to C1 and C2 respectively.
Let nx,1 and nx,2 be the number of non-trivial groundings for an example
xwith clauses C1 and C2. The regression value returned for an example
now depends on whether it belongs to I or J. The regression function for
the examples reaching node N can be defined as

ψ̂(xi) = nxi,1 ·w1 · I(xi ∈ I) + nxi,2 ·w2 · I(xi ∈ J) (3.8)

and the squared error (SE) is

SE =
∑
x∈I

[nx,1 ·w1 − ∆x]
2
+
∑
x∈J

[nx,2 ·w2 − ∆x]
2

Taking the derivative w.r.t. the weights, we can calculate the optimum
value for the weights at the leaf for a given split.

∂

∂w1
SE =

∑
x∈I

2 [nx,1w1 − ∆x]nx,1 + 0 = 0⇒ w1 =

∑
x∈I∆x · nx,1∑
x∈I n

2
x,1

(3.9)

Since the optimum weights have a closed-form solution, we can compute
the weights easily for possible literals that can be added at each node. We
greedily search for the literal that minimizes the squared error with the
optimum weights.

Figure 3.3 gives the sample regression tree for target(X) for the exam-
ple considered above. Assume that the algorithm selected p(X) to be the

49

best split with weightw3 on its false branch (p(X) = false) and it is scoring
q(X, Y) as the next split for the true branch. As described above, I contains
all examples that have at least one grounding for q(X, Y) and J contains
the rest; target(x1) is in I if p(x1)∧ ∃Yq(x1, Y) is true and target(x2) is in
J, if p(x2)∧ (∀ Y,¬q(x2, Y)) is true. Given the number of groundings and
gradients of examples in I, we can now compute the weight w1 on the left
leaf using Equation 3.9 and similarly compute w2 on the right leaf using J.
The MLN generated from this tree is:

w1 : p(X)∧ q(X, Y)→ target(X)

w2 : p(X)∧ ∀ Y¬q(X, Y)→ target(X)

w3 : ¬p(X)→ target(X) (3.10)

Figure 3.3: Sample tree for target(X).

Note that the examples reach-
ing the leaf with weight w1,
namely I, satisfy the body of the
first clause. Also, by construc-
tion, these examples do not sat-
isfy the body of the remaining
two clauses. As mentioned be-
fore the non-trivial groundings
of the clause correspond to the
groundings which satisfy the
body of the clause. Therefore, the set of examples I have zero non-trivial
groundings for the last two clauses. Given our definition of ψ in Equation
3.6, we can see that the weights of these clauses do not effect the regression
value returned for examples in I (since ntj(x; MB(x)) = 0). Hence, we use
the examples from I to only compute the weight for the first clause (where
ntj(x; MB(x)) > 0). Similar to decision trees, we partition the examples
into mutually exclusive sets and only use the examples reaching the leaf

50

to efficiently calculate the weight at that leaf.
We can efficiently compute the regression value returned for an ex-

ample by using an ordered-list of clauses. In an ordered list, one would
return the weight for the first satisfied clause in the given list. For the
clauses shown above, we return the weight w1 if the example satisfies the
first clause. If it does not satisfy the first clause, we check for the second
clause in the next step and so on. For the second clause in Equation 3.10,
we do not need to check for ∀ Y¬q(X, Y) any more. If there exists some
Y such that q(x1, Y) returns true, we would have returned the weight w1

for example target(x1) in the previous step. In general, we can remove
the test conditions in the false branch in the ordered-list representation.
We can rewrite the set of clauses in Equation 3.10 using the ordered-list
approach:

w1 : p(X)∧ q(X, Y)→ target(X)

w2 : p(X)→ target(X)

w3 : target(X) (3.11)

This ordered-list representation can only be used by our implementa-
tion and is only accurate if we have a single target predicate (explained
below). Hence in all the scenarios where the ordered list can not be used,
we revert to the unordered set of clauses shown in Equation 3.10. Unfortu-
nately the false test conditions needed in the unordered set of clauses may
result in large cliques in the ground Markov Network. For example, our
second clause in 3.10 when converted to its conjunctive normal form (used
to create the ground network) becomes ¬p(X) ∨ ∃Yq(X, Y) ∨ target(X).
MLNs assume that all existentially quantified variables have a finite do-
main. Thereby, a clause with existential variables in MLNs can be handled
by replacing it with a disjunction over all the groundings of the existential
variable. In this case, we will create a clause¬p(X)∨q(X,y1)∨. . .q(X,yn)∨

51

target(X), which results in a large clique (O(|Y|)) in the ground network.

Clause Representation
Due to the potentially large clique generated by using regression trees, we
define a second representation for the regression function, namely a set
of Horn clauses. To learn this clausal representation, we ignore the false
branch, i.e., set the weights on the false branch (w2 andw3 in the previous
example) to zero. We learn Horn clauses by using a beam search that adds
literals to clauses that reduce the squared error. We maintain a (beam-size
limited) list of clauses ordered by their squared error and keep expanding
clauses from the top of the list. We add literals to clauses as long as their
lengths do not exceed a threshold and there are clauses in the stored list
yet to be expanded. We recommend using the clausal representation when
the existential variables introduced by the trees would make the inference
step too slow.

In this version of our algorithm, we learn a set of clauses independently
at each gradient step. Since we do not have two branches when every new
condition is added, the error function becomes:

SE =
∑
x∈I

[nx,1 ·w− ∆x]
2
+
∑
x∈J

∆2
x =⇒ w =

∑
x∈I∆x · nx,1∑
x∈I n

2
x,1

Note that the key change is that we do not split the nodes and instead just
search for new literals to add to the current set of clauses. Hence, instead
of an ordered-list of clauses, we learn a single clause obtained by taking
the true branch at every node. We repeat this process to obtain a pre-set
number of clauses (set to 3 in our experiments) within each gradient step.

Algorithm 3.3 presents the pseudocode for learning relational regres-
sion trees for MLNs. The function FitRelRegressionTree(S,P) corresponds
to the function used in Algorithm 3.1. We limit our trees to have maximum

52

Algorithm 3.3 FitRelRegressionTree(S, P):
Fit relational regression trees to the regression dataset, S.

1: Tree := createTree(P(X))
2: Beam := {root(Tree)}
3: L := 8 . Maximum leaves
4: while numLeaves(Tree) 6 L do
5: Node := popBack(Beam) . Node with worst score
6: C := createChildren(Node) . Create children
7: BN := popFront(Sort(C)) . Node with best score
8: addNode(Tree, Node, BN) . Replace Node with BN
9: insert(Beam, BN.left, BN.left.score)

10: insert(Beam, BN.right, BN.right.score)
11: end while
12: return Tree

L leaves and greedily pick the worst node to expand (to reduce the error
in that node). In FitRelRegressionTree, we begin with an empty tree that
returns a constant value. We use the background predicate definitions to
create the potential literals that can be added (createChildren). We pick
the best scoring node (based on square error) and replace the current leaf
node with the new node (addNode). Then both the left and right branch
of the new node are added to the potential list of nodes to expand. To
avoid overfitting, we only insert and hence expand nodes that have at least
6 examples. We pick the node with the worst score and repeat the process.
FitRelRegressionClause(S,P) is called instead of FitRelRegressionTree

when learning clauses. FitRelRegressionClauseuses the maximum clause
length as the parameterN (we set this to 3) and beam size B (we set this to
10). We greedily try to find the best scoring clause (BC) with length 6 N.
In every iteration, we pick the current best performing clause from a queue
for expansion. We add all the clauses that improve the score to our queue,
while only keeping the best B clauses in the queue and ignoring the rest.
We repeat this process till no expansions of clauses with length 6 N are
possible. This method only learns one clause at a time. Hence for learning

53

Algorithm 3.4 FitRelRegressionClause(S, P):
Fit relational regression clauses to the dataset, S.

1: Beam := {P(X)} . Initialize with the target predicate
2: BestClause := P(X)
3: N := 3 . Maximum clause length
4: B:= 10 . Beam width
5: while ¬empty(Beam) do
6: Clause := popFront(Beam) . Pick the best scoring clause to expand
7: if length(Clause) > N then
8: continue . Clause too long to be expanded
9: end if

10: C := addLiterals(Clause) . Possible expansions of the base clause
11: for c ∈ C do
12: c.score = SE(c) . Score of the expanded clause c
13: if c.score > Clause.score then
14: insert(Beam, c, c.score) . Add the expansion if it is better than the

base clause
15: end if
16: if c.score > BC.score then
17: BestClause := c . Update best scoring clause
18: end if
19: end for
20: while length(Beam) > B do . Consider the best B clauses to expand
21: pop(Beam)
22: end while
23: end while
24: return BC

multiple clauses, we call this function multiple times during one gradient
step and update the gradients before each call based on the currently
learned clauses. In all our experiments we learn a maximum of 3 clauses
in a single gradient step.

Learning Joint Models One of the key features of SRL methods is the
ability to learn and reason about predicates and examples jointly. To

54

handle multiple target predicates, we learn a joint model by learning trees
or clauses for each predicate in turn. We use the MLN’s learned for all
the predicates prior to the current iteration to calculate the regression
value for the examples. For example while learning the joint model for
three predicates p, q and r, we iterate through each predicate and learn
one tree at a time. Let us assume we iterate through the predicates in the
order {p,q, r} and we have learned the kth tree for q. When computing
the gradients for predicate r, we use the k − 1 trees learned for r along
with the k trees learned for p and q. Also for efficiency, while learning
a tree for the target predicate r, we do not consider the influence of that
new tree on other target predicates p and q.

While learning a model with a single target predicate, all the Horn
clauses in that model have the target predicate as the head of the clause.
I have shown above that ntj(x) corresponds to the true groundings of
the body of such Horn clauses which is also the number of non-trivial
groundings of the clause. But if we are learning a joint model, the target
predicate may appear in the body of a clause. I will show that for such
clauses, ntj(x) corresponds to the negative of the number of non-trivial
groundings of the clause. Computing ntj(xi) this way allows us to com-
pute the ψ values for every example quickly without grounding the entire
MLN at every iteration.
Proposition:
ntj(x) corresponds to the negative of the number of non-trivial groundings
of the clause.
Proof:
For simplicity, assume that the clause Cj : p(X),q(X, Y) → target(X) is
learned for target(X) in the first iteration. The proof presented can be
generalized to any Horn clause. If we are learning a joint model over
target and p, this clause will be used to compute the regression value for
p(x) in the next iteration. In its CNF form, this clause can be written as

55

Cj : ¬p(X)∨¬q(X, Y)∨target(X). When p(x) = false, all the groundings
of Y satisfy the clause, i.e.,

nj(p(x) = false) = |Y|

When p(x) = true, only the groundings of Y where ¬q(x, Y)∨target(x) =
true satisfy the clause, i.e.,

nj(p(x) = true) = |{y ∈ Y : ¬q(x,y)∨ target(x)}|
Also, these groundings satisfy the clause irrespective of the value of p(x),
i.e., these are the trivial groundings of the clause. The difference between
these two set of groundings are the groundings that do not satisfy the
condition ¬q(x, Y)∨ target(x) = true, i.e.,

nj(p(x) = false) − nj(p(x) = true) = |{y ∈ Y : q(x,y)∧ ¬target(x)}|

These groundings are also the non-trivial groundings of the clause, as
these are all the groundings of Y except the trivial groundings. We defined
ntj(p(x)) as nj(p(x) = true) − nj(p(x) = false), which is the negative of
the number of non-trivial groundings of the clause.

3.5 Experiments for RFGB

I present the results of our structure-learning approaches on both RDNs
and MLNs in this section. I denote the results for our boosted-RDNs
algorithm as RDN-B and boosted-MLNs as MLN-BT (tree representation)
and MLN-BC (clause representation). I also italicized the name of our
methods in the result tables. I also present the results for our structure-
learning approach where we learn only one tree (RDN), i.e., we do not
perform boosting, but learn a single larger tree instead.

I evaluate our structure learning approaches for RDNs against the
state-of-the-art structure-learning approach for RDNs - Proximity 3. I
compare our boosted structure learning approaches for MLNs against
previous structure learning approaches for MLNs, namely LHL (Kok and

3http://kdl.cs.umass.edu/software/proximity.html

56

Domingos, 2009), Motif (Kok and Domingos, 2010) and BUSL (Mihalkova
and Mooney, 2007). I present results for two variations of Motif - with
short rules (Motif-S) and long rules (Motif-L). When a hand-written MLN
model is available, I also present results for weight learning on this model.

I use the two-tailed Student’s t-test (Hastie et al., 2001) to evaluate sta-
tistical significance (at p = 0.05) in our experiments. When our approach
is statistically significantly better than the baseline approaches, I use bold
letters. When one of our approach is statistically significantly better than
the baseline and our other approaches, I use bold-italicized letters. I first
show the results on three commonly used SRL datasets: WebKB, UW-CSE
and IMDB. I follow it with additional experimental results in Section 3.5.4.

3.5.1 Evaluating the boosted RDN approach: WebKB

I use the WebKB dataset (Craven et al., 1998) to compare our boosting
approach for RDNs against Proximity. I used this particular dataset since
Proximity provides a query model needed by it for this dataset and it runs
out of memory (on a machine with 8 GB RAM) for other standard datasets.
The WebKB data set consists of web pages with their most commonly
occurring words. It also contains the links between these web pages. The
goal is to classify these web pages into multiple categories. We only present
the results of binary classification of web pages into Student or Non-student
pages. Following standard procedure, we create one fold for every school
in the data set (Wisconsin, Washington, Cornell and Texas).

This dataset is provided by the Proximity software package, which also
includes the query model required by Proximity as part of the package.
Thus we did not have to make any transformations to the data set for
Proximity. Proximity uses the query model to generate the set of possible
parents. While learning the relational trees, Proximity searches for the
best split from these set of parents using the chi-square test (Neville et al.,
2003a). Our approach, on the other hand, grows the parents set as it grows

57

the trees and uses weighted variance score to pick the best split.
In Table 3.1, I present the results on the Area Under ROC curve (AUC-

ROC) and Area under Precision-Recall curve (AUC-PR; Davis and Goad-
rich 2006) averaged over the four folds. We ignore the predictions made by
Proximity on other categories apart from Student to calculate their AUC
since we are interested in the binary classification problem. Our RDN
learning algorithms perform statistically-significantly better (at p = 0.05)
than the Proximity learning algorithm. We tried increasing the depth
of the trees in Proximity, but it did not improve its results. There is no
statistically-significant difference between the AUC values of RDN-B and
RDN.

Algorithm AUC-ROC AUC-PR
RDN-B 0.980± 0.018 0.965± 0.032
RDN 0.980± 0.020 0.956± 0.050
Proximity 0.753± 0.020 0.648± 0.028

Table 3.1: Cross-validation results on the WebKB data set.

3.5.2 Evaluating the boosted MLN approaches: UW-CSE

I next compare our two boosting algorithms for MLNs using the UW-CSE
dataset. The UW-CSE dataset (Richardson and Domingos, 2006) was cre-
ating from University of Washington’s Computer Science and Engineering
department’s student database (hence the name). The data set consists
of details about professors, students and courses from 5 different sub-
areas of computer science (AI, programming languages, theory, system
and graphics). The dataset includes predicates such asprofessor, student,
publication, advisedBy,hasPosition,projectMember, yearsInProgram,
courseLevel, taughtBy, and teachingAssistant and equality predicates
such as samePerson, sameCourse etc. For the UW-CSE data set, the goal

58

is to predict the advisedBy relationship between a student and a profes-
sor using the other predicates. There are 4,106,841 possible advisedBy
relations out of which 3380 relations are true. Since the dataset consists of
five areas (or mega-examples), we performed five-fold cross-validation.

I compare our two boosting algorithms - tree-based (MLN-BT) and
clause-based (MLN-BC) to state-of-the-art MLN structure-learning meth-
ods: LHL, Motif-S (short rules) and Motif-L (long rules). In addition to
the methods describe above, we also compared against the handcoded
MLN available on Alchemy’s website with discriminative weight learning
(denoted as A-D, which is short for Alchemy-Discriminative). We set the
maximum number of leaves in MLN-BT to 8 and maximum number of
clauses to 3 in MLN-BC. The beam width was set to 10 and maximum
clause length was set to 3 for MLN-BC. We used 20 gradient steps (and
hence learned 20 trees) on all our boosting approaches.

Table 3.2 presents the AUC-PR and CLL values, along with the training
time taken by each method averaged over five folds. As can be seen, for
the complete dataset both boosting approaches (MLN-BT and MLN-BC)
perform significantly better than other MLN structure learning techniques
on the AUC-PR values. Current MLN learning algorithms on the other
hand are able to achieve lower CLL values over the complete dataset by
pushing the probabilities to 0, but are not able to differentiate between
positive and negative examples, as shown by the low AUC-PR values.

Since most relations such as taughtBy, advisedBy etc. are false in
the real-world, the number of negatives can be order of magnitude more
than the number of positives. In these cases, simply measuring CLL over
the entire data set can be misleading. Predicting all the examples as the
majority class (when the number of examples in one class are far greater
than the other) can have a good CLL value, but a very low AUC-PR value
(nearly 0). For example, consider a test set with ten negative and one
positive example. A model that returns a probability of 0.1 for every

59

example has a CLL of −0.14 and AUC-PR of 0.1. On the other hand,
a model, which returns a probability of 0.5 on every negative example
and 0.6 for the positive example, has a CLL of −0.29 and AUC-PR of 1.0.
The first model can not differentiate between the positive and negative
examples (hence AUC-PR=0), but it has a better CLL (lower is better) than
the second one. Hence, we also present results with a lower skew, i.e.,
where the number of negative examples is twice the number of positives.

When we reduce the negative examples in the test set to twice the
number of positives, our boosting techniques dominate on both the AUC-
PR and CLL values, while the other techniques, which cannot differentiate
between the examples, have poor CLL values. There is no significant
difference between learning trees or clauses in the case of boosting MLNs.

Algo All negatives 2X negatives Training
AUC-PR CLL AUC-PR CLL Time

MLN-BT 0.21± 0.17 −0.46± 0.36 0.94± 0.06 −0.52± 0.45 18.4 sec
MLN-BC 0.22± 0.17 −0.47 ± 0.14 0.95± 0.05 −0.30± 0.06 33.3 sec
Motif-S 0.01± 0.00 −0.06± 0.03 0.43± 0.03 −3.23± 0.78 1.8 hrs
Motif-L 0.01± 0.00 −0.07 ± 0.02 0.27 ± 0.06 −3.60± 0.56 10.1 hrs
A-D 0.01± 0.00 −0.08± 0.02 0.31± 0.10 −3.90± 0.41 7.1 hrs
LHL 0.01± 0.01 −0.06± 0.02 0.42± 0.10 −2.94± 0.31 37.2 sec

Table 3.2: Cross-validation results on the UW data set. MLN-BT = Boost-
ing with trees, MLN-BC=Boosting with clauses, Motif-S=Motif with short
rules, Motif-L=Motif long rules, A-D=Hand-coded rules with discrimina-
tive learning, LHL=Lifted Hypergraph learning.

3.5.3 Evaluating the boosted RDN and MLN methods:
IMDB

We use the IMDB dataset to compare our boosted MLN approaches (MLN-
BT and MLN-BC) and our boosted RDN approach (RDN-B) against other

60

structure-learning approaches, namely LHL, BUSL, Motif-S (short rules)
and Motif-L (long rules). The IMDB dataset was first used by Mihalkova
and Mooney (2007) and contains five predicates: actor, director, genre,
gender, and workedUnder. We do not evaluate the actor and director
predicates because they are mutually exclusive facts in this dataset and
easy to learn for all the methods. Also since gender can take only two
values, we convert the gender(person,gender) predicate to a single argu-
ment predicate female_gender(person). Following Kok and Domingos
(2009), we omitted the four equality predicates. We performed five-fold
cross-validation using the folds generated by Mihalkova and Mooney
(2007) and averaged the results across all the folds. We perform inference
over each predicate given all other predicates as evidence.

Algorithm workedUnder genre gender
MLN-BT 0.90± 0.07 0.94± 0.08 0.45± 0.06
MLN-BC 1.00± 0.00 1.00± 0.00 0.39± 0.07
RDN-B 0.99± 0.02 0.91± 0.12 0.46± 0.18
BUSL 0.89± 0.11 0.94± 0.08 0.44± 0.08
LHL 1.00± 0.00 0.37 ± 0.09 0.39± 0.12
Motif-S 0.56± 0.16 0.52± 0.29 0.48± 0.08
Motif-L 0.48± 0.27 0.39± 0.03 0.46± 0.08

Table 3.3: AUC PR values on the IMDB data set.

Table 3.3 and 3.4 show the AUC-PR and CLL values respectively for the
three query predicates: workedUnder, genre, and gender. Our boosting
approaches perform better on average, on both the AUC-PR and CLL
values, than the other methods. The BUSL method exhibits the best perfor-
mance of the prior structure-learning methods in this domain. Our boost-
ing algorithms are comparable or better than BUSL on all the predicates.
For workedUnder, LHL has comparable AUC-PR values to our boosting
approaches, while it is clearly worse on the other predicates. There is no

61

Algorithm workedUnder genre gender
MLN-BT −0.18± 0.06 −0.20± 0.09 −0.62± 0.05
MLN-BC −0.11± 0.04 −0.12± 0.08 −0.84± 0.21
RDN-B −0.88± 0.20 −0.25± 0.22 −0.76± 0.16
BUSL −0.56± 0.05 −0.27 ± 0.09 −0.69± 0.01
LHL −0.02± 0.01 −1.13± 0.23 −0.73± 0.05
Motif-S −2.73± 1.66 −3.99± 2.70 −0.71± 0.08
Motif-L −2.30± 1.16 −2.32± 1.15 −0.69± 0.06

Table 3.4: CLL values on the IMDB data set.

significant difference between the two versions of our boosting algorithms.
As can be seen from Table 3.4, the MLN-based methods are marginally
better than our boosted RDNs for predicting workedUnder predicate, while
comparable for others.

3.5.4 Additional experiments

Next, I present additional experimental results on other domains for
boosted RDNs and boosted MLNs. The results are similar to the three
experiments presented above.

RDN: Movie Lens data set

We evaluate RDNs using the Movie Lens data set (Xu et al., 2009). Xu et al.
created this dataset by randomly selecting a subset of 100 users and 603
movies from the ratings submitted by users on movielens.org. The task is
to predict the preferences of the users on movies. The users have attributes
age, gender, and occupation, while the movies have released year and
genre attributes. Since we are interested in predicting the preference of
the user, we created a new predicate, likes for every user-movie pair that
is set to true if the user likes the movie and false otherwise. Originally, the

62

ratings of the movie by the user were on a 5-star scale. We set the likes
predicate to true if the rating of a movie by an user is greater than the
average rating of all the movies by the same user. Typically, every user
rated (30 − 400) movies with a total number of 78,445 user-movie ratings.
We performed 5-fold cross validation on the data by first splitting the data
into five bins and then choosing four bins for training and fifth for testing.
Hence, we use 80% of the data as the training set and evaluate on the other
20%.

Algorithm AUC-ROC AUC-PR Training Time
RDN-B 0.611± 0.016 0.602 ± 0.015 332 s
RDN 0.587 ± 0.011 0.587 ± 0.011 6.25 s

Table 3.5: Cross-validation results on the Movie Lens data set.

Since this domain involved complex interaction between attributes, we
introduced four aggregators for both RDN methods: (a) count of movies
rated by the user, (b) count of ratings for a movie, (c) count of ratings
of movies of a genre by the user and (d) count of the movies that the
user likes in a genre. From Table 3.5, it can be observed that RDN-B is
marginally better than RDN (statistically significant results in AUC-PR
with p-value=0.023). As expected the time taken for boosting is higher
when compared to learning a large single tree.

We attempted to use Proximity 4 (the default package for RDNs), but
ran out of memory. If we restrict the search space to only use attributes of
objects one relation away (e.g., only attributes of friends but not friends
of friends) results were close to random. This is the key reason to use
the TILDE (Blockeel and Raedt, 1998) implementation of learning trees
(which uses clause learning techniques to incrementally introduce literals
in trees) for learning RDN and not Proximity’s RPT learning approach

4http://kdl.cs.umass.edu/proximity

63

(which first generates all the potential combination of literals as features
before learning the trees).

Both the methods are significantly better than MLNs, where we used
the hypergraph lifting algorithm in Alchemy to learn the structure (Kok
and Domingos, 2009). Alchemy was not able to learn any meaningful
structure (even with the aggregated predicates) and hence did not learn
any useful model. We do not present Alchemy results here as all the
examples are predicted to be false.

The results of RDN-B are quite similar to the best results reported using
multi-relational Gaussian Processes (Xu et al., 2009), where the AUC for
ROC was 0.627 for the same experimental setup.

RDN: Predicting adverse drug reactions

The next problem we considered is the prediction of adverse drug re-
actions on patients. The Observational Medical Outcomes Partnership
(OMOP) designed and developed an automated procedure to construct
simulated datasets5 that are modeled after real observational data sources,
but contain hypothetical people with fictional drug exposure and health
condition occurrence. We used the OMOP simulator to generate a dataset
of 10, 000 patients that included record of drugs and diagnoses (conditions)
with dates. The goal is to predict drug use based on the conditions. For
training, 75% of the data was sub-sampled, while the remaining 25% was
used for testing. The test was conducted on 5 drugs with a training set of
1950 patients on the drug and a test set of 630 patients. predicting true if
the predicted probability is > 0.5 and false otherwise.

The results are presented in Table 3.6. As can be seen, in this domain
our approach RDN-B is significantly better than RDN in all the metrics
except training time. This is due to the fact that in this domain, there were
several different weak predictors of the class.

5http://omopcup.orwik.com

64

Algorithm AUC-ROC AUC-PR Training Time
RDN-B 0.824 ± 0.04 0.839 ± 0.04 497.8 s
RDN 0.738± 0.04 0.736± 0.04 39.4 s
Noisy-Or 0.420± 0.08 0.582± 0.07 -

Table 3.6: Cross-validation results on the OMOP data set.

The third row of the table (Noisy-Or) is a relational method where
we used Aleph (Srinivasan, 2004) to learn ILP rules. For each drug, we
learned 10 rules, which are essentially Horn clauses with the target in the
head, using Aleph. Some examples of the rules are:

on_drug(A) :-
condition_occurrence(B,C,A,D,E,3450,F,G,H).

on_drug(A) :-
condition_occurrence(B,C,A,D,E,140,F,G,H),
condition_occurrence(I,J,A,K,L,1487,M,N,O).

The first rule identifies condition 3450 as interesting, while the second rule
identifies two other conditions as interesting when predicting whether
person A was on the current drug. Note that in first-order logic, the result
is the disjunction of these rules (i.e., each rule is evaluated and the resulting
concept is true if any of those rules are true). In SRL, we soften these rules
using probabilities. Associated with each rule is a conditional distribution
P(head|body) and since all the rules have the same head, these rules are
combined using the Noisy-Or combining rule6 (Heckerman and Breese,
1994).

We have to learn two sets of parameters for combining the ILP rules us-
ing Noisy-Or. For every rule obtained from Aleph, we learn one parameter
to capture the conditional probability distribution for the rule being true,

6P(y = 1|x) = 1 −
∏
i(1 − qiP(y = 1|xi)) where qi is the noise parameter and x are

the parents of y.

65

P(head|body) . We also learn one inhibition probability parameter (also
the noise parameter) for the Noisy-Or combining rule. These parameters
are learned using the EM algorithm presented in Natarajan et al. (2008),
where it is derived for learning the parameters of the distributions and
the noise parameters simultaneously. We run the EM algorithm for 50
iterations. Our current approach is significantly better than the ILP-SRL
combination in all the evaluation metrics. We are unable to get Alchemy
to learn rules for this data set due to the prohibitively large number of
groundings in the data.

In this data set, boosting greatly helps in performance on almost all the
drugs. While the non-boosted RDN is better than the ILP+combining-rule
algorithm, RDN-B dominates clearly in this domain.

RDN: Cora dataset

We also evaluated our RDN approach on the Cora dataset (McCallum
et al., 2000), a standard dataset for citation matching. Cora dataset was
first created by Andrew McCallum, and later segmented by Bilenko and
Mooney (2003). The dataset was later converted into relational format by
Poon and Domingos (2007). In citation matching, the task is to identify
citations that refer to the same paper, which as a sub-task may include
matching the author, title and venue of citations.

For each citation we have information about the various fields using
predicates such asauthor, title, venue,hasWordAuthor,hasWordTitle,
andhasWordVenue. This task has multiple target predicates (sameAuthor,
sameVenue, sameTitle, and sameBib) for identifying matching authors,
venues, titles and the complete citation.

For a baseline approach, we used the B+N+C+T MLN presented in
Singla and Domingos (2006) and available on the Alchemy website to
compare against the boosted and non-boosted versions of RDN. Note that
we are not learning the structure of MLN, but merely learn the weights of

66

the MLN clauses. In the case of RDN and RDN-B, we learn the structure
and parameters of the model.

The area under curves of the PR curves for the entity-resolution task
is presented in Figure 3.4a. The results are averaged over 5-folds for the
four predicates that we mentioned earlier. As can be seen, RDN-B domi-
nates the other methods consistently on all the four different predicates.
MLNs exhibit good performance in the case of SameAuthor predicate, but
are outperformed by the RDN methods in the other predicates. RDN
learning that does not use boosting performs reasonably well, but is still
outperformed by RDN-B in all the predicates.

The results are similar for the ROC curves and are presented in Fig-
ure 3.4b. As with the PR curves, these results are obtained over five-folds.
RDN-B dominates for all the predicates in this case as well and is statisti-
cally significantly better on SameBib predicate.

RDN: Citeseer dataset

Similar to the Cora dataset, we used the Citeseer dataset created by Poon
and Domingos (2007) for performing information extraction. This dataset
was first created by Lawrence et al. (1999). This dataset has 1563 citations
and 906 clusters. It consists of four sections, each on a different topic.
Over two-thirds of the clusters are singletons and the largest contains 21
citations (Poon and Domingos, 2007).

The Citeseer task can be viewed as an input to the Cora domain where
the goal in Citeseer is to extract the fields from the citations. The extracted
fields can then be used to perform entity resolution (identify citation
clusters) using the extracted fields, as done in the Cora domain. Citeseer
contains predicates such as the tokens at each position in a citation (token)
and attributes about each token (isDate, isDigit, etc.). Given these facts,
we try to predict the field type (Title, Author, Venue) for each position
in the citation. For learning, the field types for each position are known;

67

(a) AUC-PR for Cora.

(b) AUC-ROC for Cora.

Figure 3.4: Area under curves for the entity-resolution task in Cora dataset.
The error bars show one standard deviation from the mean.

68

for inference, none of the field types are known and need to be inferred
jointly.

We compare against the MLNs used by Poon et al. (2007). While their
work performed entity resolution and information extraction jointly, we
only use the features and rules specific to information extraction. Follow-
ing the methodology used in prior work (Poon and Domingos, 2007), we
create four-folds using the four sections. As with the previous experiment,
we compare our learning method against the standard RDN learning and
MLN presented in Poon and Domingos (2007). We learn the weights of the
MLN clauses using Alchemy and discriminative weight learning setting.

For our boosting methods, instead of using two arguments 〈Bib,Pos〉
in every predicate to indicate a particular position in the citation, we
created objects of type BibPos. Hence, position P0001 in citation B1000
corresponds to a BibPos object, B1000_P0001. Since citations are of vary-
ing length, this creation of new objects allows us to avoid predicting labels
for positions that do not exist. Also since our implementation can handle
only binary classes, we changed InField(Bib, Field, Pos) to three different
predicates: infield_Field(BibPos) where Field={Fauthor, Ftitle, Fvenue}.

The RDN learned using the boosting algorithm (RDN-B) is presented in
Figure 3.6. The three predicates that are queried jointly in this dataset, viz.,
Infield_fauthor, Infield_ftitle, and Infield_fvenue are showed in shaded (dark)
ovals. Recall that we created such predicates in the Cora dataset as well.
The rest of the predicates are observed in the dataset and hence we do not
learn the models for those predicates. This RDN is produced by collecting
all the predicates that appear in different trees for a target predicate and
making those predicates as the parents of the target predicate.

The average area under curves for PR-curves over five folds for the
information extraction task are presented in Figure 3.5a. We compared
RDN-B and RDN against MLNs, where we learn the weights using gener-
ative weight learning. We could not get discriminative learning of MLN

69

(a) AUC-PR

(b) AUC-ROC

Figure 3.5: Area under curves for the information extraction task in Cite-
seer dataset. The error bars show one standard deviation from the mean.

weights working as Alchemy seemed to run out of memory. The results
are presented for the three Infield predicates. As can be seen, RDN-B

70

Figure 3.6: RDN learned using Boosting for the Citeseer dataset. The
nodes that are shaded are the query nodes for which the models have been
learned. The set of the nodes that are the parents for the query nodes are
the set of all nodes that appear in the different regression trees.

greatly dominates MLNs on all the three predicates. On the other hand,
RDNs without boosting are comparable in the title field to that of RDN-B.
But for the other two fields namely, author and venue, the performance of
RDN-B is significantly better than RDNs without boosting. The results
are very similar in the case of ROC curves as well as shown in Figure 3.5b.
RDN-B dominates MLNs in all the predicates while dominating RDNs
significantly in the author predicate.

RDN: NFL dataset

We evaluate our method on a text-based dataset: the National Football
League (NFL) dataset from the Linguistic Data Consortium7 (LDC). This

7http://www.ldc.upenn.edu

71

dataset consists of articles of NFL games over the past two decades. The
idea is to read the texts and identify concepts such as score, team and game
in the text. As an easy example, consider the text, “Green Bay defeated
Dallas 28− 14 in Saturday’s Superbowl game." Then, the goal is to identify
Green Bay Packers and Dallas Cowboys as the teams, and 28 and 14 as their
respective scores and the game to be a Superbowl game. There are cases in
which the scores may not be directly specified in the text. The text could
specify that “There were three touchdowns in the game" and the score
must be inferred from this to be 21.

In addition to using the features from the annotated text, we also use
the Stanford NLP toolkit8 to create more features. These features are
obtained from the parse trees constructed using the parser, the tags from
the part-of-speech tagger, the named entity-recognizer, etc. The features
were constructed at different levels: word-level, sentence-level, paragraph-
level and article-level. Hence, the data set consisted of the annotations and
linguistic information from the NLP parser. These features were provided
as inputs to the different learning algorithms.

An alternate ensemble approach used commonly in literature is bagging
(Breiman, 1996), where multiple models are learned over different sub-
samples of the examples. Unlike boosting, the models are not learned se-
quentially and can be even learned in parallel. The goal of this experiment
is to empirically compare these two different ensemble approaches as well
as a combination of the two approaches. Bagging is generally a variance-
reducing technique whereas boosting is primarily a bias-reduction ap-
proach. By combining the two approaches, we can potentially benefit from
both the techniques.

We compare four methods: RDNs, Bagging (random forests), Boosted
RDNs, and Bagging of Boosted RDNs. The key idea in the bagging+boosting
method is that we run the boosting algorithm for a few gradient-steps

8http://nlp.stanford.edu/software/index.shtml

72

and collect the regression trees and repeat the procedure 100 times and
the gradient is averaged over these 100 sets of different trees. We perform
five-fold cross validation to predict the above concepts.

Figure 3.7: Precision-Recall values for the NFL corpora. The results are
presented for RDNs with a single RRT, Bagged RDNs, Boosted RDNs and
Bagged, Boosted RDNs.

The area under curve for precision-recall (AUCPR) curves of the differ-
ent methods are presented in Figure 3.7. There are three different sets of
graphs corresponding to the three concepts: score(count), game, and team.
As can be seen, for all the concepts, our boosted RDN method outperforms
standard RDN learning method and the random forests (bagging) method.
Interestingly, the method that uses both bagging and boosting helps in one
concept (count), but is not statistically significantly better in other concepts.

As can be seen from the figure, while the concept of score is easier to
learn, there is a lot of room for improvement for identifying the teams and
the game. The key reason is that the natural text is quite ambiguous. For
example, one article might mention the team as "San Francisco," the other
article might mention them as “49ers" and the third article might use “SF

73

49ers." Hence, there is a need to perform co-reference resolution across
articles.

MLN: Cora entity resolution

To evaluate our boosted MLN approach, we learn a joint model over
SameBib, SameVenue, SameTitle and SameAuthor on the Cora dataset
described earlier. Since this dataset is large, to speed up learning we sample
25% of the examples during every gradient step for MLN-BT. Similar to the
UW dataset, we use a handcoded MLN(B+N+C+T) for Cora presented by
Singla et al. (2006). We evaluate all the models jointly over the four target
predicates given the evidence predicates. We use the queryEvidence flag
for Alchemy weight learning and inference.

Algorithm SameBib SameVenue SameTitle SameAuthor
MLN-BT 0.96± 0.02 0.56± 0.17 0.71± 0.20 0.96± 0.04
MLN-BC 0.96± 0.02 0.68± 0.09 0.82 ± 0.13 0.98± 0.02
Alch-G 0.63± 0.17 0.45± 0.11 0.54± 0.14 0.90± 0.05
Alch-D 0.63± 0.17 0.48± 0.12 0.58± 0.16 0.92± 0.06
Motif-S 0.63± 0.16 0.45± 0.10 0.61± 0.17 0.93± 0.09
LHL 0.63± 0.17 0.45± 0.10 0.52± 0.15 0.91± 0.04

Table 3.7: AUC PR on the Cora testbed.

We perform five-fold cross-validation and average the results over
all the folds. The AUC-PR and CLL values are presented in Table 3.7
and 3.8 respectively. MLN-BT has a slightly lower performance com-
pared to MLN-BC since we need longer rules to accurately cluster en-
tities. The entity-resolution task requires rules such as Title(B1,T1),
Title(B2,T2), SameBib(B1,B2)→ SameTitle(T1,T2), which the greedy
approach used in boosting may never find. Since any subset of the given
rule would have little impact on the squared error, MLN-BT never learns
such rules. MLN-BT scores two literals at a time for a given node and as

74

Algorithm SameBib SameVenue SameTitle SameAuthor
MLN-BT −0.39± 0.04 −5.32± 1.88 −8.09± 2.97 −0.29± 0.14
MLN-BC −0.33± 0.06 −5.12± 3.86 −11.18± 7.28 −0.60± 0.39
Alch-G −5.58± 1.49 −4.27 ± 0.96 −5.14± 1.39 −8.87 ± 0.37
Alch-D −4.95± 0.06 −4.08± 1.14 −4.34± 0.82 −3.32± 1.82
Motif-S −2.54± 1.45 −1.80± 1.57 −2.79± 1.36 −1.57 ± 1.63
LHL −5.99± 1.60 −4.20± 0.97 −5.11± 1.41 −8.80± 0.34

Table 3.8: CLL values on the Cora testbed.

a result learns short rules that only capture common words between the
titles. Increasing the number of literals within each node to three increases
the learning time drastically since every node in the tree searches over three
literals. MLN-BC searches for clauses of length 3 but is computationally
feasible since it learns fewer clauses than the nodes in a tree. Nevertheless,
both methods are significantly better than other MLN learning methods.
While structural Motifs and LHL methods are comparable when predicting
the SameAuthor relationship, our boosting-based methods are significantly
better for all the other relationships.

MLN: WebKB

The WebKB dataset was first created by Craven et al. (1998) and contains in-
formation about department webpages and the links between them. It also
contains the categories for each webpage and the words within each page.
This dataset was converted by Mihalkova and Mooney (2007) to contain
only the category of each webpage and links between these pages. They cre-
ated the following predicates: Student(A), Faculty(A), CourseTA(C,
A), CourseProf(C, A), Project(P, A) and SamePerson(A, B) from these
webpages. The textual information was ignored. We removed the
SamePerson(A, B) predicate as it only had groundings with both the ar-
guments being exactly same (i.e., SamePerson(A,A)). We evaluated all

75

Algo AUC-PR CLL
courseTA courseProf courseTA courseProf

MLN-BT 0.426± 0.027 0.738± 0.034 −0.603± 0.057 −0.406± 0.050
MLN-BC 0.379± 0.031 0.750± 0.110 −0.656± 0.012 −0.357 ± 0.045
LHL 0.350± 0.046 0.460± 0.036 −2.274± 0.102 −2.243± 0.104
Motif-L 0.332± 0.014 0.637 ± 0.219 −2.282± 0.110 −2.198± 0.105

Table 3.9: Results on WebKB data set with twice the negatives to positives
in the test set.

the methods over the CourseProf and CourseTA predicates since all other
predicates had trivial rules such as courseTA(C,A) → Student(A). We
performed four-fold cross-validation where each fold corresponds to one
university.

Table 3.9 and 3.10 present the results of the different algorithms in
this domain. I present results for two different test cases here. First is
the test set with all the negative examples in the test set and the second
is the test set with twice the number of negatives as positives. Similar to
the earlier case, in the test set with all negatives, current MLN methods
such as LHL and Motifs exhibit good performance for the CLL evaluation
measure for both the courseTA and courseProf predicates. On the other
hand, the AUC-PR values are significantly lower than that of our boosting-
based methods. This difference is magnified when we limit the number of
negatives to twice the number of positives. In the latter case, even the CLL
for the current MLN structure learning algorithms are significantly worse
than our boosting methods. There is no statistically significant difference
between the performance of the boosting methods.

3.5.5 Interpretability of the resulting trees

One issue with boosting approaches is the sacrifice of comprehensibility
for better predictive performance. Since the trees learned in the later itera-

76

Algo AUC-PR CLL
courseTA courseProf courseTA courseProf

MLN-BT 0.005± 0.003 0.029± 0.005 −0.359± 0.041 −0.334± 0.068
MLN-BC 0.004± 0.002 0.027 ± 0.007 −0.479± 0.041 −0.304± 0.010
LHL 0.004± 0.002 0.007 ± 0.002 −0.023± 0.011 −0.029± 0.005
Motif-L 0.003± 0.002 0.017 ± 0.009 −0.024± 0.011 −0.029± 0.005

Table 3.10: Results on WebKB data set using all the negative examples in
the test set.

tions are dependent on the initial trees, these trees can not be interpreted
individually. The entire conditional distribution is a set of regression
trees and it does not make sense to interpret them individually. But this
does not necessarily mean that the conditional distribution itself is not
interpretable.

We can make the trees interpretable in two different ways. The first
method is to collect all the predicates in the different trees and create
a joint probability distribution over all the possible assignments. For
every row in the joint probability distribution (i.e., an assignment to the
predicates), we can compute the regression value returned by every tree
and add them to compute the probability returned by the model. Once the
probabilities are computed, it is possible to induce a single tree from the
large joint distribution using standard tree-learning approaches. Though
theoretically possible, this method scales poorly because the number of
combinations is exponential in the number of the predicates.

Instead we use a more computationally feasible method of approxi-
mating the set of trees. The first-step is to predict the probabilities of the
examples in the training set using all the trees. Now the new training set
consists of the training examples along with their probabilities. We induce
a single tree (with a high maximum tree depth) from these probabilistic
examples. This resulting tree can then serve as a surrogate for our set of
regression trees. This idea was earlier explored in the context of neural

77

networks by Craven and Shavlik (1996). An example of the learned tree for
predicting if a student is advisedBy a professor is presented in Figure 3.8.

Figure 3.8: A single tree induced from the set of regression trees learned for
predicting the advisedBy relation between a professor and a student. Note
that some of the nodes are conjunctions of predicates with “," denoting
the conjunction symbol. The numbers at the leaves are the probability of
the advisedBy relation being true.

3.5.6 Probability calibration

As mentioned before, relational datasets can be highly skewed with most
relations being negative. As a result, learning approaches that maximize
log-likelihood will push the probabilities closer to zero. Since most of the
examples are negatively labeled, the error introduced by predicting lower
probability values for positive examples has a marginal impact.

78

To handle this issue, calibration techniques (Platt, 1999; Zadrozny and
Elkan, 2002) have been used to update the model probabilities. These tech-
niques define a calibration function that takes the predicted probability as
input and returns a calibrated probability. Two popular approaches for
calibration used in literature are: Platt’s calibration and Isotonic Regres-
sion.

Platt’s technique (1999) applies a sigmoid function over the output
from the classifier to calibrate the probabilities. The output of the classifier
is scaled and shifted to align the calibrated probabilities with the true
distribution. If f is the value returned by the classifier, Platt’s calibrated
probabilities is given by

P(f) =
1

eA×f+B

where A and B are learned from the data to minimize the log-loss.
Isotonic Regression (IR; Zadrozny and Elkan 2002) finds a isotonic

function m̂ which minimizes the squared error between the true label
and calibrated probabilities. Since m̂ is an isotonic function (i.e., fi >
fj ⇒ m̂(fi) > m̂(fj)), calibration via IR does not impact the area under
the curves (since the order is unchanged). To find the isotonic function,
the pair-adjacent violators (PAV) algorithm (Zadrozny and Elkan, 2002)
is commonly used, which learns a piecewise constant function. The PAV
algorithm begins with a calibration function which returns the example
label for the model probability of that example. Adjacent examples that
violate the isotonic constraint are then merged and the calibration function
returns the mean probability instead. This process is repeated till there
are no violators.

Since using the training set for calibration can bias the results (Platt,
1999), both of these approaches learn the calibration function over a held-
out validation set. It has been shown that both Platt’s and IR approach have
similar results for calibrating boosted decision trees (Niculescu-Mizil and
Caruana, 2005). Since our approach already computes a sigmoid function

79

to compute the probabilities, we used IR to calibrate the probabilities.
Since the IR approach returns the same output probability for a range

of input probabilities (called range hereafter), the calibration function
learned in IR is a step function. But we prefer the probabilities to lie
along the diagonal and hence we modified the IR approach by introducing
a slope in the output function. The slope is introduced such that our
calibration function returns higher probabilities on the higher end of a
range and lower probabilities on the lower end. Instead of a piece-wise
constant function (step function), our new approach learns a piece-wise
linear function. To do so, we start with the IR approach to get an isotonic
function and then iteratively increase the slope (starting with a slope = 0
from the step function). We iterate over every range and increase the
slope such that the minimum output probability of a range is higher
than the maximum output probability of the range before it on the input
probability space and maximum output probability is lower than the
minimum output probability of the range after it. Algorithm 3.5 shows
the pseudo-code of our approach.

To evaluate the calibration approaches, I create calibration curves on all
the test examples. I perform five-fold cross-validation and use the model
probabilities of all the examples from the five test folds. I partition the
examples into 10 bins based on their model probabilities, i.e., examples
with probability ∈ [0, 0.1) fall in the first bin, [0.1, 0.2) in the second bin
and so on. For each bin, the proportion of positive examples is calculated
to empirically estimate the true probability distribution for this bin. The
same procedure is repeated for the calibrated probabilities. Estimated
empirical probabilities for both uncalibrated and calibrated probabilities
are plotted for every non-empty bin. In an ideal scenario, the empirical
and predicted probabilities will match each other and all the points will
lie on the diagonal.

I present the calibration curves for UW-CSE in Figure 3.9. As men-

80

Algorithm 3.5 SlopedCalibrator(M, T)
Learn a calibration function for model M using the validation set, T.

1: F := learnIRFunction(M, T) . Learn the Isotonic Regression function
2: slopeUpdated := true
3: while slopeUpdated do . Repeat till slope updated
4: slopeUpdated := false
5: for 1 6 i 6 B do . Iterate over all calibration bins
6: min := Fi−1.max_op . Previous bin’s maximum output probability
7: max := Fi−1.min_op . Next bin’s minimum output probability
8: slp := Fi.slope . Current slope of ith bin
9: lowerLimit := (min+Fi.min_op)/2

10: upperLimit := (max+Fi.max_op)/2
11: . Increase slope of the bin without exceeding the upper and lower limit
12: updateSlope(Fi, lowerLimit, upperLimit)
13: if |slp− Fi.slope| > ε then . Check if non-trivial change in slope
14: slopeUpdated := true
15: end if
16: end for
17: end while
18: return F

tioned earlier, we sub-sample the negative examples during every boosting
iteration to be twice the number of positives. The y-axis is over the pro-
portion of positive examples in each bin and the x-axis is over the bin
probabilities. The error bars are calculated based on the standard error
of binomial distribution9 (Mitchell, 1997). We evaluate our approaches
for different percentages of the training set used as validation set for cal-
ibration: 10% and 30%. With a smaller tuning set used for calibration,
the difference in the calibrated and uncalibrated results is minimal. But
with a larger validation set, both the IR and SLOPED calibrators have the
empirical probabilities closer to the diagonal.

I show the calibration curves for WebKB in Figure 3.10. Unlike UW-

9Standard error =
√
p(1−p)
n

, where p =proportion of positives and n =total number
of examples.

81

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(a) 10% validation set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(b) 30% validation set

Figure 3.9: Calibration results on UW-CSE dataset with sub-sampled
negatives to be twice the number of positives.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(a) 10% validation set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(b) 30% validation set

Figure 3.10: Calibration results on WebKB dataset with sub-sampled neg-
atives to be twice the number of positives.

CSE, WebKB’s uncalibrated probabilities are already close to the diagonal.
With a larger validation set, the training set size reduces and the overall per-
formance becomes worse. As a result both the calibrated and uncalibrated
probabilities are further away from the diagonal.

I also present calibration results, with no sub-sampling of negative

82

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(a) 10% validation set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(b) 30% validation set

Figure 3.11: Calibration results on UW-CSE dataset with no sub-sampling
of training examples.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(a) 10% validation set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Uncalibrated
IR
SLOPED

(b) 30% validation set

Figure 3.12: Calibration results on WebKB dataset with no sub-sampling
of training examples.

examples during training, in Figure 3.11 and 3.12. As seen from Figure 3.11,
using all the training examples results in better calibrated probabilities
without using any calibration function. On the WebKB dataset, however,
there is no significant difference in the calibrated probabilities.

To further evaluate the impact of sub-sampling and the size of the

83

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Predicted Probability

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n

Figure 3.13: Calibration results on a proprietary dataset with 350K training
and 20K test examples.

dataset, we ran RDN-B on a much larger dataset without any sampling of
examples. While on sabbatical at Yahoo Research, Jude Shavlik ran RDN-
Boost in parallel on a proprietary testbed with 350K training examples and
20K test examples. The calibration curve for the test examples is shown in
Figure 3.13. As can be seen, the error bars are much smaller with more test
examples and the curve is closer to the diagonal than on the other datasets.
This shows that with more examples and no sub-sampling, RDN-B can
achieve better calibrated results.

3.5.7 Learning curves

I present learning curves on UW-CSE in Figure 3.14. To create these curves,
I calculate the AUC-PR and CLL values on the test set by learning the
model using 20%, 40%, 60%, 80% and 100% of the training examples (and
facts). We compare our boosting approach for RDNs (RDN-B) to the single
tree learning approach (RDN). As mentioned earlier, we sub-sample the

84

20% 40% 60% 80% 100%
0

0.2

0.4

0.6

0.8

Percentage of training data

A
U

C
 P

R

RDN−B Ratio=2
RDN−B Ratio=−1
RDN Ratio=2
RDN Ratio=−1

(a) AUC PR

20% 40% 60% 80% 100%
−0.5

−0.4

−0.3

−0.2

−0.1

0

Percentage of training data

C
LL

RDN−B Ratio=2
RDN−B Ratio=−1
RDN Ratio=2
RDN Ratio=−1

(b) CLL

Figure 3.14: Learning curves on UW-CSE dataset.

negative examples in every iteration of boosting to have twice the negatives
as positive examples (marked with Ratio = 2 in the figure). We also
present a learning curve for RDN-B and RDN without any sub-sampling
of examples, marked with Ratio = −1 in the figures. The test examples
are not sub-sampled for calculating the AUC-PR and CLL here. As can be
seen in Figure 3.14, RDN-B outperforms RDN for any amount of training
data in the UW-CSE dataset for predicting advisedby relationship. Also
both of these approaches converge to the optimal performance with 60%
of the training examples.

3.6 Discussion and Future Work

Rather than learning a single large model, I presented a structure-learning
approach that uses functional gradient boosting to learn a sequence of
small relational trees. We learn the structure as well as the parameters of
the model simultaneously. I show how our relational functional gradient
boosting approach can be applied for learning structure of RDNs as well
as MLNs. I also compare our approach for learning each SRL model

85

against their respective state-of-the-art learning approaches and show that
boosting can learn more accurate models, usually in a fraction of the time.

Going forward, extending this work to directed relational models is
an interesting future direction. Inference procedures can potentially take
advantage of the context-specific independence (Boutilier et al., 1996)
captured by the learned trees. I discuss these two approaches in detail in
Section 8.1. I present a structural EM approach in the next section, which
extends this work to handle missing data.

86

4 learning in the presence of missing data

SRL approaches allow one to handle noisy relational data without ex-
plicitly enumerating all the states. But most of these approaches apply
the closed-world assumption (Getoor and Taskar, 2007), i.e., whatever is
unobserved in the world is considered to be false. Research with missing
data in SRL has mainly focused on learning the model’s parameters. In
such cases, algorithms based on classical EM (Dempster et al., 1977) have
been developed for several SRL models, such as ones with combining
rules (Natarajan et al., 2008). In this chapter, I present our work on an
EM-based approach for learning structure of relational models. The work
presented here has been accepted to the Inductive Logic Programming (ILP)
conference and invited to the Machine Learning journal (Khot et al., 2014a).

4.1 Introduction

Li and Zhou (2007) learn the structure of a Probabilistic Relational Models
from hidden data. They use maximum-likelihood trees to iteratively fill
the missing values and update the structure, then use dependency analysis
to learn the final structure. Since they are learning a directed model, they
have to perform the expensive check of ensuring acyclicity in the ground
model. Kersting and Raiko (2005) learn the structure of logical HMMs in
the presence of missing data. Their approach, similar to Friedman’s (1998)
structural EM approach for Bayesian networks, computes the sufficient
statistics over the hidden states and does a greedy hill-climbing search
over the clauses.

Inspired by the success of structural EM on propositional graphical
models (Friedman, 1998) and the success of boosting in learning SRL mod-
els, I present an EM algorithm using functional-gradient boosting. I derive
and present the update equations of the E and M-steps of our algorithm.

87

One of the key features of our algorithm is that we consider the set of
distributions in the models to be a product of conditional distributions. As
shown in the previous chapter, this formulation allows us to learn different
models such as MLNs (Khot et al., 2011), RDNs (Natarajan et al., 2012)
and relational policies1 (Natarajan et al., 2011). After deriving the EM
algorithm, I show that adopting the standard approach of approximating
the full likelihood by the MAP states produces the hard-EM approach.
I empirically evaluate the proposed algorithm in different datasets and
demonstrate the superiority of the proposed approach against several
baseline algorithms.

4.2 Structural EM for Relational Functional
Gradients

We derive an EM approach to learn the model’s structure using functional
gradients. We represent the observed data using X and the hidden data
using Y. We use 1 and 0 to represent true and false respectively. Given
a training set with missing data, we seek to maximize the log likelihood
of the observed groundings. We average the likelihood function over
all possible world states of the missing data (joint assignment over all
hidden groundings) to compute the marginal probabilities of the observed
groundings as shown below.

`(ψ) ≡ log P(X = x|ψ) . Likelihood (`) of observed data x

= log
∑
y∈Y

P(x; y|ψ) . Marginalize over hidden data instantiations

= log
∑
y∈Y

{
P(y|x;ψ ′) P(x; y|ψ)

P(y|x;ψ ′)

}
. Multiply and divide byP(y|x;ψ ′)

(4.1)
1A policy returns a distribution over the actions for a given world state.

88

Assume ψ ′ is our current estimate of the best model based on the
log-likelihood function. We will derive gradient steps to find ψ that has
a higher log-likelihood than ψ ′. We then set the ψ obtained via these
gradient steps as the new ψ ′ and iteratively find a better ψ. To make the
iterative procedure clearer, we use ψt to represent the ψ ′ obtained after t
iterations of the gradient steps. Similar to the RFGB approach presented
in Chapter 3, we can start with a simple prior or some expert advice as the
initial model, ψ0. Unfortunately maximizing the log likelihood function
directly is not feasible and so we maximize the lower bound on `(ψ). To
find the lower bound, we first rewrite Equation 4.1 using ψt,

`(ψ) =log
∑
y∈Y

{
P(y|x;ψt)

P(x; y|ψ)
P(y|x;ψt)

}
>
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ)
P(y|x;ψt)

. Jensen’s Inequality

=
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ)P(x|ψt)
P(x; y|ψt)

. P(A | B) = P(A, B) / P(B)

=
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ) +
∑
y∈Y

P(y|x;ψt) log P(x;ψt)

−
∑
y∈Y

P(y|x;ψt) log P(x; y|ψt)

=
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ) + log P(x;ψt)
∑
y∈Y

P(y|x;ψt)

−
∑
y∈Y

P(y|x;ψt) log P(x; y|ψt) . x is constant w.r.t. y

=
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ) + log P(x;ψt) .
∑
A

P(A | B) = 1

−
∑
y∈Y

P(y|x;ψt) log P(x; y|ψt)

89

The second term matches the log-likelihood function that we started with,
except it is defined for ψt instead of ψ. The first and third term have
similar form except for variations in the model used (ψ or ψt). To simplify
these terms, we define a function Q as

Q(ψ) ≡
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ) (4.2)

We can now rewrite the lower bound of `(ψ), derived above, as

`(ψ) > Q(ψ) + `(ψt) − Q(ψt) (4.3)

Instead of finding ψ that maximizes `(ψ), it is easier to find the ψ that
maximizes this lower bound. Since ψt is constant with respect to the
parameter ψ, we only need to find the ψ that maximizes Q(ψ). However,
in many situations, finding a ψ that improves over Q(ψt) would suffice,
since it will ensure that ψ has a higher log-likelihood than ψt as shown.

Q(ψ) > Q(ψt)

⇒ Q(ψ) − Q(ψt) > 0

⇒ Q(ψ) − Q(ψt) + `(ψt) > `(ψt)

⇒ `(ψ) > `(ψt) . From Equation 4.3

Hence in our iterative procedure, the Q function value and consequently
the log-likelihood increases or stays the same after every iteration. Since
there is no closed-form solution for finding the ψ function that maximizes
Q(ψ), we use steepest descent with functional gradients. Running steepest
descent until convergence would find the maxima of the Q(ψ) function
(which might be a local maxima for some functions). Note that a single step
of gradient descent with functional gradients involves learning one tree for
every predicate. Running functional-gradient descent until convergence

90

would result in learning a large number of trees for just one update to ψt.
Hence, instead of maximizing the Q(ψ) function, we take few gradient
steps (two in our experiments) to find the ψ function. We then use this ψ
function as the base model ψt for the next iteration.

To derive the functional gradients, consider the definition of Q function

Q(ψ) ≡
∑
y∈Y

P(y|x;ψt) log P(x; y|ψ)

The second term in this equation is the joint likelihood of the observed
data and an assignment for the missing data. In the previous chapter,
I showed that RDNs approximate the joint distribution as a product of
the conditional distributions. MLNs make a similar assumption by using
pseudo-likelihood to make learning for MLNs tractable. Hence, both these
models approximate a joint distribution such as P(z;ψ) using a product of
conditionals

∏
z∈z P(z | z\ z;ψ). I use Z as the union of all the variables i.e.

Z = X ∪ Y. As mentioned in the background chapter, I use z−z to denote
z \ z and Y−i to represent the world states for the set of groundings y−yi

(i.e. y \ yi). Hence we can now rewrite Q(ψ) as

Q(ψ) =
∑
y∈Y

P(y|x;ψt)
∑
z∈x∪y

log P(z|z−z;ψ)

Next, we need to compute the gradients for each example (i.e. hidden
and observed groundings of the target and hidden predicates), which will
be used to learn the regression tree. The value returned by the ψ function
also depends on other ground literals, since their values will influence the
path taken in the regression tree. In the previous chapter, we included
them as arguments to the function definition, i.e. ψ(x; MB(x)). But MB(x)
is observed and has the same values across all examples (the blanket varies
across examples but the ground literal’s Boolean values are the same) and

91

so the function can be simplified to ψ(x). However, with missing data,
the assignment to the hidden variables y is not constant because each
assignment to y may return a different value for a given example (due to
different paths taken by examples). Hence, we include the assignment to
the hidden variables in our function (ψ(x; y)) and compute the gradients
for an example and hidden-state assignment.

4.2.1 Gradients for hidden groundings

We now derive the gradients of Q w.r.t the hidden groundings by taking
partial derivatives of Q w.r.t ψ(yi; y−i), where yi is a hidden grounding.
The value of ψ(yi; y−i) is only used to calculate P(yi|x, y−i;ψ) for two
world states: where yi is true and where yi is false. So the gradient w.r.t.
ψ(yi; y−i) can be calculated as

∂Q(ψ;ψt)
ψ(yi; y−i)

= P(yi = 1, y−i|x;ψt)
∂ log P(yi = 1|x, y−i;ψ)

∂ψ(yi; y−i)

+ P(yi = 0, y−i|x;ψt)
∂ log P(yi = 0|x, y−i;ψ)

∂ψ(yi; y−i)

As shown before, the gradients would correspond to the difference be-
tween the true value of yi and the current predicted probability of yi (i.e.
I(yi = y) − P(yi = y)). As we have terms involving P(yi) for each value
of yi, we get two gradient terms.

P(yi = 1, y−i|x;ψt)(1 − P(yi = 1|x, y−i;ψ))

+ P(yi = 0, y−i|x;ψt)(0 − P(yi = 1|x, y−i;ψ))

= P(yi = 1, y−i|x;ψt) − P(y−i|x;ψt)P(yi = 1|x, y−i;ψ)) (4.4)

With the PLL assumption, the gradients can be written as
∏
j6=i P(yj|x, y−j;ψt)

[P(yi = 1|x, y−i;ψt) − P(yi = 1|x, y−i;ψ)]. Intuitively, the gradients corre-
spond to the difference between the probability predictions weighted by
the probability of the hidden-state assignment.

92

4.2.2 Gradients for observed groundings

To compute the gradients for the observed groundings, we take partial
derivatives of Q with respect to ψ(xi; y), where xi is observed in the data.
Similar to the gradients for hidden groundings, we use y as an argument
in the ψ function and only consider the world states that match with the
given argument. The gradient w.r.t. ψ(xi; y) is calculated as

∂Q(ψ;ψt)
ψ(xi; y)

= P(y|x;ψt)
∂ log P(xi|x−i, y;ψ)

∂ψ(xi; y)
= P(y|x;ψt)[I(xi) − P(xi = 1|z−xi ;ψ)] (4.5)

Similar to the hidden groundings, the gradients correspond to the differ-
ence between the predictions weighted by the probability of the hidden-
state assignment.

4.3 The RFGB-EM Algorithm

I present the basic pseudo-code for our RFGB-EM (Relational Functional
Gradient Boosting - EM) approach in Algorithm 4.1. Similar to other EM
approaches, we sample the states for the hidden groundings based on
our current model in the E-step and use the sampled states to update our
model in the M-step. The function, ψt represents the model in the tth

iteration. The initial model ψ0, can be as simple as a uniform probability
for all examples or could be a model specified by a domain expert. We
perform T iterations of the EM algorithm, where we fix T = 10 since results
did not change much after 10 iterations in our experiments.

I present the algorithm for updating the model in Algorithm 4.2. The
updateModel(W,D,ψ) function corresponds to the M-step. As men-
tioned before, we do not run gradient descent till convergence in our
M-step. We take S gradient steps to find a better scoring model rather than

93

Algorithm 4.1 RFGB-EM:
Expectation-Maximization algorithm for RFGB to handle missing data.
Require: Hidden literals, H
Require: Observed literals, D

1: Set initial model, ψ0
2: t := 0
3: for t < T do
4: W := sampleWorld(H, D, ψt) . E-step
5: ψt+1 := updateModel(W, D, ψt) . M-Step
6: end for
7: return ψT

the best possible model. In our experiments, Swas set to two. This allowed
us to amortize the cost of sampling the world states and run enough EM
iterations in reasonable time without making the model too large.

Algorithm 4.2 updateModel(W, D, ψ):
Update the model ψ based on sampled states, W.

1: S := 2 . Number of trees learned in M-step
2: for i 6 S do
3: for p ∈ P do . Iterate over target and hidden predicates, P
4: Ep := sampleExamples(D,p) . Downsampled groundings of p
5: Dp := buildDataset(Ep,W,D,ψ)
6: Tp := learnTree(Dp,D)
7: ψ = ψ+ Tp
8: end for
9: end for

10: return ψ

Since each gradient step learns one tree, we learn S× T trees for each
predicate after T EM iterations, which would be 20 trees in our case. We
cycle over all the query and hidden predicates and learn one tree for each
predicate per gradient step. We compute the gradients for the groundings
of predicate p given by Ep, using the world states W, observed data D

94

Algorithm 4.3 buildDataset(Ep,W,D,ψ):
Build regression dataset for boosting.

1: Dp := ∅
2: for e ∈ Ep do . Iterate through examples
3: ∆e := 0
4: for w ∈W do . Iterate through sampled worlds
5: ∆e := gradient(e,w)
6: Dp := Dp ∪ < e,∆e >
7: end for
8: end for
9: return Dp

and current model ψ. We then learn a relational regression tree using this
dataset and add it to our current model.

As shown in the previous chapter, RDNs and MLNs use different scor-
ing functions for learning the relational regression trees. So the learnTree
function depends on the SRL model being used here. Relational datasets
typically have many more negative examples than positive examples. We
down-sample the negative examples during every tree learning step by
randomly selecting negatives such that there are twice as many negative as
positive examples. It has been shown that ensemble methods can perform
better if the majority class is down-sampled (Chan and Stolfo, 1998).

The input examples to our regression tree learner are of the form
< (z; y),∆ >. For every ground literal z ∈ x∪y, we calculate the gradients
for an assignment to the hidden variables. Algorithm 4.3 describes the
buildDataset function used to compute the gradients for the examples.
For every ground literal e and every world statew (i.e., y), we compute the
gradient of the example (gradient(e,w)). For examples that are observed,
we use Equation 4.5 to compute gradient(e,w) and for examples that are
hidden, we use Equation 4.4.

I also present the high-level overview of our RFGB-EM (Relational
Functional Gradient Boosting - EM) approach in Figure 4.1. Similar to

95

other EM approaches, we sample the states for the hidden groundings
based on our current model in the E-step and use the sampled states
to update our model in the M-step. ψt represents the model in the tth

iteration. The initial model, ψ0 can be as simple as a uniform probability
for all examples or could be a model specified by an expert. We sample
certain number of assignments of the hidden groundings (denoted as |W|)
using the current model ψt. Based on these samples, we create regression
examples which are then used to learn T relational regression trees. The
learned regression trees are added to the current model and the process is
repeated.

Figure 4.1: RFGB-EM flowchart. Shaded nodes indicate variables with
unknown assignments, while the white (or black) nodes are assigned true
(or false) values. The input data has observed (indicated by X) and hidden
(Y) groundings. We sample |W| assignments of the hidden groundings
using the current modelψt. We create regression examples based on these
samples, which are used to learn T relational regression trees. The learned
trees are added to the current model and the process is repeated.

96

Approximations for the E-step As mentioned before, we approximate
the log-likelihood with the pseudo-log-likelihood, as shown in the deriva-
tion. This approximation is necessary to make the approach computation-
ally feasible and has been used in many structure and weight-learning
approaches for SRL (Biba et al., 2008b; Mihalkova and Mooney, 2007; Kok
and Domingos, 2009, 2010).

Computing probabilities for all possible world states would be expo-
nential in the number of hidden groundings. This would also result in
computing the gradients for all examples for each one of these world
states. Hence we use Gibbs sampling to generate |W| samples from the
distribution P(y|x;ψt) to approximate all the world states, Y. Since our
gradients are weighted by the probability of the hidden-state assignment,
an unlikely assignment will result in small gradients and thereby have
little influence on the learned tree. Hence, we can sample the most likely
hidden-state assignments to approximate the gradients. This is analogous
to the Monte Carlo Expectation Maximization (MCEM) approach used
for high dimensional data (Wei and Tanner, 1990). I refer to this approx-
imation of the RFGB-EM approach as SEM-W (S stands for Structural),
where W is the number of worlds sampled. Hence, SEM-1 corresponds
to sampling the most likely assignment and corresponds to the hard-EM
approach.

4.4 Adaptations of RFGB-EM

I now present how to adapt the RFGB-EM approach for RDNs, MLNs,
and imitation learning. I also present experimental results for these adap-
tations. I use SEM to represent the structural EM approach which uses
Gibbs sampling for generating the samples. I present results for SEM
with a suffix to indicate the number of hidden state samples used, i.e., |W|

mentioned in the previous section (e.g., S-10 uses ten samples while S-1

97

uses the single MAP estimate). S-10 corresponds to the soft-EM approach
whereas S-1 corresponds to the hard-EM approach. I present the results
of using RFGB without using EM while setting all hidden groundings to
false, i.e., using the closed-world assumption (CWA). This is essentially
our prior work on RDNs (Natarajan et al., 2012), MLNs (Khot et al., 2011)
and imitation learning (Natarajan et al., 2011). Each of these methods are
run for 10 gradient iterations. We observed that this number was enough
for convergence in all our domains. When our approach is statistically
significantly better than the baseline approaches, I use bold letters. When
one of our approach is statistically significantly better than the baseline
and our other approaches, I use bold-italicized letters.

4.4.1 RDN adaptation

While learning RDN structure using functional-gradient boosting, all the
trees are learned for a given target predicate before going on to the next
predicate. Since the gradients for each predicate are independent of the
model for other predicates, one can learn all the trees independently. In
our EM approach, we update the hidden world states after every two
iterations and hence for every predicate we learn two trees at a time. We
then resample the hidden states and use the sampled states for the next two
iterations. We use relational regression trees with the weighted-variance
scoring function for fitting the gradients for each example. Hence the
learnTree function in Algorithm 4.2 can use any off-the-shelf relational
regression tree learner. To evaluate the performance of our EM approach
in RDNs, I present results on three datasets: Disjunctive (synthetic) dataset,
UW-CSE and IMDB.

Disjunctive dataset

98

Figure 4.2: Synthetic
experiment data gen-
eration. Predicate r
is the hidden predi-
cate and s is the target
predicate.

We created a synthetic dataset using disjunctions
(hence the name) to evaluate our EM approach
for RDNs. We generated groundings of q(X, Y)
using a prior distribution of P(q) = 0.9 where
X = {1 . . . 100} and varied Y to have four different
values |Y| ∈ {1, 3, 5, 10}. Similarly, we also vary
the amount of hidden data (Hidden % indicates
the percentage of the groundings being hidden).
We generate r(X, Y) given q(X, Y) using the con-
ditional probability distribution { P(r|q) = 0.1,
P(r|¬q) = 0.85 }. We then combine r(X, Y) for
different values of Y using an OR condition to
generate s(X). Hence s(X) given r(X, Y) is a de-
terministic rule where s(X) is true if for some Y,
r(X, Y) is true. We show this process in Figure
4.2. We used r as the hidden predicate and s as
the query predicate. We generated ten synthetic
datasets with randomly sampled r groundings as hidden for |X| = 100.
We independently train one model on each of the ten datasets. For each
model, we evaluated the model on the other nine datasets that were not
used for training this model. We average the results from the ninety runs.

The results on this domain are presented in Figure 4.3 (higher is better).
We hide 20% and 40% of the groundings of the hidden predicates to
simulate different levels of missing data. We only present the CLL values
since the AUC-PR values are nearly equal for all the approaches. The
EM approaches outperform CWA in all scenarios thereby affirmatively
answering Q1 for this domain. SEM-10 outperforms both SEM-1 and
CWA methods on this dataset for |Y| = 1 and |Y| = 3, whereas SEM-1
outperforms the others for |Y| = 10. Although the difference is very small
in some cases, it is statistically significant (except for |Y| = 5 where SEM-10

99

has similar performance to SEM-1).

(a) 20% missing data (b) 40% missing data

Figure 4.3: Results on the Disjunctive dataset.

(a) Average learning time on the Dis-
junctive dataset.

As we increase the number of values
that can be taken by Y, we increase the
number of possible hidden states. With
just 10 samples, SEM-10 is able to cap-
ture a relatively large space of the pos-
sible assignments to the hidden states
for Y = 1 and Y = 3. On the other hand
for Y = 10, both SEM-10 and SEM-1
capture a very small number of hidden-
state assignments compared to the total
number of possible assignments. As a
result, the simpler SEM-1 is able to perform better when |Y| = 10. In-
creasing the number of sampled states for soft-EM would improve the
performance, but at the cost of learning time.

We also present the change in learning time of the various approaches
with increasing missing data (by varying the |Y| values) in Figure 4.4a. We
averaged the learning times across the ten folds for 20% missing data. Both
SEM-1 and CWA have similar learning times showing that the sampling

100

step for this dataset is not computationally intensive. Since we used a
heterogeneous cluster of machines, a slower machine may have introduced
a small bump, viz. at |Y| = 3. On the other hand, learning time for SEM-10
increases exponentially with increase in the number of missing values.
This is primarily due to the fact that every node in the tree has to be scored
for every sampled world state inW (by adding and removing the required
facts every time). As the number of hidden groundings increase, the size
of each sampled state increases requiring more operations during the
learning phase. Increasing |W| would further increase the learning time,
but could improve the accuracy.

UW-CSE

We use the UW-CSE dataset described in Section 2.5 to evaluate the
EM approach for learning RDNs. We randomly hid groundings of the
tempAdvisedby, inPhase, and hasPosition predicates during training.
Due to these hidden groundings and the different type of SRL model being
learned, our numbers are not exactly comparable to the ones reported in
Section 3.5.2. We performed five-fold cross-validation and present the
CLL values in Table 4.1. We do not present the AUC PR values since the
difference is not statistically significant. We also varied the amount of
hidden data in our experiments (“Hidden %” in the table indicates the
percentage of the groundings being hidden).

Table 4.1: CLL values for UW-CSE

Hidden % 20% 40%
SEM-10 -0.168 -0.170
SEM-1 -0.150 -0.151
CWA -0.187 -0.192

Table 4.2: CLL values for IMDB

Hidden % 10% 20%
SEM-10 -0.501 -0.551
SEM-1 -0.423 -0.467
CWA -0.586 -0.80

In general, the EM methods perform statistically significantly (with

101

p-value < 0.05) better than the closed-world assumption. It appears that
in this domain, using a single sample for the hidden state has the same
performance as that of using 10 samples. This is in line with most EM
algorithms, where using a single state (MAP) approximation generally
suffices.

IMDB

We also use the IMDB dataset described in Section 2.5 to evaluate the EM
approach. We predict the gender predicate given all the other predicates.
We randomly hid the groundings of actor and workedUnder predicates
during learning and inference. Again due to these hidden predicates, our
numbers are not comparable to the ones reported earlier. We performed
five-fold cross-validation.

I present the CLL values for hiding 10% and 20% of the groundings of
the two hidden predicates in Table 4.2. Similar to the disjunctive dataset,
there is no statistically significant difference between any two of the three
methods in the AUC-PR values and hence are not reported here. In general,
the EM methods perform statistically significantly (with p-value < 0.05)
better than the closed-world assumption. Between the two EM methods,
using one sample is sufficient to capture the underlying distribution and,
hence, the simpler SEM-1 has a higher CLL value than SEM-10.

4.4.2 MLN adaptation

For applying our approach to learn MLNs, we learn relational regression
trees for the gradients, but with the modified scoring function as described
in Section 3.4. Unlike for RDNs, to compute the marginal probability of
any example, trees for all the predicates are used. Hence during learning,
a single tree is learned for each predicate and the gradients are computed
based on the trees learned in earlier iterations. In our EM approach, we

102

Table 4.3: Results on the Cancer dataset.

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM-10 -1.445 0.482 -1.315 0.510
SEM-1 -1.648 0.483 -1.586 0.500
CWA -1.629 0.478 -1.693 0.488

resample the hidden states after two such iterations over the target and
hidden predicates. I also presented an approach (in Section 3.4) to learn
MLN clauses to fit the gradients. Here, I only present the results for
learning trees for EM, but it is trivial to extend this work to learn clauses.

The cancer MLN is a popular synthetic data set (Kersting et al., 2009;
Domingos and Lowd, 2009). We created a friend network with 500 people
using a symmetric predicate, friends(X,Y), where each pair of people
are friends with a probability of 0.01. Each person has three attributes:
stress(X), cancer(X), and smokes(X). The stress attribute for each
person is set using a Bernoulli distribution. A person is more likely to
smoke if he is stressed (set using a Bernoulli distribution) or has friends
who smoke (set using an exponential distribution). Similarly, a person
is likely to have cancer if he smokes (set using a Bernoulli distribution)
or he has a lot of friends who smoke (set using an exponential distri-
bution). The more smoker friends a person has, the more likely he is
to get cancer. Such rules can be captured by MLNs since the proba-
bilities are proportional to the number of groundings of a clause (e.g.,
smokes(y) ∧friend(x,y)→ smokes(x)). The target predicate is cancer,
while smokes has some missing groundings. We trained the model on 10
generated datasets with randomly sampled hidden data and evaluated
each model on other nine datasets and present the average results.

As seen in Table 4.3, SEM-10 mostly outperforms the other approaches,

103

both in terms of CLL and AUC-PR. For 20% missing data, there is no
statistically significant difference between the two EM approaches, but
both methods outperform CWA. Unlike the previous domains, SEM-10 is
at least as good as or better than SEM-1 in this domain.

Since Alchemy does not have a mechanism to handle missing data for
structure learning, we ran weight learning (generative with 10000 iterations
and 10−5 threshold) on hand-written rules and learned the weights using
the missing data weight learning approach of Alchemy. The AUC PR
values were around 0.6. This shows that simply learning the parameters
is reasonably comparable to our models that learn both the structure and
parameters with hidden data.

For this synthetic dataset too, we generated ten synthetic datasets
with randomly sampled smokes groundings as hidden for |X| = 100. We
independently train one model on each of the ten datasets. For each model,
we evaluated the model on the other nine datasets that were not used for
training this model. We average the results from the ninety runs.

4.4.3 Imitation learning adaptation

By observing the actions of an expert for every state in a domain (called
trajectories), imitation learning (Ratliff et al., 2006) builds a model (called
policy) that imitates the expert’s action for a given state. In other words,
imitation learning problem can be stated as:

Given: A set of states, S
A set of actions, A
Training trajectories, T = {t1, . . . , tn}, where a
trajectory ti = {s1,a1, s2, . . . ,ak−1, sk} is a sequence of
states and actions.

Learn: Policy π : S→ A that returns the action (or a

104

distribution over them) for any state that imitates the
training trajectories.

For relational imitation learning using RFGB, the actions are the target
predicates and the state predicates are used in the trees for the action pred-
icates (Natarajan et al., 2011). For partially-observed imitation learning
task, the set of target predicates, P contain all the action predicates and
the hidden state predicates. We then learn relational trees to predict each
action while updating the hidden values. Natarajan et al. (2011) learned
all the trees for every action independently, whereas in our EM approach
we learn two trees for every predicate before resampling the hidden states.

Figure 4.5: The text UI for the
simple Wumpus World. W

indicates the wumpus loca-
tion, S indicates the stench lo-
cation, and A is the agent.

To evaluate the performance of our
EM approach on the imitation learning
task, we perform imitation learning in a
partially-observed relational domain. We
created a simple version of the Wumpus
task (Russell and Norvig, 2003), where the
location of wumpus is partially observed.
We use a 5x5 grid with a wumpus placed at
a random location in every training trajec-
tory. The wumpus is always surrounded
by stench on all four sides. We do not have
any pits or breezes in our task. Figure 4.5
shows one instantiation of the initial grid
locations. The agent can perform eight possible actions: four move actions
in each direction and four shoot actions in each direction. The agent’s task
is to move to a cell such that he can fire an arrow to kill the wumpus. The
dataset contains predicates for each cell such as cellAt, cellRight, and
cellAbove and obstacle locations such as wumpus and stench. The wum-
pus is not observed in all the trajectories, although the stench is always
observed. Two hundred trajectories were created by real human users

105

Table 4.4: Results on the Wumpus dataset

Hidden % 20% 40%
Algorithm CLL AUC-PR CLL AUC-PR
SEM-10 -0.245 0.857 -0.261 0.853
SEM-1 -0.278 0.845 -0.283 0.839
CWA -0.282 0.826 -0.270 0.826

whose policy generally is to move towards the wumpus’ row or column
and shoot accordingly.

The EM approaches (using the trajectories where the wumpus is ob-
served) learn that wumpus is surrounded by stench and fill the missing
values in other trajectories. The CWA approach (Natarajan et al., 2011) on
the other hand assumes that the wumpus is not present and relies on the
stench to guess the action to be performed. The results are presented in
Table 8. From the results, it can be easily observed that the EM methods
are superior to that of the prior work on imitation learning on this testbed.
Moreover, SEM-10 which uses multiple samples outperforms the single-
sample SEM-1 approach. This domain clearly shows that the previous
method of boosting in imitation learning is not sufficient in problems with
partial observability and it is imperative to employ methods that do not
assume closed-world.

4.4.4 Wrap up

In conclusion, our experiments have shown that opening the closed-world
assumption definitely results in an improvement in post-learning perfor-
mance. Between the two EM approaches, we have shown empirically that
for certain domains (e.g. UW, IMDB) a single sample (hard-EM) might
be sufficient, whereas in other domains (e.g. Cancer, Wumpus) multiple
samples (soft-EM) are needed to capture the true distribution.

106

But these improvements come at the cost of increased learning time.
SEM-10 can be comparatively much slower than SEM-1. SEM-10 can take
from 15 hrs (Wumpus) to 22 minutes (UW-CSE) where SEM-1 takes 3
minutes on both of these datasets. The CWA approaches take 1 minute to
learn the model on all of these datasets. Since the gradients are computed
for every example and hidden state in SEM-10, the number of examples
grows to n× 10, where n is the number of examples in CWA.

Also the improvement in accuracy of RFGB-EM model over the RFGB
model is relatively small. This is primarily due to RFGB’s ability to handle
the noise introduced by the CWA assumption. While RFGB-EM uses the
model for the missing predicates to update the expected values, RFGB im-
plicitly learns a similar sub-model within its model for the target predicates.
For example, if a missing predicate p has a trivial model, p(x) ⇔ q(x);
RFGB with the closed-world assumption will check for q(x) to remove the
noise in p(x).

4.5 Discussion and Future Work

I addressed the challenging problem of learning SRL models in the pres-
ence of hidden data. Towards this goal, we developed an EM-based al-
gorithm for functional-gradient boosting. We derived the gradients for
the M-step by maximizing the lower bound of the gradient and showed
how to approximate the E-step. The proposed approach was employed for
three different types of relational learning problems: RDNs, MLNs, and
imitation learning in relational domains. The algorithms were evaluated
on different domains for each learning problem. Our results indicate that
the proposed algorithms outperform the respective algorithms that make
closed-world assumptions.

To minimize the learning time of our approach, there are multiple
future directions of research. Our current approach computes the proba-

107

bility of an example for each world state of the hidden groundings. But
based on the relational tree structure, we can avoid recomputing the prob-
abilities for examples, if a different world state will have no impact on the
probability of the example. Developing inference techniques for tree-based
models will also help to reduce the learning time of our EM approach. We
can calculate the marginal probabilities of each hidden grounding and
potentially use them as probabilistic facts to compute the gradients. There
has been work (Jank, 2005) done in the MCEM approach on using samples
from previous iteration, changing the number of samples in each iteration
and deciding the number of iterations that could be effectively exploited
by our method.

108

5 relational one-class classification

Traditional classification approaches rely on labeled examples from all
classes to learn a model. The approaches presented in previous chapters
suffer from the same limitation. Even our approach to handle missing
data uses the observed data to populate the missing examples. With only
one class of examples, the EM approach will predict the missing examples
to belong to the observed labels.

But in several real world problems, labeled examples are available for
only one class. For example, in information extraction from text, a common
annotation approach is to mark the true instances in the text (UzZaman
et al., 2012; Kim et al., 2009). Since human annotation in these tasks can
be quite costly, the negative examples are not annotated or in rare cases
very few negative examples are annotated. For instance, while presidents
of countries will be marked in an article for training, there is no explicit
mention of who the negative examples of presidents are.

One possible approach to handle this problem is to assume that the
unmarked instances are negative examples for the task at hand. Since the
number of unmarked examples can be very large, this can increase the
learning time for standard classification approaches. A bigger problem
is that this can possibly lead to class imbalance where the number of
instances of the negative class can dominate the positive instances. Finally,
this simplistic assumption could be incorrect as all instances of positive
examples may not be annotated (e.g., all mentions of presidents need not
be annotated).

5.1 Introduction

Consequently, a lot of research has focused on developing one-class clas-
sification (OCC) methods (Khan and Madden, 2009) that directly learn

109

using examples from only class or using very few examples of the other
class. For example, Tax and Duin (1999) fit a hypersphere with the smallest
radius around the labeled examples. All the examples inside this hyper-
sphere are assumed to belong to the labeled class. Anomaly or Novelty
detection tasks can also be viewed as an OCC task where many examples
are available for the normal class and few or no examples of the anoma-
lous class are provided. One-class classification can also be viewed as a
specific case of semi-supervised learning (Zhu and Goldberg, 2009) with
the labeled data being provided for only one class. Hence methods such
as clustering and nearest-neighbors have also been used previously for
OCC (de Ridder et al., 1998). These methods, in general, rely on a feature
space representation (e.g., to fit a hypersphere) or distance measure (e.g.,
for clustering) to perform one-class classification.

While successful, these methods rely on a propositional representation
of the data (i.e., as a flat feature vector). As shown earlier, data in the real
world is inherently relational, i.e., they consist of inter-related objects and
dependencies. Such structured data cannot be easily represented using
a fixed-length feature vector and doing so can result in loss of possible
information (Jensen and Neville, 2002). While first-order logic represen-
tation provides a loss-less way to model structured data, it introduces
the additional complexity of having unbounded features associated with
each example. E.g., consider the task of predicting the blood type of a
person based on his lineage. We can potentially introduce a feature for the
bloodtype of every ancestor of a person. As a result, standard distance
metrics such as Euclidean norms cannot be naively used for relational
problems. Thus, as we show empirically, standard OCC techniques for
propositional data sets cannot be directly applied successfully to relational
domains.

I present the first non-parametric approach for OCC using a tree-based
distance measure between relational examples. We define this measure

110

using the path similarity in relational trees. We combine the distances
from multiple incrementally learned trees and labeled examples to calcu-
late the probability of an example belonging to the labeled class. I present
three interpretations of our approach: 1) based on combining rules for
probability distributions (Natarajan et al., 2008), 2) based on using our
distance with Kernel Density Estimation (Bishop, 2006) and 3) based on
using a similarity kernel with Support Vector Data Description (SVDD).
Using this model definition, we derive a scoring method that allows for
learning the trees so as to maximize the likelihood of the labeled examples.
Another interesting interpretation of our approach is to view the method
as a feature selection strategy for standard OCC methods. From this per-
spective, our approach can be seen as a way to propositionalize relational
data for OCC methods. Standard propositionalization can possibly result
in irrelevant features but our method identifies the top features needed
for propositional classifiers.

We make several key contributions:

1. We develop a new distance metric for relational examples that can
be learned incrementally.

2. We propose a relational one-class classification approach using this
distance metric.

3. We relate and place this work in the context of existing work on
combination functions, density estimation and OCC.

4. We show how we can perform feature selection for propositional
OCC methods by evaluating our trees.

5. Finally, we demonstrate over multiple domains that our approach
can learn more accurate models than standard relational learning
and OCC methods.

111

The work presented here has been published in the AAAI Conference on
Artificial Intelligence (Khot et al., 2014b).

5.2 Propositional OCC

One-class classification (OCC) problem was first described by Moya and
Hush (1996) for an automatic target recognition task using neural net-
works. Following their work, Schölkopf et al. (2000) learn a Support Vector
Machine (SVM) to separate the labeled examples from the origin. Tax and
Duin (1999), on the other hand, learn a hypersphere with the smallest
radius that encompasses the labeled examples. They have also shown
that using the Gaussian kernel with a normalized dataset gives solutions
comparable to the SVM approach by Scholkopf et al. Comité et al. (1999),
on the other hand, use modified C4.5 to perform one-class classification.
All these approaches rely on a propositional representation.

Anomaly or outlier detection methods can also be viewed as a one-class
classification approach. Although there have been many outlier detection
methods proposed in literature (Chandola et al., 2009), outlier detection
approaches generally assume that outliers are far and isolated (Liu et al.,
2012). This is not true for the one-class classification problem where the
labeled examples can be clustered and close to other unlabeled examples.

Semi-supervised learning approaches can also be used for OCC as
shown by de Ridder et al. (1998). Our approach too can be viewed as a
semi-supervised relational learning approach as it leverages unlabeled
examples for learning the relational distance function.

One of the earliest works on relational one-class classification (Mug-
gleton, 1997) learns the smallest first-order hypothesis that can cover the
labeled examples. Since this work only performed Boolean predictions,
it was extended to perform relational density estimation (Cussens, 1998).
This approach relied on calculating proportions of examples captured by

112

every hypotheses which can be prohibitively expensive for large domains.
Multiple propositionalization techniques and distance measures have

been proposed for relational data which can potentially be used for OCC.
One simple unsupervised approach to generate propositional features is
by creating Boolean features corresponding to random first-order logic
clauses (Anderson and Pfahringer, 2008). Relational Instance-based Learn-
ing (RIBL; Horváth et al. 2001) uses similarity between local neighbor-
hoods to calculate the similarity between examples. Such unsupervised
approaches may not capture long range information while we leverage
the labeled examples to guide our approach. kFoil (Landwehr et al., 2010)
uses a dynamic approach to learn clauses to propositionalize relational
examples for SVMs. Each clause corresponds to one Boolean feature and
is scored based on the improvement in the SVM learned from the propo-
sitionalized data. Rather than learning a new model for every candidate
structure, we compute the error reduction on the fly locally.

5.3 Relational OCC

The high-level overview of our approach to Relational One-Class Classi-
fication (RelOCC) is shown in Figure 5.1. Our approach consists of the
following steps:

1. Learn a first-order tree for calculating relational distances.
(Section 5.3.1)

2. Use the distance function to perform OCC.
(Section 5.3.2)

3. Learn the next distance tree to improve the classification.
(Section 5.3.3)

4. Go to Step 2, if maximum allowed trees learned or ε percent of
examples have less than δ change in distance.

113

Figure 5.1: Relational one-class classification system design.

Term Description
x, xi,y Relational examples
{x1, x2, . . . xl} Labeled examples
lca(x1, x2) Lowest Common Ancestor of the leaves

reached by x1 and x2
depth(n) Depth of node n. depth(Root) = 0.
di(x,y) Distance between x and y based on ith

tree
D(x,y) Distance between x and y based on all

trees
P(y ∈ L) Probability of y being in labeled class
αj Weight of labeled example xj
βi Weight of ith tree
I(condition) Indicator function that returns 1 if condi-

tion is true, 0 otherwise.
Pt(y /∈ L) P(y /∈ L) using t trees

Table 5.1: Description of terms used in this chapter.

Table 5.1 presents the terminology used throughout the chapter. I will
now describe the individual steps of our approach.

114

5.3.1 Tree-based distance

Inspired by semantic similarity measures (D’Amato et al., 2008), we pro-
pose a distance measure based on the paths taken by examples in a rela-
tional tree. For instance, consider two examples that reach the same node,
n in a decision tree before taking separate paths down the tree i.e., n is the
lowest common ancestor (LCA) of these examples. If the node n is at depth
of three, the two examples share at least three common attribute values. If
n is at depth of one, they share at least one attribute value. Intuitively, the
two examples in the first case are more likely to be similar than in second
case. Thus, our distance measure is inversely proportional to the depth of
LCA of two example paths.

d(x1, x2) =

0 lca(x1, x2) is a leaf

e−λ·depth(lca(x1,x2) otherwise

Examples that differ at the root node i.e. have no common attribute will
have a distance of 1. A major feature of this distance definition is that it
can be used on any off-the-shelf tree learner (such as TILDE (Blockeel and
Raedt, 1998)). The key difference from a first-order decision tree is that,
in our formulation, there are no values associated with the leaves since
all we are interested are the paths that determine the distance between
examples. The parameter λ (set to 0.5 in experiments) ensures that the
distance value decreases gradually as the depth increases.

Properties It can be easily shown that this distance function satisfies
the following distance metric properties:

• d(x1, x2) > 0 (non-negative)

• d(x1, x2) = d(x2, x1) (commutative)

• x1 and x2 are identical⇒ d(x1, x2) = 01 (equality)
1The reverse condition does not hold.

115

• d(x1, x3) 6 d(x1, x2) + d(x2, x3). (triangle property)
Proof: If lij = depth(lca(xi, xj)), l13 > min(l12, l23). WLOG, l12 =

min(l12, l23).
l13 > l12 ⇒ e−l13 6 e−l12 ⇒ e−l13 6 e−l12 + e−l23 ⇒ d(x1, x3) 6

d(x1, x2) + d(x2, x3)�

Using just one tree may not suffice when dealing with potentially
infinite dimensions in relational data. A simple next step would be to
learn multiple relational trees. However this step introduces an additional
complexity –the need for a way to combine these trees without increasing
the complexity of the already complex problem. Our solution is inspired
by density estimation techniques that I present next.

5.3.2 Density estimation model

I now define a model (shown in Figure 5.2) to combine distances from
multiple trees and then distances from multiple examples to perform
relational one-class classification. Recall that to calculate the probability
estimate of an example y to belong to the labeled class, we use the distances
between y and the labeled examples. We denote the distance between the
current example y and a labeled example x from the ith tree as di(x,y).
D(x,y) combines the tree distances to return the overall distance between
x and y. We finally compute the density estimate P(y ∈ L) using the
distances from all the labeled examples {x1, x2, . . . xl}. The combination
function that we use in both levels is weighted mean:

D(xj,y) =
∑
i

βidi(xj,y) s.t.
∑
i

βi = 1,βi > 0

P(y /∈ L) =
∑
j

αjD(xj,y) s.t.
∑
j

αj = 1,αj > 0

One of the key advantage of this function is that it allows for efficient learn-
ing of trees as I show in Section 5.3.3. Also, this approach is closely related

116

Figure 5.2: Density Estimation using Distance measure.

to existing research in one-class classification thus making it theoretically
well grounded. I first present the learning of the trees followed by the
relation to existing methods.

5.3.3 Model learning

Tree Learning As shown in Figure 5.1, we update the distance measure
by iteratively adding to the set of trees. Assume that we have learned t trees
already and are now learning the (t+1)th one.We can use any off-the-shelf
tree learner and we employ the method described by TILDE tree learning
(Blockeel and Raedt, 1998). Since our distance metric only relies on the
LCA position, we can make local scoring decisions at every node. If a pair
of examples are already split by the tree, any further splits at lower levels
will have no impact on the distance between these examples i.e., adding a
node to the tree only affects the distance between the pair of examples that

117

are split at that node. Specifically, splitting example xi and xj at node n,
increases their distance dt+1(xi, xj) from zero to ∆t+1(xi, xj) = e−depth(n).

We use a modified splitting criterion which is the squared error over the
examples i.e.,

∑
y [I(y /∈ L) − P(y /∈ L)]

2. I(y /∈ L) is the indicator func-
tion which returns 1 if y is an unlabeled example. Hereafter we use I(y) to
compactly represent I(y /∈ L). As can be seen here, our scoring function
does rely on using the unlabeled examples in the dataset. Even if unlabeled
examples are not provided, these can be generated by using constants of
matching types (e.g. {friends(x,y)|∀x,y ∈ People, friends(x,y) /∈ L}).
Relying on only the labeled examples for learning a distance function will
result in trivial distances of d(x,y) = 0.

Consider x to be the set of examples that reach node n. xl and xr

are the set of examples that take the left and right branch respectively.
Since introducing the node has no impact on the distances (and in turn
probabilities) for examples not reaching node n, the squared error is∑

y∈x

[I(y /∈ L) − P(y /∈ L)]
2

=
∑
y

[I(y) − Σjαj{Σ
t
iβidi(xj,y) + βt+1∆t+1(xj,y)}]2

=
∑
y

[
I(y) − Pt(y /∈ L) − Σjαjβt+1∆t+1(xj,y)

]2

At every node in the tree, we minimize this squared error. If y is close to
the labeled examples (Pt(y /∈ L) ≈ 0) for an unlabeled example (I(y) = 1),
increase in the distances to the labeled examples will reduce the squared
error. If y is already spread apart from the labeled examples (i.e. Pt(y /∈
L) ≈ 1), the distances to the labeled examples will not be increased any
further. As a result, minimizing the squared error introduces new features
to spread out the examples and prevents redundant features being added.

Since introducing node n only increases the distance between the pair
of examples split at the node, ∆t+1(xj,y) 6= 0 for xj ∈ xl,y ∈ xr or xj ∈

118

xr,y ∈ xl. Hence the splitting criterion can be modified to

min
∑
y∈xr

[
I(y) − Pt(y /∈ L) − Σj:xj∈xlαjβt+1∆t+1(xj,y)

]2

+
∑
y∈xl

[
I(y) − Pt(y /∈ L) − Σj:xj∈xrαjβt+1∆t+1(xj,y)

]2

We use a greedy search procedure for learning the tree where we pick
the feature whose split reduces this squared error. The key insight is that
the use of the mean squared error along with our relational path based
distance function allows us to efficiently make these local scoring decisions.
Note that our approach is non-parametric as the only parameter is the
number of trees that increases as more data is obtained. Thus we can
potentially update the distances in online fashion.

Weight Learning After learning each tree, we update the weights α
and β for weighted mean function. We use a co-ordinate gradient descent
approach where we iteratively update α and β to minimize the squared
error. Since there is no closed form solution, we update the weights only
after learning an entire tree instead of updating after learning every node
in the tree. The gradient of error w.r.t. α is

∂

∂αj

∑
y

[I(y) − ΣjαjΣiβidi(xj,y)]2

= −2
∑
y

[I(y) − P(y /∈ L)]Σiβidi(xj,y)

and the gradient w.r.t. β is

∂

∂βi

∑
y

[I(y) − ΣjαjΣiβidi(xj,y)]2

= −2
∑
y

[I(y) − P(y /∈ L)]Σjαjdi(xj,y)

119

To ensure that weights are always greater than 0 and sum to 1, we project
them as described by Natarajan et al. (Natarajan et al., 2008).

5.3.4 Model interpretations

I now place our work in context to existing work on learning parameters
in SRL and propositional OCC methods.

Combining Rules: Since di(x,y) 6 0, it can be interpreted as the
probability of example x being not equal to y based on the ith tree, i.e.,
Pi(x 6= y) = di(x,y). SimilarlyD(x,y) can be viewed as overall probability
of example x being not equal to y, i.e., P(x 6= y) = D(x,y). This can
be viewed as using two-level combining rules (Natarajan et al., 2008) in
directed SRL models with the weighted mean combination function. At
first level, we combine probability estimates from the set of trees. At
second level, we combine probabilities based on individual examples.

Kernel Density Estimation: An alternate interpretation of our model
is that of using Kernel Density Estimation (Bishop, 2006) with a triangular
kernel2 and bandwidth 1.

1 −

n∑
j

αj
∑
i

βidi(xj,y) =
n∑
j

1
n
(1 −

∑
i

αjβidi(xj,y))

=

n∑
j

1
n
|1 −D ′(xj,y)| =

n∑
j

1
nh
K(
D ′(xj,y)

h
) for h=1

whereD ′(xj,y) =
∑
i αjβidi(xj,y). Since the term |xj − y| cannot defined

easily for relational examples, we useD ′ function to represent the absolute
distance between two examples needed by the kernel density estimator.
D ′ function value is always less than 1 and as a result is within the bounds
of the triangular kernel.

2K(x,y) = (1 − |x− y|) · I(|x− y| < 1)

120

SVDD: SVDD (Tax and Duin, 1999) approach learns a hypersphere
around the labeled one-class examples. An example z is classified as be-
longing to the labeled class if (z ·z)−2

∑
i αi(z ·xi)+

∑
i,j αiαj(xi ·xj) 6 R2.

Since the classification only depends on the dot product, SVDD also uses
kernel functions. Using the function 1 −D in our case as the kernel func-
tions3 changes the function used for classification to 1−D(z, z)−2

∑
i αi(1−

D(z, xi))+
∑
i,j αiαj(1−D(xi, xj)) 6 R2. SinceD(z, z) = 0, we can rewrite

the decision boundary as 1 −
∑
i αiD(z, xi) > 1 −

∑
i αiD(xk, xi)4 where

xk is any labeled example. We use the left hand side of the equation as
the probability estimate for z belonging to the labeled class. Our defi-
nition allows to return probabilistic estimates, but we can now also use
1 −
∑
i αiD(xk, xi) as a decision boundary to predict the example class.

Since we optimize a different function, it is not necessary for all examples
xk to result in the same boundary. But we can approximate it by using the
average distance to all labeled examples.

Feature Selection for OCC: It is also possible to view our proposed ap-
proach as a feature selection strategy for standard one-class classification
methods. More specifically, we can convert every path from root to leaf
into a Boolean feature since these paths can be represented as a horn clause.
Since the resulting feature is Boolean, doing this for every path will yield
a propositionalized data set that can then employ standard OCC methods
such as SVM-OCC. We call this approach SVMOCC-Rel and show the
importance of this feature selection strategy in our experiments. Proposi-
tionalization of relational data can possibly result in infinite features as a
walk through the relational graph can lead to several resulting features.
For instance, when reasoning about a particular genetic disposition, it is
possible to use generations of ancestors’ information. Our method on the
other hand, can be seen as selecting these relational features (i.e., iden-
tifying the most important set of ancestors) for a propositional classifier

3this is possible as kernel functions are similarity functions
4after expanding R2

121

making it possible for the propositional methods to work with relational
data more seamlessly.

Implementation details I now present some heuristics and parameters
used by our approach. Our approach begins with the distance of 0 be-
tween every pair of examples. During every tree learning step, we use
only a subsample of examples for efficiency which has shown to improve
performance in highly skewed datasets (Chan and Stolfo, 1998). We further
subsample the examples based on their current predictions. Based on ac-
tive learning (Settles, 2012) techniques, we pick unlabeled examples based
on their proximity to the decision boundary as well as the misclassified
examples. For the weight learning step, we use a step length of η = 0.001
for all our experiments.

5.4 Experiments

We evaluate the following algorithms:

• RelOCC: This approach is our relational OCC method using the
predictions from the combination function.

• RND: We modify the tree learner to randomly pick features at every
node. To ensure a strong baseline, we do not pick any feature that
results in more than 95% examples going to one branch. We still use
the combination functions to obtain the final probabilistic prediction.

• O-Rel: This refers to the strategy described above for using SVM-
OCC with features generated from RelOCC.

• O-Rnd: This refers to SVM-OCC with features from RND trees (i.e,
random features).

122

• SVM: Instead of using only labeled examples, we use all the examples
for training a standard SVM on the propositionalized data. We use
S-Rel and S-Rnd to denote the SVM learned from RelOCC and RND
trees respectively.

• RPT: As we are learning conditional discriminative models, we learn
relational probability trees (Neville et al., 2003a) for the target class
as a relational baseline.

Due to the skew in relational datasets, we use a subset of examples with
a reduced skew (twice the negatives to positives) for testing. The same
subset is used for all approaches within each domain. Also since one-class
SVM methods return only binary predictions we compare the accuracies
for these approaches. But, the relational approaches return a probabilistic
prediction and as a result we can compare the AUC-PR values for them.

5.4.1 UW-CSE

In the UW-CSE dataset, the goal is to predict the advisedBy relationship
between a student and a professor. Since the primary motivation of our
approach is one-class classification where all the positive examples are
not marked, we use only a subset of positive examples and assume they
were the only ones marked by annotators. We pick 20%, 40% and 60% of
the labeled examples for training and use all the positives for testing. The
results for five-fold cross-validation are shown in Table 5.2 and Table 5.3.

% marked RelOCC RND RPT
20% 0.93 0.87 0.76
40% 0.93 0.81 0.81
60% 0.92 0.83 0.88

Table 5.2: AUC-PR on UW dataset.

123

% marked RelOCC O-Rel O-Rnd S-Rel S-Rnd
20% 89.75 77.39 75.24 60.56 60.58
40% 89.97 75.55 74.94 60.56 60.56
60% 89.60 76.02 74.43 60.56 60.56

Table 5.3: Accuracy on UW dataset.

As can be seen from the AUC-PR values, our approach outperforms
both OCC with random feature selection and discriminative learning
using RPTs thus answering Q1 affirmatively. Our approach also has a
higher accuracy than both using SVM-OCC and standard SVMs on the
propositionalized dataset. The training dataset is highly skewed and as a
result basic SVM approaches (S-Rel and S-Rnd) predict the most common
label. Thus Q2 can also be answered affirmatively in that using our method
for feature selection helps SVM over the other feature selection methods.
For all other datasets, S-Rel and S-Rnd show similar behavior where they
predict all examples belonging to the negative class and hence we do not
show them in other data sets.

5.4.2 IMDB

We focused on the task of predicting the workedUnder relation in this
dataset. We performed five-fold cross-validation and the results are pre-
sented in Table 5.4 and 5.5. The results are similar to UW-CSE where
RelOCC outperforms the SVM-based approaches. But for this dataset,
RPT are also able to learn with few positive examples and have similar
performance to RelOCC. Both these approaches still outperform RND.

5.4.3 NFL

One of the primary motivations of our work was to learn models for
information extraction data sets with only positive labels. To this end,
we evaluate our approach on the task of extracting winners of National

124

% marked RelOCC RND RPT
20% 0.98 0.80 0.99
40% 0.98 0.88 0.97
60% 0.97 0.91 0.97

Table 5.4: AUC-PR on IMDB dataset.

% marked RelOCC RND O-Rel O-Rnd
20% 93.88 56.76 81.15 84.10
40% 94.68 60.49 81.27 78.90
60% 94.36 62.14 78.69 77.53

Table 5.5: Accuracy on IMDB dataset.

Football League (NFL) games from sports articles. The annotations only
provided few positive examples. We use the Stanford NLP toolkit 5 to
convert the text into NLP structures such as parse trees and dependency
graphs.Since this dataset only has few annotated postives, we do not drop
any labeled examples in our experiments. The results for ten-fold cross-
validation on this task are shown in Table 5.6 and 5.7.

RelOCC RND RPT
0.63 0.35 0.59

Table 5.6: AUC-PR on NFL
dataset.

RelOCC RND O-Rel O-Rnd
69.95 34.92 70.22 47.70

Table 5.7: Accuracy results on NFL
dataset.

As can be seen in these tables, RelOCC outperforms the other relational
approaches. But as compared to the SVM-based approaches, using the
RelOCC features for SVM-OCC (O-Rel) does as well as the relational OCC
approach in terms of the accuracy. This shows clearly that our proposed
approach serves as a good feature selection method as well. Since this

5http://nlp.stanford.edu/software/corenlp.shtml

125

dataset has a large number of possible features, random feature selection
is not able to pick the relevant attributes and both RND and O-Rnd are
much worse.

5.4.4 Heart

To evaluate the quality of feature selection, we use the Heart dataset 6,
which is a multivariate data set with 13 attributes. The task is to predict
the presence of heart disease in patients. We performed four-fold cross-
validation and show the results in Tables 5.8 and 5.9.

% marked RelOCC RND RPT
40% 0.44 0.37 0.36
60% 0.43 0.38 0.43

Table 5.8: AUC-PR on Heart dataset.

% marked RelOCC RND O-Rel O-Rnd
40% 50.34 37.67 62.59 49.50
60% 46.38 39.31 60.55 51.53

Table 5.9: Accuracy on Heart dataset.

While RelOCC is better than both RND and RPT, using SVM-OCC with
RelOCC as a feature selection procedure does much better than using the
RelOCC model. Since this dataset is originally a propositional dataset,
the complex interactions captured by the distance function in RelOCC are
not required and can possibly overfit the data. The results here show that
SVM benefits from the feature selection, as it is better than both O-Rnd
and the baseline SVM methods.

6http://archive.ics.uci.edu/ml/datasets/Heart+Disease

126

5.5 Discussion and Future Work

I presented a non-parametric approach for one-class classification from
relational data. We defined a new distance metric based of first-order
decision forest and a density estimation model using the distance metric.
We can efficiently update the distance metric to improve the classifier’s
performance. Our approach as a side effect introduces novel and relevant
features, which can also be used to augment propositional OCC methods.

The next step is to apply our approach to other information extrac-
tion tasks such as TempEval (UzZaman et al., 2012) and BioNLP (Kim
et al., 2009). Integrating other kernels and combination functions into
our method might help in further improving the performance. Given
prior knowledge about the proportion of positively labeled examples, our
approach can be modified to leverage that information.

127

6 bridging the gap between directed and
undirected models

Traditionally directed graphical models such as Bayesian networks (and
more recently their relational counterparts, e.g., Bayesian Logic Programs)
have been used to encode causal domain knowledge, since they can intu-
itively capture the cause and effect in a domain. On the other hand, MLNs
are undirected relational models that have recently gained popularity due
to their ease of representation. MLNs allow domain experts to specify the
structure using intuitive first-order logic rules without having to deal with
the acyclicity constraints of the directed models.

One may use a directed model in a domain because they have been
used traditionally to represent knowledge in that domain. Also directed
models can be used to represent causal relations and temporal relations
intuitively. On the other hand, undirected models, such as MLNs, can
represent correlations and spatial relations better since they do not have
any acyclicity constraints.

Converting the domain knowledge representing using directed models
into MLN clauses would allow one to combine a directed model with other
MLN clauses into a single MLN model without being constrained by the
acyclicity condition. Converting the conditional distributions in directed
models to MLNs can be easily performed by introducing one rule for every
parameter in the model1. But directed models also use combining rules
(explained below) to combine distributions from independent causes.

I present an approach to translate decomposable combining rules into
MLN clauses. The important aspect of this representation is that we
do not use the “ground" Bayesian network and instead use a “lifted"
representation. Using a lifted representation avoids grounding clauses

1http://alchemy.cs.washington.edu/faq/index.html

128

containing logical variables to an exponentially large number of variable-
free clauses.

In the next subsection, I will present the idea of “Independence of
Causal Influence" (ICI) and decomposable combining rules. In Section 6.2,
I will present our work on converting combining rules to MLN clauses.
Finally, I will present experimental results that demonstrate the usefulness
of combining rules in learning a more accurate model with small number
of clauses. The work presented here has been previously published in the
European Conference in Machine Learning (Natarajan et al., 2010).

6.1 Causal Independence in Directed Models

Directed models learn conditional probability distributions (CPDs) for
each variable with one parameter for each combination of its parents.
The notion of “Independence of Causal Influence" (ICI; Heckerman and
Breese 1994; Zhang and Poole 1996), also known as “causal independence",
assumes that there may be multiple independent causes for a target variable.
For example, assume we have three causes A,B and C for a target variable
D. By assuming that these causes independently influence the target
variable, directed models can learn the CPDs due to each cause separately
(P(D | A), P(D | B) and P(D | C)) and combine them using a (possibly
stochastic) function, reducing the number of parameters from eight to six.

Given independent CPDs for each cause, we can combine these dis-
tributions using functions such as OR, noisy-OR, mean and weighted
mean (Heckerman and Breese, 1994). For example, the mean combining
rule applied on the three distributions mentioned above would give us
P(D | A,B,C) = 1

3 (P(D | A) + P(D | B) + P(D | C)). One can also use mul-
tiple levels of combining rules. I present details regarding decomposable
combining rules with multiple levels below and later show how one can
convert them into MLN clauses.

129

6.1.1 Decomposable combining functions

Figure 6.1: Decomposable combining rules.

Consider Figure 6.1 where y is the target and x’s are the influents
(causes/parents). The tji’s are temporary y-values due to each instantiation
of xji based on Rule i. The y’s are deterministic nodes obtained by using
function f’s for the first level (that combine instances of the same rule)
and g’s for the second level (that combines different rules). The observed
nodes are shown using solid circles while the dotted circles correspond to
the hidden nodes. These hidden nodes are created when the functions are
applied successively.

In the figure, I present two levels of combining rules (fi and gj). The
first level of the combining rule fi combines the causes {x1

i, · · · , xmi } while
the second level gj combines the outputs from the rules {y1, · · · ,yn}. Let
us consider the first-level combining rule. For simplicity, consider the set
of functions fi1 from rule 1. The result y1 can be represented as:

y1 = f
m
1,σ(t

m
1,σ, fm−1

1,σ (tm−1
1,σ , ...f1

1,σ(t
1
1,σ,p))) (6.1)

130

for the given ordering σ of the different xi1; p is some prior on the value of
y for rule j. Equation 6.1 can be written as

y1 = f1,σ(t
m
1,σ, tm−1

1,σ , ...t1
1,σ,p) (6.2)

where f1 is a combining rule operating over all ti1.
Definition: A combining rule is called decomposable if it satisfies Equa-

tion 6.2 for all orderings (i.e., ∀σ). This is to say that for every possible
ordering of the inputs, the combining rule can be decomposed into a set
of functions that yield the same distribution.

In our setting, we require that the combining rules at both levels are
decomposable. In other words, any permutation of the xji’s within a rule
should produce the same value for yi and any permutation of the yi’s
should produce the same final y value. Note that most common combina-
tion functions used in the literature (Koller and Pfeffer, 1997a; Natarajan
et al., 2008; Jaeger, 2007; Heckerman and Breese, 1994; Zhang and Poole,
1996) such as: Noisy-Or, Noisy-And, average-based combination functions
such as mean, weighted-mean and context specific independence(CSI) are de-
composable. In this chapter, I show how multi-level combining rules (rules
that combine instances of the same clause and the ones that combine the
distributions due to different clauses) can be represented and learned
using MLNs. Rather than using complex figures such as Figure 6.1 to
describe combining rules in directed models, we use an abstract syntax
which I present next.

6.1.2 Combining rules in directed models

We use an abstract syntax called as First-Order Conditional Influence
(FOCI) statements (Natarajan and Altendorf, 2005) to present the semantics
of combining rules in directed models. Natarajan and Altendorf (2005)
showed how most directed models such as BLPs (Kersting and De Raedt,

131

2007) and PRMs (Getoor et al., 2001) can be represented using this syntax.
By converting FOCI statements to MLNs, we show that the knowledge
captured by directed models can be represented using MLNs.

Each FOCI statement has the form:

If 〈condition〉
then 〈qualitative influence〉

where the condition is a conjunction of literals. A 〈qualitative influence〉
is of the form X1, . . . ,Xk Qinf Y, where the Xi and Y are of the form V .a,
and V is a variable that occurs in condition and a is an object attribute.
Associated with each FOCI statement is a conditional probability distribution
that specifies a probability distribution of the resultant conditioned on the
influents, e.g. P(Y|X1, . . . ,Xk) for the above statement. Combining rules
can be represented as X1, . . . ,Xk Qinf (CR) Y where CR is the name of the
specific combining rule used. An example of a two-level combining rule
for predicting the satisfaction of a student is shown below.

mean {
If {student(S), course(C), takes(T,S,C)} then

T.grade Qinf (noisy-OR) S.satisfaction.
If {student(S),paper(P,S)} then

P.quality Qinf (noisy-OR) S.satisfaction.
}

The first rule specifies that the grade that a student obtains in a course
influences his/her satisfaction. The CPD P(S.satisfaction | T .grade) asso-
ciated with the first statement (partially) captures the quantitative rela-
tionships between the attributes. The second states that if the student has
authored a paper, then its quality influences the satisfaction of the student.
The distributions due to multiple instantiations of the respective rules
(the different course grades or the different paper qualities) are combined

132

using the noisy-OR combining rule and the distributions due to different
rules are combined using mean combining rule. Similarly Figure 6.1 can
be represented using FOCI statements as:

g {
If {true} then
x1 Qinf (f1) y.
· · ·

If {true} then
xn Qinf (fn) y.

}

Note that there are two levels of combination functions - one for com-
bining multiple instances of the same rule and the other for combining
different rules. This idea of two-level combining rules is sufficient to cap-
ture the notion of ICI in SRL models and hence I address the two-level
combining rules in this chapter.

The use of combining rules make learning in directed SRL models eas-
ier: multiple instances of the same rule share the same CPT and hence each
instance (xi1 for rule 1 in Figure 6.1) can be treated as an individual example
while learning the CPTs. Similarly, the different CPTs can be learned inde-
pendently of each other, thus exploiting the notion of causal independence.
Yet another advantage of the combining rules is that they allow for richer
combination of probability distributions. MLNs in their default represen-
tation use an exponentiated weighted count as an (indirect) combination
function of the different clauses. To express combining rules in MLNs, a
straightforward method would be to construct the grounded BN for each
rule and then construct the equivalent Markov Network. Unfortunately,
this leads to an exponential number of clauses in the MLN, making the
twin problems of learning and inference computationally expensive. In-
stead we resort to a “lifted" method that avoids unrolling (grounding) all
the clauses to create the MLN.

133

6.2 Decomposable Combining Rules in MLNs

The key idea is to view combination functions as choosing a value among several
values proposed by the parents. For instance, taking the average of distri-
butions corresponds to choosing the target value using an uniform dis-
tribution among the values proposed by the parents. Weighted mean,
on the other hand, can be understood as choosing a value based on the
distribution given by the weights. Given this intuition, we create hidden
predicates that propose values based on the conditional distribution and
multiplexer predicates that select one value from the proposed values.

Consider the following two FOCI statements: a(X, Y) Qinf b(Y) and
c(Z, Y) Qinf b(Y). Associated with each clause is a conditional probability
distribution P(b(Y)|parent(b)) where the parent(b) for the first statement
is a(X, Y) and the second is c(Z, Y). Note that there could be several
possible instantiations for X and Z in the above rules. For simplicity,
let us assume that the distributions due to the different instances of the
same rule are combined using some CR1 and the resulting distributions
due to the different rules are combined using some CR2.

Consider the BN presented in Figure 6.2. For ease of explanation, as-
sume that there are n instantiations of each rule and k such rules (I present
only two of them for brevity). In addition to the a, b and c predicates,
we introduce two more types of predicates indicated using dashed nodes:
hidden (temporary) value predicates (t and tr) and multiplexer predicates
(h and hr). Since there are two levels of combining functions, there are
two different sets of multiplexers and hidden nodes represented by two
different boxes in the figure. The first box corresponds to choosing a value
from a single rule (given by r(y, i), where i is the rule index) and in the
next level the final value of the target is chosen from one among the differ-
ent r values. We now explain the multiplexers inside the same rule (the
top box) and the same idea is extended for different rules (bottom box).

The hidden predicates t’s can be understood as choosing a value of

134

Figure 6.2: Understanding combining rules using multiplexers. The
dashed nodes are the hidden nodes and the multiplexer nodes, while
the solid nodes are observed in the data.

the target given the instantiation of the parent based on the CPD. The
multiplexers (h-nodes) serve to choose one of the n t-values for the target.
The idea is that if a particular h is activated, the value of the corresponding
t node is chosen to be the value of the target for the current rule (i.e., r(y, i)
is set to be that particular t-value). Given the different values of r(y, I)
for all I, the final value of the target b is chosen using the next level of the
multiplexer. In this work, we derive a general representation that covers
all decomposable combining functions. Our translation consists for four
different kinds of clauses:

1. CPT Clauses: This follows the standard translation of Bayesian net-
works to MLNs (Domingos and Lowd, 2009). Each independent
parameter in the CPT of the Bayes net becomes a clause in the MLN.

135

An example of such a clause is

w1
1 : a(X, Y)⇒ t(X, Y, 1)

w0
1 : ¬a(X, Y)⇒ t(X, Y, 1) (6.3)

where wj1 = log
p
j
1

(1−pj1)
, pj1 = P(b(Y) = 1|a(X, Y) = j)2. Hence, for

each independent parameter of the original CPT in the directed
model, there is a clause in the MLN with the weight as a function of
the parameter. We use the number 1 in the third argument of t and
wj1 to indicate the rule index which changes for every rule. In general,
the set of arguments in the temporary predicate t is the union of all
the arguments in the body of the clause and an argument for the
rule index.

2. Multiplexer Clauses: These are the clauses that choose a particular
value of the target given a set of parent values. For the first-level
multiplexer (h in the Figure 6.2), this corresponds to the set of values
due to different instantiations of the same rule. For the second-level
multiplexer, this set consists of the values due to different rules. For
the first level, the MLN clauses are of the form

∞ : h(X, Y, I)⇒ (t(X, Y, I)⇔ r(Y, I)) (6.4)

The above clause is a hard clause (i.e., infinite weight) that specifies
that for a particular value of X, if h(X, Y, i) is true for a rule i, then
the value of the target for that rule (r(Y, i)) must be chosen to be the
corresponding t(X, Y, i). Note that the multiplexer always has the
same number of variables as that of t. Similarly, for the next level,

2The CPT clauses are defined for rule 1 that uses predicate a. All the other rules will
have similar clauses.

136

the multiplexer clause would be

∞ : hr(Y, I)⇒ (tr(Y, I)⇔ b(Y)) (6.5)

3. Stochastic Function Clauses: These are the clauses that specify the
stochastic function to be employed on the values. These are essen-
tially the “prior" on the h predicates. For mean, the idea is to choose
a target value from the set of h-values uniformly. In the case of
Noisy-Or, the target is chosen from using an Or function over the
hidden variables (t and tr). I present the stochastic function clauses
for two different cases later in the section.

4. Integrity Constraints: These are the constraints that are used to
specify that among the different multiplexer nodes, only one of
them can be true for any particular example. These are of the form:

∞ : h(X1, Y, I)∧ h(X2, Y, I)⇒ (X1 = X2)∞ : ∃X h(X, Y, I) (6.6)

The above set of clauses specifies that if h is true for two values of X,
they should be identical and there exists a grounding of X to make
h-true. These constraints are identical for the second level as well3.

In our formalism, there is no restriction on the equality of the combining
rules at both the levels as long as they are decomposable. For instance,
it is possible to use a mean combining rule to combine the instances of
a single rule while a Noisy-Or could be used to combine the different
rules themselves. It can be easily observed from our translation to MLNs
that the only change for the different cases would be the encoding of the

3Alchemy supports constraints of this form using the syntactic sugar "!". However,
we ran into issues when learning weights with "!" and hence explicitly provide the
constraints.

137

multiplexers. Note that it is possible to imagine developing specialized
clauses for each combination of the combining functions.

6.2.1 Transformation of combining rules

As mentioned earlier, the Bayesian network representation is used only to
explain the translation by the use of multiplexers. The translation itself
is independent of the number of groundings (note that all the predicates
in the clauses are variablized and not grounded). We now present two
most common types of combination functions from the literature: (1) av-
erage-based and (2) noisy combination functions. Let us consider just a
single clause a(X, Y)⇒ b(Y) for ease of explanation. Associated with this
clause is a conditional probability distribution P(b|a) (we use a and b
as shorthand notations for the predicates). As we mentioned, the differ-
ences between different combination functions lie mainly in the stochastic
function clauses. For each case, we first present the translation and prove
the correctness of the resulting distribution. We then present the worked
example corresponding to the student satisfaction rules presented earlier.

Average-Based Combining Rules: Assume that the different instantia-
tions of the above rule are combined using the weighted-mean combining
rule. Then the posterior over the target b given the different sets of parents
is given by

P(b|a1, ...,an) =
1∑
wi

∑
i

wi × P(b|ai) (6.7)

where ai denotes a(xi,y). For the case of mean, all wi = 1 (note that the
w’s are not the weights of the MLN clauses, they are the weights of the
combining rule). The CPT clauses will be of the form presented in the
earlier section, where the weights are log functions of the CPT parameters
(log pi

(1−pi)
) . The multiplexer clause is again a hard clause that specifies

the value of the target based on the value of the multiplexer (h(X, Y, I)).

138

The integrity constraints are also the same as the ones presented above.
The stochastic function is the weighted-mean. This specifies the prior
on the multiplexer nodes, i.e., defines the prior probability with which
each multiplexer node is true. Hence, they are of the form: ui : h(xi,y, i),
where ui = log(wi) is the log-odds of the given xi. Actually, any weight
of the form ui = log(const × wi) = log(const) + log(wi) would work.
For mean, the log-odds imply ui = log(1/n), where n is the number of
instantiations. From the previous equation, it follows that any ui are ac-
ceptable as long as they are constant for all i. The intuition is that each
t(X, Y) chooses the value of the target based on the CPT, and the final value
of the target is chosen from the different t’s using the multiplexer nodes.
The multiplexer is activated such that it takes only one value given by the
stochastic function (mean or weighted-mean).
Proposition: The given representation of MLNs exactly captures the dis-
tribution given by Equation 6.7.
Proof: For simplicity, consider only two instantiations of the rule presented
above. We are interested in P(b|a1,a2), which is given by Equation 6.7 for
i = 2. There will correspondingly be four different cases: both t1 and t2

(hidden variables) are true and one of h1 or h2 (multiplexers) is true (two
cases) and two cases where only the multiplexer hi and the corresponding
ti are true. i.e.,

P(b|a1,a2) =

P(b, t1 = 1, t2 = 1,h1 = 1,h2 = 0|a1,a2)+

P(b, t1 = 1, t2 = 1,h1 = 0,h2 = 1|a1,a2) +

P(b, t1 = 1, t2 = 0,h1 = 1,h2 = 0|a1,a2)+

P(b, t1 = 0, t2 = 1,h1 = 0,h2 = 1|a1,a2)

139

=
1
Z

(
eθ1+θ2+log(w1) + eθ1+θ2+log(w2) + eθ1+log(w1) + eθ2+log(w2)

)
,

where θi = log pi

1 − pi

=
1
Z

(
p1

1 − p1

p2

1 − p2
w1 +

p1

1 − p1

p2

1 − p2
w2 +

p1

1 − p1
w1 +

p2

1 − p2
w2

)
=

1
Z

(
p1p2w1

(1 − p1)(1 − p2)
+

p1p2w2

(1 − p1)(1 − p2)
+

p1(1 − p2)w1

(1 − p1)(1 − p2)
+

p2(1 − p1)w2

(1 − p1)(1 − p2)

)
=

1
Z

(
p1w1 + p2w2

(1 − p1)(1 − p2)

)
=
p1w1 + p2w2

w1 +w2
, since Z =

w1 +w2

(1 − p1)(1 − p2)

To show Z = w1+w2
(1−p1)(1−p2)

, I sum over the weights for all the possible
assignments (with both b = 0 and b = 1). I use w(I) to represent the
weight of the clauses satisfied by the assignment I. Due to the hard clauses
in the MLN, there are only eight assignments consistent with the clauses.

Z =w(b = 1, t1 = 1, t2 = 1,h1 = 1,h2 = 0) +w(b = 1, t1 = 1, t2 = 1,h1 = 0,h2 = 1)+

w(b = 1, t1 = 1, t2 = 0,h1 = 1,h2 = 0) +w(b = 1, t1 = 0, t2 = 1,h1 = 0,h2 = 1)+

w(b = 0, t1 = 0, t2 = 0,h1 = 1,h2 = 0) +w(b = 0, t1 = 0, t2 = 0,h1 = 0,h2 = 1)+

w(b = 0, t1 = 1, t2 = 0,h1 = 0,h2 = 1) +w(b = 0, t1 = 0, t2 = 1,h1 = 1,h2 = 0)

= eθ1+θ2+log(w1) + eθ1+θ2+log(w2) + eθ1+log(w1) + eθ2+log(w2)+

elog(w1) + elog(w2) + eθ1+log(w2) + eθ2+log(w1)

= elog(w1)
(
eθ1 + eθ2 + eθ1+θ2 + 1

)
+ elog(w2)

(
eθ1 + eθ2 + eθ1+θ2 + 1

)
= (w1 +w2)(

p1

1 − p1
+

p2

1 − p2
+

p1

1 − p1

p2

1 − p2
+ 1)

= (w1 +w2)(
p1(1 − p2) + p2(1 − p1) + p1p2 + (1 − p1)(1 − p2)

(1 − p1)(1 − p2)
)

=
w1 +w2

(1 − p1)(1 − p2)
Thus we can show that the final distribution due to these MLNs is

equal to the distribution presented in Equation 6.7. The same proof can
be extended for multi-level combining rules as well.
Worked Example: Consider the FOCI statements about student satisfac-
tion presented earlier. We now present the case where CR1 is mean while

140

CR2 is weighted-mean. We show the translation to MLNs below. First, con-
sider the CPT clauses. We use Alchemy’s +G notation that creates one
clause for every possible grounding of G. Assuming the grade G of the
student can be any one of the five values { ′A ′, ′ B ′, ′C ′, ′D ′, ′ F ′}, each clause
with a +G would be converted to five clauses with G being replaced by
one of the grade values in every clause. We refer to the Alchemy manual
for a detailed discussion on the + notation4. The CPT clauses for each rule
are as follows:

wG : student(S), course(C), takes(T ,S,C),grade(T ,+G)⇒

t1(S, T ,C,+G)

wQ : student(S),paper(P,S),quality(P,+Q)⇒ t2(S,P,+Q)

where each wG and wQ are the log-odds for each grade (G) and quality
(Q) respectively. Next, I present the multiplexer clauses.

∞ : h1(S, T ,C,G)⇒ t1(S, T ,C,G)⇔ r(S, 1)∞ : h2(S,P,Q)⇒ t2(S,P,Q)⇔ r(S, 2)∞ : hr(S,R)⇒ r(S,R)⇔ satisfaction(S) (6.8)

The first two clauses serve to choose the intermediate values of r cor-
responding to rules 1 and 2. The third rule then chooses the final value
of satisfaction from the two intermediate values. The stochastic function
clauses are given by:

log(w1) : hr(S, 1)
log(w2) : hr(S, 2)

The above clauses specify the prior over the intermediate nodes as a
function of their weights wi.5 At the first level, the value of the intermedi-

4http://alchemy.cs.washington.edu/user-manual/4_2MLN_Syntax.html
5These weights are the weights of the combining function and must not be confused

141

ate node is chosen according to an uniform distribution (mean combining
rule) and hence the weights of the MLN clauses are 0 and are not presented
here. Finally, I present the integrity constraints that restrict the multiplexer
to choose only one value from among a set of possible values

∞ : h1(S, T1,C1,G1)∧ h1(S, T2,C2,G2)

⇒ (T1 = T2 ∧ C1 = C2 ∧G1 = G2)∞ : ∃ T,C,G h1(S, T ,C,G)∞ : h2(S1,P1,Q1)∧ h2(S2,P2,Q2)⇒ (P1 = P2 ∧Q1 = Q2)∞ : ∃ P,Q h2(S,P,Q)∞ : hr(S,R1)∧ hr(S,R2)⇒ R1 = R2∞ : ∃ R hr(S,R) (6.9)

Noisy Functions: For this case, let us assume a single rule and that the
different instantiations of that rule are combined using a noisy function.
For Noisy-Or, the marginal is computed as,

P(b = T|a1, . . . ,an) = 1 −

n∏
i=1

faii (6.10)

where fi’s represent the probability that a present (Boolean-valued) cause,
ai, fails to make the result b true. When converting these to MLNs, the
transformation is mostly similar to the earlier case. Though the CPT clauses
are constructed similarly, I present them for clarity. They are of the form:

∞ : ¬a(X, Y)⇒ ¬t(X, Y, 1).

wi : a(xi, Y)⇒ t(xi, Y, 1).

with the weight of the MLN clauses.

142

where, wi = log((1 − fi)/fi). As can be seen, if a(X, Y) is false for a
particular value of X, t(X, Y, 1) will always be false while if a is true, t
can be false due to some noise. The multiplexer and integrity clauses are
similar to the average case. A careful reader will note that the multiplexer
and integrity clauses are redundant for this case as they derive the r-
values directly from t-values as shown below. The stochastic function
(deterministic here) is given by,

∞ : r(Y, I)⇔ ∃X.t(X, Y, I) (6.11)

This asserts that r(Y, i) is true if and only if some t(X, Y, i) is true, which
is effectively deterministic OR applied to noisy versions of the inputs. It
can be shown that this set of clauses exactly capture the distribution given
by Equation 6.10.

Noisy existentials can be constructed similarly, except that we have
tied weights. When constructing noisy-and, the noise adds a probability
of success instead of a probability of failure:

wi : ¬a(X, Y, 1)⇒ ¬t(X, Y, 1)∞ : a(xi, Y, 1)⇒ t(xi, Y, 1).

The multiplexer and the stochastic functions are also modified accordingly
to reflect the And function.

Worked Example: We now present the rules for the satisfaction exam-
ple whereCR2 is Or whileCR1 is Noisy-Or with qi as inhibition probability.
The CPT clauses are

log(1 − q1

q1
) : student(S), course(C), takes(T ,S,C),grade(T ,G)⇒

t1(S, T ,C,G)

log(1 − q2

q2
) : student(S),paper(P,S),quality(P,Q)⇒ t2(S,P,Q)

143

Note that the CPT parameters are a function of the noise (inhibition) for
the two rules. The multiplexer clauses can be constructed similar to the
weighted mean case given in Equation 6.8. The stochastic function clauses
are created according to the following clauses. Note that the stochastic
function clauses state that there is an Or function at each level (the noise
at the first-level is captured in the CPT clauses).

∞ : r(S, 1)⇔ Exists T,C,G t1(S, T ,C,G)∞ : r(S, 2)⇔ Exists P,Q t2(S,P,Q)∞ : satisfaction(S)⇔ Exists R tr(S,R)

The integrity constraints are similar to the earlier case (Equation 6.9). The
example here combines Noisy-Or with the Or combining rule. We can
similarly imagine combining different decomposable combining rules
at the different levels. The same templates can be used to construct the
different sets of combining functions.

6.2.2 MLN macros

While theoretically MLNs can represent most of the distributions that we
considered, it seems impractical to expect a domain expert to come up
with these rules. The domain expert needs to be an MLN expert as well
and has to understand the translation. In this section, I present a macro
that can be used to construct MLNs given the domain expert’s statements.
The key idea is to remove the burden of specifying the MLNs from the
user and allow our “translator” to create the MLNs corresponding to the
true distribution. I now present the structure of the macro:

CR {
CR1: X1

1 ∧ ... ∧ X1
n1
⇒ Y

CR2: X2
1 ∧ ... ∧ X2

n2
⇒ Y

...

144

}

The above macro can be interpreted as: CR, CR1 and CR2 are the combi-
nation functions – And, Or, Noisy-Or, Noisy-And, etc. While CRi combines
the multiple instantiations of clause i, CR combines the multiple clauses.
Xji and Y are predicates. The first clauses specifies n1 causes for the target
predicate Y. X1

1 is the first cause of Y in rule 1 and so on. Instead of writing
2n different clauses, the user specifies a single clause that is then unrolled
into the different clauses by the translator. The user can specify several
clauses that can be combined.

The translator then converts these macros to the MLN clausal repre-
sentation. A natural question now is: where do the weights come from?
A simple solution would be to construct the clauses and allow the un-
derlying MLN package (in our case Alchemy (Kok et al., 2010)) to learn
the weights. We could hold the weights of the hard clauses (integrity
constraints and some multiplexer clausers) and instruct Alchemy to learn
the weights of only the “soft clauses" leading to a more efficient learning.
In cases where the training data is not available, we allow the conditional
probabilities to be specified for the different configurations of the pred-
icates in the body of the clause. Hence the clauses are now of the form,
〈p1,p2, ...,p2n〉X1 ∧ ...∧Xn ⇒ Y, where pi = P(Y = T |Config(X1, ...,Xn) =
i) is the conditional probability of the target being T given that the truth
value of the predicates in the body from the ith configuration. Similarly,
the parameters of the combining rules (e.g., weights of weighted mean) can
also be specified as CR〈w1, ...,wm〉 form clauses. Based on the combining
rule used, the translator then computes the weights of the different clauses
based on the probabilities and assigns the weights to the corresponding
clauses.

145

6.3 Experiments

In the following experiments, we use the Alchemy system6 to learn the
weights and/or perform inference. We use the same settings for both
MLNs with combining rules (denoted byMLN+) and the default MLNs
(MLN∗). The clauses of the MLN∗ are the parent configurations of the
CPT of each rule. Hence for each independent parameter of the CPT, there
exists a clause inMLN∗. MLN∗was chosen so that it had the same number
of parameters as that of a directed model to make a fair comparison. The
clauses ofMLN+ consist of the CPT clauses and the multiplexer, stochastic
function and integrity clauses. For bothMLN+ andMLN∗, we used the
same settings for the learning and inference algorithms (i.e., used the same
number of iterations, discriminative learning, same number of MCMC
steps, MC-SAT for inference, etc.).

I present our learning experiment on the UW-CSE domain. The goal of
the experiment is: given minimal domain knowledge (typically two rules
to predict the target), will the structure imposed by combining rules be
useful in learning a good model? For the UW-CSE dataset, the task was to
predict the advisedBy relationship between a student and a professor. The
rules that we use were:

N-Or {
N-Or:student(S) ∧ professor(P) ∧ course(C) ∧

taughtBy(P,C,Q) ∧ ta(S,C,Q) ⇒ advisedBy(S,P)
N-Or:student(S) ∧ professor(P) ∧

publication(P,W) ∧ publication(S,W) ⇒ advisedBy(S,P)
}

The first rule uses the noisy-Or combination function over all the
courses taught by the professor P and ta-ed by the student S. The second

6http://alchemy.cs.washington.edu/

146

rule uses the noisy-Or combination function over the common publications
between the student and the professor. Finally, noisy-OR combination
function is applied over the two rules to predict the probability of the stu-
dent S being advised by the professor P. MLN∗ used all the combinations
of the predicates in the head of the clauses (i.e., 25 + 24 = 48 clauses) and
learned weights for each of them. For MLN+, we used Noisy-Or as the
combining rule at both levels. We learned the weights using Alchemy and
used MC-SAT for performing inference. We trained the algorithms on
the AI group data that consisted of 35 positive instances of the advisedBy
relation.

I present the average likelihood (i.e., 1
n

∑
i P(yi = ŷi), where n is the

number of examples, ŷ is the predicted label and y is the true label) of
the test set in the last column of Table 6.1. Note that since we are in the
relational setting, the test set will mostly consist of negatives. Hence, an
algorithm that always predicts false will have a reasonably high likelihood.
To avoid this situation, we forced the test set to contain 50% negative exam-
ples by sampling the negative examples randomly. This way a likelihood
of 0.5 would mean that everything is either predicted true or as false.

Algorithm AUC-ROC AUC-PR Likelihood
MLN+ 0.560 0.672 0.611
MLN∗ 0.472 0.523 0.500

Table 6.1: Testset results on the UW-CSE dataset.

We also compare the area under curve for the ROC and PR curves.
MLN∗ was not able to learn reasonable weights with a small number
of rules and hence predicts everything as false. In a test-set with 50%
positive examples, this yields a likelihood of 0.5. On the other hand,
with MLN+, we were able to learn a more reasonable model that has a
higher likelihood. The values of AUC for ROC and PR for MLN+ are
also significantly higher than MLN∗. More importantly, MLN+ did not

147

predict every query predicate as 0 or 1 and instead had a reasonable
distribution over the target. So if we have limited background knowledge
(two rules in this experiment), we showed that using combining rules
improves the accuracy of the model. To see if additional knowledge will
improve the performance of default MLNs, we added more rules toMLN∗

(seven more rules from the Alchemy website that were earlier used in
other MLN experiments (Richardson and Domingos, 2004; Singla and
Domingos, 2005) to predict advisedBy). Weight learning on MLN∗ with
more rules improved the average likelihood to 0.63.

6.4 Discussion and Future Work

Combining rules capture the notion of causal independence for SRL mod-
els. I have presented an algorithm for representing a class of combining
rules (decomposable combining rules) in an undirected model (specifi-
cally, an MLN). Our experiments demonstrated that for a small number of
clauses, combining functions are useful in learning more accurate models.
The structure imposed by these functions helps in guiding the learning
algorithms towards reasonable weights. Jaeger (2008) showed that Rela-
tional Bayesian networks can capture some MLN types and pointed out
to the reverse as an open problem. We take an important step in that
direction by showing how MLNs can capture combination functions of
the directed models and, in turn, most of the features of directed models.

However, inference on the MLNs with the translated combining rules
is 4-5 times slower than the one that does not use the combining rules. The
problem is that the inference engine does not utilize the hidden structure
that is naturally exploited by the directed models. One possible future
direction is to develop specialized inference algorithms that can detect
structure in MLNs (Niu et al., 2012a) and exploit it for efficiency. A more
general and important direction is to develop hybrid models that allow

148

one to specify different parts of the model differently and combine them
using a decomposable structure. This should allow the application of
specialized learning algorithms inside each module and then combine the
results in an efficient manner.

149

7 additional explorations

In this chapter, I present real-world applications that I was involved in
along with the exploratory experiments conducted. In Section 7.1, I present
the application of RFGB to the task of temporal relation extraction in text
(published in StarAI workshop (Khot et al., 2012)). In Section 7.2, I present
an approach for Alzheimer’s prediction using RFGB over segments from
MRI images (published in International Journal of Machine Learning and
Cybernetics (Natarajan et al., 2013)). Next, I present a large-scale NLP task
where we use a propositional model for relation extraction over terabytes
of data (published in Text Retrieval Conference (Khot et al., 2013b)).

7.1 Temporal Relation Extraction

Information extraction (IE) has been an important problem in the Natural
Language Processing (NLP) community (Manning and Schütze, 1999).
One specific challenging IE problem is extraction of temporal ordering
between events and temporal expressions. The introduction of corpora
such as the TimeBank (Pustejovsky et al., 2003b) and TimeML (Pustejovsky
et al., 2003a) makes it possible to use machine learning methods to learn
ordering relations between events and time expressions (timex). For exam-
ple, for the sentence “He met the ambassador on June 3rd.”, we would like
to extract the relations OVERLAP("met", "June 3rd") and BEFORE("met",
DOCTIME), where DOCTIME corresponds to the document’s creation time.

The TempEval dataset (Verhagen et al., 2007) simplified the TimeML
annotations by using six coarse-grained, temporal-ordering relations be-
tween events and timexes; between events and document creation time;
and between events. TempEval-2 (Verhagen et al., 2010) extended this
dataset to six tasks, including the three tasks from the original dataset.

Most of the approaches applied to the TempEval tasks use proposi-

150

tional features and independently learn relations for each task. However,
learning to predict each task independently can lead to inconsistencies
in the final prediction. For example, predicting event A happened before
time T (A < T) and event B happened after time T (T <B) is inconsistent
with predicting event A happened after event B (A > B).

There have been approaches to handle these global inconsistencies for
propositional models, such as creating a globally consistent set of joint
predictions by selecting from the individual predictions during inference
(Chambers and Jurafsky, 2008). In this section, I concentrate on employing
the relational approach to address this issue. Relational approaches have
the advantage of focusing on the joint set of predictions during learning,
rather than deferring the consideration of interaction among predictions
to the inference step

Using SRL models such as MLNs allow joint inference across various
examples and tasks. As shown above, in the TempEval task we need to
ensure consistent ordering between events and timexes. Also, the inde-
pendence and identically distributed (i.i.d.) assumption made by most
propositional methods is not valid as the events are not independent, fur-
ther making the case for using SRL models. Moreover, many constraints
are not necessarily hard constraints in this task requiring the use of proba-
bilistic models. For example, if event A occurred before event B and event
B overlapped with C then it is likely that event A occurred before event
C. Hence, Yoshikawa et al. (2009) and more recently UzZaman and Allen
(2010) used Markov Logic Networks (MLNs) to specify the model as well
as the global constraints as weighted first-order logic rules.

We learn rules in the absence of expert advice by using RFGB. We
also develop two extensions to leverage expert advice whenever available.
Preliminary results of our approach show promise for structure learning
approaches in IE and other NLP tasks. This work has been published in
the StarAI workshop (Khot et al., 2012).

151

Figure 7.1: Sample TempEval-2 annotations.

7.1.1 TempEval tasks

The TempEval task (Verhagen et al., 2007) in SemEval 2007 used the Time-
Bank corpus to create three separate relation-extraction tasks:

1. identify relations between event and timex,

2. identify relations between event and document time and

3. identify relations between events

The TempEval-2 task extended this dataset to include the problem of
identifying timexes and events along with their properties. It also modified
task 3 of the previous TempEval into temporal ordering tasks between: 1)

1. events in consecutive sentences

2. events where one event syntactically dominates the other

I show initial results in Section 7.1.3 for identifying relations between
events and temporal expressions (called task C in TempEval-2). Figure 7.1
shows a sample TempEval-2 annotation, where tokens e133, e134 and
e135 are the event words whereas t239 marks a timex. In this example,
since the announcement happened in September, the annotations marked
an OVERLAP relation between e133 and t239.

152

Figure 7.2: Flowchart de-
scribing our approach for
relation-extraction.

7.1.2 Structure learning for TempEval-2
I first use the Stanford NLP toolkit1 to convert the documents into first-
order logic facts. I then use these raw features to create richer features
based on our analysis of the domain. If provided, I can also use expert
advice such as the rules written by previous work in this domain as the
initial model. Given the initial model and the set of facts, I use RDN-Boost
to learn a joint model for the target relations. Figure 7.2 presents our
approach.

Raw Facts: For each sentence, the Stanford NLP toolkit returns the tok-
enization, parse tree, dependency graph and named entity2 information.
We create a word object for each token in the sentence and a phrase object
for each phrase in the parse tree. Table 7.1 presents a subset of the gen-
erated facts. Dependency paths3 are considered to be important features
for relation extraction and hence we create a special predicate to store
the dependency path between every pair of words. Since there can be

1http://nlp.stanford.edu/software/corenlp.shtml
2Recognizing entities in text such as Obama (PERSON type), Washington (LOCA-

TION type) and Saturday (TIME type).
3Dependency paths are paths in the dependency graph between a pair of entities

153

Example Definition

wordText(W3, occurred) Word W3 corresponds to the token
“occurred” in the article

wordLoc(S1, W1, 1) Word W1 is the first word
of the sentence S1

wordType(W5, NN) Word W5 is a noun (NN)
phraseType(P3, NP) Phrase P3 is a noun phrase (NP)
phrHasWord(P3, W5) Phrase P3 contains the word W5
headWord(P5, W11) Word W11 is the head word of P5
depType(W3, W7, CCOMP) Dependency graph contains an edge

of type CCOMP between W3 and W7

Table 7.1: Sample facts generated using the Stanford toolkit.

many such paths, we create the dependency path facts only if the path
length is smaller than seven. For TempEval, we also convert the event
and timex properties to relational facts such as eventHasProperty(Event,
Property, Value).

Domain Advice: We allow the provision of two forms of domain knowl-
edge:

(1) Specialized Features. We noticed that for most of the valid event-
timex pairs (i.e. having some relation), the event word is present in the
dependency path (DP) from the timex to the root of the dependency graph
(DG). Hence, if the DP goes up the tree and then goes down i.e. if there
is a↙↘ in the DP, then it is a strong signal that the event and timex are
not related. We added a predicate veeInDepPath(W1,W2) which is true
if neither W1 nor W2 is the ancestor of the other word. For example, in
Figure 7.3 we would create the fact: veeInDepPath("be", "2002").

Typically, a timex t is related to the first verb that appears in the DP
from t to the root of the DG. However, additional verbs in the path to the
root can also be related to t if they are preceded by special dependency
tags (e.g. CCOMP). In order to learn such tags, we include a predicate

154

Figure 7.3: Dependency
graph for a sentence where
OVERLAP relation exists
between “said” and“2002.”

verbAlongDependencyPath(word, word, verb, depType) to represent this
feature. We now let RDN-Boost discover which dependency types could
be present for valid relations. Figure 7.3 shows a snippet of a DG. Although
there is a verb in the DP from “2002” to “said,” since “recommending” is
connected by a CCOMP dependency type, “2002" applies to “said” too.

(2) Expert Rules. For the TempEval task, Yoshikawa et al. (2009) de-
signed rules to encode the constraints for consistent ordering between
events, timexes and document times. Similar rules were also used by the
TRIPS/TRIOS system (UzZaman and Allen, 2010) for the TempEval-2.
We can use these rules as the initial model for RDN-Boost. Each Horn
clause is used as a part of the initial model for the predicate that appears
in the head of the clause. For example, a sample rule used by previous
approaches was relE2T(e1, t, “BEFORE”) ∧ relE2T(e2, t, “AFTER”) →
relE2E(e1, e2, “BEFORE”). This rule can be used as the initial model for
predicting relE2E. While relE2T represents relations between events and
timexes, relE2E represents relations between events.

7.1.3 Initial Results

I present the initial results of our approach on task C of TempEval-2. We
did not use any cross-task rules in the initial model, since we learn a model
for a single task. When not using any domain-specific features, RDN-Boost

155

is able to achieve an accuracy of 0.56 on the test set. Including the domain-
specific features improved the testset accuracy of the system to 0.60. Most
of the systems that competed in TempEval-2 had an accuracy ranging
between 0.62-0.65. We believe with better features and simultaneously
using the data from all the TempEval tasks to learn a joint model would
further improve the results.

7.2 Alzheimer’s Prediction

Alzheimer’s disease (AD) is a progressive neurodegenerative condition
that results in the loss of cognitive abilities and memory, with associated
high morbidity and cost to society (Sun et al., 2009). Accurate diagnosis of
Alzheimer’s disease and its precursor, mild cognitive impairment (MCI)
are important steps towards finding a cure and have been a focus of many
studies (Sun et al., 2009; Ye et al., 2008; Supekar et al., 2008).

Magnetic resonance imaging (MRI) is a neuroimaging technique that
can be used for visualization of brain anatomy with a high degree of
spatial resolution and contrast between brain tissue types. Structural MRI
methods have been used to identify regional volumetric changes in brain
areas known to be associated with AD and MCI, demonstrating the utility
of such methods for studying this disease (Sun et al., 2009; Ye et al., 2008).
The work presented here has been published in International Journal of
Machine Learning and Cybernetics (Natarajan et al., 2013).

Structural MRI approaches have identified changes in particular re-
gions of the brain, such as reduction in size of the hippocampus, to be
associated with AD and MCI (Ye et al., 2008). More recently, MRI data
have become the focus of machine learning experiments aimed at classi-
fying subjects as AD versus cognitively normal (CN) or MCI versus CN.
Recent approaches employ network analysis (Sun et al., 2009; Supekar
et al., 2008) or use machine learning directly on the voxels (Ye et al., 2008).

156

These approaches only consider two-way classification problem of differ-
entiating AD from CN, in which case a clear decision boundary between
these categories can be easily obtained. In reality, Alzheimer’s patients
span different stages from MCI to AD, making classification much more
difficult.

We develop a novel data mining approach for the significantly more
challenging problem of classifying the subjects into one of three categories
〈AD, MCI, CN〉 given volumetric structural MRI data. Specifically, we
propose a novel knowledge-based approach that allows the combination
of state-of-the-art MRI data processing and modern machine learning
techniques. Our pipeline consists of three stages – first is a segmentation
stage that takes volumetric brain MRI data as input and divides it into
anatomically relevant regions, second is a relational learning stage that
uses the different segments obtained over the image to build multiple
binary classifiers using RFGB and the final stage is the combination stage
that combines the different classifiers to provide a single prediction.

7.2.1 Pipeline design

Our problem of Alzheimer’s prediction is formulated as the following
classification task:

Given a set D of tuples {〈x1,y1〉, · · · 〈xn,yn〉}, where each xi is
a 3D voxel image corresponding to a subject and yi is a
class label (AD, MCI or CN).

Learn a function/classifier h that predicts yi given xi.

One approach to this problem would be using standard propositional
classifiers, where we assume the examples are independent and identically
distributed. Unfortunately, for a problem as complex as the 3-way classifi-
cation of AD, the standard propositional approaches may not capture the

157

Figure 7.4: Graphical representation of the pipeline.

visual aspects of the image data. For example, directly using the voxels
in the image as features does not capture aggregate properties about the
important regions in the brain.

Instead, we model the function h as a three stage pipeline, i.e., h(x) is
approximated by h3(h2(h1(x))). Each stage hi of the pipeline is designed
to expose interesting and informative aspects of the data. We model the
search for building the pipeline as a sequential search over individual
stages. In particular we address the following three problems (1)-(3).

(1) Image Segmentation

Given the datasetD, generate a datasetD ′ = {〈h1(x1),y1〉, · · · ,
〈h1(xn), yn〉} where each h1(xi) is a representation of the image
xi segmented into regions.

To segment volumetric brain MRI data, we use two different segmentation
techniques, namely

i) A knowledge-based segmentation method that partitions the MRI
into 116 regions using Automated Anatomic Label (AAL) atlas 4.

4http://prefrontal.org/blog/2008/05/brain-art-aal-patchwork

158

ii) A knowledge-free segmentation technique based on Expectation
Maximization (EM).

Figure 7.5: AAL atlas segmentation showing the different regions of inter-
est in the brain.

The output of the image segmentation procedure, h1(xi) is a set of
vectors 〈〈si,1, f(si,1)〉 . . . 〈si,m, f(si,m)〉〉 where each si,j is a segmented re-
gion and f(si,j) is a vector of features and neighborhood information for
si,j. Intuitively, h1(xi) can be viewed as a graph where each si,j is a node,
and there is an edge between two nodes if the corresponding regions are
neighbors in the original image. An important thing to note here is that
two examples in D ′ need not have the same number of regions. Also,
two regions need not have the same number of features (because each
region can have a different set of neighbors). This makes it difficult — if
not impossible — to represent D ′ using a “flat” feature vector without
extensive feature engineering. A relational representation, however, is
ideally suited.

(2) Relational models

Given the dataset D ′, train a relational probabilistic classi-
fier on D ′ that given an example 〈h1(x)〉 generates example
〈h2(h1(x))〉 where h2(h1(x)) is a distribution over the classes
AD, MCI and CN.

159

Before learning the classifier, we convert the segments and their features
into first-order logic. Some of the predicates we used are presented in
Table 7.2. The predicate names denote the attributes while the parameters
are variables that define the attribute values. Note that the attributes of
the regions are defined in a logical form that allows for different number
of regions for different persons. Similarly, the predicate adj allows for
neighborhood definitions and this will allow us to encode an arbitrary
network structure of the brain and does not constraint the number of
neighbors for a region. We denote all the query predicates (ad, cn, mci) as
y and all other ones as x.

Predicate Explanation
centroidx(P, R, X) Centroid of region R is X
avgSpread(P, R, S) Average spread of R is S
size(P,R, S) Size of R is S
avgWMI(P, R, W) Avg intensity of white matter in R is W
avgGMI(P, R, G) Avg intensity of gray matter in R is G
avgCSFI(P, R, C) Avg intensity of CSF in R is C
variance(P, R, V) Variance of intensity in R is V
entropy(P, R, E) Entropy of R is E
adj(R1,R2) R1 is adjacent to R2
ad(P) P has AD
mci(P) P has MCI
cn(P) P is cognitively normal

Table 7.2: Examples of predicates used in the pipeline. Here, P stands
for a patient and R for a region. The last three predicates are the query
predicates that are predicted by our classifiers.

A set of classifiers are trained to produce a distribution between every
pair of classes (One versus One abbreviated as OvO) and one class against
all (One versus All abbreviated as OvA). The OvO classifier is trained on
examples from one class (say AD) as positives and examples from another
(say CN) as negatives. The OvA classifier is trained on examples from
one class as positive and examples from all the other classes as negatives.

160

Since D ′ is a relational database, we cannot use propositional classifiers
and resort to relational methods. Additionally relational methods are well
suited to leverage neighborhood information. We use RFGB to learn the
binary classifiers for every class in the data (AD, MCI, CN). Now, we have
everything together for the final stage (3) of our pipeline.

(3) Combining classifiers

Given the classifiers learned from the previous stage, i.e., h2

for the three different combinations, design a combination
function h3 that combines their results.

The result of previous step is a set of probabilistic classifiers for each pair of
classes from AD, MCI and CN (in essence, three classifiers). Let us denote
each classifier as ck,k = 1, 2, 3. We have used the following combination
functions:

• Voting: Each ck outputs a prediction and the class has the maximum
vote i.e., argmaxc

∑
k[I(y

k = c)], where yk is the predicted label of
the kth classifier and c is the class.

• Weighted Voting: In this case, class = argmaxc
∑
k[w

k ·P(yk = c)].
We derived a gradient for the log likelihood of the training data and
also used a grid search over the weight space.

• Pairwise Coupling: We considered the PC method (Hastie and Tib-
shirani, 1998) where the goal is to determine the posterior over each
of the classes from the estimated joint distributions.

• Classifier method: We used the output of each OvO classifier to
train a propositional classifier that combines the output of these
different classifiers to make its final prediction. The input of the
new classifier is essentially the predictions of the classifiers of the

161

previous stage. More precisely, the input is a set P = 〈p1
1,p1

2, ...,p3
3〉

for each patient i, where pkj is the posterior probability of the class j
as predicted by the classifier k. Hence, we aim to learn a function
h3 such that h3(P) = yi where yi is one of AD, CN or MCI. The
advantage is that we can combine the OvO results in a non-linear
fashion.

The OvA strategy uses three classifiers, where each classifier discrim-
inates class j from j ′ ∈ class \ j. We use a simple aggregation method
called Maximum confidence strategy, which is similar to the voting strategy
presented earlier. The output class is taken from the classifier that has the
largest posterior probability, argmaxc pc. For more details on the OvA
aggregation, please refer to Galar et al. (2011).

Given the above combination functions, the resulting classifier predicts
the disease progression (AD, MCI or CN) for the patient, given the volu-
metric MRI scan. The resulting classifier h is essentially a nested classifier
h3(h2(h1(x))) as illustrated in Fig. 7.4.

7.2.2 Experimental results

We compare several versions of the algorithms on this task, including
the list of propositional classifiers on the AAL segmented data and the
relational classifiers using both segmentation methods (EM and AAL)
as well as different combination functions. To understand the need for
segmentation, we use modulated gray matter voxel data without any
segmentation with LibSVM reported as SVMMG.

• Propositional Classifiers - Naive Bayes (NB), Decision Trees (J48),
SVM, AdaBoost and Bagging on the AAL data and SVMs with gray
matter data (that we denote as SVMMG) using Weka (Hall et al.,
2009).

162

• Relational OvO with AAL segmentation - Using various combina-
tion functions: Weighted voting with grid search (AALGS), gradient
descent (AALGD), bagging (AALB), AdaBoost (AALA) and Pairwise
coupling (AALPC).

• Relational OvO with EM segmentation - Also using various combi-
nation functions: Weighted voting with grid search (EMGS), gradient
descent (EMGD), bagging (EMB), AdaBoost (EMA) and Pairwise
coupling (EMPC).

• Relational OvA - With AAL (OvAAAL) and EM (OvAEM).

First, we compare the propositional classifiers with AAL segmentation
presented in Figure 7.6a. We use Weka (Hall et al., 2009) with the multi-
class classification setting for the propositional approaches. As can be
seen from the figure, SVMMG, which uses the voxel data as is, does better
than the propositional algorithms which use the AAL segmented data.
The best relational algorithm (AAALB) does even better than the SVMMG
approach.

We also evaluate different versions of the relational learning algorithms
presented in Figure 7.6. We also included the OvA classifiers with AAL
and EM in the results. It can be seen that the best performing algorithms
use AAL segmentation technique. AALB has the best results among the
different relational algorithms. The other classification functions did not
have nearly as good a performance as bagging but are significantly better
than the propositional algorithms. This clearly shows that treating the
problem as a multi-class classification problem may not be the best solution
(OvA methods also do not perform well). Instead, posing the problem as a
slightly more complex OvO problem significantly improves performance.

In general, the relational methods have a superior performance com-
pared to the propositional algorithms with AAL segmentation. The knowledge-
based segmentation algorithm of AAL also has a higher performance than

163

(a) Propositional classifiers compared against the relational AALB (red with black
border).

(b) Comparison of different relational classifiers.

Figure 7.6: Classification performances in terms of “Area under the ROC
curve" of the different algorithms on Alzheimer’s prediction.

the knowledge-free EM algorithm. An interesting future direction would
be to guide the EM algorithm using the domain knowledge to improve
segmentation. In problems such as identifying MCI patients who are likely
to develop AD, it may help to combine the clinical knowledge to guide the

164

segmentation algorithm and the classifiers.

Figure 7.7: Predictive segments as identified by our pipeline (different
colors indicate different regions).

I present the segments that are used in our learned models in Figure
7.7. These are the regions that discriminate among the classes as identified
by our models and correspond to the medically relevant regions as verified
by neuroradiologists. The first, second, and third images correspond to
predicting AD (vs. CN), AD (vs. MCI) and MCI (vs. CN) respectively.
Our algorithm shows consistency in detecting the regions (for example,
hippocampus, occipital, parietal and temporal regions) that are known
clinically to be affected by AD (Sun et al., 2009). This shows that the
learning algorithms perfectly complement the segmentation algorithms
in this task.

7.3 Knowledge Base Acceleration

The Knowledge Base Acceleration (KBA) task5 seeks to help humans ex-
pand knowledge bases like Wikipedia by automatically recommending
edits based on incoming content streams. To this end, KBA systems must
filter a large stream of text to find changes to a knowledge base. To recog-
nize changes in knowledge base profiles for particular entities of interest,

5http://trec-kba.org/

165

a KBA system has to extract relations (slot fillers) for these entities from
the corpus stream and find novel relations from these extractions. This
work has been published in Text Retrieval Conference (Khot et al., 2013b).

Given the scale of the streaming corpus (~9TB), running a relation
extraction system on all the documents is infeasible. Hence, our system
had to filter down the documents for relation extraction. Moreover, the
filtering step needs to be much faster than the relation extraction step. Even
after filtering the documents, we need a scalable learning and inference
system to perform relation extraction. Since many of the relations in this
task are not defined in other tasks (as a result, potentially lacking training
data), we also needed a flexible system which allows us to easily specify
new features or rules for these relations.

We use basic string search to quickly filter out irrelevant documents
(that do not mention the query entities). From the filtered list of documents,
we extract relations using Elementary (Niu et al., 2012b; Zhang and Ré,
2013), a statistical inference and learning system. A key advantage of the
Elementary system is that it is a prototype system that scales to very large
corpora. A secondary advantage of this system is that it uses Markov logic
networks (Domingos and Lowd, 2009), allowing to model and capture
rules that are likely, but not certain, to be correct. We use the Stanford NLP
toolkit6 to extract parse trees, dependency graphs and named entities to
generate the features necessary for Elementary. We use the model learned
for TAC-KBP 2010 (Ji et al., 2010) by mapping the relations from KBP
domain to the KBA task. We design features to handle the new relations
and entity types.

I learned various lessons in our first attempt at KBA. Although we
filtered down the documents for relation extraction, we still had to down-
load all the data and decrypt it locally, which was time-consuming. In
hindsight, performing the filtering on Amazon Cloud7 would have been

6http://nlp.stanford.edu/downloads/corenlp.shtml
7http://aws.amazon.com/ec2/

166

more efficient. We also assume given the size of the corpus, that most
of the relations would be mentioned multiple times. Hence we did not
rely on having all the possible rules for each relation, but on capturing the
common cases. But since the set of entities were not popular, we were not
able to extract many slot values for these entities.

The rest of the section is organized as follows. In Section 7.3.1, I present
a few details about the Streaming Slot-Filling task (SSF). Following that,
I present the details of our approach in Section 7.3.2. Finally, I briefly
discuss the results of our approach and future steps to further improve
them.

7.3.1 KBA task

The KBA track provides a large streaming corpus by breaking the docu-
ments up into hourly chunks, which can then be processed sequentially.
The track also provides a list of target entities represented as links to
Wikipedia8 or Twitter9 pages. Given the corpus and entity list as input,
the track consists of two tasks:

• Cumulative Citation Recommendation (CCR) task. The CCR task
involves filtering documents worth citing in a profile of a target
entity. The system needs to recognize whether a document is useful
(time-invariant, e.g., place of birth) or vital (timely, e.g., title).

• Streaming Slot Filling (SSF) task. The SSF task involves detecting
changes to slot filler values (relations) for target entities. The system
needs to extract slot filler values for target entities and then recognize
changes to slot values. We concentrated only on this task in our
system.

8http://www.wikipedia.org/
9http://twitter.com/

167

7.3.2 Our approach

The three key challenges that we faced with Streaming Slot Filling task
are:

1. Handling the large scale of data

2. Extracting slot values for target entities

3. Detecting novel slot values

To solve each of these problems, we developed heuristic approaches that I
outline in this section.

Large scale

Due to the scale of the proposed task (~9TB of compressed data), it is not
feasible to perform relation extraction on the entire corpus in a reasonable
amount of time (< 2 weeks). Similarly, employing many of the standard,
publicly available natural language processing tools would not be feasible
as well. In order to make the corpus size manageable, we search for target
entities (and variants of their names) in the articles. For e.g., if “William
Smith” is a person of interest, we accept any document that mentions
“William", “Bill" or "Smith". If an article contains any useful information
about a target entity, we assume that some variant of the target entity
name will be mentioned in the article. Computing this heuristic is very
fast, as it does not require any processing to be done on the article and
we only need to find the first match for a target entity in the article. We
use a simplified version of the Aho-Corasick algorithm (1975) since we
only need to find the first match. This reduces the size of the corpus
from ∼60TB to a manageable ∼1TB. I implemented parallel version of the
filtering algorithm on these articles to further speed up our system. Since
we ran this step on our local cluster with limited storage space (order of
hundreds of GB), this step still took a week to run.

168

Extracting slot values

To perform relation extraction, we first extract parse trees and depen-
dency graphs for sentences in the filtered articles. Although TREC does
provide some basic NLP annotations as part of the corpus, we employ
Stanford toolkit because we needed dependency graphs as features for
relation extraction. We then used the Elementary system developed at
the University of Wisconsin-Madison to perform relation extraction. At a
high level, Elementary first creates the potential mentions based on the
named entities. It then creates a list of potential relations between pairs
of mentions in the same sentence. For each potential relation, the path in
the dependency graph and parse tree is calculated and used as features
for a logistic regression model. The weights are learned for each feature
and each relation type using gold-standard training data as well as dis-
tant supervision examples (Mintz et al., 2009). For further details about
Elementary, please refer to Niu et al. (2012b).

Once these features are obtained, we need to learn the weights for the
features in Elementary. But for the initial runs of the SSF task, there was
no available training data. Hence, we use a model that has been previously
learned using distant supervision (Mintz et al., 2009) on a subset of the
relations for the Knowledge Base Population (TAC KBP 2010) task (Ji et al.,
2010). We found mappings between the relation names from KBP task to
the KBA task, shown in Table 7.3. For the relations in KBA that could not be
mapped, we manually create features based on few sample sentences. To
do so, we search for sample sentences containing these relations and add
the corresponding dependency path or parse tree features to the model.
We assume that capturing few features for these new relations will be
sufficient. Given the scale of the data, we assume that at least one mention
of a valid relation will be extracted using a simple relation extractor. Once
we extract the relations, we employ Elementary’s entity-linking model to
link the slot filler entities with the target entities. We filter out the relations

169

KBP Relations KBA Relation
per : date_of_death DateOfDeath
per : title Titles
per : spouse SignificantOther
per : employee_of,

EmployeeOfper : member_of,
org : member_of,
org : top_employees
org : top_members TopMembers
org : subsidiaries, Affiliate
per : schools_attended

Table 7.3: Mapping between KBP and KBA relations. All extractions of
the relation type on the left were marked as KBA relations of the type on
right.

that did not include any of the query entities.

Novelty detection

Given the extracted relations, we process them chronologically based on
the document time to check for any changes in the slot values. Unlike the
previous steps, this step can not be performed in parallel because novelty
of a slot-filler depends on all the previous (chronologically) slot-fillers. For
every relation, we check if we have already extracted any relations of the
same type for the same entity. If not, we accept this relation as a novel
slot value. If we already have a slot value extracted, we compare the slot
values and accept the new relation as novel if the edit distance between
the two values is large enough.

Figure 7.8 shows the overall system design as a flowchart. As men-
tioned before, we filter the documents using a basic entity filter. We per-
form entity linking and relation extraction using the Elementary software.
We only accept relations over mentions linked to the target entities. We
then perform our basic novelty detection over the stream of extracted rela-

170

Figure 7.8: Overall system design.

tions where the previous extraction are cached. Only the novel relations
are then used to create the output for the SSF task.

7.3.3 Results

There were two evaluation measures used by TREC for this task: (1) aver-
age F-1 score and (2) average Scaled Utility (SU; Hull and Robertson 1999).
Each score is calculated over four stages in a pipeline:

• SSF-DOCS: In this stage, the system’s capability to identify the
slot type in a document is evaluated. The scores are calculated by
comparing the slot types of the output run against the annotations
(the slot values are ignored).

• SSF-OVERLAP: This stage evaluates the slot values of the output
run by checking for overlap with the annotations, but only considers

171

the true positives from the previous stage.

• SSF-FILL: This stage too takes as input the true positives from the
previous stage but checks if the output run recognizes the equiva-
lence between the same slot values.

• SSF-DATE_HOUR: This stage checks if the system is able to recog-
nize the first occurrence of the slot value and ignores the duplicates.

Since our approach concentrated on a subset of the relations (due to limited
training data on some relations), the F1 score on any of these measures
averaged over all the relations was low. In general for all the stages, our
F1 score was close to zero but the scaled utility was close to the median
value of all the reported scores. Our basic assumption that most of the
relations would be mentioned multiple times in multiple ways was flawed.
Since we only relied on capturing the common cases, we missed many
extractions for the uncommon entities resulting in a low recall.

172

8 conclusion

Machine Learning (ML) has been used to address challenging tasks such
as relation extraction, web search, medical diagnosis, etc. (Ferrucci et al.,
2010; Kosala and Blockeel, 2000; Kononenko, 2001). Although popular
ML approaches are able to handle noise in the domains via probabilities,
handling structured data with inter-related objects is non-trivial and often
unaddressed. On the other hand, first-order logic (FOL) can naturally
represent structured data, while traditionally FOL can only make Boolean
predictions. One promising approach to handle noisy structured data in
ML is Statistical Relational Learning (SRL), which combines first-order
logic with probability theory. My thesis has mainly focused on developing
learning methods for SRL.

The expressivity of SRL, which allows it to model noisy structured
data, comes at the cost of complexity of the models. Although SRL models
such as MLNs (Domingos and Lowd, 2009) and Problog (Raedt et al.,
2007) make it relatively easy for an expert to specify the model (assuming
some knowledge of first-order logic), such a model may not always be
known or easy to define. Structure-learning approaches (Mihalkova and
Mooney, 2007; Biba et al., 2008a; Kok and Domingos, 2009, 2010; Huynh
and Mooney, 2008) have been developed for SRL models to directly learn
the structure of the model. But the space of possible structures in relational
models can be very large and most of these approaches need to re-learn
the parameters for every candidate structure resulting in computationally
slow approaches.

In this thesis, I presented structure learning approaches which learn
the structure and parameters of the model simultaneously. I presented
extensions of this approach for learning multiple relational models and
learning under two kinds of missing observations. The various algorithms1

1Code and datasets available at http://pages.cs.wisc.edu/~tushar/Boostr/.

173

(used as paragraph headings) and the contributions of this thesis are
presented next.

RFGB: In Chapter 3, I present the basic algorithm for Relational Func-
tional Gradient Boosting (RFGB). Our approach uses Friedman’s functional-
gradient boosting (2001) to learn multiple weakly predictive models in-
stead of a single complex model. The model is incrementally updated to
correct the mistakes made in the previous iteration. In every iteration, the
model is updated by fitting a regression function to the error and adding
this function to the model. Since any off-the-shelf regression learner can
be used to fit the regression function, advances made in the learning of
relational regression functions can be easily plugged in. We use relational
regression trees (Blockeel and Raedt, 1998) as the regression functions,
which introduces non-linearity and context-specific independence in the
model. The non-linearity results in our approach learning a linear sum of
non-linear models. The context-specific independence reduces the number
of parameters in the model and can be exploited for inference.

RDNBoost: In Section 3.3, I present our approach (Natarajan et al., 2012)
to learn the structure of RDNs using RFGB as the underlying algorithm.
RDNs approximate the joint distribution as a product of conditional distri-
butions where each conditional distribution can be learned independently.
We use RFGB to learn the conditional distributions for every predicate.
This was the first boosting-based approach designed to learn the structure
of RDNs. Based on prior work (Blockeel and Raedt, 1998; Srinivasan, 2004),
we developed a relational tree learner which uses ILP “mode” specifica-
tions to limit the search space at every node. We also defined a special
mode to learn non-trivial recursive rules.

MLNBoost: In Section 3.4, I present our approach (Khot et al., 2011) to
learn the structure of MLNs based on RFGB. We note that MLN learning

174

approaches maximize pseudo-likelihood which approximates the true
joint distribution as a product of conditional distributions. Hence, MLNs
can be viewed as a set of RDNs for the purposes of learning, which is
an important contribution of my work. Since MLN semantics use the
number of true groundings to calculate the probabilities, we modified the
definition of the regression function in standard RFGB. We also developed
a new scoring function for learning relational regression trees with MLN
semantics. Our approach also uses a clause-based representation of the
regression functions for faster inference, showing the flexibility of our
approach.

Experiments: In Section 3.5, I present multiple experiments showing
that our approach can learn more accurate models than state-of-the-art
structure-learning approaches for RDNs and MLNs. I also show that in
some cases the structure learned using RFGB can be more accurate than
an expert-defined model and can be learned in less time than the weight-
learning approaches. We evaluate on relational datasets from diverse
tasks such as link prediction, entity resolution, information extraction,
and adverse drug event predictions.

RFGB-EM: In Chapter 4, I present our approach for learning the struc-
ture of SRL models in the presence of missing data (Khot et al., 2013a).
We derive EM update equations for relational models and use RFGB in
the M-step to incrementally update the structure using RFGB. Since this
approach extends RFGB to handle missing data, any functional-gradient
boosting based approach developed for relational models can use this
approach. We show the generality of our approach by learning the struc-
ture of RDNs, MLNs, and relational policies. Our approach is the first
structural-EM approach derived for these three models.

175

RelOCC: One of the issues with applying our approach to NLP tasks
was the lack of negatively labeled examples. Since our EM approach can
not handle completely missing values of one class, I present a novel non-
parametric approach developed for relational one-class classification in
Chapter 5. We define the first relational distance measure that can be
learned specifically for the task of one-class classification. We use rela-
tional trees to define this distance measure with a local splitting criterion
for scoring a node. The splitting criterion is designed to maximize the
one-class classification performance given the current distance measure.
Hence, our approach can iteratively learn a sequence of relational trees
where every new tree learned improves upon the one-class classification
performance of the previous model. Moreover our approach can be viewed
as propositional one-class classification techniques such as kernel density
estimation (Parzen, 1962) and SVDD (Tax and Duin, 1999) with a relational
distance measure learned specifically for this task.

MLN-CR: Apart from learning of SRL models, this thesis also presents
an approach to transform knowledge from directed models to undirected
models, namely MLNs. Although it has been shown that simple directed
models can be represented using MLNs, combining rules from relational
directed models had not been translated into MLNs. In Chapter 6, I present
an algorithm to translate multi-level combining rules into a MLN thereby
introducing independence of causal influence (ICI) in MLNs. I show
two combination functions, noisy-or and weighted-mean, that can be
represented using our approach. I define four types of clauses based on
prior work on combination functions (Natarajan et al., 2008) that can be
used to represent both of these combination functions. I also show the
correctness of our transformation and how ICI can improve the accuracy
of the model with very few rules.

Finally in Chapter 7, I show how RFGB can be used for Alzhiemer’s

176

disease prediction using MRI images as well as to augment expert rules
for temporal relation extraction. I present our approach for a large-scale
novel relation extraction task, namely TREC Knowledge Base Acceleration
(KBA), where we processed terabytes of streaming data to detect changes
in extracted relations.

8.1 Future Work

Following the work presented, there are multiple avenues of future re-
search and open problems. I have presented some of the future directions
specific to the approaches mentioned above in the corresponding chapter’s
discussion section. Of these directions, I present two major directions of
future research next, namely learning of directed models and efficient
inference based on our models.

8.1.1 Directed models

As shown in Chapter 3, I used relational boosting to learn models for
bidirected cyclic models (RDN) and undirected models (MLN). A poten-
tial extension of our work is to learn directed acyclic relational models
such as Probabilistic Relational Models (PRM; Getoor et al. 2001). Unlike
cyclic models, directed acyclic models always guarantee that the prod-
uct of the conditional distributions equals the joint distribution. Since
directed models do not have a normalization term, commonly required by
undirected models, inference and consequently learning for these models
can be much more efficient than undirected models.

To extend our approach to directed relational models, we need to
ensure acyclicity of the model. Acyclicity can be ensured in Bayesian
networks by checking for cycles in the network generated using all in-
stances, whereas relational models can check for cycles at the first-order
logic level. For example, a model for disease that contains only the

177

clause disease(X) ← ageAbove(X, 50) would never result in a cycle in
the ground network because the disease predicate depends only on the
ageAbove predicate. Hence, we can avoid generating the ground network
for all the instances by leveraging the first-order logic representation. On
the other hand, clauses such as parent(X, Y)∧ disease(Y)→ disease(X)

appear to have created a cyclic dependency, since the disease predicate
depends on the parent and disease predicates. But whether a person
has a disease or not would only depend on his ancestors having that dis-
ease or not. If we generated the ground network for this clause, it would
not contain any cycles. Hence, checking for cycles on the predicates may
ignore some valid structures, while checking for cycles on the ground
network would be too expensive, as it would require grounding out every
candidate structure.

To handle the acyclicity condition, one approach is to order the predi-
cates based on some information-theoretic measure and use the ordering
to ensure acyclicity. Once we have an ordering on the target predicates, say
{p1, . . .pk}, we use only p1, . . . ,pi−1 and the evidence predicates as parents
for pi. Since there is no edge from pj to pi where i 6 j, any path in this
graph starting from pj would never loop back to pj. Now, we can use our
relational boosting approach to learn the conditional distributions for each
predicate with the restricted set of parents. So the problem of avoiding
cycles during structure-learning can be reduced to finding an ordering
over the predicates.

Cyclic dependencies on predicates do not always imply cyclic depen-
dencies on the groundings. Requiring acyclicity in the predicate dependen-
cies may result in learning a sub-optimal model. For example, consider
the task of classifying tokens (X) within citations into three categories:
{title(X),author(X), venue(X)}. One obvious rule is “if the word before
X is not a punctuation and that word is of type venue then X is of type
venue too”. We can write that as a rule: before(X, Y) ∧ notPunct(Y) ∧

178

venue(Y) → venue(X). This rule results in a cyclic dependency among
the predicates but not in the ground network.

PRMs (Getoor et al., 2001) have handled this problem by requiring
the user to specify the predicates in a domain that would not result in a
cycle. Rather than relying on the user to specify the acyclicities, potentially
we can use the data to check if a potential structure will result in a cycle.
Naively checking for cycles in the ground candidate network would be
computationally intensive. However, we can sample examples or paths
from the ground network to approximately prune out acyclic structures.
We can perform a random walk over the ground network without con-
structing the complete network. We can start with a ground literal and
randomly pick a parent ground literal by grounding a random node from
a random tree. We repeat this process till we reach a literal that we already
visited proving that the model is cyclic or reach an evidence literal. When
we reach an evidence literal, we start the random walk from a new ground
literal. Also during the random walk, with probability p, we can restart
the walk from a new ground literal.

8.1.2 Scalable models

Although our approaches can scale to millions of facts (Khot et al., 2012),
they cannot handle web-scale domains yet. There are multiple approaches
possible to scale our learning algorithm.

Databases: One approach to scale RFGB is to use databases to store and
process the data, instead of processing the data in-memory. We can now
replace Horn clauses with SQL (Ramakrishnan and Gehrke, 2003) queries,
which can speed up both the learning as well as inference of our models.
When learning MLNs, we also need to calculate the number of groundings
of a Horn clause, which can be done efficiently using databases. To further
scale up our model, we can use approximate counts of the groundings

179

instead of exact counts. The count of the groundings, which are the
number of results of an SQL query, can be calculated using cardinality
estimation (Ramakrishnan and Gehrke, 2003) techniques from databases.

Parallelism: For learning RDNs, each conditional distribution is learned
independently and hence RDN-Boost can be naturally parallelized by
learning each distribution on a different machine or core. Even while
learning a single tree, parallelism can be exploited by performing the
search at every node on a different machine. Since our trees (both in RFGB
and RelOCC) partition the examples into disjoint sets and make local
scoring decisions at every node, we can search over all possible literals
at every node independent of the other nodes (once the parent nodes are
fixed).

Scalable Inference: For a model to be usable on a web-scale domain,
the inference approach should also be scalable. As mentioned before,
we can use databases for efficient evaluation of the trees and thereby
scale inference. We can also exploit parallelism for scalable inference. For
instance, since we use a set of trees as our model, we can perform inference
on different machines using a single tree on each machine (Map step in
Map-Reduce) and then merge the predictions from each tree (Reduce step
in Map-Reduce). When performing joint inference, multiple iterations
of this Map-Reduce step need to be performed, where predictions from
previous iteration are used as evidence in the next iteration. Even while
performing inference in-memory and on a single machine, we can exploit
the model structure for efficient inference, which I present in Section 8.1.4.
These techniques can also be used with the database and Map-Reduce.

180

8.1.3 Adaptable models

Due to the incremental updating of the model in our boosting approach, it
can naturally adapt to new examples, new domain knowledge or change
in label definition. The challenge in these approaches lies in recognizing
when to change the learned model and how much to change it by, given
new information from the user.

New examples: In many tasks, the predictions of our model can be
directly seen by the user, who can then easily point out any mistakes made
by the model. For example in medical domain, our system can be used
to suggest drugs based on a patient’s symptoms. If the doctor disagrees
with our suggestions, he can mark these as incorrect. Similar system can
be used in web search to mark irrelevant webpages, relation extraction to
mark incorrect relations, etc. The model may also directly ask the user or
an expert to mark the examples it is unsure about, to get better training
examples (known as active learning).

Our boosting approach can be modified to maintain a list of “represen-
tative” examples from the training set. Ideally, at least one example from
this set reaches every leaf in each tree to ensure coverage and an example
is weighed based on the number of examples that take similar paths. As
our model receives more labeled examples from the user, it can add them
to the set of representative examples. Once the error on this set increases
by ε, we can learn a new tree to update the model via functional-gradient
boosting. By using a smaller set of representative examples, we can ensure
efficient computation of these updates. We can also recompute the set of
representative examples once they become too large.

New rules: Rather than providing individual examples, an expert can
provide a rule to correct our model and thereby cover a large space of
examples. For example, if our model suggests a drug, A that can lead to

181

complications due to another prescribed drug, B; rather than marking
A incorrect every time B is prescribed, the doctor can provide this as a
rule to our system. We can now add this rule to our current model as
another tree. However, since the rule may not always be correct or may be
incomplete, we need to use the training examples to calculate the weight
of the rule or modify the rule by introducing or dropping literals.

New definition: Over time the definition of the learned concept might
change (known as concept drift). For example, riots in Egypt were anoma-
lous in 2012, but by late 2013 were not considered anomalous. To recognize
the change in concept, feedback from the user in some manner is needed,
otherwise the system will be oblivious to this change. Given new exam-
ples or rules from the user, we can use the approaches presented above
to update our model. However, we need to relax the requirement of the
model fitting to the original training examples, and in certain scenarios,
drop nodes from the trees or drop trees completely, if they were learned
using the original training examples.

8.1.4 Efficient inference

Our previous learning approaches use relational regression trees to repre-
sent the conditional distributions. Similarly, relational probability trees
have been used to compactly represent the conditional distributions in
RDNs (Neville and Jensen, 2007). But the inference procedures for re-
lational models do not take advantage of the context-specific indepen-
dence captured by such trees. Inference procedures such as Gibbs sam-
pling (Bishop, 2006) and belief propagation (Koller and Friedman, 2009)
do not leverage the structure of the probability distributions, but instead
use them like a “black box”. One potential extension of our work is to
leverage the tree structure of the distributions to perform faster inference.

182

Belief propagation (BP; Koller and Friedman 2009) is an approximate
inference (exact when the graph has no loops) for graphical models. To
perform belief propagation in relational models, the simplest approach is
to create the ground factor graph. The ground factor graph uses all the
groundings of all the predicates as the variable nodes, which would result
in a large factor graph. Performing inference on such a large graph can be
computationally expensive. Hence lifted inference techniques (Kersting
et al., 2009; Singla and Domingos, 2008) have been developed that used a
compact lifted network for inference. In these lifted approaches, similar
variables as well as factors are clustered together in one node, thereby
reducing the size of the graph and the number of messages.

In our models, we can begin with a lifted factor graph where each
variable node is a first-order predicate and each factor is a relational prob-
ability tree. Given this lifted factor graph, a message from a variable node
needs to communicate the belief states about all groundings of the predi-
cate corresponding to that variable node. To leverage the tree structure,
rather than using a table to represent these messages, one can use a re-
lational tree representation, which compactly represents these messages.
Since belief propagation performs sums and product operations over the
messages, we need to define these operations for tree-structured messages
too. Approaches defined for first-order decision diagrams (FODD; Joshi
et al. 2011) can be potentially used for relational regression trees.

8.2 Final Wrap-up

In this thesis, I presented my contributions to the field of learning in
Statistical Relational models, specifically in structure learning. My work
demonstrates that functional-gradient boosting can be used to efficiently
learn the structure of SRL models, which can be more accurate and have a
shorter learning time than even parameter-learning approaches. I show

183

my work can be used to learn the structure in presence of missing data
as well as missing examples classes. Since learning structure requires
minimal effort from the expert, my work can further the applicability of
relational models, which I also demonstrate by applying it on diverse
tasks.

184

references

Aho, A. V., and M. J. Corasick. 1975. Efficient string matching: An aid to
bibliographic search. Communications of the ACM 18(6):333–340.

Anderson, G., and B. Pfahringer. 2008. Exploiting propositionalization
based on random relational rules for semi-supervised learning. In Proc.
Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Bell, R., Y. Koren, and C. Volinsky. 2007. The Bellkor solution to the
Netflix prize. Technical Report, AT&T Labs.

Biba, M., S. Ferilli, and F. Esposito. 2008a. Discriminative structure learn-
ing of Markov Logic Networks. In Proc. Inductive Logic Programming.

———. 2008b. Structure learning of Markov logic networks through
iterated local search. In Proc. European Conference on Artificial Intelligence.

Bilenko, M., and R. Mooney. 2003. Adaptive duplicate detection using
learnable string similarity measures. In Proc. Knowledge Discovery and
Data Mining.

Bishop, C. 2006. Pattern Recognition and Machine Learning. Springer-Verlag
New York, Inc.

Blockeel, H., and L. De Raedt. 1998. Top-down induction of first-order
logical decision trees. Artificial Intelligence 101:285–297.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller. 1996. Context-
specific independence in Bayesian Networks. In Proc. Uncertainty in
Artificial Intelligence.

Breiman, L. 1996. Bagging predictors. Machine Learning 24:123–140.

185

Chambers, N., and D. Jurafsky. 2008. Jointly combining implicit con-
straints improves temporal ordering. In Proc. Empirical Methods in Natural
Language Processing.

Chan, P., and S. Stolfo. 1998. Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection.
In Proc. Knowledge Discovery and Data Mining.

Chandola, V., A. Banerjee, and V. Kumar. 2009. Anomaly detection: A
survey. ACM Computing Surveys 41(3):1–58.

Chickering, D. 1996. Learning Bayesian networks is NP-Complete. In
Learning from Data: Artificial Intelligence and Statistics V, 121–130. Springer-
Verlag.

Comité, F., F. Denis, R. Gilleron, and F. Letouzey. 1999. Positive and
unlabeled examples help learning. In Proc. Algorithmic Learning Theory.

Craven, M., D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam,
and S. Slattery. 1998. Learning to extract symbolic knowledge from the
World Wide Web. In Proc. Association for the Advancement of Artificial
Intelligence Conference.

Craven, M., and J. Shavlik. 1996. Extracting tree-structured representa-
tions of trained networks. In Proc. Neural Information Processing Systems.

Cussens, J. 1998. Using prior probabilities and density estimation for
relational classification. In Proc. Inductive Logic Programming.

D’Amato, C., S. Staab, and N. Fanizzi. 2008. On the influence of description
logics ontologies on conceptual similarity. In Proc. Knowledge Engineering
and Knowledge Management.

186

Davis, J., and M. Goadrich. 2006. The relationship between Precision-
Recall and ROC curves. In Proc. International Conference on Machine Learn-
ing.

Davis, J., I. Ong, J. Struyf, E. Burnside, D. Page, and V.S. Costa. 2007.
Change of representation for statistical relational learning. In Proc. Inter-
national Joint Conference on Artificial Intelligence.

Dempster, A., N. Laird, and D. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society B.39:1–38.

Domingos, P., and D. Lowd. 2009. Markov Logic: An Interface Layer for AI.
Morgan & Claypool.

Ferrucci, D., E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur,
A. Lally, J. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty. 2010.
Building Watson: An overview of the DeepQA Project. AI Magazine 31(3):
59.

Freund, Y., and R. Schapire. 1996. Experiments with a new boosting
algorithm. In Proc. International Conference on Machine Learning.

Friedman, J. 2001. Greedy function approximation: A gradient boosting
machine. Annals of Statistics 1189–1232.

Friedman, N. 1998. The Bayesian structural EM algorithm. In Proc.
Uncertainty in Artificial Intelligence.

Friedman, N., D. Geiger, and M. Goldszmidt. 1997. Bayesian network
classifiers. Machine Learning 29(2-3):131–163.

Galar, Mikel, Alberto Fernández, Edurne Barrenechea, Humberto
Bustince, and Francisco Herrera. 2011. An overview of ensemble meth-

187

ods for binary classifiers in multi-class problems: Experimental study on
one-vs-one and one-vs-all schemes. Pattern Recognition 44:1761–1776.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer. 2001. Learning proba-
bilistic relational models. Relational Data Mining 307–338.

Getoor, L., and B. Taskar, eds. 2007. Introduction to Statistical Relational
Learning. MIT Press.

Haddawy, P. 1994. Generating Bayesian networks from probability logic
knowledge bases. In Proc. Uncertainty in Artificial Intelligence.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten.
2009. The WEKA data mining software: An update. SIGKDD Explorer
Newsletter 11(1):10–18.

Hastie, T., and R. Tibshirani. 1998. Classification by pairwise coupling.
In Proc. Neural Information Processing Systems.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. The Elements of Statistical
Learning. Springer.

Heckerman, D., and J. Breese. 1994. A new look at causal independence.
In Proc. Uncertainty in Artificial Intelligence.

Heckerman, D., D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.
2001. Dependency networks for inference, collaborative filtering, and
data visualization. Journal of Machine Learning Research 1:49–75.

Horváth, T., S. Wrobel, and U. Bohnebeck. 2001. Relational instance-based
learning with lists and terms. Machine Learning 43:53–80.

Hull, D., and S. Robertson. 1999. The TREC–8 filtering track final report.
In Proc. Text REtrieval Conference.

188

Huynh, T., and R. Mooney. 2009. Max-margin weight learning for Markov
logic networks. In Proc. European Conference on Machine Learning.

———. 2011. Online max-margin weight learning for Markov logic
networks. In Proc. SIAM International Conference on Data Mining.

Huynh, T. N., and R. J. Mooney. 2008. Discriminative structure and
parameter learning for Markov logic networks. In Proc. International
Conference on Machine Learning.

Jaeger, M. 1997. Relational Bayesian networks. In Proc. Uncertainty in
Artificial Intelligence.

———. 2007. Parameter learning for relational Bayesian networks. In
Proc. International Conference on Machine Learning.

———. 2008. Model-theoretic expressivity analysis. In Proc. Probabilistic
Inductive Logic Programming.

Jank, W. 2005. Stochastic variants of the EM algorithm: Monte Carlo,
quasi-Monte Carlo and more. In Proc. American Statistical Association.

Jensen, D., and J. Neville. 2002. Linkage and autocorrelation cause feature
selection bias in relational learning. In Proc. International Conference on
Machine Learning.

Ji, H., R. Grishman, H. Dang, and K. Griffit. 2010. An overview of the TAC
2010 Knowledge Base Population track. In Proc. Text Analysis Conference.

Joshi, S., K. Kersting, and R. Khardon. 2011. Decision-theoretic plan-
ning with generalized first-order decision diagrams. Artificial Intelligence
175(18):2198–2222.

Kersting, K., B. Ahmadi, and S. Natarajan. 2009. Counting Belief Propa-
gation. In Proc. Uncertainty in Artificial Intelligence.

189

Kersting, K., and L. De Raedt. 2007. Bayesian logic programming: Theory
and tool. In Proc. An Introduction to Statistical Relational Learning, ed.
L. Getoor and B. Taskar.

Kersting, K., and T. Raiko. 2005. ‘Say EM’ for selecting probabilistic
models for logical sequences. In Proc. Uncertainty in Artificial Intelligence.

Khan, S., and M. Madden. 2009. A survey of recent trends in one class clas-
sification. In Proc. Irish Conference on Artificial Intelligence and Cognitive
Science.

Khot, T., S. Natarajan, K. Kersting, and J. Shavlik. 2011. Learning Markov
logic networks via functional gradient boosting. In Proc. IEEE Interna-
tional Conference on Data Mining.

———. 2013a. Learning relational probabilistic models from partially
observed data - opening the closed-world assumption. In Proc. Inductive
Logic Programming. Accepted.

———. 2014a. Gradient-based boosting for statistical relational learning
: The Markov logic network and missing data cases. Machine Learning.
Under review.

Khot, T., S. Natarajan, and J. Shavlik. 2014b. Relational one-class classifica-
tion: A non-parametric approach. In Proc. Association for the Advancement
of Artificial Intelligence Conference.

Khot, T., S. Srivastava, S. Natarajan, and J. Shavlik. 2012. Learning re-
lational structure for temporal relation extraction. In Proc. Statistical
Relational AI Workshop.

Khot, T., C. Zhang, S. Natarajan, C. Ré, and J. Shavlik. 2013b. Bootstrap-
ping knowledge base acceleration. In Proc. Text REtrieval Conference.

190

Kim, J., T. Ohta, S. Pyysalo, Y. Kano, and J. Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Proc. Biomedical Natural
Language Processing Workshop.

Kindermann, R., and J. Snell. 1980. Markov random fields and their applica-
tions. American Mathematical Society.

Kok, S., and P. Domingos. 2005. Learning the structure of Markov logic
networks. In Proc. International Conference on Machine Learning.

———. 2009. Learning Markov logic network structure via hypergraph
lifting. In Proc. International Conference on Machine Learning.

———. 2010. Learning Markov logic networks using structural motifs.
In Proc. International Conference on Machine Learning.

Kok, S., M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd,
J. Wang, A. Nath, and P. Domingos. 2010. The Alchemy system
for statistical relational AI. Technical Report, Department of Com-
puter Science and Engineering, University of Washington, Seattle, WA.
Http://alchemy.cs.washington.edu.

Koller, D., and N. Friedman. 2009. Probabilistic Graphical Models: Principles
and Techniques. The MIT Press.

Koller, D., and A. Pfeffer. 1997a. Learning probabilities for noisy first-
order rules. In Proc. International Joint Conference on Artificial Intelligence.

———. 1997b. Object-oriented Bayesian networks. In Proc. Uncertainty
in Artificial Intelligence.

Kononenko, I. 2001. Machine learning for medical diagnosis: History,
state of the art and perspective. Artificial Intelligence in Medicine 23:89–109.

Kosala, R., and H. Blockeel. 2000. Web mining research: A survey. ACM
SIGKDD Exploration Newsletter 2(1):1–15.

191

Landwehr, N., A. Passerini, L. De Raedt, and P. Frasconi. 2010. Fast
learning of relational kernels. Machine Learning 78:305–342.

Lawrence, S., C. Giles, and K. Bollacker. 1999. Autonomous citation
matching. In Proc. AGENTS.

Li, X., and Z. Zhou. 2007. Structure learning of probabilistic relational
models from incomplete relational data. In Proc. European Conference on
Machine Learning.

Liu, F., K. Ting, and Z. Zhou. 2012. Isolation-based anomaly detection.
Transactions on Knowledge Discovery from Data 6(1):3.

Lowd, D., and P. Domingos. 2007. Efficient weight learning for Markov
logic networks. In Proc. Principles and Practice of Knowledge Discovery in
Databases.

Manning, C., and H. Schütze. 1999. Foundations of Statistical Natural Lan-
guage Processing. MIT Press.

McCallum, A., K. Nigam, J. Rennie, and K. Seymore. 2000. Automating
the construction of internet portals with machine learning. Information
Retrieval 3(2):127–163.

Mihalkova, L., and R. Mooney. 2007. Bottom-up learning of Markov logic
network structure. In Proc. International Conference on Machine Learning.

Mintz, M., S. Bills, R. Snow, and D. Jurafsky. 2009. Distant supervision
for relation extraction without labeled data. In Proc. Association for Com-
putational Linguistics.

Mitchell, T. 1997. Machine Learning. McGraw-Hill, Inc.

Moya, M., and D. Hush. 1996. Network constraints and multi-objective
optimization for one-class classification. Neural Networks 9(3):463–474.

192

Muggleton, S. 1997. Learning from positive data. In Proc. Inductive Logic
Programming.

Muggleton, S., and L. De Raedt. 1994. Inductive logic programming:
Theory and methods. Journal of Logic Programming 19/20:629–679.

Muggleton, Stephen. 1996. Stochastic logic programs. In Proc. Advances
in Inductive Logic Programming.

Natarajan, S., and E. Altendorf. 2005. First order conditional influence
language. Technical Report, School of EECS, Oregon State University,
USA.

Natarajan, S., S. Joshi, P. Tadepalli, K. Kristian, and J. Shavlik. 2011. Im-
itation learning in relational domains: A functional-gradient boosting
approach. In Proc. International Joint Conference on Artificial Intelligence.

Natarajan, S., T. Khot, K. Kersting, B. Guttmann, and J. Shavlik. 2012.
Gradient-based boosting for statistical relational learning: The relational
dependency network case. Machine Learning.

Natarajan, S., T. Khot, D. Lowd, P. Tadepalli, K. Kersting, and J. Shavlik.
2010. Exploiting causal independence in Markov logic networks: Com-
bining undirected and directed models. In Proc. European Conference on
Machine Learning.

Natarajan, S., B. Saha, S. Joshi, A. Edwards, T. Khot, E. Davenport, K. Ker-
sting, C. Whitlow, and J. Maldjian. 2013. Relational learning helps in
three-way classification of Alzheimer patients from structural magnetic
resonance images of the brain. International Journal of Machine Learning
and Cybernetics 1–11.

Natarajan, S., P. Tadepalli, T. Dietterich, and A. Fern. 2008. Learning first-
order probabilistic models with combining rules. Annals of Mathematics
and AI 54(1-3):223–256.

193

Natarajan, Sriraam, Prasad Tadepalli, Eric Altendorf, Thomas G. Diet-
terich, Alan Fern, and Angelo Restificar. 2005. Learning first-order prob-
abilistic models with combining rules. In Proc. International Conference in
Machine Learning.

Neville, J., and D. Jensen. 2007. Relational dependency networks. In
Introduction to Statistical Relational Learning, ed. L. Getoor and B. Taskar,
653–692. MIT Press.

Neville, J., D. Jensen, L. Friedland, and M. Hay. 2003a. Learning relational
probability trees. In Proc. Knowledge Discovery and Data Mining.

Neville, J., D. Jensen, and B. Gallagher. 2003b. Simple estimators for
relational Bayesian classifiers. In Proc. IEEE International Conference on
Data Mining.

Ngo, L., and P. Haddawy. 1996. Answering queries from context-sensitive
probabilistic knowledge bases. Theoretical Computer Science 171:147–177.

Niculescu-Mizil, A., and R. Caruana. 2005. Obtaining calibrated proba-
bilities from boosting. In Proc. Uncertainty in Artificial Intelligence.

Nilsson, N. 1986. Probabilistic logic. Artificial Intelligence 28(1):71–88.

Niu, F., C. Zhang, C. Ré, and J. Shavlik. 2012a. Scaling inference for
Markov logic via dual decomposition. In Proc. IEEE International Confer-
ence on Data Mining.

Niu, Feng, Ce Zhang, Christopher Ré, and Jude Shavlik. 2012b. Elemen-
tary: Large-scale knowledge-base construction via machine learning and
statistical inference. IJSWIS Special Issue on Web-Scale Knowledge Extrac-
tion.

Parzen, E. 1962. On estimation of a probability density function and
mode. The Annals of Mathematical Statistics 33(3):1065–1076.

194

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc.

Platt, J. 1999. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In Proc. Advances in
Large Margin Classifiers.

Poole, D. 1993. Probabilistic Horn abduction and Bayesian networks.
Artificial Intelligence Journal 81–129.

Poon, H., and P. Domingos. 2007. Joint inference in information extraction.
In Proc. Association for the Advancement of Artificial Intelligence Conference.

Pustejovsky, J., J. Castaño, R. Ingria, R. Saurí, R. Gaizauskas, A. Setzer,
and G. Katz. 2003a. TimeML: Robust specification of event and tempo-
ral expressions in text. In Proc. International Workshop on Computational
Semantics.

Pustejovsky, J., P. Hanks, R. Sauri, A. See, R. Gaizauskas, A. Setzer,
D. Radev, B. Sundheim, D. Day, L. Ferro, and M. Lazo. 2003b. The TIME-
BANK corpus. In Proc. Corpus Linguistics.

Raedt, L. De, A. Kimmig, and H. Toivonen. 2007. Problog: A probabilistic
Prolog and its application in link discovery. In Proc. International Joint
Conference on Artificial Intelligence.

Ramakrishnan, R., and J. Gehrke. 2003. Database management systems.
McGraw-Hill Inc.

Ratliff, N., A. Bagnell, and M. Zinkevich. 2006. Maximum margin plan-
ning. In Proc. International Conference on Machine Learning.

Richardson, M., and P. Domingos. 2004. Markov logic net-
works. Technical Report, Department of Computer Science

195

and Engineering, University of Washington, Seattle, WA.
Http://www.cs.washington.edu/homes/pedrod/mln.pdf.

———. 2006. Markov logic networks. Machine Learning 62:107–136.

de Ridder, D., D. Tax, and R. Duin. 1998. An experimental comparison
of one-class classification methods. In Proc. Conference of the Advanced
School for Computing and Imaging.

Russell, S., and P. Norvig. 2003. Artificial Intelligence: A Modern Approach.
Pearson Education.

Schölkopf, B., R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt. 2000.
Support vector method for novelty detection. In Proc. Neural Information
Processing Systems.

Settles, B. 2012. Active Learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan & Claypool.

Shavlik, J., and S. Natarajan. 2009. Speeding up inference in Markov logic
networks by preprocessing to reduce the size of the resulting grounded
network. In Proc. International Joint Conference on Artificial Intelligence.

Singla, P., and P. Domingos. 2005. Discriminative training of Markov logic
networks. In Proc. Association for the Advancement of Artificial Intelligence
Conference.

———. 2006. Entity resolution with Markov logic. In Proc. IEEE Interna-
tional Conference on Data Mining.

———. 2007. Markov logic in infinite domains. In Proc. Uncertainty in
Artificial Intelligence.

———. 2008. Lifted first-order belief propagation. In Proc. Association
for the Advancement of Artificial Intelligence Conference.

196

Srinivasan, A. 2004. The Aleph Manual.

Sun, L., R. Patel, J. Liu, K. Chen, T. Wu, J. Li, E. Reiman, and J. Ye. 2009.
Mining brain region connectivity for Alzheimer’s disease study via sparse
inverse covariance estimation. In Proc. Knowledge Discovery and Data
Mining.

Supekar, K., V. Menon, D. Rubin, M. Musen, and M. Greicius. 2008.
Network analysis of intrinsic functional brain connectivity in Alzheimer’s
disease. PLoS Computational Biology 4(6).

Taskar, B., P. Abeel, and D. Koller. 2002. Discriminative probabilistic
models for relational data. In Proc. Uncertainty in Artificial Intelligence.

Tax, D., and R. Duin. 1999. Support vector domain description. Pattern
Recognition Letters 20:1191–1199.

UzZaman, N., and J. F. Allen. 2010. TRIPS and TRIOS system for
TempEval-2: Extracting temporal information from text. In Proc. In-
ternational Workshop on Semantic Evaluation.

UzZaman, N., H. Llorens, J. Allen, L. Derczynski, M. Verhagen, and
J. Pustejovsky. 2012. Tempeval-3: Evaluating events, time expressions,
and temporal relations. CoRR abs/1206.5333.

Van Laer, W., L. Dehaspe, and L. De Raedt. 1994. Applications of a logical
discovery engine. In Proc. Inductive Logic Programming.

Verhagen, M., R. Gaizauskas, F. Schilder, M. Hepple, G. Katz, and J. Puste-
jovsky. 2007. SemEval-2007 Task 15: TempEval temporal relation identifi-
cation. In Proc. International Workshop on Semantic Evaluation.

Verhagen, M., R. Sauri, T. Caselli, and J. Pustejovsky. 2010. SemEval-
2010 Task 13: Tempeval-2. In Proc. International Workshop on Semantic
Evaluation.

197

Viola, P., and M. Jones. 2001. Rapid object detection using a boosted
cascade of simple features. In Proc. Conference on Computer Vision and
Pattern Recognition.

Wei, G., and M. Tanner. 1990. A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms. Journal of
the American Statistical Association 85(411):699–704.

Wellman, M., J. Breese, and R. Goldman. 1992. From knowledge bases to
decision models. The Knowledge Engineering Review 7:35–53.

Xu, Z., K. Kersting, and V. Tresp. 2009. Multi–relational learning with
Gaussian Processes. In Proc. International Joint Conference on Artificial
Intelligence.

Ye, J., K. Chen, T. Wu, J. Li, Z. Zhao, R. Patel, M. Bae, R. Janardan, H. Liu,
G. Alexander, and E. Reiman. 2008. Heterogeneous data fusion for
Alzheimer’s disease study. Knowledge Discovery and Data Mining.

Yoshikawa, K., S. Riedel, M. Asahara, and Y. Matsumoto. 2009. Jointly
identifying temporal relations with Markov logic. In Proc. Association for
Computational Linguistics.

Zadrozny, B., and C. Elkan. 2002. Transforming classifier scores into
accurate multiclass probability estimates. In Proc. Knowledge Discovery
and Data Mining.

Zhang, C., and C. Ré. 2013. Towards high-throughput Gibbs sampling at
scale: A study across storage managers. In Proc. Special Interest Group on
Management Of Data.

Zhang, N., and D. Poole. 1996. Exploiting causal independence in
Bayesian network inference. Journal of Artificial Intelligence Research 5:
301–328.

198

Zhu, X., and A. Goldberg. 2009. Introduction to Semi-Supervised Learn-
ing. Synthesis Lectures on Artificial Intelligence and Machine Learning,
Morgan & Claypool Publishers.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Boosted Statistical Relational Learning
	Thesis Statement
	Thesis Outline

	Background
	Technical Background
	Representation: First-order logic
	Uncertainty: Graphical models

	Statistical Relational Learning Models
	Relational Dependency Networks
	Markov Logic Networks

	Learning in SRL Models
	Parameter learning
	Structure learning
	Learning trade-offs

	Functional-Gradient Boosting
	Evaluation Approach

	Learning Structure for Relational Models
	Introduction
	Relational Functional Gradient Boosting (RFGB)
	Adapting RFGB for RDNs
	Adapting RFGB for MLNs
	Experiments for RFGB
	Evaluating the boosted RDN approach: WebKB
	Evaluating the boosted MLN approaches: UW-CSE
	Evaluating the boosted RDN and MLN methods: IMDB
	Additional experiments
	Interpretability of the resulting trees
	Probability calibration
	Learning curves

	Discussion and Future Work

	Learning in the Presence of Missing Data
	Introduction
	Structural EM for Relational Functional Gradients
	Gradients for hidden groundings
	Gradients for observed groundings

	The RFGB-EM Algorithm
	Adaptations of RFGB-EM
	RDN adaptation
	MLN adaptation
	Imitation learning adaptation
	Wrap up

	Discussion and Future Work

	Relational One-Class Classification
	Introduction
	Propositional OCC
	Relational OCC
	Tree-based distance
	Density estimation model
	Model learning
	Model interpretations

	Experiments
	UW-CSE
	IMDB
	NFL
	Heart

	Discussion and Future Work

	Bridging the Gap between Directed and Undirected Models
	Causal Independence in Directed Models
	Decomposable combining functions
	Combining rules in directed models

	Decomposable Combining Rules in MLNs
	Transformation of combining rules
	MLN macros

	Experiments
	Discussion and Future Work

	Additional Explorations
	Temporal Relation Extraction
	TempEval tasks
	Structure learning for TempEval-2
	Initial Results

	Alzheimer's Prediction
	Pipeline design
	Experimental results

	Knowledge Base Acceleration
	KBA task
	Our approach
	Results

	Conclusion
	Future Work
	Directed models
	Scalable models
	Adaptable models
	Efficient inference

	Final Wrap-up

	References

