
Learning Markov Logic Networks via Functional Gradient Boosting

Tushar Khot∗, Sriraam Natarajan†, Kristian Kersting‡ and Jude Shavlik§
∗University of Wisconsin-Madison, USA. tushar@cs.wisc.edu

†Wake Forest University School of Medicine, USA. snataraj@wfubmc.edu
‡Fraunhofer IAIS, Germany. kristian.kersting@iais.fraunhofer.de
§University of Wisconsin-Madison, USA. shavlik@cs.wisc.edu

Abstract—Recent years have seen a surge of interest in
Statistical Relational Learning (SRL) models that combine logic
with probabilities. One prominent example is Markov Logic
Networks (MLNs). While MLNs are indeed highly expressive,
this expressiveness comes at a cost. Learning MLNs is a hard
problem and therefore has attracted much interest in the SRL
community. Current methods for learning MLNs follow a two-
step approach: first, perform a search through the space of
possible clauses and then learn appropriate weights for these
clauses. We propose to take a different approach, namely
to learn both the weights and the structure of the MLN
simultaneously. Our approach is based on functional gradient
boosting where the problem of learning MLNs is turned into
a series of relational functional approximation problems. We
use two kinds of representations for the gradients: clause-
based and tree-based. Our experimental evaluation on several
benchmark data sets demonstrates that our new approach can
learn MLNs as good or better than those found with state-of-
the-art methods, but often in a fraction of the time.

INTRODUCTION

In recent years, there has been an increasing interest in
addressing challenging problems that involve rich relational
and noisy data. Fueled by this, several Statistical Relational
Learning methods [1] have been proposed that combine
the expressiveness of first-order logic and the ability of
probability theory to handle uncertainty. These models range
from directed models [2]–[4] to undirected models [5], [6]
and sampling-based approaches [7], [8]. The advantage of
these models is that they can succinctly represent probabilis-
tic dependencies among the attributes of different related
objects, leading to a compact representation of learned
models.

While these models are highly attractive due to their
compactness and comprehensibility, the problem of learn-
ing in these models is computationally intensive. This is
particularly true for Markov Logic Networks (MLNs) [5].
MLNs extend Markov networks to the relational setting by
expressing domain knowledge as a set of weighted logic
formulas. One of the nice features of MLNs is that they
allow the user to write many rules about the domain and
then learn weights for the rules to perform inference.

But the task of learning the rules themselves is an impor-
tant and challenging task and has received much attention
lately [9]–[12]. Bottom-up structure learning [10] uses a
propositional Markov network learning algorithm to identify

paths of ground atoms. These form the templates that are
generalized into first-order formulas. Hypergraph lifting [11]
on the other hand clusters the constants and true atoms to
construct a lifted (first-order) graph. Relational path-finding
on this hypergraph is used to obtain the MLN clauses.
Structural motif learning [12] uses random walks on the
ground network to find symmetrical paths and cluster nodes
with similar path distributions. All the methods obtain the
candidate clauses first, learn the weights and modify the
clauses accordingly.

We propose a different route. We present a MLN-learning
approach that learns the weights and the clauses simultane-
ously. Specifically, we turn the problem of learning MLNs
into a series of relational regression problems by using
Friedman’s functional gradient boosting algorithm [13]. The
key idea in this algorithm is to consider the target potential
function as a series of regression trees learned in a stage-wise
manner. The functional gradient approach has produced state
of the art results in building relational dependency networks
over many domains [14] and has been employed in other
relational learning problems such as relational CRFs [15],
relational policies [16], relational sequences [17], etc.

We use two kinds of representations for the functional
gradients on the pseudo-likelihood for MLNs: clauses and
trees. The former version simply learns a set of clauses
at each gradient step, each with an associated regression
value, while the latter version views MLNs as a set of
relational regression trees. The regression values are the
weights on the MLN clauses. Finally, we compare them
against state-of-the-art algorithms in four different standard
SRL testbeds. The experimental results demonstrate the
superior performance of boosting, both in terms of time
and accuracy of the learned model. Our approach also has
the advantage of learning more predictive rules than the
current MLN structure-learning algorithms. As we show
empirically, in spite of learning more rules, our algorithms
have shorter running times compared to the state-of-the-art
MLN algorithms.

Compared to existing MLN learning approaches, boost-
ing MLNs has the following benefits: (1) The number of
clauses grows with the number of training episodes, in
turn increasing the size of the MLN only as needed; (2)
It learns both the clauses and weights simultaneously; (3)

tkhot
Typewritten Text

tkhot
Typewritten Text

tkhot
Typewritten Text
Appears in ICDM 2011



Because most off-the-shelf relational regression tree/clause
learners can be used for this purpose, it is a flexible learning
algorithm for MLNs. In fact, (4) viewing MLNs as a set of
regression functions itself is a significant contribution. This
view allows one to treat learning MLNs as boosting a set
of conditional distributions. Intuitively, we view an MLN
as a set of Horn clauses per query predicate. In turn, this
suggests one can generalize efficient boosting approaches
recently developed for rapid learning of Relational Depen-
dency Networks (RDNs) [14] to MLNs.

The rest of the paper is organized as follows: we first
introduce the necessary background on MLNs and functional
gradients. Next, we derive the functional gradient for MLNs
and present our two new learning methods. We then present
our empirical evaluation in four different testbeds and finally
conclude by outlining some areas for future research.

MARKOV LOGIC NETWORKS

One of the most popular and general SRL representations
is Markov Logic Networks (MLNs) [5]. An MLN consists
of a set of formulas in first-order logic and their real-valued
weights, {(wi, fi)}. Together with a set of constants, we can
instantiate an MLN as a Markov network with a node for
each ground predicate (atom) and a feature for each ground
formula. All groundings of the same formula are assigned
the same weight, leading to the following joint probability
distribution over all atoms:

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(1)

where ni(x) is the number of times the ith formula is
satisfied by possible world x and Z is a normalization
constant (as in Markov networks). Intuitively, a possible
world where formula fi is true one more time than a different
possible world is ewi times as probable, all other things
being equal.

FUNCTIONAL GRADIENT BOOSTING OF MLNS

Functional gradient methods have been used previously
to train conditional random fields (CRF) [18] and their
relational extension (TILDE-CRF) [15], to learn relational
policies [16], to learn to label relational sequences [17], and,
as mentioned above, to train RDNs [14].

Assume that the training examples are of the form (xi, yi)
for i = 1, ..., N and yi ∈ {0, 1}. The goal is to fit a model
P (y|x) ∝ eψ(y,x). A standard approach for learning such
models is based on gradient-descent, where the learning
algorithm starts with initial parameters θ0 and computes
the gradient of the likelihood function. Dietterich et al.
[18] used a more general approach to train the potential
functions based on Friedman’s [13] gradient-tree boosting
algorithm where the potential functions are represented by
sums of regression trees that are grown stage-wise. More
formally, Functional Gradient Ascent (FGA) starts with an

initial potential ψ0 and iteratively adds gradients ∆i. After
m steps, the potential is given by ψm = ψ0 + ∆1 +...+
∆m. Here, ∆m, the functional gradient at episode m is

∆m = ηm × Ex,y[∂/∂ψm−1 log P (y|x;ψm−1)] (2)

ηm is the learning rate and ∂/∂ψm−1 is used to represent
the partial derivative with respect to ψm−1. Dietterich et al.
suggested evaluating the gradient at every position in every
example and fitting a regression tree to the derived examples.

FGA is different from the standard gradient ascent meth-
ods in one key aspect - it does not assume a linear
parameterization for the potential function. The standard
assumption is that the potential function ψ is represented
as ψ =

∑
βifi where {β1, ..., βn} = θ are the parameters

of ψ. In FGA, the assumption is more general in that ψ
is a weighted sum of functions (as shown earlier) and the
gradient is given by Equation 2. As Dietterich et al. point
out, the expectation Ex,y[..] cannot be computed as the joint
distribution P (x,y) is unknown. Since the joint distribution
is unknown, FGA methods treat the data as a surrogate
for the joint distribution. Hence, instead of computing the
functional gradient over the potential function, the functional
gradients are computed for each training example, i.e.,

∆m(yi;xi) = ∇ψ
∑
i

log(P (yi|xi;ψ))|ψm−1 (3)

These are point-wise gradients of the potential ψ computed
in the model from the previous iteration using the poten-
tial ψm−1. Now this set of local gradients form a set of
training examples for the gradient at stage m. The key step
in functional gradient boosting (FGB) is the fitting of a
regression function (typically a regression tree) hm on the
training examples [(xi, yi),∆m(yi;xi)] [13]. Dietterich et
al. [18] point out that although the fitted function hm is
not exactly the same as the desired ∆m, it will point in
the same direction (assuming that there are enough training
examples). So ascent in the direction of hm will approximate
the true functional gradient.

For the rest of the paper, we denote variables using
capitalized letters, values as small letters and sets using
bold-faced letters. Also, since there is a one-to-one mapping
from xi to yi, we just use xi to indicate an example and its
label. P(xi = 1) is the probability of example xi being true,
whereas P(xi) is the probability of the example having the
same label as provided in the data.

Derivation of the Functional Gradient

The joint likelihood of MLNs (given in Equation 1) is
hard to optimize due to the normalization constant. Hence,
we take the standard approach of optimizing the pseudo-
likelihood (PL) that is given by,

PL(X = x) =
∏
xi∈x P (xi|MB(xi)) (4)



where MB(xi) is the Markov blanket.

P (xi = 1|MB(xi)) =
exp(

∑
j wjnj(xi=1;MB(xi)))∑

x′ exp(
∑

j wjnj(xi=x′;MB(xi)))

=
exp(

∑
j wjntj(xi;MB(xi)))

exp(
∑

j wjntj(xi;MB(xi)))+1
(5)

where ntj(xi;MB(xi)) = nj(xi = 1;MB(xi))

−nj(xi = 0;MB(xi)) (6)

nj(x) is the number of groundings of clause Cj given x.
ntj(xi;MB(xi)) corresponds to the non-trivial groundings
of an example (explained below), xi given its Markov
blanket [19]. Hence we can define the potential functions

ψ(xi;MB(xi)) =
∑
j

wjntj(xi;MB(xi)) (7)

ψ(xi;MB(xi)) is the potential function of xi given all other
xj 6= xi and (xj ∈ x). Hence Equation 5 becomes,

P (xi = 1|MB(xi)) =
exp (ψ(xi;MB(xi)))

exp (ψ(xi;MB(xi))) + 1

As mentioned earlier, we optimize the pseudo-log-
likelihood,

PLL(X = x) =
∑
xi∈x

logP (xi|MB(xi)) (8)

Taking the derivative of PLL w.r.t. the function ψ, we get
∂PLL(X=x)

∂ψ(xi=1;MB(xi))
= ∂ logP (xi;MB(xi))

∂ψ(xi=1;MB(xi))

= I(xi = 1;MB(xi))− P (xi = 1;MB(xi))2 (9)

Note that the gradient at each example is now simply
the adjustment required for the probabilities to match the
observed value (xi) for that example. This gradient serves
as the weight for the current regression example at the next
training episode.

The expression in Equation 9 is very similar to the one in
Dietterich et al. [18]. The key feature of the above expression
is that the functional gradient for each example is dependent
on the observed value. If the example is positive, the gradient
(I−P ) is positive indicating that the model should increase
the probability of the ground predicate being true. On the
contrary if the example is negative, the gradient is negative,
implying that it will push the probability towards 0.

Our algorithm is restricted to learn only non-recursive
Horn clauses, but extended to allow negation-by-failure. De-
spite this restriction, we are able to perform better than other
structure-learning algorithms as shown in our experiments.
For notational ease, we will represent a Horn clause, say,

p1(X1) ∧ . . . ∧ pc(Xc)→ target(X′)

as ∧k pk(Xk)→ target(X′)

where Xk are the arguments for pk and X′ ⊆ ∪kXk.
Recall the definition of ntj(xi) given in Equation 6.

When xi only appears in the head of the clause Cj , ntj(xi)

corresponds to the number of non-trivial groundings for
xi that satisfy the Horn clause Cj . Groundings of Cj that
remain true irrespective of the truth value of xi are defined
as the trivial groundings for xi that satisfy Cj , while others
are called as the non-trivial groundings. So the non-trivial
groundings for satisfying a clause ∧kpk(Xk)→ target(X′)
would correspond to the groundings for ∪kXk that satisfy
the body of the clause i.e. ∧kpk(xk) = true, after unifying
the head of the clause (target(X′)) with the example, xi.
For a more detailed discussion of non-trivial groundings, see
Shavlik and Natarajan [19].

We made two assumptions in our model: (1) Every ground
literal does not have any other ground literal with the same
predicate in its Markov blanket. (2) The Markov blanket is
completely observed during training, i.e. there is no missing
data. Also we consider only a single target predicate while
learning a regression tree, but we learn a joint model that
uses the regression trees learned for all the predicates. We
explain the joint model learning in the Algorithm section.

Representation of Functional Gradients for MLNs

Our goal is to find ψ̂ such that the squared error between
ψ̂ and the functional gradient is minimized. i.e.,

argmin
ψ̂

n∑
i=1

(ψ̂(xi;MB(xi))−∆(xi))
2 (10)

over all examples. We present our two representations of
ψ̂s: trees and clauses. For our first representation, we use a
relational regression tree learner [20] to fit the gradients on
each example. In order to do so, we modified the splitting
criterion at each node to be the one presented below. Each
path from the root to a leaf can be seen as a clause and
the weigh ton the leaf correspond to the weight of the
clause. As an example, let us consider the literal q(X′′)
to be added to the tree at a node N. Let the current
clause formed by the path from the root to the node N be
∧kpk(Xk)→ target(X′). So adding q(X′′) would split the
current clause to two clauses,

C1 : ∧kpk(Xk) ∧ q(X′′)→ target(X′)

C2 : ∧kpk(Xk) ∧ ∀Xf ,¬q(X′′)→ target(X′)

where Xf are the free variables in q(X′′). For all the
examples that reach the node N , assume I to be the set
of examples that satisfy q(X′′) and J be the ones that do
not. Let w1 and w2 be the regression values that would be
assigned to C1 and C2 respectively. Let nx,1 and nx,2 be
the number of non-trivial groundings for an example x with
clauses C1 and C2. The regression value returned for an
example would depend on whether it belongs to I or J .
Now,

ψ̂(xi) = nxi,1 ·w1 · I(xi ∈ I)+nxi,2 ·w2 · I(xi ∈ J ) (11)



and the squared error is

SE =
∑
x∈I

[nx,1 · w1 −∆x]
2

+
∑
x∈J

[nx,2 · w2 −∆x]
2

∂

∂w1
SE =

∑
x∈I

2 · [nx,1 · w1 −∆x] · nx,1 + 0 = 0

w1 =

∑
x∈I ∆x · nx,1∑
x∈I n

2
x,1

∂

∂w2
SE = 0 +

∑
x∈J

2 · [nx,2 · w2 −∆x] · nx,2 = 0

w2 =

∑
x∈J ∆x · nx,2∑
x∈J n

2
x,2

When adding each literal to the clause, we greedily search
for the literal that minimizes this squared error. The false
branch at every node with condition C(X), would be
converted to ∀Xf ,¬C(X) which in its CNF form becomes
∃Xf , C(X), where Xf ⊂ X are the free variables in C(X).
This can result in a large clique in the grounded Markov
Network. To avoid this, we maintain an ordered list of
clauses and return the weight for the first clause that has
at least one grounding for a given example. We can then
ignore the condition on a given node, if the false branch is
picked in the path to the leaf. It is worth noting that C(X)
maybe a conjunction of literals depending on the maximum
number of literals allowed at an inner node.

Figure 1. Example tree for target(X).

Figure 1 gives an example regression tree for target(X).
If we are scoring the node q(X,Y ), we would split all
the examples that satisfy p(X) into two sets I and J . I
would contain all examples that have at least one grounding
for q(X,Y ) and J would contain the rest; target(x1)
would be in I if p(x1) ∧ q(x1, Y ) is true and target(x2)
would be in J , if p(x2) ∧ (∀Y,¬q(x2, Y )) is true. The
parameter nx1,1 corresponds to the number of groundings
of p(x1)∧ q(x1, Y ), while nx2,2 corresponds to the number
of groundings of p(x2)∧(∀Y,¬q(X2, Y ). The corresponding
ordered list of MLN rules is:

w1 : p(X), q(X,Y )→ target(X)

w2 : p(X)→ target(X)

w3 : target(X)

For our second representation, we learn Horn clauses by
using a beam search that adds literals to clauses that reduce
the squared error. We maintain a (beam-size limited) list of
clauses ordered by their squared error and keep expanding
clauses from the top of the list. We add clauses as long as
their lengths do not exceed a threshold and the beam still
contains clauses. We recommend using clauses when the
negation-by-failures introduced by the trees would make the
inference step too slow.

Hence, we replace the tree with a set of clauses learned
independently at each gradient-step. Since we do not have
two branches when every new condition is added, the error
function becomes:

SE =
∑
x∈I

[nx,1 · w −∆x]
2

+
∑
x∈J

∆2
x

=⇒ w =

∑
x∈I ∆x · nx,1∑
x∈I n

2
x,1

Note that the key change is that we do not split the nodes
and instead just search for new literals to add to the current
set of clauses. Hence, instead of an ordered list for each
gradient step, we learn a pre-set number of clauses (C). We
use a similar parameter for the regression-tree learner as well
with a pre-set number of leaves (L). The values of C and
L are fixed at 3 and 8 respectively for all our experiments.
Hence, the depth of tree is quite small and so is the number
of Horn clauses per gradient-step.

Before presenting the algorithmic details, we summa-
rize our strengths. Apart from learning the structure and
weight simultaneously, functional gradient boosting ap-
proach has other key advantages: (1) Our models are es-
sentially weighted Horn clauses. This makes the inference
process easier, especially given that we use the procedure
presented in Shavlik and Natarajan [19] to keep track of
the non-trivial groundings for a clause/predicate. (2) Our
learning algorithms can use prior knowledge as an initial
set of MLN clauses and learn more clauses as needed to
minimize the error on a training set.

Algorithm for Learning MLNs

Functional gradient boosting of MLNs with both the
tree and the clause learner is presented in Algorithm 1.
In TreeBoostForMLNs, we iterate through M gradi-
ent steps and in each gradient step learn a regression
tree for the target predicates one at a time. We create
examples for the regression learner for a given predi-
cate, P using the GenExamples method. We use the
function FitRelRegressionTree(S, P, L) to learn a tree
that best fits these examples. We limit our trees to have
maximum L leaves and greedily pick the best node to
expand. In our experiments, we set L = 8 and M =
20. FitRelRegressionClause(S, P,N,B) can be called
here to learn clauses instead. N is the maximum length



Algorithm 1 MLN-Boost: FGB for MLN’s
1: function TREEBOOSTFORMLNS(Data)
2: for 1 ≤ m ≤M do . M gradient steps
3: Fm := Fm−1
4: for P in T do . Iterate through target predicates
5: S := GenExamples(Data;Fm−1, P )
6: ∆m := FitRelRegressTree(S, P, L) . FG
7: Fm := Fm + ∆m . Update models
8: end for
9: end for

10: P (xi|MB(xi)) ∝ ψ . Obtained by grounding FM
11: end function
12: function FITRELREGRESSIONTREE(S, P, L)
13: Tree := createTree(P (X))
14: Beam := {root(Tree)}
15: while numLeaves(Tree) ≤ L do
16: Node := popBack(Beam). Node w/ worst score
17: C := createChildren(Node) . Create children
18: BN := popFront(Sort(C)) . Node w/ best score
19: addNode(Tree, Node, BN)
20: . Replace Node with BN
21: insert(Beam, BN.left, BN.left.score)
22: insert(Beam, BN.right, BN.right.score)
23: end while
24: return Tree
25: end function
26: function FITRELREGRESSIONCLAUSE(S, P,N,B)
27: Beam := {P(X)}
28: BC := P(X)
29: while ¬empty(Beam) do
30: Clause := popFront(Beam). Best scoring clause
31: if length(Clause) ≥ N then
32: continue . Clause cannot be expanded
33: end if
34: C := addLiterals(Clause)
35: for c ∈ C do
36: c.score = SE(c) . Squared error
37: if c.score ≥ Clause.score then
38: insert(Beam, c, c.score)
39: end if
40: if c.score ≥ BC.score then
41: BC := c
42: end if
43: end for
44: while length(Beam) ≥ B do
45: popBack(Beam)
46: end while
47: end while
48: return BC
49: end function

of the clause and B is the maximum beam size. In
FitRelRegressionTree, we begin with an empty tree that

returns a constant value. We use the background predicate
definitions (mode specifications) to create the potential lit-
erals that can be added (createChildren). We pick the best
scoring node (based on square error) and replace the current
leaf node with the new node (addNode). Then both the left
and right branch of the new node are added to the potential
list of nodes to expand. To avoid overfitting, we only insert
and hence expand nodes that have at least 6 examples. We
pick the node with the worst score and repeat the process.

The function for learning clauses is shown as
FitRelRegressionClause which takes the maximum
clause length as the parameter, N (we set this to 3) and
beam size, B (we set this to 10). It greedily tries to find
the best scoring clause (BC) with length ≤ N . This
method only learns one clause at a time. Hence for learning
multiple clauses, we call this function multiple times
during one gradient step and update the gradients for each
example before each call. In all our experiments we learn
a maximum of 3 clauses in a single gradient step.

Learning Joint Models
One of the key features of SRL methods is the ability

to learn and reason about predicates and examples jointly.
To handle multiple target predicates, we learn a joint model
by learning tree/clauses for each predicate in turn. We use
the MLN’s learned for all the predicates prior to the current
iteration to calculate the regression value for the examples.
We implement this by learning one tree for every target
predicate in line 4 in Algorithm 1. For efficiency, while
learning a tree for one target predicate, we do not consider
the influence of that tree on other predicates.

Since we use the clauses learned for other predicates
to compute the regression value for an example, we have
to handle cases where the examples unify with a literal
in the body of the clause. Consider the clause, Cj :
p(X), q(X,Y ) → target(X). If we learn a joint model
over target and p, this clause will be used to compute the
regression value for p(X) in the next iteration. In such a
case, the number of non-trivial groundings corresponding
to an example, say p(x) for a given grounding (X = x)
and the given clause would be the number of groundings of
q(x, Y )∧¬target(x). Since p(x) appears in the body of the
clause, the difference

ntj(p(x)) = [nj(p(x) = 1)− nj(p(x) = 0)] (12)

would be negative. As can be seen, ntj(p(x)) is simply the
negative of number of non-trivial groundings of p(x) for
the above clause. Computing ntj(xi) this way allows us to
compute the ψ̂ values for every example quickly without
grounding the entire MLN at every iteration as the number
of groundings can be simply negated in some cases.

EXPERIMENTS

We next compare our two boosting algorithms - tree-based
(MLN-BT) and clause-based (MLN-BC) to four state-of-



the-art MLN structure learning methods: LHL [11], BUSL
[10], Motif-S (short rules) and Motif-L (long rules) [12])
on four standard datasets. In order to make the comparison
as fair as possible, we used the following protocol. We
employed the default settings of Alchemy [21] for weight
learning on all the datasets, unless mentioned otherwise.
We set the multipleDatabases flag to true for weight
learning. For inference, we used MC-SAT sampling with 1
million sampling steps or 24 hours whichever occurs earlier.
For learning structure using motifs, we used the settings
provided by Kok and Domingos [12]. While employing LHL
and BUSL for structure learning, we used the default settings
in Alchemy. We set the maximum number of leaves in MLN-
BT to 8 and maximum number of clauses to 3 in MLN-BC.
The beam-width was set to 10 and maximum clause length
was set to 3 for MLN-BC. We used 20 gradient steps on all
the boosting approaches.

In all our experiments, we present MLN-BT and MLN-BC
numbers in bold whenever they are statistically significantly
better than all the other datasets (except each other). We used
the paired t-test with p-value=0.05 for determining statistical
significance. Since the Cora and IMDB datasets are much
bigger than the UW dataset, we ran the experiments on a
heterogenous cluster of machines and hence do not report
the learning time for these datasets.

For the Alchemy-based structure-learning algorithms, we
tried several different weight learning methods and present
the ones with the best results. For instance, Motifs with
generative weight learning yielded the best results in the
UW dataset, while discriminative weight learning was better
in Cora (in the other two domains, they were comparable).
Hence, our Motif-S and Motif-L results correspond to gen-
erative weight learning in UW and discriminative in Cora.
We also ran different weight-learning algorithms such as
voted perceptron and conjugate gradient descent from the
Alchemy package with every structure-learning algorithm
and report the best results. We use the AUC-PR (Area
under the Precision-Recall curve) and CLL (Conditional
log-likelihood) values to compare the various approaches.
We employ AUC-PR as it has been shown to be a more
conservative estimate of the learning performance compared
to AUC-ROC [22].

A key property of most relational data sets is the number
of negative examples. This is also seen in Table I which
shows the size of the various datasets used. Since most
relations such as actedIn, cancer, advisedBy etc.
are false in the real-world, the number of negatives can be
order of magnitude more than the number of positives. In
these cases, simply measuring CLL over the entire data set
can be misleading. It can be shown easily that predicting
all the examples as the majority class (when the number of
examples in one class are far greater than the other) can
have a very good CLL value, but a very low AUC-PR value
(nearly 0). Hence, considering only CLL (which close to

0 indicates a very good performance) can be misleading in
the case of skewed data sets. In fact, a major strength of PR
curves is that they ignore the impact of correctly labeling
negative examples and instead focus on the typically rarer
and yet more important, positive examples. Hence, we not
only present the CLL values, but also the AUC-PR values.
In addition, we present results where the number of negative
examples is twice the number of positives.

Dataset Types Predicates Constants True Total
literals literals

UW-CSE 9 12 929 2112 260,254
IMDB 3 5 306 1046 17,257
Cora 5 10 3,079 42,558 687,422
WebKB 3 6 1,700 2,065 688,193

Table I
DATASET SIZE

UW Dataset

The goal in the UW data set [23] is to predict
the advisedBy relationship between a student
and a professor. The data set consists of details of
professors, students and courses from 5 different
sub-areas of computer science (AI, programming
languages, theory, system and graphics). Predicates
include professor, student, publication,
advisedBy, hasPosition, projectMember,
yearsInProgram, courseLevel, taughtBy,
teachingAssistant etc. Our task is to learn using
the other predicates, to predict the advisedBy relation.
We employ 5-fold cross validation where, we learn from
four areas and predict on the other area. Apart from the
methods describe above, we also compared against the
handcoded MLN available on Alchemy’s website with
discriminative weight learning (shown as A-D in the tables).
We were unable to get BUSL to run on this data set due
to segmentation fault issues and hence we do not report
BUSL for this testbed.

Table II presents the AUC and CLL values, along with the
training time taken by each method averaged over five-folds.
The training time does not change for the different test-
sets. As can be seen, for the complete dataset both boosting
approaches (MLN-BT and MLN-BC) perform significantly
better than other MLN learning techniques on the AUC-PR
values. Current MLN learning algorithms on the other hand
are able to achieve lower CLL values over the complete
dataset by pushing the probabilities to 0, but are not able
to differentiate between positive and negative examples as
shown by the low AUC-PR values.

When we reduce the negatives in the test set to twice the
number of positives, the boosting techniques dominate on
both the AUC-PR and CLL values, while the other tech-
niques, which cannot differentiate between the examples,
have poor CLL values. Also, there is no significant differ-
ence between learning the trees or the clauses in the case of
boosting MLNs. We performed additional experiments on



Algo 2X negatives All negatives TimeAUC-PR CLL AUC-PR CLL
BT 0.94± 0.06 −0.52± 0.45 0.21± 0.17 −0.46± 0.36 18.4 sec
BC 0.95± 0.05 −0.30± 0.06 0.22± 0.17 −0.47± 0.14 33.3 sec
M-S 0.43± 0.03 −3.23± 0.78 0.01± 0.00 −0.06± 0.03 1.8 hrs
M-L 0.27± 0.06 −3.60± 0.56 0.01± 0.00 −0.07± 0.02 10.1 hrs
A-D 0.31± 0.10 −3.90± 0.41 0.01± 0.00 −0.08± 0.02 7.1 hrs
LHL 0.42± 0.10 −2.94± 0.31 0.01± 0.01 −0.06± 0.02 37.2 sec

Table II
RESULTS ON UW DATA SET. BT = BOOSTING WITH TREES,

BC=BOOSTING WITH CLAUSES, M-S=MOTIF WITH SHORT RULES,
M-L=MOTIF LONG RULES, A-D=HAND-CODED RULES WITH

DISCRIMINATIVE LEARNING, LHL=LIFTED HYPERGRAPH LEARNING

0 5 10 15 20
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

Trees

C
LL

Figure 2. Number of trees used for inference vs. conditional log-likelihood
over all examples in the UW-data set.

this data set to understand the impact of number of trees
on the performance of the boosting algorithms. Figures 2
and 3 present the CLL and AUC-PR values averaged over
30 runs as a function of the number of trees. As can be
seen, CLL values improve as the number of trees increase.
This is due to the fact that adding more trees essentially
amounts to moving the likelihood of the examples towards
1. On the other hand, the AUC-PR values increase for the
first few trees. After a small amount of trees (in this case
around 6), the value seem to attain a local optimum. In all
our experiments, we observed that increasing the number
of trees beyond 20 had no significant impact in AUC-PR
values. Our results show that with a small number of trees,
the boosting based methods are able to achieve reasonable
predictive performance.

Cora Entity Resolution

The Cora dataset, now a standard dataset for citation
matching, was first created by Andrew McCallum, later
segmented by Bilenko and Mooney [24], and fixed by
Poon and Domingos [25]1. In citation matching, a group
is a set of citations that refer to the same paper, and a
nontrivial group contains more than one citation [25]. The

1Available for download at http://alchemy.cs.washington.edu/papers/-
poon07

0 5 10 15 20
0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

Trees

A
U

C
−

P
R

Figure 3. Number of trees used for inference vs. AUC-PR over all
examples in the UW-data set.

Cora dataset has 1,295 citations and 134 groups where
almost every citation in Cora belongs to a nontrivial
group; the largest group contains 54 citations. It contains
the predicates: HasWordAuthor, HasWordTitle,
HasWordVenue, Title, Venue, Author.

For Cora, we learn a joint model over SameBib,
SameVenue, SameTitle and SameAuthor. Since this
dataset is large, to speedup learning we sampled 25% of the
examples during every gradient step for MLN-BT. Similar
to the UW dataset, we used a handcoded MLN(B+N+C+T)
for Cora presented by Singla et al. [26]. We evaluated all
the models jointly over the four target predicates given
the evidence predicates. We used the queryEvidence flag
for Alchemy weight learning and inference. As with the
previous case, we could not get BUSL to run on this data
set.

We performed 5-fold cross-validation and averaged the
results over all the folds. The AUC-PR and CLL values are
presented in Table III. MLN-BT has a slightly lower per-
formance compared to MLN-BC since we need longer rules
to accurately cluster entities. The entity-resolution task re-
quires rules such as Title(B1,T1), Title(B2,T2),
SameBib(B1,B2) → SameTitle(T1,T2) which the
greedy approach used in boosting may never find. Since
any subset of the given rule would have little impact on
the squared error, MLN-BT never learn such rules. MLN-
BT scores two literals at a time for a given node and as a
result learns short rules that only capture common words
between the titles. MLN-BC on the other hand searches
for clauses of length 3 and hence may learn longer rules.
Nevertheless, both methods are significantly better than other
MLN learning methods. While structural Motifs and LHL
methods are comparable when predicting the SameAuthor
relationship, our boosting-based methods are significantly
better for all the other relationships.



AUC-PR CLL
Algorithm SameBib SameVenue SameTitle SameAuthor SameBib SameVenue SameTitle SameAuthor
MLN-BT 0.96± 0.02 0.56± 0.17 0.71± 0.20 0.96± 0.04 −0.39± 0.04 −5.32± 1.88 −8.09± 2.97 −0.29± 0.14
MLN-BC 0.96± 0.02 0.68± 0.09 0.82± 0.13 0.98± 0.02 −0.33± 0.06 −5.12± 3.86 −11.18± 7.28 −0.60± 0.39
Alch-G 0.63± 0.17 0.45± 0.11 0.54± 0.14 0.90± 0.05 −5.58± 1.49 −4.27± 0.96 −5.14± 1.39 −8.87± 0.37
Alch-D 0.63± 0.17 0.48± 0.12 0.58± 0.16 0.92± 0.06 −4.95± 0.06 −4.08± 1.14 −4.34± 0.82 −3.32± 1.82
Motif-S 0.63± 0.16 0.45± 0.10 0.61± 0.17 0.93± 0.09 −2.54± 1.45 −1.80± 1.57 −2.79± 1.36 −1.57± 1.63

LHL 0.63± 0.17 0.45± 0.10 0.52± 0.15 0.91± 0.04 −5.99± 1.60 −4.20± 0.97 −5.11± 1.41 −8.80± 0.34

Table III
RESULTS ON THE CORA TESTBED.

AUC-PR CLL
Algorithm workedUnder genre gender workedUnder genre gender
MLN-BT 0.90± 0.07 0.94± 0.08 0.45± 0.06 −0.18± 0.06 −0.20± 0.09 −0.62± 0.05
MLN-BC 1.00± 0.00 1.00± 0.00 0.39± 0.07 −0.11± 0.04 −0.12± 0.08 −0.84± 0.21
RDN-B 0.99± 0.02 0.91± 0.12 0.46± 0.18 −0.88± 0.20 −0.25± 0.22 −0.76± 0.16
BUSL 0.89± 0.11 0.94± 0.08 0.44± 0.08 −0.56± 0.05 −0.27± 0.09 −0.69± 0.01
LHL 1.00± 0.00 0.37± 0.09 0.39± 0.12 −0.02± 0.01 −1.13± 0.23 −0.73± 0.05

Motif-S 0.56± 0.16 0.52± 0.29 0.48± 0.08 −2.73± 1.66 −3.99± 2.70 −0.71± 0.08
Motif-L 0.48± 0.27 0.39± 0.03 0.46± 0.08 −2.30± 1.16 −2.32± 1.15 −0.69± 0.06

Table IV
RESULTS ON IMDB DATA SET

IMDB

The IMDB dataset was first used by Mihalkova and
Mooney [10] and contains five predicates: actor,
director, genre, gender and workedUnder. We
do not evaluate the actor and director predi-
cates as they are mutually exclusive facts in this
dataset and easy to learn for all the methods. Also
since gender can take only two values, we convert the
gender(person,gender) predicate to a single argu-
ment predicate female_gender(person). Following
[11], we omitted the four equality predicates. We performed
five-fold cross-validation using the folds generated by Mi-
halkova and Mooney [10] and averaged the results across all
the folds. We perform inference over every predicate given
all other predicates as evidence.

Table IV shows the AUC values for the three predicates:
workedUnder, genre and gender. None of the algo-
rithms learned gender better than chance. The boosting
approaches perform better on average, on both the AUC
and CLL values, than the other methods. The BUSL method
seems to exhibit the best performance of the prior structure-
learning methods in this domain. Our boosting algorithms
seem to be comparable or better than BUSL on all the
predicates. For workedUnder, LHL has comparable AUC
values to the boosting approaches, while it is clearly worse
on the other predicates. There is no significant difference
between the two versions of the boosting algorithms.

The other interesting question that we consider in this
domain is: how do boosted MLNs compare against boosted
RDNs [14]? To answer this question, we compared our pro-
posed methods against boosted RDNs (RDN-B). As can be

seen from Table IV, the MLN-based methods are marginally
better than the boosted RDNs for predicting workedUnder
predicate, while comparable for others. It should be noted
that the goal of this work is not to justify the use of MLNs
instead of RDNs, but to derive a new and effective learning
algorithm for MLNs.

WebKB

The WebKB dataset was first created by Craven
et al. [27] and contains information about department
webpages and the links between them. It also con-
tains the categories for each webpage and the words
within each page. This dataset was converted by Mi-
halkova and Mooney [10] to contain only the cate-
gory of each webpage and links between these pages.
They created the following predicates: Student(A),
Faculty(A), CourseTA(C, A), CourseProf(C,
A), Project(P, A) and SamePerson(A, B) from
these webpages. The textual information was ignored. We
removed the SamePerson(A, B) predicate as it only had
groundings with both the arguments being exactly same (i.e.,
SamePerson(A,A)). We evaluated all the methods over
the CourseProf and CourseTA predicates since all other
predicates had trivial rules such as courseTA(C,A) →
Student(A). We performed 4-fold cross-validation where
each fold corresponds to one university. We do not present
the performance of BUSL with default setting and Motif-
S (short rules) in this domain because the algorithms were
unable to learn any useful rules in our formulation and hence
had a AUC-PR value of 0.

Table V presents the results of the different algorithms in
this domain. As with UW data set we present two different



cases here. First is the data set with all the negative examples
in the test set and the second is the data set with twice
the number of negatives as positives. Similar to the earlier
case, in the test set with all negatives, current MLN methods
such as LHL and Motifs exhibit good performance for
the CLL evaluation measure for both the courseTA and
courseProf predicates. On the other hand, the AUC-PR
values are significantly lower than that of our boosting-based
methods. This difference is magnified when we limit the
number of negatives to twice the number of positives. In
the latter case, even the CLL for the current MLN structure
learning algorithms are significantly worse than our boosting
methods. There is no statistically significant difference be-
tween the performance of the boosting methods. Our current
results show that employing a test set with a reasonable
distribution of the classes yields a better insight into the
difference in the performance of the learning algorithms.

Precision-Recall curves

We also present the PR curves for the first fold on
workedUnder predicate in IMDB in Figure 5, genre
predicate in IMDB in Figure 6, SameBib predicate in Cora
in Figure 7, the SameVenue predicate in Cora in Figure 8
and the courseTA predicate in Web-KB in Figure 9. We
only show the curves for the best previously published
structure-learning methods. Our algorithms exhibit a clear
superior performance especially in the high-recall regions.

CONCLUSION

Since MLNs provide clear semantics and convergent
inference approaches [28], they are among the most popular
SRL methods. But learning the structure of MLNs remains
one of the hardest and challenging problems. We address
the problem of structure learning by using gradient-boosting
with the added benefit of learning weights simultaneously.

A similar approach has been taken in the proposi-
tional world for learning Markov Networks by Lowd and
Davis [29]. In their work, they learn Markov network
structure as a series of local models where each local model
is a set of decision trees. Our proposed approach can be
seen as generalizing their approach to learning MLNs by
using functional gradient boosting and extending the work
of Natarajan et al. [14], who learned RDNs as a series of
first-order regression trees. Building upon the success of
pseudo-likelihood methods for MLNs, we derived tree-based
and clause-based gradient boosting algorithms. We evaluated
the algorithms on four standard datasets and established the
superior performance of the boosting method across all the
domains and all the predicates. Our methods’ restriction that
the structure be only Horn clauses did not affect the results.

One future direction is to derive the functional gradients
for the full likelihood instead of the pseudo-likelihood
and learn the trees/clauses for jointly predicting several
predicates. Another direction is to induce a simpler MLN

that approximates the learned set of clauses/trees; this will
ensure that the learned model is interpretable as well. An
additional avenue for future work is learning with partially
observed data or even in open-world domains. Finally, it is
an interesting future direction to demonstrate the usefulness
of boosting in additional real-world tasks.

ACKNOWLEDGEMENTS

Tushar Khot, Sriraam Natarajan and Jude Shavlik gratefully acknowl-
edge support of the DARPA Machine Reading Program under the Air Force
Research Laboratory (AFRL) prime contract no. FA8750-09-C-0181. Any
opinions, findings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect the view of
the DARPA, AFRL, or the US government. Kristian Kersting was supported
by the Fraunhofer ATTRACT fellowship STREAM and by the European
Commission under contract number FP7-248258-First-MM.

REFERENCES

[1] L. Getoor and B. Taskar, Introduction to Statistical Relational
Learning. MIT Press, 2007.

[2] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning
probabilistic relational models,” Relational Data Mining, S.
Dzeroski and N. Lavrac, Eds., pp. 307–338, 2001.

[3] K. Kersting and L. De Raedt, “Bayesian logic programming:
Theory and tool,” in An Introduction to Statistical Relational
Learning, 2007.

[4] M. Jaeger, “Relational Bayesian networks,” in UAI, 1997.

[5] P. Domingos and D. Lowd, Markov Logic: An Interface Layer
for AI. San Rafael, CA: Morgan & Claypool, 2009.

[6] B. Taskar, P. Abeel, and D. Koller, “Discriminative proba-
bilistic models for relational data,” in UAI, 2002.

[7] T. Sato and Y. Kameya, “Parameter learning of logic programs
for symbolic-statistical modeling,” JAIR, pp. 391–454, 2001.

[8] D. Poole, “Probabilistic Horn abduction and Bayesian net-
works,” AIJ, pp. 81–129, 1993.

[9] M. Biba, S. Ferilli, and F. Esposito, “Structure learning of
Markov logic networks through iterated local search,” in
ECAI, 2008.

[10] L. Mihalkova and R. Mooney, “Bottom-up learning of Markov
logic network structure,” in ICML, 2007, pp. 625–632.

[11] S. Kok and P. Domingos, “Learning Markov logic network
structure via hypergraph lifting,” in ICML, 2009.

[12] ——, “Learning Markov logic networks using structural
motifs,” in ICML, 2010.

[13] J. Friedman, “Greedy function approximation: A gradient
boosting machine,” Annals of Statistics, vol. 29, 2001.

[14] S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shav-
lik, “Gradient-based boosting for statistical relational learn-
ing: The Relational Dependency Network case,” MLJ, To
appear.



Algo
2x negatives All negatives

AUC-PR CLL AUC-PR CLL
courseTA courseProf courseTA courseProf courseTA courseProf courseTA courseProf

MLN-BT 0.426± 0.027 0.738± 0.034 −0.603± 0.057 −0.406± 0.050 0.005± 0.003 0.029± 0.005 −0.359± 0.041 −0.334± 0.068
MLN-BC 0.379± 0.031 0.750± 0.110 −0.656± 0.012 −0.357± 0.045 0.004± 0.002 0.027± 0.007 −0.479± 0.041 −0.304± 0.010

LHL 0.350± 0.046 0.460± 0.036 −2.274± 0.102 −2.243± 0.104 0.004± 0.002 0.007± 0.002 −0.023± 0.011 −0.029± 0.005
Motif-L 0.332± 0.014 0.637± 0.219 −2.282± 0.110 −2.198± 0.105 0.003± 0.002 0.017± 0.009 −0.024± 0.011 −0.029± 0.005

Table V
RESULTS ON WEBKB DATA SET

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MLN−BT

MLN−BC

Alch−D

LHL

Fig. 4. PR Curve for UW

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MLN−BT

MLN−BC

RDN−B

LHL

BUSL

Fig. 5. PR Curve for workedUnder in IMDB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MLN−BT

MLN−BC

RDN−B

LHL

BUSL

Fig. 6. PR Curve for genre in IMDB

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MLN−BT

MLN−BC

LHL

Fig. 7. PR Curve for SameBib in Cora

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

MLN−BT
MLN−BC
LHL

Fig. 8. PR Curve for SameVenue in Cora

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 
MLN−BT
MLN−BC
LHL
Motif−L

Fig. 9. PR Curve for courseTA in WebKB

[15] B. Gutmann and K. Kersting, “TildeCRF: Conditional random
fields for logical sequences,” in ECML, 2006.

[16] K. Kersting and K. Driessens, “Non–parametric policy gra-
dients: A unified treatment of propositional and relational
domains,” in ICML, 2008.

[17] A. Karwath, K. Kersting, and N. Landwehr, “Boosting rela-
tional sequence alignments,” in ICDM, 2008.

[18] T. Dietterich, A. Ashenfelter, and Y. Bulatov, “Gradient tree
boosting for training conditional random fields,” JMLR, pp.
2113–2139, 2008.

[19] J. Shavlik and S. Natarajan, “Speeding up inference in
Markov logic networks by preprocessing to reduce the size
of the resulting grounded network,” in IJCAI, 2009.

[20] H. Blockeel and L. D. Raedt, “Top-down induction of first-
order logical decision trees,” Artificial Intelligence, vol. 101,
pp. 285–297, 1998.

[21] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon,
D. Lowd, J. Wang, A. Nath, and P. Domingos, “The Alchemy
system for statistical relational AI,” Department of Computer

Science and Engineering, University of Washington, Seattle,
WA, Tech. Rep., 2010, http://alchemy.cs.washington.edu.

[22] J. Davis and M. Goadrich, “The relationship between
precision-recall and ROC curves,” in ICML, 2006.

[23] M. Richardson and P. Domingos, “Markov logic networks,”
Machine Learning, vol. 62, pp. 107–136, 2006.

[24] M. Bilenko and R. Mooney, “Adaptive duplicate detection
using learnable string similarity measures,” in KDD, 2003.

[25] H. Poon and P. Domingos, “Joint inference in information
extraction,” in AAAI, 2007, pp. 913–918.

[26] P. Singla and P. Domingos, “Entity resolution with Markov
logic,” in ICDM, 2006, pp. 572–582.

[27] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery, “Learning to extract
symbolic knowledge from the World Wide Web,” in AAAI,
1998, pp. 509–516.

[28] P. Singla and P. Domingos, “Lifted first-order belief propa-
gation,” in AAAI, 2008, pp. 1094–1099.



[29] D. Lowd and J. Davis, “Learning Markov network structure
with decision trees,” in ICDM, 2010.




