An Inductive Learning System for XML
Documents

Xiaobing Jemma Wu

CSIRO ICT Centre, Australia

Abstract. This paper presents a complete inductive learning system
that aims to produce comprehensible theories for XML document clas-
sifications. The knowledge representation method is based on a higher-
order logic formalism which is particularly suitable for structured-data
learning systems. A systematic way of generating predicates is also given.
The learning algorithm of the system is a modified standard decision-tree
learning algorithm driven by predicate/recall breakeven point. Experi-
mental results on XML version of Reuters dataset show that this system
is able to produce comprehensible theories with high precision/recall
breaken point values.

Key words: knowledge representation, XML documents, precision/recall,
decision-tree learning.

1 Introduction

XML (eXtensible Markup Language) documents are one of the most important
source of semistructured data. Semistructured data is data that has some struc-
ture, but the structure may not be rigid, or complete and generally the data
does not conform to a fixed schema. Higher-order logic is particularly suitable
for structured-data learning systems, as it is able to represent individuals with
complex structures, precisely describe the hypothesis languages, and test the
hypotheses on individuals.

Decision-tree algorithms are well-studied learning algorithms. In contrast to
many other learning algorithms, such as neural networks and support vector
machines, decision trees could provide comprehensible theories to the users. A
comprehensible theory could provide insight about the observations. Most exist-
ing decision-tree algorithms are based on accuracy heuristic. However, sometimes
the accuracy is not a good criterion for classification. Precision and recall are
two trade-off criteria which are traditional standards for text document classifi-
cation problems. Most XML documents have plenty text contents, so precision
and recall are more appropriate criteria than accuracy for XML document clas-
sifications.

This paper presents a novel inductive learning system for XML documents.
Section 2 gives the representation method for XML documents using the higher-
order logic formalism. Section 3 presents the decision-tree learning algorithm

2 Xiaobing Jemma Wu

driven by precision and recall. Section 4 shows the experimental results on XML
version of Reuters dataset.

2 Knowledge representation for XML documents

We adopt a typed higher-order logic as the knowledge representation formalism
[9] for XML documents, as it is particularly suitable for representing individuals
with complex structures, precisely describe the hypothesis languages, and test
the hypotheses on individuals. The higher-order logic is used in two essential
ways here. First, individuals are represented as higher-order logic terms; second,
predicates are constructed by composing transformations.

2.1 The structure of an XML document

This section is an overview of the general structure of XML documents. Further
description appears in later sections as we discuss the representation over each
part of it.

An XML document has a well-nested structure. Each entity is enclosed by
a start tag and an end tag. This structure is best described by an example. A
simple but complete XML document is given in Figure 1. The first line of the
document is the XML version declaration. The second line is the declaration
of its DTD (Document Type Definition) [1]. Next comes the root element bib
which has two subelements book describing information about two books. The
first book has four further subelements title, author, publisher and price, which
give the basic information about this book. The first book also has an attribute
year with a value of 2003. The author further contains two subelements last and
first which contains the last name and the first name of the author, respectively.
The second book element is similar to the first one, but contains three element
author.

2.2 Representation of individuals

A well-formed XML document is represented as a six tuple.
type XML = XMLDecl x Misclist x DTD x Misclist X Element x Misclist

Here, XML Decl represents the XML declaration; Misclist represents a list of mis-
cellaneous items such as comments, processing instructions, and spaces; DTD
represents the document type declaration; and Element represents the root ele-
ment of the document. All these six components are non-atomic type values and
could be further defined. As an example, we give the representation of Element
below.

An Inductive Learning System for XML Documents 3

<?xml version="1.0" encoding="iso-8859-1"7>
<!DOCTYPE bib SYSTEM‘ ‘books.dtd’’>

<!-- Two books are described here --!>
<bib>
<book year=‘‘2003’’>
<title>Logic for Learning</title>
<author>
<last>Lloyd</last>
<first>John</first></author>
<publisher>Springer</publisher>
<price>49.95</price>
</book>
<book year=‘‘2000’’>
<title>Data on the Web</title>
<author>
<last>Abiteboul</last>
<first>Serge</first></author>
<author>
<last>Buneman</last>
<first>Peter</first></author>
<author>
<last>Suciu</last>
<first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>
</book>
</bib>

Fig. 1. An example XML document with an external DTD

The formal representation for an element is

data Element = Elem TagName Attributelist Contents
type TagName = String

type Attributelist = [Attribute]

type Contents = [Content]

Here, type Elem is defined as a data constructor which has three arguments
representing the element name, the attributes and the element contents, respec-
tively. TagName is a synonym of type String. Attributelist and Contents is a list
of attributes and a list of content, respectively.

4 Xiaobing Jemma Wu

An attribute is composed of the attribute name and attribute value, and is
represented using a tuple as follows.

type Attribute = AttName x AttValue

where AttName and AttValue are both synonym of String, written as follows.

type AttName = String
type AttValue = String

It is the element content that makes the element and the XML document nested
and hierarchical. The content of an element could be another element, a piece
of text, a reference to some entities, a CDATA section, a processing instruction
or a comment. The content is formally represented as follows.

data Content = El Element | Tx CharData | Ref Reference | CD CDSect |
ContentPI PI | ContentCom Comment

Here, Fl, Tz, and so on, are constructors of type Content. Constructor El needs
an argument of type Element to construct a data of type Content, and Tx needs
a type CharData to construct a type Content, and so on. Type Element has been
introduced above. CharData is a synonym of a list of characters. Type PI and
Comment have already been defined in the previous section.

type CharData = [Char]

CDATA sections are used to tell the parser not to parse the content inside but
display it directly. They are very handy when trying to display part of XML
code.

A CDATA section is formally represented as follows.

data CDSect = CDSe CData
type CData = [Char]

Entity references are used to reference some pre-defined entities in XML doc-
uments to represent some reserved characters, Unicode characters, and entities
that are defined in DTDs. An entity reference refers to the content of an named
entity. Entities may be either parsed or unparsed. Entity references begin with
the ampersand ‘&’ and ends with a semicolon ¢;’ and between them are the
entity names or the character codes.

An Inductive Learning System for XML Documents 5

Type Reference is defined as follows.

data Reference = EnRef EntityRef | ChRef CharRef
type EntityRef = String
type CharRef = String

A complete knowledge representation for XML documents using this method
can be found in [14].

2.3 Representation of features

Here, features refer to predicates on the type of individuals. These predicates
are constructed incrementally by composition of transformations using predicate
rewrite systems [9]. A transformation f is a function having a signature of the
form f: (01 = 2) — -+ — (o — 2) > u — o, where g1,...,0k, 0 and p are
all types and k£ > 0.

Transformations on XML are classified into two categories: gemeric trans-
formations and data-specific transformations. Generic transformations come
straight from the XML document representation and are applicable to all well-
formed XML documents. Some examples of generic transformations are given
next.

projRootElement : XML — FElement
projTagName : Element — TagName
projAtiributes : Element — Attributes

projContents : Element — Contents

Here, projRootElement projects onto the root element of an XML document.
projTagName, projAttributes and projContents project an element onto its tag
name, attributes and contents, respectively.

Another example of generic transformations on element attributes are given
next.

listToSet : Attributes — { Attribute}
setEzists; : (Attribute — 2) — {Attribute} — 2

The above two transformations convert a list of attributes to a set of at-
tributes and check whether the set has an attribute satisfying a predicate, re-
spectively.

Data-specific transformations capture some specialized concepts that will be
useful in a particular application. For example, a transformation (= “book”) :

6 Xiaobing Jemma Wu

TagName — (2 is a data-specific transformation which checks whether a TagName
is the string “book”.

A predicate rewrite system is a set of predicate rewrites. A predicate rewrite
is defined as p — ¢ where p and ¢ are both types and p is more general than
q. Given a predicate rewrite system —, to generate a predicate search space for
an application, one starts with an initial predicate pg, usually the weakest one
top, and generate all the predicates via a predicate deviation step. Now a simple
predicate rewrite system is given as an example to illustrate how to generate a
predicate search space via the predicate rewrite system.

top — projRootElement o top
top — Ag (projTagName o top projContents o top)
top — listToSet o top
top — setEwists; (Ag (isElement projContentElement o top))
top — (= “bib”)
top — (= “book”)
top — (= “author”)
(:

top — “price”)

The following is a path in the search space.

top
projRootElement o top
projRootElement o Ng (projTagName o top projContents o top)
projRootElement o Ng (projTagName o (= “bib”) projContents o top)
projRootElement o Ny (projTagName o (= “bib”) projContents o
listToSet o top)
projRootElement o Ng (projTagName o (= “bib”) projContents o
listToSet o setExists; (Ag(isElement
projContentElement o top)))
projRootElement o Ng (projTagName o (= “bib”) projContents o
listToSet o setExists; (Ag(isElement
projContentElement o Ao (projTagName o
(= “book”) projContents o top))))

An Inductive Learning System for XML Documents 7

3 Precision/Recall-driven decision-tree (PRDT)
algorithm

Having represented a well-formed XML document as a typed higher-order logic
term, in this section, we will present a decision-tree learning algorithm based on
the precision and recall criterion for XML document classifications.

3.1 Precision and recall

Precision and recall were originally two statistical measures widely used in infor-
mation retrieval. They have been borrowed to evaluate the performance of text
classification [8,12,15] recently.

Precision Pr and recall Rc can be defined using TP, FP and FN as follows

TP po_ TP)
TP+ FP “TTPYFN

where TP is the number of documents correctly assigned to the positive class;
FP, the number of documents incorrectly assigned to the positive class; FN, the
number of documents incorrectly assigned to the negative class; and TN, the
number of documents correctly assigned to the negative class.

Normally there is a trade-off between high precision and high recall. A good
classifier should have both high precision and high recall. When precision and
recall are equal (or very close), this point is called precision/recall-breakeven
point (BEP) of the system. BEP is commonly used as a performance measure
in text classification problems. By (1), we can see if FP and FN are equal (or
very close), we get at BEP.

The F-measure was introduced by van Rijsbergen [13]. The most commonly
used form of F-measure is when 8 = 1. In this case, the F-measure becomes F;
measure which balances precision and recall. F} measure is defined as:

Pr

2Pr - Re
- 2
Pr+ Rc (2)

From (2), we can see when precision and recall are equal (at BEP), F} =
Pr = Rc. Fy is maximized when precision and recall are equal or close (at
BEP). Hence, if we maximise F;, we can get the BEP value which is equal (or
close) to the maximized Fi. By using F measure, we turn the two measurements
into a single measurement which is easier for the system to control.

1

3.2 Structured feature selection

Unlike unstructured text documents, the same word appearing in different ele-
ments of an XML document could have different meaning or influence on doc-
ument classification. Different elements could contain irrelevant text content.
Therefore, it is not suitable to gather all the text in a XML document and con-
duct feature selection. My method is to build n independent corpus of text by

8 Xiaobing Jemma Wu

analysing the DTD, where n is the number of elements in the DTD. The text in
an element of an XML document is collected and formed a new text document
with the same name of the XML document and stored in a corpus corresponding
to this element. Thus, all the documents in the same corpus come from the same
element and are ready to do feature selection.

In text learning, a feature is defined for each word in the training set. Feature
selection is commonly used when learning on text, as text documents often have
thousands of features. Some of them are not relevant or not beneficial on the
performance of the text learning. Removing these features can highly improve
the learning speed and the classification accuracy. Feature selection aims to select
a minimal subset of features which still contain enough features for classification.
The commonly used approach for feature selection in text learning is to use a
fixed measure method to evaluate and score all the features and then sort them
by score. Several scoring methods have been proposed, including information
gain [7,16], document frequency thresholding [6, 10, 16], x? statistic [11,16] and
mutual information [8, 5, 16].

Mutual information is a commonly used criterion for feature selection in
text categorization, and this method is adopted in this thesis. It measures the
mutual information between a word and a class. In information theory, mutual
information is defined as the reduction in the entropy of a random variable due
to introducing another random variable.

Like in the traditional text learning, we introduce a weighting scheme into our
text features. The occurrences of some features in a document provides a better
indication of the content of the document than other features. The locality of a
feature decides its weight in classification, i.e., the localised feature that occurs
frequently in only a few documents is more informative, but the global feature
that occurs frequently in most of the documents is not informative. We adopt
the tfidf measure which is an important and commonly used weighting scheme.
It combines term frequencies (TF) with inverse document frequencies (IDF).
Term Frequency TF(t,d) is defined as the number of times a term ¢ occurs
in a document d. Document Frequency DF(t) is the number of documents in
which term ¢ occurs at least once. The inverse document frequency IDF(t) can
be calculated from DF(t) by

IDF(t) = log(DF(t))

where N is the total number of documents.
TFIDF(t, d) is defined as

TFIDF(t,d) = TF(t,d) x IDF(t)

The intuitive idea behind the tfidf measure is that a term ¢ is more important
as a feature for document d if it appears more frequently in d and appears in
fewer documents.

Under this new model, a text document d is represented as

d =< (b1, tfidf (11)), - -, (tn, tfidf (tn)) >

An Inductive Learning System for XML Documents 9

where t;,...,t, is the IDs of the features in the feature subset which appear in
document d.

3.3 Node selection

Starting from a single root node containing all the training examples, the decision-
tree algorithm iteratively makes a binary splits at the selected node in the ex-
isting tree. In our PRDT algorithm, we use a novel node selection method to
control the system to work towards reducing the difference between the preci-
sion and recall. Next, we give some theoretical analysis for our node selection
method.

First, we define the TP, FP and FN values for the node associated with &,
where £ is a (non-empty) set of examples.

Definition 1. Let £ be a set of examples. We define:

1. TP(E) =n&, FP(E)=nf, FN(E)=0 ifnf >nf >0
2. TP(E) =0, FP() =0, FN(&) =nf ifn® >nf >0.

In the above definition, ni and n¢ denote the number of positive examples and
negative examples in &, respectively. Notice in the above definition, FP(£) and
FN () is one zero and one non-zero. A decision-tree node is called a FP-type
node if FP(E) >0, otherwise a FN-type node. It is not hard to see that an FP-
type set of examples is a positive majority set of examples and an FN-type set
of examples is a negative majority set of examples.

For a decision tree T, to balance the FP(T) and FN(T), our node selection
method is

1. select a FP-type leaf node of T', if FP(T) > FN(T), or
2. select a FN-type leaf node of T', if FP(T) < FN(T).

Next, we give a proposition to support our node selection method above. Let
P = {&1,&} be a partition of a set of examples £. Proposition 1 shows that
FP(P) will decrease and FN (P) will increase if £ is FP-type. Similarly, FN(P)
will decrease and FP(P) will increase if £ is FN-type.

Proposition 1. Let £ be a set of examples and P = (&1, E2) a partition of £.

1. If € is FP-type, then FP(E) > FP(P), FN(E) < FN(P).
2. If € is FN-type, then FP(E) < FP(P), FN(E) > FN(P).

Proof. 1. £ is a FP-type, so it is a set of positive majority examples. There are
three cases to consider: & and & are both FP-type, both FN-type, or one
FP-type and one FN-type.

(a) Suppose & and & are both FP-type. FP(P) = nf* 4+ nf = n_(&). Thus,

FP(E) = FP(P). FN(E), FN(£;) and FN(E,) are all 0. Thus, FN(£) = FN(P).

Now the first case has been proved.

10 Xiaobing Jemma Wu

(b) Suppose &1 and &; are both FN-type. Partition P partitions a positive
majority set of examples, £, into two negative majority sets of examples
&1 and &;. This case could not happen.

(c) Suppose &; and & are one FP-type and one FN-type. Without loss of
generality, we suppose &7 is FP-type and & is FN-type. Thus, nf >0,
n®? >0, FP(E;) = n°", and FP(Es) = 0. FP(P) = nf' < n®' + n®* = FP(&).
FN(E5) =nf* > 0. FN(P) = FN(£;) + FN(£3) = n?, while FN (&) = 0.
Thus, FN(E) > FN(P).

2. Similar to the proof of 1.

Proposition 1 states that the FP value will decrease or not change, and the
FN value will increase or not change by partitioning a FP-type set of examples.
Similarly, the FP value will increase or not change, and the FN value will de-
crease or not change by partitioning a FN-type set of examples. As noted in Case
(c) of the Part 1 of the proof, the FP (FN) value will strictly decrease (increase)
by splitting a FP-type set of examples into two different types of sets of exam-
ples. In the same way, the FP (FN) value will strictly increase (decrease) by
splitting a FN-type set of examples into two different types of sets of examples.

3.4 The precision/recall-driven decision-tree algorithm

In this section, the Precision/Recall-driven Decision-Tree (PRDT) algorithm will
be described. (See Figures 2 and 3.)

Figure 2 is the PRDT algorithm. The goal of this algorithm is to find a
tree that has the best precision-recall breakeven point value. Starting from a
single node which is composed of the training data, the algorithm works towards
two goals at the same time: looking for the point where the global precision
and recall are equal and improving the F} measure. The first goal is achieved
by selecting the node which can most balance the two values, that is, the leaf
with the largest FP when FP(T) > FN(T) and the leaf with the largest FN
otherwise. The second goal is achieved by finding a predicate to split this node
which can best improve F;(T). If the partition made to the selected node fails
to improve Fy(T), the leaf node with the next largest FP or FN will be chosen,
and this procedure will continue until all the leaf nodes with positive FP or FN
are tested and Fi(T) fails to improve.

The training examples and a predicate rewrite system are input into the
PRDT algorithm. The tree T is initialised as a single node containing all the
training examples. The algorithm then enters an iteration by which 7' is kept
split. At the start of each iteration, i.e., when a new split is going to be made,
three kinds of leaves are managed in three different sets: leavespp, leavespy
and leavesg, which store those unseen leaves that have positive FP, positive FN
and positive FP or FN, respectively. Leaves(T') returns the set of leaves of tree
T. The algorithm then enters an inner iteration which selects a leaf and splits
it. The leaf to be selected for splitting should mostly balance the FP(T) and
FN(T). If FP(T) > FN(T), then the leaf with the biggest FP is selected; if
FP(T) < FN(T), then the leaf with the biggest FN is selected; otherwise if

An Inductive Learning System for XML Documents 11

FP and FN are already balanced but non-zero, then the leaf with the biggest
FP or FN is selected. However, if F';(T) could not be improved by splitting the
selected leaf, then this splitting should be given up and the next leaf that satisfies
the corresponding conditions should be considered. This iteration continues until
Fy(T) improves by splitting the selected leaf or there is no leaf to select in the
corresponding leaf set.

In Figure 2, T'(I,P) denotes the new tree obtained by splitting leaf [with
partition P.

function PRDT (£, —); returns: a decision tree;

inputs: £, a set of examples;
—, a predicate rewrite system;

T := single node (with examples &);
finished := false;
while not finished do

leavespp := {I{|FP(l) > 0Al € Leaves(T)};
leavespn = {{|[FN(l) > 0 Al € Leaves(T)};
leavesp = leavespp U leavespn;
while true do
if FP(T) > FN(T) A leavesrp # ¢ then
l := argmazicicaves pp FP(1);
leavespp := leavespp \ {l};
else if FP(T) < FN(T) A leavesrn # ¢ then
l := argmazicicaves py FN (1);
leavespn = leavespy \ {l};
else if FP(T) = FN(T) # 0 A leavesr # ¢
l := argmazicicavesy (FP(l) + FN(1));

leavesp := leavesr \ {l};
else

finished := true;

break;

p := Predicate(TP(T),FP(T),FN(T),E1,—);
‘P := partition of & induced by p;
if F1(T(,P)) > F1(T) then

T:=T(,P);

break;

label each leaf node of T' by its majority class;
return T}

Fig. 2. Decision-tree algorithm based on the precision/recall heuristic

The function Predicate in the PRDT algorithm is shown in Figure 3. The
predicate output by this algorithm is the one that could best improve the global

12 Xiaobing Jemma Wu

F} measure of the tree. The TP, FP and FN of the current tree T, the set of
training examples in the selected leaf and the predicate rewrite system are input
into function Predicate. An openlist is used to keep all the candidate predicates.
Variable predicate is used to keep the current best predicate, and bestScore is
used to keep the F of the current best predicate. Initially, the openList contains
only the weakest predicate top, and the bestScore is set to be the Fj of the
current tree 1. The algorithm then enters an iteration. In each iteration, the
first candidate predicate is drawn from the openlist and a sub-search space is
generated from this predicate. Each predicate ¢ in this sub-search space is tested
by creating a new partition P using it. The F} of the tree, after adding the new
partition P, is computed using the updated TP, FP and FN. If F; is higher
than the current bestScore, the best predicate and the best score are set as ¢ and
its corresponding F1, respectively. Predicate ¢ is also inserted into the openlist
as a candidate for further sub-search space. The iteration terminates when the
openlist is empty. Finally the predicate that most improves the Fj of the tree
by splitting the selected leaf is returned.

Note that function predicate may not terminate if the search space defined
by ~ is infinite. In this case, a non-negative parameter cutout can be set to stop
the searching if the algorithm investigates cutout predicates without finding a
better predicate than the current best predicate. Every time a new predicate is
found, the cutout parameter is reset to the initial value.

4 Experiments

In this section, experiments on a real-world dataset, the XML version of Reuters
dataset [2], is reported. Reuters dataset is a traditional test collection for text
categorization.

4.1 The dataset

Reuters-21578[2] is a collection of newswire stories in Reuters newswire in 1987.
It is a commonly used test collection for text classification [6, 16,8, 3]. The orig-
inal collection consists of 22 SGML data files. Each of the first 21 files contain
1000 articles, while the last contains 578 articles.

The 21578 documents are assigned to 135 categories according to their TOP-
ICS attributes. The “ModApte” split, which leads to a corpus of 9603 training
documents and 3299 test documents, is used in all experiments here. The number
of documents in each category varies widely, ranging from “Earn” which contains
3964 documents to “Castor-oil” which contains only one document. However, the
ten most frequent categories account for 75% of the training instances. These
ten categories are often used in the experiments of text categorization.

In the preprocessing, each article in each SGML file was transformed to an
XML document. In each XML document, there are altogether about 12 elements.
The categories of an XML document are set by element TOPICS which are de-
termined by the text content of the document instead of other factors. The text

An Inductive Learning System for XML Documents 13

function Predicate(TP, FP,FN,E,—) returns a predicate;

inputs: TP, TP of the current existing tree;
FP, FP of the current existing tree;
FN, FN of the current existing tree;
&, a set of examples;
—, a predicate rewrite system;

openList := [top];
predicate := top;
calculate Pr and Rc of the current existing tree;

._ 2PrxRc.
bestScore := S5,

while openList # ||

p := head(openList);
openList := tail(openList);
for each LR redex r via r — b, for some b, in p do
q == p[r/b;
if g is regular then
P := partition of £ induced by g;
update TP, FP, FN;
update Pr, Rc;
F1 — QIfTXRC'
r+Rc
if F1 > bestScore then
predicate := q;
bestScore := Fi;

openlList := Insert(q, openList);

return predicate;

Fig. 3. Algorithm for finding a predicate to split a node

content of the article is stored in element TEXT which has four subelements:
TITLE, BODY, AUTHOR and DATELINE. TITLE stores the title of the story
and BODY stores the main text of the story. The background knowledge tells
us that the hypothesis should be with the element TEXT, to be more specific,
should be with element TITLE and BODY. This information helps us build the
predicate rewrite system.

The text contents in the XML documents are preprocessed using structured
feature selection method. Text contents in an element is collected and formed
a new text document and stored in a corpus corresponding to this element.
Feature selection is done independently for each corpus. The procedure of the
feature selection includes stop words removal, stemming, feature selection and
feature weighting.

14 Xiaobing Jemma Wu

4.2 Experimental results

Part of the predicate rewrite system used in our experiments are as follows.

top — projRootElement o top

top — Az (projTagName o top projContents o top)

top — listToSet - top

top — setExists; (Ag (isElement projContentElement o top))
top — setExists; (Ag (isFeature projContentFeature o top))

top — setExists; (Ag (proFeatureld o top projFeatureWei o top))
top — (= REUTERS)

top — (= i)
top — (>)
top — (< y)

In the above predicate rewrite system, ¢ is an integer representing the text
feature number, and « (0 < z < 1) and y (0 < y < 1) represents the feature
weights.

One binary decision tree was built for each of the 10 most frequent classes.
Table 1 gives the precision/recall-breakeven point value on the ten most frequent
categories and their micro-average for five learning algorithms. The results for
Findsim, NBayes, BayesNets and LinearSVM are reported in [4]. No published

Findsim|NBayes|BayesNets| PRDT |LinearSVM
earn 92.9%| 95.9% 95.8%| 96.4% 98%
acq 64.7%| 87.8% 88.3%| 85.8% 93.6%
money-fx| 46.7%| 56.6% 58.8%| 66.5% 74.5%
grain 67.5%| 78.8% 81.4%| 93.9% 94.6%
crude 70.1%| 79.5% 79.6%| 84.9% 88.9%
trade 65.1%| 63.9% 69.0%| 71.2% 75.9%
interest 63.4%| 64.9% 71.3%| 74.2% 77.7%
ship 49.2%| 85.4% 85.4%| 76.6% 85.6%
wheat 68.9%| 69.7% 82.7%| 92.1% 90.3%
corn 48.2%| 65.3% 76.4%| 90.4% 90.3%
microave | 64.6%| 81.5 % 85.0 %|88.0 % 92.0 %

Table 1. Precision/recall-breakeven point on the ten most frequent Reuters categories
and their micro-average.

results are available for the distance between the precision and recall on the
breakeven point for Findsim, NBayes, BayesNets and LinearSVM. Table 2 sum-
marises the precision and recall on the test set for each of the ten classes on the

An Inductive Learning System for XML Documents 15

test set for PRDT. The two values of most classes are very close (around 5%),
and the average difference of the two values is 8.1%.

earn|acq |money|grain|crude|trade|intst|ship|wht |corn|avr
Pr|95.5(89.6/72.2 |91.1 |86.7 |67.2 |79.6|84.7|88.0|84.4(89.2
Rc|97.3(81.9|60.9 [96.6 |83.1 |75.2 |68.7(68.5/96.2(96.4|86.8

Table 2. The precision and recall value on the ten most frequent categories of Reuters
and their average

From Table 1 and Table 2, we can see that the PRDT algorthm performs
well on producing hypothesis with high BEP values on all 10 classes. Another
important point is that the PRDT algorithm provides comprehensible hypothesis
while most of other algorithms in Table 1 does not. The hypothesis produced by
PRDT algorithm contains information of the structure that is comprehensible
to human beings. Though the text features appear in the hypothesis is not
comprehensible at the first sight, it is easy to transform the features IDs to their
original terms by searching the feature-ID table by either by a script program
or a human being.

Next, an example is given to show the comprehensibility of the hypothesis
produced by our system. The following one-split decision tree gives a binary
classifier for category “trade”.

trade m =

if projRootElement o Ag (projTagName o (= REUTERS') projContents o
listToSet o setExists; (Ng(isElement projContentElement o
Ng(projTagName - (= TEXT) projContents o listToSet o
setErists; (Ag(isElement projContentElement o
Nz (projTagName o (= TITLE) projContents o
listToSet o setExists; (isFeature projContentFeature o setEwistsy (
Ag(projFeatureld o (= 89) projFeatureWei o top)))))))))) m

then T

else L

This theory clearly states the structure of the XML documents belonging to
“trade” class as follows.

“An XML document belongs to class trade iff (i) the root element of the
document is “REUTERS” and (ii) it contains an element named “TEXT” and
(iii) element “TEXT” contains an element named “TITLE” and (iv) element
“TITLE” contains the feature No.89 which represents word “budget”.”

16 Xiaobing Jemma Wu
5 Conclusion

This paper presents a novel inductive learning system that aims to produce com-
prehensible hypothesis for XML document classification. The knowledge repre-
sentation method is based on a higher-order logic formalism which is suitable for
representing individuals with complex structures. A systematic way for generat-
ing predicates is given by using predicate rewrite systems. The learning algorithm
of our system is a decision-tree learning algorithm driven by precision and re-
call. The algorithm works towards two goals at the same time: decreasing the
difference between the precision and recall and improve the F} value. Experi-
mental results show that the PRDT algorithm performs very well on XML data
classification, and its ability to proving comprehensible theories make it more
distinctive.

References

1. Extensible markup language (XML) 1.1.

2. Reuters-21578. http://www.daviddlewis.com/resources/
testcollections/reuters21578/.

3. I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization. In
Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing. AAAI Press, Menlo Park, US, 1997.

4. S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms
and representations for text categorization. In Proceedings of the Seventh Inter-
national Conference on Information and Knowledge Management, pages 148—155,
1998.

5. S.T. Dumais and H. Chen. Hierarchical classification of web content. In Proceed-
ings of ACM-SIGIR International Conference on Research and Development in
Information Retrieval, pages 256-263, Athens, 2000.

6. T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for
text categorization. In Proceedings of ICML-97, 14th International Conference on
Machine Learning, 1997.

7. T. Joachims. Text categorization with support vector machines: learning with
many relevant features. In Proceedings of ECML-98, 10th European Conference on
Machine Learning, pages 137-142. Springer Verlag, 1998.

8. D. Lewis and M. Ringuette. A comparison of two learning algorithms for text
categorization. In Proceedings of SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, 1994.

9. J. W. Lloyd. Logic for Learning: Learning Comprehensible Theories from Struc-
tured Data. Springer-Verlag, 2003.

10. M.E. Ruiz and P. Srinivasan. Hierarchical neural networks for text categoriza-
tion. In Proceedings of ACM-SIGIR International Conference on Research and
Development in Information Retrieval, pages 281-282, Berkeley, CA, 1999.

11. H. Schutze, D.A. Hull, and J.O. Pedersen. A comparison of classifiers and doc-
ument representations for the routing problem. In Proceedings of ACM-SIGIR
International Conference on Research and Development in Information Retrieval,
pages 229-237, Seatle, WA, 1995.

12

13.
14.

15.

16.

An Inductive Learning System for XML Documents 17

. F. Sebastiani. A tutorial on automated text categorisation. In Proceedings of ASAI-
99, First Argentinian Symposium on Artificial Intelligence, pages 7T-35, Buenos
Aires, AR, 1999.

C.J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.

X. Wu. Knowledge Representation and Learning For Semistructured Data. PhD
thesis, The Australian National University, 2006.

Y. Yang. An evaluation of statistical approaches to text categorization. ACM
Transactions on Information Systems, 12(3):296-333, 1998.

Y. Yang and J.O. Pedersen. A comparative study on feature selection in text cate-
gorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning, pages 412-420, Nashville, TX, 1997. D.H. Fisher.

