Mining of Frequent Block Preserving
Outerplanar Graph Structured Patterns

Yosuke Sasaki!, Hitoshi Yamasaki!, Takayoshi Shoudai!, and
Tomoyuki Uchida?

! Department of Informatics, Kyushu University
Fukuoka 819-0395, Japan
e-mail: {yosuke.sasaki,h-yama,shoudai}®@i.kyushu-u.ac.jp
2 Faculty of Information Sciences, Hiroshima City University
Hiroshima 731-3194, Japan
e-mail: uchida@cs.hiroshima-cu.ac.jp

Abstract. An outerplanar graph is a planar graph which can be em-
bedded in the plane in such a way that all of vertices lie on the outer
boundary. Many semi-structured data like the NCI dataset having about
250,000 chemical compounds can be expressed by outerplanar graphs. In
this paper, we consider a data mining problem of extracting structural
features from semi-structured data like the NCI dataset. For this data
mining problem, first of all, we define a new graph pattern, called a block
preserving outerplanar graph pattern, as an outerplanar graph having
structured variables. Then, we present an effective Apriori-like algorithm
for enumerating frequent block preserving outerplanar graph patterns
from semi-structured data in incremental polynomial time. Lastly, by
reporting some preliminary experimental results on a subset of the NCI
dataset, we evaluate the performance of our algorithms.

Keywords. pattern discovery, graph mining, graph structured pattern,
outerplanar graph.

1 Introduction

Large amount of data having graph structures, called semi-structured data, such
as map data, CAD, biomolecular, chemical molecules, the World Wide Web
are stored in databases. In the fields of Web mining and graph mining, many
Web documents and many chemical compounds can be represented by ordered
trees and outerplanar graphs, respectively. Outerplanar graphs are planar graphs
which can be embedded in the plane in such a way that all of vertices lie on the
outer boundary. In Fig. 1, we give four outerplanar graphs G, ¢1, g2, g3 as
examples of outerplanar graphs. For example, in the NCI dataset [4], which is
one of popular graph mining datasets, 94.3% of all elements are expressed by
outerplanar graphs. In analyzing semi-structured data, we must often solve a
subgraph isomorphism problem, which is known to be NP-complete in general.
However, subgraph isomorphism problems on some classes of graphs, including
trees and biconnected outerplanar graphs, can be solved in polynomial time

Graph G

u,
Uy
Graph g,
Uy

Graph g,

Graph pattern p Graph g,

Fig. 1. Outerplanar graphs G, g1, g2, gs and a block preserving outerplanar graph
pattern p. A variable is drawn by a box with lines to its elements. The label inside a
box represents the variable label of the variable.

[2,5]. Moreover, graph isomorphism problems tend to be easier than subgraph
isomorphism problems and are computed in polynomial time for the classes of
interval graphs, circular-arc graphs, and planar graphs.

Based on the viewpoints of these facts, in this paper, we consider a graph
mining problem of extracting structural features from semi-structured data hav-
ing outerplanar graph structures. In order to solve this graph mining problem,
first of all, we define a new graph pattern, called a block preserving outerplanar
graph pattern (bpo-graph pattern for short) as a connected outerplanar graph
having structured variables. A variable is a list of at most 2 vertices and can be
replaced with an arbitrary connected outerplanar graph.

We say that a bpo-graph pattern p matches an outerplanar graph G if G is
obtained from p by replacing all variables with arbitrary connected outerplanar
graphs. In Fig. 1, as an example of bpo-graph patterns, we give a bpo-graph
pattern p having variables (vi,vs), (vs,v4), (vs) labeled with variable labels
x, Yy, z, respectively. The bpo-graph pattern p matches the outerplanar graph G
in Fig. 1 obtained by replacing variables (v1,v2), (v3,v4), (vs) with outerplanar
graphs g1, g2, g3, respectively.

Our goal of this paper is to present an effective algorithm of enumerating all
frequent bpo-graph patterns from a given finite set D of outerplanar graphs. It is
natural that for a given finite set D of outerplanar graphs, bpo-graph patterns,
which are frequent with respect to the number of outerplanar graphs in D which
are matched by p, are characteristic in D. As our approaches, in a similar way
to a block and bridge tree given in [1], we introduce a block tree t(G) and a
block tree pattern t(p) according to an outerplanar graph G and a bpo-graph
pattern p, respectively. Then we reduce a problem of deciding whether or not a

bpo-graph pattern p matches an outerplanar graph G to a problem of deciding
whether or not the tree pattern ¢(p) corresponding to p matches the tree ¢(G)
corresponding to G. By giving an Apriori-like algorithm of generating candidate
block tree patterns, we enumerate all frequent bpo-graph patterns in incremental
polynomial time.

Horvéth et al. [1] proposed an Apriori-like algorithm, which works in in-
cremental polynomial time, for enumerating frequent subgraphs appearing in a
restricted class of outerplanar graphs, called d-tenuous outerplanar graphs. Then
by applying their algorithm to the NCI dataset [4], they found typical subgraph
structures of chemical compounds. Yamasaki and Shoudai [9] proposed an in-
terval graph pattern and presented a polynomial time algorithm for finding a
minimally generalized interval graph pattern explaining a given finite set of in-
terval graphs. As other related works, in the framework of inductive inference,
by Suzuki et al. [6] and Takami et al. [7] gave polynomial time learning al-
gorithms for tree patterns with internal structured variables and two-terminal
series parallel graph patterns, respectively.

This paper is organized as follows. In Section 2, we introduce a graph pattern
based on [8] and, in Section 3, a bpo-graph pattern as an outerplanar graph hav-
ing structured variables. In Section 4, we propose a polynomial time algorithm
which solves a matching problem between bpo-graph patterns and outerplanar
graphs. In Section 5, we propose an Apriori-like algorithm which enumerates all
frequent bpo-graph patterns from a finite set of outerplanar graphs. Lastly, by
reporting an experimental result of applying our algorithms to a subset of the
NCI dataset, we evaluate the performance of our algorithm.

2 Graph Pattern

Let A and A be two alphabets. Each symbol in A and A is called a vertez label
and an edge label, respectively. Let G be an undirected graph. In this paper, G
is called a (A, A)-labeled graph if all vertices and edges in G are labeled with
symbols in A and A, respectively. We denote by V(G) the set of vertices in G and
by E(G) the set of edges in G. A graph pattern is defined as a graph-structured
pattern with internal variables, which represents characteristic common struc-
tures in graph-structured data. In [8], we introduced a general graph-structured
pattern, called a term graph, in order to design efficient algorithms for computa-
tional problems on graphs. We define a class of graph patterns as a special class
of term graphs as follows. Let X be an infinite alphabet where X N (AU A) = 0,
whose elements are called variable labels.

Definition 1 (Graph pattern). Let G be a (A, A)-labeled graph. A variable
of G is a list of different vertices of V(G), which is denoted by (v1, ..., ve) (¢ > 1),
where v; # v; if i # j (1 < 4,5 < £). All vertices in a variable are called ports
of the variable. All variables are labeled with a variable label in X. If a variable
has only one port, it is called a terminal variable, otherwise called an internal
variable. A triplet p = (V, E, H) is called a (A, A)-graph pattern if (V, E) is a
(A, A)-labeled graph and H is a set of variables of (V, E).

Below (A, A)-labeled graphs and (A, A)-graph patterns are simply called labeled
graphs and graph patterns, respectively, when the label sets are clear from the
context.

Let p be a graph pattern. We denote by V(p), E(p) and H(p) the sets of all
vertices, edges and variables of p, respectively. And we denote by A,(v) the label
of v € V(p) of p and by J,(e) the label of e € E(p) of p. The degree of v, denoted
by dp,(v), is the total sum of edges adjacent to v and internal variables including v,
that is dy(v) = |{{u, 0} | {u,v} € Ep)}U{h| h e H(p), |h] > 2, h contains v}].

A graph pattern p is called a linear (or regular) graph pattern if all vari-
ables in H (p) have mutually distinct variable labels in X. Let p and g be linear
graph patterns. We say that p is isomorphic to ¢ if there exists a bijection
¥ V(p) — V(g) such that (1) for any v € V(p), A\p(v) = A\ (¥(v)), (2)
{u,v} € E(p) if and only if {¢p(u),v(v)} € E(q), (3) for any {u,v} € E(p),
Op({u,v}) = 6,({¥(w),¥(v)}), and (4) for ¢ > 1, (vi,v2,...,v¢) € H(p) if and
only if ((v1), ¥(va), ..., ¥(ve)) € H(q).

Assumption. All graph patterns in this paper are linear. Then we call linear
graph patterns graph patterns simply.

Definition 2 (Binding). Let p and ¢ be graph patterns and x a variable label
in X. Let 0 = (ug,...,ug) be a list of k distinct vertices in g. The form = :=
[q,0] is called a binding for x. We can apply a binding = := [g, o] to a variable
h = (v1,...,v¢) in p which is labeled with z if the binding x := [q, o] satisfies
that (1) ¢ = k and (2) Ay(u;) = A\p(v;) forall i (1 < i < ¢ = k). A new graph
pattern p{z := [¢, 0]} is obtained by applying the binding x := [¢,0] to p in
the following way. Let h = (v1,...,v¢) be a variable in p with the variable label

x. Let ¢’ be one copy of ¢ and u],...,u) the vertices of ¢’ corresponding to
uy,...,u of g, respectively. For the variable h = (vq,...,vy), we attach ¢’ to p
by removing the variable h from H(p) and by identifying the vertices vy, ..., vy
with the vertices uf,. .., u}, of ¢/, respectively.

A substitution 6 is a finite collection of bindings {z1 := [q1,01], + , T =
[@m,Om]}, where x1, ..., x,, are mutually distinct variable labels in X. A graph
pattern pd is obtained by applying all the bindings z1 = [q1,01],...,Zm =

[¢m, om] on p simultaneously.

Below we regard all labeled graphs as graph patterns without variables. As an
example of graph patterns, in Fig. 1, we give a graph pattern p having variables
(v1,v2), (vs,v4) and (vs) labeled with x, y, z, respectively, so that the graph
pattern p{z = (g1, (ur, u2)],y := [g2, (us, ua)], 2 = [ga, (u5)]} is isomorphic to
the graph G in Fig. 1 where g1, g2, g3 are labeled graphs in Fig. 1.

3 Block Preserving Outerplanar Graph Patterns and
Block Tree Patterns

Let G be a connected labeled graph. G is said to be biconnected if for any
two vertices in V, there exists a cycle which contains the two vertices. For a

subset U of V, the induced subgraph by U, denoted by G[U], is a subgraph
GlU] = (U,{{u,v} € E(G) | both u and v are in U}). An induced subgraph
G|U] is said to be a block if it is biconnected and there is no proper superset
U’ of U such that G[U’] is biconnected. An edge which does not belong to any
block is called a bridge. For a vertex v of a connected labeled graph G, v is
called a cutpoint if G[V(G) — {v}] is unconnected. An outerplanar labeled graph
is a planar labeled graph which can be drawn in the plane in such a way that
all vertices have a border with the outer face. We denote by O the set of all
outerplanar labeled graphs. Since any block B of an outerplanar labeled graph
has a unique cycle which contains all vertices of the block, we call the unique
cycle of B the Hamiltonian cycle of the block. A diagonal is an edge which is
contained in B but not on a Hamiltonian cycle of B.

In order to make our discussion simpler, we assume that all outerplanar
labeled graphs are connected. We can easily extend our result of this paper to
the case without the assumption.

Definition 3 (Block preserving outerplanar graph patterns). A graph
pattern p is a block preserving outerplanar graph pattern, bpo-graph pattern for
short, if p satisfies the following three conditions.

1. Any internal variable has exactly 2 ports.

2. A labeled graph G, = (V(p), E(p) U{{u, v} | (v,v) € H(p)}) is outerplanar.

3. Each port of any internal variable is either a cutpoint or a vertex of degree
1in Gy.

Since all internal variables in a bpo-graph pattern are bridges in G, we call an
internal variable in a bpo-graph pattern a bridge variable. For example, a graph
pattern p in Fig. 1 is a bpo-graph pattern and two variables (vq, v2) and (vs, v4)
of p are bridge variables. We denote by OP the set of all bpo-graph patterns.

In [1], a special data structure, called a block-bridge tree, was proposed for
representing all connections among blocks of an outerplanar labeled graph. In
a similar way to a block-bridge tree, for a bpo-graph pattern p, we introduce a
new tree-structured pattern, called a block tree pattern of p.

Definition 4 (Block tree patterns). Let p be a bpo-graph pattern in OP.
A block tree pattern of p, denoted by t(p), is a graph pattern defined as follows.
Let “4#” be a symbol which is not contained in AU A. Let Vg(p) = {vp |
B is a block of p}, whose elements are called block vertices. For all blocks B of
p, let Eg(B) = {{vp,v} | v € V(B)}. Then

E(i(p)) = (E(p) — U E(B)) U U Ep(B).

all blocks B of p all blocks B of p

Block tree /(g,)

Us

Block tree pattern #(p) Block tree #/(g;)

Fig. 2. Block trees t(G), t(g1), t(g2), t(gs) and the block tree pattern ¢(p) obtained
from outerplanar labeled graphs G, g1, g2, g3 and the bpo-graph pattern p in Fig. 1,
respectively. A block vertex is drawn by a double circle.

We define vertex labels of ¢(p) as follows: \yp)(v) = Ap(v) if v € V(p),
At(p)(v) = # otherwise. In a similar way, we define edge labels of ¢(p) as follows:
de(py(e) = dp(e) if e € E(p), 0y(p)(e) = # otherwise.

Next, for each block vertex vg € Vi(p), we assign a circular list, denoted by

pp(vp), to vp. It is called a block label of vg. We use a notation [aq, ..., as] to
represent a circular list consisting of elements a1, ..., a,. We assume that every
circular list has a pointer which points to the first element a1 in [aq, ..., a¢]. Let

£ be the number of vertices in B. We note that any Hamiltonian cycle of a block
is unique and represented in two ways, that is, clockwise and anticlockwise rota-
tions, if we specify a start vertex of the cycle. First we give a numbering from 1 to
£ to the vertices of B along one of rotation orders of the Hamiltonian cycle of B,
and identify the numbers with the vertices themselves. For any i (1 < i < £), we
suppose that the i-th vertex is adjacent to k; diagonals {4, j1 }, {4, jo}, ..., {i, Jk,; }
in B, where 0 < k; </ —3and 1 <j; < jo <+ <jg, <L Then

pp(vB) = [(¢p(1),0p({1,2})), (6p(2),5p({2,3})), - - (p(£), 6p({£, 1}))],

where ¢, (i) = [(j1, 5 ({é, j1})), (2, 5p({é, 52 1)) - - Gki» Gp ({2, Gk, 1)) (1 <0 < 0).

In this way, specifying a start vertex and a rotation direction of the Hamil-
tonian cycle of B, we construct a block label pug(vg) of a block vertex vg. From
it we can easily compute another block label with another start vertex or the
other rotation direction of the Hamiltonian cycle. We call a block tree pattern
without variables a block tree, simply. As examples of block tree patterns and
block trees, in Fig. 2, we give the block tree pattern t(p) of the bpo-graph pat-

tern p in Fig. 1 and block trees t(G), t(g1), t(g2), t(gs) of outerplanar labeled
graphs G, g1, g2, g3 in Fig. 1, respectively.

4 Matching Algorithm for Block Preserving Outerplanar
Graph Patterns

Let p and p’ be bpo-graph patterns in OP, and r and r’ vertices of p and p/,
respectively. Let ¢(p,r) be an unordered tree obtained from #(p) by specifying
r as a root, and for all block labels p,(vg), regarding the nearest vertex from
the root in B as a start vertex of the Hamiltonian cycle of B to reconstruct
a block label, denoted by p,(vp,r). We denote by f,(vp,r) the block label
obtained from p,(vp,r) by changing the rotation direction of the Hamiltonian
cycle. We say that ¢(p,r) is equivalent to t(p’,r’) if there exists an isomorphism
¥ from t(p,r) to t(p’,r’) such that for all block vertices vp in t(p,r), either
pp(vg,) = py (WY(vp),r’) or py(ve,r) = Ay (Y(ve),r’) holds. We say that ¢(p)
is equivalent to t(p’) if there exists two vertices 7 in p and 7/ in p’ such that
t(p,r) is equivalent to t(p’,r’).

Let r be a vertex in p and v a vertex of ¢(p,r). A block tree pattern rooted
at v of t(p,r), denoted by t(p, r)[v], is a block tree pattern induced by v and all
descendants of v.

We call a block tree pattern with no variable a block tree. For a block tree
pattern ¢ and a block tree T, we say that ¢ matches T if there exists a substitution
0 such that all graph patterns appearing in 6 are block trees and t6 is equivalent
to T'. We show the next lemmas for bpo-graph patterns and block tree patterns.
We omit the proof.

Lemma 1. Let p and p’ be bpo-graph patterns in OP and r a vertex in p. Let
x = [p/,o] be a binding for p. Then there exists a vertex v’ in o such that

t(p,r){x = [t(p',r"), o]} is equivalent to t(p{zx :=[q,0]}, 7).

Lemma 2. Let p and q be bpo-graph patterns in OP. Then, p is isomorphic to
q if and only if t(p) is equivalent to t(q).

We give a polynomial time algorithm for computing the following problem.

Matching Problem for OP
Input: An outerplanar graph G € O and a bpo-graph pattern p € OP.
Problem: Decide whether or not p matches G.

From Lemma 1 and Lemma 2, we can show that Matching Problem for OP
is reduced to the matching problem for deciding, given a block tree 7" and a
block tree pattern ¢, whether or not ¢ matches T

Let r be a vertex in G € O and 1’ a vertex in p € OP. For all vertices u in
t(G,r), we compute a subset of V(¢(p,r’)), which is called a correspondence-set
(C-set for short) of u and denoted by CS(u), in the following way. Let N and n
be the numbers of vertices in G and p, respectively. We assume that each C-set
is stored by a simple array of length O(n). We compute C-sets of all vertices in

t(G,r) in postorder depending on a kind of each vertex. For a vertex u in ¢(G, r),
let CSp(u) ={c € CS(c) | cis a child of u and ¢’ is a port of a variable in p}.

Leaf: For all leaves u of ¢(G,r), CS(u) is the set of all vertices u’ of t(p, ") such
that dy,,(u') = 1 and A\p(u') = Ag(u).

Block vertex: Let u be a block vertex of ¢(G,r) which represents a block B of
G. Let cq,...,cp be the children of w which appear on a Hamiltonian cycle
of B in this order. Let CSg(u) be the set of all block vertices «’ in #(p,r)
satisfying the following conditions: «’ has just ¢ children ¢/, ..., ¢, such that
they appear on a Hamiltonian cycle of a block represented by v’ in this order
and either (ug(u,r) = pp(v/,r’") and ¢ € CS(¢;)) or (pg(u,r) = fp(uw,r)
and ¢, € CS(¢p—;41)) holds for 1 < ¢ < £. This work consumes O(nf) time.
Finally CS(u) = CSp(u) U CSp(u).

Otherwise: Let u be a non-block vertex which is not a leaf in ¢(G,r) and
€1,...,c¢ the children of u. Let CSarg(u) be the set of all non-block vertices
u’ in t(p, r) satisfying the following condition: Ag(u) = Ap(w'), v’ has at most

¢ children ci,...,c; (¢’ < £) and there are ¢’ vertices c,,...,cy, among
¢1,...,¢o such that ¢, € CS(cx,) and 6,({v/,¢}}) = d0a({u, ek, }) for all i =
1,...,¢'. We can decide whether or not this condition are satisfied for v and v’

in the following way. First we construct a bipartite graph (U, V, E) as follows:
U={CS(c1),...,C8(ce)}OV = {c},...,cp} and E = {(CS(c;),c) | ¢j €
CS(c;) and 0,({v, cj}) = dg({u,ei}) (1 <@ < £, 1 < j < ')} Next we
compute a maximum bipartite graph matching problem for (U, V, E). If v’
is a port of a variable and the bipartite graph has a matching of size ¢,
or u’ is not a port of any variable and the bipartite graph has a matching
of size exactly ¢, we conclude that u and v’ satisfy the above condition. We
need O(L0'/€ + ¢') time to find a maximum matching for the bipartite graph
(U, V, E) by Dinic’s algorithm. Then we need O(nf+/¢) time for all non-block
vertices in ¢(p,r). Finally CS(u) = CSnxp(u) U CSp(u).

The correctness of the above algorithm is shown from the following lemmas.

Lemma 3. Let G and p be an outerplanar graph in O and a bpo-graph pattern
in OP, respectively. Moreover let v and r' be vertices of G and p, respectively,
and u and u' vertices in t(G,r) and t(p,r’), respectively. Then,

1. v € CSg(u) or v’ € CSnp(u) — CSp(u) if and only if t(p,r")[u'] matches
t(G, r)u], and

2. v € CSp(u) if and only if there is a descendant d of w such that t(p,r")[u']
matches t(G,r)[d].

Lemma 4. Let G and p be an outerplanar graph in O and a bpo-graph pattern
in OP, respectively. And let v be a vertex in G. Then there exists a vertex r’ in
p such that v’ € CS(r) if and only if t(p, ') matches t(G,r).

For each of n block tree patterns, we need O(nN+/d) time for computing all
C-sets for vertices in t(G,r), where d is the maximum degree of cutpoints in p.
Then we have the following theorem.

Theorem 1. Matching Problem for OP is computable in O(n2N\/8) time.

5 Pattern Enumeration Algorithm for Frequent BPO
Graph Pattern Problem

In this section, we give an Apriori-like algorithm for enumerating all frequent
bpo-graph patterns from a given finite set of outerplanar labeled graphs.

Let OP be the set of all bpo-graph patterns. Let p and ¢ be bpo-graph
patterns in OP and o a list of vertices of length one or two in gq. We easily
show that for a variable h in p labeled with z, a graph pattern p{z := [q,0]}
is also a bpo-graph pattern in OP. For p € OP, let L(p) = {pd € O |
all graph patterns appearing in 8 are in O}. It is easy to see that if A and A
have infinitely many symbols, for p and p’ € OP, L(p) € L(p') if and only
if there is a substitution € such that all graph patterns appearing in 6 are in
OP and p is isomorphic to p’f. For an outerplanar labeled graph G € O and a
bpo-graph pattern p € OP, we say that p matches G if G € L(p).

Let D be a finite set in O. We denote by matchp(p) the number of outerpla-
nar labeled graphs in D which are matched by p. The frequency of p with respect
to D, denoted by suppp(p), is defined as suppp(p) = matchp(p)/|D|. Let ¢ be
a real number where 0 < t < 1. A bpo-graph pattern p € OP is t-frequent with
respect to D if suppp(p) > t.

In this paper, we give an effective algorithm for computing the next problem.

Frequent Block Preserving Outerplanar Graph Pattern Problem

Input: A finite set of outerplanar labeled graphs D C O and a real number
t(0<t<1).

Output: The set of all t-frequent bpo-graph patterns in OP with respect to
D.

For k > 0, a k-block tree pattern is defined to be a block tree pattern such
that the total sum of the numbers of block vertices, bridge variables, and edges
not adjacent to any block vertex is equal to k. Let D be a set of outerplanar
labeled graphs in O and t a real number where 0 < ¢ < 1. Let L’fc be the set of
all ¢-frequent k-block tree patterns with respect to D and C}, a set of candidate
k-block tree patterns, which contains L. Let Ap (resp. Ap) be the set of all
vertex (resp. edge) labels appearing in D. We compute Cf and L (k > 0) in
the following way.

0-block tree patterns. For all a € Ap, we make a new vertex v labeled with
a to construct a new block tree pattern p, = ({v},0,{(v)}). C§ is the set of
all block tree patterns p, obtained from all @ € Ap in such a way. Let L be

the set of all block tree patterns in C§ which are ¢-frequent.
1-block tree patterns. C} is the set of all block tree patterns obtained from
L in the following three ways. Initially let C} = 0.
1. For two 0-block tree patterns p = ({v},0, {(v)}) and p’ = ({v'}, 0, {(v')})
in L, two copies ¢ = ({w}, 0, {(w)}) of p and ¢ = ({w'}, 0, {(w’)}) of p’

are made. Then,

(a) for all s € Ap, a new block tree pattern ¢, = ({w,w'}, {{w,w'}},
{(w), (w')}) with an edge {w, w'} labeled with s is added to C%, and

(b) a new block tree pattern ¢, = ({w,w'}, 0, {(w), (W), (w,w')}) is
added to Cf}.

2. For every block B appearing in all outerplanar labeled graphs in D, a
new block tree pattern gg = (V(¢(B)), E(¢(B)), {(w) | w is a non-block
vertex in V(¢(B))}) is added to C?.

Let L} be the set of all block tree patterns in C} which are t-frequent.

Let p be a block tree pattern. We say that p’ is a block tree subpattern of p
if p’ is a block tree pattern and V(p') C V(p), E(p') C E(p), and H(p') C H(p).
Moreover we say that p’ is a terminal block tree subpattern if p’ is a block tree
subpattern of p and either of the following forms:

Lyp = ({u,v}{{u,v}},{(v)}) or p = ({u,v},@,{(um),(v)}), where v is a
non-block vertex adjacent to only w in p.

2. p' = ({u,vB,v1,...,0e}, {{u,vp},{v1,vB}, ..., {ve,vB}}, {(v1),..., (ve)}) for
some ¢ > 2, where vp is a block vertex adjacent to only u,vq,...,ve in p,
while all vy, ...,v, are adjacent only to vg in p.

The vertex u appearing in (1) and (2) is called a connected point of p’. For a
block tree pattern p and a terminal block tree subpattern p’, we denote by p©p’
the block tree subpattern obtained from p by removing all vertices in p’ except
for the connected point of p’ and all edges and variables in p’.

k-block tree patterns (k > 2). Initially let C}, = (). For two (k—1)-block tree
patterns p and ¢ in L, _,, let p’ and ¢’ be two terminal block tree subpatterns
of p and ¢, respectively. If p & p’ is equivalent to ¢ & ¢’ then a new block
tree pattern r is constructed in such a way that a copy of p’ and a copy of
q' are connected to a copy of p © p’ through the connected points of p’ and
¢, respectively. The block tree pattern r is added to C}. Let L be the set
of all block tree patterns in C}, which are ¢-frequent.

In Fig. 3, we give examples of 0-block tree patterns, 1-block tree patterns and
k-block tree patterns constructed by the above algorithm.

Lemma 5. One generation of all candidates of k-block tree patterns from two
t-frequent (k — 1)-block tree patterns py and ps is computed in O(nind(ny +ns2))
time, where ni and ny are the numbers of vertices of p1 and pa, respectively.

Lemma 6. For any k > 2, L} is correctly computed from L% _, in polynomial
time with respect to the size of L}, by the above algorithm.

Theorem 2. The algorithm described above correctly computes Frequent Block
Preserving Outerplanar Graph Pattern Problem.

The degree of
a block vertex
is more than 2.

0-block tree
atterns -
\ P JANG 1-block tree patterns -/
4 N
[
[11
| (k-2)-block tree pattern | | (k-2)-block tree pattern |

\ Two (k-1)-block tree patterns) _k-block tree pattern

Fig. 3. Examples of 0-block tree patterns and 1-block tree patterns, and a generation
of a k-block tree pattern from two (k — 1)-block tree patterns.

6 Experimental Result

We have implemented our graph mining algorithm and tested on a chemical
dataset. In our experiments, we used a dataset consisting of 100 outerplanar
molecular graphs from the NCI database. The results are given in Fig. 4. We set
frequency thresholds to be 0.5, 0.3 and 0.1, and tested on the dataset with respect
to the frequencies. The table shows the numbers of candidate and frequent k-
patterns, and the runtime in seconds for the generation of frequent patterns.
In the table, we only show experimental results obtained by experiments which
finished in 5 days for frequencies 0.1 and 0.3, and in 1 day for frequency 0.1.

For frequency 0.3, the number of generated frequent 4-block tree patterns
is 12 per second, but the number of generated frequent 9-block tree patterns
becomes 0.1 per second. Such a generation rate decreases polynomially as the
total amount of sizes of generated candidate block tree patterns increases. Fig. 6
shows some of graph patterns generated by our algorithm.

Our algorithm generated a huge amount of frequent bpo-graph patterns,
comparing with an experiment of enumerating all frequent bpo-graph patterns
with no bridge variable (Fig. 5). The generated patterns certainly contain useless
or unimportant patterns from theoretical point of view, because if a frequent
bpo-graph pattern has a labeled edge, a bpo-graph pattern which is obtained
from the frequent bpo-graph pattern by replacing the labeled edge with a bridge
variable is also frequent. For a given set D of outerplanar labeled graphs in O,

0.5 0.37 0.1%
k| Cr | Li |time(sec)| Ch Ly |time(sec)| Ck Ly |time(sec)
0 10 4 0.05 10 4 0.05 10 5 0.03
1 53| 10 0.2 53 15 0.2 63 24 0.1
2 49 23 1 101 39 3 223 99 6
3| 202| 96 10 331 146 12 84| 296 22
4| 852| 280 84| 1599| 555 115] 3359| 1041 168
5] 2329| 713 404| 5931| 1798 593| 12414| 4128 847
6| 5142({1332 1280] 16423| 4996 2571 45101(15010 7293
7| 8956|1696 2894| 40952(12390 16050{158068(49379 55087
8(11231(1367 4606| 98925(26330 78523 — — -
9] 9521| 606 4535(221875(46677| 406132 - - -
10| 4431| 107 2064 — — — — — —
11| 816 0 339 — — — — — —

Fig. 4. This table shows enumeration results of 0.5-, 0.3-, and 0.1-frequent bpo-graph
patterns. (TPentium D 2.80GHz, 2.00GB RAM. *Core2 6300 1.86GHz, 1.00GB RAM.

0.5'
k|Cr|Ly|time(sec)
0| 10| 4 0.06
1137 3 0.3
21 75 1
3| 28|11 6
4|47|14 16
5| 82|14 41
6|76| 5 48
71 34| O 26

Fig. 5. This table shows an enumeration result of 0.5-frequent bpo-graph patterns with
no bridge variable. (TTPentium 4 1.90GHz, 256MB RAM).

a bpo-graph pattern p € OP is minimally generalized with respect to D if there
is no bpo-graph pattern p’ € OP such that D C L(p’) € L(p). If we want more
refined frequent bpo-graph patterns, we need to consider such a minimality of
bpo-graph patterns.

7 Conclusion and Future Works

In this paper, we have considered a data mining problem of extracting structural
features from semi-structured data whose data can be expressed by outerplanar
graphs. Firstly, we have defined a block preserving outerplanar graph pattern
as a new graph pattern having an outerplanar graph structure and structured
variables. Secondly, we have presented a polynomial time Apriori-like algorithm
for enumerating all frequent bpo-graph patterns w.r.t. a given finite set of out-

H
frequency 0.21 frequency 0.42 frequency 0.10

Fig. 6. Examples of 6-patterns generated by our system on the chemical test data

erplanar graphs. Finally, by reporting experimental results on a subset of the
NCI dataset, we have evaluated the performance of our algorithm. In experi-
ments, a huge number of frequent bpo-graph patterns were found. Many found
frequent bpo-graph patterns may be useless or unimportant from the chemical
viewpoints. Hence, we are considering a problem of extracting all frequent mini-
mally generalized bpo-graph patterns. Moreover, we are studying the polynomial
time learnability of the class of bpo-graph patterns.

In [3], we introduced unordered term trees, which are unordered tree patterns
with internal structured variables. The variables in unordered term trees are
defined in a similar way to bpo-graph patterns. We showed in [3] that a matching
problem of deciding whether or not a given unordered tree is matched by a given
unordered term tree with variables of more than 3 ports is NP-complete. From
this result, we easily to show that it is hard to solve in polynomial time a
matching problem for bpo-graph patterns extended to have variables consisting
of more than 3 ports. Hence, we are considering a polynomial time matching
algorithm for bpo-graph pattern extended to have variables consisting of at most
3 ports. Furthermore, we are planing to mining frequent graph patterns on other
classes of graphs like planar graphs.

References

1. T. Horvath, J. Roman, and S. Wrobel. Frequent subgraph mining in outerplanar
graphs. Proc. 12th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data mining, pages 197-206, 2006.

2. A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time.
Theoretical Computer Science, 63:295-302, 1989.

3. T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda. Polynomial time
matching algorithms for tree-like structured patterns in knowledge discovery. Proc.
4th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-
2000), Springer-Verlag, LNAI 1805, pages 5-16, 2000.

4. National Cancer Institute - Chemical Dataset, http://cactus.nci.nih.gov/

5. R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms,
33(2):267-280, 1999.

. Y. Suzuki, T. Shoudai, T. Uchida, and T. Miyahara. Ordered term tree languages
which are polynomial time inductively inferable from positive data. Theoretical
Computer Science, 350:63-90, 2006.

. R. Takami, Y. Suzuki, T. Uchida, T. Shoudai, and Y. Nakamura. Polynomial time
inductive inference of TTSP graph languages from positive data. Proc. 15th Inter-
national Conference on Inductive Logic Programming (ILP-2005), Springer-Verlag,
LNAT 3625, pages 366-383, 2005.

. T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithm for refutation tree problem
on formal graph systems. IEICE Transactions on Information and Systems, E78-
D(2):99-112, 1995.

. H. Yamasaki and T. Shoudai. A polynomial time algorithm for finding linear interval
graph patterns. Proc. 4th Annual Conference on Theory and Applications of Models
of Computation (TAMC-2007), Springer-Verlag, LNCS 4484, pages 67—78, 2007.

