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Abstract

Most Inductive Logic Programming (ILP) systems use a greedy cover-
ing algorithm to �nd a set of clauses that best model positive examples.
This set of clauses is called a theory and can be seen as an ensemble of
clauses. It turns out that the search for a theory within the ILP system
is very time consuming and often yields overly complex classi�ers. One
alternative approach to obtain a theory is to use the ILP system to non
deterministically learn one clause at a time, several times, and to combine
the obtained clauses using ensemble methods.

1 Introduction

Inductive Logic Programming (ILP) systems have been quite successful in ex-
tracting comprehensible models of relational data. Indeed, for over a decade,
ILP systems have been used to construct predictive models for data drawn
from diverse domains. These include the sciences [18], engineering [8], language
processing [33], environment monitoring [11], software analysis [4], pattern learn-
ing and link discovery [23, 24]. Most ILP systems use a greedy covering algo-
rithm that repeatedly examines candidate clauses (the �search space�) to �nd
good rules (or theories). Ideally, the search will stop when the rules cover nearly
all positive examples with only a few negative examples being covered.

This algorithm poses some challenges, since the search space can grow very
quickly, sometimes turning unfeasible the search for a good solution. Sev-
eral techniques have been proposed to improve search e�ciency of ILP algo-
rithms. Such techniques include improving computation times at individual
nodes [3, 27], better representations of the search [2], sampling the search
space [28, 29, 32], parallelism [6, 15, 22, 31, 32, 9, 13, 12], and utilization of
ensemble methods [10].

Ensembles are classi�ers that combine the predictions of multiple classi�ers
to produce a single prediction [7]. Several researchers have been interested in the
use of ensemble-based techniques for ILP. To our knowledge, the original work
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in this area is Quinlan's work on the use of boosting in FOIL [26]. His results
suggested that boosting could be bene�cial for �rst-order induction. More re-
cently, Hoche proposed con�dence-rated boosting for ILP with good results [17].
Zemke proposed bagging as a method for combining ILP classi�ers with other
classi�ers [34]. Dutra et al [10] studied bagging in the context of the ILP sys-
tem Aleph [30] learning theories. Their results showed that the applications
bene�ted from ensembles to a limited extent.

In this work we argue that learning a single clause at a time rather
than learning whole theories (or sets of clauses) at a time can be more cost-
e�ective and produce simpler classi�ers. Our alternative approach then is to
use ensembles of clauses. To some extent, an induced theory is an ensemble
of clauses. However, �nding an induced theory is very time consuming and can
produce very complex classi�ers. In this work we learn single clauses, and use
ensemble methods to combine them, which produce classi�ers that are better
than any single clause or theory, in much less time than �nding a theory.

The paper is organized as follows. First, we present in more detail the
ensemble method used in this work. Next, we discuss our experimental setup
and the applications used in our study. We then discuss how ensembles of
clauses compare with ensembles of theories. Last, we o�er our conclusions and
suggest future work.

2 Ensemble Methods

In general, ensemble methods work by combining the predictions of several
(hopefully di�erent) weak classi�ers to produce one �nal strong classi�er.

Ensemble generation assumes two distinct phases: (1) training, and (2) com-
bining the classi�ers. The ensemble methods vary according to the constraints
imposed to the training phase, and to the kind of combination used.

Figure 1 shows the structure of an ensemble of logic programs. This structure
can also be used for classi�ers other than logic programs. In the �gure, each pro-
gram P1, P2, ..., PN is trained using a set of training instances. At classi�cation
time each program receives the same input and executes on it independently.
The outputs of each program are then combined and an output classi�cation
reached. Figure 1 illustrates that in order to obtain good ensembles one must
address three di�erent problems:

• how to generate the individual programs;

• how many individual programs to generate;

• how to combine their outputs.

Regarding the �rst problem, research has demonstrated that a good ensemble
is one where the individual classi�ers are accurate and make their errors in
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Figure 1: An Ensemble of Classi�ers

di�erent parts of the instance space [20, 25]. Obviously, the output of several
classi�ers is useful only if there is disagreement between them. Hansen and
Salamon [16] proved that if the average error rate is below 50% and if the
component classi�ers are independent, the combined error rate can be reduced
to 0 as the number of classi�ers goes to in�nity. In this work, we argue that
ensembles of clauses produce rather independent classi�ers than ensembles of
theories as studied by Dutra et al [10].

Methods for creating the individual classi�ers therefore focus on producing
classi�ers with some degree of diversity. In the present work, we follow two
approaches to produce such classi�ers. We produce clauses and theories (sets
of clauses). We believe that clauses have a greater degree of diversity than
theories.

The second issue we had to address was the choice of how many individual
classi�ers to combine. Previous research has shown that most of the reduction
in error for ensemble methods occurs with the �rst few additional classi�ers [16].
Larger ensemble sizes have been proposed for decision trees, where gains have
been seen up to 25 classi�ers.

The last problem concerns the combination algorithm. An e�ective com-
bining scheme is often to simply average the predictions of the classi�ers [1, 5,
20, 21]. An alternate approach relies on a pre-de�ned voting threshold : if the
number of clauses or theories that cover an example is above or equal to the
threshold, we say that the example is positive, otherwise the example is neg-
ative. Thresholds may range from 1 to the ensemble size. A voting threshold
of 1 corresponds to a classi�er that is the disjunction of all theories. A vot-
ing threshold equal to the ensemble size corresponds to a classi�er that is the
conjunction of all theories. This voting scheme was used in [10].

Individual classi�ers that compose an ensemble can be obtained from di�er-
ent samples of the dataset or from the same dataset. They can also be obtained
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from one single ILP algorithm (homogeneous classi�ers) or from di�erent ILP
algorithms (heterogeneous classi�ers). In this work we use homogeneous classi-
�ers and obtain classi�ers from di�erent samples of the datasets. The classi�ers
can be independent or dependent, depending on the ensemble method employed.

Several methods have been presented for ensemble generation. The two
most popular are bagging and boosting [14]. Bagging works by training each
data set on a random sample from the training set. Classi�ers in this case are
totally independent from each other. Boosting works by assigning penalties to
misclassi�ed examples, and re�ning the search for clauses that try to cover the
misclassi�ed examples. Therefore, in boosting, the classi�ers are dependent.
The current classi�er is dependent on the previous in the training sequence.

In this work we evaluate bagging. Bagging classi�ers are obtained by training
each classi�er on a random sample of the training set. Each classi�er's training
set is generated by randomly, uniformly drawing K examples with replacement,
where K is the size of the original training set. Thus, many of the original
examples may be repeated in the classi�er's training set. We then contrast the
results obtained with clause-based learning to the results obtained with theory-
based learning.

3 Methodology

We use the ILP system Aleph [30] in our study. Aleph assumes (a) background
knowledge B in the form of a Prolog program; (b) some language speci�cation
L describing the hypotheses; (c) an optional set of constraints I on acceptable
hypotheses; and (d) a �nite set of examples E. E is the union of a nonempty
set of �positive� examples E+, such that none of the E+ are derivable from B,
and a set of �negative� examples E−.

Aleph tries to �nd one hypothesis H in L, such that: (1) H respects the
constraints I; (2) The E+ are derivable from B,H, and (3) The E− are not
derivable from B,H. By default, Aleph uses a simple greedy set cover procedure
that constructs such a hypothesis one clause at a time. The �nal classi�er is a
collection of clauses (a theory).

In the search for any single clause, Aleph randomly selects an uncovered
positive example as the seed example, saturates this example, and performs an
admissible search over the space of clauses that subsume this saturation, subject
to a user-speci�ed clause length bound. As it was mentioned before, this is a
very time-consuming process. We contrast this approach with the approach of
generating one single clause and stopping, using a randomly chosen example as
a seed.

Aleph allows the user to set a number of parameters. We always set the
following parameters as follows:

• search strategy: search. We set it to be breadth-�rst search, bf. This
enumerates shorter clauses before longer ones. At a given clause length,
clauses are re-ordered based on their evaluation. This is the Aleph default
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strategy that favours shorter clauses to avoid the complexity of re�ning
larger clauses.

• evaluation function: evalfn. We set this to be coverage. Clause utility
is measured as P − N , with P and N being the number of positive and
negative examples covered by the clause, respectively.

• chaining of variables: i. This Aleph parameter controls variable chaining
during saturation: chaining depth of a variable that appears for the �rst
time in a literal Li, is 1 plus the maximum chaining depth of all variables
that appear in previous literals Lj , j < i. We used a value of 5 instead of
the default value of 2 in order to obtain more complex relations between
literals in a clause.

• max number of nodes allowed: maxnodes. This corresponds to the number
of clauses in the search space. We set this to be 100,000.

• maximum number of literals in a clause: maxclauselength. This was
chosen based on some previous experiments and was set to 5.

• minimum clause accuracy: this is the minimum accuracy acceptable when
generating a new clause. It was set to 0.9 (i.e., accuracy of 90%).

We used the same set of parameters used by Dutra et al [10] in order to compare
some results.

Our experimental methodology employs �ve-fold cross-validation. For each
fold, we consider ensembles with size varying from 1 to 25, when learning the-
ories. Thus each application ran 25 times. This step generates 25 �les with
one theory per �le (set of clauses). For the experiment that learns clauses, we
varied the size of the ensemble from 1 to the average size of the theory, per ap-
plication, per fold. Therefore we can compare the performance of obtaining one
theory using a greedy covering algorithm with the performance of obtaining an
ensemble of clauses (with the same theory size), without using a greedy covering
algorithm.

For the evaluation phase, we used one popular metric to evaluate the qual-
ity of the ensembles, the accuracy. We studied how average accuracy varies
with ensemble size. We present accuracy as

Tp+Tn

Total_of_exs , where Tp and Tn,

are respectively, the number of positive and negative covered examples, and
Total_of_exs is the dataset size.

We wish to test the e�ectiveness of di�erent sizes of ensembles. Again, we
do not repeat the ILP runs themselves to learn entirely new theories for each
di�erent ensemble size. Rather, we use the theories from the previous step.
Because our results may be distorted by a particularly poor or good choice of
these theories, we repeat this selection process 30 times and average the results.

Figure 2 shows the general algorithm to perform the evaluation step. The
loop that goes from line 2 to 8 computes the points necessary to produce the
accuracies, where Tn is the rate of true negatives, Fn is the rate of false nega-
tives, Fp is the rate of false positives and Tp is the rate of true positives. This
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1. for fold = 1 to numFolds do
2. for ensSize = 1 to numIterations do
3. randomly select 30 sets of size ensSize
4. for threshold = 1 to ensSize do
5. for s = 1 to 30 do
6. errorSum[fold,ensSize,threshold] += (Tn,Fn,Fp,Tp)
7. endfor
8. endfor
9. endfor
10. endfor

Figure 2: General algorithm used in the evaluation step

is done for 30 sets, where each set contains ensSize theories that are selected
randomly from the 25. This builds a table per fold, per ensemble size, where
each line represents the error sum for the 30 sets, for each voting threshold.

This is repeated twice, once for a tuning set, from where we extract the best
threshold for each ensemble size, and again for the validation phase, where the
voting threshold used is the one that was the best for the tuning phase. The
�nal results are obtained by averaging the numbers across all folds.

The same procedure is repeated for the experiment that generates clauses
and do not use the greedy covering algorithm, but at this time, the ensemble
sizes can vary from 1 to the average size of the theories.

Bagging was implemented straightforwardly. We only needed to generate
the bags and run the training/test experiments independently.

All experiments were performed on the same machine, AMD 2.8 GHz with
512 MBytes of RAM, using Yap Prolog 5, and Aleph 3.0 running Mandriva
Linux 2007.

3.1 Benchmark Datasets

Our benchmark set is composed of �ve datasets that correspond to non-trivial
ILP applications that are also used in other works. We next describe the char-
acteristics of each dataset with its associated ILP application, and present a
dataset summary table.

Amine

Our �rst learning task is to predict amine re-uptake inhibition to discover new
drugs for the Alzheimer disease [19]. We were given some positive examples of
drugs that were e�ective against the disease, and some negative examples. The
task is to build a model for an active drug that distinguishes between active and
inactive drugs.

Carcinogenesis
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Our second application concerns the prediction of carcinogenicity test outcomes
on rodents. This application has a number of attractive features: it is an impor-
tant practical problem; the background knowledge consists of large numbers of
non-determinate predicate de�nitions; previous experience suggests that a fairly
large search space needs to be examined to obtain a good clause.

Choline

This application is also related to drug discovery for the Alzheimer disease. The
learning task is to identify the inhibition of the aceto-choline-esterase enzyme.

Mutagenesis

The prediction of mutagenesis is important as it is relevant to the understanding
and prediction of carcinogenesis. Not all compounds can be empirically tested
for mutagenesis, e.g. antibiotics. The considered dataset has been collected
with the intention to search for a method for predicting the mutagenicity of
aromatic and hetero-aromatic nitro compounds.

Protein

Our last dataset consists of a database of genes and features of the genes or of the
proteins for which they code, together with information about which proteins
interact with one another and correlations among gene expression patterns. This
dataset is taken from the function prediction task of KDD Cup 2001. While the
KDD Cup task involved 14 di�erent protein functions, our learning task focuses
on the challenging function of �metabolism�: predicting which genes code for
proteins involved in metabolism. This is not a trivial task for an ILP system.

Table 1 summarizes the main characteristics of each application. The second
and third columns correspond to the size of the full datasets. Bags are created
by randomly picking elements, with replacement, from the full dataset. The
last column indicates the size of the background knowledge (number of facts
and rules).

Table 1: Datasets Characteristics
Dataset E+ E- BK Size

Amine 343 343 232
Carcinogenesis 182 148 24988

Choline 663 663 232
Mutagenesis 125 63 15113
Protein 172 690 6913
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4 Results

This section presents our results and analyses the performance of each applica-
tion.

Accuracies presented are averaged across all folds, and are related to the test
sets. For each ensemble size, accuracy values for the test sets are obtained vary-
ing the voting threshold. The results showed uses the threshold that produced
the best accuracy in the tuning set where we trained on 3 of the 4 training data
of each fold to obtain the best threshold. For clarity's sake, these parameter
values are not shown in the curves.

Tables 2 and 3 shows a summary of execution time and best accuracy
achieved (at a given ensemble size), for three applications. The execution times
correspond to the total time to produce ensembles of all sizes.

Table 2: Ensemble of Theories
Dataset Time Acc. Ens.size Number of clauses Total clauses

Amine 10h41min 0.82 16 60 960
Choline 5h03min 0.81 25 139 3475
Protein 3h42min 0.81 25 63 1575

Table 3: Ensemble of Clauses
Dataset Time Acc. Ens.size Number of clauses Total clauses

Amine 3min 0.81 46 1 46
Choline 34min 0.78 139 1 139
Protein 24min 0.80 63 1 63

We can observe that the accuracies obtained with ensembles of theories are
slightly better than the ones obtained with ensembles of clauses, however the
execution time to obtain the theories are much higher. On the other hand, we
can obtain accuracies (with ensembles of clauses) very close to the best achieved
by ensembles of theories in far less time.

Moreover, the length of the classi�er obtained with ensemble of clauses is
much shorter than the one obtained with ensemble of theories. This can be of
utmost importance for the expert that will analyse the generated rules.

With these results, we wanted to answer the question: is it possible to
improve a classi�er of rules even further, not changing the ILP learner? The
answer is yes. It su�ces to �nd the smallest set of clauses that models all data,
without considering exceptions that do not generalize using the given learner.
Examples that do not generalize well should neither be part of the training set
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or of the test set, because they distort the quality of the learned rules. We then
decided to change the methodology used so far and use all positive examples of
the training set to generate clauses, instead of using a sample of the examples as
is done with the bagging method. Our new methodology also removes redundant
or equivalent clauses from the �nal ensemble as well as the Aleph specialized
clauses that cover only one example.

The algorithm that performs the selection is very simple: we generate a
bitmap of clause coverage, where each row is an example and each column is
a clause. If a clause covers an example, the bitmap position is �lled with a
1. Otherwise, it is �lled with a 0. Let U = (a, b, c) and V = (x, y, z), and 3
examples. For each pair of clauses U and V , we then compute the number of
1�s of U (tU) and the number of 1�s of V (tV ). Let W be a ∗ x + b ∗ y + c ∗ z.
If tU = tV = W , clauses U and V cover the same set of examples. We then
randomly remove one of them. If tU = W , remove U . If tV = W , remove V .

We used this new methodology with the datasets mentioned before, and
added two other popular datasets: mutagenesis and carcinogenesis, with 5-fold
cross-validation. The results are shown in table 4.

Table 4: Skimmed classi�er results
Dataset Time Acc. Avg. number of selected clauses

Amine 5min 0.83 34
Carcinogenesis 52min 0.57 71

Choline 12min 0.73 48
Mutagenesis 47min 0.80 13
Protein 5min 0.77 54

The times shown in table 4 are the total time to generate one clause per each
positive example that is used as a seed to Aleph, for all folds. The accuracy is
the average accuracy of all folds, after the clauses are selected using the new
�ltering methodology, where redundant and equivalent clauses are removed from
the set of generated clauses. The number of clauses selected also correspond to
the average across all folds.

We need to stress some important issues regarding this methodology:

• all examples that are not generalized by Aleph are not part of the classi�er.
In other words, the �nal classi�er will never classify these examples. This
contrasts to the previous classi�er generated with bagging, where examples
that are not generalized are part of the �nal ensemble. As we choose all
positive examples to generate a clause, we can discard the examples that
are not generalized by Aleph.

• The algorithm that constructs the �nal classi�er searches for the smallest
set of clauses that has maximum coverage of positives. We are not yet
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looking at false positives, therefore, the accuracy maybe not so good. The
voting mechanism used to obtain the previous classi�er helps to reduce
the false positive rate, which may increase the accuracy.

• There is one subset of examples that concentrates all information. De-
pending on the dataset, there can be examples that can not be generalized.
In other words, these examples have characteristics that do not appear in
any other example, and do not have characteristics that appear in other
examples. The performance of any classi�er will depend on where these
examples appear in the training set or in the test set.

Although the issues above may be an impediment to use the methodology we
are using, we observe gains related to the ensemble generation used before.
The classi�ers obtained with this methodology are simpler and have equivalent
performance to the ones generated using bagging.

5 Discussion

The results shown demonstrate several important facts in ILP learning:

• Ensembles of clauses learned with ILP are very powerful methods to obtain
good accuracies in a small amount of time;

• Bagging is e�ective on obtaining good quality classi�ers, even when the
individual classi�er is as weak as a single clause;

• Ensemble sizes greater than 25 may produce better accuracies for methods
that learn clauses;

• Learning theories can be unfeasible depending on the application, and
learning clauses can produce equal or better results;

• Theories do not bene�t much from ensembles. We believe that this is
because a theory is already an ensemble, and theories tend to be repeated
across folds;

• Very weak individual classi�ers such as single clauses can bene�t signi�-
cantly from ensembles, and producing a �nal classi�er takes time that is
several orders of magnitude less than the time spent to learn theories;

• Clauses are classi�ers simpler than theories. Consequently, an ensemble of
clauses is simpler than an ensemble of theories, which may help an expert
to interpret the results.
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6 Conclusions and Future Work

This work presented an empirical study of ensemble methods, in the Inductive
Logic Programming setting. We chose to apply ensembles to two di�erent indi-
vidual classi�ers: (1) classi�ers composed of one single clause, faster to obtain;
and (2) classi�ers composed of one or more clauses (theory), that take a huge
amount of time to obtain. We applied ensemble methods to classi�ers obtained
with the Aleph system. We tested three ILP applications already used in the
literature. Our results show that ensembles built from single clauses are more
cost-e�ective than ensembles built from theories. Clauses are much faster to be
learned, and an ensemble of clauses produces more readable classi�ers.

We also explored further the ability of obtaining simpler classi�ers by using a
very simple methodology, where we generate clauses using all positive examples,
in contrast to bagging, and generate an ensemble by removing redundant and
equivalent clauses. In this experiment we used 5 datasets, including the three
mentioned before. This approach showed to be better than using ensembles
whose clauses were generated using bagging. The classi�ers are simpler, and
their quality is equivalent to that of classi�ers based on ensemble of clauses
generated from bagging.
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