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Abstract. Mode declarations are an important form of language bias
in ILP. But, while they are heavily utilised in Horn clause ILP, so far,
they have not been applied to the more expressive full clausal setting.
This paper presents a mode-directed ILP procedure for full clausal logic.
It employs a first-order inference engine to abductively and inductively
explain a set of examples with respect to a background theory. Each
stage of hypothesis formation is guided by mode declarations using a
generalisation of efficient Horn clause techniques for inverting entailment.
Our approach exploits language bias more effectively than previous non-
Horn ILP methods and avoids the need for interactive user assistance.

1 Introduction

Mode declarations [3] are an important form of language bias in ILP. They are a
convenient way of constraining the hypothesis space searched by prominent ILP
systems like Progol [3] and Aleph [8]. These systems use a type of Mode Directed
Inverse Entailment (MDIE) [3] to construct and generalise a clause, called a
Bottom Set [3], which bounds an otherwise intractable search space by acting as
a syntactic and semantic ‘bridge’ between examples and hypotheses. But, while
its practical utility has been convincingly shown in Horn clause applications of
ILP, so far, no methods have been studied for lifting MDIE to the more expressive
setting of full clausal logic in order to allow the representation and discovery of
indefinite and disjunctive knowledge. The aim of our research is to show both
the feasibility and the necessity of such an generalisation.

This paper presents a mode directed proof procedure for full clausal ILP. It
uses a first-order inference engine called SOLAR [5] to implement a full clausal
extension of an MDIE approach called HAIL [6]. HAIL combines abductive and
inductive reasoning to construct and generalise a multi-clause variant of the
Bottom Set called a Kernel Set [6]. SOLAR is an efficient tool for computing
the deductive consequences of a given theory satisfying a sub-vocabulary known
as a Production Field [1]. We use SOLAR to provide a full clausal realisation
of HAIL, called fc-HAIL, by lifting the principles of MDIE from Horn clauses
to the general case. By exploiting language bias more effectively than previous
non-Horn ILP methods, fc-HAIL avoids the need for interactive user assistance.
The utility of fc-HAIL is illustrated by a case study in fluid modelling.



The paper is structured as follows: Section 2 reviews the relevant background
material; Sections 3 and 4 present our case study and the fc-HAIL approach;
Section 5 compares fc-HAIL with related work; and Section 6 concludes.

2 Background

2.1 Notation and Terminology

This paper assumes a first-order language L with connectives ∧ , ∨ , ¬ , ← ,
→ , ↔ , logical constants >, ⊥, and a classical entailment relation |=. A literal
L is either an atom A or its negation ¬A. The complement of L, denoted L, is
defined as A (resp. ¬A) if L = ¬A (resp. A). A clause C is a disjunction of literals
L1 ∨ . . . ∨ Lm that will often be treated as the set of its disjuncts. Any variables
are implicitly universally quantified at the front of the clause. A clause is Horn
clause iff it has at most one positive literal and is full otherwise. A clause D
subsumes C, written D ≥ C, iff there exists a substitution θ such that Dθ ⊆ C.
Moreover, D is said to properly subsume C iff D ≥ C but C 6≥ D. A theory T
is a conjunction of clauses C1 ∧ . . . ∧ Cn that will often be treated as the set
of its conjuncts. A theory S subsumes T , written S ≥ T , iff each clause in T is
subsumed by at least one clause in S. We are concerned with the following ILP
task [3]: Given theories B, E+ and E−, find a theory H such that B ∧ H |= E+

and B ∧ H ∧ E− 6|= ⊥. We will require H to satisfy some syntactic constraints,
specified by a set M of mode declarations, defined below.

2.2 Mode Declarations

Mode declarations are a well known form of language bias in ILP that are heavily
exploited in this paper. As defined in [3], a mode declaration m is either a head
declaration modeh(r, l) or a body declaration modeb(r, s) where r is an integer
(the recall) and s is a ground literal (the scheme) which can contain the place-
marker terms, #, + and −. Each scheme can be regarded as a ‘template’ with
the place-markers standing for constants, input variables and output variables,
respectively. The distinction between input and output variables is given by the
restriction that any input variable in a body literal must be an input variable
in the head or an output variable in some preceding body literal. In this way,
a set M of mode declarations is associated with a set of clauses LM , called
the language of M , such that C = L1 ∨ L2 ∨ . . . ∨ Ln ∈ LM iff L1 (resp.
Li for some 1 < i ≤ n) is obtained from some head (resp. body) declaration
in M by replacing all # place-markers with constants and by replacing all +
(resp. −) place-markers with input (resp. output) variables. The schema of a
mode declaration m is denoted schema(m) and defined as the literal obtained
from the scheme of m by replacing all place-markers by distinct variables. As
explained in [3], the recall of a mode declaration is used to bound the number
of times the scheme can be used.

Strictly, our definitions above differ from [3] in that we allow (positive or
negative) literals in a scheme, while [3] only allows (positive) atoms. Though



mode declarations were conceived for Horn clauses, where a head literal is always
positive and body literals are always negative, we note that the terminology
head and body are still consistent with a full clausal viewpoint where head refers
to the first literal L1 in a clause C, and body refers to the remaining literals
L2, . . . , Ln. Hence, our definitions naturally lift those in [3] from Horn clauses
to full clauses. Of course, our definitions reduce to those of [3] in the Horn case
using the equivalence A ∨ ¬B1 ∨ . . . ∨ ¬Bn ≡ A ← B1 ∧ . . . ∧ Bn.

Example 1. If M = { modeh(1, uncle(+, +)), modeb(1,¬brother(+,−)),
modeb(1,¬father(+, +)) } then uncle(X, Y )∨ ¬brother(Y, Z) ∨ ¬father(Z, Y )
∈ LM but uncle(pete, Y ) ∨ ¬brother(Z, Y ) ∨ father(Z, Y ) 6∈ LM .

2.3 MDIE (Mode Directed Inverse Entailment)

MDIE [3] is a mode-directed ILP approach based on the semantics of Bottom
Generalisation (BG) [3], which explains an example clause E relative to a back-
ground theory B by constructing and generalising an intermediate clause called
a Bottom Set [3] of B and E. As explained in [3]:

– a Bottom Set of B and E is a ground clause L1 ∨ . . . ∨ Ln such that
B ∧ ¬Eσ |= Li for all 1 ≤ i ≤ n and for some Skolemising substitution σ

– a Skolem-free clause H is said to be computed by BG from B and E iff there
exists a Bottom Set C of B and E such that H ≥ C

– for any clause H computed by BG from B and E it holds that B ∧H |= E

While BG is defined for full clauses, MDIE is restricted to Horn clauses.
MDIE uses a mode-directed BG procedure within an ILP cover loop that selects
seed examples E from a set E+ of positive examples and ensures hypotheses
H are consistent with a set E− of negative examples. It uses a set M of mode
declarations to heavily constrain the BG process. MDIE was first defined for
Observation Predicate Learning (OPL) [4], but was later extended to the non-
OPL setting using an approach called Theory Completion by Inverse Entailment
(TCIE) [4]. This is a three phase method where, for each seed example E:

– a Bottom Set head literal is computed using a contrapositive reasoning
method to find those head declaration instances that entail E

– some Bottom Set body atoms are computed using a query driven saturation
process to find those body declaration instances that are entailed by ¬Eσ

– a hypothesis is computed by a lattice based generalisation procedure using
a top down search of the subsumption lattice bounded by the Bottom Set
constructed above. A compression heuristic is used to search for consistent
hypotheses that contain few literals and cover many positive examples.

2.4 HAIL (Hybrid Abductive Inductive Learning)

HAIL [6] is a mode-directed approach for realising the semantics of Kernel Set
Subsumption (KSS) [7], which is based on a multi clause extension of the Bottom
Set, called a Kernel Set [7]. As explained in [7]:



– a Kernel Set of B and E is a ground theory K =
⋃n

i=1
Li

0 ∨ Li
1 ∨ . . . ∨ Li

m1

such that B ∧ (L1
0 ∧ . . . ∧ Ln

0 ) |= Eσ and B ∧ Li
j |= Eσ for all 1 ≤ i ≤ n

and 1 ≤ j ≤ mi and for some Skolemising substitution σ.
– a Skolem-free theory H is said to be computed by KSS from B and E iff

there exists a Kernel Set K of B and E such that H ≥ K
– for any theory H computed by KSS from B and E it holds that B ∧H |= E

Example 2. If B = {p(X) ∨ ¬q(X) ∨ ¬q(Y )} and E = p(0, 1) ∨ ¬r then H =
{q(X)∨¬r} is derivable by KSS (but not BG) using K = {q(0)∨ ¬r , q(0)∨¬r}.

The Kernel Set plays an identical role to the Bottom Set by serving as
an intermediate ground hypothesis that bounds the search space of an anti-
subsumption generaliser. Moreover, HAIL is based on a three phase methodology
which is directly analogous to MDIE in that:

– the contrapositive reasoning method of MDIE is replaced by a more general
abductive procedure which can return solutions with more than one atom

– the query driven MDIE saturation process is applied, in turn, to each atom
abduced in the previous step

– the MDIE compression-based search procedure is used to greedily generalise,
in turn, each Kernel Set clause constructed above

By integrating abduction and induction in this way, HAIL overcomes some
practical limitations of MDIE, such as an incompleteness of its contrapositive
procedure and its inability to infer more than one clause for each example [?].

2.5 SOLAR (SOL resolution for Advanced Reasoning)

SOLAR is a proof procedure for clausal consequence finding [1]. It is based on
Skip Ordered Linear (SOL) resolution [1], which extends connection tableaux [?]
with a rule for ‘skipping’ literals. Skipped literals are assumptions made in proof
and are needed for the completeness of SOL [1] for consequence finding. Since
the closure of a theory may be infinite, SOLAR computes so-called character-
istic [1] clauses, which represent ‘interesting’ theorems in some task. These are
subsume minimal consequences that satisfy a sub-vocabulary specified by a form
of language bias known as a production field [1]. A production field P is a pair
P = 〈Lits, Cond〉 with a set of literals Lits and a condition Cond. The language
LP of P is the set of clauses whose literals are instances of those in Lits and
which satisfy Cond. In practice, Cond simply constrains certain properties of
the clause such as its length and depth. If Cond is empty, we write P = 〈Lits〉.
If Th(T ) is the deductive closure of a theory T , and µT is the set of clauses in
T not properly subsumed by another clause in T , then the characteristic clauses
of T wrt P are defined as Carc(T, P ) = µ(Th(T ) ∩ LP ). If LP is closed with
respect to the inclusion of subsuming clauses, then P is said to be stable and
SOLAR can compute clauses in Carc(T, P ) under efficient pruning strategies [5].
SOLAR’s utility lies in the fact that many tasks, such as abduction and query
answering can be reduced to the computation of characteristic clauses [1]. In this
paper, we treat SOLAR as a black box. Given a theory T and production field
P , we denote by Solar(T, P ) the set of consequences returned by SOLAR.



3 Motivating Example: Fluid Modelling

One benefit of non-Horn ILP is that it domain knowledge can be conveniently
formalised in full first-order logic and automatically translated into clausal form.
Such representational flexibility simplifies the knowledge engineering process by
affording a more direct and less error prone formulation of prior knowledge.
Another benefit is that non-Horn ILP enables the exploitation and discovery of
disjunctive and indefinite concepts, which may be useful in formalising partial
domain models. We illustrate these ideas in Example 3 below.
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Fig. 1. Valves, branches, and pipework layout for Example 3

Example 3. This example concerns the flow of a liquid under gravity through a
vertical system of pipework consisting of valves and branches. As illustrated in
Figure 1, each valves has two points of connection, a top and a bottom, and it
has a state which can be open or not open. Intuitively, water will flow from the
top of the valve to its bottom if the valve is open (e.g. v1), but not otherwise
(e.g. v2). By contrast, branches have three points of connection, a top, a bottom
and a side. Ordinarily, water will flow from the top of a branch to its bottom
(e.g. b2), but will be forced out of the side if it cannot flow out of the bottom
(e.g. b1). A system of valves and branches is constructed by connecting the top
of a branch or valve to the bottom or side of another branch or valve. Any
unconnected points are designated inlets or outlets.



valve(X) → ( source(bottom(X)) ↔ open(X) ∧ source(top(X)) )
valve(X) → ( sink(top(X)) ↔ open(X) ∧ sink(bottom(X)) )

branch(X) → ( source(bottom(X)) ↔ source(top(X)) )
branch(X) → ( source(side(X)) ↔ source(top(X)) ∧ ¬sink(bottom(X)) )
branch(X) → ( sink(top(X)) ↔ sink(bottom(X)) ∨ sink(side(X)) )
branch(X) → ( open(X) )

connect(X, Y ) → ( source(Y ) ↔ source(X) )
connect(X, Y ) → ( sink(X) ↔ sink(Y ) )

inlet(X) → ( source(X) )
inlet(X) → (¬connect(Y, X) )

outlet(X) → ( sink(X) )
outlet(X) → (¬connect(X, Y ) )

Fig. 2. Domain knowledge (D) for Example 3

branch(b1) ∧ branch(b2)
valve(v1) ∧ valve(v2) ∧ valve(v3) ∧ valve(v4)

inlet(top(v1))
outlet(bottom(b2)) ∧ outlet(bottom(v2)) ∧ outlet(bottom(v4))

connect(bottom(v1), top(b1))
connect(bottom(b1), top(v2))
connect(side(b1), top(v3))

connect(bottom(v3), top(b2))
connect(side(b2), top(v4))

Fig. 3. Scenario description (S) for Example 3

To model the behaviour of a fluid flowing through a system of pipework, it
is convenient to introduce the notions of source and sink. Intuitively, a source
is a point into which fluid will flow from an inlet, while a sink is a point from
which fluid would discharge into an outlet. 3 A formal model of these concepts
is given by the domain theory D in Figure 2. It shows 12 first order implications
(which are implicitly conjoined and universally quantified at the front). The first
2 implications formalise the behaviour of valves. They say the bottom of a valve
is a source iff the top is a source and the valve is open; and vice versa. The next
4 formulae refer to branches: the bottom is source iff the top is a source; the side
is a source iff the top is a source and the bottom is not a sink; the top is a sink
iff the bottom or side is a sink; and a branch is always open. For any connected
points X and Y , X is a source (sink) iff Y is a source (sink). Finally, an inlet
(outlet) is a source (sink) which has no incoming (outgoing) connections.

3 If a point is a source and a sink, then fluid is flowing through there (e.g. side(b1)).
If it is a source but not a sink, then fluid is stagnating there (e.g. bottom(b1)).



B = D ∪ S E+ = {source(bottom(b2))} E− = {¬open(v4)}

M =



modeh(∗, open(+))
modeh(∗,¬open(+))

ff

∪

8

<

:

modeb(∗, outlet(bottom(+)))
modeb(∗,¬outlet(bottom(+)))
modeb(∗,¬valve(+))

9

=

;

H =



open(X) ∨ outlet(bottom(X)) ∨ ¬valve(X).
¬open(X) ∨ ¬outlet(bottom(X)) ∨ ¬valve(X).

ff

Fig. 4. Learning Inputs and Target Hypothesis for Example 3

The component and connection information for Figure 3 is given by the
scenario description S in Figure 3, which is a conjunction of 15 ground atoms.
Note how this description does not include the state of each valve as we wish to
induce a hypothesis specifying precisely this. In particular we seek a hypothesis
specifying which valves are open in order to explain the observation that fluid is
flowing from the bottom of branch b2. If we suspect the valve state may depend
upon whether its bottom is an outlet or not, and we require that v4 is not open,
then we have the learning problem in Figure 4. Given this task, we would like
to learn the hypothesis H stating that a valve is open iff its bottom is not an
outlet: It is easy to check H ∈ LM and a classical theorem prover can verify
B ∧ H |= E+ and B ∧ H ∧ E− 6|= ⊥. Thus H is a correct ILP hypothesis.

Transforming B to clausal form is a trivial operation that results in 21
Horn clauses and 2 non-Horn clauses, all with no more than 4 literals. One of
the non-Horn clauses is sink(bottom(X)) ∨ sink(side(X)) ← sink(top(X)) ∧
branch(X). This clause is produced by the 5th formula in D, which models the
preferential behaviour of a fluid to flow through the bottom of a branch instead
of the side. It says the top of a branch is a sink only if the bottom or the side
of the branch is a sink. This knowledge is disjunctive: if the top is a sink, then
we know either the bottom is a sink or the side is a sink but, without further
information, we may not know which. Given the non-Horn nature of B and H , a
full clausal ILP approach is needed to solve this problem. Given the strong bias
specified by M , this approach should utilise M in the learning process.

4 Full Clausal Hybrid Abductive Inductive Learning

In this section we show how SOLAR can be used to implement a full clausal
generalisation of HAIL that efficiently solves the example above. To do this,
we use SOLAR to lift all three phases of the HAIL learning cycle to full clausal
logic by integrating the necessary reasoning tasks of abduction, query answering,
coverage and consistency checking. We use Solar(T, C) to denote the set of
consequences returned by SOLAR for a theory T and production field P .

First we explain how SOLAR can be used for abduction in order to compute
the head ;literals of a Kernel Set. This means computing a unit theory ∆ =
{L1, . . . , Lm} such that B ∧ ∆ |= Eσ and each Li is an instance of a head
declaration scheme in M (with place-markers replaced by variables). This is



equivalent to an abductive task: Given a theory T , a ground clause C (called
a goal) and a set of literals Ls (whose instances are called abducibles), find
a theory ∆ (explanation) such that T ∧ ∆ |= C, each literal Li is subsumed
by a literal in Ls. We are interested in the subsume minimal explanations, as
these lead to smaller Kernel Sets that are easier to generalise. Here, we do not
explicitly require the consistency of ∆ with T as this will be checked by fc-HAIL.

From previous work [1] and [5] it is known that SOLAR can compute such
explanations by negating the characteristic clauses of the theory T ∧ ¬C and
production field P = {L |L ∈ Ls}. This can be efficiently done when P is stable,
by requiring that Ls is closed with respect to the inclusion of subsuming literals.
But we wish to utilise head declaration schemas to constrain the function symbols
in abduced literals, which usually violates stability:

Example 4. If T = {n(s(X)) ∨ ¬n(X)} and C = n(s(s(s(0)))) and M =
{modeh(1, n(0))} then the only stable production fields which can be used to
compute the explanation ∆ = {n(0)} by the abductive method in [1] must
contain the literal ¬n(X). But these also allow the alternative explanations
∆′ = {n(s(0))} and ∆′′ = {n(s(s(0)))} which are not allowed by M .

To avoid an inefficient generate-and-test approach, we developed a trans-
formation for constraining terms using stable production fields that ensure the
completeness of SOLAR’s pruning strategies. I is based on the introduction of
a new predicate pL to represent each literal L in Ls. One clause expressing the
relationship between pL and L is added to T , along with the negation of C, and
one maximally general instance of pL is added to the production field. Any bind-
ings computed by SOLAR are propagated back to the literals they represent.
This is formalised in the Abduce procedure below, which is sound and complete
for the computation of subsume minimal abductive explanations Moreover, this
method leads to no loss of efficiency as it only requires one additional resolution
step per abduced atom.

Example 5. If T = {n(s(X)) ∨ ¬n(X)} and C = n(s(s(s(0)))) and Ls = {n(0)}
then Abduce(T, C, Ls) = {n(0)} using B = {n(s(X)) ∨ ¬n(X), ¬n(s(s(s(0)))),
p ∨ n(0)} and P = 〈{p}〉 where p is the proposition representing n(0).

Procedure Abduce(T, C, Ls)
initialise B = T ∪ {G |G ∈ C}; Ms = ∅; S = ∅
for each literal L ∈ Ls with variables X1, . . . , Xn{

let pL be a fresh predicate of arity n
let B = B ∪ {L ∨ pL(X1, . . . , Xn)}
let Ms = Ms ∪ {pL(X1, . . . , Xn)}

}
for each clause ∆ ∈ Solar(B, P ) where P = 〈Ms〉) {

let S = S ∪ {{Lσ |L ∨ pL(X1, . . . , Xn) ∈ B and pL(X1, . . . , Xn)σ ∈ ∆}}
}
return S



Our next task is to use SOLAR to implement the query answering engine used
to compute the Kernel Set body literals. Given a theory T and a literal G, we
wish to compute the instances of G that are entailed by T . From previous work
[?], it is known SOLAR can efficiently compute such instances using the method
of answer literals [?]. As formalised in the Query procedure below, this involves
the use of a literal ans(X1, . . . , Xn) to represent the variables X1, . . . , Xn in G.
The production field P is set to return any bindings to these literals (the length
restriction avoids the computation of unnecessary disjunctive answers [9]). The
bindings D are extracted from the literals computed by SOLAR and propagated
back into the goal literal G to obtain the required instances A.

Procedure Query(T, G)
let C = G ∨ ans(X1, . . . , Xn) where X1, . . . , Xn are the variables in G
let P = 〈{ans(X1, . . . , Xn)}, length ≤ 1〉
let S = Solar(T ∪ {C}, P )
let D = {{X1/t1, . . . , Xn/tn} | ans(t1, . . . , tn) ∈ S}
let A = {Gσ |σ ∈ D}
return A

The Query procedure is utilised in a full clausal generalisation of the Progol
Bottom Set procedure[3], which uses a theory T and a set M of mode declarations
to saturate a given head literal L with body literals up to some variable depth
bounded by an integer d. As formalised in the Saturate procedure below, it
maintains a growing set of input terms I that are used to replace + place-
markers in the body declaration schemes. This results in a set of queries whose
successful instances result in the insertion of new body literals to the clause X
being constructed and the addition of new terms to I. Aside from the fact it
uses a full clausal query engine, this exactly the procedure used by MDIE and
Progol.

Procedure Saturate(T, L, M)
let X = {L}
let D be the first head declaration in M whose schema subsumes L

let I be the set of terms in L corresponding to + place-markers in D

for each integer i = 1, . . . , d up to some depth d {
for each body declaration C in M {

let Q be the set of literals obtained from the scheme S of C by
replacing all + place-markers by terms from I (in all possible ways)
and replacing all other place-markers by distinct variables

let A =
⋃

q∈Q Query(T, q)

add to X all literals in A

add to I all terms in A corresponding to −place-markers in C

}}
return X



All of the procedures are used in the fc-HAIL learning cycle, formalised below.
Like Progol, it uses a covering loop to incrementally construct a hypothesis H
using one uncovered example E at a time to focus the generalisation process.
Here, we note that coverage and consistency checking can easily be performed by
SOLAR. For example: a theory T is inconsistent iff ∅ ∈ Abduce(T, ∅, emptyset);
and a theory T entails a clause C iff T ∧ ¬C is inconsistent.

If it is non-ground, the seed example E is Skolemised by a substitution σ
binding each variable to a fresh constant. A minimal abductive explanation ∆
is then computed for the goal Eσ using the abducibles obtained from the head
declaration schemas. Each atom of Delta is saturated with instances of the body
declaration schemas to obtain a Kernel Set K. This is generalised to obtain a
subsuming hypothesis H . 4

Procedure fc−HAIL(B, E+, E−, M)
let H = ∅
let L be the set of head declaration schemas
while B ∪H does not cover E+ {

let E be any seed example E ∈ E+ not covered by B ∪H
let σ be any Skolemising substitution for E
let ∆ be any abductive explanation ∆ ∈ Abduce(B ∪H, Eσ, L)

that is consistent with B ∧ H ∧ E+ ∧ E−

let K be the Kernel Set K =
⋃

L∈∆ Saturate(T ∪ {Mσ, |M ∈ E}, L, M)
let H be any hypothesis such that H ∈ LM and H ≥ K

}
return H

Example 6. Consider B, E+, E− and M in Figure 4. Applying fc-HAIL, we
have L = {¬open(X), open(X)}. We must choose E = source(bottom(b2)).
As E is ground we have σ = ∅. There is one minimal abductive explanation
∆ = {open(v1), ¬open(v2), open(v3)} which results in the unique Kernel Set

K =







open(v1) ∨ outlet(bottom(v1)) ∨ ¬valve(v1).
¬open(v2) ∨ ¬outlet(bottom(v2)) ∨ ¬valve(v2).
open(v3) ∨ outlet(bottom(v3)) ∨ ¬valve(v3).







As required, this is subsumed by the hypothesis

H =

{

open(X) ∨ outlet(bottom(X)) ∨ ¬valve(X).
¬open(X) ∨ ¬outlet(bottom(X)) ∨ ¬valve(X).

}

Termination of fc-HAIL is ensured by bounding various parameters such as
the maximum number of abducibles n in ∆. The worst case time complexity of
HAIL is polynomial in n.

4 We currently perform this generalisation by applying the Progol A∗-like search pro-
cedure, in turn, to each clause in K. This ensures that, in the Horn case, we always
compute a hypothesis as or more compressive than Progol.



5 Related Work

Previous work on inverse entailment can be partitioned into two classes: (i)
efficient and incomplete Horn clause systems, which use greedy covering loops
and strong forms of language bias and search, such as Progol [3] and Aleph [8];
and inefficient but complete full clausal approaches, which use weaker forms of
language and search bias, such as CF-Induction [2] and the Residue Procedure
[10]. We see fc-HAIL as applying the efficient Horn techniques in (i) to the more
expressive full clausal setting of (ii). We now use Example 3 to briefly compare
fc-HAIL with these related approaches.

Progol and Aleph are direct Horn implementations of the MDIE described
earlier. Given the inputs B, E+, E− and M in Figure 4, they cannot compute
H as (i) B and H contain non-Horn clauses, (ii) it is necessary to infer two
hypothesis clauses in order to explain a single example clause, and (iii) H does
not entail any Bottom Set of B and E.

CF-Induction computes hypotheses by generalising a theory F obtained by
negating a set CC of instances of characteristic clauses of B ∧ ¬E. In our
example, the smallest possible theory F from which CF-Induction can infer the
hypothesis H is shown below.

F =







































open(v1) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).

¬open(v2) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).

open(v3) ∨ ¬outlet(bottom(v2)) ∨ outlet(bottom(v3))∨
outlet(bottom(v1)) ∨ ¬valve(v3) ∨ ¬valve(v2) ∨ ¬valve(v1).







































The theory F is much larger than the Kernel Set K and is therefore harder
to generalise. Moreover, CF-Induction must work correspondingly harder than
HAIL to construct F . In this case, CF-Induction computes a total of 32 char-
acteristic clauses of which 7 must be selected for CC, while HAIL computes 1
explanation and executes 6 ground queries. This suggests that fc-HAIL is able
to make more effective use of language bias than CF-Induction. By contrast,
the Residue Procedure, which does not include any form of language bias, must
generalise a Residue Hypothesis that is too large to be included in this paper.

6 Conclusions

This paper proposed a mode directed ILP procedure called fc-HAIL for full
clausal logic. In particular, it used the SOLAR consequence finding engine to
implement the HAIL learning cycle in a way that directly generalises efficient
MDIE techniques from Horn clause logic to the more expressive general case. By
avoiding syntactically disruptive and computationally expensive clausal form
conversions, fc-HAIL exploits language bias more effectively than previous work
on non-Horn ILP and removes the need for interactive user assistance. The



potential utility of fc-HAIL was illustrated with a case study modelling the flow
of a fluid through a system of pipework. This example suggests that fc-HAIL’s
ability to automatically compute multi-clause non-Horn hypotheses in response
to a single example may be useful in practice. We believe that non-Horn ILP
will be useful in real applications to enable the representation and discovery of
indefinite and disjunctive knowledge. We intend to test this claim using fc-HAIL
by extending our model of fluid flow into a model of metabolic flux in biochemical
networks. We also aim to better understand the trade-offs between expressivity
and efficiency by investigating stronger forms bias and more powerful inference
methods.
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