Revising First-order Logic Theories from
Examples through Stochastic Local Search

Aline Paes', Gerson Zaverucha', and Vitor Santos Costa?

! Department of Systems Engineering and Computer Science - COPPE
Federal University of Rio de Janeiro (UFRJ), Brazil
{ampaes, gerson}@cos.ufrj.br
2 LIACC and DCC/FCUP, Universidade do Porto, Portugal
vsc@dcc.fc.up.pt

Abstract. First-Order Theory Revision from Examples is the process
of improving user-defined or automatically generated First-Order Logic
(FOL) theories, given a set of examples. So far, the usefulness of Theory
Revision systems has been limited by the cost of searching the huge
search spaces they generate. This is a general difficulty when learning
FOL theories but recent work showed that Stochastic Local Search (SLS)
techniques may be effective, at least when learning FOL theories from
scratch. Motivated by these results, we propose novel SLS based search
strategies for First-Order Theory Revision from Examples. Experimental
results show that introducing stochastic search significantly speeds up
the runtime performance and improve accuracy.

1 Introduction

A variety of Inductive Logic Programming systems have been developed to au-
tomatically learn First-Order Logic (FOL) theories [11], [4], with good results on
a number of important applications [12,10], [3]. Most such systems are designed
to learn theories from scratch, given a set of examples and a fixed body of prior
knowledge, the background knowledge. There has been relatively less work on the
problem of repairing incorrect or incomplete theories. One example of theories
that could be repaired or improved are theories that had been elicited from a
domain expert, and thus may include useful information, but on the other hand
may be incomplete, and/or rely on incorrect assumptions, or even be inconsis-
tent. A second common example is the case where new examples are not well
explained by the original theory. In such cases standard ILP systems would take
one of the two following positions: they could either discard the initial theory,
or consider it as part of background knowledge which can not be modified.
Since the task of knowledge acquisition is difficult and time-consuming, and
since the original theory may contain valuable prior information, one would like
to take advantage of the original theory as a start point to the learning process.
Ideally, this should accelerate learning time and result in more accurate theories.
Several theory refinement systems have been proposed towards this goal [15, 6,
14]. Such systems assume the initial theory is approximately correct. If so, then
only some points in the theory prevent it from correctly modeling the dataset.

The idea is therefore that it should be more efficient to search for such points
in the theory and revise them, than to use an algorithm that learns a whole
new theory from scratch. Prior studies show that this approach can work well
and even require less examples in some cases [6]. Note that these revision algo-
rithms can be seen as a generalization from learning from scratch, as performed
by most ILP systems. However, in constrast to most ILP systems, theory revi-
sion algorithms do not apply cover removal, instead they perform search in the
space of whole theories. Arguably, cover removal, that sequentially searches for a
clause that explain unconvered examples, frequently generate unnecessarily long
hypothesis with too many clauses.

Theory revision systems operate by searching for revision points, that is, the
points which explain faults in the theory, and then proposing revisions to such
points, through applying at each point a number of matching revision operators.
Therefore, theory revision can be seen as a search process, and very much as
most, ILP algorithms, revising logic programs may need to search a very large
search space and therefore may incur big time and storage requirements. Search
space grows quickly with the size of the knowledge base. We would also expect
for search to be harder if the theory has more faults. Last, Theory Revisions
systems are particularly ambitious in that they tackle whole theories, which is
known to be a hard problem [1].

One possible way of alleviating the huge requirements of searching in the-
ory revision algorithms is to take advantage of clever search strategies such as
stochastic local search (SLS). Such methods have been successfully applied to
solve difficult combinatorial propositional problems [7,9,8] and recently they
have also been applied to learn theories from scratch in ILP systems [5, 13], sub-
stantially improving the efficiency of both domains. Motivated by these works
and by the increased combinatorial explosion of searching in entire theories, we
investigate the relevance of applying SLS in theory revision algorithms. To do
so, we develop greedy and hill-climbing algorithms that performs stochastic local
search, when proposing revisions and when searching for a revision to be imple-
mented, and we compare them to a theory revision algorithm that performs only
greedy hill-climbing search.

The outline of the paper is as follows. Some preliminary knowledge concerning
SLS and theory revision are reviewed in sections 2 and 3, respectively. The
algorithms developed to revise FOL theories from examples through SLS are
devised in section 4. Experimental results are presented in section 5, followed by
conclusions and future work in section 6.

2 Stochastic Search

Stochastic Search algorithms are a family of search algorithms that strongly rely
on randomized decisions while searching for solutions. Stochastic Local search
algorithms (SLS) are based on local search techniques. They therefore abandon
completeness in favor of trying to achieve the best exploitation of bounded re-
sources [7]. Unlike the greedy hill climbing approach, it avoids getting caught
in local optima by allowing random steps. One major motivation and successful

application of SLS has been in satisfiability checking of propositional formulae,
namely through the well-known GSAT [9] and WalkSAT [8] algorithms. A large
number of tasks in areas such as planning, scheduling and constraint solving can
be encoded as a satisfiability problem, and empyrical observations show that
SLS often can substantially improve their efficiency [2, 7].

Stochastic Search in Machine Learning Several machine learning algorithms can
be described as search algorithms. There has therefore been some interest in
applying SLS and related techniques to this area.

Chisholm and Tadepalli [2] used stochastic search to perform rule learning in
their system LERILS and compare its performance to other learning algorithms,
with encouraging results. Again in the area of rule learning, Riickert et.al. present
an SLS algorithm for learning k-term DNF's, that is, theories at most & clauses
[7]. They proposed a novel SLS algorithm specific for this task, and evaluated
its performance with excellent results.

Stochastic Search in ILP Several Inductive Logic Programming algorithms per-
form search on a vast search spaces, and most of them do include a limited
amount of stochastic search. As an example, Progol-like systems randomly se-
lect examples as seeds to start their search [4,11]. It is therefore unsurprising
that research on stochastic search has taken place since early ILP days [13].

A recent study takes this point further by implementing and evaluating the
performance of several randomization strategies in the ILP system Aleph [13].
The authors use a deterministic general-to-specific search as reference. They
then compare a variety of randomized algorithms. The stochastic strategies were
framed in terms of a single clause search algorithm. The results indicate that the
randomized search strategies outperforms in terms of search space deterministic
clause search across large intervals of the parameter space, and suggests that
similar techniques should be worthwhile across ILP.

3 First-order Logic Theory Revision

First-order theory revision is a challenging subject, particularly complex because
we do not revise single clauses; instead we must deal with the issues arising from
including a theory with multiple clauses.

In this work we follow the FORTE revision system (First Order Revision of
Theories from examples) [6]. FORTE performs hill-climbing search through a
space of both specialization and generalization operators in an attempt to find
a minimal revision to a theory that makes it consistent with the set of training
examples. The top-level algorithm is exhibited as Algorithm 1. The key ideas
are:

1. Identify all the revision points in the current theory.

2. Generate a set of proposed revisions for each revision point starting from
that one with the highest potential and working down the list. Potential is
defined as the number of misclassified examples that could be turned into
correctly classified from a revision in that point. The revision are proposed

through the revision operators. In this work we consider Delete-rule and Add-
antecedent as specializations operators and Delete-antecedent and Add-rule
as generalization operators. *
3. Score each revision through the actual increase in theory accuracy it achieves.
4. Retain the revision which most increases the score.

FORTE stops when the potential of next revision point is less than the score
of the best revision to date. If the best revision really improves the theory it is
implemented. Conceptually, each operator develops its revision using the entire
training set. However, in practice, this is usually unnecessary and thus FORTE
considers only the examples whose provability can be affected after proposing
some revision.

Algorithm 1 FORTE Algorithm (Richards and Mooney, 1995)

repeat
1. generate revision points;
2. sort revision points by potential (high to low);
3. for each revision point
4. generate revisions;
5
6

update best revision found;
. until potential of next revision point is less than the score of the best revision
to date
7. if best revision improves the theory
8. implement best revision
until no revision improves the theory;

4 Stochastic First-order Logic Theory Revision

Previous research on stochastic search for ILP has focused on clause search start-
ing from the empty theory. Next, we study whether stochastic search can improve
performance on the theory-level search performed by theory revision systems.
Although our studies could be performed on any theory revision algorithm, we
choose the FORTE system to implement and experimentally evaluate our ap-
proach. Following WalkSAT and related SLS algorithms, the approaches we pro-
pose perform a local, randomized-walk search, alternating between stochastic
and greedy moves with the type of the move to be executed being chosen ac-
cording to a prior probability p.

As observed above, a first major difference between our problem and prior
research is that we need to randomize search over theories. A second major
difference between our problem and prior approaches is that we would not like
to start from a random or empty hypothesis. Instead, we would like to take
advantage of an initial theory provided to the system.

3 There are others operators not used here, such as predicate invention and abduction.
Actually, any operator used in first-order machine learning cn be used in a theory
revision system.

In order to choose the revision to be implemented, theory revision system
such as FORTE proceed in two steps. First, the system searches for proposed
revisions through considering all revision operators at all revision points. This
process can be quite expensive as some operators must add antecedents, which
requires searching through all possible goals in the database. Next, the revision
system chooses the revision with highest potential and considers its score. This
argues for two different phases where one could take advantage of a randomized
strategy:

1. Revision search: instead of considering all possible revisions, we might search
for revisions that improve the score, as in SLS algorithms.

2. Operator Search: as operator search is dominated by antecedent search, we
may benefit from randomizing antecedent search.

4.1 Stochastic Local Search for Revisions

We propose two algorithms for randomizing revision search. The first algorithm,
greedy, implements greedy stochastic local search. The algorithm stops either
when it reaches a maximum number of steps or when it reaches a maximum score.
The second algorithm, hill-climbing chooses a move at random if it improves the
score, and only if so. The hill-climbing algorithms stops when further revisions
cannot improve the score in the same way FORTE does. The greedy and hill-

Algorithm 2 A greedy SLS theory revision Algorithm
while score < maxScore and steps < maxSteps do
1. generate revision points;
2. with probability p

3. list all possible revisions from the generated revision points;
4. next_revision = a revision chosen at random from the list of possible revi-
sions;

5. otherwise
6. FORTE Generate and Search revisions procedure

7. next_revision = best revision;
8. implements next_revision;
steps ++;

end while

climbing SLS revision theory algorithms are presented in detail as Algorithms 2
and 3, respectively, where FORTE Generate and Search procedure corresponds
to lines 2 to 6 in Algorithm 1. As usually in SLS methods, the algorithms:

1. With probability p, do a random move;
2. With probability 1 — p, do a FORTE-like move;

The two algorithms differ on the random move and on how to terminate. In
the greedy algorithm, a revision is just chosen at random. In the hill-climbing
algorithm, a revision is chosen at random but is only accepted if it actually
improves the score. The two algorithms also differ on their stopping criteria. The
greedy algorithm stops on finding a best solution and on time. The hill-climbing

algorithm stops if finding that no revision can actually improve the score, just
like FORTE does. Thus, Algorithm 3 replaces the lines 3-8 in Algorithm 1 while
Algorithm 2 replaces the whole algorithm only because the stopping criteria in
this last case is different from the original FORTE.

Notice that we do not need to explicitely enumerate all possible revisions. In
fact, given a revision point, we know that it either contributes to the misclassifi-
cation of positives, and is therefore a generalization point, to the misclassification
of negatives, and is therefore a specialization point, or to the misclassification
of both negatives and positives, and is therefore both. Thus, given all revision
points and their types, we can estimate the number of possible revisions and
select one at random.

Algorithm 3 A hill-climbing SLS theory revision Algorithm
1. with probability p:
2. list all possible revisions from the generated revision points;
3. next_revision = a revision chosen at random from the list of possible revisions
whose score > current ;

. otherwise:
FORTE Generate and Search revisions procedure
next_revision = best revision;

if next_revision improves the theory
implement next_revision;

N

4.2 Stochastic Local Search for Antecedents

Except for the Delete-Rule operator, all revision operators must search the best
antecedent to add/delete. This suggests using stochastic methods in order to ex-
plore the search space in a more efficient way. Next, we investigate a hill-climbing
stochastic search. We believe that a greedy algorithm could lead to either too
large or too small clauses, as it would run for a fixed number of steps. Therefore,
the search strategies devised here always execute until adding/deleting more
antecedents cannot improve the score. The stochastic version of algorithms for
adding or deleting antecedents is exhibited in Algorithm 4. FORTE provides two
separate algorithms for producing a specialized clause: hill-climbing antecedent
addition and relational pathfinding. In this work we focus on hill-climbing, as
it is more suitable to most datasets we consider. It is important to notice that
the delete-antecedent operator benefits less from stochastic local search than
add-antecedent, since the search space is restricted to goals in the clause, and is
therefore much smaller.

The process of adding or deleting antecedents using a SLS component starts
by getting all antecedents that could be added (deleted) in (from) a clause cho-
sen as revision point. If the antecedents are being added, the algorithm must
generate all possible antecedents from the database. If they are being deleted, it
is enough to collect the antecedents from the clause. As usual, we can execute
a stochastic or a greedy move, depending upon a fixed probability pl (addition)
or p2 (deletion). In a stochastic move, an antecedent is chosen at random and
then scored. If this antecedent improves the current score it is added (deleted)

in (from) the clause. Otherwise, another antecedent will be chosen at random. If
the move is greedy, all the antecedents are scored and the one with the highest
score is chosen.

Algorithm 4 Algorithm for adding/deleting antecedents using hill-climbing SLS
repeat
get all antecedents;
with probability pl/p2:
choose an antecedent at random whose score improves the current one, and,
add/delete it to/from the clause;
otherwise:
for each antecedent
calculate score;
add/delete to/from the clause the antecedent with the highest score if it im-
proves
the current score of the clause;
until no antecedent can improve the score;

5 Experimental Results

We performed a number of experiments in order to evaluate the different ap-
proaches using three ILP benchmarks. Mutagenesis is a well-known domain for
predicting structure-activity relationship (SAR). We use here the ”regression
friendly” dataset as discussed in [12]. Carcinogenesis is another well-known do-
main from SAR for predicting carcinogenic activity in rodent bioassays [10].
Alzheimer, compares analogues of Tacrine, which is a drug against Alzheimer’s
disease, according to four properties [3]. In this work we used only the dataset
related to the inhibit amine reuptake property.

Algorithms Our main aim is to investigate whether applying stochastic search
in a theory revision algorithm makes the revision task more efficient. Therefore,
in this work we analyse the following algorithms. (a) The original FORTE; (b)
Greedy stochastic revision selection presented in Algorithm 2; (c¢) Hill-climbing
stochastic revision selection presented in Algorithm 3. (b) and (c) use the FORTE
search for revision operators. (d) Hill-climbing antecedents search according to
Algorithm 4. In this case the search for revisions is executed as the original
system. (e) Greedy stochastic revision search plus stochastic antecedents search
(Algorithm 2 plus Algorithm 4); (f) Hill-climbing stochastic revision plus stoc-
ahstic antecedent search (Algorithm 2 plus Algorithm 4).

Experimental methodology All the algorithms were run using 10-fold cross vali-
dation; additionally, the stochastic algorithms were run 25 times. From previous
experiments we define the following default parameters (future work could in-
clude using validation sets in an internal cross-validation to determine the best
ones): (a) p = 70% for algorithms 2 and 3; (b) p = 50% for algorithms 4 and
(¢) maximum number of steps = 5 for Mutagenesis and 10 for Carcinogenesis
and Alzheimer_amine when running algorithm 2, since these two last ones are
more complex domains. The hypothesis were evaluated through their accuracy,

which is the same evaluation function used in original FORTE. As this is a sim-
ple evaluation function and therefore can guide to overfitting, future work will
makes use of an internal cross-validation procedure to decide the best stop point
through a validation set.

5.1 Results

In this section we present the results through two kinds of experiments. Fist, we
want to observe the behaviour of the stochastic algorithms, to find out which
one has the best performance. Next, we compare the algorithms which performed
better with a state-of-art ILP system.

Performance of stochastic algorithms Our first set of experiments aims at study-
ing the performance of our stochastic algorithms versus the hill-climbing algo-
rithm used by FORTE. Our methodology is as follows. First, we run Aleph on the
datasets to obtain a theory. Second, we randomly perturb the theories by per-
forming operations such as removing clauses, removing antecedents, changing
variables, adding antecedents, and adding clauses. Thus, the theories actually
sent to revision theory algorithms have accuracies on 67.02% on the training
and of 67.09% on the test set for Mutagenesis; of 56.72% and 57.08% for Car-
cinogenesis; and of 61.08% and 61.02% for Alzheimer_amine. Last, we run the
revision algorithms until it is acceptable. We define that a theory can be accepted
if Mutagenesis reaches a training-set accuracy of 0.8, and if Carcinogenesis and
Alzheimer reached an accuracy of 0.7 Actually, such accuracies were chosen be-
cause they are nearly the training accuracies of the initial theories, prior to
the perturbations inserted on them. This procedure is similar to the goodScore
heuristic defined in [16].

Figure 1 shows the percentage of acceptable theories found over 25 runs of
each stochastic algorithm. The curves are plotted against how many antecedents
we needed to evaluate until reaching an acceptable theory. Fig. 1(a) shows that
in the case of Mutagenesis all but hill-climbing algorithm revision almost always
reach acceptable theories after evaluating between 100 to 200 antecedentes only.
Figure 1(c) shows equivalent results for Alzheimer_amine, but when evaluating
more than 300 antecedents. Figure 1(b) shows that the threshold is much harder
to achieve for Carcinogenesis. The percentage only goes above 80% for the al-
gorithms that randomize antecedent evaluation, and they need to evaluate more
than a 1,000 antecedents to achieve this goal.

[—— SLS_antec Mutagenesis - Solutions Distribution Carcinogenesis - Solutions Alzheimer_amine - Solutions
dents 100+ Distribution Distribution
100 100
—=— SLS_revisi 90 ? 90 Zal 90 4 =
ns_greedy | 80 i I K r s I
» | s | e v
—A— SLS_revisi 60 60 // / /a 60 x X
ns_hill_climb_.
S @ | = -
% w© I]/ w0
—%—SLS revisiq 49 / / ps] 7// 2
ns_greedy >
SLS_antec 20 7/ 20 /4 20
dents 1 1
| —%— SLS_revisi 0 _l/‘ 10 0
ns_hill_clim| %* 0 o
ing+SLS_anjt 100 200 300 400 500 500 750 1000 1250 1500 100 200 300 400 500
ecedents Number of antecedentes evaluated Number of antecedents evaluated Number of antecedents evaluated
(a) (b) (c)

Fig. 1. Solutions Distribution considering the number of antecedentes evaluated

Figure 2 show how predictive accuracy evolves as the theories are being
revised. In order to compare the predictive accuracy, through the number of
antecedents evaluated, stochastic algorithms and original FORTE we consid-
ered the same parameters above which indicate that a solution was found. Thus
Figure 2 present test set accuracies for the algorithms considered. Figure 2(a)
indicates that for Mutagenesis the original FORTE and SLS FORTE with hill-
climbing on revisions improve performance accuracy to around 76% and then
stabilize. In contrast, the algorithms that randomize antecedent selection very
quickly improve performance with few revisions, and seem to still be improving
even after 500 antecedents. Note that greedy SLS on revisions improves more
slowly but still achieves over 80% performance. The results for Carcinogenesis
show that the best accuracies are achieved by the algorithms that randomize
antecedent search (close to 68%), except for the greedy revision algorithm. As
usual just randomizing revision search does not do very well, and the greedy
revision algorithm is actually outperformed by standard FORTE. Figure 2(c)
shows that original FORTE stabilize in 71% and the hill-climbing stochastic
procedure searching for revisions and antecedentes reach the best results. The
greedy stochastic revision algorithm is outperfomed by all the others algorithms.

Mutagenesis - Predictive accuracy Carcinogenesis - Predictive Alzheimer_amine - Predictive
accuracy accuracy

| —%—SLs_revisions |
hill_climbing

| —a—SLS revisions 1k9 o
greedy z S ey % ||70]
g7 62 ==
3 / 69
8
<

100 200 300 400 500 500 750 1000 1250 1500 100 200 300 400 500

Number of antecedents Evaluated Number of evaluated Number of antecedents evaluated

(a) (b) (©)
Fig. 2. Predictive accuracy considering the number of antecedentes evaluated

Table 1. Run time in seconds for each algorithm and dataset

Datasets Original | slsrev_ |slsrev_ sls_ |slsrev_greedy&| sls_rev_hc&
FORTE(a)|greedy (b)| hc (c) |antec. (d)| sls_antec. (d) |[sls_antec. (f)
Mutagenesis 28.11 24.25 20.68 15 12.7 12.14
Carcinogenesis| 5046.15 | 2329.34 |2573.77| 272.28 98.03 217.31
Alz_amine 18672.18 | 1558.67 (16178.89| 1607.19 373.06 730.95

Table 1 compare actual run-times for these algorithms. Randomizing re-
vision operators introduces a speedup, noticeably so for Carcinogenesis and
Alzheimer_amine, but the real performance gain seems to be obtained from ran-
domizing antecedent search. Stochastic search can achieve a speedup of over 50x,
while actually improving predictive accuracy. The bold numbers correspond to a
statistically significant improvement, according to a paired two-tailed t-test with
95% of significance level: all speedup improvements are statistically significant.

Table 2 shows test-set accuracy results. In general, although the results seem
to indicate an overall improvement over the original FORTE, the only numbers
that pass a significance test are the ones in bold face. All the significant re-

Table 2. Predictive accuracies for each algorithm and dataset

Datasets Original | SLSrev_ [slsrev_| sls. |[slsrev_greedy&| sls_rev_hc&
FORTE(a)|greedy (b)| he (c) |antec. (d)| sls_antec. (d) |[sls_antec. (f)
Mutagenesis 78.21 78.32 78.53 | 83.74 84.25 83.13
Carcinogenesis| 62.42 63.65 63.76 | 66.41 63.36 66.73
Alz_amine 71.04 65.92 70.39 | 72.78 65.65 72.52

sults require randomizing antecedent search. In Mutagenesis this is sufficient,
Carcinogenesis and Alzheimer_amine benefits from randomizing revision search.

Comparison to Aleph From the first set of experiments it was possible to observe
that the best trade-off between runtime and accuracy is reached by combined
versions of stochastic search for revisions added by randomized search of an-
tecedents. Thus, the last set of experiments study the question of whether these
combined approaches of stochastic methods can improve theories obtained from
the state-of-art ILP system Aleph, escaping from local minima in a reasonable
time. Thus, we execute the following two experiments with the datasets men-
tioned above using as theory revision algorithm the Algorithms 3 and 2 added
by a randomized search of antecedents performed by Algorithm 4:

1. In each fold of a 10 fold cross-validation procedure using 50% of the examples
a theory is generated by Aleph (45% of the examples in the training data
5% in the test). Then each one of these theories returned by each fold are
revised by the SLS algorithm and respective folds from all examples of the
dataset. That is SLS revises the theory obtained from ALEPH (that was
generated through the use of only 45% of the dataset) using the whole dataset
(obviously without the 10% of the testset).

2. In each fold of a 10 fold cross-validation procedure a theory is generated by
Aleph from all the examples in the dataset. Then each one of these theories
are revised considering their respective fold (i.e., the same folds are used to
generate and revise the theories).

Tables 3 and 4 show the values of accuracy and run time returned by theory revi-
sion stochastic algorithms, Aleph and original FORTE. In such tables, SLSHC
means that the stochastic search for revision is hill-climbing and SLSgreedy
means that the stochastic search for revisions is a greedy one. The probability
for algorithms 3 and 2 were fixed in 50% in order to become less dependent
from this parameter. Notice that we always show the predictive accuracy and
runtime of the algorithms considering the whole dataset. The symbol x means
that the stochastic algorithm makes a statistically significant improvement in
Aleph and e indicate an improvement over original FORTE, both considering
95% of significance level. For Alzheimer_amine we run the revision algorithms
with and without the relational pathfinding search for antecedents (the last row
of the tables show the results without relational pathfinding).

From the tables we can see that acuracy is always significantly improved com-
pared to Aleph and runtime is always improved compared to original FORTE.
Only in Mutagenesis we could improve both measures returned by Aleph and

Table 3. Accuracy of Aleph, FORTE and combined stochastic revision theory algo-
rithms. The values are obtained from the whole dataset

Dataset Method|Aleph |Forte SLS HC |SLS greedy
accuracy|accuracy |accuracy |accuracy
Mutag. 1 77.52 78.08 82.37 % ¢ |78.94%
2 73.08 73.63 79.74 % ¢ (80.16 x
Carcinog. 1 50.58 54.91 61.60 x (59.91 x
2 54.94 59.20 61.84 xe(61.21 x @
Alz_amine 1 62.11 63.79 68.13 < ¢ (66.53 x @
2 62.19 72.56 69.56% |66.83%
Alz_amine - 1 62.11 62.91 68.57 x ¢ [67.71 x @
feramipe - 62.19 [72.14 [70.59% |68.75%

Table 4. Runtime of Aleph, FORTE and combined stochastic revision theory algo-
rithms. The values are obtained from the whole dataset

Dataset Method|Aleph |Forte |SLS HC|SLS greedy
runtime|runtime|runtime [runtime
Mutag. 1 20.74 |11.23 |5.55 x e |10.12x%
2 20.74 |6.65 5.93% 10.49x
Carcinog. 1 69.78 |4958.72|591.78e |381.89e
2 69.78 |4929.16 |380.39e |242.11e
Alz_amine 1 15.58 [493.74 (190.97e (253.41e
- 2 15.58 [4362.94 (539.74e [519.28e
Alz_amine - 1 15.58 [509.79 (62.31e [105.36e
feramipe - 15.58 |2710.82 [124.58e [121.73e

FORTE. Ideally, both measures should be improved in most of domains. How-
ever, it seems that the search space still needs to be reduced (specially the one
from antecedents). One way towards that is to use Mode Directed Inverse Entail-
ment search [4]. We are currently enhancing in this way the algorithms presented
here. Anyway, these results show that stochastic revision is a good alternative
for improving the accuracy of theories returned by standard ILP systems in a
reasonable time.

6 Conclusions

We design and evaluate a number of stochastic local search techniques for the
revision of first-order theories. Our first results indicate that such techniques can
significantly improve the run-time and even the accuracy of a revision algorithm.
A more detailed analysis shows that much of the benefit comes from reducing the
cost of searching new antecedents to add to a clause in a theory, as this search
is quite expensive and seems to dominate revision costs. On the other hand,
benefits are also achieved through randomizing search from revision operators.
Our current results suggest that improving antecedent generation should be
a major concern in theory revision systems. One interesting future work would
therefore be to constrain this space by using modes and the bottom-clause to
guide the revision process (remembering that FORTE was based on FOIL).
Our results also seem to indicate that stochastic search has the potential to
very significantly improve the performance of theory-revision systems, and that
such improved systems may be useful in improve the theories generated by In-
ductive Logic Programming systems. We believe this is because theory revision

systems can take a global perspective of theory, in contrast to the local approach
used by the greedy cover-removal algorithms. Moreover, if Theory Revision sys-
tems can be made more efficient, this would make it more practical to revise
theories given new examples. Initial experiments suggest this may be indeed the
case, and that research in this direction may be very worthwhile.

Acknowledgments

The first author is financially suported by CAPES, the second author by CNPq and
the third author by Fundacao para a Ciéncia e Tecnologia, Program POSI. We would
like to thank Bradley Richards and Raymond Mooney for making the FORTE system
available and Kate Revoredo for useful discussions.

References

1. Ivan Bratko. Refining complete hypotheses in ILP. In Proc. of the 9th ILP, LNAI
1634, pages 44-55. Springer, 1999.

2. Michael Chisholm and Prasad Tadepalli. Learning decision rules by randomized
iterative local search. In Proc. of the 19th ICML, pages 75-82, 2002.

3. Ross D. King, Michael J. E. Sternberg, and Ashwin Srinivasan. Relating chemical
activity to structure: An examination of ilp successes. New Generation Computing,
13(3-4):411-433, 1995.

4. Stephen Muggleton. Inverse entailment and progol. New Generation Computing,
13:245-286, 1995.

5. Aline Paes, Filip Zelezny, Gerson Zaverucha, David Page, and Ashwin Srinivasan.
ILP through propositionalization and stochastic k-term DNF learning. In Proc. of
the 16th ILP, LNAI 4455, pages 379-393. Springer, 2007.

6. Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order
horn-clause domain theories. Machine Learning, 19(2):95-131, 1995.

7. Ulrich Riickert and Stefan Kramer. Stochastic local search in k-term DNF learning.
In Proc. of the 20th ICML, pages 648655, 2003.

8. Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satis-
fiability testing. Cliques, Coloring, and Satisfiability: Second DIMACS Implemen-
tation Challenge, October 11-18, 1993. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 26:521-532, 1996.

9. Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving
hard satisfiability problems. In Proc. of the 10th AAAI pages 440-446, 1992.

10. A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. Carcinogenesis
predictions using ILP. In Proc. of the 7th Int. Workshop on ILP, pages 273-287.
Springer-Verlag, 1297, 1997.

11. Ashwin Srinivasan. The Aleph Manual, 2001.

12. Ashwin Srinivasan, Stephen Muggleton, Michael J. E. Sternberg, and Ross D.
King. Theories for mutagenicity: A study in first-order and feature-based induction.
Artificial Intelligence, 85(1-2):277-299, 1996.

13. Filip Zelezny, Ashwin Srinivasan, and David Page. Randomised restarted search
in ILP. Machine Learning, 64(1-3):183-208, 2006.

14. Stefan Wrobel. Concept formation during interactive theory revision. Machine
Learning, 14(2):169-191, 1994.

15. Stefan Wrobel. First-order theory refinement. In Luc De Raedt, editor, Advances
in Inductive Logic Programming, pages 14-33. IOS Press, 1996.

16. Filip Zelezny, Ashwin Srinivasan, and David Page. Lattice-search runtime distri-
butions may be heavy-tailed. In 12th ILP, LNAI 2583, pages 333-345, 2002.

