Foundations of Refinement Operators for
Description Logics

Jens Lehmann!* and Pascal Hitzler?**

! Universitit Leipzig, Department of Computer Science
Johannisgasse 26, D-04103 Leipzig, Germany,
lehmann@informatik.uni-leipzig.de
2 Universitit Karlsruhe (TH), AIFB Institute
D-76128 Karlsruhe, Germany,
hitzler@aifb.uni-karlsruhe.de

Abstract In order to leverage techniques from Inductive Logic Pro-
gramming for the learning in description logics (DLs), which are the
foundation of ontology languages in the Semantic Web, it is important
to acquire a thorough understanding of the theoretical potential and
limitations of using refinement operators within the description logic
paradigm. In this paper, we present a comprehensive study which ana-
lyses desirable properties such operators should have. In particular, we
show that ideal refinement operators in general do not exist, which is in-
dicative of the hardness inherent in learning in DLs. We also show which
combinations of desirable properties are theoretically possible, thus pro-
viding an important step towards the definition of practically applicable
operators.

1 Introduction

With the advent of the Semantic Web and Semantic Technologies, ontologies are
becoming one of the most prominent paradigms for knowledge representation and
reasoning. However, recent progress in the field faces a lack of available ontolo-
gies due to the fact that engineering such ontologies constitutes a considerable
investment of resources. Methods for the automated acquisition of ontologies
are therefore required. In this article, we develop theoretical foundations for the
creation of such methods.

In 2004, the World Wide Web Consortium (W3C) recommended the Web
Ontology Language OWL? as a standard for modelling ontologies on the Web.
In the meantime, many studies and applications using OWL have been reported
in research, many of which go beyond Internet usage and employ the power of

* The first author acknowledges support by the German Federal Ministry of Education
and Research (BMBF) under the SoftWiki project (grant 01 ISF02 B).

** The second author acknowledges support by the German Federal Ministry of Edu-
cation and Research (BMBF) under the SmartWeb project (grant 01 IMDO1 B) and
by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem project.

3 http://www.w3.org/2004/OWL/

ontological modelling in other fields like software engineering, knowledge man-
agement, and cognitive systems.

In essence, OWL coincides with the description logic SHOZAN (D) and is
thus a knowledge representation formalism based on first-order logic. In order to
leverage machine-learning approaches for the acquisition of OWL ontologies, it
is therefore required to develop methods and tools for the learning in description
logics. To date, only few investigations have been carried out on this topic, which
can be attributed to the fact that description logics (DLs) have only recently
become a major paradigm in knowledge representation and reasoning.

In this paper, we investigate the applicability of methods from Inductive
Logic Programming (ILP) for the learning in description logic knowledge bases.
We are motivated by the success of ILP methods and believe that similar results
can be achieved for DLs.

Central to the usual ILP approach are the so-called refinement operators
which are used to traverse the search space, and many approaches indeed hinge
on the definition of a suitable such operator. Theoretical investigations on ILP
refinement operators have identified desirable properties for them to have, which
impact on their performance. These properties thus provide guidelines for the
definition of suitable operators. It turns out, however, that for hard learning set-
tings there are theoretical limitations on the properties a refinement operator can
have. A corresponding general analysis therefore provides a clear understanding
of the difficulties inherent in a learning setting, and also allows to derive direc-
tions for researching suitable operators.

In this paper we therefore give a full analysis of properties of refinement
operators for description logics. To the best of our knowledge, such a complete
analysis has not been done before, but the need for this investigation was ex-
pressed in [6,7]. The main contribution of this article is to derive a fundamental
theorem about properties of refinement operators in DLs. This can serve as the
foundation for the design of concrete refinement operators, which are used for
induction — with potential applications in other areas of Machine Learning like
clustering and data mining.

The paper is structured as follows. In Section 2 we will give a brief intro-
duction to description logics. Section 3 formally describes the learning problem
in description logics. Refinement operators and their properties are introduced.
The main section is Section 4, which contains the results we obtained. We will
fully analyse all combinations of interesting properties of refinement operators.
This means we will show which combinations of properties are possible, i.e. for
which combinations a refinement operator with these properties exists. We make
only basic assumptions with respect to the description logic we are looking at,
to cover as many description logics as possible. In Section 5 we discuss related
work, in particular the relation to refinement operators in the area of traditional
Inductive Logic Programming. Finally, in Section 6 we summarise our work and
draw conclusions.

Some proofs are omitted for lack of space. They can be found in a separate
technical report [12].

2 Description Logics

Description logics represent knowledge in terms of objects, concepts, and roles.
Objects correspond to constants, concepts to unary predicates, and roles to
binary predicates in first order logic. In description logic systems information is
stored in a knowledge base, which is a set of axioms. It is divided in (at least) two
parts: TBox and ABoz. The ABox contains assertions about objects. It relates
objects to concepts and roles. The TBox describes the terminology by relating
concepts and roles.

We briefly introduce the ALC description logic, which is the target language
of our learning algorithm and refer to [1] for further background on description
logics. Syntax and semantic of ALC concept constructors is shown in Table 1.
As usual in logics, interpretations are used to assign a meaning to syntactic con-
structs. Let N; denote the set of objects, No denote the set of atomic concepts,
and Npi denote the set of roles. An interpretation Z consists of a non-empty in-
terpretation domain AT and an interpretation function X, which assigns to each
object @ € N; an element of A, to each concept A € N a set AT C AT, and to
each role r € Ng a binary relation 77 C AZ x AZ. Interpretations are extended
to concepts as shown in Table 1, and to other elements of a knowledge base in a
straightforward way. An interpretation, which satisfies an axiom (set of axioms)
is called a model of this axiom (set of axioms). An ALC concept is in negation
normal form if negation only occurs in front of concept names. SHOZN (D), the
description language corresponding to OWL (to be precise it corresponds to the
dialect OWL DL), is an extension of ALC. The results presented in this paper
are general, i.e. they hold for all reasonable expressive description logics. (The
criteria these languages have to fulfil are described later in Definition 3.)

construct syntax semantics
atomic concept A AT C AT

role r rf C AT x AT
top T AT

bottom € 1]

conjunction ~CMD (CnD) =c*nD*
disjunction CcubD (Cub)* =c*uD*
negation -C (=C)F = AT\ C*
existential Ir.C F.0)f ={a]

3b.(a,b) € T and b € CT}
universal vr.C (vr.C) ={a|

Vb.(a,b) € r* implies b € CT}

Table 1. ALC syntax and semantics

It is the aim of inference algorithms to extract implicit knowledge from a
given knowledge base. Standard reasoning tasks include instance checks, retrieval
and subsumption. We will only explicitly define the latter. Let C', D be concepts

and 7 a TBox. C is subsumed by D, denoted by C C D, iff for any interpretation
T we have CT C D%, C is subsumed by D with respect to T (denoted by C' C1 D)
iff for any model Z of 7 we have C C DZ. C is equivalent to D (with respect to
7T), denoted by C =D (C=7 D), it CC D (CCy D)and DC C (D Cr C).
C' s strictly subsumed by D (with respect to T), denoted by C = D (C Tt D),
if CC D (CCy D)andnot C=D (C=7 D).

3 Learning in Description Logics using Refinement
Operators

In this section we will briefly describe the learning problem in description logics.
The process of learning in logics, i.e. finding logical explanations for given data,
is also called inductive reasoning. In a very general setting this means that we
have a logical formulation of background knowledge and some observations. We
are then looking for ways to extend the background knowledge such that we
can explain the observations, i.e. they can be deduced from the modified knowl-
edge. More formally we are given background knowledge B, positive examples
ET, negative examples £~ and want to find a hypothesis H such that from H
together with B the positive examples follow and the negative examples do not
follow. It is not required that the same logical formalism is used for background
knowledge, examples, and hypothesis, but often this is the case.

Definition 1 (learning problem in description logics). Let a concept name
Target, a knowledge base K (not containing Target), and sets ET and E~
with elements of the form Target(a) (a € Ny) be given. The learning problem
is to find a concept C' such that Target does not occur in C' and for K' =
K U{Target = C} we have K' | ET and K' £ E~.

The goal of learning is to find a correct concept with respect to the examples.
This can be seen as a search process in the space of concepts. A natural idea
is to impose an ordering on this search space and use operators to traverse it.
This idea is well-known in Inductive Logic Programming [18], where refinement
operators are widely used to find hypotheses. Intuitively, downward (upward)
refinement operators construct specialisations (generalisations) of hypotheses.

Definition 2. A quasi-ordering is a reflexive and transitive relation. Let S be a
set and = a quasi-ordering on S. In the quasi-ordered space (S, =) a downward
(upward) refinement operator p is a mapping from S to 2%, such that for any
C € S we have that C' € p(C) implies C' =< C (C <X C'). C' is called a
specialisation (‘generalisation) of C.

This idea can be used for searching in the space of concepts. As ordering we
can use subsumption. (Note that the subsumption relation C is a quasi-ordering.)
If a concept C subsumes a concept D (D C C), then C will cover all examples,
which are covered by D. This makes subsumption a suitable order for searching
in concepts. In this section we will analyse refinement operators for concepts

with respect to subsumption and a description language £, which we will call £
refinement operators in the sequel.

Definition 3. Let £ be a description language, which allows to express T, L,
congunction, disjunction, universal quantification, and existential quantification.
A refinement operator in the quasi-ordered space (L, C) is called an L refinement
operator.

We need to introduce some notions for refinement operators.

Definition 4. A refinement chain of an L refinement operator p of length n
from a concept C' to a concept D is a finite sequence Cy,C1,...,Cy, of concepts,
such that C = Cy,C1 € p(Cy),Ca € p(Cy),...,Cn € p(Cp_1),D = Cy,. This
refinement chain goes through E iff there is ani (1 <i <n) such that E = C;.
We say that D can be reached from C by p if there exists a refinement chain
from C to D. p*(C) denotes the set of all concepts, which can be reached from
C by p. p™(C) denotes the set of all concepts, which can be reached from C by
a refinement chain of p of length m.

Definition 5. A concept C is a downward cover of a concept D iff C C D
and there does not exist a concept E with C T E T D. A concept C is an
upward cover of a concept D iff D T C and there does not exist a concept E
with DC EC C.

If we look at refinements of an operator p we will often write C' ~», D instead
of D € p(C). If the used operator is clear from the context it is usually omitted,
i.e. we write C ~ D.

We will introduce the concept of weak equality of concepts, which is simi-
lar to equality of concepts, but takes into account that the order of elements
in conjunctions and disjunctions is not important. By equality of two concepts
we mean that the concepts are syntactically equal. Equivalence of two concepts
means that the concepts are logically equivalent (see preliminaries). Weak equal-
ity of concepts is coarser than equality and finer than equivalence (viewing the
equivalence, equality, and weak equality of concepts as equivalence classes).

Definition 6. We say that the concepts C and D are weakly (syntactically)
equal, denoted by C' ~ D iff they are equal up to permutation of arguments of
congunction and disjunction. Two sets S1 and So of concepts are weakly equal if
for any Cy € Sy there is a C] € Sy such that Cy ~ C} and vice versa.

Refinement operators can have certain properties, which can be used to eval-
uate their usefulness for learning hypotheses. These properties are what we in-
vestigate in this paper.

Definition 7. An L refinement operator p is called

— (locally) finite iff p(C) is finite for any concept C.

— (syntactically) redundant iff there exists a refinement chain from a concept C
to a concept D, which does not go through some concept E and a refinement
chain from C to a concept weakly equal to D, which does go through E.

— proper iff for all concepts C and D, D € p(C) implies C # D.

— ideal iff it is finite, complete (see below), and proper.

An L downward refinement operator p is called

— complete iff for all concepts C and D with C ” D we can reach a concept
E with E=C from D by p.

— weakly complete iff for all concepts C with C = T we can reach a concept
E with E=C from T by p.

— minimal iff for all C, p(C) contains only downward covers and all its ele-
ments are incomparable with respect to C.

The corresponding notions for upward refinement operators are defined dually.

4 Analysing the Properties of Refinement Operators

In this section we will analyse the properties of refinement operators in descrip-
tion logics. In particular, we are interested in seeing which desired properties
can be combined in a refinement operator and which properties are impossible
to combine. This is interesting for two reasons: The first one is that this gives
us a good impression of how hard (or easy) it is to learn concepts. The second
reason is that this can also serve as a practical guide for designing refinement
operators. Knowing the theoretical limits allows the designer of a refinement
operator to focus on achieving the best possible properties.

ALC refinement operators have been designed in [6,9]. However, a full the-
oretical analysis for DL refinement operators has not been done to the best of
our knowledge (not even for a specific language). Therefore all propositions in
this section are new unless explicitly mentioned otherwise.

As a first property we will briefly analyse minimality of £ refinement oper-
ators, in particular the existence of upward and downward covers in ALC. It
is not immediately obvious that e.g. downward covers exist in ALC, because it
could be the case that for any concept C' and D with C' © D one can always
construct a concept E with C' C E C D. However, it is possible to show that
downward covers do exist.

Proposition 1. Downward (upward) covers of T (L) exist in ALC.

Example 1. The following is a downward cover of the T concept:

|_| Ir.T U |_| A

reNg A€EN¢c

This means that non-trivial minimal operators, i.e. operators which do not
map every concept to the empty set, can be constructed. However, minimality

of refinement steps is not a directly desired goal in general. Minimal operators
are in some languages more likely to lead to overfitting, because they may not
produce sufficient generalisation leaps. This is a problem in languages which are
closed under boolean operations, i.e. ALC and more expressive languages.

Indeed, the following result suggests that minimality may not play a central
role for DL refinement operators, as it is incompatible with (weak) completeness.
A weaker result was claimed to hold, but not proved, in [4]. We formulate our
result for the description logic AL, the concepts of which are inductively defined
as follows: T, L, Ir. T, A, =A with A € Ng, r € Ny are AL concepts. If C' and
D are AL concepts, then C'M1 D is an AL concept. If C' is an AL concept and r
a role, then Vr.C is an AL concept.

Proposition 2. There exists no minimal and weakly complete AL downward
refinement operator.

In the sequel we analyse desired properties of £ refinement operators: com-
pleteness, properness, finiteness, and non-redundancy. We show several positive
and negative results, which together yield a full analysis of these properties.

Proposition 3. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and finite L refinement operator.*

In particular, the following operator can be shown to be complete and finite
for any language £ we consider:

p(C)={CNT}U{D ||D| < (number of
T occurrences in C') and D C C}

Of course, it is obvious that the operator used to prove Proposition 3 is not
useful in practise, since it merely generates concepts without paying attention
to efficiency. However, in [11], we have developed a complete and finite operator,
which was integrated into the Genetic Programming framework and shown to
be useful in a preliminary evaluation.

Let it be noted that in many scenarios it appears to be quite difficult to design
a good complete and finite refinement operator. The reason is that finiteness can
only be achieved by using non-proper refinement steps. We will now show that it
is impossible to define a complete, finite, and proper refinement operator. Such
operators are known as ideal and their non-existence indicates that learning
concepts in sufficiently expressive description logics is hard.

Proposition 4. For any language L, which satisfies the conditions stated in
Definition 3, there does not exist any ideal L refinement operator.

We will give a proof sketch: By contradiction, we assume that there exists an
ideal downward refinement operator p. We further assume that there is a role

4 Our result in fact invalidates a claim made in [4] stating that there can be no complete
and finite ALER refinement operator.

r € Ng. Let p(T) = {C4,...,C,} be a set of refinements of the T concept. (This
set has to be finite, since p is finite.) Let m be a natural number larger than
the maximum of the quantifier depths (depth of the nesting of quantifications)
of the concepts in p(T). We construct a concept D as follows:

m—times (m+1)—times

We have shown, which is the main part of the proof, that there exists no
concept with a quantifier depth smaller than m, which strictly subsumes D and
is not equivalent to T. This means that C1,...,C, do not subsume D (note
that the properness of p implies that Ci,...,C,, are not equivalent to T), so
D cannot be reached by further refinements from any of these concepts. Since
Ci,...,C, are the only refinements of T, it is impossible to reach D from T.
Thus p is not complete, which is what we wanted to show.

However, if the requirement of finiteness is dropped, corresponding operators
exist.

Proposition 5. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and proper L refinement operator.

Propositions 3, 4, and 5 state that for complete refinement operators, which
are usually desirable, one has to sacrifice properness or finiteness. Both combi-
nations can be useful in practise. As noted above, we have developed a complete
and finite operator in [11], because the finiteness property was important in
this context. However, in [13] we have chosen to develop a complete and proper
operator, in an ILP style top-down learning algorithm, because it is easier to
overcome the problem of an infinite operator in this context.

We will now look at non-redundancy.

Proposition 6. For any language L, which satisfies the conditions stated in
Definition 3, there exists a complete and non-redundant L refinement operator.

Proof. We will prove the result by showing that each complete operator can
be transformed to a complete and non-redundant operator. Note that in the
following, we will use the role r to create concepts with a certain depth. If
Npg does not contain any role, the desired effect can also be achieved by using
conjunctions or disjunctions of T and L, but this would render the proof less
readable.

We will use the fact that the set of concepts in £ is countably infinite. The
countability already follows from the fact that there is just a finite number of
concepts with a given length. Hence, we can divide the set of all concepts in
finite subsets, where each subset contains all concepts of the same length. We
can then start enumerating concepts starting with the subset of concepts of
length 1, then length 2 etc. Thus, there is a bijective function f : £ — NN, which
assigns a different number to each concept C' € L. We denote the inverse function
mapping numbers to concepts by finV.

Now, we modify a given complete refinement operator p, e.g. the operator
in the proof of Proposition 5 (see [12] for details), in the following way: For any
concept C, p(C) is modified by changing any element D € p(C) with depth d to

Dnvr...¥Nr(TN---MT)
—_— Y—
d+1 times f(C) times

We claim that the resulting operator, which we want to denote by p’ is
complete and non-redundant.

The completeness of p’ follows from the completeness of p, since the construct
we have added does not change the meaning (it is equivalent to T).

To prove non-redundancy, we will first define a function p™, which maps
conjunctions, which contain at least one element of the form Vr....Vr.(T -1
T), to concepts:

PV(CAYr.. . Y (TA---NT) = f™Y(n)
—_——

n times

element with largest depth

We can see that D € p/(C) implies p™(D) = C, so p"v allows to invert a
refinement step of p/. Furthermore, we have C' ~ D implies p™¥(C) = p™V(D),
because p™V treats all weakly equal concepts in the same way.

By the definition of redundancy, there needs to be a concept C' and concepts
D1, Dy with Dy ~ D5, such that there is a refinement chain from C to D; and
a different refinement chain from C' to Ds. However, if D; and Dy are weakly
equal, then p™ (D) = p'™(D;), and by continuing to apply p™¥ we will reach
C. Hence the two refinement chains from C' to D; and D,, respectively, cannot
be different. Thus, p’ is non-redundant.

Essentially, the proof of Proposition 6 is done by showing how to make com-
plete operators non-redundant by using the fact that the set of concepts in any
considered language L is countably infinite. We note, however, that under a mild
additional assumption Proposition 6 no longer holds.

Proposition 7. Let p be an arbitrary L refinement operator, where L satisfies
the conditions stated in Definition 3, and for any concept C, p*(C) contains
only finitely many different concepts equivalent to L. Then p is not complete
and non-redundant.

The assumption made in the proposition is indeed mild: If we have L € p*(C)
for any concept C', then it is already satisfied. The assumption is made in order
to disallow pure theoretical constructions, as in the proof of Proposition 6, which
use syntactic concept extensions, that do not alter the semantics of a concept,
to ensure non-redundancy. In fact, the result also holds under an even milder,
but more technical assumption, see our report [12].

As a consequence, completeness and non-redundancy usually cannot be com-
bined. It is often desirable to have (weakly) complete operators, but in order to

have a full analysis of £ refinement operators we will now also investigate in-
complete operators.

Proposition 8. For any language L, which satisfies the conditions stated in
Definition 3, there exists a finite, proper, and non-redundant L refinement op-
erator.

Proof. The following operator has the desired properties:
{L}ifC£1L

() otherwise

pl0)={

It is obviously finite, because it maps concepts to sets of cardinality at most 1.
It is non-redundant, because it only reaches the bottom concept and there exists
no refinement chain of length greater than 2. It is proper, because all concepts,
which are not equivalent to the bottom concept strictly subsume the bottom
concept.

The corresponding upward operator is:

{T} ifC#£T
() otherwise

)= {

The arguments for its finiteness, properness, and non-redundancy are analogous
to the downward case.

We can now summarise the results we have obtained so far.

Theorem 1. Let L be a language, which satisfies the conditions stated in Def-
inition 3. Considering the properties completeness, properness, finiteness, and
non-redundancy the following are mazimal sets of properties (in the sense that
no other of the mentioned properties can be added) of L refinement operators:

1. {complete, finite}
2. {complete, proper}
3. {non-redundant, finite, proper}

All results hold under the mild hypothesis stated in Proposition 7.

A property we have not yet considered is weak completeness. Usually weak
completeness is sufficient, because it allows to search for a good concept start-
ing from T downwards (top-down approach) or from L upwards (bottom-up
approach).

We will see that we get different results when considering weak completeness
instead of completeness.

Proposition 9. For any language L, which satisfies the conditions stated in
Definition 3, there exists a weakly complete, non-redundant, and proper L re-
finement operator.

The result just given also holds when properness is replaced by finiteness.

Proposition 10. For any language L, which satisfies the conditions stated in
Definition 3, there exists a weakly complete, non-redundant, and finite L refine-
ment operator.

However, properness and finiteness cannot be achieved at the same time if
weak completeness is imposed. To show this, we can use the same proof as for
Proposition 8, where we have shown that for any finite and proper refinement
operator, there exists a concept, which cannot be reached from T.

Corollary 1. For any language L, which satisfies the conditions stated in Def-
inition 3, there exists no weakly complete, finite, and proper L refinement oper-
ator.

The result of the previous observations is that, when requiring only weak
completeness instead of completeness, non-redundant operators are possible.®

The following theorem is the result of the full analysis of the desired proper-
ties of £ refinement operators.

Theorem 2 (Property Theorem). Let L be a language, which satisfies the
conditions stated in Definition 3. Considering the properties completeness, weak
completeness, properness, finiteness, and non-redundancy the following are maz-
imal sets of properties (in the sense that no other of the mentioned properties
can be added) of L refinement operators:

. {weakly complete, complete, finite}

. {weakly complete, complete, proper}

. {weakly complete, non-redundant, finite}
. {weakly complete, non-redundant, proper}
. {non-redundant, finite, proper}

G A o N M~

All results hold under the mild hypothesis stated in Proposition 7.

Remark 1. Instead of using subsumption (C) as an ordering over concepts, we
can also use subsumption with respect to a TBox 7 (C7). Theorem 2 will also
hold in this case.

The results also hold if we consider equality (=) instead of weak equality (~)
as equivalence relation on concepts.

5 Reducing completeness to weak completeness to obtain non-redundancy seems to
be an interesting option for the development of practical operators. However, this
approach is problematic since it is not immediately clear how this idea could be
put into practise. For instance, a weakly complete and non-redundant downward
refinement operator p cannot allow refinements of the form C ~ CM T or C ~»
CMp(T): A weakly complete operator, which allows one of these refinement steps
is also complete and is therefore usually redundant by Proposition 7.

5 Related Work

Related work can essentially be divided in two parts. The first part is research
which is directly connected to learning in description logics. The second part is
research about refinement operators in general, often connected with the learning
of logic programs. We will describe both in turn.

In [4] a refinement operator for ALER has been designed to obtain a top-
down learning algorithm for this language. Properties of refinement operators
in this language were discussed and some claims were made, but a full formal
analysis was not performed. Our work generalises the results in this article, re-
futes them in one case, investigates more property combinations, and proves each
claim. In [6,9] learning algorithms for description logics, in particular for the lan-
guage ALC were created, which also make use of refinement operators. Instead
of using the classical approach of combining refinement operators with a search
heuristic, they developed an example driven learning method. [6] stated that an
investigation of the properties of refinement operators in description logics, as we
have done in this article, is required. In [7] downward refinement for ALN was
analysed using a clausal representation of DL concepts. This article also states
that further investigation of the properties of refinement operators in descrip-
tion logics is required. Refinement operators have also been dealt with in hybrid
systems. In [14] ideal refinement for learning AL-log, a language that merges
DATALOG and ALC, was investigated. Based on the notion of B-subsumption,
an ideal refinement operator was created. In [5,10] learning algorithms for de-
scription logics without refinement operators were analysed.

In the area of Inductive Logic Programming [18] considerable efforts have
been made to analyse the properties of refinement operators. Note, that in gen-
eral using refinement operators for clauses to learn in description logics is pos-
sible, but usually not a good choice as shown in [4]. However, the theoretical
foundations of refinement operators also apply to description logics, which is
why we want to mention work in this area here.

A milestone in Machine Learning [15] in general was the Model Inference
System in [19]. Shapiro describes how refinement operators can be used to adapt
a hypothesis to a sequence of examples. Afterwards, refinement operators be-
came widely used as (part of) a learning method. [20] have found some general
properties of refinement operators in quasi-ordered spaces. Nonexistence condi-
tions for ideal refinement operators relating to infinite ascending and descending
refinement chains and covers have been developed. This has been used earlier to
show that ideal refinement operators for clauses ordered by #-subsumption do
not exist [20]. Unfortunately, we could not make use of these results, because
proving properties of covers in description logics without the restriction to a
specific language is likely to be harder than directly proving the results.

[17] discussed refinement for different versions of subsumption, in particular
weakenings of logical implication. In [16] it was shown how to extend refinement
operators to learn general prenex conjunctive normal form. Perfect, i.e. weakly
complete, locally finite, non-redundant, and minimal operators, were discussed
in [2]. Since such operators do not exist for clauses ordered by #-subsumption

[20], weaker versions of subsumption were considered. This was later extended
to theories, i.e. sets of clauses [8]. A less widely used property of refinement
operators, called flexibility, was discussed in [3]. Flexibility essentially means
that previous refinements of an operator can influence the choice of the next
refinement. The article discusses how flexibility interacts with other properties
and how it influences the search process in a learning algorithm.

6 Conclusions

We have presented a comprehensive analysis of properties of refinement opera-
tors. The results are summarised in Theorems 1 and 2. In particular, we have
shown that ideal refinement operators for description logics cannot exist. We have
also shown in detail which combinations of properties are in general achievable.
This analysis is fundamental for using refinement operators in description logics
and was requested in [6,7].

After the derivation of these results, two learning systems have been de-
veloped, which use the Property Theorem as theoretical foundation. They are
reported on elsewhere [11,13]. Both systems are fully implemented and have
shown promising results in evaluations.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

2. L. Badea and M. Stanciu. Refinement operators can be (weakly) perfect. In
S. Dzeroski and P. Flach, editors, Proceedings of the 9th International Workshop
on Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial Intel-
ligence, pages 21-32. Springer-Verlag, 1999.

3. Liviu Badea. Perfect refinement operators can be flexible. In Werner Horn, editor,
Proceedings of the 14th European Conference on Artificial Intelligence, pages 266—
270. IOS Press, August 2000.

4. Liviu Badea and Shan-Hwei Nienhuys-Cheng. A refinement operator for descrip-
tion logics. In J. Cussens and A. Frisch, editors, Proceedings of the 10th Interna-
tional Conference on Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 40-59. Springer-Verlag, 2000.

5. William W. Cohen and Haym Hirsh. Learning the classic description logic: The-
oretical and experimental results. In Pietro Torasso Jon Doyle, Erik Sandewall,
editor, Proceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning, pages 121-133, Bonn, FRG, May 1994. Morgan
Kaufmann.

6. Floriana Esposito, Nicola Fanizzi, Luigi lannone, Ignazio Palmisano, and Giovanni
Semeraro. Knowledge-intensive induction of terminologies from metadata. In The
Semantic Web - ISWC 2004: Third International Semantic Web Conference, Hi-
roshima, Japan, November 7-11, 2004. Proceedings, pages 441-455. Springer, 2004.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

Nicola Fanizzi, Stefano Ferilli, Luigi Iannone, Ignazio Palmisano, and Giovanni
Semeraro. Downward refinement in the ALN description logic. In th International
Conference on Hybrid Intelligent Systems (HIS 2004), December 2004, Kitakyushu,
Japan, pages 68-73. IEEE Computer Society, 2004.

Nicola Fanizzi, Stefano Ferilli, Nicola Di Mauro, and Teresa Maria Altomare Basile.
Spaces of theories with ideal refinement operators. In Georg Gottlob and Toby
Walsh, editors, IJCAI-08, Proceedings of the FEighteenth International Joint Con-
ference on Artificial Intelligence, Acapulco, Mezico, August 9-15, 2003, pages 527—
532. Morgan Kaufmann, 2003.

Luigi Tannone and Ignazio Palmisano. An algorithm based on counterfactuals
for concept learning in the semantic web. In Moonis Ali and Floriana Esposito,
editors, Innovations in Applied Artificial Intelligence, pages 370-379, Bari, Italy,
June 2005. Proceedings of the 18th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems.

Jorg-Uwe Kietz and Katharina Morik. A polynomial approach to the constructive
induction of structural knowledge. Machine Learning, 14:193-217, 1994.

Jens Lehmann. Hybrid learning of ontology classes. In Proceedings of the 5th
International Conference on Machine Learning and Data Mining, MLDM 2007,
2007.

Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for de-
scription logics. Technical report, University of Leipzig, 2007. Downloadable from
http://www.jens-lehmann.org.

Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm
for the ALC description logic. In Proceedings of the 17th International Conference
on Inductive Logic Programming (ILP), 2007.

Francesca A. Lisi and Donato Malerba. Ideal refinement of descriptions in AL-log.
In Tamés Horvath, editor, Inductive Logic Programming: 13th International Con-
ference, ILP 2003, Szeged, Hungary, September 29-October 1, 2008, Proceedings,
volume 2835 of Lecture Notes in Computer Science, pages 215-232. Springer, 2003.
Thomas Mitchell. Machine Learning. McGraw Hill, New York, 1997.

S.-H. Nienhuys-Cheng, W. Van Laer, J. Ramon, and L. De Raedt. Generalizing
refinement operators to learn prenex conjunctive normal forms. In S. DZeroski
and P. Flach, editors, Proceedings of the 9th International Workshop on Inductive
Logic Programming, volume 1634 of Lecture Notes in Artificial Intelligence, pages
245-256. Springer-Verlag, 1999.

S. H. Nienhuys-Cheng, P. R. J. van der Laag, and L. W. N. van der Torre.
Constructing refinement operators by decomposing logical implication. In Pietro
Torasso, editor, Advances in Artificial Intelligence: Proceedings of the 3rd Congress
of the Italian Association for Artificial Intelligence (AIxIA ’93), volume 728 of
LNAI pages 178-189, Torino, Italy, October 1993. Springer.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive
Logic Programming, volume 1228 of Lecture Notes in Computer Science. Springer,
1997.

E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D.
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages
199-255. The MIT Press, 1991.

P. R. J. van der Laag and S-H. Nienhuys-Cheng. Existence and nonexistence
of complete refinement operators. In F. Bergadano and L. De Raedt, editors,
Proceedings of the Tth European Conference on Machine Learning, volume 784 of
Lecture Notes in Artificial Intelligence, pages 307-322. Springer-Verlag, 1994.

