Applying Inductive Logic Programming to
Process Mining

Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari

Dip. di Ingegneria — Universita di Ferrara — Via Saragat, 1 — 44100 Ferrara, Italy.
{evelina.lamma,fabrizio.riguzzi,sergio.storari } @Qunife.it
DEIS — Universita di Bologna — Viale Risorgimento, 2 — 40136 Bologna, Italy.
pmello@deis.unibo.it

Abstract. The management of business processes has recently received
a lot of attention. One of the most interesting problems is the descrip-
tion of a process model in a language that allows the checking of the
compliance of a process execution (or trace) to the model. In this paper
we propose a language for the representation of process models that is
inspired to the SCIFF language and is an extension of clausal logic. A
process model is represented in the language as a set of integrity con-
straints that allow conjunctive formulas as disjuncts in the head. We
present an approach for inducing these models from data: we define a
subsumption relation for the integrity constraints, we define a refinement
operator and we adapt the algorithm ICL to the problem of learning such
formulas. The system has been applied to the problem of inducing the
model of a sealed bid auction and of the NetBill protocol. The data used
for learning and testing were randomly generated from a correct model
of the process.

Keywords: Process Mining, Learning from Interpretations, Business Pro-
cesses, Interaction Protocols

1 Introduction

Every organization performs a number of business processes in order to achieve
its mission. Complex organizations are characterized by complex processes, in-
volving many people, activities and resources. The performances of an organi-
zation depend on how accurately and efficiently it enacts its business processes.
Formal ways of representing business processes have been studied in the area of
business processes management (see e.g. [1]), so that the actual enactment of a
process can be checked for compliance with a model.

Recently, the problem of automatically inferring such a model from data has
been studied by many authors (see e.g. [2-4]). This problem has been called
Process Mining or Workflow Mining. The data in this case consists of execu-
tion traces (or histories) of the business process. The collection of such data is
made possible by the facility offered by many information systems of logging the
activities performed by users.

In this paper, we propose a novel representation language for describing pro-
cess models and an approach to Process Mining that uses learning from inter-
pretations techniques from ILP. The language is inspired to the SCIFF one [5]
and extends clausal logic by allowing more complex formulas as disjuncts in the
head of clauses.

We show how an execution trace can be represented as an interpretation and
how we can use our language to check its compliance with the model. Thus we
can cast a process mining problem as a learning from interpretation problem.
In particular, we considered the discriminant problem that is solved by ICL [6],
where we have positive and negative interpretations and we want to find a clausal
theory that discriminates the two. In our case we assume that we have compliant
and non compliant traces of execution of a process and we want to find a theory
that accurately classifies a new trace as compliant or non compliant.

We differ from traditional process mining research in three respects: first
we perform mining from both compliant and non compliant traces, while tra-
ditionally only compliant traces are considered; second we learn a declarative
representation of a process model, while usually more procedural representa-
tion have been induced, such as Petri nets, and third, we are able to consider
structured atomic activities, thanks to the first order representation.

The fact of having positive and negative traces is not commonly considered
in the literature on process mining but it is interesting in a variety of cases: for
example, a bank may divide its transactions into fraudulent and normal ones
and may desire to learn a model that is able to discriminate the two. In general,
an organization may have two or more sets of process executions and may want
to understand in what sense they differ.

The use of a declarative language for process models is advocated by other
authors as well [7]. The use of a structured representation allows the system to
take into account many different properties of activities that would otherwise be
overlooked.

The paper is organized as follows. Section 2 discusses how we represent execu-
tion traces with logic programming and describes the language used to represent
process models. Section 3 presents the learning technique we have adopted for
performing Process Mining. Section 4 reports on the experiments performed.
Section 5 discusses related works and finally Section 6 concludes the paper.

2 A Representation for Process Traces and Models

A process trace t is a sequence of events. Each event is described by a number
of attributes. The only requirement is that one of the attributes describes the
event type. Other attributes may be the executor of the event or event specific
information.

An example of a trace is

a,b,d
that means that activity a was performed first, then b and finally d.

A process model PM is a formula in a language. An interpreter of the lan-
guage must exists that, when applied to a model PM and a trace t, returns
answer yes if the trace is compliant with the description and false otherwise. In
the first case we write t = PM, in the second case ¢ & PM.

A bag of process traces L is called a log. Usually, in Process Mining, only
compliant traces are used as input of the learning algorithm, see e.g. [2-4]. We
consider instead the case where we are given both compliant and non compliant
traces.

A process trace can be represented as an interpretation: each event is modeled
with an atom whose predicate is the event type and whose arguments store the
attributes of the action. Moreover, an extra argument is added to the atom
indicating the position in the sequence. For example, the trace:

a,b,d
can be represented with the interpretation

{a(1),0(2),d(3)}.

If the execution time is an attribute of the event, then the position in the se-
quence can be omitted.

Besides the trace, we may have some general knowledge that is valid for all
traces. This information will be called background knowledge and we assume
that it can be represented as a normal logic program B. The rules of B allow
to complete the information present in a trace t: rather than simply ¢, we now
consider M (BUt), the model of the program BUt according to Clark’s completion
(8].

The process language we consider is a subset of the SCIFF language, orig-
inally defined in [9,5], for specifying and verifying interaction in open agent
societies.

A process model in our language is a set of Integrity Constraints (ICs). An
IC, C, is a logical formula of the form

Body — 3(ConjPy) V...V I(ConjP,)VV-(ConjNy)V...VV=(ConjN,,) (1)

where Body, ConjP; i = 1,...,n and ConjN; j = 1,...,m are conjunctions
of literals built over event atoms, over predicates defined in the background or
over built-in predicates. The quantifiers in the head apply to all the variables
not appearing in the body. The variables of the body are implicitly universally
quantified with scope the entire formula.

We will use Body(C') to indicate Body and Head(C) to indicate the formula
A(ConjP) V...V IConjP,) VV-(ConjNy)V...VV-(ConjN,,) and call them
respectively the body and the head of C. We will use HeadSet(C) to indicate
the set {ConjPy,...,ConjP,,ConjNy,...,ConjNy}.

Body(C), ConjP; i =1,...,n and ConjN; j =1,...,m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the context.
We will call P conjunction each ConjP; fori=1,...,nand N conjunction each
ConjNj for j =1,...,m. We will call P disjunct each 3(ConjP;) fori=1,...,n
and N disjunct each V=(ConjNj;) for j =1,...,m.

An example of an IC is

a(bob, T),T < 10
—3T1(b(alice, T1),T < T1)
V
VT'1-(c(mary,T1),T < T1,T1 < T + 10)

(2)

The meaning of the IC (2) is the following: if bob has executed action a at
a time T' < 10, then alice must execute action b at a time T'1 later than T or
mary must not execute action c¢ for 9 time units after T'.

An IC C'is true in an interpretation M (BUt), written M (B Ut) = C, if, for
every substitution 6 for which Body is true in M (B Ut), there exists a disjunct
A(ConjP;) or V=(ConjN;) that is true in M(B Ut). If M(BUt) = C we say
that the trace t is compliant with C.

Similarly to what has been observed in [10] for disjunctive clauses, the truth
of an IC in an interpretation M (B Ut) can be tested by running the query:

? — Body, not(ConjPy),...not(ConjP,),ConjNy,...,ConjNy,
in a database containing the clauses of B and atoms of ¢ as facts.

If the N conjunctions in the head share some variables, then the following
query must be issued

? — Body, not(ConjPy),...not(ConjP,),

not(not(ConjNi)),...,not(not(ConjN,,))
that ensures that the N conjunctions are tested separately without instantiating
the variables.

If the query finitely fails, the IC is true in the interpretation. If the query
succeeds, the IC is false in the interpretation. Otherwise nothing can be said.
It is the user’s responsibility to write the background B in such a way that no
query generates an infinite loop. For example, if B is acyclic then the queries
will be terminating for a large class of queries [11].

A process model H is true in an interpretation M (B U t) if every IC is true
in it and we write M (BU¢t) = H. We also say that trace ¢ is compliant with H.

The ICs we consider are more expressive than logical clauses, as can be seen
from the query used to test them: for ICs, we have the negation of conjunctions,
while for clauses we have only the negation of atoms. This added expressivity is
necessary for dealing with processes because it allows us to represent relations
between the execution times of two or more activities.

3 Learning ICs Theories

In order to learn a theory that describes a process, we must search the space of
ICs. To this purpose, we need to define a generality order in such a space.

IC C is more general than IC D if C' is true in a superset of the traces where
D is true. If D |= C, then C is more general than D.

Definition 1 (Subsumption). An IC' D subsumes an IC C, written D > C,
iff it exists a substitution 6 for the wvariables in the body of D or in the N
conjunctions of D such that

— Body(D)8 C Body(C) and

— VConjP(D) € HeadSet(D), 3ConjP(C) € HeadSet(C) : ConjP(C)
ConjP(D)6# and

— VYConjN(D) € HeadSet(D), AConjN(C) € HeadSet(C) : ConjN (D)6
ConjN(C)

N

N

Theorem 1. D >C = D | C.

Proof. We must prove that all the models of D are also models of C. Let 6 be
the substitution with which D subsumes C. Consider a model ¢ of D. If AJ such
that Body(C)J is true in 4, then C is true in i.

If 36 such that Body(C)d is true in i, then Body(D)8§ will be true in @
because Body(D)0d C Body(C)d. So there must be a disjunct of Head(D)60d
that is true in <.

Suppose that the disjunct 3(ConjP (D)) of D is such that 3(ConjP(D)09d)
is true in ¢: C' will contain a disjunct 3ConjP(C) such that ConjP(C) C
ConjP(D)#, thus ConjP(C)§ C ConjP (D)4 and it holds that 3(ConjP(C)d).

)0

is true in ¢: C will contain a disjunct V—(ConjN(C)) such that ConjN (D)8 C
ConjP(C), thus ConjN(D)§d C ConjP(C)d and it holds that V—(ConjP(C)J).
Thus i is also a model of C'

In order to define a refinement operator, we must first define the language
bias. We use a language bias that consists of a set of IC templates. Each template
specifies

— a set of literals BS allowed in the body,
— a set of disjuncts HS allowed in the head. For each disjunct, the template
specifies:
e whether it is a P or an NN disjunct,
o the set of literals allowed in the disjunct.

Thus we can define a refinement operator in the following way: given an IC D,
the set of refinements p(D) of D is obtained by performing one of the following
operations

— adding a literal from the IC template for D to the body;
— adding a disjunct from the IC template for D to the head: the disjunct can
be
e a conjunction dy A...Ady where {dy,...,dy} is the set of literals allowed
by the IC template for D for the P disjunct,
e a literal d that is allowed by the IC template for D for a N disjunct;
— removing a literal from a P disjunct in the head;
— adding a literal to an N disjunct in the head. The literal must be allowed
by the language bias.

The learning problem we consider is an adaptation to ICs of the learning
from interpretation setting of ILP:
Given

— a space of possible process models H
a set IT of positive interpretations;

— a set I~ of negative interpretations;

a definite clause background theory B.

Find: a process model H € H such that

— for all it € I+, M(BUi*) | H;

—foralli- eI~, M(BUi™) |~ H,
If M(BU1i) | C we say that IC C' covers the trace i and if M(BU1) & C we
say that C' rules out the trace i.

In order to solve the problem, we propose the algorithm DPML (Declarative
Process Model Learner) that is an adaptation of ICL [6].

function DPML(I*,I™, B)
initialize H := 0

do
C := FindBestIC(I*, 1, B)
if C # () then
add C to H

remove from I~ all interpretations that are false for C'
while C' # () and I~ is not empty
return H

function FindBestIC(I",1~, B)
initialize Beam := { false « true}
initialize BestIC := ()
while Beam is not empty do
initialize NewBeam := ()
for each IC C' in Beam do
for each refinement Ref of C' do
if Ref is better than BestIC then BestIC := Ref
if Ref is not to be pruned then
add Ref to NewBeam
if size of NewBeam > MaxBeamSize then
remove worst clause from NewBeam
Beam := NewBeam
return BestIC

Fig. 1. DPML learning algorithm

DPML performs a covering loop (function DPML, Figure 1) in which negative
interpretations are progressively ruled out and removed from the set I~. At each

iteration of the loop a new IC is added to the theory. Each IC rules out some
negative interpretations. The loop ends when I~ is empty or when no IC is
found.

The IC to be added in every iteration of the covering loop is returned by the
procedure FindBestIC (Figure 1). It looks for an IC by using beam search with
p(©|C) as a heuristic function, where p(©|C) is the probability that an input
trace is negative given that is ruled out by the IC C'. This heuristic is computed
as the number of ruled out negative traces over the total number of ruled out
traces (positive and negative). Thus we look for formulas that cover as many
positive traces as possible and rule out as many negative traces as possible. The
search starts from the IC false < true that rules out all the negative traces but
also all the positive traces and gradually refines that clause in order to make
it more general. Even if the heuristic value of false « true is p(©), i.e. the
fraction of negative traces in the training set, this IC is initially assigned an
heuristic of 0 so that it is not considered better of any other IC. MaxBeamSize
is a user-defined constant storing the maximum size of the beam.

The heuristic of each generated refinement is compared with the one of the
best IC found so far and, if the value is higher, the best IC is updated. At the
end of the refinement cycle, the best IC found so far is returned.

DPML differs from ICL in three respects: we use a different testing procedure,
a different refinement operator and a simpler pruning. As regards the refinement
operator, DLAB does not allow the possibility of having a conjunction inside
negation and it does not allow the deletion of literals from a refinement.

As regards pruning, we do not prune the IC that are not statistically signif-
icant but we prune only the refinements that can not become better than the
current best clause. We decided to do so because we observed that statistical
significance has a low impact on experiments.

4 Experiments

We consider two interaction protocols among agents: an electronic auction pro-
tocol [12] and the NetBill protocol [13]. In both cases, we start from a set of ICs
describing the protocol, and we randomly generat some traces for the protocol.
They are then classified according to the model and are used for learning. For
testing, we use a separate set of randomly generated traces.

The first protocol we consider is a sealed bid auction where the auctioneer
communicates the bidders the opening of the auction, the bidders answer with
bids over the good and then the auctioneer communicates the bidders whether
they have won or lost the auction.

The protocol is described by the following ICs [14].

bid(B, A, Quote, T Bid)
—3J(openauction(A, B,TEnd, TDL,TOpen), (3)
TOpen < TBid, TBid < TEnd)

This IC states that if a bidder sends the auctioneer a bid, then there must have
been an openauction message sent before by the auctioneer and such that the
bid has arrived in time (before T'End).

openauction(A, B,TEnd, TDL,TOpen),
bid(B, A, Quote, T Bid),
TOpen < TBid
—3(answer(A, B, lose, Quote, T Lose), (4)
TLose <TDL,TEnd < T Lose)
V3(answer(A, B, win, Quote, TWin),
TWin < TDL,TEnd < TWin)

This IC states that if there is an openauction and a valid bid, then the auctioneer
must answer with either win or lose after the end of the bidding time (T'End)
and before the deadline (T'DL).

answer(A, B, win, Quote, TWin)

5
—V=(answer(A, B,lose, Quote, T Lose), TWin < T Lose) (5)

answer (A, B,lose, Quote, T Lose)

6
—V=(answer(A, B, win, Quote, TWin), T Lose < TWin) (©)

These two ICs state that the auctioneer can not answer both win and lose to
the same bidder.

A graphical representation of the protocol is shown in Figure 2.

The traces have been generated in the following way: the first message is
always openauction, the following messages are generated randomly between
bid and answer. For answer, win and lose are selected randomly with equal
probability. The bidders and auctioneer are always the same. The times are
selected randomly from 2 to 10. Once a trace is generated, it is tested with the
above ICs. If the trace satisfies all the ICs it is added to the set of positive traces,
otherwise it is added to the set of negative traces. This process is repeated until
500 positive and 500 negative traces are generated for length 3, 4, 5 and 6. Thus
overall there are 2000 positive traces and 2000 negative traces.

NetBill is a security and transaction protocol optimized for the selling and
delivery of low-priced information goods, such as software or journal articles,
across the Internet. The protocols involves three parties: the customer, the mer-
chant and the NetBill server. Here is an outline of the NetBill protocol (see
Figure 3) :

1. the customer requests a price for a good from the merchant;

2. the merchant answers with a price for the good;

3. the customer can accept the offer, refuse it or make another request to the
merchant, thus initiating a new negotiation and going back to step 2;

4. if the customer accepts the offer, it tells it to the merchant;

5. the merchant delivers the good to the customer encrypted with key K;

auctioneer bidders

open aunction e -
il bids
-l
-
Tem-:l TITL]
communicate - >
winners >
Tflﬁadhuﬁc - -

Fig. 2. Sealed bid auction protocol.

6. the customer prepares an electronic purchase order (EPO) digitally signed
by her and sends it to the merchant;

7. the merchant countersigns the EPO and sends it and the value of K to the
NetBill server;

8. the NetBill server checks the signature and counter-signature on the EPO.
If customer’s account contains enough funds, the NetBill server transfers the
price from the customer’s account to the merchant’s account. The NetBill
server then prepares a signed receipt that includes the value K, and it sends
this receipt to the merchant;

9. the merchant records the receipt and forwards it to the customer (who can
then decrypt her encrypted goods).

The NetBill protocol is represented using 19 ICs [14]. One of them is

request(C, M, good(G, Q), Nneg, Trq),
present(M, C, good(G,Q), Nneg, Tp), Trq < Tp
—3(accept(C, M, good(G,Q),Ta), Tp < Ta) (7)
VA(refuse(C, M, good(G,Q),Trf),Tp < Trf)
Vi(request(C, M, good(G, Qrql), Nnegl, Trql), Tp < Trql)
This IC states that if there has been a request from the customer to the merchant

and the merchant has answered with the same price, then the customer should
either accept the offer, refuse the offer or start a new negotiation with a request.

nethill
CONnSUMmer merchant
server

request gquoteo

.
prosent quote
accept quote
L
deliver goods
send EPO
-

send EPO and key

send receipt

send receipt

Fig. 3. NetBill transaction protocol.

The traces have been generated randomly in two stages: first the negotiation
phase is generated and then the transaction phase. In the negotiation phase, we
add to the end of the trace a request or present message with its arguments
randomly generated with two possible values for @ (quote). The length of the
negotiation phase is selected randomly between 2 and 5. After the completion of
the negotiation phase, either an accept or a refuse message is added to the trace
and the transaction phase is entered with probability 4/5, otherwise the trace is
closed.

In the transaction phase, the messages deliver, epo, epo_and_key, receipt and
receipt_client are added to the trace. With probability 1/4 a message from the
whole trace is then removed.

Once a trace has been generated, it is classified with the ICs of the correct
model and assigned to the set of positive or negative traces depending on the
result of the test. The process is repeated until 2000 positive traces and 2000
negative traces have been generated.

Five training sets have been generated for the auction protocol and five for
the NetBill protocol. Then DPML and the a-algorithm [15] have been applied to
each of them. The a-algorithm is one of the first process mining algorithms and
it induces Petri nets. We used the implementation of it available in the ProM
suite [16]. Since the a-algorithm takes as input a single set of traces, we have
provided it with the positive traces only.

10

The language bias that was used for the auction protocol is the following:

— BS contains two sets of instances of each action (open auction, bid, an-
swer win and answer lose), with the instances of each set having the same
variables,

— HS contains a P conjunction for open auction, answer win and answer lose
and an N conjunction for open auction, answer win and answer lose. The
conjunctions for open auction will contain atoms for the predicate less that
compare each of its time arguments with the times of the literals in the body.
The conjunctions for answer will contain atoms for the predicate less that
compare its time to the time arguments of the literals in the body

For example, B.S will contain
openauction(f,taxil, TEnd, TDead, T)
and
openauction(f,taxil, TEnd1, TDead1,T1)
and HS will contain the P conjunction:
{answer(f,tazxil lose,taxi2station, Price3,T2), lessp(T,T2), lessp(T1,T2),
lessp(TEnd,T2), lessp(TDead, T2), lessp(TEnd1,T2), lessp(TDeadl,T2),
lessp(T2,TDead), lessp(T2,TDeadl)}
where lessp(A, B) is a predicate that fails if one of its two arguments is not
instantiated and is equal to A < B otherwise. In this way, if one of its arguments
is not instantiated, the disjunct can not be true and the learning algorithm must
either add the literal with the variable to the body or remove the lessp atom.
The language bias that was used for NetBill is the following:

— BS contains two sets of instances of each action (request, present, accept,
deliver, send epo, send epo and key, receipt and receipt to client), with the
instances of each set having the same variables,

— HS contains a P conjunction and an N conjunction for each action. The
conjunctions will contain atoms for the predicate less that compare the
time argument of the action with the times of the actions in the body plus
atoms for the predicate equal for comparing the quote of the action in the
head with those in the body

For example, BS will contain
request(c,m,good(software,@),T)
and
request(c,m,good(software,Q1),T1)
and HS will contain the P conjunction:
{hap(tell(c,m,request(software,Q2,n1)),T2), lessp(T,T2), lessp(T1,T2),
lessp(T2,T), lessp(T2,T1), equalp(Q2,Q), equalp(Q2,Q1)}
where lessp(A, B) is defined as before and equalp(A, B) is false if one of the
arguments is not instantiated and is equal to A =:= B otherwise.
The learned theories have been tested on five testing set generated with the
same procedure used for the training set but with different seeds for the random
functions. For the a-algorithm, the Petri net learned from positive traces only

11

was used to replay the positive and negative test traces. The accuracy is given
by the number of positive traces that are replayed correctly plus the number of
negative traces not replayed correctly divided by the total number of test traces.

The average accuracy and the standard deviation of DPML and of the a-
algorithm are shown in Table 1. The table shows also the the average number of
ICs learned by DPML.

Table 1. Results of the experiments.

DPML a-algorithm
Experiment|Av. acc.|St. dev.|Av. # ICs|Av. acc.|St. dev.
Auction 97.00% | 3.7% 4 - -
NetBill 94.65% | 2.5% 9 66.81% | 0.24%

The average time taken by DPML are 0.435 hours for Auction and 1.875
hours for NetBill on a Pentium M 2.00 GHz machine. The average time taken
by the a-algorithm is under one minute for both datasets.

The a-algorithm was not applied to the auction protocol since it has no way
of testing the satisfaction of the deadline, given that it considers an atomic model
of the activities.

As can be seen, DPML outperforms the a-algorithm on NetBill in terms of
accuracy, even if at the expense of a high computational cost. In order to find
out how scalable is our approach, we run a series of experiments with increasing
number of traces, from 500 up to 2000. The execution times on a machine with a
Core Duo 1.86 GHz are shown in Figure 4. The graph shows that the execution

3000

2500 /
2000

=
1000 —
500

./_/”

U T T T
500 1000 1500 2000

Fig. 4. Scalability of the DPML.

time increases nearly linearly with the number of traces.

12

5 Related Works

The integrity constraints presented in this paper are inspired to the integrity
constraints of the SCIFF language [9, 5]. For example, IC (2) would be written
in the SCIFF language as

H(a(bob), T) NT < 10
—E(b(alice), T))ANT < T1
V
EN(c(mary), TO)OANT <T1ANT1 <T+10

(8)

where H stands for “happened”, E for “expected to happen” and EN for “ex-
pected not to happen”.

The SCIFF language allows for much more complex ICs than the ones consid-
ered in this paper and is equipped with an abductive proof procedure for testing
the compliance of a trace. In particular, the SCIFF language allows for the com-
bination of variables with different quantification in the same head disjunct. We
focused on a subset for its nice computational properties.

[2] introduced the idea of applying process mining to workflow management.
The authors propose an approach for inducing a process representation in the
form of a directed graph encoding the precedence relationships.

[15] presents the a-algorithm for inducing Petri nets from data and identifies
for which class of models the approach is guaranteed to work. The a-algorithm
is based on the discovery of binary relations in the log, such as the “follows”
relation.

[4] is a recent work where a process model is induced in the form of a dis-
junction of special graphs called workflow schemes.

We differ from all of these works in three respects. First, we learn from
positive and negative traces, rather than from positive traces only. Second, we
use a representation that is declarative rather than procedural as Petri nets
are, without sacrificing expressivity. For example we can model concurrency and
synchronization among activities. Third, we can take into account attributes
of events, such as in the auction protocol where we check that deadlines are
respected. Wi

Other works deal with the learning of integrity constraints, in particular
[10, 6, 17]. However, all of these works learn integrity constraints in the form of
clauses, that are less expressive than our formalism.

6 Conclusions and Future Works

We have presented an approach for performing Process Mining by using ILP
techniques. The approach introduces a new language that extends the one of
disjunctive clauses and that can be used to test the compliance of a trace by
simply using a Prolog interpreter. A subsumption relation for the new language
is introduced together with a refinement operator.

13

The similarity with clausal logic allows the use of the ICL algorithm for
learning process models. Two experiments have been performed on synthetic
data generated from two models of interaction protocols: a sealed bid auction and
the NetBill protocol. A good accuracy has been achieved in both experiments.
The accuracy on NetBill is higher than the one of the a-algorithm on the same
dataset.

In the future, we plan to test the system on real world process logs in order
to have a more accurate test of the effectiveness of the approach.

7 Acknowledgements

This work has been partially supported by the PRIN 2005 project “Specifica-
tion and verification of agent interaction protocols” and by the FIRB project
“TOCALIT”.

References

1. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3(2) (1995) 119-153

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, EDBT’98. Volume 1377 of LNCS., Springer (1998) 469-483

3. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2) (2003) 237-267

4. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8) (2006) 1010-1027

5. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive in-
terpretation for open societies. In Cappelli, A., Turini, F., eds.: Proceedings of
the 8th Congress of the Italian Association for Artificial Intelligence (AT*IA 2003).
Volume 2829 of LNAI, Springer Verlag (2003)

6. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Proceedings of the
6th Conference on Algorithmic Learning Theory. Volume 997 of LNAI., Springer
Verlag (1995)

7. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In Bravetti, M., Nunez, M., Zavattaro, G., eds.: Proceedings of
the Third International Workshop on Web Services and Formal Methods (WS-FM
2006). Volume 4184 of LNCS., Springer (2006)

8. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)

9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logics (2007) Accepted for publication.

10. Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3) (1997)
99-146

11. Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput. 9(3/4) (1991)
335-364

14

12.

13.

14.

15.

16.
17.

Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods.
In: Proceedings of the First International Conference on the Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology (PAAM-96), London (April
1996) 75-90

Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Pro-
ceedings of the First USENIX Workshop on Electronic Commerce, New York (July
1995)

: Socs protocol repository Available at: http://edu59.deis.unibo.it:8079/SOCSProt
ocolsRepository/jsp/index.jsp.

van der Aalst, W.M.P., Weijters, T., Maruster, L..: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)
1128-1142

: Prom framework Available at: http://is.tm.tue.nl/~cgunther/dev/prom/.
Jorge, A., Brazdil, P.: Integrity constraints in ilp using a monte carlo approach.
In: 6th International Workshop on Inductive Logic Programming. Volume 1314 of
Lecture Notes in Computer Science., Springer (1996) 229-244

15

