L earning Directed Probabilistic L ogical M odels using
Ordering-search

Daan Fierens, Jan Ramon, Maurice Bruynooghe, and Hendrik Blockeel

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium,
{Daan. Fi erens, Jan. Ranpn, Mauri ce. Bruynooghe,
Hendri k. Bl ockeel }@s. kul euven. be

Abstract. There is an increasing interest in upgrading Bayesian networks to the
relational case, resulting in so-called directed probabilistic logical models. In this
paper we discuss how to learn non-recursive directed probabilistic logical models
from relational data. This problem has already been tackled before by upgrad-
ing the structure-search algorithm for learning Bayesian networks. In this pa-
per we propose to upgrade another algorithm, namely ordering-search, since for
Bayesian networks this was found to work better than structure-search. We have
implemented both algorithms for the formalism Logical Bayesian Networks and
are currently working on an experimental comparison of both algorithms.

Keywords: probabilistic logical models, structure learning, Bayesian networks,
probability trees

1 Introduction

There is an increasing interest in probabilistic logical models as can be seen from the
variety of formalisms that have recently been introduced for describing such models.
Many of these formalisms deal with directed models that are upgrades of Bayesian net-
works to the relational case. Learning algorithms have been developed for several such
formalisms [3, 5, 6]. Most of these algorithms are essentially upgrades of the structure-
search algorithm for Bayesian networks. Recently, Teyssier and Koller [9] introduced
an alternative algorithm for learning Bayesian networks, ordering-search, and found
this to perform at least as well as structure-search while usually being faster. This moti-
vates us to investigate how ordering-search can be upgraded to the relational case. More
precisely, we show how to use ordering-search for learning non-recursive directed prob-
abilistic logical models. In this paper we use the formalism Logical Bayesian networks
(LBNS) but the proposed approach is also valid for related formalisms such as Prob-
abilistic Relational Models, Bayesian Logic Programs and Relational Bayesian Net-
works [1]. This paper describes work in progress. Our current work is to experimentally
validate our approach and compare it to structure-search.

We now first discuss Bayesian networks and LBNs. Then we discuss the problem of
learning non-recursive LBNs from data and how to solve this by upgrading the ordering-
search algorithm. Finally we discuss related work and some directions for future work.

2 Bayesian Networks

A Bayesian network is a compact specification of a joint probability distribution on a
set of random variables under the form of a directed acyclic graph (the ‘structure”) and a
set of conditional probability distributions (CPDs). When learning from data the goal is
usually to find the structure and CPDs that maximize a certain scoring criterion (such as
likelihood or minimum description length). There exist several approaches for learning
Bayesian networks. We now review two of the most important approaches.

The most traditional approach is structure-search [4], which is basically hill climb-
ing through the space of possible structures. Starting from an initial structure, a number
of possible refinements of this structure are evaluated and the refinement that yields the
structure with the highest score is chosen. A refinement of a structure is usually ob-
tained by adding, deleting or reversing an edge (of course only acyclic structures are
allowed). The above process is then repeated until convergence.

An alternative approach called ordering-search is based on the observation that it is
relatively easy to learn a Bayesian network if an ordering on the set of random variables
is given [9]. Such an ordering eliminates the possibility of cycles and makes it possible
to decide for each variable X separately which variables, from all variables preceding it
in the ordering, are its parents. This can simply be done by learning a CPD for X under
the assumption that ‘selective’ CPDs are used, i.e. CPDs that select from all candidate
inputs the relevant inputs (for instance conditional probability tables with a bound on the
number of effective inputs). Since this determines both the parents and the CPD of X,
applying this procedure to every variable yields a complete specification of a Bayesian
network. However, the score of this Bayesian network depends heavily on the quality
of the ordering that is used. Often the optimal ordering is not known in advance. Hence,
the idea of ordering-search is to perform hill-climbing through the space of possible
orderings, in each step applying the above procedure.

Teyssier and Koller [9] experimentally compared structure-search and ordering-
search and found that ordering-search is always at least as good as structure-search and
usually faster. As an explanation of these results, Teyssier and Koller note that the search
space of orderings is smaller than the search space of structures and that ordering-search
does not need acyclicity tests, which are costly if there are many variables.

3 Logical Bayesian Networks

In this section we briefly discuss the formalism Logical Bayesian Networks [1].

A Logical Bayesian Network or LBN is essentially a specification of a Bayesian net-
work conditioned on some logical input predicates describing the domain of discourse.
For instance, when modelling the traditional ‘university’ example [3], we would use
predicates student/1, course/1, prof /1, teaches/2 and takes/2 with their obvious
meanings. The semantics of an LBN is that, given an interpretation of these logical
predicates, the LBN induces a particular Bayesian network.

In LBNs random variables are represented as ground atoms built from certain spe-
cial predicates, the probabilistic predicates. For instance, if intelligence/1 is a prob-
abilistic predicate then the atom intelligence(ann) is called a probabilistic atom and

represents a random variable. Apart from sets of logical and probabilistic predicates an
LBN basically consists of three parts: a set of random variable declarations, a set of
conditional dependency clauses and a set of logical CPDs. We now explain this further.

For the university example the random variable declarations are the following.

randon(intelligence(S)) <- student(S).
randon(ranki ng(S)) <- student(S).
random(difficulty(C)) <- course(C).
randon(rating(C)) <- course(Q).
random(ability(P)) <- prof(P).
random(popul arity(P)) <- prof(P).
randon(grade(S, C)) <- takes(S, O.
randon(satisfaction(S,C) <- takes(S, CO.

In these clauses random/1 is a special predicate. Informally, the first clause, for in-
stance, should be read as “intelligence(S) is a random variable if .S is a student”. For-
mally, in the Bayesian network for a particular interpretation of the logical predicates,
there is a node for each ground probabilistic atom p for which random(p) holds.

The conditional dependency clauses for the university example are the following.

grade(S,C | intelligence(S), difficulty(C.

ranki ng(S) | grade(S, C.

satisfaction(S,C) | grade(S,C, ability(P) <- teaches(P, C).
rating(C) | satisfaction(S,C).

popul arity(P) | rating(C <- teaches(P, Q).

Informally, the first clause should be read as “the grade of a student S for a course C
depends on the intelligence of S and the difficulty of C”. There are also more complex
clauses such as the last clause that should be read as “the popularity of a professor P
depends on the rating of a course C' if P teaches C”. In this clause, popularity(P) is
called the head, rating(C) the body and teaches(P, C') the context. Formally, in the
induced Bayesian network there is an edge from a node ppqren: t0 @ N0de penig if there
is a ground instance of a dependency clause with p.pq in the head and ppgren: in the
body, with true context and with random(p) true for each probabilistic atom p.

To quantify the dependencies specified by the conditional dependency clauses, LBNs
use so-called logical CPDs. In this paper we represent logical CPDs under the form of
logical probability trees in TILDE [2], see Section 5.2 for an example. These logical
CPDs can be used to determine the CPDs in the induced Bayesian network.

The predicate dependency graph of an LBN is the graph that contains a node for
each probabilistic predicate and an edge from a node p; to a node ps if the LBN contains
a conditional dependency clause with predicate p, in the head and p; in the body. An
LBN is called non-recursive if its predicate dependency graph is acyclic and recursive
otherwise. Note that for non-recursive LBNs the induced Bayesian network (for any
interpretation of the logical predicates) is always acyclic.

4 Learning Logical Bayesian Networks: Problem Description

When learning LBNs, the random variable declarations are usually known. The con-
ditional dependency clauses and the logical CPDs can then be learned from a dataset
of examples, where each example consists of two parts: an interpretation of the logical
predicates and an assignment of values to all ground random variables (as determined
by the random variable declarations). The goal of learning is to find the clauses and
logical CPDs that maximize the scoring criterion. In this paper we focus on learning
non-recursive LBNs. We briefly discuss learning recursive LBNs in Section 6.

Some LBNs have syntactic variants. This is important since syntactic variants could
cause redundancy in the learning algorithm. In the case of LBNs, the main cause of the
existence of variants is that multiple conditional dependency clauses with the same head
are allowed. A consequence of this is that each conditional dependency clause with a
particular head and with multiple probabilistic atoms in the body can be translated into
an equivalent set of conditional dependency clauses each with the same head but with
only one probabilistic atom in the body (the equivalence is with respect to a particular
set of random variable declarations). Hence, when learning we will only consider LBNs
with conditional dependency clauses with only one probabilistic atomin the body. We
now explain this in more detail.

For each LBN with conditional dependency clauses with multiple probabilistic atoms
in the body, an equivalent LBN can be obtained by replacing each such clause C by a
set of equivalent clauses. Concretely, for each probabilistic atom in the body of C' we
create a new clause with the same head as C, with only that atom in the body and with
as context the context of C' plus the condition that all other probabilistic atoms in the
body of C' are random variables. As an illustration, consider the following LBN.

randon(ranki ng(S)) <- student(S).
randon(intelligence(S)) <- student(S).
randon(thesis_score(S)) <- student(S), in_master(S).
ranking(S) | intelligence(S), thesis_score(S).

Note that in this LBN ranking and intelligence are defined for students but thesis-score
is defined only for particular students, namely master students. Hence the dependency of
ranking on intelligence and thesis-score only holds for master students. The conditional
dependency clause can be transformed into the following set of equivalent clauses.

ranki ng(S) | intelligence(S) <- random(thesis_score(S)).
ranki ng(S) | thesis_score(S) <- random(intelligence(S)).

By applying the random variable declarations, these clauses can be rewritten as follows.

ranking(S) | intelligence(S) <- student(S), in_naster(S).
ranki ng(S) | thesis_score(S) <- student(S).

These clauses can be further simplified by noting that the condition that S is a student
is redundant since ranking is only defined for students and hence the clauses will only
be used with S being a student. We finally obtain the following clauses.

ranki ng(S) | intelligence(S) <- in_master(S).
ranking(S) | thesis_score(S).

Note that the second clause does not specify in the context that .S should be a master
student. This is indeed not needed since thesis-score is only defined for master students
and hence the clause only applies to master students anyway.

5 Ordering-search for Non-recursive Logical Bayesian Networks

The structure-search algorithm for Bayesian networks has already been upgraded to the
relational case for several formalisms [3, 5, 6]. Some differences between the relational
case and the case of Bayesian networks are that other refinement operators for the struc-
ture are needed (for LBNSs these could be adding a new conditional dependency clause,
deleting an existing clause and swapping the head and the body of an existing clause),
more complex CPDs are needed (such as combining rules [5, 6] or aggregates [3]) and
the scoring criteria have to be adapted (such as the Bayesian Information Criterion [6]).

Since for Bayesian networks ordering-search performs at least as well as structure-
search it is interesting to investigate how ordering-search can be upgraded to the rela-
tional case. In this section we show how to do this for non-recursive LBNSs.

5.1 Algorithm Overview

The ordering-search algorithm for learning non-recursive LBNs basically corresponds
to hillclimbing through the space of possible orderings on the set of probabilistic pred-
icates. This algorithm is shown on a high-level in Figure 1. In this algorithm the score
of an ordering is defined as the score of the LBN that is learned for that ordering. The
neighbourhood of an ordering O ,ren: 1S defined as the set of all orderings that can be
obtained by swapping a pair of adjacent predicates in O.yyrent (this is similar to what
happens for Bayesian networks [9]). As this algorithm only converges to a local opti-
mum, in practice we run this algorithm several times each time with a different initial
random ordering and we retain the best result.

As for Bayesian networks, this algorithm can be implemented in an efficient way
when the scoring criterion is ‘decomposable’, as is the case for all criteria we consider.
For a decomposable scoring criterion the score of an ordering is the sum of the scores of
all logical CPDs. Hence Ascore(O.qnq) Only depends on the score of the logical CPDs
that are different for O..,,q than for Ocyrrene. In 0ur algorithm there are typically only
two such logical CPDs (since the orderings in the neighbourhood of O y;+-cn: are ob-
tained by swapping two adjacent predicates, which only changes the logical CPDs for
these two predicates). Hence computing Ascore(Ocqnaq) Only requires learning two
new logical CPDs. Moreover, many of the score-changes Ascore(Ocanq) that are com-
puted during one iteration of the repeat loop are still valid and can be reused without
extra computations during the next iterations of the loop.

Apart from the fact that we consider orderings on the set of probabilistic predicates
instead of on the set of random variables, there are two more differences between the
algorithm for LBNs and the algorithm for Bayesian networks. The first difference is that

% find a good ordering:
Ocurrent = random ordering on the set of probabilistic predicates
repeat until convergence
for each Ocana € neighbourhood(Ocurrent)
compute Ascore(Ocand) = score(Ocand) — score(Ocurrent)
end for
Ocurrent = argmaz(Ascore(Ocand))
end repeat
% for the final ordering, extract the conditional dependency clauses:
for each probabilistic predicate p
extract clauses from logical CPD of p for Ocurrent
end for

Fig. 1. The ordering-search algorithm for non-recursive LBNs.

in the case of LBNs we use logical CPDs represented as logical probability trees instead
of simple propositional CPDs. The second difference is that in the case of LBNSs, once
we found the optimal ordering and the logical CPDs for this ordering, we need an extra
step to extract the conditional dependency clauses from these logical CPDs. In the next
sections we discuss these two issues in more detail.

5.2 Learning Logical CPDs

An LBN needs one logical CPD for each probabilistic predicate. A logical CPD quan-
tifies the dependencies in an LBN (like combining rules do in some other formalisms
[5,6]). We represent logical CPDs as logical probability trees in TILDE [2]. The in-
ternal nodes in the tree for a probabilistic atom p...ge: Can contain a) tests on the
values of probabilistic atoms that are parents of p;q,4e¢ according to the conditional
dependency clauses, b) conjunctions of logical literals, and c) combinations of the two.
Leaves contain probability distributions on the values of pq,4e:. An example of a tree
for satis faction(S, C') is shown in Figure 2.

’ teaches(P,C), ability(P) = low ‘

’ grade(S,C) = high ‘ ’ grade(S,C) = low ‘

(high:O.Z low: 0.8) @igh: 0.1 low: O.ED @igh:O.? low: 0.35 @igh: 0.9 low: 0.1)

Fig. 2. Example of a logical CPD for satisfaction(S,C). When the test in an internal node
succeeds the left branch is taken, when it fails the right branch is taken.

Logical probability trees like the one in Figure 2 can be learned using the standard
probability tree algorithms in TILDE *[2]. We currently consider two ways of learning
and scoring trees. We can learn trees using the BIC criterion which naturally leads to
using BIC as a scoring criterion. Alternatively, because BIC in some cases performs
quite poorly, we could learn trees using the randomization approach of Fierens et al. [2]
and simply use likelihood as a scoring criterion. Likelihood (of the training data) is not
a good criterion when unselective CPDs are used (since it would give a fully connected
model, leading to overfitting). However with selective CPDs, such as probability trees,
using likelihood might work provided that the CPDs are selective enough to prevent
overfitting.

5.3 Extracting the Conditional Dependency Clauses from the Logical CPDs

When we have found a good ordering and the logical CPDs for this ordering, we still
have to extract a set of conditional dependency clauses from these logical CPDs in order
to obtain the learned LBN. Below we explain how to extract the clauses from a logical
probability tree. To obtain a full LBN, this procedure has to be applied to the probability
tree for each probabilistic predicate.

When extracting conditional dependency clauses from a logical probability tree with
as target the probabilistic atom p;,.4e¢, We want to find a set of clauses that is consistent
with the tree. With this we mean that the tree should never test any probabilistic atom
that is not a parent of p,4e+ according to the set of clauses. Moreover, we want to find
the most specific set of clauses that is consistent with the tree.

When extracting clauses from a tree, we create a clause for each test on a proba-
bilistic atom in each internal node of the tree. Call the atom that is tested p;.,; and the
node N. In the most general case, apart from the test on p;.., the node N can contain
a number of tests on other probabilistic atoms and a conjunction of logical literals. Call
this conjunction I. We then create a clause of the form piarget | Prest — 1, path(N),
where path(N) is a conjunction of logical literals that describes the path from the root
to V. Each node on this path can contribute a number of logical literals to path(N).
A succeeded node (i.e. a node for which the succeeding branch of the tree was chosen
in the path) contributes the conjunction of all logical literals that it contains. A failed
node that does not contain any tests on probabilistic atoms contributes the negation of
the conjunction of all logical literals that it contains. A failed node that contains a test
on a probabilistic atom does not contribute to the path?.

As an example, consider the probability tree in Figure 2. For this tree, piorger iS
satisfaction(S, C). For the root node, ps.s: is ability(P), L is teaches(P, C) and the
path is empty. For the internal node below the root to the left, pies: iS grade(S, C),
is empty and the path is teaches(P, C'). For the node below the root to the right, pses:
is grade(S, C') and [and the path are both empty. The three resulting clauses for these
nodes are respectively the following.

satisfaction(S,C) | ability(P) <- teaches(P, Q).

Y Internally in TILDE, tests like grade(S, C) = low are represented as grade(S, C, low).
2 Letting it contribute the negation of its logical literals could be inconsistent since we cannot
be sure that it were the logical literals that caused the failure and not the probabilistic tests.

satisfaction(S,C) | grade(S, C <- teaches(P, Q).
satisfaction(S,C) | grade(S,C).

The second clause is redundant (it is a special case of the third) and can be dropped.

6 Relation to Generalized Ordering-search

Recently we upgraded ordering-search for learning recursive LBNs [7]. We called the
resulting algorithm generalized ordering-search. The main idea behind this algorithm
is that to model recursive dependencies one has to consider orderings on the set of
ground random variables. This is more complex than considering orderings on the set of
probabilistic predicates as we propose in this paper. The reason for this is that the set of
predicates is fixed whereas the set of ground random variables depends on the domain
of discourse (i.e. the interpretation of the logical predicates). Hence, in generalized
ordering-search we cannot simply learn a fixed ordering (as we do in this work for the
set of predicates) but have to learn a model of the ordering as a function of the logical
predicates.

In principle, generalized ordering-search can also be used to learn non-recursive
LBNs. However, in this respect generalized ordering-search has a number of disadvan-
tages as compared to the algorithm proposed in this paper. One disadvantage is that it
does not learn an LBN ‘in closed form’ in the sense that it does not learn a set of con-
ditional dependency clauses but rather gives a procedure for determining the induced
Bayesian network given any possible interpretation of the logical predicates. Another
disadvantage is that it deviates quite far from the propositional ordering-search algo-
rithm. For instance, when applied on propositional data generalized-ordering search
does not correspond to the original propositional ordering-search algorithm, while this
is the case for our algorithm. This might make generalized-ordering search harder to
understand for people familiar with the propositional ordering-search algorithm.

7 Conclusion and Future Work

We showed how to learn non-recursive directed probabilistic logical models by upgrad-
ing the ordering-search algorithm for Bayesian networks. We have implemented this
algorithm and the structure-search algorithm for LBNs and are currently working on
an experimental comparison of both algorithms in terms of accuracy and compactness
of the learned model in function of running time. We are currently using two datasets,
an artificially generated dataset for the university domain discussed before in this paper
and the UWCSE dataset [8], but we are interested in obtaining other relational datasets
for which learning non-recursive LBNs is interesting.

Acknowledgements

Daan Fierens is supported by the Institute for the Promotion of Innovation by Science
and Technology in Flanders (IWT Vlaanderen). Jan Ramon and Hendrik Blockeel are
post-doctoral fellows of the Fund for Scientific Research (FWO) of Flanders.

References

1. D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon. Logical Bayesian networks and
their relation to other probabilistic logical models. In Proceedings of the 15th International
Conference on Inductive Logic Programming, volume 3625 of Lecture Notes in Computer
Science, pages 121-135. Springer, 2005.

2. D. Fierens, J. Ramon, H. Blockeel, and M. Bruynooghe. A comparison of pruning criteria
for learning trees. Technical Report CW 488, Department of Computer Science, Katholieke
Universiteit Leuven, April 2007. http://www.cs.kuleuven.be/~daanf/CW488.pdf

3. L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models.
In S. Dzeroski and N. Lavrac, editors, Relational Data Mining, pages 307-334. Springer-
Verlag, 2001.

4. D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20:197-243, 1995.

5. K. Kersting and L. De Raedt. Towards combining inductive logic programming and Bayesian
networks. In Proceedings of the 11th International Conference on Inductive Logic Program-
ming, volume 2157 of Lecture Notes in Computer Science, pages 118-131. Springer-Verlag,
2001.

6. S. Natarajan, W. Wong, and P. Tadepalli. Structure refinement in First Order Conditional
Influence Language. In Proceedings of the ICML workshop on Open Problems in Satistical
Relational Learning, 2006.

7. J. Ramon, T. Croonenborghs, D. Fierens, H. Blockeel, and M. Bruynooghe. Generalized
ordering-search for learning directed probabilistic logical models. 2007. Submitted to Ma-
chine Learning, special issue on Inductive Logic Programming.

8. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107-
136, 2006.

9. M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learn-
ing Bayesian networks. In Proceedings of the 21st conference on Uncertainty in Al (UAI),
pages 584-590. AUAI Press, 2005.

