
Using ILP to Construct Features for Information

Extraction from Semi-Structured Text

Ganesh Ramakrishnan1, Sachindra Joshi1, Sreeram Balakrishnan1, and Ashwin
Srinivasan12

1 IBM India Research Laboratory, Block 1, Indian Institute of Technology,
New Delhi 110016, India

{ganramkr, jsachind, srbalakr, ashwin.srinivasan}@in.ibm.com
2 Dept. of CSE Centre for Health Informatics, University of New Kensington,

Sydney, Australia

Abstract. Machine-generated documents containing semi-structured text are
rapidly forming the bulk of data being stored in an organisation. Given a
feature-based representation of such data, methods like SVMs are able to con-
struct good models for information extraction (IE). But how are the feature-
definitions to be obtained in the first place? (We are referring here to the
representation problem: selecting good features from the ones defined comes
later.) So far, features have been defined manually or by using special-purpose
programs: neither approach scaling well to handle the heterogeneity of the
data or new domain-specific information. We suggest that Inductive Logic
Programming (ILP) could assist in this. Specifically, we demonstrate the use
of ILP to define features for seven IE tasks using two disparate sources of
information. Our findings are as follows: (1) the ILP system is able to identify
efficiently large numbers of good features. Typically, the time taken to identify
the features is comparable to the time taken to construct the predictive model;
and (2) SVM models constructed with these ILP-features are better than the
best reported to date that rely heavily on hand-crafted features. For the ILP
practioneer, we also present evidence supporting the claim that, for IE tasks,
using an ILP system to assist in constructing an extensional representation of
text data (in the form of features and their values) is better than using it to
construct intensional models for the tasks (in the form of rules for information
extraction).

1 Introduction

The amount of text data available in a machine-readable format is already very large:
Google alone indexes more than 10 billion pages, most of which are text. This is only
expected to increase, as organisations increasingly employ machines capable of gener-
ating semi-structured (XML-like) text data (for example, projections by IBM in that
corporation’s Global Technology Outlook for 2003 suggests that by 2010, nearly 75%
of the data stored in an organisation may of this type). This trend is accompanied
by a substantial industrial impetus to develop automated methods for extracting in-
formation of potential commercial interest from such data. Information Extraction
(IE), normally studied under the umbrella of “text mining” ([10, 6]), involves a num-
ber of tasks like: sentence segmentation [22], part of speech tagging [5], noun-phrase
coreferencing [24] and named entity annotation [3]. The principal goal of IE is to



2 Ganesh Ramakrishnan et al.

extract structured information from unstructured text documents. This structured
information is normally in a form that can be stored in a database: although modern
relational database implementations allow the direct storage and limited querying of
XML-like data, a representation using attributes (features in the machine-learning
sense) remains the most popular. This makes the data amenable to not just efficient
querying, but to a variety of parametric and non-parametric techniques for mining and
modelling (like association-rule mining [1], naive Bayes [17], hidden Markov models
[10], maximum entropy models [3], support vector machine [4] and conditional ran-
dom fields [13]). These methods construct models using some subset of the features
identified to represent the text.

In this paper, we are concerned with the question of how an appropriate feature
representation is to be arrived at the first place. This is a step before feature-subset
selection: there, once a set of features have been defined, a subset of them is sought—
usually, but not always, with a view of building a good predictive model. However,
obtaining definitions of the features ab initio is a more complex business. The “fea-
ture engineer” has to construct these from some combination of general-purpose and
problem-specific information, and, if available, knowledge of how the features would
be used (for example, to build a model that can discriminate accurately amongst
interesting and uninteresting corporate mergers). This has meant that the task of
defining the features has been one that has largely been manual, or achieved through
problem-specific programs that use the knowledge sources in a pre-defined manner.
It is difficult to see how these approaches could scale-up to meet the demands im-
posed by the scale and heterogeneity of text-based data that are being generated, or
to incorporate new sources of information that become electronically available. Our
interests are therefore in automated methods that can assist in this by automatic iden-
tification of interesting features. We adopt the following positions: (1) Formal logic,
at least with the power embodied within logic programming languages, is adequate
for representing the different kinds of information that are needed for IE; and (2) Any
automatic method for identifying feature definitions that uses a logical representation
has to be at least at the level of first-order logic.

We will ask the reader to take (1) as axiomatic for this paper. Some justification
for (2) on the other hand, follows from the observation that feature definitions in
logic are essentially functions of the form f : X 7→ Y , from the set of individuals X to
some more or less arbitrary Y (Y could be the Booleans, for example). Thus, if these
definitions are to be identified automatically, then the underlying program has to be
able to construct functions. This implies any program for feature engineering must at
least be in a position to construct definitions in first-order logic (or higher, if compo-
sition of functions are needed to construct complex features; or if the representation
of individuals could in turn employ functions as in [16]).

Arguably the most well-developed and general-purpose programs for constructing
first-order definitions have been in the area of Inductive Logic Programming (ILP).
ILP programs are normally, but not exclusively, used to learn rules (called theories
in the literature) in first-order logic to classify examples. The rules employ predicates
provided as background knowledge encoded in some subset of first-order logic. In this
paper, we propose that ILP could be employed to attain the IE goal of converting
unstructured text data to a structured form: the process we envisage is summarised
in Fig. 1.



Using ILP to Construct Features for IE 3

Converter to
Logical
Form

Background
Knowledge

Any Known
Features

Tokeniser/
Annotator

ILP
System

Converter to
Structured

Form

Structured Text

New Feature Definitions

Annotated Text

Unstructured Text Semi−structured Text

Logical form of Semi−Structured Text

Fig. 1. A simplified view of a role for ILP in information extraction. The focus of this paper
is on programs, inputs, and outputs to the right of the dotted line.

In the past, several authors have used ILP, or ILP-inspired systems for informa-
tion extraction. Notable amongst these are: the work of Aitken [2] who uses ILP to
construct theories for IE; Califf’s work with with Rapier [7], which is inspired by
bottom-up ILP systems; and the work of Roth and colleagues [23] who use restricted
templates defined by “relation generating functions” to construct features for IE (their
motivation for this is that general-purpose ILP methods are inflexible, making their
use impossible in NLP-like domains). Our results here are intended to add these by
providing evidence for the following: (1) a general-purpose ILP system can efficiently
extract useful features for information extraction; and (2) feature extraction is a more
effective way to use a general-purpose ILP system than the usual process of extracting
rules.

Although the use of ILP as a general-purpose mechanism for identifing feature
definitions has a long history (a process termed “propositionalisation”: see [12] for a
detailed survey), and has been shown to be one of the most effective ways to use ILP
to address difficult problems (see for example: [11]), there has not been, to the best
of our knowledge, any attempt to use them for this purpose in IE. We believe that
there may be two reasons for their neglect in IE. First, ILP has been perceived as
being too inefficient to identify a suitably large set of features that may be needed to
represent documents adequately (for example, [23] use this as their primary motivation
to develop the restricted approach) . Second, it is not apparent that an automatic
feature construction method could match the kinds of performance achievable by
good hand-crafted features. In this paper, it is our intention to demonstrate using
an established test-bed that both these concern may be unfounded. Specifically, we
examine a task in information extraction concerned with the problem of extracting
instances of a structured target schema from an unstructured text data. The data we
use concerns corporate mergers and acquisitions, from which we intend to extract the



4 Ganesh Ramakrishnan et al.

names of the acquiring and acquired companies; and the deal amount (the actual task,
described in Section 3.2 actually involves identifying seven different entities). For this
task, we use a well-known ILP system to identify efficiently a large number—from
a few thousand to ten thousand— good features using two quite different sources
of information (Wordnet [18] and a dependancy parser). The features identified are
used by a standard support vector machine (SVM) classifier to construct predictive
models for the entities of interest. These models—a special kind of the type proposed
by [20]—are compared against the best reported in the literature (these rely largely
on hand-crafted features).

The rest of the paper is organised as follows. Section 2 describes the aspects of
ILP to the extent that it relates to the feature-identification task undertaken here.
Section 3 describes the empirical investigation undertaken in the paper. This includes
a description of aims (Section 3.1), materials (Section 3.2), methods (Section 3.3) and
results (Section 3.4). Section 4 concludes the paper.

2 Feature Definitions using Inductive Logic Programming

Given problem-specific data and general-purpose (“background”) knowledge encoded
in some logical form—normally a subset of first-order logic—an ILP system attempts
to construct models, also in a logical form, for the data. Implementations have been
dominated by two classes of programs, corresponding somewhat to the broader di-
vision into supervised and unsupervised learning. The first class—predictive ILP—is
concerned with constructing “theories” (sets of rules; or first-order logic variants of
classification or regression trees) for discriminating accurately amongst two sets of ex-
amples (“positive” and “negative”). The second—descriptive ILP—has is concerned
with identifying relationships that hold amongst the data and the background knowl-
edge a view of discrimination. More details of the requirements of programs in these
two categories can be found in [19]:

The task of finding the definition of features using a first-order logic represen-
tation is one that is not easily characterised as either predictive or descriptive ILP.
Solutions conceptually involve two steps: (1) a feature-construction step that identifies
(within computational reason) all the features that are consistent with the constraints
provided by the background knowledge. This is characteristic of a descriptive ILP pro-
gram; and (2) a feature-selection step that retains some of the features based on their
utility estimated using the problem-specific data. This is characteristic of a predictive
ILP program. A partial specification for an ILP program that reflects this combina-
tion has been recently proposed in [26], which we follow here (we refer the reader to
[21] for definitions of the logical terms used below):

– B (background knowledge) consists of a finite, possibly empty, set of clauses =
{C1, C2, . . .}

– E (data) consists of a finite set E+ ∪E− where:
• Positive Examples . E+ = {e1, e2, . . .} is a non-empty set of definite clauses;
• Negative Examples . E− = {f1, f2 . . .} is a set of Horn clauses (this may be

empty)
– H is the set of definite clauses, constructable with predicates, functions and con-

stants in B∪E; F the set of features constructable using a set of individuals; and
τ : H 7→ F a function that maps a definite clause h ∈ H to a feature f ∈ F .



Using ILP to Construct Features for IE 5

– F = {f1, f2, . . .} ∈ F , the output of the algorithm given B and E is acceptable
for any set H = {h1, h2, . . .} ∈ H if the following conditions are met:
• Posterior Sufficiency. B ∪ {hi} |= e1 ∨ e2 ∨ . . ., where {e1, e2, . . .} ⊆ E+

• fi = τ(hi)

The reader would have noted that Posterior Sufficiency requires features constructed
here use clauses that entail, with B, at least one positive example: this is not nec-
essarily satisfied by programs that simply seek to identify all features constructable
with predicates, functions and constants in B ∪ E. The features returned by such
programs will be a superset of the features F . Here, we seek instead to constrain the
set F further to return a subset F ′ of F that accounts for a notion of utility using
some predicate Good (effectively, being the same notion of “interestingness” used in
the data-mining literature):

– Utility. F ′ = {f : f ∈ F, and Good(f, B, E) = TRUE}

For the rest, we follow [26] and refer the reader to that paper for details of F , H
and τ . We view the definition of Good as problem-specific, and details for the empirical
study here are provided in Section 3.3. A program that satisfies these requirements
constructs the definition of a feature in the following manner. First, a set of clauses H
is identified using the examples and background knowledge. Each clause is of the form
head ← body, where head is a literal and body a conjunction of literals; and entails
at least one positive example, given the background knowledge B. Next, each clause
hi in H is converted into a boolean feature fi that takes the value 1 (or 0) for any
individual for which the body of the clause true (if the body is false).3 Thus, the set
of clauses H gives rise to a boolean vector for each individual in the set of examples.
An example in the context of information extraction is shown in Fig. 2, in which the
task is to assign “roles” to individuals. The problem concerns corporate mergers and
acquisitions, and individuals are assigned roles like “purchaser”, “purchased”, “deal
amount” and so on. In the example in Fig. 2, individuals are identified by the triple
〈d, s, l〉, where d denotes a document, s a sentence in d, and l the location of a segment
in d.

3 Experimental Evaluation

3.1 Aims

We intend to investigate the use of an ILP system for automatic feature construction
in information extraction. Specifically, using a benchmark dataset, our primary goals
are to examine: (a) Whether the ILP system is able to identify features efficiently
using multiple sources of background knowledge;4 and (b) Whether the features iden-
tified by an ILP system are “good”, measured by comparing the predictive models
that are constructed using the features—we will call the approach “ILP-assisted”—
against the best reported models (these use a combination of hand-crafted and simple
automatically constructed features).

3 The body forms the definition of a “context predicate” in the terminology of [22]
4 In principle, it is evident that an ILP capable of using one source of background informa-

tion should be able to use multiple sources as well. However, the sub-optimal nature of
most implementations has meant that this is not necessarily the case in practice.



6 Ganesh Ramakrishnan et al.

Clause:
∀d, s, l(Has role(d, s, l, purchaser)←

Has annotation(d, s, l, organisation)∧
After(l, l1)∧
Has hyp sense(d, s, l1, 02incrs0incrm0))

Feature:

f(d, s, l) =























Has annotation(d, s, l, organisation)∧
1 After(l, l1)∧

Has hyp sense(d, s, l1, 02incrs0incrm0)
= TRUE

0 otherwise

Fig. 2. Example of a boolean feature constructed from a clause. The clause assigns the role
‘purchaser’ to any individual (denoted by specific values assigned to variables d, s and l) that
satisfies the conditions in the body of the clause. The meanings of the predicate symbols
Has annotation, After, and Has hyp sense are explained in Section 3.

3.2 Materials

Data We use data contained in the “Corporate Acquisition Events” corpus described
in [14]. This is a collection of 600 news articles describing acquisition events taken
from the Reuters dataset. News articles are tagged to identify fields related to ac-
quisition events. These fields include ‘purchaser’ , ‘acquired’, and ‘seller’ companies
along with their abbreviated names (‘purchabr’, ‘acqabr’ and ‘sellerabr’) Some news
articles also mention the field ‘deal amount’. Together, these seven fields define the
set of target elements for information extraction task: we will refer to these fields as
“roles” in the rest of the document. In Table 1, we summarize this information.

Role Number of Examples

acquired 651
acqabr 1494

purchaser 594
purchabr 1347

seller 707
sellerabr 458

deal amount 206

Total 5457

Table 1. Examples in the Corporate Acquisitions Events corpus.

Each unstructured text document is first converted to a semi-structured form using
a tokeniser, followed by an annotator. The output of each of these are then converted
automatically into a logical form, which is then part of the data provided to the ILP
system. The details are as follows.

Each unstructured text document contains one or more sentences, each of which
can have several tokens. Tokens are individual words, or groups of words which have a



Using ILP to Construct Features for IE 7

unique identifier within a sentence in a document. Tokens are then tagged using a high-
recall named entity annotator. We use a rule-based named entity annotator developed
in-house, that produces four different annotations: ‘currency’, ‘date’, ‘location’ and
‘organisation’.

We convert the output of a tokeniser into a logical form that encodes the location
of tokens. This is done using the predicate Has token, resulting in facts of the form
Has token (doc id, sentence id, token id, t). This states that at there is a token t at
location token id within sentence id in document doc id . For the dataset here, there
are approximately 70, 000 statements of this form. In a similar manner, the results of
the annotator are encoded by facts of the form Has annotation(doc id, sentence id,
token id, a). There are approximately 10, 000 statements of this form.

Examples of roles identified in the text are encoded using the predicate Has role.
The result is a set of facts of the form Has role (doc id, sentence id, token id, r). the
role r. Corresponding to the entries in Table 1, there are 651 facts with role acquired ,
1494 with acqabr and so on. The entire corpus used is thus represented in a logical
form by approximately 85, 000 facts.

We further generate “negative examples” for tokens at a position (that is, at a
location in a sentence within a document) in the following manner. First, roles not
assigned to a token at a position are each taken to constitute a negative example for
the token at that position. Second, a token at a position that has been annotated by
the named entity annotator, but does not have a role assigned to it at that position
is marked as having none of the possible seven roles at that position. This results
in approximately in a further 71, 000 facts. The entire dataset is thus represented by
about 156, 000 facts.

Background Knowledge Background knowledge for the ILP system consists of
logical encodings of the following two sources of information:

Semantic Lexicon. Natural languages provide a rich set of expressions allowing
several different ways of expressing the same fact. As an example, the expres-
sion ‘company A purchased company B recently’ and the expression ‘company
A recently acquired company B’ mean the same thing. We use WordNet to help
address some of this problem. WordNet is a semantic lexicon for the English lan-
guage. It groups English words into sets of synonyms called ‘synsets’ and records
the various semantic relations between these synonym sets. We use the hypernym
relations within Wordnet to compute the hypersense of tokens. This requires the
following computation. First, the synset corresponding to a token is obtained.
Hypernyms of this synset is a hyper sense for the token. Further hyper senses can
obtained recursively from hypernyms of the synsets, their hypernyms and so on.
We restrict ourselves to two levels of such recursion. The result is encoded using
predicates of the form: Has hyp sense(doc id, sentence id, token id, s). While any
modern ILP system can compute these facts “on-the-fly”, we pre-compute them
for efficiency. This results in approximately 531, 000 facts.

Dependency Parser. We use MINIPAR [15] to obtain dependency relationships in
a sentence. A dependency relationship is an asymmetric relationship between a
token called head or parent and another token called modifier or dependent. A
token in a sentence may have several modifiers, however, it can modify only a
single word. The root of a dependency tree does not modify any word and is



8 Ganesh Ramakrishnan et al.

called the head of the sentence. A MINIPAR ‘relationship’ is a label assigned to
a dependency relationship between a pair of tokens in a sentence. Some of the
examples relationships used in MINIPAR are ‘subj’ (subject), ‘adjn’ (adjunct),
‘cmpl’ (complement), and ‘obj’ (object). We generate a set of facts of the fol-
lowing form using the output generated by MINIPAR: Links(doc id, sentence id,
link type, token id 1, token id 2). The argument Link type can take values from
the set of relations used by MINIPAR. The arguments token id 1 and token id 2
correspond to the modifier and the header word respectively. Again, all these facts
could be computed on-th-fly, but are precomputed here. There are approximately
76, 000 facts of this form.

In addition, we also provide utility predicates After and Before that allow the ILP
program to access locations in the neighbourhood of any given location in a sentence.
The background information is thus represented by about 600, 000 facts.

3.3 Method

Our method for estimating the performance of ILP-assisted approach is straightfor-
ward:

Repeat N times:

1. Randomly split the data into training (Tr) and test (Te) data;
2. Obtain a set of no more than k features using the ILP program using back-

ground knowledge B;
3. Construct a classificatory model for predicting the roles in Fig. 1 using a

standard classification technique equipped wth the features identified in Step
2 and the data in Tr;

4. Record the performance of the model obtained in Step 3 on the data in Te;

Estimate the predictive performance of ILP-assisted approach by the mean values
of accuracies obtained in Step 4.
Compare the performance of the models with ILP-assisted approach against per-
formance of the best models reported in the literature.

The following details are relevant:

(a) We take N to be 5 for our experiments;

(b) k is restricted to 20, 000 for our experiments;
(c) We use the ILP system Aleph (Version 5) [27] for all experiments. This program

has a procedure that constructs features using a non-greedy set covering approach
(we refer the reader to the Aleph manual for details). The procedure ensures
that features are constructed from clauses that satisfy the Posterior Sufficiency
requirement in Section 2. The classificatory model in Step 3 is obtained using a
linear SVM: the specific implementation used is the one provided in the WEKA
toolbox called SMO.5 It can be shown that the resulting models are a special case
of the SVILP models proposed in [20]. We compare the performance of this model
against those constructed by SRV [9], HMM [10] and Elie [8].

5 http://www.cs.waikato.ac.nz/ ml/weka/



Using ILP to Construct Features for IE 9

(d) Satisfying the Utility requirement requires the definition of the predicate Good.
Here, Good is TRUE for clauses (and, by implication, features found by the ILP
system) that entail at least 5 positive examples and have a precision of at least 0.6.
These numbers are arbitrary, but do not seem to affect the results greatly; The
implementation we use is also able to ensure that this utility requirement is met
during its search for features: this is more efficient than first finding all features
and then removing those that fail to meet the criterion of minimum utility. All
other settings for Aleph are at their default values for feature construction.

(e) Although the utility predicates Before and After allow access to any number of
locations within a sentence, for experiments here we restrict the neighbourhood
to no more than 5 locations on either side of a token.

(f) Performance will be measured using the following standard statistics: precision
(P), recall (R), and F1. These are defined as follows: P = TP/PredPos, where
TP is the true positives and PredPos are the numbers of examples predicted as
positive; R = TP/ActPos, where ActPos are the numbers of examples that are
actually positive; and F1 = 2PR/(P + R).

(g) A quantitative comparison of the performance of the ILP-assisted approach are
only possible against Elie (predictions for SRV and HMM are only available for
3 of the 7 roles, which makes any quantitative statement unreliable). For this,
we use the Wilcoxon signed-rank test [25]. The test is a non-parametric test of
the null hypothesis that there is no significant difference between the median F1
performance of a pair of algorithms.

3.4 Results

Figure 3 shows the performance of the classificatory model obtained using ILP-assisted
approach; and Fig. 4 shows the comparative performance of this against the best re-
ports available. On balance, the signed-rank test suggests that there is some evidence
in favour of the ILP-assisted approach over Elie, although the difference is not signif-
icant (the sum of signed ranks is 14: the critical value for a significant difference is
22). Numbers are too small to make a reliable statement about other comparisons: the
odds seem to favour the ILP-assisted approach over either SRV or HMM. These results
suggest that the ILP-assisted approach is at least as good as the others tabulated.

Role Performance

P R F1

acquired 51.7 35.2 41.8
acqabr 46.0 39.8 42.6

purchaser 54.7 39.0 45.4
purchabr 42.3 30.8 35.4

seller 52.2 52.1 51.5
sellerabr 25.4 19.5 21.7
dlramt 60.9 47.3 53.0

Fig. 3. Estimates of performance of the ILP-assisted classifier. P, R denote precision and
recall. F1 is the harmonic mean of P and R.

Comparative assessments of this nature, while valuable, are unrepresentative of
how the ILP-assisted approach is intended to be used in practice. As shown in Fig. 1,
we envisage the features identified by the ILP algorithm to augment any existing



10 Ganesh Ramakrishnan et al.

features. It is therefore of more interest to see how a methods like Elie perform when
provided additionally, with the ILP features; or conversely, providing SMO (the SVM
implementation used here to build models with the ILP features) additionally with
the features used by methods like Elie, HMM and SRV. Unfortunately, we are not
able to perform either of these experiments: executable implementations of Elie, SRV
and HMM are not available, and we are unable to re-construct the definitions of their
features from the descriptions provided in the literature. A surrogate experiment is
however possible, that gives some insight into what may be achievable in practice. We
are able to examine the construction of features by the ILP system without the seman-
tic lexicon and the dependency parser. This amounts to the ILP system only having
access to the tokeniser, annotator, and the utility predicates Before and After. In
such circumstances, the features constructed will be regular expressions, referring to
the locations of tokens, annotations and gaps. Taking this as a kind of baseline for
either hand-crafted or features that can be constructed (this does not need a general-
purpose ILP system), we are in a position to examine the change in performance
effected by the ILP system as it identifies features by incorporating background infor-
mation. From Fig. 5, it is evident that models that use ILP features constructed with
additional background knowledge do perform better than the baseline. This suggests
that the ability of the ILP system to use background information does translate into
finding features that can improve predictive performance. If the results in Fig. 5 are
representative, then augmenting the baseline features with ILP features that use all
the background information yields improvements in the F1 value of 5.5. This can be
taken as some indication of the improvements that may be achievable by augmenting
SMO with the features used by Elie, SRV or HMM.

Role SRV HMM Elie ILP-assisted

acquired 34.3 30.9 42.0 41.8
acqabr 35.1 40.1 40.0 42.6

purchaser 42.9 48.1 47.0 45.4
purchabr −− −− 29.0 35.4

seller −− −− 15.0 51.5

sellerabr −− −− 14.0 21.7

dlramt −− −− 59.0 53.0

Fig. 4. Comparative performance of the
ILP-asssisted approach. Results for three
roles are not reported by SRV and HMM.

Role B B+L B+P B+L+P

acquired 34.5 40.2 41.5 41.8
acqabr 34.5 39.8 42.6 42.6

purchaser 42.5 42.8 45.2 45.4
purchabr 25.0 30.7 29.4 35.4

seller 44.3 48.8 50.6 51.5
sellerabr 19.8 23.2 19.3 21.7
dlramt 49.2 50.3 47.1 53.0

Fig. 5. Comparative F1 values for models
constructed by SMO. “B” refers to models
constructed using baseline features that are
regular expressions on tokens and annota-
tions. “L” refers to semantic lexicon features
that use information provided by Wordnet,
and “P” refers to features that use infor-
mation provided by the dependency parser
MINIPAR.

It is also of some interest to consider for the specific IE tasks considered here
whether it is better to use the ILP-assisted approach proposed; or to use ILP to
construct models that directly predict the roles of individuals in documents (we will
call this “ILP-models”). Evidence that we have suggests the former is better: see
Fig. 6.

We have not commented so far on the efficiency of constructing features using ILP.
Our estimates suggest that in all cases, the time for feature construction is comparable



Using ILP to Construct Features for IE 11

Method Performance

ILP-assisted 39.8 ±0.9
ILP-models 35.2 ±1.5

Fig. 6. Average F1 values for models using the ILP-assisted approach and ILP models that
predict roles directly. The averages are weighted averages that account for the proportions
of examples for each role.

to the time taken for model construction with the SVM. Some caveats are needed.
Model construction with an SVM is faster than feature construction (but no more
than about 5 times) when: (a) the number of features are small (say about 2000 or
so); and (b) the number of classes are small. As either of these are increased, model
construction time was observed to be significantly greater than the time taken to
construct features.

4 Concluding Remarks

In this paper, we have investigated the use of ILP to assist in the task of identify
features for converting text data into a structured form. Our results suggest that an
ILP system can effectively amalgamate information from disparate sources to identify
features that can then be used to build good predictive models for specific IE tasks.
The promise of adopting this route rests on two points: (1) ILP provides a general-
purpose setting for feature-construction that uses a substantially rich subset of first-
order logic for representation, and makes explicit provision for incorporating domain-
specific and general-purpose background information; and (2) features constructed in
this manner augment, not replace, those already known to be effective. In principle,
the output of any good model builder should not get any worse.

While the experimental results are sufficient to demonstrate the feasibility and
the value obtained using an ILP-assisted approach, there are three ways in which
they could be extended immediately. First, similar positive results on other IE tasks
would clearly establish the utility of the approach further. Second, we have used a
very general-purpose ILP system in our experiments. ILP implementations that are
specifically designed for feature-identification now exist (these do not lose any of the
other generality of ILP). These would provide more efficient identification of features
(and possibly even better ones). Third, we intend using other knowledge sources such
as VerbNet in future work.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 12–15 1994.

2. J.S. Aitken. Learning Information Extraction Rules: An Inductive Logic Programming
approach. In Proceedings of the 15th European Conference on Artificial Intelligence,
pages 355–359, 2002. http://citeseer.ist.psu.edu/586553.html.

3. A. Borthwick. A maximum entropy approach to named entity recognition. PhD thesis,
1999.

4. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In 5th Annual ACM Workshop on COLT, pages 144–152, 1992.



12 Ganesh Ramakrishnan et al.

5. Thorsten Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth

conference on Applied natural language processing, 2000.
6. Razvan Bunescu and Raymond J. Mooney. Relational markov networks for collective

information extraction. In Proceedings of the ICML-2004 Workshop on Statistical Rela-

tional Learning and its Connections to Other Fields, 2004.
7. M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for information

extraction. In Working Notes of AAAI Spring Symposium on Applying Machine Learning

to Discourse Processing, 1998.
8. Aidan Finn and Nicholas Kushmerick. Multi-level boundary classification for information

extraction. In ECML, 2004.
9. Dayne Freitag. Toward general-purpose learning for information extraction. In Proceed-

ings of the Thirty-Sixth Annual Meeting of the Association for Computational Linguis-

tics, 1998.
10. Dayne Freitag and Andrew Kachites McCallum. Information extraction with hmms and

shrinkage. In Proceedings of the AAAI-99 Workshop on Machine Learning for Infor-

matino Extraction, 1999.
11. R. D. King, A. Srinivasan, and L. DeHaspe. WARMR: A Data Mining Tool for Chemical

Data. Computer Aided Molecular Design, 15:173–181, 2001.
12. Stefan Kramer, Nada Lavra;, and Peter Flach. Propositionalization approaches to rela-

tional data mining. Springer-Verlag New York, Inc., 2000.
13. John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proc. 18th Interna-

tional Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco,
CA, 2001.

14. David Dolan Lewis. Representation and learning in information retrieval. PhD thesis,
1992.

15. D. Lin. Dependency-based evaluation of minipar. In In Workshop on the Evaluation of

Parsing Systems, 1998.
16. J.W. Lloyd. Logic for learning: Learning comprehensible theories from structured data.

In Springer, Cognitive Technologies Series, 2003.
17. A. McCallum and K. Nigam. A comparison of event models for naive bayes text classi-

fication. In AAAI-98 Workshop on Learning for Text Categorization, 1998.
18. George Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11), 1995.
19. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.

Journal of Logic Programming, 19,20:629–679, 1994.
20. S.H. Muggleton, H. Lodhi, A. Amini, and M.J.E. Sternberg. Support Vector Inductive

Logic Programming. In Proceedings of the 8th International Conference on Discovery

Science, LNAI 3735, pages 163–175. Springer-Verlag, 2005.
21. S. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming.

Springer, Berlin, 1997.
22. Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to identifying

sentence boundaries. In ANLP, pages 16–19, 1997.
23. Dan Roth and Wen tau Yih. Relational learning via propositional algorithms: An infor-

mation extraction case study. In IJCAI, pages 1257–1263, 2001.
24. Erik F. Tjong Kim Sang, Walter Daelemans, Hervé Déjean, Rob Koeling, Yuval Kry-

molowski, Vasin Punyakanok, and Dan Roth. Applying system combination to base
noun phrase identification. In COLING, pages 857–863, 2000.

25. Sidney Siegel and N. John Castellan Jr. Nonparametric Statistics for The Behavioral

Sciences. McGraw-Hill, 1956.
26. Lucia Specia, Srinivasan A., Ramakrishnan G., and Nunes M.G.V. Word sense disam-

biguation using ilp. In 16th International Conference on Inductive Logic Programming,
2006.

27. A. Srinivasan. The Aleph Manual. Available at http://www.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph/, 1999.


