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Abstract. This paper is concerned with Relational Support Vector Ma-
chines, at the intersection of Support Vector Machines (SVM) and In-
ductive Logic Programming or Relational Learning. The so-called phase
transition framework, primarily developed for constraint satisfaction prob-
lems (CSP), has been extended to relational learning, providing relevant
insights into the limitations and difficulties thereof. The goal of this pa-
per is to examine relational SVMs and specifically Multiple Instance Ker-
nels along the phase transition framework; a specific CSP formalization
for multiple instance problems, inspired by chemometry applications, is
proposed. Ample empirical evidence based on a set of order parameters
shows the existence of an unsatisfiability region for standard MIP-SVM
approaches. A statistical analysis for these findings is proposed, estab-
lishing a lower bound of the generalization error depending on the satis-
fiability probability.
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1 Introduction

This paper is concerned with Relational Support Vector Machines, at the inter-
section of Support Vector Machines (SVM) [16] and Inductive Logic Program-
ming or Relational Learning [13]. After the so-called kernel trick, the extension of
SVMs to relational representations relies on the design of specific kernels (see [3,
5]). Relational kernels thus achieve a particular type of propositionalization [10],
mapping every relational example in the problem domain onto a propositional
space defined after the training examples. However, relational representations
intrinsically embed combinatorial issues, such as the Plotkin’s θ-subsumption
test [1]. The fact that relational learning involves the resolution of CSPs as a
core routine has far-fetched consequences besides exponential (worst-case) com-
plexity, referred to as the Phase Transition (PT) paradigm [2, 7].

The question investigated in this paper is whether relational SVMs avoid the
limitations of relational learners related to the PT region [6, 1]. This question is



examined w.r.t. a particular relational setting, known as the multiple instance
problem (MIP) [4, 12]. This paper presents three contributions. Firstly, the MIP-
SVM search is rewritten in terms of CSP, and a lower bound on the generalization
error of the MIP-SVM is established in terms of the probability of satisfiability
of the CSP. Secondly, a set of order parameters is proposed to describe the
critical factors of difficulty for multiple instance learning. Thirdly, extensive and
principled experiments show the existence of a failure region for MIP-SVMs,
conditionned by the value of some order parameters.

The paper is organized as follows. For the sake of self-containedness, the
phase transition framework is briefly introduced in Section 2 together with MIP
kernels. Section 3 rewrites the MIP-SVM setting as a constrained satisfaction
problem, and relates the satisfiability of this CSP with the generalization error of
the MIP-SVM problem. Section 4 reports on the experimental evidence gathered
and the paper ends with some perspective for further research.

2 State of the Art

It is widely acknowledged that there is a huge gap between the empirical and the
worst case complexity analysis for CSPs [2]. This remark led to developing the so-
called phase transition framework (PT) [7], which considers the satisfiability and
the resolution complexity of CSP instances as random variables depending on
order parameters of the problem instance (e.g. constraint density and tightness).

The phase transition paradigm has been transported to relational machine
learning and inductive logic programming (ILP) by [6], and was shown to be
instrumental in identifying and analyzing some limitations of relational learning
[1] or grammatical inference [14] algorithms.

This paper will investigate the PT approach in a specific setting known as
Multiple Instance Learning [4], which is viewed as intermediate between rela-
tional and propositional settings. In the MIP setting, each example is a bag
of instances; the example is positive iff some of its instances satisfy the target
concept. Under the so-called linearity bias assumption a positive example only
needs one of its instances to belong to the target concept.

Actually, an example or bag of instances can be viewed as a set of literals
built on a single predicate symbol; equivalently, an example is a set of rows in
a matrix where the columns are the arguments of the predicate. Formally, we
shall restrict ourselves to the following MIP representation [4]: each example xi

is a set of Ni instances noted xi,1, . . . ,xi,Ni ; we further assume in the rest of this
section that the instance space is IRd (xi,j ∈ IRd).

Besides early approaches [4], specific kernels were designed for MIP problems
[5, 3, 12, 11]. The basic idea is to define the kernel K of two bags of instances as
the average of the kernels k between their instances:

K(xi,xj) =
1
Ni

1
Nj

Ni∑
k=1

Nj∑
`=1

k(xi,k,xj,`) (1)



Note that such kernels do not rely on the linearity assumption in any way;
K(xi,xj) only reflects the average similarity between the instances of both ex-
amples.

3 Overview

After the above remarks, MIP kernels characterize the similarity of two examples,
bags of instances, as the average similarity between their instances. The question
examined in this paper is to which extent this average information is sufficient
to reconstruct the existential relational information (do the instances of any
example satisfy the target concept).

3.1 When MIP learning meets CSPs

In order to investigate the above question, one standard procedure is to generate
artificial problems, where each problem is made of a training set and a test set,
and to compute the test error of the hypothesis learned from the training set.
The test error, averaged over a sample of artificial problems generated after
a set of parameter values, indeed measures the competence of the algorithm
conditionally to these parameter values [1].

A different approach is followed in the present paper, for the following reason.
Our goal is to examine how kernel tricks can be used to alleviate the specific
difficulties of relational learning; in relational terms, the question is about the
quality of the propositionalization achieved through relational kernels. In other
words, the focus is on the representation (the capacity of the hypothesis search
space defined after the MIP kernel) instead of a particular algorithm (the quality
of the best hypothesis retrieved by this algorithm in this search space).

Accordingly, the methodology we followed is based on the generation of arti-
ficial problems composed of a training set L = {(x1, y1), . . . , (xn, yn)} and a test
set T = {(x′1, y′1), . . . , (x′n′ , y′n′)}. The training set L induces a propositionaliza-
tion of the domain space, mapping every MIP example x on the n-dimensional
real vector ΦL(x) = (K(x1,x), . . . ,K(xn,x)). Let RL denote this propositional
representation based on the training set L.

The novelty of the proposed methodology is to rewrite the MIP-SVM learning
problem as a constraint satisfaction problem in the RL representation.

Specifically, the question examined is: does there exist a separating hyper-
plane in the propositionalized representation RL defined from the training set,
which belongs to the search space of MIP-SVMs and which correctly classifies
the test set (question Q(L, T )), as opposed to, does the separating hyperplane
which would have been learned using MIP-SVM algorithms from the training
set, correctly classify the test set (question Q’(L, T )).

∃ α ∈ IRn, b ∈ IR s.t.
{

y′j (< α, ΦL(x′j) > +b) ≥ 1 j = 1 . . . n′

αi ≥ 0 i = 1 . . . n
Q(L, T )



Clearly, Q(L, T ) is much less constrained than Q’(L, T ), as Q(L, T ) is al-
lowed to use the test examples (i.e. cheat...) in order to find the αi coefficients.
The claim is that Q(L, T ) gives much deeper insights into the quality of the
propositionalization based on the kernel trick. Formally, with inspiration from
[8], we show that the percentage of times Q(L, T ) succeeds induces a lower bound
on the generalization error reachable in representation RL.
Proposition
Within a MIP-SVM setting, let L be a training set of size n, RL the associate
propositionalization and pL the generalization error of the optimal linear classi-
fier h∗L defined on RL.
Let IEn[pL] denote the expectation of pL conditionally to |L| = n.
Let MIP-SVM problems (Li, Ti), i = 1 . . . N be drawn independently, where the
size of Li and Ti respectively is n and n′. Let τ̂n,n′ denote the fraction of CSPs
Q(Li, Ti) that are satisfiable.
Then for any η > 0, with probability at least 1− exp(−2η2 N),

IEn[pL] ≥ 1− (τ̂n,n′ + η)
1

n′ .

Proof
Let the MIP-SVM problem and L be fixed; by construction, the probability for
a test dataset T of size n′ to include no example misclassified by h∗L is (1−pL)n′ .
It is straightforward to see that if T does not contain examples that are misclas-
sified by h∗L, Q(L, T ) is satisfiable. Therefore the probability for Q(L, T ) to be
satisfiable conditionnally to L is greater than (1− pL)n′ :

IE|T |=n′ [ Q(L, T ) satisfiable] ≥ (1− pL)n′

Taking the expectation of the above w.r.t. |L| = n, it comes:

IE|T |=n′, |L|=n[ Q(L, T ) satisfiable] ≥ IE|L|=n[(1− pL)n′ ] ≥ (1− IEn[pL])n′ (2)

where the right inequality follows from Jensen’s inequality as function x 7→
(1 − x)n′ is convex on [0, 1]. Next step is to bound the left term from its
empirical estimate τ̂n,n′ , using Hoeffding’s bound. With probability at least
1− exp(−2η2N),

IE|T |=n′, |L|=n[ Q(L, T ) satisfiable] < τ̂n,n′ + η (3)

From (2) and (3) it comes that with probability at least 1− exp(−2η2N)

(1− IEn[pL])n′ ≤ τ̂n,n′ + η

which concludes the proof. �

3.2 The Order Parameters

After the standard PT setting, the distribution of the problems is parametrized
based on order parameters respectively devoted to the characterization of in-
stances, target concept and examples.



At the instance level, each instance I = (a,v) is formed of a symbol a drawn
in an alphabet Σ, and a d-dimensional vector v, in [0, 1]d. By definition, the ε
ball of an instance I denoted Bε(I) includes all instances I ′ = (a′,v′) such that
I and I ′ bear the same symbol a = a′ and for each k coordinate, k = 1 . . . d, the
absolute difference |vk − v′k| is less than ε.

At the concept level, the target concept is characterized as the conjunction
of P elementary concepts Ci, where Ci is the ε ball centered on some target
instance Ii uniformly drawn in [0, 1]d.

At the example level, a positive (respectively negative) example xi is charac-
terized as a set of N+ (resp. N−) instances xi,l; example xi is positive iff each Cj

in the target concept contains at least one instance of xi. The N+ instances of
positive examples are drawn as follows: Pic instances are drawn in the elementary
concepts Ci, ensuring that at least one instance is drawn in every Ci (Pic ≥ P ).
Likewise, the N− instances of negative examples involve Nic instances drawn
in the elementary concepts Ci, ensuring that nm (near-miss) Ci are not visited
(nm ≥ 1).

Instances which do not belong to the target concept balls are drawn either (i)
uniformly in [0, 1]d (uniform default instances); or (ii) among PU balls forming
the Universe concept, introduced to model the fact that example instances are
not uniform in real-world problems (universe default instances). In the latter
setting, the Universe concept is made of PU balls with radius ε, and it is similarly
required that not all balls of the Universe be visited by an example; the number
of Universe balls not visited by positive examples is set to nmU .

4 Experiments

After describing the experimental setting, this section reports on the results.
All first experiments use uniform default instances; the case of universe default
instances is discussed in section 4.6.

|Σ| Size of the alphabet Σ 15

d Dimension of the instances : xi ∈ [0, 1]d 30
P Number of balls in the target concept 30
ε Radius of a ball (elementary concept) .15
n Number of training examples 60 (30 +, 30 −)
n′ Number of test examples 200 (100 +, 100 −)

N+, N− Number of instances in pos./neg. example 100
Pic Number of instances in tc for a positive example [30,100]
Nic Number of instances in tc for a negative example [0, 100]
nm Number of target balls not visited by neg. examples 20

PU Number of balls of the universe concept 30
nmU Number of universe balls not visited by pos. examples 15

Table 1. Order parameters for the MIP constraint satisfaction problem and their range
of variations



4.1 Experimental setting

Unless otherwise specified, the order parameter values are fixed or vary in the
intervals as described in Table 1.

For each set of order parameter values, 40 MIP-SVM problems are con-
structed by independently drawing the target concept, the training set L and
the test set L, using a Gaussian kernel as instance kernel. Correspondingly,
CSP Q(L, T ) is constructed (section 3.1), involving n′ = 200 constraints and
n + 1 = 61 variables; it is solved using the GLPK package. The average satisfia-
bility of Q(L, T ) for a set of parameter values is monitored, and displayed in the
2-dimensional plane Pic, Nic; the color code is black (resp. white) if the fraction
of satisfiable CSPs is 0 (resp. 100%). It is expected that for Pic = Nic, Q(L, T )
might be unsatisfiable as the MIP kernel only describes the averaged instance
similarity.

4.2 Sensitivity analysis w.r.t. Near-miss

Let us first examine the influence of the near-miss parameter nm, ruling the
number of elementary concepts which are not visited by instances of negative
examples. As expected, a failure region centered on the diagonal Pic = Nic can
be observed; furthermore the failure region increases as the near-miss parameter
increases (Fig. 1).
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Fig. 1. Fraction of satisfiable Q(L, T ) in plane Pic, Nic out of 40 runs. Influence of the
near-miss parameter: Left: nm = 10. Center: nm = 20. Right: nm = 25.

These results are explained as follows. The MIP propositionalization maps ev-
ery example x onto the n-dimensional vector ΦL(x) = (K(x1,x), · · · ,K(xn,x)).
The distribution of propositionalized examples, in the 2D plan defined from a
positive and a negative training example, is displayed on Fig. 2.

Let C (resp. c) denote the mean value of k(I, I ′) for two instances I and I ′

belonging to the same elementary concept (resp. drawn uniformly in the instance
space). These values depend on both the instance kernel and the instance order
parameters d and |Σ|, set to constant values in the experiments.

With no difficulty, it is shown that when xi and x are positive, the expectation
of K(xi,x) is 1

P ( Pic

N+ )2(C − c) + c. Likewise, if both examples are negative, the
expectation of K(xi,x) is 1

P (Nic

N− )2(C − c) + c. Last, if both examples belong to
different classes, the expectation of K(xi,x) is 1

P
Pic

N+
Nic

N− (C − c) + c.



0 20 40 60 80 100 120

0

20

40

60

80

100

120

K(Xpos,X)
K

(X
n
e
g
,X

)

Positive example

Negative example

Fig. 2. Distribution of ΦL(x) for x positive (legend +) and x negative (legend ×),
where P = 30, nm = 20, Pic = 50, Nic = 30. The first (resp. second) axis is derived
from a positive (resp. negative) training example.

Therefore when Pic = Nic
4, the distribution of K(xi,x) does not depend on

the class of x, which clearly hinders the linear discrimination task.
In the general case (when Pic 6= Nic), both distributions differ by their aver-

age value and by their variance. Still, as the distributions of positive and negative
test examples in the propositionalized representation RL overlap, their linear
separation is only made possible as the number of training examples increases.

Note that although the near-miss parameter nm has no effect on the center of
both distributions, the variance of the propositionalization increases with nm.
The larger dispersion of the propositional examples thus adversely affects the
satisfiability of the (Q) CSP, as shown on Fig. 1.

4.3 Size of the training and test sets

As could have been expected, increasing the number of training examples n
makes the failure region to decrease (Fig. 3 (a)); indeed the learning task is made
easier as more training examples are available. On one hand − provided that
Nic 6= Pic −, the distance between the centers of the propositionalized positive
and negative examples increases proportionally to

√
n, where n is the number

of training examples. On the other hand, the more training examples, the more
likely one of them will derive a propositional attribute with good discrimination
power.

In contrast, the size of the failure region increases with the size of the test set
(Fig. 3 (b)); clearly, the more constraints in Q(L, T ), the lower its probability
of satisfiability is.

4 Actually, the failure region corresponds to Pic
N+ = Nic

N− . The distinction is not made

for space limitation in the paper, as N+ = N−.
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(a) Influence of the size of the training set. Left: n = 20. Center: n = 60. Right:
n = 180.
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(b) Influence of the size of the test set. Left: n′ = 100.Center: n′ = 200. Right:
n′ = 400.

Fig. 3. Fraction of satisfiable Q(L, T ) in plane Pic, Nic out of 40 runs.
the

4.4 Sensitivity analysis w.r.t. Pic and Nic

The influence of the dispersion of Pic and Nic is examined as follows. Firstly,
the number of instances in positive (respectively, negative) training examples is
uniformly drawn in [Pic−∆, Pic +∆] (resp. [Nic−∆, Nic +∆]), with ∆ varying
in [0,10] while the number of instances in test examples is kept fixed.

When ∆ increases, the size of the failure region decreases (Fig. 4 (a)); indeed,
the higher variance among the training examples makes it more likely that one
of them will derive a propositional attribute with good discrimination power.

Secondly, the number of instances for training examples is fixed while the
number of instances in positive (respectively, negative) test examples is uni-
formly drawn in [Pic − ∆, Pic + ∆] (resp. [Nic − ∆, Nic + ∆]), with ∆ varying
in [0,10]. Here, the failure region increases with ∆ (Fig. 4 (b)); as the higher
variance among the test examples makes it more likely to generate inconsistent
constraints.

Finally, if the number of instances in all training and test examples varies,
the overall effect is to increase the failure region: even though there are propo-
sitional attributes with better discriminant power, there are more inconsistent
constraints too, and the percentage of satisfiable problems decreases.

4.5 Sensitivity Analysis w.r.t. Example size

The impact of default instances (not belonging to any elementary target concept)
is studied through increasing the example size N+ and N−. Experimentally, the
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(a) Variation only for training examples.
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(b) Variation only for test examples.

 0

 0.2

 0.4

 0.6

 0.8

 1

Pic

N
ic

 40  50  60  70  80  90

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0

 0.2

 0.4

 0.6

 0.8

 1

Pic

N
ic

 40  50  60  70  80  90

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0

 0.2

 0.4

 0.6

 0.8

 1

Pic

N
ic

 40  50  60  70  80  90

 10

 20

 30

 40

 50

 60

 70

 80

 90

(c) Variation for both training and test examples.

Fig. 4. Fraction of satisfiable CSP (Q) in plane Pic, Nic out of 40 runs. Influence of the
variability ∆ on Pic and Nic. Left: ∆ = 0. Center: ∆ = 5. Right: ∆ = 10.

failure region increases with N+ and N− (Fig. 5). The interpretation proposed
for this finding goes as follows.

On one hand, the distance between positive and negative example distribu-
tions is increasingly due to the influence of default instances as N+ and N−

increase. On the other hand, the instances in positive and negative examples
are in majority default ones when N+ and N− increase; therefore the ratio sig-
nal to noise in the propositional representation decreases and the failure region
increases.

On the other hand, the effect of default instances is limited as they are far
away from each other (in the uniform default instance setting), comparatively to
instances belonging to concept balls. Therefore increasing the number of default
instances does not much modify K(x,x′) on average, which explains why the
effect of N+ and N− appears to be moderate.
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Fig. 5. Fraction of satisfiable CSP (Q) in plane Pic, Nic out of 40 runs. Influence of
the size of the examples. Left: N+ = N− = 100.Center: N+ = N− = 200. Right:
N+ = N− = 400.

4.6 Sensitivity Analysis w.r.t. the Universe Concept

This section examines the sensitivity of the results when default instances are
drawn in the Universe concept (section 3.2).

Effect of the size of the Universe (PU balls). The impact of the Uni-
verse Concept can be expressed analytically, examining the distributions of
positive and negative examples in the propositionalized representation (calcu-
lations omitted for space limitations). The largest failure region is observed for
Pic = Nic ≈ N P

PU+P .
Accordingly, the failure region is very thin for small values of PU (Fig. 6);

for large values of PU , the failure region is similar to the non-Universe case.
For intermediate values, a larger failure region is observed, compared to the
non-Universe case.
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Fig. 6. Fraction of satisfiable CSP (Q) in plane Pic, Nic out of 40 runs. Influence of the
size PU of the Universe when nmU = 0. Left: PU = 5. Center: PU = 30. Right: PU

= 1000.

Effect of the near miss factor of the Universe. The number of near-miss
nm (number of concept balls not visited by the negative instances) and the
number nmU (number of Universe balls not visited by positive examples) have
similar effects : the variance of ΦL(x) increases with nm and nmU , and the
probability for the CSP (Q) to be satisfied decreases accordingly.



Note however that the impact of nm is maximal for large value of Pic and
Nic (Fig. 1), while the opposite holds for nmU (Fig. 7). This is explained as nm
influences the distribution of the Pic (resp. Nic) instances in the target concept
while nmU influences the distribution of the N+−Pic (resp. N−−Nic) instances
drawn in the universe.
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Fig. 7. Fraction of satisfiable CSP (Q) in plane Pic, Nic out of 40 runs. Influence of
the size of the near-miss factor of the Universe. Left: nmU = 0. Center: nmU = 15.
Right: nmU = 25.

Overall, the Universe is shown to amplify the variations due to the example
size, as the instances not related to the target concept now influence the variance
of the propositionalized distribution (Fig. 8).
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Fig. 8. Fraction of satisfiable CSP (Q) in plane Pic, Nic out of 40 runs. Influence of
the size of the example using a Universe. Left: N+ = N− = 100. Center: N+ = N−

= 200. Right: N+ = N− = 400.

5 Discussion and Perspectives

The main contribution of this paper is to evidence some Phase Transition-related
limitations of MIP kernels. The presented approach is based on a lower bound
of the generalization error, expressed in terms of the satisfaction probability of
a CSP on the propositionalized representation induced by a MIP kernel.

Clearly, some care must be exercised to interpret the limitations of the well-
founded MIP-SVM algorithms suggested by our experiments on artificial prob-
lems.



Still, the question of whether MIP-SVM algorithms enable to characterize
existential properties as opposed to average properties makes sense in a relational
perspective. Actually, in some domains where the number and/or the diversity
of the available examples are limited, as in the domain of chemometry [12], one
might learn average properties, these might do well on the test set, and still be
poorly related to the target concept; some evidence for the possibility of such
a phenomenon was presented in [1], where the test error could be 2% or lower
although the concept learned was a gross overgeneralization of the true target
concept.

A research perspective opened by this work is based on the further investi-
gation of the CSP, hybridizing the CSP resolution and the kernel-based propo-
sitionalization.
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14. Pernot, N., Cornuéjols, A., Sebag, M.: Phase transitions within grammatical infer-
ence. Proc. Int. Conf. on Artificial Intelligence (2005) 811–816.

15. Rückert, U., Kramer, S., De Raedt, L.: Stochastic local search in k-term dnf learn-
ing. Proc. of the Int. Conf. on Machine Learning (2003) 648–655.

16. Vapnik, V.N.: Statistical learning theory. Wiley-Interscience (1998).


