
Dynamic Predicate Construction for

Learning Relational Concepts

Michael Chiang and David Poole

University of British Columbia
{mchc,poole}@cs.ubc.ca

Abstract. The aim of this work is to enrich the search space of re-
lational rule learning by allowing dynamic construction of predicates.
Specifically, the use (resp. non-use) of large predicates lead to hypothe-
ses that are overly specific (resp. general). Without suitable predicates
predefined, the space between these two hypotheses is inaccessible to
the learner. We seek to address this problem by extensional predicate
construction from domain clusters, thus allowing for the kind of inter-
mediate hypotheses of interest here. We show that doing so lead not only
to discovery of interesting domain subsets, but also better leveraging of
predictive accuracy and overfitting. We develop a dynamic programming
method for effectively achieving clusters of individuals, and demonstrate
empirical results on on synthetic as well as real-world datasets.

Key words: Relational learning, inductive logic programming, predicate
invention.

1 Introduction

Learning relational rules is typically done with a fixed, predefined vocabulary
and hence a set of fixed features which are assumed sufficient to describe the
target domain (e.g. [1–3]). The features in question are typically taken from the
input dataset, and one has no a priori indication of how useful they may be in
generating a descriptive rule.

The process of inducing a relational rule terminates when all predicates in
the initial vocabulary have been used, or that a stopping criterion is satisfied,
and exploration of the input space ceases1. If the input data harbours more in-
formation that could be fruitfully exploited, then the current induced hypothesis
would be seen as being overly general. However, if we only have large predicates
with which to perform clausal refinement, an overly complex hypothesis may
result and introduces overfitting. To illustrate, we provide the following example
from [6].

1 This applies not only to logic-based rule learning (e.g. [4]), but also frame-based
models such as probabilistic relational models [1], when one wishes to explicate
its probabilistic dependency statements (conditional probabilities) by learning its
structure (e.g. as a decision tree [5]).

2

Example 1. A survey of workers in U.S. cities, from which it can be seen that on
average approximately 70% of the sampled population prefer to drive to work.
However, in the city of New York (NYC) which accounts for one sixth of the
survey data, only 25% drives to work. Thus, NYC is clearly a strong exception
to the hypothesis that 70% of Americans drive to work. With the sole available
feature being lives(Person), whose possible values are the set of cities in the
survey, the use and non-use of this predicate yields the following two theories
respectively:

∀P, drives(P)
0.7
← . (1)

∀P, drives(P)
pi
← lives(P) = ci. (2)

where ci is the i-th city and pi the corresponding probability. By inspection, (1)
is too general whilst (2) is overly complex even if it is a better fit to data. One
could reasonably propose an intermediate theory such as

∀P, drives(P)
0.25
← lives(P) = nyc.

∀P, drives(P)
0.73
← lives(P) 6= nyc.

(3)

which appears to achieve a better leverage overfitting.
This example reveals a (large) generality gap between (1) and (2), and hy-

potheses that lie in between (e.g. (3)) are not learnable when one depends on
predefined (and non-existent) features to do so2.

In this work, we propose to leverage the problem described above by opti-
mally grouping values of large predicates, thereby introducing new extensional
predicates in the learning process. The solution we propose utilises dynamic
programming to optimise empirical loss on the training data (see Sect. 3). The
proposed method can be employed during standard rule learning as an alterna-
tive to using large features directly, reducing model complexity and enhancing
predictive accuracy.

The remainder of this paper is organised as follows. Sect. 2 covers some stan-
dard notations and background into loss functions for probability estimation.
This is followed in Sect. 3 by an exposition on the notion of splitting on individ-
uals and derivation of associated methodology. Experimental results on synthetic
as well as real-world datasets are included in Sect. 4, where we show the value of
our generated models. Discussion of related work and conclusion can be found
in Sect. 5.

2 Preliminaries

We will use standard notation where uppercase letters (or words with leading
uppercase) denotes random variables as well as logical variables, distinguishable

2 It may be noted that the above example can be seen as a propositional problem.
However, propositionalisation does not circumvent the problem as we are interested
not in the choice of representation but achieving an intermediate hypothesis such as
(3).

3

by context or explicitly when required. Lowercase letters denote instantiations,
e.g. x is an instantiation of random variable X . If X is a logical variable then
x is a constant. We use subscript index notation to represent discrete sets, e.g.
X1:n is a set of random variables X1 . . . Xn, and x1:n is a corresponding vector
instantiation.

Now we define general loss functions for binary probability estimation, sourced
from [7]. Given some predictor data x1:n and response data y ∈ {0, 1} (a
Bernoulli observation), we are interested in estimating the quantity γ = P (y =
1|x1:n). Let the discrepancy for estimator α(x1:n) ∈ [0, 1] for y = 1 and y = 0
be non-negative (e.g. the 1-norm), and based on which we respectively define
partial losses to be l1,α(x1:n) and l0,α(x1:n), which are increasing functions. The
point-wise empirical loss for estimating the value of y given x1:n (we drop x1:n

in the sequel for brevity) is

L(y|α) = yl1,α + (1 − y)l0,α (4)

The point-wise expected loss for estimating γ then takes the form

L(α, γ) = EY L(Y |α) = γl1,α + (1 − γ)l0,α (5)

If l1,α and l0,α are chosen to be convex functions, (5) will also be convex with
the minimum at γ, giving Fischer consistency. A common example of this is the
log-loss, where l1,α = − log(α) and l0,α = − log(1 − α). Our definitions here
are general as our theoretical results in Sect. 3 are for general loss functions.
However, for the purposes of evaluation and implementation, we choose log-loss
as our primary measure for its direct correspondence to likelihood and entropy,
which are standard measures in probabilistic machine learning. In this paper we
will only discuss the case of binary probability estimation.

3 Domain splitting

In example 1, the domains of individuals are people and cities, where the latter
can be seen as the range of the function lives.. We aim to construct new predicates
such as lives(Person, C1), . . . lives(Person, Cn), where C1:n are disjoint sets of
cities. The assignment of cities to these sets are based on corresponding statistics
(e.g. counts of people who drive in a given city), and a probability estimator is
calculated for each set that minimises loss on training data. Splitting on single
domains as described here (e.g. cities only) is the focus of the paper, where
partitioning in higher-dimensions (such as the space of all person-city pairs)
warrants further investigation as discussed in Sect. 5.

Formally, we cast the domain splitting task as the assignment of K prob-
ability estimators to M(> K) probabilities Ω = γ1:M . Let Ai be a subset (or
partition) of Ω, and let Ω̄ = A1:K . Given K, and a procedure to compute a
probability estimate αi for each Ai ∈ Ω̄, the goal is to achieve Ω̄ such that the
joint estimation loss incurred by α1:K is minimised. That is, we want to solve

A∗
1:K = argmin

A1:K

K
∑

i=1

E [L(αi,Ai)] (6)

4

Let Jx = E [L(αx,Ax)] be the loss incurred by estimator αx in partition Ax,
then the best estimator αi is defined as follows:

αi = argmin
α

E [L(α,Ai)] = argmin
α

E





∑

γ∈Ai

L(α, γ)



 (7)

Solving (6) represents the outer-loop of our approach, whereas (7) represents the
inner-loop. The general schema of this framework is illustrated in Fig. 1.

α 1:K

γ
1:M

γ
1:M

γ
M

γ
2

αK+1

γ
1

α1

(Alg. 1)(Sec. 3.4)

K

probability
smoothing sort

p
ro

b
a

b
il
it
y

smoothing

partition
1

partition
K

individuals

partition

Fig. 1. Proposed schema for generating K partitions and estimators for M > K prob-
abilities.

Since γ1:M are empirical probabilities in practice, they are subject to small
sample problems (e.g. small towns), which we address in our framework via
probability smoothing as a preprocessor (see Sect. 3.4). Partitioning (Sect. 3.2)
is done using Alg. 1 after sorting.

3.1 Computing estimators

We first discuss the inner-loop operation of computing αi for a given partition
Ai. Recall that the objective function here is given by (7), and that we choose
to use log-loss in this work (i.e. l1,α = − logα and l0,α = − log (1 − α) in (5)),

5

the loss of αi for Ai is then expressed by

Ji = E



−
∑

γ∈Ai

γ log αi + (1− γ) log (1− αi)





= −





∑

γ∈Ai

E [γ]



 log αi −





∑

γ∈Ai

E [1− γ]



 log (1− αi)

(8)

By strict concavity of log functions, Ji is strictly convex, and its stationary point
represents our optimal joint estimator for Ai, expressed as (9) below.

αi =

∑

γj∈Ai

γj

|Ai|
(9)

3.2 Monotonic estimator assignment

Before describing our algorithm for computing partitions, we develop results
that make it possible. Let α1, α2, γ1, and γ2 be real numbers in [0, 1] such that
α1 > α2 and γ1 > γ2. If we use αi as an estimator for γi, an intuition which
arises is that if α1 incurs a smaller loss than α2 in estimating γ2, then α1 is also
superior in predicting γ1. Conversely, if α2 is the superior estimator for γ1, then
it is also superior for for γ2. We show this formally in Lemma (1) as follows.

Lemma 1. Let γ1 and γ2 be probabilities, such that γ1 > γ2. Also, let α1 and α2

be probabilistic estimates of γ1 and γ2 respectively, such that α1 > α2. Applying
each estimator to γ1 and γ2,

L(α2, γ1) ≤ L(α1, γ1) =⇒ L(α2, γ2) < L(α1, γ2) (10)

Conversely,

L(α1, γ2) ≤ L(α2, γ2) =⇒ L(α1, γ1) < L(α2, γ1) (11)

Proof. Suppose that L(α2, γ1) ≤ L(α1, γ1), which expands (using (5)) to the form

γ1l1,α2
+ (1− γ1)l0,α2

≤ γ1l1,α1
+ (1 − γ1)l0,α1

(12)

Let γ1 = γ2 + δ where δ > 0, then eq. (12) can be expressed as follows

(γ2 + δ)l1,α2
+ (1− γ2 − δ)l0,α2

≤ (γ2 + δ)l1,α1
+ (1 − γ2 − δ)l0,α1

=⇒ γ2l1,α2
+ (1− γ2)l0,α2

+ δ (l1,α2
− l0,α2

)

≤ γ2l1,α1
+ (1 − γ2)l0,α1

+ δ (l1,α1
− l0,α1

)

∴ L(α2, γ2) + δ (l1,α2
− l0,α2

) ≤ L(α1, γ2) + δ (l1,α1
− l0,α1

)

6

Since l1,· and l0,· are increasing functions, and that α1 > α2,

l1,α2
> l1,α1

l0,α2
< l0,α1

=⇒ l1,α2
− l0,α2

> l1,α1
− l0,α1

In combination with (12), it must be the case that

L(α2, γ2) < L(α1, γ2) (13)

which proves (10). The converse result (11) is proved by noting that it is the
contrapositive statement of (10), and is thus logically equivalent.

It follows from Lemma 1 that assigning α2 to γ1 and α1 to γ2 does not yield
optimal loss, and can always be improved upon by reversing the assignment. We
state this in the Theorem 1 as follows.

Theorem 1. Given two probabilities γ1 and γ2 such that γ1 > γ2, and proba-
bilistic estimates α1 and α2 such that α1 > α2,

¬ ((L(α2, γ1) ≤ L(α1, γ1)) ∧ (L(α1, γ2) ≤ L(α2, γ2))) (14)

Proof. Equation (14) is logically equivalent to

L(α2, γ1) ≤ L(α1, γ1)⇒ L(α2, γ2) < L(α1, γ2)

which in turn is true in (10) in Lemma 1.

Theorem 1 essentially states that monotonic value ordering of αi must be aligned
to that of γi, and that breaking the ordering (e.g. unordered assignments) always
increases loss. The argument extends to the case where we have γ1:M and two
estimators α1, α2. There, every γi assigned α1 must be greater than each of those
assigned α2. In effect, we split the set of γ’s into two sets A1 and A2 where

∀γr ∈ A1, ∀γs ∈ A2 : γr > γs

and have shown that overall expected loss of the two estimators cannot be im-
proved upon by moving any element of A1 to A2 and vice versa. If we now have
K estimators α1:K such that α1 > α2 > . . . > αK , we directly apply the above
pairwise result to all pairs of estimators. Then, the set of γ’s are split into K

disjoint subsets A1 . . .AK , where for all i < j

∀γr ∈ Ai, ∀γs ∈ Aj : γr > γs (15)

This means that to find an optimal bisection of γ1:M , we need only search linearly
in the sorted set described by (15). To make multiple partitions, we apply the
same principle in a dynamic programming framework described in Sect. 3.3 that
follows.

7

3.3 Optimal splitting via dynamic programming

Theorem 1 shows that in order to find the best K disjoint subsets of M prob-
abilities γ1:M to assign our K estimators, we only need to search in the space
where γ1:M are sorted. In the simple case of finding two partitions, one sim-
ply searches linearly in {γ1:M}sorted for the best cut-point. Optimal loss can
achieved by computing α1,2 using (9). To see how K > 2 partitions, suppose
we are searching for the best j-th cutpoint cj , which require that all cuts c1:j−1

have been made. Note also that the best c1:j−1 cuts apply to the set γ1:cj
. This

recursive argument suggests a dynamic programming approach, and indeed is
true given that our objective function (implicit in (6)) can be written in additive

form JK = min
∑K

i=1
Ji, which yields the recursive form

JK = JK−1 + min JK (16)

The recursive form of our minimisation problem directly validates the use of
dynamic programming, where we cache scores of all previous partitionings. To
perform this, we set up a M × (K + 1) table D, whose elements dm,k are

dm,k = min
r<m

(

J r
k−1 + Jr

k

)

; k = 0 . . .K, m = 1 . . .M (17)

which represents the score of the best k-partition model on γ1:m. J r
k−1

denotes
the loss for the best k− 1 partitions on the partial set γ1:r−1 which is equivalent
to dr−1,k−1, and Jr

k is the loss of the new partition composed of γr:m. Algorithm
1 sweeps through and computes all elements of this matrix, returning dM,K as
the final value. The final cutpoints are given by c∗k = arg minc [dc,k], k = 1 . . .K.

Algorithm 1 Finding the best K partitions of the sorted set γ1:M

for k ∈ 0 : K do

for m ∈ 1 : M do

H = ∅
for r ∈ 1 : m do

α←

Pm

j=r γj

m− r
H ← H ∪ (dr−1,k−1 + Jr

k (α))
end for

dm,k ← minH
end for

end for

3.4 Small sample smoothing

As mentioned, γ1:M are often empirical probabilities, and therefore subject to
small sample problems. Computing an estimator directly from (9) can result in

8

unbounded test loss (e.g. when a test point y = 1, and α = 0 was computed from
the training set, then we have L(1|0) = −(1) log(0) − (0) log(0) = −∞). Appli-
cation of the partitioning algorithm only avoids such problems if one can avoid
grouping sets of exclusively extreme probabilities. This necessitates smoothing
of the inputs probabilities.

Let sample S be a set of binary data y1:z, in which z+ elements have the

value 1. Then, let γ̂ = z+

z
be an empirical estimate of the probability of finding

1’s in S, the smoothed empirical probability γ can be expressed as

γ̄ =
z+ + a

z + b
(18)

Different forms of smoothing arise from different choices of a and b. In this
work we also use the optimisation over choices of a and b via the empirical
Bayes method for the Dirichlet-multinomial model (see [8]). The smoothed set of
probabilities are then used directly as inputs to Alg. 1. As part of our evaluations,
we will also use the well-known Laplace estimate (a = 1 and b = 2).

4 Experiments

In our experiments, we compare three types of models: (i) models corresponding
to no partitioning (e.g. (1)) for which we use a simple maximum likelihood esti-
mate, denoted as Single, (ii) those resulting from splitting on a given predicate
exhaustively (e.g. (2)), and (iii) those resulting from the application of Algo-
rithm 1. Types (ii) and (iii) have variants depending on the smoothing method
used. Namely, type (ii) with no smoothing is denoted as ML, and EmpBayes
with smoothing by empirical Bayes, and Laplace with Laplace smoothing. Type
(iii) follow a similar system, giving K-ML, K-EmpBayes and K-Laplace meth-
ods, where smoothing is done on the initial set of probabilities before being
partitioned into K groups. The aim of these experiments are to show that (iii)
(splitting optimally) is better than (i) (no splitting) and (ii) full splitting, from
the standpoint of classification as well model complexity. The use of specific (re-
lational) rule learners to generate (i) and (ii) is irrelevant to our investigations,
as standard variants do not generate type (ii) models.

4.1 Synthetic data

In this experiment we wish to evaluate the average performance over a vast num-
ber of wide-ranging datasets. For this purpose we create a generative model to
synthesise M = 30 bins of binary data, where the size and binomial parameter of
each bin are subject to randomisation. Further, we correlate the binomial param-
eter with bin size in an artificial way, according to a randomly selected sigmoid
function. Hidden relations are incorporated (e.g. that which can be described
by an unavailable relational feature) by adding strong correlation between select
subsets of individuals. We evaluate log-loss for all of the listed methods except
ML and K-ML due to infinite losses on test data from extremal likelihoods. K

9

is nominally set to 8. Figure 2(a) represents the average 10-fold cross-validated
test loss over 100 randomly generated dataset of size N , where N = 500 × 2r,
r = 1 . . . 13. It shows that all methods that partitioning exploits information
better than Single, resulting in lower loss. Also, whilst probability smoothing
helps in avoiding infinite losses, its effect appears to be negligible. However,
given that K = 8 (compared to M = 30), the similarity in performance between
full-partition and K-partition methods highlights the advantage of performing
K-partitioning. In essence, we show in this trial that exploring the appropriate
level of generalisation (i.e. those in the space between those found by type (i)
(Single) and type (ii) methods (full-partitioning)) leads to much simpler hy-
potheses without sacrificing accuracy.

4.2 Gene classification data

The goal with the gene classification dataset3 is to classify the function of a
gene given its properties, and possibly known relations to other genes. Of the
nine possible gene features, we choose geneclass(G) (which has 22 values, e.g.
M = 22) for our purposes4. There exists 13 functional classes to which a gene
can belong, where we treat each as a separate binary classification problem, e.g.
gene G is either in class c or not. Here we are interested in seeing how each
model exploits the available information, which we illustrate by plotting the rel-
ative loss5 on predicting for each functional class against the entropy inherent
in the data for that class. In this experiment, we search for the best K using
10-fold cross-validation. The results are presented in Fig. 2(b), and shows that
the advantage of partitioning is less pronounced when the data harbours lit-
tle information (though it still appears to perform competitively). However, in
accordance to our intuition, as the available information increases K-partition
models not only outperforms Single but also their respective full-partition mod-
els. This suggests that the K-partition models effectively achieve good accuracy
without overfitting, which is supported by the fact that K range from 6 to 8
(depending on class) compared to M = 22.

4.3 Journey-to-work data

The journey-to-work surveys conducted by the U.S. census [6] was briefly de-
scribed in Sect. 1. Counts of people for the four categories of transportation to
work (drive, carpool, transit, other) are given, grouped by city of work (there are
M = 50 cities). Our feature is lives(X, City), using which we carry out binary
prediction for each of the four classes. In all there are approximately 18 million
data points, and no city carries extreme likelihoods, which allows ML to be used
here. 10-fold cross-validation tests are carried out, with losses recorded in Table
1. K is computed in the same way as in Sect. 4.2, ranging from 7 to 12.

3 KDD Cup 2001 (http://www.cs.wisc.edu/ dpage/kddcup2001).
4 Note ”gene class” is not equivalent to the gene’s function.
5 The difference between log-loss and the minimum log-loss achieved by any method

for that function class.

10

2.5 3 3.5 4 4.5 5 5.5 6 6.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

log10(N)

lo
g

−
lo

s
s

Single
EmpBayes
Laplace
K−EmpBayes
K−Laplace

(a) (Synthetic) Log-loss as a function
of size of the dataset. K-partitioning
achieves similar performance to full-
partitioning, with K = 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

class entropy

re
la

ti
v
e

 l
o

g
−

lo
s
s

Single
EmpBayes
Laplace
K−ML
K−EmpBayes
K−Laplace

(b) (Gene classification) Log-loss as a
function of information available in the
training data. Points represented as
symbols correspond to K-partitioning
methods, outperforming both full and
non-partitioning methods with increas-
ing information.

Fig. 2. Results for experiments on (a) synthetic data, and (b) gene classification data.

Table 1. Log-loss using the ’travel-to-work’ dataset.

drive carpool transit other

single 0.9806 0.5553 0.7007 0.4556

laplace 0.8679 0.5512 0.5522 0.4468

empbayes 0.8679 0.5512 0.5522 0.4468

ml 0.8679 0.5512 0.5522 0.4468

k-ml 0.8679 0.5512 0.5522 0.4469

k-empbayes 0.8679 0.5512 0.5522 0.4468

k-laplace 0.8679 0.5512 0.5522 0.4468

Table 1 shows that whilst there appears to be little overfitting even for the
full-partitioning models, the K-partition models achieve similar scores, thereby
demonstrating the same benefits as shown in previous experiments. Single again
over-generalises and scores poorly.

It is also of interest to examine the qualitative models produced by K-
partitioning. For the class drive and setting K = 2, K-EmpBayes, K-Laplace
and K-ML all lead to the model shown in Fig. 3 (due to negligible effects of
priors). From this model, a rule set that follows (for the K = 3 case) is shown

11

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cities (ordered)

pr
ob

ab
ilit

y

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cities (ordered)

pr
ob

ab
ilit

y

Wash. DC
NY City

New Orleans
Oakland
Honolulu
Baltimore
Pittsburgh
Chicago
Philadelphia
Boston
San Francisco

Tulsa
Toledo
Oklahoma
City
Omaha
Indianapolis
Virginia
Beach

Baltimore
Pittsburgh
Chicago
Philadelphia
Boston
San Francisco
Washington DC
New York City

Tulsa
Toledo
Oklahoma
City
Omaha
Indianapolis
Virginia
Beach

Fort Worth
Albuquerque
Columbus
San Jose
Charlotte
Nashville
Kansas City
Memphis
...

Fort Worth
Albuquerque
Columbus
San Jose
Charlotte
Nashville
Kansas City
Memphis
...

Fig. 3. Models produced by Alg. 1 with K = 2 (left) and K = 3 (right). Individuals
(cities) of each partition are also labelled.

in (19)

∀P, drives(P)
θi← lives(P, C) ∧ C ∈ Li.

where i = 1 . . . 3,

L1 = {’Tulsa’,’Toledo’, . . .}, θ1 = 0.714

L2 = {’New Orleans’,’Oakland’, . . .}, θ2 = 0.470

L3 = {’Washington DC’,’New York City’}, θ3 = 0.251.

(19)

It can be seen our method generated models that summarises the journey-to-
work habits of people in different cities. It resembles the kind of model shown in
(3) in Sect. 1.

5 Conclusions and related work

We have presented an effective method for grouping values of large relational
predicates to construct new (extensional) predicates. This results in intermedi-
ate hypotheses that reside in the generality gap outlined in Sect. 1, leading to
better leveraging of overfitting as demonstrated in Sect. 4, as well as discovery of
interesting domain subsets. We argued that standard rule learning mechanisms
require predefined predicates to find hypotheses in this gap, whereas we do not.

Existing work in (statistical) predicate invention (e.g. [9, 10]) can also, in
principle, make intermediate hypotheses from ground examples. However, it is
unclear whether it will achieve the same theories and classification performance.
Another related work is (relational) subgroup discovery [11, 12], which distin-
guishes individuals by feature descriptions, thus assuming a predefined feature

12

set that we do not require. Along similar lines, recent work in view learning at-
tempts to generate new relations (using an existing ILP algorithm, Aleph) from
existing ones to optimise predictive performance.

It is noteworthy that some results in [13] for binning bitmap indices capture
the same idea as that expressed by Theorem 1. However, these are independent
works, and the results in this paper is not attained directly from [13].

The main shortcoming of the method presented here is that one cannot easily
partition multi-dimensional domains which exists when higher-arity predicates
such as lives(P, City, Suburb) are used. The ability to do so avails an even richer
class of relational rules, and is an important extension. The work in this paper
presents an initial step in this direction.

References

1. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of
link structure. Journal of Machine Learning Research (2002)

2. Muggleton, S.: Learning structure and parameters of stochastic logic programs. In
Matwin, S., Sammut, C., eds.: ILP02. Volume 2583 of LNAI., SV (2003) 198–206

3. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artificial Intelligence 101(1-2) (1998) 285–297

4. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5

(1990) 239–266
5. Getoor, L.: Learning Statistical Models from Relational Data. PhD thesis, Stanford

University (2001)
6. U.S. Census Bureau: Travel to work characteristics for the 50 largest cities by

population in the united states: 1990 census (1990)
7. Shen, Y.: Loss functions for binary classification and class probability estimation.

PhD thesis, University of Pennsylvania (2005)
8. Minka, T.: Estimating a Dirichlet distribution. Technical report, M.I.T. (2000)
9. Craven, M., Slattery, S.: Relational learning with statistical predicate invention:

Better models for hypertext. Machine Learning 43(1/2) (2001) 97–119
10. Muggleton, S.: Predicate invention and utilisation. Journal of Experimental and

Theoretical Artificial Intelligence 6(1) (1994) 127–130
11. Kloesgen, W. In: Explora: a multipattern and multistrategy discovery assistant.

American Association for Artificial Intelligence, Menlo Park, CA, USA (1996) 249–
271

12. Zelezný, F., Lavrac, N.: Propositionalization-based relational subgroup discovery
with rsd. Machine Learning 62(1-2) (2006) 33–63

13. Rotem, D., Stockinger, K., Wu, K.: Efficient binning for bitmap indices on high-
cardinality attributes. Technical report, Lawrence Berkeley National Laboratory
(2004)

