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Abstract. We revisit an application developed originally using Induc-
tive Logic Programming (ILP) by replacing the underlying Logic Pro-
gram (LP) description with Stochastic Logic Programs (SLPs), one of
the underlying Probabilistic ILP (PILP) frameworks. In both the ILP
and PILP cases a mixture of abduction and induction are used. The
abductive ILP approach used a variant of ILP for modelling inhibition
in metabolic networks. The example data was derived from studies of
the effects of toxins on rats using Nuclear Magnetic Resonance (NMR)
time-trace analysis of their biofluids together with background knowledge
representing a subset of the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The ILP approach learned logic models from non-probabilistic
examples. The PILP approach applied in this paper is based on a gen-
eral approach to introducing probability labels within a standard sci-
entific experimental setting involving control and treatment data. Our
results demonstrate that the PILP approach not only leads to a signifi-
cant decrease in error accompanied by improved insight from the learned
result but also provides a way of learning probabilistic logic models from
probabilistic examples.

1 Introduction

One of the key open questions of Artificial Intelligence concerns Probabilistic
Logic Learning (PLL) [4], i.e. the integration of probabilistic reasoning with first
order logic representations and machine learning. This integration is needed in
order to face the challenge of real-world learning and data mining problems
in which data are complex and heterogeneous and we are interested in finding
useful predictive and/or descriptive patterns. The term probabilistic refers to
the use of probabilistic representations and reasoning mechanisms grounded in
probability theory, such as Bayesian networks and stochastic grammars. Such
representations have been successfully used across a wide range of applications
and have resulted in a number of robust models for reasoning about uncertainty.
The term logic refers to representations based on first order logic such as those
studied within the field of computational logic. The primary advantage of using
such representations is that it allows one to elegantly represent complex situa-
tions involving a variety of objects as well as relations among the objects. The



term learning in the context refers to deriving the different aspects of a model
in a probabilistic logic on the basis of data. Typically, one distinguishes various
learning algorithms on the basis of the given data (fully or partially observable)
or on the aspect being learned (parameter estimation or logical structure learn-
ing). The motivation for learning is that it is often easier to obtain data for a
given application domain and learn the model than to build the model using
traditional knowledge engineering techniques.

Inductive Logic Programming (ILP) [12] studied logic learning, i.e. learning
and data mining within first order logical or relational representations. PLL is
also called Probabilistic ILP (PILP) [15] as it naturally extends ILP to proba-
bilistic case that can explicitly deal with uncertainty such as missing and noisy
information. There have been some promising PILP frameworks and systems
developed so far to help people build probabilistic logic models and make use of
some known PLL utilities, such as Bayesian Logic Programs (BLPs) [9], Stochas-
tic Logic Programs (SLPs) [10] and Markov Logic Networks (MLNs) [16]. Al-
though more and more new developments and successful applications have been
published, there are still many challenges in the PLL research. One of such chal-
lenging questions is ‘should PLL/PILP always learn from categorical examples?’
In other word, the data sets used by most PLL/PILP systems or applications
are non-probabilistic, like those used in ILP systems. On the one hand, there are
more or less information loss for learning using just categorical examples com-
pared with the raw (possibly continuous) data. On the other hand, the ability
of handling examples together with empirical probabilities should be one of the
distinct positive features of PILP against ILP. A major reason for the problem is
we lack the corresponding methods to extract or estimate empirical probabilities
from raw data. We attempt to show a solution to the problem in this paper.

This paper is arranged as follows. Section 2 provides background relating to
an introduction of the empirical probability and the biological application area
of metabolic network inhibition as well as the previous study of abductive ILP.
This is followed by a description of the abductive approach to SLPs used in this
paper. A general approach is described in Section 4 for extracting probability
labels from scientific data. This approach is employed in the experiments of Sec-
tion 5 which apply abductive SLP learning to the metabolic network inhibition
problem. We show that significant accuracy increases are achieved using the new
approach. Section 6 concludes with a comparison to some related approaches and
a discussion of the results.

2 DMotivation and Background

2.1 Probabilistic ILP with Probabilistic Examples

To address our motivation, we claim the following learning setting of PILP with
probabilistic examples, where each observed example is associated with a prob-
ability specifying its degree of being sampled from some distribution.

Definition 1 (Learning Setting of Probabilistic ILP with Probabilis-
tic Examples). Given a set E = {P(e) : e} of probabilistic examples, a



background theory B, PILP finds, in a probabilistic logical hypothesis space H,
H* = argmaxpgen [[,cp Ple|H, B) such that Ye € E : P(e|H*,B) > 0, where
P(e|H, B) = ZULEE).

Here we distinguish that probabilistic examples have empirical probabilities
in PILP from that categorical examples are positive or negative in ILP. For the
probability, we refer to the so called ’empirical probability’ or more precisely, the
estimated probability distribution®, which we could statistically extract from
the raw (numerical) data. Empirical probability is not prior probability, which
is always used in Bayesian inference [6] and is often the purely subjective assess-
ment made by an experienced expert. Empirical probability could be thought
as posterior probability conditional on the experimental data. There are many
cases in reality and science involving control and treatment data or observations.
For example, the control data of blood could be gotten from a group of normal
people and the treatment data of blood are collected from a group of patients
with some disease.

2.2 Learning Metabolic Network Inhibition

To demonstrate our method, we revisit an application developed originally us-
ing ILP by replacing the underlying logic program description with abduc-
tive SLPs [18]. Our study then aims at learning probabilistic logic models of
metabolic network inhibition from probabilistic examples. In this section, we
summarise the application area as well as the original ILP study [18].

Metabolism provides a source of energy for cells and degrades toxic com-
pounds in preparation for excretion. The graph of these interlinked chemical
reactions is known as the metabolic network [1]. The reactions that take place
in the network are catalysed by highly specialised proteins known as enzymes.
One of the less understood phenomena in the metabolic network is inhibition.
Some chemical compounds, known as inhibitors, can affect enzymes, impeding
their function. This in turn affects the normal flux in the metabolic network, the
result of which is reflected in the accumulation or depletion of certain metabo-
lites. Inhibition is important because many substances designed to be used as
drugs can have an inhibitory effect on other enzymes. Any system able to predict
such inhibitory effect on the metabolic network would be useful in assessing the
potential side-effects of drugs.

Several machine learning techniques have been conducted to use experimental
data on the accumulation and depletion of metabolites to model the inhibitory
effect of various toxins, such as hydrazine and ANIT, in the metabolic network
of rats (Fig. 1) [18]. A group of rats are injected with hydrazine and the changes

3 In mathematics, empirical probability is also called experimental probability, which
is the probability of an event, defining as the ratio of favourable outcomes to the
total number of trials (from Wikipedia). In a more general sense, empirical prob-
ability estimates probability distribution of a population from some samples and
observations.



Fig. 1. Description of the scientific experiments for machine learning metabolic network
inhibition. The example data was derived from studies of the effects of toxins on rats
using NMR time-trace analysis of their biofluids.

on the concentrations of a number of chemical compounds are monitored during
a period of time. Relative concentrations of chemical compounds are extracted
from complex Nuclear Magnetic Resonance (NMR) spectra of urine.

One of the applied machine learning approaches is abductive ILP [18], a
variant of ILP. In that work, the binary information on up/down regulations
of metabolite concentrations following toxin treatment is combined with back-
ground knowledge representing a subset of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) metabolic diagrams. An abductive ILP program is used to
learn the potential inhibition occured in the network, which contains a set of 0b-
servables (predicate concentration/3), a set of abducibles (predicate inhibited/4),
a set of background facts (predicates reactionnode/3, enzyme/1 and metabolite/1)
and a set of general background rules under which the effect of the toxin can in-
crease or reduce the concentration of the meabolites. An example of metabolic
network and the learned inhibition are demonstrated in Fig. 2.

The key point in the abductive ILP study is it supports an integration of
abduction and induction [5] in an ILP setting, which also motivates our study of
abductive SLPs in this paper. Abduction is first used to transform the observa-
tions to an extensional hypothesis on the abducibles. The induction takes this as
input and tries to generalize the extensional information to general rules for the
abducible predicates now treating them as observables for its own purposes. The
cycle can then be repeated by adding the learned information on the abducibles
back in the model as new partial information on the incomplete abducible predi-
cates. This will affect the abductive explanations of new observations to be used
again in a subsequent phase of induction. Hence through the integration, the ab-



2.6.1.39;4.2.1.36:... 1.2.1.31,1.5.1.7;...

l. - am o am e am e _‘. L-2-aminoadipate A f— -------- L-Lysine

|
Y 4112051175 |
1.1.42;4.21.3;... . 21.3:5.33.7-... B :5.1.1.7;...
2-oxo-glutarate W |.-.- .22 L Isocitrate - 2283 o |
1 1

i 4213 i
i H i

1231613123, ‘ Citrate ¥ ‘ ‘ trans-aconitate A ‘

1 T

! 233142120 N T T T = 1
| ! 0 44.1.12,2.6.1.55;... .

\ Succinate ¥ ‘m’ Fumarate.v || Taurine A | |
" !

T
i1.13.11.16;|.14.13.4; - H H

! 151.132.1.4.1;...! 151.132.11.7;...

T

i

i .

i H 1 i o

i [ Hippurate ¥ | [ NMND A | [NMNA V] i

1

o ¥

:2.13.1,1 3.99.3;... Arginine 353.1 Ornithine - |

[ Formate v | N |1

i i Urea o O
11.1.99.8:1.2.1.46;... \ 3533 I
' 15.99.1 |

Formaldehyde ————— Sarcosine
! Y
Y. 351.5935.2.14;..
N

1
114.99.3:2.1.1.21;..

Methylamine A

35210

4.1.2.32

2.83.1;4.2.1.54;... .
Acryloyl-CoA =-=-=:=-=-= Lactate A I I

43.16

Fig. 2. An example of rat metabolic network and the corresponding inhibition of hy-
drazine (at hour 8) learned by abductive ILP. Information on up/down changes in
metabolite concentrations from NMR spectra is combined with KEGG metabolic dia-
grams. The enzymes associated with a single reaction (solid line) or a linear pathway
(dotted line) are shown as a single enzyme or a sequence of enzymes. Colored arrows
show the found inhibition with directions.

ductive explanations of the observations are added to the theory in a generalized
form given by a process of induction on them.

3 Abductive SLPs

3.1 Abduction with SLPs based on a Possible Worlds Semantics

Stochastic Logic Programs (SLPs) [10] are an established PLL/PILP formalism
for probabilistic reasoning and learning. Despite their use in stochastic contexts,
SLPs have not previously been provided with a possible worlds semantics and
their interpretation has generally been allied in the literature [14] to Halperns’s
domain frequency based probabilistic models [7]. Abductive SLPs are a learning
framework that supports abductive modeling and learning [8] in SLPs to provide



a probability distribution over the abductive hypotheses based on their possible
worlds [2].

In fact, SLPs have a distributional semantics [17], the one that assigns a prob-
ability distribution to the atoms in the Herbrand base of the clauses in an SLP
program according to a stochastic SLD resolution strategy [11]. The stochastic
proof procedure gives SLPs a domain frequency semantics which define proba-
bility distributions over ground atoms through building stochastic proof trees.
However, being motivated by Markov Models we can interpret the probabilities
assigned to the clauses as conditional probabilities between possible worlds. In
the context of abductive SLPs [2], given a clause p : H < B, the probability p
is interpreted as P(B | H), ie. the conditional probability of the body B being
true (in some possible worlds) given that the head H is true (in the same pos-
sible worlds). Such semantics obviously correspond to an ezplanatory semantics
of conditional probability that explain the possible causes for a given result, in
contrast with the normal causal semantics (P(H | B)) that infer the result given
the causes, like the semantics defined in Bayesian Networks and BLPs [9]. Under
the explanatory semantics, the possible explanations that are computed for an
atom are clearly based on possible worlds, ie. each possible world is an expla-
nation and the posterior probability of the atom is the sum of the probabilities
over all the possible worlds (explanations).

When addressing this in logical reasoning and learning, the above seman-
tics also suggest the possibility of introducing abduction into SLPs which can
find explanations for observations. In fact, we distinguish two forms of rea-
soning/learning - induction and abduction [5]. Induction generates intensional
knowledge in the form of new general rules that can provide directly or indirectly
new relationships between the elements of our model. The inductive hypothesis
introduces new links between the relations we are studying and allows new pre-
dictions on the observations. On the other hand, abduction typically generates
extensional knowledge that refers only to some pre-set abducibles and that is
specific to the particular state of the world pertaining to the observations and
model. Adding an explanation to the model then allows us to predict further
observable information but the predictive power of abduction is restricted to
come from the already known rules in the model.

3.2 The Learning Framework of Abductive SLPs

Definition 2 (Stochastic Abduction in Abductive SLPs). An abductive
SLP S 4 supports stochastic abduction in the underlying SLP learning. Suppose
e is an observed arbitrary first order ground atom in Sa, 6(e,S4a) is a stochastic
ground derivation of e derived from S, involving a set of ground abducibles (ab-
duced facts) A.. We say that a model M, is a least Herbrand model of (Sa,e, Ac)
if it contains all and only the ground facts in § and we have

POM, | ¢) = P(P(ﬂf) —PGe.s) = [[ PO

C|Ces(e,Sa)



where C' is a stochastic clause with probability P(C) appeared in §. Now suppose
an arbitrary abducible a € A., then the probability of a can be defined to be the
sum of the probabilities of all the least models that have a in their abduced facts

Ple,a)= Y Pe,M.)= > P(e)P(6(e, S4)).

M.|a€M, d(e,Sa)lacd(e,Sa)

Based on the underlying process of stochastic abduction, abductive SLPs
further provide a learning mechanism which supports an integration of both
abduction and induction.

Definition 3 (Learning Setting of Abductive SLPs). Assume a background
knowledge theory B in the form of a complete/pure SLP and a set of indepen-
dently observed ground probabilistic examples E (ie. each e € E is associated
with an empirical probability P(e)), abductive SLPs aim to learn an SLP Sy
which particularly contains a set of labelled hypothesised abducibles H = {p : a},
ie. a complete stochastic definition of some abduced predicate, such that when
added to Sa, we have BAH = E and the labels {p} are chosen to maximize the
likelihood of H given E and B

L(H|E,B)=P(E|HB)=[[Pl.a)=]] > PP H,B)),

ecE e€E §cSS(e,H,B)

where SS(e, H, B) denotes the set of all stochastic SLD derivations of e from
the model (H,B).

Abductive SLPs support a combination of induction and abduction in the
above learning setting, which is a cycle where abduction finds probabilistic ex-
planations for probabilistic observations and induction generalises probabilistic
rules from probabilistic explanations. In practice, as SLP structure learning is
still a challenging problem in the area, we could apply SLP parameter estima-
tion algorithms, such as FAM [3], to the abductive SLP learning. In this case,
we assume the structure of H (ie. a set of abducibles {a}) are known and we
perform FAM to learn the probability labels {p} for them. Our experiments in
the next two sections show how this method works in learning metabolic network
inhibition.

3.3 Possible Worlds Semantics vs. Distributional Semantics

SLPs originally bring a distributional semantics or a proof-theoretic interpre-
tation to the probability labels attached with stochastic clauses: whenever an
SLD-resolution procedure has to choose between clauses, the choice is made
according to probability labels. A pure SLP thus defines a distribution over
instantiations of any top-level goal. Distributional semantics are similar to do-
main frequency semantics [7], which define a distribution over ground atoms,
but NOT over the truth values of atoms. It does make sense to understand the
probability label of a stochastic clause in an SLP as a conditional probability



0.4 : s(X) < g(X).|% computation of the probabilities for the possible worlds

0.6 s(X) — r(X)| P(s(a). g(a), ~r(a)) = £ P(s(a))P(q(a))P(g(a), () | s(a)) = 0.12
0.3 : g(a). P(s(a), ~q(a), () = 3 P(s(a)) P(r(a))P(q(a), r(a) | s(a)) = 0.12
0.7:q(b). P(s(b), q(b), =7 (b)) = 7 P(s(b))P(q(b)) P(q(b),~r(b) | s(b)) = 0.28
0.2: r(a). P(s(b), ~a(b), 7(5)) = £ P(s(6)) P(r(6)) P(~a(b), r(b) | 5(b)) = 0.48
0.7 : r(b). % all other possible worlds have probability 0 under CWA

Table 1. An example of SLP and the computation of the probabilities for the possible
worlds in the abductive SLP setting; assume the empirical probabilities for the two
observations are equal, ie. {P(s(a)) = 0.5, P(s(b)) = 0.5}, and the abducibles are set
to {q(a),q(b),r(a),r(b)}; Z is the corresponding normalization item.

of its head given its body, but that should not be a standard interpretation in
distributional semantical setting. In contrast, possible worlds semantics provide
model-theoretic interpretation to the probabilities: some models or atoms are
said to be true only in some possible worlds, which are determined by multiple
(exclusive) joint instantiations of some facts. Conditional probabilities could be
semantically defined by truth values under possible worlds semantics.

Abductive SLPs are a learning framework that provides possible worlds se-
mantics for SLPs with the help of abduction. Under possible worlds semantics,
not only the probability label of a clause can be interpreted by a conditional
probability of its body given its head, but also distributions could be defined
and discussed over the truth values of atoms. Previous section already shows
how stochastic abduction works and how the distributions are computed in the
underlying SLD-resolution proof procedure. Another advantage of the possible
worlds semantics lies in that there is implicitly a closed world assumption (CWA)
set in the stochastic abduction procedure in which the atoms that are not in the
derivations are considered false in the world of the derivations. This assump-
tion efficiently solves the computation of the probabilities for the ambiguous
atoms/abducibles, which have more than one overlapping derivations that can
yield them, in SLPs [3].

To illustrate the difference, an example SLP Sy is shown in Fig.1. Sy defines
a distribution {0.24,0.76} over a sample space {s(a), s(b)} under the traditional
distributional semantics; whereas in the abductive SLP setting under possible
worlds semantics, it defines a distribution {0.12,0.12,0.28,0.48} over a set of
64 possible worlds, in which 4 have non-zero probabilities (as shown in Fig.1)
and all other possible worlds have probability 0 under CWA. We could consider
q¢(X) and/or r(X) to be abducible predicates in the case. In particular, the
clauses 0.4 : s(a) < g(a) and 0.6 : s(a) < r(a) are interpreted as P(q(a), —r(a) |
s(a)) = 0.4 and P(—q(a),r(a) | s(a)) = 0.6 respectively in abductive SLPs under
CWA that further implies P(g(a),r(a) | s(a)) = 0, but the interpretation could
be ambiguous in the distributional semantics, ie. it lacks of explanation to the
probability of the overlapping P(q(a),r(a)).



1. Initialize a matrix M R with column=2 and row=number of metabolites;
2. for each metabolite o do:
2.1. Co={concentration(a)}, a set of a values observed in the control cases;
2.2. Mo =MEAN(C4),SDa=STANDARDDEVIATION(CY);
2.3. To={concentration’ ()}, a set of 7o values observed in the treatment cases;
2.4. MR[a, 1] = My < MEAN(Ty) ? Up : Down;
2.5. M R[a, 2]= MEAN({PNORM(Tqa, Ma, SDa)});
3. Apply matrix MR in the abductive SLP learning

Table 2. Algorithm of estimating empirical probabilities from control/treatment data
for metabolic network inhibition

4 Extracting Probabilistic Examples from Scientific Data

Assume we have a scientific data set involving a set of data values collected from
some control cases as well as a set of data points from some treated cases. All
the data are mutually independent. The method consists in constructing, for
each attribute « in the control case, a normal distribution N, with parameters
¢ and o calculated from a set of a values in all the control cases. Then, for
each value 7, that corresponds to o and is observed in the treatment cases, the
integral from -oco to 7, is calculated in N, (eg. using the function PNORM in the
R Language?). Finally, the average of the integrals (each in [0,1]), p is taken.
We claim that p, indicates to what extent 7, in the treated case differs from «
in the control case. It follows that a value of p, < 0.5 specifies « is less expressed
in the treated case compared to that in the control case, p, > 0.5 indicates « is
more expressed, and p, = 0.5 shows that a has no difference from the control
case. Furthermore, we could say that C, = po if po > 0.5 or C, = 1 — p,
otherwise, where C, represents the confidence of the assertion ‘« is more or less
expressed in the treated cases relative to the control cases’. From our point of
view, C, is the estimated empirical probability of a happened in the treatment
cases against the control cases. Table 2 presents a pseudo code for the above
explained algorithm applied to our rat metabolic network inhibition data set.
In our sample data file, after some pre-processing, we had the raw data val-
ues of 20 rows (one per rat) and 20 columns (one per metabolite). The first 10
rows represent control rats (injected with a placebo) and the latter 10 represent
treated rats which were injected with 30mg dose of hydrazine (and ANIT respec-
tively). Each column has information on the concentration of a given metabolite
at the 8th hour after the injection. The above method has been applied to the
raw data set by developing a small R script. We are aware that using only 10
data points to build a normal distribution for control case is not ideal but believe
it is the best possible approximation with the data at hand®. The result matrix

* pNORM(z,m, sd) calculates the area to the left of its first argument in a normal
distribution defined by the other two arguments.

5 Please note that experiments in some scientific areas, such as metabolic network
inhibition, are very expensive.



Metabolite Concentration |Empirical |[ILP Pre-|SLPc SLPp
Probability||diction  |Prediction|Prediction
citrate down 0.9843 down 0.6900 0.6860
2-o0g down 1.0000 up 0.5680 0.6900
succinate down 0.9368 up 0.2590 0.2970
-2-aa up 0.9962 up 0.6580 0.8280
creatine down 0.5052 up 0.3070 0.4430
creatinine down 0.5798 up 0.3220 0.4930
hippurate down 0.7136 up 0.3030 0.1660
beta-alanine up 0.9659 up 0.5670 0.6860
lactate up 0.9503 up 0.5400 0.5160
methylamine up 1.0000 down 0.3010 0.5250
trans-aconitate down 0.6488 up 0.3920 0.4410
formate down 0.9368 up 0.3920 0.4230
taurine up 0.7362 up 0.6500 0.8100
acetate up 0.6727 up 0.5560 0.5390
nmna up 0.5239 up 0.4890 0.4920
nmnd up 0.6414 up 0.4890 0.4990
tmao up 0.5166 up 0.3100 0.1120
fumarate up 0.6970 down 0.2970 0.5020
l-as up 0.6748 up 0.5040 0.5070
glucose up 0.8096 up 0.5570 0.5310
Ratio of Correct Prediction 1 1/20 9/20 11/20
Predictive Accuracy 55% 68.31% 72.74%

Table 3. Experiment Results for hydrazine inhibition. The predictive accuracy of a
metabolite is defined to be (1 - the error of SLP prediction from the corresponding
empirical probability); and the model predictive accuracy is defined to be the average
predictive accuracy over all the metabolites.

with the estimated concentration level and empirical probabilities for hydrazine
are presented in column 2 and 3 of Table 3.

5 Experiments - Learning Metabolic Network Inhibition

The experiments include two learning tasks — learning abductive S L P¢ from cat-
egorical examples (as done in the ILP learning) and learning abductive SLPp
from probabilistic examples. In particular, each observation inputted into SLPp
is associated with an estimated empirical probability p we have obtained in last
section. In addition, our learning framework also allow us to provide the comple-
mentary observations with probability (1—p) (like the negative examples in ILP).
The current FAM algorithm implementation (Pe-pl software) indirectly supports
the introduction of probabilities in the observation list by allowing the same ob-
servation to appear an arbitrary (integer) number of times. For instance, while in
SLPc a partial input would be simply concentration(citrate, down)-1, in SLPp
the input would be [concentration(citrate, down)-98, concentration(citrate, up)-



2], which implicitly corresponds to ‘the concentration of citrate is down with
probability 98% and is up with probability 2%’. So, probabilistic examples are
applied in the abductive SLP framework rather than positive and negative cat-
egorical examples in the ILP learning.

Null hypotheses: The predictive accuracy of an SLPp model does not out-
perform an SLPs model for predicting the concentration level of metabolites in
a given rat metabolic network inhibition (of a given toxin) experiment.

Materials and Input: The (estimated) empirical probabilities are extracted
from the raw data consisting of the concentration level of 20 metabolites on
20 rats (10 control cases and 10 treated cases) after 8 hours of the injection of
hydrazine and ANIT. The initial SLP uses background knowledge derived from
the ILP model (see section 2.2) and adapted to our SLP models.

Methods: We apply a leave-one-out cross validation technique to do the pre-
diction and evaluation, in which 20 SLPs models and 20 SLPp models are built
for hydrazine and ANIT respectively. Each model is trained by 19 metabolites
and tested by the left one. We perform the learning tasks by playing FAM (using
Pe-pl software) under Yap 5.1.1, which has been proved particularly CPU and
memory intensive.

Results: The learning framework estimates the posterior probabilities for a set
of pre-set abducibles (definition of predicate inhibited) and probabilistic back-
ground knowledge from the input categorical or probabilistic examples. Fig. 3
illustrates a complete model built from all the observations. The evaluation of
the prediction models is made by calculating the predictive accuracy of SLPgo
and SLPp against the estimated empirical probabilities respectively (shown in
Table 3). In particular, for hydrazine, when evaluating only with the categorical
observations, SLPo and SLPp correctly predicted 9 and 11 out of 20 metabo-
lites respectively, while the ILP model has 11 correct predictions; however, there
is a close world assumption in the ILP model where a metabolite is assumed
to have a default concentration level (down or up) when the prediction is nei-
ther up nor down, which actually increases the predictive accuracy of ILP model
(default accuracy is 12/20); when evaluating with the probabilistic examples,
SLPp outperforms SLPg by 72.74% against 68.31% in average predictive ac-
curacy (with a significance level of 0.041); for the ANIT inhibition in the same
settings, the average predictive accuracy of SLPp (90.1%) is better than that
of SLPx (88.4%), but not statistically significant (0.24) for 20 metabolites, and
the main reason of that is because the default predictive accuracy (18/20) is
already very high and the SLPp predictor is not consistently better than the
SLP¢c predictor in each test case.

Interpretability: By comparing the learned SLP model with the previous ILP
model (eg. Fig. 2 and Fig. 3 for hydrazine), apart from the inhibition patterns
found in both models, at least two promising new findings have been discovered
in the SLP model. The inhibition from ‘beta-alanine’ to ‘citrate’ that was not
shown in ILP model has been confirmed to be crucial by the expert; and the
inhibition between ‘creatine’ and ‘creatinine’ showed a contradictory result (the
learned probabilities of both directions are very close), which can be explained
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Fig. 3. Metabolic network inhibition of hydrazine learned by abductive SLPs from
probabilistic examples. Each observed metabolite is associated with its concentra-
tion and the estimated empirical probability. The learned posterior probabilities for
each inhibition (in two directions) are shown in the associated ellipse. For exam-
ple, the left corner ellipse specifies a learned inhibition in the form of SLP clauses:
‘0.000988:inhibited(2.6.1.39,2-0g’,1-2-aa).” and ‘0.0592:inhibited(2.6.1.39,1-2-aa,2-0g).’

by their empirical probabilities (ie. their up/down regulations are less expressed
to decide the possible inhibition). In addition, the SLP models learned not only
the patterns but also the probabilities or the degree of belief of the patterns
which improve the insight from the learned models.

6 Discussion and Conclusions

6.1 Related Work

Given that the setting studied in the abductive SLP framework is closely re-
lated to that of the Independent Choice Logic (ICL) [13] and Programming in
Statistical Modelling (PRISM) [17], it is interesting to describe the relationship
between these frameworks that combine probability and logic.

From the syntax perspective, clauses or rules are treated as probabilistic
(associated with probability labels) in SLPs but purely logical in both ICL and



PRISM. Logical rules are used to deterministically map a base probability distri-
bution to an induced distribution, however, there is no mechanism of choosing
between rules that have the same head. We claim that the ability of dealing
with probabilistic clauses is one of the distinct features of SLPs and argue the
semantical meaning of a deterministic logic rule that has probabilistic elements
in the body. From the point of view of semantics, the distributional semantics
are used in both the traditional SLPs and PRISM, whereas the possible worlds
semantics are assumed in the frameworks of abducive SLPs and ICL (see sec-
tion 3.3). The possible worlds are determined by alternatives in ICL and by the
SLD-derivations in abductive SLPs.

Furthermore, the uniqueness condition set in PRISM - that exactly one
atomic formulae representing observed data is derivable from any instantiation
of the base distribution - requires that the set of logical rules is failure-free. As
a result, the resulting distribution over observables is essentially that defined
by a stochastic-context free grammar. A relaxing assumption is made in SLPs
so that the resulting distributions over observables are log-linear models [3]. In
terms of applying abduction, abductive SLPs provide a way to directly learn
the parameters for a set of abducibles, while PRISM computes the induced dis-
tribution by searching explanation graph for observations and ICL assumes all
the atomic choices as abducibles to find consistent explanations that imply the
observations.

In addition, it could be possible to do the same experiments with PRISM sys-
tem and compare the corresponding results, but the task is beyond the research
purpose of this paper and may be done as future work.

6.2 Conclusions and Future Work

We revisit an application developed originally using ILP by replacing the under-
lying logic program description with SLPs. In both cases a mixture of abduc-
tion and induction are used. The ILP approach learned logic models from non-
probabilistic examples. The PILP approach applied here is based on a general
approach to introducing probability labels within a standard scientific experi-
mental setting involving control and treatment data. The estimation of empirical
probabilities could introduce errors compared with the unknown real distribu-
tion of control data due to the limited number of data points. However, our
method shown here aims to save some probabilistic information that may have
lost in pure categorical examples, so that PILP makes better prediction.

The future work, in theory, include further research of the relationship be-
tween the underlying probabilistic semantics: possible worlds, domain frequency
and distributional semantics. In practice, it is interesting to set up experiments
for learning the same targets using PRISM and compare the results. Efforts are
needed to improve the current SLP models for ANIT inhibition with respect to
both predictive accuracy and model interpretability.

In conclusion, the null hypotheses we have set in the paper and experiments
were rejected (for inhibition of hydrazine) on the bases of the abductive SLP
models we are using and the experimental results. Our results demonstrate that



the PILP approach not only leads to a significant decrease in error accompanied
by improved insight from the learned result but also provides a way of learning
probabilistic logic models from probabilistic examples.
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