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Abstract. Ensemble methods are popular learning methods that are
usually able to increase the predictive accuracy of a classifier. On the
other hand, this comes at the cost of interpretability, and insight in the
decision process of an ensemble is hard to obtain. This is a major reason
why ensemble methods have not been extensively used in the setting of
inductive logic programming. In this paper we aim to overcome this issue
of comprehensibility by learning a single first order interpretable model
that approximates the first order ensemble. The new model is obtained
by exploiting the class distributions predicted by the ensemble. These are
employed to compute heuristics for deciding which tests are to be used
in the new model. As such we obtain a model that is able to give insight
in the decision process of the ensemble, while being more accurate than
the single model directly learned on the data.
Key words: ensembles, first order decision trees, comprehensibility

1 Introduction

In the process of knowledge discovery, one seeks to extract useful knowledge from
data bases. But for knowledge to be useful, predictive accuracy is not sufficient:
the extracted patterns also need to be understood by human users in order to
trust them and accept them. Moreover users often construct models to gain
insight in the problem domain rather than to obtain an accurate classifier only.
For this reason, researchers have advocated for machine learning methods, such
as decision tree learners and rule learners which yield comprehensible models.
In the context of inductive logic programming, comprehensibility is usually even
more important than in propositional learning because in the problem domains
tackled by ILP algorithms (such as life science, medical domains etc.) end-user
acceptance often depends on the learners ability to explain the reasoning behind
its decisions.

For quite some years now, a lot of interest has been shown to a class of
learning methods called ensembles. The main goal in the design of ensemble
methods is to increase the predictive accuracy of the classifier and studies indeed
have shown the discrimination power of ensemble methods both theoretically
and empirically [1, 4, 7], and in propositional as well as relational learning [12,
10, 6, 18]. Ensemble methods are learning algorithms that first construct a set



of classification models and then classify new data points by combining the
predictions of each of these models. Exactly by doing so, they are often able
to increase the stability and predictive accuracy significantly over the single
models. On the other hand the comprehensibility of the learned hypothesis drops
significantly, since the result of an ensemble method is a large set of models with
(weighted) votes connected to each of them, which obviously becomes very hard
to interpret. This is one of the major reasons why ensemble methods are still
less popular in ILP than in propositional learning.

Some authors have pointed out that striving for comprehensibility is one of
the important issues in ensemble learning requiring future investigations [1, 15].
Quite some successful research has been carried out already in this area. More
in particular researchers have tried to obtain comprehensibility by means of ex-
tracting a new interpretable model from an existing ensemble without sacrificing
too much accuracy. Craven and Shavlik [5] presented an algorithm Trepan for
extracting comprehensible, symbolic representations from trained neural net-
works. Trepan extracts a decision tree using the network as an oracle to answer
queries during the extraction process. Domingos [8] proposed Combined Multi-
ple Models (CMM). CMM first builds an ensemble of multiple models and then
reapplies the base learner to recover the partitioning implicit in the multiple
model ensemble. This is achieved by giving the base learner a new training set,
composed of a large number of examples generated and classified according to
the ensemble. Zhou et al. [19] utilize neural network ensembles to generate new
instances and then extract symbolic rules from those instances. Ferri et al. [9]
describe a method to learn a comprehensible model from an ensemble by select-
ing the single hypothesis from a multi-tree that is most similar to the combined
hypothesis according to a similarity measure. In the context of relation learning,
Van Assche et al. [17] proposed a method similar to Domingos’ to learn a new
interpretable model from artificially generated relational data based on a first
order ensemble.

The approaches described above all rely on artificially generated data to
tackle the problem of finding an interpretable model that approximates the en-
semble: either by classifying this new data by the ensemble and constructing
a new interpretable model on it, or by using this new data to measure simi-
larity between the ensemble model and candidate interpretable models. As was
described in [17] generating relational artificial data is not straightforward (con-
trary to propositional data), because data distributions are far more complex
and examples do not longer have a fixed set of attributes. In [17] new ‘partial’
examples are constructed by adding more and more constraints (that occur as
tests in a tree of the ensemble) to the example. Before a constraint is added,
satisfiability needs to be checked with respect to already added constraints.
Therefore, one needs to make use of the inherent equivalence relation between a
defined concept and its definition. The algorithm relies on the users ability to
adequately define this background knowledge in both directions of the equiva-
lence relation. But in Prolog, this becomes almost unfeasible when introducing
aggregate or other complex functions.



For this reason, in this paper we aim to learn a single interpretable model
from a first order ensemble without the need of generating artificial data nor
requiring extra input from the user. Instead of first generating artificial data and
computing class distributions for different possible tests on this data, class distri-
butions are estimated directly from the information available from the different
models in the ensemble in order to decide which tests are to be used in the new
model. We describe the proposed approach in detail in the next section.

2 Proposed Method

In the remainder of the paper we will propose a method to learn a single first
order decision tree from a first order decision tree ensemble that is constructed
via bagging.

2.1 Constructing a Single Tree Exactly Representing an Ensemble

Assume E is an ensemble of N first order decision trees, which we would like
to represent by one single first order decision tree. The ensemble E gives labels
LE(x) to new examples x according to a combination of the predictions of each
of its N base trees, in this case the class Ci with the highest average predicted
probability:

LE(x) = argmaxCi
(

1

N

N∑

k

Pk(Ci|x)) (1)

Actually a decision tree is able to represent any function described over the
instance space as it can separate the instance space completely if necessary, so
there also exist a decision tree that exactly represents the function described
by the ensemble (but it cannot necessarily be learned from the training data).
Depending on the order of the tests in the nodes, the tree that represents the
same concept as the ensemble, can consist of up to 2d leaves, with d the number
of different tests in the ensemble. So although representing the same concept as
the ensemble, such a tree would not satisfy our needs, namely be interpretable
and give insight in the ensemble’s decisions, simply because it is too big. Very
often even the smallest tree exactly representing the concept in the ensemble
might be far too large to be considered interpretable and an approximation to
the ensemble will then be preferred over the exact representation of the ensemble.

2.2 Computing Heuristics from the Ensemble

To construct a first order decision tree from an ensemble we will closely follow the
procedure of regular first order tree induction according to Tilde [2] as shown in
Table 1. In Tilde, first order decision trees are learned with a divide and conquer
algorithm similar to C4.5 [14]. The OPTIMAL SPLIT procedure returns a query Qb,
which is selected from a set of candidates generated by the refinement operator
ρ, by using a heuristic, such as information gain for classification problems, or
variance reduction for regression. The refinement operator typically operates



procedure GROW TREE (E: examples, Q: query):
candidates := ρ(← Q)
← Qb := OPTIMAL SPLIT(candidates, E)
if STOP CRIT (←Qb, E)
then

K := PREDICT(E)
return leaf(K)

else
conj := Qb −Q

E1 := {e ∈ E|←Qb succeeds in e ∧B}
E2 := {e ∈ E|←Qb fails in e ∧B}
left := GROW TREE (E1, Qb)
right := GROW TREE (E2, Q)
return node(conj, left, right)

Table 1. Tilde algorithm for first order logical decision tree induction [2].

under θ-subsumption and generates candidates by extending the current query
Q (the conjunction of all succeeding tests from the root to the leaf that is to be
extended) with a number of new literals that are specified in the language bias.

In order to construct a tree that models the ensemble, in each node of the tree
the optimal split needs to be chosen based on the ensemble instead of the data.
So we need to adapt the OPTIMAL SPLIT procedure such that the heuristic used
(usually information gain or gain ratio) can be computed from the distributions
in the ensemble.

Let’s assume the heuristic is information gain and we want to compute the
optimal split according to the ensemble in a certain node n of the new tree.
Suppose B is the conjunction of tests that occurred along the path from the
root until node n, then the information gain IG for a certain test T in n is

IG(T |B) = entropy(B) −P (T |B)entropy(T,B)

−P (¬T |B)entropy(¬T,B) (2)

where

entropy(A) =

c∑

i=1

−P (Ci|A) log2 P (Ci|A) (3)

with c the total number of classes and Ci the ith class and A any set of conditions.
These are the regular formula’s for information gain and entropy. But now the
distributions needed to calculate these heuristics will be estimated from the
ensemble instead of the data.

A decision tree is constructed to model class distributions in the data and
thus can be used to estimate these P (Ci|A). Suppose we have a decision tree
DTk in the ensemble E, we can now estimate this Pk(Ci|A) by propagating it
through the tree DTk, applying the law of total probability in each node, until



we end up in the leaves. Then we get:

Pk(Ci|A) =
∑

leaves lkj in DTk

P (Ci|Ykj , A)P (Ykj |A) (4)

where Ykj is the conjunction of tests from the root of tree DTk until leaf lkj .
The class probability estimate PE(Ci|A) of the ensemble E is then the average
over the class probability estimates Pk(Ci|A) of the N trees in E.

In the equation 4 there is one term for each leaf in the tree. Now the proba-
bility P (Ci|Ykj , A) corresponds to the probability estimate Pk(Ci|Ykj) given by
leaf lkj . Indeed, either A← Ykj and P (Ci|Ykj) = P (Ci|Ykj , A) or , A 6← Ykj and
then we can assume that the class Ci is conditionally independent from the tests
in A given the tests in Ykj , because if not, the leaf lkj would have been split at
least once more on a test T ∈ A \ Ykj .

For the other probability P (Ykj |A), we can distinguish 3 possible cases:

– A |= Ykj : then P (Ykj |A) = 1 and Pk(Ci|A) = Pk(Ci|Ykj)
– A |= ¬Ykj : P (Ykj |A) = 0 and leaf lkj of tree DTk will not contribute in the

probability Pk(Ci|A)
– A 6|= Ykj , A 6|= ¬Ykj : 0 < P (Ykj |A) < 1 and leaf lkj of tree DTk partly

contributes to the probability Pk(Ci|A)

To be able to estimate these probabilities P (Ykj |A), we could make the as-
sumption that Ykj is conditionally independent from A, as such P (Ykj |A) =
P (Ykj). This assumption is exactly the same as made by Quinlan [13], when
classifying instances with missing values by a tree. But as decision trees are not
specifically constructed to model distributions among the tests, another, maybe
better way to estimate the probabilities P (Ykj |A) is by computing them on the
training set (if the test set is already available, using both training and test
set might provide an even better estimate). The same holds for the P (T |B), as
requested in equation 2.

Using the method described above to compute the information gain for tests
according to an ensemble E, a decision tree is built representing the ensemble
E, each time replacing a leave n, with B the conjunction of tests occurring on
the path from the root to leaf n, in the tree by an internal node as long as we
can find a test T where IGE(T |B) ≥ IGE(Ti|B) for all possible tests Ti and
IGE(T |B) > 0. On the other hand if IGE(Ti|B) = 0 for all tests Ti, all examples
ending up in n will be labeled the same by the ensemble, and no further splitting
is required to represent the ensemble.

2.3 Generation of Candidate Test Queries

In the normal first order decision tree induction algorithm described in Ta-
ble 1, candidate tests are generated by extending the current query Q using a
refinement operator ρ which operates under θ-subsumption. On the other hand,
in order to represent the hypothesis of the ensemble by a single tree, it is the-
oretically sufficient to use the tests that were used in the ensemble. And also



intuitively, it makes sense only to use these tests to construct a new tree as
these were probably the most important amongst all possible tests. In a first
order decision tree, the tests in the internal nodes of the tree are conjunctions
of first order literals. So to select the possible tests to construct the new tree,
for each leaf in a tree of the forest, the conjunction of positive first order literals
occurring from the root until that leaf is considered. Then this conjunction is
split into separate tests by taking literals together that share variables. As such
we get a fixed set of tests which can be used to put in the internal nodes of the
new tree. This is in contrast with usual ILP hypothesis construction where the
search space grows as new literals (that may introduce new variables) are added
to the hypothesis. By using this feature selection step, we can construct a new
tree efficiently even allowing some kind of lookahead as conjunctions of literals
might be added at once.

2.4 Stop Criteria

The tree obtained using the method described above, represents the ensemble
but is often very large and as a consequence incomprehensible, also constructing
it will be very time consumable. For that reason, it will be necessary to impose
some stop criteria to avoid the tree from becoming too large. First we describe a
way to do safe prepruning in order to avoid splits to be added that will not have
an influence on the predicted class. This will not change the eventual predictions
of the tree. Next, we will impose a none equivalence preserving stop criterion,
to make the tree more interpretable for the end user.

Safe prepruning At the end of the tree construction, some redundant splits
will still be present in the tree, as they might change the class distributions
in the leaves but not the eventual classes predicted by the leaves. Usually in
decision tree algorithms, these nodes are removed by postpruning. The same can
be applied here, but since the tree deduced from an ensemble usually becomes
rather large, quite some time might be spend in adding all these redundant splits
and it would be desirable to preprune the tree if possible.

Although according to the class distributions in the ensemble there still exist
splits that are able to increase the pureness of the distribution in the current
node, it makes no sense to split the tree further if all (possible) examples that
end up in the current node are labeled the same by the ensemble. We will check
whether indeed all examples that end up in a node n will be predicted the same
class by the ensemble as follows. Examples that end up in n are examples that
succeed Dn, where Dn is the conjunction of tests along the path from the root
until node n. For each tree DTk of the ensemble we keep track of the possible
leaves lkj in that tree where these examples fulfilling Dn might end up. Each of
these leaves lkj gives a prediction of the probability of a class P (Ci|Ykj), with
Ykj the tests along the path from the root of tree k to leaf lkj Then we can
define a lower bound on the class probability prediction of the ensemble E for
examples fulfilling Dn as follows:



PEmin(Ci|Dn) =
1

N

∑

k

min
l
Dn
kj

P (Ci|Ykj)

and equivalently an upper bound:

PEmax(Ci|Dn) =
1

N

∑

k

max
l
Dn
kj

P (Ci|Ykj)

where lDn

kj are all the leaves in DTk where examples satisfying Dn can possibly
end up. Then if

∃C ∈ C,∀Ci ∈ C \ {C} : PEmin(C|Dn) > PEmax(Ci|Dn)

where C are all possible class values, all examples in n will be predicted class
value C by the ensemble E, and the tree should not be split any further in that
node.

Other stop criterion As mentioned before, the tree constructed using safe
prepruning, might still be very large. Because of this, we will introduce another
stop criterion, such that a more comprehensible approximation to the ensemble
is obtained. If a node is pure according to the training data, no further splitting
will be performed and the node will become a leaf.

2.5 Practical Implementation in First Order System

The method described above was implemented in the ACE-ilProlog system [3].
This system contains a first order decision tree learner Tilde [2], and some
ensemble methods such as bagging and random forests that use Tilde as the
base-learner.

As detailed in Section 2.2, each of the preselected candidate tests, are assigned
a heuristic value, by propagating them through the ensemble trees, and using
the probability estimates of the leaves they end up in. To find the probability
that a certain test ends up in a certain leaf, we check the proportion of examples,
covered by the leaf, that is also covered by the test. In the implementation, this
is done by keeping track of precomputed coverlists for all leaves and candidate
tests. These coverlists store for all available examples whether the examples are
covered by the corresponding test or not. Deciding which tests end up in which
leaves is then simply a matter of taking the intersection of their coverlists, and
as such this avoids normal satisfiability testing between queries as was applied
in Van Assche et al. [17].

3 Experiments

We performed some preliminary experiments both on a train data set [11] gener-
ated with the Random Train Generator from Muggleton1 according to a specified

1 The train generator is available at
http://www-users-csyork. ac.uk/∼stephen/progol.html.



Accuracy Model size
3 11 33 3 11 33

Trains data
Bagging 0.675 0.707 0.715 136.94 511.76 1529.22
ism(Bagging) 0.683 0.701 0.704 77.82 85.54 82.22
Forf(0,25) 0.673 0.708 0.718 128.8 471.38 1416.42
ism(Forf(0,25)) 0.654 0.705 0.707 84.32 76.76 71.36
Tilde 0.689 40.6

Carcinogenesis data
Bagging 0.592 0.616 0.620 105.88 389.96 1176.6
ism(Bagging) 0.603 0.619 0.631 80.08 79.3 80.48
Forf(0.25) 0.604 0.623 0.620 104.34 379.51 1137.97
ism(Forf(0.25)) 0.601 0.621 0.623 80.64 77.82 73.82
Tilde 0.611 29.88

Table 2. Accuracy and complexity on both data sets for Bagging and Forf(0.25) with 3-11-33 trees,
the ism model that was learned from these ensembles and Tilde.

concept discussed in Van Assche et al. [18], as on the Carcinogenesis data set
[16]. We constructed a bagged ensemble with 3, 11 and 33 trees, as well as a
random forest where 25% of the features were used at each node. From these
ensembles a interpretable single model (ism) was constructed using the method
described above. For comparison, we also build a single (pruned) tree directly on
the training data. All experiments were done averaging over 10 different 5-fold
cross-validations. In table 2 we report testing accuracy and model size in terms
of number of nodes in the trees for the different settings. The results show that
the method is able to obtain a single model with an accuracy comparable to the
ensemble it is learned from, while reducing the complexity substantially.

4 Conclusions and Future Work

In this paper we presented a method to learn a first order decision tree that
approximates the decisions made by an ensemble of first order decision trees.
The tree is obtained without the need of generating artificial data nor requiring
extra input from the user. Instead, first a fixed set of possible candidate tests
for the nodes in the new tree are extracted from the ensemble. Next, heuristics
are computed for each of the candidate tests by predicting class distributions for
these tests using the ensemble. Labels in the eventual leaves of the new tree are
the labels predicted by the ensemble. As such, we aim to obtain an interpretable
tree that is able to give insight in the predictions of the ensemble, while being
more accurate than a single tree directly learned on the data. First experiments
are promising but more extensive experiments need to reveal how rewarding this
method is compared to learning a tree directly from the data. Currently also no
postpruning is performed on the obtained trees, and as a result they are still
larger than the pruned trees learned from the data. We need to investigate what
the effect on the accuracy is of applying postpruning and/or stop criteria. Next,
we would also like to have a look at the stability of the obtained trees.
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