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Abstract. Prior knowledge in the form of multiple polyhedral sets, each
belonging to one of two categories, is introduced into a reformulation of
a nonlinear kernel support vector machine (SVM) classifier. The result-
ing formulation leads to a linear program that can be solved efficiently.
This extends, in a rather unobvious fashion, previous work [3] that incor-
porated similar prior knowledge into a linear SVM classifier. Numerical
tests on standard-type test problems, such as exclusive-or prior knowl-
edge sets and a checkerboard with 16 points and prior knowledge instead
of the usual 1000 points, show the effectiveness of the proposed approach
in generating sharp nonlinear classifiers based mostly or totally on prior
knowledge.
Keywords: prior knowledge, support vector machines, linear pro-

gramming

1 Introduction

Support vector machines (SVMs) have played a major role in classification prob-
lems [15, 2, 10]. However unlike other classification tools such as knowledge-based
neural networks [13, 14, 4], little work [11, 3] has gone into incorporating prior
knowledge into support vector machines. In this work we extend the previous
work [3] of incorporating multiple polyhedral sets as prior knowledge for a linear
classifier to nonlinear kernel-based classifiers. This extension is not an obvious
one, since it depends critically on the theory of linear inequalities and cannot be
incorporated directly into a nonlinear kernel classifier. However, if the “kernel
trick” is employed after one uses a theorem of the alternative for linear inequal-
ities [9, Chapter 2], then incorporation of polyhedral knowledge sets into a non-
linear kernel classifier can be achieved. We show this in Section 2 of the paper. In
Section 3 we derive a linear programming formulation that generates a nonlinear
kernel SVM classifier that is based on conventional data as well as two groups of
polyhedral sets, each group of which belongs to one of two classes. We note that
conventional datasets are not essential to our formulation and can be surrogated
by samples taken from the knowledge sets. In Section 4 we test our formula-
tion on standard-type test problems. The first test problem is the exclusive-or
(XOR) problem consisting of four points in 2-dimensional input space plus four
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polyhedral knowledge sets, all of which get classified perfectly by a Gaussian
kernel knowledge-based classifier. The second test problem is the checkerboard
problem consisting of 16 two-colored squares. Typically this problem is classified
based on 1000 points. Here, by using only 16 points plus prior knowledge, our
knowledge-based nonlinear kernel classifier, generates a sharp classifier that is
as good as that obtained by using 1000 points. Section 5 concludes the paper.

We now describe our notation. All vectors will be column vectors unless
transposed to a row vector by a prime ′. The scalar (inner) product of two vectors
x and y in the n-dimensional real space Rn will be denoted by x′y. For x ∈ Rn,
‖x‖p denotes the p-norm, p = 1, 2,∞. The notation A ∈ Rm×n will signify a real
m × n matrix. For such a matrix, A′ will denote the transpose of A and Ai will
denote the i-th row of A. A vector of ones in a real space of arbitrary dimension
will be denoted by e. Thus for e ∈ Rm and y ∈ Rm the notation e′y will denote
the sum of the components of y. A vector of zeros in a real space of arbitrary
dimension will be denoted by 0. The identity matrix of arbitrary dimension will
be denoted by I . A separating plane, with respect to two given point sets A and
B in Rn, is a plane that attempts to separate Rn into two halfspaces such that
each open halfspace contains points mostly of A or B. A bounding plane to the
set A is a plane that places A in one of the two closed halfspaces that the plane
generates. The abbreviation “s.t.” stands for “such that”. For A ∈ Rm×n and
B ∈ Rn×k, a kernel K(A, B) maps Rm×n ×Rn×k into Rm×k. In particular, if x

and y are column vectors in Rn then, K(x′, y) is a real number, K(x′, A′) is a row
vector in Rm and K(A, A′) is an m×m matrix. We shall make no assumptions on
our kernels other than symmetry, that is K(x′, y)′ = K(y′, x), and in particular
we shall not assume or make use of Mercer’s positive definiteness condition [15,
12]. The base of the natural logarithm will be denoted by ε. A frequently used
kernel in nonlinear classification is the Gaussian kernel [15, 2, 10] whose ijth

element, i = 1 . . . , m, j = 1 . . . , k, is given by: (K(A, B))ij = ε−µ‖Ai
′−B·j‖

2

,
where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant.

2 Prior Knowledge in a Nonlinear Kernel Classifier

We begin with a brief description of support vector machines (SVMs). SVMs are
used principally for classification [10, 15, 12]. The simplest classifier is a linear
separating surface, a plane in Rn:

x′w = γ, (1)

where w ∈ Rn determines the orientation of the plane (1), in fact it is the normal
to the plane, and γ determines the location of the plane relative to the origin.
The separating plane (1) lies midway between two parallel bounding planes:

x′w = γ + 1,

x′w = γ − 1,
(2)

each of which attempts to place each class of points in one of the two halfspaces:

{x | x′w ≥ γ + 1},
{x | x′w ≤ γ − 1}.

(3)
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In addition, these bounding planes are pushed apart as far as possible. To obtain
a more complex classifier, one resorts to a nonlinear separating surface in Rn

instead of the linear separating surface (1) defined as follows [10]:

K(x′, A′)Du = γ, (4)

where K is an arbitrary nonlinear kernel as defined in the Introduction, and (u, γ)
are determined by solving the linear program (19). Here, A ∈ Rm×n represents
a set of m points in Rn each of which belonging to class A+ or A− depending
on whether the corresponding element of a given m × m diagonal matrix D is
+1 or −1, and u ∈ Rm is a dual variable. The linear separating surface (1)
becomes a special case of the nonlinear surface (4) if we use the linear kernel
K(A, A′) = AA′ and set w = A′Du [10, 8].

We turn now to the incorporation of prior knowledge in the form of a poly-
hedral set into a nonlinear kernel classifier. But first, we show that a routine
incorporation of such knowledge leads to a nonlinear system of nonconvex in-
equalities that are not very useful.

Suppose that the polyhedral {x | Bx ≤ b} where B ∈ R`×n and b ∈ R`, must
lie in the halfspace {x | x′w ≥ γ + 1} for some given w ∈ Rn and γ ∈ R. We
thus have the implication:

Bx ≤ b =⇒ x′w ≥ γ + 1. (5)

By letting w take on its dual representation w = A′Du [10, 8], the implication
(5) becomes:

Bx ≤ b =⇒ x′A′Du ≥ γ + 1. (6)

If we now “kernelize” this implication by letting x′A′ −→ K(x′, A′), where K is
some nonlinear kernel as defined in the Introduction, we then have the implica-
tion, for a given A, D, u and γ, that:

Bx ≤ b =⇒ K(x′, A′)Du ≥ γ + 1. (7)

This is equivalent to the following nonlinear, and generally nonconvex, system
of inequalities not having a solution x for a given A, D, u and γ:

Bx ≤ b, K(x′, A′)Du < γ + 1. (8)

Unfortunately, the nonlinearity and nonconvexity of the system (8) precludes
the use of any theorem of the alternative for either linear or convex inequalities
[9]. We thus have to backtrack to the implication (6) and rewrite it equivalently
as the following system of homogeneous linear inequalities not having a solution
(x, ζ) ∈ Rn+1 for a given fixed u and γ:

Bx −bζ ≤ 0,

u′DAx −(γ + 1)ζ < 0,

−ζ < 0.

(9)
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Here, the positive variable ζ is introduced in order to make the inequalities
(9) homogeneous in (x, ζ), thus enabling us to use a desired theorem of the
alternative [9] for such linear inequalities. It follows by Motzkin’s Theorem of the
Alternative [9], that (9) is equivalent to the following system of linear inequalities
having a solution in (v, η, τ) ∈ R`+1+1 for a given fixed u and γ:

B′v +(A′Du)η = 0,

−b′v −(γ + 1)η −τ = 0,

v ≥ 0,

0 6= (η, τ) ≥ 0.

(10)

Here, the last constraint signifies that at most one of the two nonnegative vari-
ables η and τ can be zero. Hence, if η = 0, then τ > 0. It follows then from
(10) that there exists a v such that: B′v = 0, −b′v > 0, v ≥ 0, which contra-
dicts the natural assumption that the knowledge set {x | Bx ≤ b} is nonempty.
Otherwise, we have the contradiction:

0 = v′Bx ≤ b′v < 0. (11)

Hence η > 0 and τ ≥ 0. Dividing the inequalities of (10) by η and redefining
v as v

η
, we have from (10) that the following system of linear equalities has a

solution v for a given u and γ:

B′v +A′Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(12)

Under the rather natural assumption that A has linearly independent columns,
this in turn is equivalent to following system of linear equalities having a solution
v for a given u and γ:

AB′v +AA′Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(13)

Note that the linear independence is needed only for (13) to imply (12). Re-
placing the the linear kernels AB′ and AA′ by the general nonlinear kernels
K(A, B′) and K(A, A′), we obtain that the following system of linear equalities
has a solution v for a given u and γ:

K(A, B′)v +K(A, A′)Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(14)

This is the set of constraints that we shall impose on our nonlinear classification
formulation as a surrogate for the implication (7). Since the derivation of the
conditions were not directly obtained from (7), it is useful to state precisely
what the conditions (14) are equivalent to. By using a similar reasoning that
employs theorems of the alternative as we did above, we can derive the following
equivalence result which we state without giving its explicit proof. The proof is
very similar to the arguments used above.
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Proposition 21 Knowledge Set Classification Let

{y | K(B, A′)y ≤ b} 6= ∅. (15)

Then the system (14) having a solution v, for a given u and γ, is equivalent to
the implication:

K(B, A′)y ≤ b =⇒ u′DK(A, A′)y ≥ γ + 1. (16)

We note that the implication is not precisely the implication (7) that we started
with, but can be thought of as a kernelized version of it. To see this we state a
corollary to the above proposition which shows what the implication means for
a linear kernel AA′.

Corollary 22 Linear Knowledge Set Classification Let

{y | Bx ≤ b, x = A′y} 6= ∅. (17)

For a linear kernel K(A, A′) = AA′, the system (14) having a solution v, for a
given u and γ, is equivalent to the implication:

Bx ≤ b, x = A′y =⇒ w′x ≥ γ + 1, w = A′Du, x = A′y. (18)

We immediately note that the implication (18) is equivalent to the desired impli-
cation (5) for linear knowledge sets, under the rather unrestrictive assumption
that A has linearly independent columns. That the columns of A are linearly
independent is equivalent to assuming that in the input space, features are not
linearly dependent on each other. If they were, then linearly dependent features
could be easily removed from the problem.

We turn now to a linear programming formulation of a nonlinear kernel
classifier that incorporates prior knowledge in the form of multiple polyhedral
sets.

3 Knowledge-Based Linear Programming Formulation of

Nonlinear Kernel Classifiers

A standard [10, 1] linear programming formulation of a nonlinear kernel classifier
is given by:

min
u,γ,r,y

νe′y + e′r

s.t. D(K(A, A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

y ≥ 0.

(19)

The (u, γ) taken from a solution (u, γ, r, y) of (19) generates the nonlinear sepa-
rating surface (4). Suppose now that we are given the following knowledge sets:

p sets belonging to A+ : {x | Bix ≤ bi}, i = 1, . . . , p,

q sets belonging to A− : {x | C ix ≤ ci}, i = 1, . . . , q.
(20)
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It follows from the implication (7) for B = Bi and b = bi for i = 1, . . . , p and
its consequence, the existence of a solution to (14), and a similar implication for
the sets {x | Cix ≤ ci}, i = 1, . . . , q, that the following holds:

There exist si, i = 1, . . . , p, tj , j = 1, . . . , q, such that:

K(A, Bi′)si + K(A, A′)Du = 0, bi′si + γ + 1 ≤ 0, si ≥ 0, i = 1, . . . , p,

K(A, Cj ′)tj − K(A, A′)Du = 0, cj ′tj − γ + 1 ≤ 0, tj ≥ 0, j = 1, . . . , q.

(21)

We now incorporate the knowledge sets (20) into the nonlinear kernel classifier
linear program (19) by adding conditions (21) as constraints to (19) as follows:

min
u,γ,r,(y,si,tj)≥0

νe′y + e′r

s.t. D(K(A, A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

K(A, Bi′)si + K(A, A′)Du = 0,

bi′si + γ + 1 ≤ 0, i = 1, . . . , p,

K(A, Cj ′)tj − K(A, A′)Du = 0,

cj ′tj − γ + 1 ≤ 0, j = 1, . . . , q.

(22)

This linear programming formulation incorporates the knowledge sets (20) into
the appropriate halfspaces in the higher dimensional feature space. However since
there is no guarantee that we are able to place each knowledge set in the appropri-
ate halfspace, we need to introduce error variables zi

1, ζ
i
1, i = 1, . . . , p, z

j
2, ζ

j
2 , j =

1, . . . , q, just like the error variable y of the SVM formulation (19), and attempt
to drive these error variables to zero by modifying our last formulation above as
follows:

min
u,γ,r,zi

1
,z

j

2
,(y,si,tj ,ζi

1
,ζ

j

2
)≥0

νe′y + e′r + µ(

p∑

i=1

(e′zi
1 + ζi

1) +

q∑

j=1

(e′zj
2 + ζj))

s.t. D(K(A, A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

−zi
1 ≤ K(A, Bi′)si + K(A, A′)Du ≤ zi

1,

bi′si + γ + 1 ≤ ζi
1, i = 1, . . . , p,

−z
j
2 ≤ K(A, Cj ′)tj − K(A, A′)Du ≤ z

j
2,

cj ′tj − γ + 1 ≤ ζ
j
2 , j = 1, . . . , q.

(23)

This is our final knowledge-based linear programming formulation which incor-
porates the knowledge sets (20) into the linear classifier with weight µ, while
the (empirical) error term e′y is given weight ν. As usual, the value of these two
parameters, ν, µ, are chosen by means of a tuning set extracted from the training
set.



“tr”
2003/6/5
page 7

i

i

i

i

i

i

i

i

7

Remark 31 Data-Based and Knowledge-Based Classifiers If we set µ =
0, then the linear program (23) degenerates to (19), the linear program associated
with an ordinary data-based nonlinear kernel SVM. We can also make the linear
program (23), which generates a nonlinear classifier, to be only knowledge-
based and not dependent on any specific training data if we replace the matrix
A appearing everywhere in (23) by a random sample of points taken from the
knowledge sets (20) together with the associated diagonal matrix D. This might be
a useful paradigm for situations where training datasets are not easily available,
but expert knowledge, such as doctors’ experience in diagnosing certain diseases,
is readily available. In fact, using this idea of making A and D random samples
drawn from the knowledge sets (20), the linear programming formulation (23)
as is can be made totally dependent on prior knowledge only.

We turn now to our numerical experiments.

4 Numerical Experience

The focus of this paper is rather theoretical. However, in order to illustrate the
power of the proposed formulation, we tested our algorithm on two synthetic
examples for which most or all the data is constituted of knowledge sets. Exper-
iments involving real world knowledge sets will be utilized in future work.

Exclusive-Or (XOR) Knowledge Sets
This example generalizes the well known XOR example which consists of the

four vertices of a rectangle in 2-dimensions, with the pair of vertices on the end
of one diagonal belonging to one class (crosses) while the other pair belongs to
another class (stars). Figure 1 depicts two such pairs of vertices symmetrically
placed around the origin. It also depicts two pairs of knowledge sets with each
pair belonging to one class (two triangles and two parallelograms respectively).

The given points in this XOR example can be considered in two different
ways. We note that in line with Remark 31, this classifier can be considered
either partially or totally dependent on prior knowledge, depending on whether
the four data points are given independently of the knowledge sets or as points
contained in them. Our knowledge-based linear programming classifier (23) with
a Gaussian kernel yielded the depicted nonlinear separating surface that classi-
fied all given points and sets correctly.

Another realization of the XOR example is depicted in Figure 2. Here the
data points are not positioned symmetrically with respect to the origin and only
one of them is contained in a knowledge set. The resulting nonlinear separating
surface for this XOR example is constrained by one of the knowledge sets, in
fact it is tangent to one of the diamond-shaped knowledge sets.
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Fig. 1. Totally or partially knowledge-based XOR classification problem.

The nonlinear classifier obtained by using a Gaussian kernel in our linear

programming formulation (23), completely separates the two pairs of prior

knowledge sets as well the two pairs of points. The points can be treated

as samples taken from the knowledge sets or given independently of them.

−3 −2 −1 0 1 2 3
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0
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3

Fig. 2. Another XOR classification problem where only one of the points

is contained in a knowledge set. The nonlinear classifier obtained by using

a Gaussian kernel in our linear programming formulation (23), completely

separates the two pairs of prior knowledge sets as well the two pairs of

points. Note the strong influence of the knowledge sets on the separating

surface which is tangent to one of the knowledge sets.
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Checkerboard
Our second example is the classical checkerboard dataset [5, 6, 8, 7] which con-

sists of 1000 points taken from a 16-square checkerboard. The following ex-
periment on this dataset shows the strong influence of knowledge sets on the
separating surface.

We first took a subset of 16 points only, each one is the “center” of one
of the 16 squares. Since we are using a nonlinear Gaussian kernel to model the
separating surface, this particular choice of the training set is very appropriate for
the checkerboard dataset. However, due to the nature of the Gaussian function
it is hard for it to learn the “sharpness” of the checkerboard by using only a
16-point Gaussian kernel basis. We thus obtain a fairly poor Gaussian-based
representation of the checkerboard depicted in Figure 3 with correctness of only
89.66% on a testing set of uniformly randomly generated 39,601 points labeled
according to the true checkerboard pattern.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. A poor nonlinear classifier based on 16 points taken from each of

the 16 squares of a checkerboard. The nonlinear classifier was obtained by

using a Gaussian kernel in a conventional linear programming formulation

(19).
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On the other hand, if we use these same 16 points in the linear program (23)
as a distinct dataset in conjunction with prior knowledge in the form of 8 linear
inequalities characterizing only two subsquares fully contained in the leftmost
two squares of the bottom row of squares, we obtain the very sharply defined
checkerboard depicted in Figure 4, with a correctness of 98.5% on a 39, 601-point
testing set. We note that, it does not matter which two subsquares are taken
as prior knowledge, as long as there is one from each class. Also the size of the
subsquare is not critical either. Figure 4 was obtained with subsquares with sides
equal to 0.75 times the the original sides and centered around the given data
points. Squares down to size 0.25 of the original squares, gave similar results.
We emphasize here that the prior knowledge given to the linear program (23)
here is truly a partial knowledge set in the sense that it gives the linear program
information on only 2 of 16 squares.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Knowledge-based checkerboard classification problem. The nonlin-

ear classifier was obtained by using a Gaussian kernel in our linear pro-

gramming formulation (23) with the 16 depicted points as a given dataset

together with prior knowledge consisting of 8 linear inequalities charac-

terizing only two subsquares contained in the leftmost two squares of the

bottom row of squares. The sharply defined checkerboard has a correctness

of 98.5% on a 39, 601-point testing set.
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It is interesting to note that by using prior knowledge from only two squares,
our linear programming formulation (23) is capable of transforming a complex
boundary between the union of eight squares in each class, into a single nonlinear
classifier equation given by (4).

5 Conclusion

We have presented a knowledge-based formulation of a nonlinear kernel SVM
classifier. The classifier is obtained using a linear programming formulation with
any nonlinear symmetric kernel with no positive definiteness (Mercer) condi-
tion assumed. The formulation works equally well with or without conventional
datasets. We note that unlike the linear kernel case with prior knowledge [3],
where the absence of conventional datasets was handled by deleting some con-
straints from a linear programming formulation, here arbitrary representative
points from the knowledge sets are utilized to play the role of such datasets,
that is A and D in (23). The issues associated with sampling the knowledge
sets, in situations where there are no conventional data points, constitute an
interesting topic for future research.

Future application to medical problems, computer vision, microarray gene
classification, and efficacy of drug treatment, all of which have prior knowledge
available, are planned.
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