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Abstract. Ensembles have proven useful for a variety of applications,
with a variety of machine learning approaches. While Quinlan has ap-
plied boosting to FOIL, the widely-used approach of bagging has never
been employed in ILP. Bagging has the advantage over boosting that the
different members of the ensemble can be learned and used in parallel.
This advantage is especially important for ILP where run-times often
are high. We evaluate bagging on three different application domains us-
ing the complete-search ILP system, Aleph. We contrast bagging with
an approach where we take advantage of the non-determinism in ILP
search, by simply allowing Aleph to run multiple times, each time choos-
ing “seed” examples at random.

1 Introduction

Inductive Logic Programming (ILP) systems have been quite successful in ex-
tracting comprehensible models of relational data. Indeed, for over a decade,
ILP systems have been used to construct predictive models for data drawn from
diverse domains. These include the sciences [16], engineering [10], language pro-
cessing [33], environment monitoring [11], and software analysis [5]. In a nutshell,
ILP systems repeatedly examine candidate clauses (the “search space”) to find
good rules. Ideally, the search will stop when the rules cover nearly all positive
examples with only a few negative examples being covered.

Unfortunately, the search space can grow very quickly in ILP applications.
Several techniques have therefore been proposed to improve search efficiency.
Such techniques include improving computation times at individual nodes [4,
26], better representations of the search [3], sampling the search space [27,28,
32], and parallelism [8,13,19]. Parallelism can be obtained from very different
alternative approaches, such as dividing the search tree, dividing the examples,
or even through performing cross-validation in parallel [31].

An intriguing alternative approach that can lead to better accuracy whilst
taking advantage of parallelism is the use of ensembles. Ensembles are classifiers



that combine the predictions of multiple classifiers to produce a single predic-
tion [9]. To some extent, an induced theory is an ensemble of clauses. We would
like to go one step further and combine different theories to form a single en-
semble. The main advantage is that the ensemble is often more accurate than
its individual components. Moreover, we can use parallelism both in generating
and in actually evaluating the ensemble.

Several methods have been presented for ensemble generation. In this work,
we concentrate on a popular method that is known to generally create a more
accurate ensemble than individual components, bagging [6]. Bagging works by
training each classifier on a random sample from the training set. In contrast
to other well-known techniques for ensemble generation, such as boosting [12],
bagging has the important advantage that it is effective on “unstable learning
algorithms” [7], where small variations in parameters can cause huge variations
in the learned theories. This is the case with ILP. A second advantage is that it
can be implemented in parallel trivially.

We contrast bagging with a method we name different seeds, where we try to
take advantage of the non-determinism in seed-based search by simply combin-
ing different theories obtained from experimenting with different seed examples,
while always using the original training set. This method is also easily parallelis-
able.

Several researchers have been interested in the use of ensemble-based tech-
niques for Inductive Logic Programming. To our knowledge, the original work
in this area is Quinlan’s work on the use of boosting in FOIL [25]. His results
suggested that boosting could be beneficial for first-order induction. More re-
cently, Hoche proposed confidence-rated boosting for ILP with good results [15].
Zemke recently proposed bagging as a method for combining ILP classifiers with
other classifiers [34]. The contributions of our paper are to experimentally eval-
uate bagging on three particularly challenging ILP applications, and to compare
bagging with the approach of different seeds.

The paper is organised as follows. First, we present in more detail ensemble
techniques, focusing on bagging. Next, we discuss our experimental setup and
the applications used in our study. We then discuss how ensembles perform on
our benchmarks. Last, we offer our conclusions and suggest future work.

2 Ensembles

Ensembles aim at improving accuracy through combining the predictions of mul-
tiple classifiers in order to obtain a single classifier. Experience has shown that
ensemble-based techniques such as bagging and boosting can be very effective
for decision trees and neural networks [24,21]. On the other hand, there has been
less empirical testing with classifiers as logic programs.

Figure 1 shows the structure of an ensemble of logic programs. This structure
can also be used for classifiers other than logic programs. In the figure, each pro-
gram Py, Ps, ..., Py is trained using a set of training instances. At classification
time each program receives the same input and executes on it independently.



The outputs of each program are then combined and an output classification
reached. Figure 1 illustrates that in order to obtain good classifiers one must
address three different problems:
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Fig. 1. An Ensemble of Classifiers.

— how to generate the individual programs;
— how many individual programs to generate;
— how to combine their outputs.

Regarding the first problem, research has demonstrated that a good ensem-
ble is one where the individual classifiers are accurate and make their errors in
different parts of the instance space [17,22]. Obviously, the output of several
classifiers is useful only if there is disagreement between them. Hansen and Sala-
mon [14] proved that if the average error rate is below 50% and if the component
classifiers are independent, the combined error rate can be reduced to 0 as the
number of classifiers goes to infinity.

Methods for creating the individual classifiers therefore focus on producing
classifiers with some degree of diversity. In the present work, we follow two ap-
proaches to producing such classifiers, described in the two following paragraphs.

One interesting aspect of Inductive Logic Programming is that the same
learning algorithm may lead to quite different theories. More specifically, theories
generated by seed-based ILP algorithms may heavily depend on the choice of the
seed example. A natural approach to generate ensembles is to take advantage
of this property of ILP systems, and combine the rather different theories that
were generated just by choosing different sequences of seed examples. We call
this approach different seeds.

We contrast the random choice of seeds with bagging. Bagging classifiers are
obtained by training each classifier on a random sample of the training set. Each
classifier’s training set is generated by randomly, uniformly drawing K examples
with replacement, where K is the size of the original training set. Thus, many
of the original examples may be repeated in the classifier’s training set.



Table 1. Example of Bagging Training Sets.

[ Training Sets| Examples Included ||

1 6 2 6 3 2 5
2 1 4 6 5 1 6
3 1 3 3 5 2 3
4 6 4 1 4 3 2
5 6 4 2 3 2 3
6 5 5 2 1 5 4

Table 1 shows six training sets randomly generated from a set with examples
numbered from 1 to 6. We can notice that each bagging training set tends to
focus on different examples. The first training set will have two instances of the
second and sixth examples, while having no instances of the second and fourth
example. The second example will have instead two occurrences of the first and
sixth example, while missing the second and third example. In general, accuracy
for each individual bagging classifier is likely to be lower than for a classifier
trained on the original data. However, when combined, bagging classifiers can
produce accuracies higher than that of a single classifier, because the diversity
among these classifiers generally compensates for the increase in error rate of
any individual classifier.

Therefore, the promise of bagging, and of ensembles in general, is that when
classifiers are combined the accuracy will be higher than the accuracy for the
original classifier. In our case, one particularly interesting result for bagging
is that it is effective on “unstable” learning algorithms, that is, on algorithms
where a small change in the training set may lead to large changes in prediction.
We focus on bagging in this work because it is considered to be less vulnerable
to noise than boosting algorithms [12] and it can take advantage of parallel
execution.

The second issue we had to address was the choice of how many individual
classifiers to combine. Previous research has shown that most of the reduction in
error for ensemble methods occurs with the first few additional classifiers [14].
Larger ensemble sizes have been proposed for decision trees, where gains have
been seen up to 25 classifiers. In our experiments we decided to extend our
analysis up to 100 classifiers.

The last problem concerns the combination algorithm. An effective combining
scheme is often to simply average the predictions of the network [1,7,17,18]. An
alternate approach relies on a pre-defined voting threshold. If the number of
theories that cover an example is above or equal to the threshold, we say that
the example is positive, otherwise the example is negative. Thresholds may range
from 1 to the ensemble size. A voting threshold of 1 corresponds to a classifier
that is the disjunction of all theories. A voting threshold equal to the ensemble
size corresponds to a classifier that is the conjunction of all theories.



3 Methodology

We use the ILP system Aleph [29] in our study. Aleph assumes (a) background
knowledge B in the form of a Prolog program; (b) some language specification
L describing the hypotheses; (c) an optional set of constraints I on acceptable
hypotheses; and (d) a finite set of examples E. E is the union of a nonempty set
of “positive” examples ET, such that none of the Et are derivable from B, and
a set of “negative”examples E~.

Aleph tries to find one hypothesis H in £, such that: (1) H respects the
constraints I; (2) The E* are derivable from B, H, and (3) The E~ are not
derivable from B, H. By default, Aleph uses a simple greedy set cover procedure
that constructs such a hypothesis one clause at a time. In the search for any
single clause, Aleph selects the first uncovered positive example as the seed
example, saturates this example, and performs an admissible search over the
space of clauses that subsume this saturation, subject to a user-specified clause
length bound.

We have elected to perform a detailed study on three datasets, corresponding
to three non-trivial ILP applications. For each application we ran Aleph with
random re-ordering of the positive examples and hence of seeds. We call this ex-
periment different seeds. Next, we created bagged training sets from the original
set, and called Aleph once for each training set. We call this experiment bagging.
The number of runs of different seeds is the same as the number of bags.

Aleph allows the user to set a number of parameters. We always set the
following parameters as follows:

— search strategy: search. We set it to be breadth-first search, bf. This enu-
merates shorter clauses before longer ones. At a given clauselength, clauses
are re-ordered based on their evaluation. This is the Aleph default strategy
that favours shorter clauses to avoid the complexity of refining larger clauses.

— evaluation function: evalfn. We set this to be coverage. Clause utility is
measured as P— N, with P and N being the number of positive and negative
examples covered by the clause, respectively.

— chaining of variables: i. This Aleph parameter controls variable chaining
during saturation: chaining depth of a variable that appears for the first
time in a literal £;, is 1 plus the maximum chaining depth of all variables
that appear in previous literals £;,j < ¢. We used a value of 5 instead of the
default value of 2 in order to obtain more complex relations between literals
in a clause.

— max number of nodes allowed: maxnodes. This corresponds to the number
of clauses in the search space. We set this to be 100,000.

— maximum number of literals in a clause: maxclauselength. This was chosen
to be the largest clause length that produced run times smaller than 1 hour
on Intel 700 MHz machines, running Linux Red Hat 6.2. For our applications
this value was either 4 or 5.

For each application, we ran experiments with different lower bounds on the
minimum accuracy of an acceptable clause (minacc). We chose the values of 0.7,



0.9 and 1.0. In order to keep running times feasible, we first ran our datasets
at least 5 times with the three different minaccs, and also with clause length
varying from 4 to 10. We then chose the parameters that allowed Aleph to run
at most for one hour (on Intel 700 MHz machines). It happened that for all
minaccs, the clause length that produced runtimes less than or equal to one
hour was the same, though it varied from one application to another. For each
application we thus will vary our minacc settings among 0.7, 0.9 and 1.0, and
we use the appropriate maxclauselength.

Next, we organise our discussion of methodology into (a) experimentation
and (b) evaluation.

Experimentation. Our experimental methodology employs five-fold cross-va-
lidation. For each fold, we consider ensembles with size varying from 1 to 100.
The minacc parameter used to generate the component theories in an ensemble,
and the voting threshold used for the ensembles, are tunable parameters. These
parameters are tuned within each fold, using only the training data for that
fold. Moreover, rather than holding out a single tuning set from the training
data for a fold, we perform 4-fold tuning within the training set. The parameter
combination that yields the highest accuracy during this “inner” 4-fold cross-
validation on the training set is then used on the entire training set for that fold.
The resulting theory is then tested on the test set for that fold. The process is
repeated for each of the five folds, and the results are merged in the standard
way for cross-validation.

Next, we present the details of the experimental setup, starting with tun-
ing. As explained, our goal in the tuning phase is to estimate what is the best
parameter setting (minacc, voting threshold) for the ensembles, in order to use
them later during the training/test phase. Tuning proceeds in two steps. First,
we repeatedly call Aleph to generate all the theories we need to construct the
different ensembles. Because the ILP runs are time-consuming, we do not repeat
the ILP runs themselves to learn entirely new theories for each different ensem-
ble size. Rather, for each tuning fold and minacc parameter, we initially learn
100 theories using different seeds methodology and 100 theories using bagging.
Then, for either ensemble approach, and for each ensemble size s between 1 and
99 we randomly select s different theories from the 100. We next use these theo-
ries to generate ensembles, and evaluate the results. Because our results may be
distorted by a particularly poor or good choice of these theories, we repeat this
selection process 30 times and average the results.

Tuning thus requires 12,000 theories per application: one theory for bagging
plus one theory for different seeds, times 5 test set folds, times 4 tuning folds,
times 3 minacc values, times the 100 different theories we create for producing
ensembles.

Once the 12,000 theories are generated, two tables are produced. The first
one, minaccs_for_rocs, is used to calculate the ROC curves and contains the best
minacc for each ensemble size and for each voting threshold. The second one,
best_thresholds is used to obtain the accuracies and contains the best combination



of minacc and voting threshold for each ensemble size. This second table is a
subset of minaccs_for_rocs.

We next move to the 5-fold cross-validation by doing a training/test per fold,
per each minacc. First, we produce 600 theories per fold: one for bagging plus
one for different seeds, times 3 minaccs, times the 100 different theories used to
create ensembles. We are now ready to evaluate the ensembles.

Evaluation. For the evaluation phase (b), we used two techniques to evaluate
the quality of the ensembles. First, we studied how average accuracy varies with
ensemble size. We present accuracy as the average between accuracy on the
positive examples and accuracy on the negative examples.
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Fig. 2. Example of Probability Density Functions for Two Populations: with Disease,
without Disease.

Second, we studied Receiver Operating Characteristic (ROC) curves for the
ensembles. Provost and Fawcett [23] have shown how ROC curve analysis [20, 35]
can be used to assess classifier quality. When we consider the results of a partic-
ular test in two populations, say positive and negative examples, we will rarely
observe a perfect separation between the two groups. Indeed, the distribution
of the test results can overlap, as shown in Figure 2. For every possible cut-off
point or criterion value we select to discriminate between two populations, there
will be some cases with the classifier correctly reporting positive examples to
be positive (TP = True Positive fraction), but some cases incorrectly reported
negative (FFN = False Negative fraction). On the other hand, some negative
examples will be correctly classified as negative (I'N = True Negative fraction),
but some negative examples will be classified as positive (F'P = False Positive
fraction).

In an ROC curve the true positive rate (sensitivity, or TPT_L%) is plotted
against the false positive rate (100-specificity, or zpry) for different cut-off
points. Each point on the ROC plot represents a sensitivity/specificity pair cor-
responding to a particular decision threshold. A test with perfect discrimination
(no overlap in the two distributions) has a ROC plot that passes through the



upper left corner (100% sensitivity, 100% specificity). Therefore the closer the
ROC plot is to the upper left corner, the higher the overall accuracy of the
test [35].

When we have many ROC curves to be analysed, we can look instead to
the area under those curves. The value for the area under the ROC curve can
be interpreted as follows: an area of 0.84, for example, means that a randomly
selected individual from the positive group has a test value larger than that for
a randomly chosen individual from the negative group 84% of the time. When
the variable under study cannot distinguish between the two groups, i.e. where
there is no difference between the two distributions, the area will be equal to 0.5
(as is the case when the ROC curve coincides with the diagonal). When there is
a perfect separation of the values of the two groups, i.e. there is no overlapping
of the distributions, the area under the ROC curve equals 1 (the ROC curve will
reach the upper left corner of the plot).

We wish to test the effectiveness of different sizes of ensembles, from 1 to 99.
Again, we do not repeat the ILP runs themselves to learn entirely new theories for
each different ensemble size. Rather, we use the theories from the previous step.
Because our results may be distorted by a particularly poor or good choice of
these theories, we repeat this selection process 30 times and average the results.

Accuracies across the folds are obtained by averaging the sum of all positives
and negatives for every fold. Areas across the folds are obtained by simply av-
eraging areas computed for each ensemble size. ROC curves across the folds are
obtained by averaging the rates of positives and negatives of each fold.

All experiments were performed using Condor, a tool for managing heteroge-
neous resources developed by the Condor Team at the UW-Madison [2]. Without
the utilisation of such a tool, our experiments would have taken years to be con-
cluded. Our jobs occupied about 53,380 hours of CPU, with an average peak of
400 jobs running simultaneously on Intel/Linux and Sun4u/Solaris machines.

3.1 Benchmark Datasets

Our benchmark set is composed of three datasets that correspond to three non-
trivial ILP applications. We next describe the characteristics of each dataset
with its associated ILP application, and present a dataset summary table.

Carcinogenesis. Our first application concerns the prediction of carcinogenic-
ity test outcomes on rodents [30]. This application has a number of attractive
features: it is an important practical problem; the background knowledge consists
of large numbers of non-determinate predicate definitions; experience suggests
that a fairly large search space needs to be examined to obtain a good clause.

Smuggling. Our second dataset concerns data on smuggling of some materials.
The key element of our data is a set of smuggling events. Different events may be
related in a variety of ways. They may share a common location, they may involve
the same materials, or the same person may participate. Detailed data on people,



locations, organisations, and occupations is available. The actual database has
over 40 relational tables. The number of tuples in a relational table vary from
800 to as little as 2 or 3 elements.

The ILP system had to learn which events were related. We were provided
with a set of related examples that we can use as positive examples. We can
assume all other events are unrelated and therefore compose a set of negative
examples. We assume related is comutative. Therefore we changed Aleph to
assume related(B,A) if related(A,B) was proven, and vice-versa.

The smuggling problem is thus quite challenging in that it is a heavily re-
lational learning problem over a large number of relations, whereas most tradi-
tional ILP applications usually require a small number of relations.

Protein. Our last dataset consists of a database of genes and features of the
genes or of the proteins for which they code, together with information about
which proteins interact with one another and correlations among gene expression
patterns. This dataset is taken from the function prediction task of KDD Cup
2001. While the KDD Cup task involved 14 different protein functions, our
learning task focuses on the challenging function of “metabolism”: predicting
which genes code for proteins involved in metabolism. This is not a trivial task
for our ILP system.

Table 2. Datasets Characteristics.

I [Dataset Sizes||[Max Clause Length]]

Carcinogenesis|| 182+/148- 4
Smuggling 143+ /517- 5
Protein 172+/690- 5

Table 2 summarises the main characteristics of each application. The second
column corresponds to the size of the full datasets, where P+/N- represents num-
ber of positive examples and number of negative examples. Bags are created by
randomly picking elements, with replacement, from the full dataset. Therefore
the number of positives or negatives of each bag are not the same as of the full
dataset used for different seeds, although the total size is the same. The second
column indicates the clause length used for each dataset. The test sets for each
5-fold cross-validation experiment is obtained by a block distribution of the full
dataset. For example, application Carcinogenesis will have 5 positive test sets of
sizes: 36, 36, 36, 36 and 38. These test sets are not used during the tuning phase.

4 Results

This section presents our results and analyses the performance of each appli-
cation. For each application we show the average accuracy for positives and



negatives, and the area under ROC curves built from 1 to 25 ensemble sizes.
The results from 26 to 99 are essentially horizontal lines and are not shown. We
report results for different seeds and bagging. We also show the ROC curve for
an ensemble size of 25.

The accuracies presented in the graphs are averaged across all folds, and
for each ensemble size, a different voting threshold and minacc are used. This
combination of voting threshold and minacc is the one that produced the best
accuracy during the tuning phase. For clarity’s sake, these parameter values are
not shown in the curves.

The areas under the ROC curves were computed by (1) computing an ROC
curve, per fold, for each ensemble size using the theories learned for the best pair

<minace, voting threshold>, (2) computing the area under each ROC curve, and
(3) averaging the areas for each ensemble size across the folds.

Figure 3 shows the average accuracies for the three applications, for different
seeds and bagging, when varying the ensemble sizes. Figure 4 shows the areas
under the ROC curves, averaged across five folds, for the three applications,
when varying the ensemble sizes. Figure 5 shows ROC curves at ensemble size
25 for every application.

The results show that ensembles do provide an improvement both in accura-
cies and in ROC areas. Most of the improvement is obtained for smaller ensemble
sizes, up to 5 or 10 elements. Performance does not seem to benefit much from
using larger sizes.

The best results were obtained in the smuggling application, with bagging and
different seeds obtaining similar performance. The most irregular application is
carcinogenesis. We discuss the individual applications in more detail in the next
sections.

4.1 Carcinogenesis

Single-theory accuracy results for carcinogenesis are not very good. On aver-
age, accuracy for a single theory is around 60% for different seeds and 59% for
bagging. Our results show that ensembles can improve accuracy to around 64%.
Unfortunately, our results also show huge variations, as we discuss next.

Figure 3(a) shows the average among the accuracy curves for the five folds.
At first, the curves show that both bagging and different seeds obtain significant
improvements. As ensemble size grows, different seeds tends to obtain better
results, whereas bagging on average tends to achieve performance closer to the
single-theory case. Both curves show a number of peaks.

The maximum average accuracy for different seeds is 64.5%, which represents
a significant improvement over the single-theory accuracy. Studying different
seeds in more detail, we found the system tends to be pretty reasonable at
classifying positive examples. It achieves a maximum of 78.7% acceptance rate
for different seeds, at ensemble size 31. It does not perform so well at rejecting
negative examples: the best result is a minimum probability of 48.3% of rejecting
a negative example, at ensemble size 12.
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Fig. 3. Average Accuracies for the Three Applications.



Average ROC Area

Average ROC Area

1.00

0.90

0.80

0.70

0.60

0.50

(a) Carcinogenesis

add

(xoi22e2 A 2 {

0.00 5.00 10.00 15.00 20.00 25.00

1.00

0.90

0.80

0.70

0.60

0.50

Ensemble Size

(c) Protein

oF

0.00 5.00 10.00 15.00 20.00 25.00

Ensemble Size

Average ROC Area

1.00

0.90

0.80

0.70

0.60

0.50

(b) Smuggling

0.00 5.00 10.00 15.00 20.00 25.00

Ensemble Size

different seeds —e—
bagging ----4----

Fig. 4. Areas under the ROC curves for the Three Applications.



Prob(CalledPosl|ActuallyPos)

Prob(CalledPoslActuallyPos)

0.8

0.6

0.4

0.2

0.0

(a) Carcinogenesis

4

/

o

00 02 04 06 08 1.0

0.8

0.6

0.4

0.2

0.0

Prob(CalledPos|ActuallyNeg)

(c) Protein

£
/

00 02 04 06 08 1.0

Prob(CalledPoslActuallyNeg)

Prob(CalledPosl|ActuallyPos)

1.0

(b) Smuggling

0.8

0.6

0.4

A

0.2

0.0

00 02 04 06 08 1.0

Prob(CalledPos|ActuallyNeg)

different seeds —e—
bagging ----a----

Fig. 5. ROC curves at N=25 for the Three Applications.



Different seeds is particularly interesting in that it shows several spikes, which
are most obvious in the accuracy curve. This effect is caused by our tuning al-
gorithm that has some difficulties with a very unstable application, such as
carcinogenesis. More precisely, study of the data shows that often the tuning
algorithm will choose the same minacc in a row for a series of consecutive en-
semble sizes in a fold, and then all of a sudden select a different minac, and
immediately return to choosing the initial parameter. The points where there is
an abrupt change of parameters are usually the points where we have spikes.

The accuracy curve for bagging has several spikes on smaller ensembles, and
then stabilises rather quickly. Again, most of the variation is caused by the choice
of parameters. Interestingly enough, whereas most spikes in different seeds are
negative, in this case most spikes are improvements. This suggests that accuracy
results may be suffering from a wrong choice, either of thresholds or of Aleph’s
minimal training accuracy parameter.

Next, we look at the areas under the ROC curves as ensemble size varies
from size 1 to 25. The area under a ROC curve gives a good estimate of classifier
quality.

Figure 4(a) compares the ROC areas for different seeds and for bagging.
We can notice that both techniques obtain a significant improvement with the
smaller ensembles. Bagging stabilises very quickly, though, whereas different
seeds obtains improvements up to ensemble size 5. As a result, different seeds
has a somewhat better result than bagging.

ROC curves provide a more detailed picture of the behaviour of this applica-
tion concerning rates of true positives against false positives. We chose to plot
an ROC curve for ensemble size of 25, the largest ensemble size for which we
present other results. Figure 5(a) shows an ROC curve for ensemble size 25, for
the application Carcinogenesis, for different seeds and bagging, when varying the
voting threshold from 1 to 25. The curves show very clearly the spikes caused
by the different minacc chosen for each point.

The curves show large variations for small ensemble sizes. This corresponds
to choosing different minaccs. Both different seeds and bagging can achieve a
very good improvement on positive examples. However, at a cost of increas-
ing the rate of false positives. The best result for positives, for different seeds
is achieved at voting threshold 1, with acceptance rate of 88%. Bagging also
achieves its best performance on positives at threshold 1, but it performs a little
worse than different seeds achieving maximum of 85% of acceptance rate. As the
voting threshold increases, the chance of better classifying a positive or nega-
tive example decreases. Note that the voting threshold increases as we decrease
along the X axis, but not in a consecutive order of points in the ROC curve. For
example, at ensemble size 9, the false positive rate is 0.66, and the true positive
rate is 0.81, while at ensemble size 10, the false positive rate is 0.70 and the true
positive rate is 0.80.

Our main conclusion is that different seeds performs better for small thresh-
olds, that is, it can recognise most positive examples. Bagging tends to perform
better for large thresholds, that is, it is better at recognising negative examples.



4.2 Smuggling

The smuggling problem is quite challenging in that it is a heavily relational
learning problem over a large number of relations, whereas most traditional ILP
applications usually require a small number of relations. It was therefore quite
interesting to find that Aleph can achieve quite good accuracy for this problem.
We found average accuracy to be about 82% for different seeds and 83% for
bagging, for a single theory. Single accuracy for negative examples for a single
theory is around 89% for different seeds and 91% for bagging, while accuracy for
positive examples are around 76%, for both different seeds and bagging.

Of course, it would be quite nice to achieve an even better accuracy. Fig-
ure 3(b) shows the variation of accuracy averaged across folds, as we range the
size of the ensembles between 1 and 25. Accuracy for both curves increases
quickly for smaller ensembles and then is largely stable as we increase ensem-
ble size. Different seeds and bagging achieve a maximum average accuracy of
around 87%, with different seeds behaving slightly better than bagging for larger
ensemble sizes. Our results thus correspond to a significant improvement over
the single-theory accuracy. Accuracies stabilise at around 92%, for both different
seeds and bagging, at classifying negative examples, and at around 82% for both
different seeds and bagging, at classifying positive examples.

This application illustrates the benefit of using bagging at smaller ensemble
sizes, and stresses the advantage of using ensemble methods to improve the
accuracy of a single theory.

Figure 4(b) shows the areas under the ROC curves from ensemble size 1 to
25 averaged across the five test set folds. The results on ROC areas are very
impressive. Performance is excellent for both different seeds and bagging, with a
small advantage for different seeds. Both curves show a substantial improvement
up to size 10, and then stabilise. Also notice that bagging and different seeds
achieve very similar results.

Figure 5(b) shows average of ROC points across five folds, for ensemble size
25 varying the threshold from 1 to 25. Both classifiers perform in much the same
way. The combined classifier is very good at classifying negative examples: even
in the worst case, it only misclassifies up to 30% of all negative examples. Results
are also quite good on the positive examples, although some examples are never
covered. Different seeds does have some advantage in this case. Last, notice that
there are much less spikes than for Carcinogenesis: the tuning algorithm seems
to perform quite well here.

4.3 Protein

The Protein application has average single-theory accuracy of around 56% for
both different seeds and bagging. Figure 3(c) shows the average accuracies be-
tween positives and negatives for different seeds and bagging, as we increase the
ensemble size from 1 to 25. Bagging and different seeds have very similar perfor-
mance for this application. The improvement over the single-theory is between 2



and 3 percentage points, and does show that the ensemble methods can improve
performance even in this case.

Different seeds achieves maximum average accuracy of 60% at ensemble size
47, while bagging achieves maximum accuracy of 59% at ensemble size 28.

In order to understand better what happens with this application we draw the
ROC curve for ensemble size 25. Figure 5(c) shows the ROC curves for different
seeds and bagging averaged across five folds. The performance of this application
on positives improves as we increase the ensemble size for both different seeds
and bagging. For low thresholds, different seeds does better for positives. The
learned theories seem to have difficulty in generalising: we cannot cover most
examples. This results in bad accuracy for positives, and in good accuracy for
negatives. The results also show that most of the improvement happens for
smaller ensembles.

Our analysis provides more insight when we look at the areas under the ROC
curves, varying our threshold from 1 to 25. Figure 4(c) shows the areas under the
ROC curves. The results essentially confirm what we obtained with accuracy.
Different seeds and bagging have the same performance up to ensemble size 24.
After that different seeds surpasses the performance of bagging.

As with the other applications, both ensemble methods improve performance
over the single-theory.

5 Conclusions and Future Work

This work presents an empirical study of bagging, a well-known ensemble building
mechanism, in the Inductive Logic Programming setting. In our approach, we use
bagging to combine theories built from random variations of the original training
set. We contrast bagging to different seeds, an approach where we always use
the same training set, and randomly select different seeds to build the different
theories in the ensemble. We evaluated bagging and different seeds with three
non-trivial applications of ILP.

Our results show that ensembles built through bagging can indeed achieve
a sizable improvement in performance, both measured through accuracy and
through ROC curves. Most of the gain is achieved with ensembles of size up to
20. Exploiting different seeds can also achieve very good gains. In fact, simply
using different seeds worked as well, or arguably better, than bagging in our
experiments. We believe this is because different seeds learns theories using the
whole set of examples. Our results confirm the advantages of using ensemble
methods in ILP.

We believe that bagging and different seeds can have a substantial impact on
ILP. We can often achieve an interesting improvement in performance, with little
implementation work. Moreover, we found that accuracy may improve, even in
the cases where ILP is obtaining very good results, as is the case of the dataset
Smuggling. On the other hand, resulting theories are more complex and thus
harder to understand.



We have thus far used bagging and different seeds with ensembles of theories.
An interesting alternative we are researching is to use ensembles of clauses. As
discussed before, boosting can also be employed to improve accuracy of classifiers
by penalizing examples that are misclassified. One disadvantage of boosting is
that it can not be as easily parallelisable as bagging or different seeds. We have
been investigating a method to perform boosting in parallel. Last, we are inves-
tigating other tuning algorithms to improve the interaction between different
settings (e.g., clause length, minimum clause accuracy) for the ILP search and
the bagging/ different seeds process.
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