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Abstract: An important problem in high-throughput protein crystallography is con-
structing a protein model from an electron-density map. DiMaio et al. (2006) describe
an automated approach to this otherwise time-consuming process. One important step
involves searching the density map for many small protein fragments, or templates. The
previous approach uses Fourier convolution to quickly compare some rotation of the
template to the entire density map. We propose to instead use the spherical-harmonic
decomposition of the template and of some region in the density map. In this new
framework, we are able to eliminate areas of the map from the search process if they
are unlikely to match to any templates. We design several “first-pass filters” for this
elimination task, including one filter which uses a set of rotation-invariant descriptors
(derived from the spherical-harmonic decomposition) of a sphere of density to train an
accurate classifier. We show our new template-matching method improves accuracy
and reduces running time, compared to our previous approach. Protein models con-
structed using this matching also show significant accuracy improvement. We extend
our method to produce a structural-homology detection algorithm that, due to its use
of electron-density maps, is more sensitive than sequence-only methods.
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1 Introduction

There has been significant research interest in high-
throughput protein crystallography (Berman and West-
brook, 2004), where X-ray crystallography is used to
rapidly determine a protein’s three-dimensional conforma-
tion. One bottleneck in the process is producing a protein
model from the electron-density map. The electron-density
map – essentially a three-dimensional image of a protein –
is produced as an intermediate result in crystallography.

Interpreting this electron-density map is the final step
of X-ray crystallography. Interpretation begins with the
density map and the (provided) amino-acid sequence(s) of
the protein forming the crystal, and produces a complete
3D molecular model of the protein. Interpretation finds
the Cartesian coordinates of every atom in the protein. In
poor-quality density maps, interpretation may take several
weeks of a crystallographer’s time.

In DiMaio et al. (2006), we developed a method, Acmi,
which automatically produces a backbone trace in poor-
quality electron-density maps. A backbone trace is an
important intermediate step in computing a complete (all-
atom) molecular model. An important – but computation-
ally expensive – subprocess in our previous work requires
searching the density map for a set of pentapeptide (5-
amino-acid) templates. Searching the map considers all
possible 3D rotations of the template at every 3D location
in the map, resulting in a 6-dimensional search problem.
Acmi uses Fourier convolution (Cowtan, 1998) to quickly
compute the squared-density difference between the den-
sity map and a single rotation of some template at all pos-
sible translations simultaneously.

We introduce Acmi-SH, which considers the spherical-
harmonic decomposition (Kirillov, 1994) of a template’s
electron density and the electron density in some local re-
gion in the map. This decomposition lets us efficiently
match all rotations of the template fragment at a single lo-
cation. “Convolution” over rotations (as opposed to trans-
lations) allows Acmi-SH to mask – that is, to eliminate
from consideration – some (x, y, z) locations in the den-
sity map. Specifically, we propose a “first-pass filter” that
eliminates points that are not likely to match any tem-
plate. At these locations, Acmi-SH assigns a low similarity
score without performing a rotational search, significantly
reducing the overall runtime.

We also show that a simple-filter method is effective, al-
lowing Acmi-SH to eliminate 80% of the density map from
its search without degrading performance. Using this fil-
tering, we are able to produce improved protein models
relative to a full search in less running time. Improved ac-
curacy results from the finer angular sampling our faster
approach allows, and perhaps most importantly, the sub-
stantial number of false negatives thrown out by the first-
pass filter. A followup experiment shows that we can uti-
lize a spherical-harmonic decomposition to generate a set
of rotation-invariant features for use with supervised learn-
ing methods. These methods can provide further improve-
ments in our first-pass filter.

(a) (b) 

Figure 1: An overview of density map interpretation: (a)
A density map with the solved structure indicated as con-
nected sticks, and (b) a backbone trace, where one central
atom (Cα) in each amino acid is located.

Lastly, we extend the template-matching problem of (a)
finding small-fragment matches to a density map to (b)
the problem of searching for whole-protein matches to a
density map. Our whole-protein search detects structural
homologs without requiring the structure of the target pro-
tein. This search could be helpful when solving structures
of new proteins, particularly when experimental phasing is
challenging. We show that our extended algorithm finds
several structural homologs and, while requiring a raw
electron-density map, outperforms Blast (Atschul et al.,
1990) a popular sequence-only, homology-detection algo-
rithm, at finding structurally similar proteins.

2 Automatic Density Map Interpretation

2.1 Protein Crystallography Background

Interpreting an electron-density map produces an all-atom
protein model from the three-dimensional image. Figure 1
illustrates the task. In this figure, the electron-density
map is illustrated as an isocontoured surface. Figure 1a
shows a sample electron-density map, into which an inter-
preted model has been placed. Sticks indicate bonds be-
tween atoms in the interpreted model. Figure 1b presents a
simplified representation of the protein, a backbone trace.
A backbone trace represents the location of one central
atom, occurring in each amino acid, the alpha carbon (or
Cα).

One measure of density map quality is the map res-
olution. When placed in an X-ray beam, some protein
crystals diffract better than others. In general, the larger
the scattering angles of the diffracted rays, the better the
resolution, resulting in more easily recognizable atomicity
in the maps. Resolution is defined as the inverse of the
finest spacings of the largest scattering angles, according
to Bragg’s law.

Copyright c© 200x Inderscience Enterprises Ltd.
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Figure 2: The undirected graph corresponding to the pro-
tein’s Markov-field model. The probability of some back-
bone model is proportional to the product of potential
functions: one associated with each vertex, and one with
each edge in the fully connected graph.

At excellent resolutions (2Å or better) individual atoms
are visible, and automated interpretation is usually
straightforward, primarily with the atom-based method
ARP/wARP (Perrakis et al., 1997). However, when the
resolution is worse than about 2.5Å or the map contains
noise – due to data collection or experimental inaccuracy –
it can take weeks of a crystallographer’s time to complete
a backbone trace.

2.2 Overview of Acmi

Acmi – our previous method (DiMaio et al., 2006) – pro-
duces high-confidence backbone traces from poor-quality
density maps. The method is model-based, using the pro-
vided sequence of the protein to construct a model. Our
previous work shows that – with poor-resolution density
maps – it is able to identify amino acids more accurately
then alternative approaches.

Given a protein’s linear amino-acid sequence, Acmi con-
structs a pairwise Markov-field model (Geman and Geman,
1984). A pairwise Markov field defines some probability
distribution on a graph, where vertices are associated with
random variables, and edges enforce pairwise constraints
on those variables. In Acmi’s protein model, each vertex
corresponds to an amino acid, and the random variables
describe the location and orientation of each Cα. Edges
enforce pairwise structural constraints on the protein.

Figure 2 shows the Markov field model associated with
some protein. The probability of some backbone model
U = {ui} (where ui is the position and orientation of the
ith Cα) is given as

P (U = {ui}) ∝
∏

amino-acid i

ψi(ui)×
∏

amino-acids i,j
i 6=j

ψij(ui, uj)

This first product models how well an amino acid matches
some location in the density map; the second models the
global structural constraints on the protein.

The vertex potential ψi at each node i can be thought
of as a “prior probability” on each alpha carbon’s location,
given the density map. One way to think of this is as there
being an “amino-acid finder” associated with each vertex.

The edge potentials, ψij , which enforce structural con-
straints on the protein, are further divided into two types:

adjacency constraints ψadj model interactions between ad-
jacent residues, while occupancy constraints ψocc model
interactions between residues distant on the protein chain
(though not necessarily spatially distant in the folded
structure). Adjacency constraints make sure that adja-
cent Cα’s are about 3.8Å apart; occupancy constraints
make sure no two Cα’s occupy the same 3D space. The
graph is fully connected with edges enforcing occupancy
constraints.

A fast approximate-inference algorithm finds the most
likely location of each Cα, given the density map. For
each amino acid in the provided protein sequence, Acmi’s
inference algorithm returns a probability distribution of
that amino-acid’s Cα location in the density map.

This paper concerns improved computation of the ver-
tex potentials ψi. Accurate computation of these poten-
tials is critical to Acmi’s performance. Acmi’s “amino-acid
finder” considers a 5-mer (a 5-amino-acid sequence) cen-
tered at each position in the protein sequence and builds a
set of small template pentapeptides (5-amino-acid struc-
tures) from a database of previously solved structures.
Acmi clusters these pentapeptides into distinct groups and
then searches the map against a representative example
from each cluster.

Matching a template to the map uses Fourier convolu-
tion (like fffear from Cowtan (1998)) to compute the
squared density difference of one rotation of a template
to the entire density map. Finally, Acmi uses a tuning
set to convert squared density differences into a probabil-
ity distribution over the electron-density map. Although
efficient, one disadvantage of Acmi is that we are forced
to search the entire density map for each template. The
Fourier convolution does not allow us to search in only
some locations in the map.

2.3 Other Approaches

Several methods have been developed to handle poor-
quality, low-resolution density maps, where atom-based
approaches like ARP/wARP fail to produce a reasonable
model. In addition to Acmi, Textal by Ioerger and Sac-
chettini (2003) and Resolve by Terwilliger (2003) both
aim to automatically interpret maps around 3Å resolution.

Textal attempts to interpret poor-resolution density
maps using ideas from pattern recognition, which summa-
rize regions of density using a set of rotation-invariant fea-
tures. Resolve’s automated model-building routine uses
a hierarchical procedure in which helices and strands are
located by an extensive search of all rotations and trans-
lations, then are extended iteratively using a library of
known tripeptides.

At poor resolutions, both methods have difficulty cor-
rectly identifying amino acids. Our previous work shows
that Acmi outperforms both Textal and Resolve in in-
terpreting poor-resolution maps. Additionally, both algo-
rithms have a tendency to produce a very segmented chain
in poor-resolution maps, requiring significant human labor
to fix.
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3 The Fast Rotation Function

We report herein a new technique for computing prior
probabilities that results in improved interpretation ac-
curacy. Our method is based on spherical-harmonic de-
composition and is similar to the fast rotation function
used in molecular replacement (Crowther, 1972; Trapani
and Navaza, 2006), as well as for shape matching in other
domains (Healy, Hendriks, and Kim, 1993; Huang et al.,
2005).

Spherical harmonics Y m
l (θ, φ), with order l = 0, 1, . . .

and degree m = −l,−(l − 1), . . . , l, are the solution to
Laplace’s equation in spherical coordinates. They are anal-
ogous to a Fourier transform, but on the surface of sphere.
They form an orthogonal basis set on the sphere’s surface.
Any spherical function f(θ, φ) can be written

f(θ, φ) =
∞∑

l=0

l∑
m=−l

alm · Y m
l (θ, φ)

The key advantage of such a representation is that sev-
eral different “fast rotation” algorithms exist to quickly
compute the cross correlation of two functions on a sphere
as a function of rotation (Trapani and Navaza, 2006;
Kostelac and Rockmore, 2003). That is, given (real-
valued) functions f(θ, φ) and g(θ, φ) on the sphere, we
want to compute the cross correlation between them as
a function of rotation angles ~r,

Cfg(~r) =
∫ ∫

f(θ, φ) ·R(~r) · g(θ, φ) · sin θ dθ dφ (1)

If the functions f and g are band-limited to some maxi-
mum bandwidth B (or can be reasonably approximated as
such), then these fast rotation functions quickly compute
this cross correlation given the spherical-harmonic decom-
position of f and g (running in O(B4) or O(B3 log B)
as opposed to the naive O(B6)) (Kostelac and Rockmore,
2003; Risbo, 1996). A full derivation is shown by Kostelac
and Rockmore (2003).

This bandwidth B we choose affects the fidelity with
which fine details in the signal are reconstructed. In gen-
eral, choosing too low of a value for B will lose important
information in the signal, while setting B too high results
in significant slowdown. Furthermore, eliminating some
high frequency components in the signal may be desirable
(for example, it may reduce noise).

4 Methods

This section describes three applications that utilize
spherical-harmonic decomposition and the fast rotation
function to accomplish pattern recognition tasks in the do-
main of electron-density interpretation. We first describe
the fast template-matching method, which provides a ver-
tex potential function in Acmi using the fast rotation func-
tion to quickly and effectively match template structures
to local areas of density. Next, we describe a method that

Algorithm 1: Acmi-SH’s template matching.
input : amino-acid sequence Seq, density map M
output: Vertex potentials ψi(y, r) for i = 1 . . . N

(µCC , σCC)← learn-from-tuneset()

foreach residue i do
PDBfragsi ← lookup-in-PDB(Seqi−2:i+2)

foreach frag ∈ PDBfragsi do
template← compute-dens(frag)
templCoef ← SH-transform(template)

foreach point yj ∈M do
if is-filtered-out(yj) then next yj

signal← sample-dens-around(yj)
sigCoef ← SH-transform(signal)
CC←fast-rotate(templCoef, sigCoef)

foreach rotation rk ∈ R do
zk ← (µCC − CCk)/σCC

pnull ← normCDF (zk)
ψi(yj , rk)← (1− pnull)/pnull

end
end

end
end

extends the fast rotation function to searching a database
of solved structures for structural homologs to the target
protein that created our density map. We end with a de-
scription of a map-filtering method which utilizes the fact
that we no longer need to perform FFT over the entire
map to eliminate areas of the map that will likely not yield
template matches, thus saving computational efforts. We
use properties of spherical-harmonic decomposition to cre-
ate a rotation-invariant set of features that can be used in
developing a classifier for eliminating these areas.

4.1 Fast Template Matching

We derive an improved vertex potential from the fast rota-
tion function in Section 3. An overview of our local-match
procedure appears in Algorithm 1, and is illustrated in
Figure 3.

When searching for some pentapeptide, we begin by
computing the density we would expect to see given the
pentapeptide (one models each atom with a Gaussian
sphere of density). We then interpolate this calculated den-
sity in concentric spherical shells (uniformly gridding θ−φ
space) extending out to 5 or 6 Å (chosen to cover most
of the density in an average pentapeptide) in 1Å steps.
A fast spherical-harmonic transform computes spherical-
harmonic coefficients corresponding to each spherical shell
using a recursion similar to that used in fast Fourier trans-
forms (Healy et al., 2003).

Similarly, we interpolate the density map using the same
set of concentric spherical shells around some grid point,
and again, take the spherical-harmonic transform of each
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Figure 3: Acmi’s improved template-matching algorithm. Given some pentapeptide template (left) the expected
electron-density is calculated. In the map (right), a spherical region is sampled. Spherical harmonic coefficients are
calculated for both, and the fast rotation function computes cross correlation as a function of template rotation.

spherical shell’s density. Given these two sets of spherical-
harmonic coefficients – one corresponding to the template
and one corresponding to some location in the density map
– a fast implementation of Equation 1 computes the cross
correlation over all rotations of the template pentapeptide.
Acmi-SH uses the implementation of Kostelac and Rock-
more (2003).

After computing the cross correlation, we compute the
vertex potential ψi as the probability that a particular
cross correlation value was not generated by chance. That
is, we assume that the distribution of the cross correlation
between some template’s density and some random loca-
tion in the density map is normally distributed with mean
µ and variance σ2:

Cfg ∼ N (x;µ, σ2)

We estimate these parameters µ and σ2 by computing cross
correlations between the template and random locations in
the map. Given some cross correlation xc, we compute the
expected probability that we would see score ci or higher
by random chance,

pnull(xc) = P (X ≥ xc;µ, σ2) = 1− Φ((xc − µ)/σ)

Here, Φ(x) is the normal cumulative distribution function.
Each amino-acid’s potential is then (1− pnull)/pnull.

For a given template, Acmi-SH scans the density map
M, centering the template at every location (xi, yi, zi) ∈
M. At each location, we sample concentric spheres of den-
sity around (xi, yi, zi), take the spherical-harmonic trans-
form, and compute the cross correlation between the tem-
plate and density map around (xi, yi, zi) as a function of
3D rotation angles ~r = (α, β, γ).

Convoluting in rotational space rather than Cartesian
space (as in fffear (Cowtan, 1998)) offers a several ad-
vantages. First we only have to search the asymmetric
unit of the protein crystal – that is, only the smallest non-
repeated portion of the density map – rather than the en-
tire map. This factor alone typically accounts for a four
to six-fold speedup, but depends on the symmetry of the
crystal. Additionally, convoluting in rotational space al-
lows the use of a “first-pass filter” that only considers some
small portion of the density map that is likely to match
templates. We perform a rotational search only for the
points that pass this filter. A comparison of several such
filters is presented in the Section 4.3.

There are other changes between Acmi and Acmi-SH as
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well. Because Acmi-SH samples spherical density shells,
the template for which we are searching is a fixed-size
sphere around the center of each template structure. This
sphere includes many (but not all) atoms from the pen-
tapeptide; in addition, it includes atoms from other por-
tions of the protein located nearby. This contrasts with
Acmi, where each template was arbitrarily shaped: a mask
was extended to 2.5Å away from each atom in the template
pentapeptide.

We feel this is advantageous as it captures the context
of each pentapeptide: for example, if some 5-mer always
occurs on the surface of a protein, all of that 5-mer’s tem-
plates will be on the protein surface, and will be reflected
in the cross-correlation scores. That is, a template on the
surface of a protein will match best to regions of the map
on the surface of the protein. Alternatively, one could use a
fixed-size sphere to align a template to the map, then com-
pute the correlation coefficient over some arbitrary-shaped
region; in our experience this produces no improvement in
matching accuracy, and incurs non-trivial overhead.

A final difference between Acmi and Acmi-SH is that
– in Acmi – we cluster the template structures (from the
PDB) to produce a minimal subset for which we search.
Acmi-SH no longer clusters these templates. In Acmi,
clustering serves mainly to reduce computational costs.
Due to improved efficiency of Acmi-SH, we are able to
search for a greater number of fragments than before. Even
if we wanted Acmi-SH to cluster templates, we run into
trouble. Acmi clusters pentapeptides using RMS devia-
tion as a distance metric. In Acmi-SH, templates are now
fixed-sized spheres, which often includes atoms not in the
pentapeptide. This makes RMS deviation, which does not
take these atoms into account, an ineffective measure for
similarity between two templates.

Therefore, Acmi-SH simply searches for every template
pentapeptide in the protein data bank corresponding to a
particular 5-mer sequence.1

4.2 Comparing Maps to a Database of Structures

The fast rotational alignment presented in the previous
section is not limited to small templates. The previous
section’s fast rotational alignment may be used to match
larger protein fragments – or even entire proteins – into an
electron-density map. This section describes the use of our
fast rotational alignment to quickly compare a database of
structures against an electron-density map. Such a tool
may be useful in finding structural homologs to the target
protein, even when no solved structure exists. In partic-
ular, such an algorithm may be able to detect remote ho-
mologs - proteins with similar structure but low sequence
similarity. Sequence-only methods, such as Blast fail in
these cases. Having such structural homologs available
may greatly aid a crystallographer in map interpretation.
Finally, determining structural homologs may give key in-
sights into a protein’s function even if the density map is

1We remove proteins in our testbed from this database before
testing.
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Figure 4: A comparison of two homology-search algo-
rithms. Shed (lower right) compares a target protein’s
electron-density map against a database of solved protein
structures. This algorithm is similar to that in Figure 3,
except we compare the whole protein structure against the
density map instead of just small fragments. Blast (lower
left) considers the sequences of the solved structures and
target protein, using a dynamic programming model to
measure similarity between two sequences. Black arrows
show the movement of density information, while grey ar-
rows indicate the use of sequence information.

of too poor quality to produce an atomic model.
At the most abstract level, our approach considers the

spherical-harmonic decomposition of a set of concentric
spheres of density that cover the majority of each solved
density map in a database (this database may contain ex-
perimental as well as computed density data). Assuming
we know the translational correspondence between each
template and the density map, we may compute similar-
ity between the two. We use our fast rotational alignment
to quickly match an entire protein to the density map, as
demonstrated in Figure 4.

If a single monomer of the target protein may be masked
in a density map, then finding this correspondence is
straightforward: we may simply take the center of mass
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of both map and structure. Alternatively, an approximate
center of mass may be manually located in the density by
a crystallographer. The remainder of this paper assumes
the density corresponding to a single monomer has been
separated from the remainder of the density map. We take
the center of mass of the density map in this masked re-
gion as the center of sampling. For the solved structures,
we can take the center of mass for a single monomer or
alternatively search for domain matches by taking multi-
ple center of masses through k -means (MacQueen, 1967)
clustering.

Ideally, each solved structure in a database would come
with its original electron-density map. Unfortunately, this
data is not widely available, so – as in the previous section
– we calculate the density we would expect to see given an
atomic model. As done by the Ccp4 program Sfall (CCP
Project, Number 4, 1994), we model the scattering of
each atom using a five-term Gaussian approximation.

We formalize the problem as follows:

Given an electron-density map and a set of
previously solved protein structures, find the
solved structures that match the density map
best and are thus candidate structural ho-
mologs to the target protein.

Algorithm 2 provides the details of our structure-database
search procedure, which we will refer to as Shed (Struc-
tural Homology using Electron Density). Figure 4 con-
trasts our method with Blast (Atschul et al., 1990).
Blast compares the sequence of a target protein against a
database of known proteins and their sequence. When no
structure is available for a target protein, sequence homol-
ogy can be used to imply structural homology. Shed, on
the other hand, uses the target protein’s non-interpreted
density map to compare against a data set of density maps
from solved structures. Both return alignment scores indi-
cating the degree of similarity between the target protein
and each protein in the solved structure database.

4.3 Filter Template Search Space Using Rotation-
Invariant Features

Our previous work performed Fourier convolutions over the
entire map to efficiently match a template to a map. One
disadvantage to this approach is that the entire map must
be considered in every calculation. In protein structure
determination, however, the number of locations contain-
ing a template match is very small compared to the size of
the map - on the order of 1 Cα in 1000 grid points. For-
tunately, Acmi-SH does not require this constraint since
rotational alignments are done independently at each point
in the map. A significant reduction in computation could
be achieved if we can efficiently eliminate the areas of the
map not containing templates before performing a fast ro-
tation alignment to each template.

In Section 5.2, we compare several simple “first-pass fil-
ters” that use information from the density map to esti-
mate the likelihood that a template is centered at some

Algorithm 2: Shed’s structure database search.
input : directory of structures PDB, (masked)

density map M, number of centers K
output: correlation coefficient CCi between each

structure in directory i = 1 . . . |PDB| and M

COMmap← center-of-mass(M)
signal← sample-sphere-around(COMmap)
sigCoef ← SH-transform(signal)

foreach structure PDBi do
CCi ← 0
for k = 1 . . .K do

Ck ← multiple-COMs(PDBi, k)
foreach COMtemplate ∈ Ck do

foreach offset o ∈ {−1, 0, 1}3 do
template←

comp-dens(PDBi, COMtemplate+ o)
templCoef ← SH-transform(template)
tempCC←fast-rotate(templCoef, sigCoef)
maxCC ← maxrot tempCC
CCi ← max{CCi,maxCC}

end
end

end
end

location in the map. Three of these filters are based
upon the observation that in density maps, especially poor-
resolution maps, Cα locations correspond to the highest-
density points in the map (Leherte et al., 1997). We con-
sider filtering points based on the point’s density, as well as
the average density in a 2 or 3Å radius around each point.

We also consider a filter based on the skeletonization of
the density map (Greer, 1974). Skeletonization, similar to
the medial axis transformation (Blum, 1967) in computer
vision, gradually “erodes” the density map until it is a nar-
row ribbon approximately tracing the protein’s backbone
and (in high-resolution maps) sidechains. We consider fil-
tering each point based upon its distance to the closest
skeleton point. This is the first-pass filter used by Capra
(Ioerger and Sacchettini, 2002) to eliminate points from
the density map.

Finally, we consider a filter based on a set of rotation-
invariant descriptors proposed by Kondor (2007), derived
from spherical-harmonic decompositions. These features
describe a region of density in a way that does not change
as the region of density is rotated. Although these features
are more time-consuming to compute than the previous
filters, computation time is significantly less than that of
a full rotational alignment of hundreds of templates at a
point in the map.

Briefly, Kondor (2007) generalizes the bispectrum of a
Fourier series to spherical harmonics. The bispectrum is a
way of representing a signal in a way that is shift-invariant,
yet uniquely identifies the original signal (up to transla-
tional shifts). Kondor (2007)’s representation – given a
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function band-limited to bandwidth B, where B is some
discrete value greater than 0 – produces O(B3) descrip-
tors that are invariant to rotations of the original signal,
yet are able to uniquely reconstruct the signal (up to ro-
tations). This is a more powerful representation than a
signal’s power spectrum, in which vastly different signals
may have the same power spectrum.

Using these features, we consider training a support vec-
tor machine (Svm) (Cristianini and Shawe-Taylor, 2000)
to recognize whether a region will match any template in
our data set. Svm is a supervised learning method that
learns a set of weights αi for each example (correspond-
ing to some distance – or kernel – function K(xi, xj));
when a new example x is encountered, the weighted sum
of distances

∑
i αiK(x, xi) is used to classify the example.

Thresholding this sum at different values allows us to trade
off the precision and recall of the classifier. In this case,
the classifier learns weights to separate regions likely to
contain template instances from those unlikely to contain
instances.

5 Results

This section evaluates Acmi-SH using five different perfor-
mance measures. The first two measures are simple tests
of Acmi-SH: we first show the error introduced by band-
limiting density templates, then we compare several differ-
ent first-pass filters in two sets of experiments. Our third
test compares Acmi to Acmi-SH, in terms of matching ac-
curacy and running time as rotational sampling (the reso-
lution of the θ–φ grid) varies. Fourth, we use both Acmi’s
and Acmi-SH’s vertex potentials as inputs to Acmi’s in-
ference engine, and compare the resulting protein models
to other approaches. The experimental setup in this fourth
section is the same as we used in our previous work (Di-
Maio et al., 2006). The last section is an evaluation of our
Shed search algorithm discussed in Section 4.2

Our data set for testing comes from a set of ten model-
phased electron-density maps from the Center for Eukary-
otic Genomics at the University of Wisconsin–Madison.
The maps are natively all of fairly good resolution – 1.5
to 2.5Å – and all have crystallographer-determined so-
lutions. To test algorithm performance on poor-quality
(≥3.0 Å) data, we smoothly truncated the structure factors
at 3Å and 4Å resolution, and recomputed the electron-
density maps. Truncating in this fashion gives maps virtu-
ally identical to maps natively at a particular resolution.

5.1 Errors in Band-Limiting Density

Rotationally aligning two regions of density using spherical
harmonics requires that we compute spherical harmonics
of both the density map and the template density up to
some band limit B. This band-limited signal will be some-
what different than the original signal. Figure 5 shows
the average squared density difference between the orig-
inal sampled density and the bandwidth-limited density
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Figure 5: The average squared density difference between
a region of sampled density and the bandwidth-limited re-
gion. The dotted line shows the error between two ran-
domly selected regions.

as B is varied. The dotted line in this figure shows the
squared density between two random regions, as a base-
line (this measure does not depend on bandwidth limit or
resolution).

This figure shows a bandwidth limit B = 12 accurately
models the original density, with density difference < 10−3

for 3Å resolution maps and < 10−4 for 4Å resolution maps.
The difference between two random signals is around 2.

Trapani and Navaza (2006) provides a rule of thumb for
the bandwidth limit in Patterson maps (an experimental
map related to the electron-density map), where the band
limit B relates to the density map resolution d and the
radius r by the formula B ≈ 2πr/d. In this application,
where we use a radius of 5Å (thus B ≈ 10 for a 3Å map and
8 for a 4Å map), the rule produces reasonable bandwidth
limits.

5.2 First-pass Filtering

A significant advantage of Acmi-SH over our previous
work is that our new approach allows us to filter out regions
of the map that are very unlikely to have a Cα (the center
of each template corresponds to a Cα), without needing to
perform a computationally expensive rotational alignment.
This section compares five different first-pass filters, all of
which are quickly computed, in two sets of experiments.

5.2.1 Simple Density Filters

As defined in Section 4.3, there are four simple filters
that rely on only the map in question and an average
density value for each point in that map: point density,
skeletonization, average over 2Å sphere, and average over
3Å sphere. Figure 6 compares the performance of these
four simple filters at both 3Å and 4Å resolution. These
plots show, on the x-axis, the portion of the entire map
we consider (sorted by our filter criteria), while the y-axis
shows the fraction of true Cα locations included. For ex-
ample, a point at coordinates (0.2, 0.9) means a filter for
which – at some threshold value – we look at only 20%
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Figure 6: A comparison of four different filters for quickly
eliminating some portion of points in the density map. Fil-
ter performance is compared on (a) 3Å and (b) 4Å resolu-
tion density maps.

of the density map and still find 90% of the true Cα lo-
cations. Somewhat surprisingly, the simplest filter, the
point density, performs the best at both resolutions at all
thresholds. This is surprising considering the point den-
sity filter ignores features in the surrounding region. The
other methods, however, are likely smoothing out distinc-
tive features by averaging the density and thus losing im-
portant information. The experiments in Sections 5.3 and
5.4 consider using the point-density as a first-pass filter,
eliminating a conservative 80% of the density map from
rotational search.

5.2.2 Svm Filter Using Bispectrum Features

As a followup experiment, we consider comparing the
point-density first-pass filter to a filter using a trained sup-
port vector machine (Svm) model (Cristianini and Shawe-
Taylor, 2000), as motivated in Section 4.3. For each point
in the density map, we extract Kondor (2007)’s real-valued
numeric features from the spherical-harmonic decomposi-
tion of R = 5 concentric spheres of density centered at that
point. We use a bandwidth of B = 8 and shell width of
1Å, producing a set of features of size RB3 for each point
in the grid, plus the density value of the point. If the grid
point lies within a short distance of a true Cα (≤

√
3

2 grid
units, the maximum distance from a Cα to its closest grid
point), it is labeled as positive for being a place to search
for a template, otherwise it is considered negative when we
evaluate ground truth. Features are normalized per map.

An Svm model, unlike the four previous simple filters,
requires training to learn a decision boundary. To prop-
erly evaluate our Svm filter, we employ the commonly used
10-fold cross validation procedure. Typically, 10-fold cross
validation divides our initial data set of examples into 10
subsets of examples. Of these 10 subsets, 9 are pooled to-
gether to train the Svm model – the algorithm takes these
examples along with their ground truth labels and builds
a model that learns how to separate the positives from the
negatives. The last subset is then used for validation, or
testing – the ground truth labels are held aside while the
examples are given to the model to predict a label. We re-
fer to this subset as the test-set. We can then compare the
predicted labels against the ground truth labels to evaluate
the accuracy of the model. This is repeated 10 times such
that each subset is used exactly once for validation. In our
experiment, each map constitutes one subset of examples
since we have 10 maps. Since there are much fewer Cαs
than points in the grid, we have a large negative bias in
the training partition. This can cause problems in training
a model, so we modify our procedure by removing enough
negative examples in our training partition to create an
equal balance. This is neither necessary nor desired for
the test-set.

Classification is done using an RBF kernel in an Svm
using the SVM light (Joachim, 1999) package. To set the
complexity parameter C as well as the kernel width γ,
the training examples in each fold are divided into two
sets, 80% for actual training (called our training set) and
20% for tuning (called our tuning set). The set of values
considered for C are 1, 10, 100, and 1000 while γ ranges
over 0.0001, 0.001, 0.01, and 0.1. The pair of values for C
and γ that produce the largest area under the curve of the
function described in Figures 6 and 7 for the tuning set is
chosen for validation.

Figure 7a plots the averaged results for both the Svm
filter and point-density filter on the 3Å maps in our data
set. The Svm filter outperforms the density filter over the
entire graph in 3Å maps. This result is consistent across
all maps. To analyze the relative speedup of Svms over a
simple filter, we look at the fraction of the map analyzed
to acquire 95% of the correct Cα locations (0.95 on the y-
axis of Figure 7). Using this metric, Svms provide a 31%
reduction in number of examples needed to be analyzed by
Acmi-sh, relative to a simple point density filter alone. In
fact, the difference in area under the curve and number of
examples evaluated is statistically significantly better for
the Svm filter with a p-value less than 0.001 according to
a two-tailed t-test.

The results for 4Å maps, shown in Figure 7b, are not
as convincing. While the Svm filter does better at most
levels of Cαs kept, the performance only matches that of
the density filter above the 90% level. The area under the
curve is slightly better for the Svm filter, but the percent-
age of examples evaluated at 95% Cαs kept actually goes
up slightly, although the values are statistically insignif-
icant. It seems likely that in poorer resolution maps –
where few fine details are visible – the bispectrum features
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Figure 7: A comparison of two different filters: the best
simple filter from Figure 6, the point-density filter, and
a filter based on a support vector machine (Svm). Filter
performance is compared on (a) 3Å, (b) 4Å resolution and
(c) varied resolution, experimentally phased density maps.

provide little additional information over the density val-
ues alone. In some cases, using these additional features
may even hurt performance by overfitting the data.

The maps in our data set are all well-phased density
maps with poor resolution. While density proves to be a
fairly consistent indicator for well-phased maps, a point-
density filter does not perform as well in poorly phased
maps. DiMaio et al. (2007b) describes in a detail a set of
ten experimentally phased (as opposed to model-phased)
density maps from the Center for Eukaryotic Genomics at
the University of Wisconsin–Madison. Figure 7c shows the
results of running the point-density filter and Svm filter
on this data set. Both filters show decreased performance
relative to the well-phased maps. The Svm filter, however,
shows the same performance improvement (compared to
the point-density filter) as in the 3Å data set. It reduces
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Figure 8: A comparison of Acmi-SH’s and Acmi’s tem-
plate matching on (a) 3Å and (b) 4Å resolution maps, in
terms of average per-amino-acid log-likelihood of the true
trace (higher values are better).

the number of candidate Cαs by 31%, filtering more than
75% of the map while retaining 95% of true Cα locations.

5.3 Template Matching

This section compares Acmi and Acmi-SH’s template-
matching performance. We compare the performance of
both algorithms as the angular sampling of our density
template is varied. Given the sequences for each of the
ten proteins in our test-set, we considered searching for 10
randomly chosen amino acids in each protein (100 amino
acids total). For each amino acid, we found at least 50
template pentapeptides with similar 5-mer sequences.

To test Acmi, we cluster these pentapeptides based on
the RMS deviation of their optimal alignment, and select
a representative structure from each cluster. Further de-
tails are in the original Acmi paper (DiMaio et al., 2006).
When testing our improved implementation (Acmi-SH),
we perform no such clustering. Instead, we search the en-
tire map for each of the 50+ templates. For Acmi-SH,
we filter out all points below the 80th percentile density,
assigning them some low probability.

Figure 8 compares the performance of Acmi to our im-
proved search using spherical harmonics (Acmi-SH) in
both 3Å and 4Å density maps. In this plot, the x-axis
measures the running time of the algorithm (in seconds),
while the y-axis measures the per-amino-acid log-likelihood
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that matching gives the true solution. Higher likelihoods
are better; the more likely the true model, the more likely
its structure will be recovered by inference.

It is interesting to note here that Acmi-SH, even at
its lowest bandwidth limit, offers equal or better accuracy
then the previous approach, in significantly less running
time.

5.4 Comparison of Protein Models Produced

In previous work, we compared the performance of Acmi
on these maps to two other automated techniques spe-
cialized to low-resolution maps: Ioerger and Sacchettini
(2003)’s Textal and Terwilliger (2003)’s Resolve, both
described in Section 2.3.

We test Acmi-SH on these same maps, using the same
experimental methodology. Figure 9 compares the accu-
racy of the Cα model predicted by Acmi-SH with that of
Acmi, Resolve, and Textal. Figures 9a and 9b show
the average Cα RMS error and percentage of amino acids
located over the ten structures. Figures 9c and 9d show
scatter plots in which each individually solved electron-
density map is a point. The x-axis indicates Acmi’s error
(or percent amino acids correctly identified); the y-axis
shows the same metric for Acmi-SH.

On these maps, Acmi uses θ = 20◦ angular discretiza-
tion, while Acmi-SH was run with a bandwidth B = 12,
and a filter that eliminated a conservative 80% of points
based on the density of each point.

Here Acmi-SH shows a clear improvement over all other
approaches. Both Figures 8 and 9 show the greatest im-
provement in 4Å-resolution maps. Even with this im-
proved accuracy, the running time of Acmi-SH is about
60% of that of Acmi (see the middle dots in Figure 8).

The accuracy increase in using spherical harmonics likely
comes from several different places. The increased effi-
ciency allows a finer angular sampling: the bandwidth
limit B = 12 is analogous to a 15◦ angular spacing. This
increased efficiency also lets us search for each individual
template – without clustering – which may help accuracy
somewhat. Searching for a 5Å sphere, which captures the
context of a particular amino acid (i.e. is an amino-acid
typically on the surface or in the core of the protein?) may
be improving the matching as well. Finally, band-limiting
the signal, which throws out the highest-frequency compo-
nents, may help eliminate noise from the density map.

5.5 Structure Database Search

To test Shed, the structure-database search algorithm
from Section 4.2, we evaluate alignments of our 10 poor
quality maps against a database of solved structures. Since
there is not a large repository of density maps publicly
available, we simulate this by generating calculated-density
maps from PDB coordinates from a large set of protein
chains in the Protein Data Bank as outlined in Section
4.2. We perform spherical-harmonic decomposition on a
sphere centered at the center of mass of the protein chain,

sampling density in 16 concentric spherical shells extend-
ing to 32Å. For the test-set density map, a similar set of
spheres – extending outward from the density map’s center
of mass – are sampled.

As mentioned, one difficulty is that the density map may
contain many molecules in the asymmetric unit. To over-
come this issue, we assume that a human isolated the area
of the map where one molecule exists and masks the rest of
the map out. There are automated methods, such as Find-
mol (Mckee et al., 2005), which attempt to do this, but
results on our low resolution maps were not always good.
For our purposes, we manually masked the density map
by keeping density values for all grid points within 7Å of a
Cα in one monomer of the protein. An additional problem
is that noise in the density map may skew the center of
mass. To account for this, we searched a 2Å×2Å×2Å grid
around each center of mass.

To account for structures with multiple domains, we
optionally use k -means clustering (MacQueen, 1967) to
choose the best set of centers in the solved structures as-
suming each input structure contains 1, 2, or 3 domains.
Briefly, k -means clustering divides the density map into
k partitions, each represented by its center of mass. Each
grid point joins a partition based on which of the k center of
masses(initialized randomly) it is closest to. The k centers
are updated and the process is repeated until the values
converge. The optimal alignment between each sampled
sphere on the grid and the calculated-density map, over
all center of masses and grid searches, is returned as the
score between the maps.

To test the algorithm, we download a list of 6529 pro-
tein chains from the Pisces protein-sequence culling server
(Wang and Dunbrack, 2003). The data set contains all
PDB entries with resolution ≤3.0Å, percentage amino acid
identify cutoff of 30%, and R-factor cutoff of 1.0. Each
of our ten 3Å resolution maps is part of the test-set and
aligned against each chain in the culled PDB data set, us-
ing the search method from Algorithm 2 and the method-
ology above. As a comparison, we use Blast (Atschul
et al., 1990) to see if the performance of our search al-
gorithm is better than a sequence-only method. While
structural-homology detection is not Blast’s original in-
tent, sequence homology is a reasonable proxy to struc-
tural homology when structural coordinates do not ex-
ist. For ground truth, the held-aside solved PDB struc-
ture for our test maps is aligned to each query chain using
DaliLite (Holm and Sander, 1996; Holm and Park, 1999),
a dynamic-programming method which finds the optimal
alignment between two PDB files taking into account se-
quence and structure.

Results are shown in Figure 10 and Table 1. For each
map, we sort the alignment scores for Shed and Blast.
Figure 10 displays, for each method, the average number
of results in the top 5/10/25 for that method that are
also ranked in DaliLite’s top 5/10/25. In other words,
how many of DaliLite’s top 5/10/25 results are found in
Shed’s and Blast’s top 5/10/25 results. Table 1 shows
the results for each map. For example, Shed’s top 5 scores
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Figure 9: Comparing Acmi-SH’s protein models with three other methods. (a) The average Cα RMS error and (b)
percentage of amino acids located. Scatter plots compare Acmi’s performance with Acmi-SH’s on (c) RMS error and
(d) percentage of amino acids located. For (c) and (d), the shaded region indicates superior performance by Acmi-SH.

for alignments on Map 1 were respectively ranked 2,3,4,6,1
in our DaliLite ground-truth calculation, meaning that 4
of Shed’s top 5 results were in DaliLite’s top 5.

On average, our Shed method finds more structural ho-
mologs than Blast. If you consider only the top 5 results
returned by each method, Shed returns one extra correct
structure on average. This advantage grows larger as more
results are returned, although both methods begin to re-
turn many more false positives. Looking at the specific re-
sults in Table 1, with the exception of Map 5, our method
does better than or equal to Blast, demonstrating that
a density map does provide clues to the three-dimensional
structure of a protein that can aid in detecting homolo-
gous structures. The bottom row in the table shows the
number of “wins” each method has over the other. When
5 results are returned, Shed returned more correct struc-
tures 6 times but never returned fewer. This advantage
stays relatively the same, winning 7 to 1 when 10 results
are returned and 7 to 2 when 25 results are returned.

Several maps, however, did not give great results for ei-
ther algorithm. While both methods consistently found
the best match, maps 2, 3, 4, and 8 did not find many
other matches. Looking at the DaliLite results, the align-
ment scores drop significantly after the top match indicat-
ing there were no more significant results to find. Another
shortcoming is that the our method did not seem to find
many domain, or substructure, matches. That is, most
results detected only global similarity in structure. This
could be addressed by isolating smaller spheres around the
various center of masses. Also, the density map should also
be broken into many small domains to match against pos-
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Figure 10: The average number of structural homologs
found by Shed and Blast when considering the top 5,
10, and 25 results returned. A near-homolog is a returned
result that is also returned in the top 5, 10, or 25 results
of DaliLite.

sible domains in the solved structure. Our algorithm does
run slower than Blast, but can perform a large database
search in a few hours on a single workstation.

6 Conclusions and Future Work

We describe a significant improvement over our previous
work in three-dimensional template matching in electron-
density maps. Our previous work used Fourier convolution
to quickly search over all (x, y, z) coordinates for some
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Top 5 Top 10 Top 25
Map Shed Blast Shed Blast Shed Blast

1 4 4 10 9 14 11
2 2 1 2 1 3 2
3 1 1 1 1 1 1
4 2 1 2 1 2 1
5 3 3 4 5 4 10
6 3 1 3 1 3 1
7 3 1 7 1 17 1
8 1 1 2 1 2 1
9 3 2 3 3 3 4
10 4 1 7 1 13 1

Wins 6 0 7 1 7 2

Table 1: Structural homology results broken down by map
and number of results returned. The Wins are the number
of maps over which one method outperformed the other,
shown in bold.

rotation of a template. Instead, we use the spherical-
harmonic decomposition of a template to rapidly search
all rotations of some fragment at a single (x, y, z) location.

Unlike Fourier convolution, this method allows an ini-
tial filtering algorithm to reduce computational time by
“masking out” locations in the density map unlikely to
contain any template instance. A simple filter allows us
to eliminate 80% of density maps while maintaining most
of the correct positions for templates. Spherical-harmonic
decomposition generalizes to a set of rotation-invariant fea-
tures, which we use in training an Svm classifier for im-
proved filtering of density points. Our improved template
matching offers both improved efficiency and accuracy,
compared to previous work, finding substantially better
models in about 60% of the running time.

Finally, we extend our template-matching method to
handle large protein alignments to a density map. Our
Shed framework demonstrates that electron-density maps
can be used in a structural-homology search. In the ab-
sence of a solved structure, Shed produces more structural
homologs than methods that only use protein sequences,
such as Blast. Shed can be useful in the early stages
of structure determination and can provide important in-
formation from maps which prove too difficult to solve.
Future work would need to address the limitations of need-
ing to isolate a single monomer in the density map before
the search is performed. One possible solution involves
using our k -means procedure to isolate the center of each
monomer and then varying the radius of our sphere of sam-
pling.

An interesting future direction involves template search-
ing and Acmi’s probabilistic inference. Acmi-SH makes it
possible to efficiently search for a fragment at a single loca-
tion. This suggests an approach where we initial search few
locations. As inference in our model proceeds, locations
that appear to be promising Cα locations may emerge. We
could then search at these locations, in essence using the

first few iterations of our inference algorithm as a first-pass
filter. This work represents a significant advance in inter-
pretation of poor-resolution of density maps. However, to
increase usability by the crystallographic community, more
of an effort must be made at reducing running time.
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