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Introduction

Statistical Relational Learning (SRL) focuses on algorithms for learning statistical
models from relational databases. SRL advances beyond Bayesian network learning
and related techniques by handling domains with multiple tables, by representing
relationships between different rows of the same table, and by integrating data from
several distinct databases. Currently, SRL techniques can learn joint probability
distributions over the fields of a relational database with multiple tables. Never-
theless, SRL techniques are constrained to use only the tables and fields already
in the database, without modification. In contrast, many human users of relational
databases find it beneficial to define alternative views of a database—further fields
or tables that can be computed from existing ones. This chapter shows that SRL
algorithms also can benefit from the ability to define new views. Namely, it shows
that view learning can be used for more accurate prediction of important fields in
the original database.

We augment SRL algorithms by adding the ability to learn new fields, intension-
ally defined in terms of existing fields and intensional background knowledge. In
database terminology, these new fields constitute a learned wview of the database.
We use Inductive Logic Programming (ILP) to learn rules which intensionally de-
fine the new fields. We present two different methods to accomplish this goal. The
first is a two-step approach where we search for all views of interest. This process
is expensive and does not necessarily guarantee selecting the most useful view. The
second framework, which we refer to as SAYU-View, has a tighter coupling between
view generation and view usage. Our results show that view learning can result in
significant benefits.

We present view learning in the specific application of creating an expert system
in mammography. We chose this application for a number of reasons. First, it is an
important practical application where there has been recent progress in collecting
sizable amounts of data. Second, we have access to an expert-developed system. This
provides a base reference against which we can evaluate our work [Burnside et al.,
2000]. Third, a large proportion of examples are negative. This distribution skew
is often found in multi-relational applications. Last, our data consists of a single
table. This allows us to compare our techniques against standard propositional
learning. In this case, it is sufficient for view learning to extend an existing table
with new fields, achieved by using ILP to learn rules for unary predicates. For
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other applications, it may be desirable to learn predicates of higher arity, which
will correspond to learning a view with new tables rather than new fields only.

View Learning for Mammography

Offering breast cancer screening to the ever-increasing number of women over age
40 represents a great challenge. Cost-effective delivery of mammography screening
depends on a consistent balance of high sensitivity and high specificity. It has been
demonstrated that subspecialist, expert mammographers achieve this balance and
perform significantly better than general radiologists [Brown et al., 1995, Sickles
et al., 2002]. General radiologists have higher false positive rates and hence biopsy
rates, diminishing the positive predictive value for mammography [Brown et al.,
1995, Sickles et al., 2002]. Unfortunately, despite the fact that specially trained
mammographers detect breast cancer more accurately, there is a longstanding
shortage of these individuals [Eklund, 2000].

An expert system in mammography has the potential to help the general radiologist
approach the effectiveness of a subspecialty expert, thereby minimizing both false
negative and false positive results. Bayesian networks are probabilistic graphical
models that have been applied to the task of breast cancer diagnosis from mam-
mography data [Kahn et al., 1997, Burnside et al., 2000, 2004b]. Bayesian networks
produce diagnoses with probabilities attached. Because of their graphical nature,
they are comprehensible to humans and useful for training. As an example, Fig-
ure 1.1 shows the structure of a Bayesian network developed by a subspecialist,
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Patient Abnormality Date Mass Shape MassSize | Location Be/Mal
P1 1 5/02 Spic 0.03 RU4 B
P1 2 5/04 Var 0.04 RU4 M
P1 3 5/04 Spic 0.04 LL4 B

Table 1.1 The National Mammography Database schema, omitting some of the
features.

expert mammographer. For each variable (node) in the graph, the Bayes net has
a conditional probability table giving the probability distribution over the values
that variable can take for each possible setting of its parents. The Bayesian network
in Figure 1.1 achieves accuracies higher than those of other systems and of general
radiologists who perform mammograms, and commensurate with the performance
of radiologists who specialize in mammography [Burnside et al., 2000].

Table 1.1 shows the main table (with some fields omitted for brevity) in a large
relational database of mammography abnormalities. The database schema is spec-
ified in the National Mammography Database (NMD) standard established by the
American College of Radiology [ACR, 2004]. The NMD was designed to standardize
data collection for mammography practices in the United States and is widely used
for quality assurance. We omit a second, much smaller biopsy table, simply because
we are interested in predicting—before the biopsy—whether an abnormality is be-
nign or malignant. Note that the database contains one record per abnormality. By
putting the database into one of the standard database “normal” forms, it would
be possible to reduce some data duplication, but only a very small amount: the
patient’s age, status of hormone replacement therapy and family history could be
recorded once per patient and date in cases where multiple abnormalities are found
on a single mammogram date. Such normalization would have no effect on our ap-
proach or results, so we choose to operate directly on the database in its defined
form.

Figure 1.2 presents a hierarchy of the four types of learning that might be used
for this task. Level 1 and Level 2 are standard types of Bayesian network learning.
Level 1 is simply learning the parameters for the expert-defined network structure.
Level 2 involves learning the actual structure of the network in addition to its pa-
rameters. Notice that to predict the probability of malignancy of an abnormality,
a Bayes net uses only the record for that abnormality. Nevertheless, data in other
rows of the table may also be relevant: radiologists may also consider other abnor-
malities on the same mammogram or previous mammograms. For example, it may
be useful to know that the same mammogram also contains another abnormality,
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Figure 1.2 Hierarchy of learning types. Levels 1 and 2 are available through
ordinary Bayesian network learning algorithms, Level 3 is available only through
state-of-the-art SRL techniques, and Level 4 is described in this chapter.

with a particular size and shape; or that the same person had a previous mammo-
gram with certain characteristics. Incorporating data from other rows in the table
is not possible with existing Bayesian network learning algorithms and requires sta-
tistical relational learning (SRL) techniques, such as probabilistic relational mod-
els [Friedman et al., 1999a]. Level 3 in Figure 1.2 shows the state-of-the-art in SRL
techniques, illustrating how relevant fields from other rows (or other tables) can be
incorporated into the network, using aggregation if necessary. Rather than using
only the size of the abnormality under consideration, the new aggregate field allows
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the Bayes net to also consider the average size of all abnormalities found in the
mammogram.

Presently, SRL is limited to using the original view of the database, that is,
the original tables and fields, possibly with aggregation. Despite the utility of
aggregation, simply considering only the existing fields may be insufficient for
accurate prediction of malignancies. Level 4 in Figure 1.2 shows the key capability
that will be introduced and evaluated in this chapter: using techniques from rule
learning to learn a new view. In this figure, the new view includes two new features
utilized by the Bayes net that cannot be defined simply by aggregation of existing
features. The new features are defined by two learned rules that capture “hidden”
concepts potentially useful for accurately predicting malignancy, but that are not
explicit in the given database tables. One learned rule states that a change in
the shape of an abnormality at a location since an earlier mammogram may be
indicative of a malignancy. The other says that an increase in the average of the sizes
of the abnormalities may be indicative of malignancy. Note that both rules require
reference to other rows in the table for the given patient, as well as intensional
background knowledge to define concepts such as “increases over time.” Neither
rule can be captured by standard aggregation of existing fields.

Note that Level 3 and Level 4 learning would not be necessary if the database
initially contained all the potentially useful fields capturing information from other
relevant rows or tables. For example, the database might be initially constructed
to contain fields such as “slope of change in abnormality size at this location over
time”, “average abnormality size on this mammogram”, and so on. If humans can
identify all such potentially useful fields beforehand and define views containing
these, then Level 3 and Level 4 learning are unnecessary. Nevertheless, the space
of such possibly useful fields is quite large, and perhaps more easily searched by
computer via Level 3 and Level 4 learning. Certainly in the case of the National
Mammography Database standard [ACR, 2004], such fields were not available
because they had not been defined and populated in the database by the domain
experts, thus making Level 3 and Level 4 learning potentially useful.

Naive View Learning Framework

One can imagine a variety of approaches to perform view learning. As a first
step, we apply existing technology to obtain a view learning capability. Any
relational database can be naturally and simply represented using a subset of first-
order logic [Ramakrishnan and Gehrke, 2000]. Inductive logic programming (ILP)
provides algorithms to learn rules, also expressed in logic, from such relational
data [Muggleton, 1991], possibly together with background knowledge expressed as
a logic program. ILP systems operate by searching a space of possible logical rules,
looking for rules that score well according to some measure of fit to the data.

Our first learning framework works in two steps. First, we learn rules to predict
whether an abnormality is malignant. We extend the original database by introduc-
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ing the new rules as additional features. More precisely, each rule will correspond
to a binary feature such that it takes the value true if the body, or condition, of the
rule is satisfied, and false otherwise. We then run the Bayesian network structure
learning algorithm, allowing it to use these new features in addition to the original
features. Section 1.7 notes the relationship of the approach to earlier work on ILP
for feature construction.

Below we show a simple rule learned by an ILP system. The rule covers 48 positive
examples and 123 negative examples. This rule can now be used as a field in a new
view of the database, and consequently as a new feature in the Bayesian network.

Abnormality A in mammogram M may be malignant if:
A’s tissue is not asymmetric,
M contains another abnormality A2,
A2’s margins are spiculated, and
A2 has no architectural distortion.

Note that the last two lines of the rule refer to other rows of the relational table for
abnormalities in the database. Hence this rule encodes information not available to
the current version of the Bayesian network [Davis et al., 2005b].

Initial Experiments

The purposes of the experiments we conducted are two-fold. First, we want to
determine if using SRL yields an improvement compared to propositional learning.
Secondly, we want to evaluate whether we see an improvement when moving up a
level in the hierarchy outlined in Figure 1.2. First, we try to learn a structure with
just the original attributes (Level 2) and see if that performs better than using
the expert structure with trained parameters (Level 1). Next, we add aggregate
features to our network, representing summaries of abnormalities found either in a
particular mammogram or for a particular patient. This corresponds to Level 3 and
we test whether this improves over Levels 1 and 2. Finally, we investigate doing
Level 4 learning through the two-step algorithm and compare its performance to
Levels 1 through 3.

We experimented with a number of structure learning algorithms for Bayesian
Networks, including Naive Bayes, Tree Augmented Naive Bayes [Friedman et al.,
1997], and the Sparse Candidate Algorithm [Friedman et al., 1999b]. However, we
obtained the best results with the TAN algorithm in all experiments, so we will focus
our discussion on TAN. In a TAN network, each attribute can have at most one
other parent in addition to the class variable. The TAN model can be constructed
in polynomial time with a guarantee that the model maximizes the Log Likelihood
of the network structure given the dataset [Geiger, 1992, Friedman et al., 1997].
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1.4.1 Data and Methodology

We collected data for all screening and diagnostic mammography examinations that
were performed at the Froedtert and Medical College of Wisconsin Breast Imaging
Center between April 5, 1999 and February 9, 2004. It is important to note that
the data consists of a radiologist’s interpretation of a mammogram and not the
raw image data. The radiologist reports conformed to the National Mammography
Database (NMD) standard established by the American College of Radiology. From
these reports, we followed the original network [Burnside et al., 2000] to cull the 36
features deemed to be relevant by co-author Burnside, an expert mammographer.
To evaluate and compare these approaches, we used stratified 10-fold cross-
validation. We randomly divided the abnormalities into 10 roughly equal-sized
sets, each with approximately one-tenth of the malignant abnormalities and one-
tenth of the benign abnormalities. When evaluating just the structure learning and
aggregation, nine folds were used for the training set. When performing aggrega-
tion, we used binning to discretize the created features. We took care to only use
the examples from the training set to determine the bin widths. When performing
view learning, we had two steps in the learning process. In the first part, four folds
of data were used to learn the ILP rules. The remaining five folds were used to
learn the Bayes net structure and parameters.

When using cross-validation on a relational database, there exists one major
methodological pitfall. Some of the cases may be related. For example, we may
have multiple abnormalities for a single patient. Because these abnormalities are
related (same patient), having some of these in the training set and others in the
test set may cause us to perform better on those test cases than we would expect
to perform on cases for other patients. To avoid such “leakage” of information
into a training set, we ensured that all abnormalities associated with a particular
patient were placed into the same fold for cross-validation. Another potential pitfall
is that we may learn a rule that predicts an abnormality to be malignant based on
properties of abnormalities in later mammograms. We ensured that we will never
predict the status of an abnormality at a given date based on findings recorded for
later dates.

1.4.2 Approach for Each Level of Learning

Level 1: Parameter Learning. We estimated the parameters of the expert
structure from the dataset using maximum likelihood estimates with Laplace cor-
rection. It has been previously noted that learning the parameters of the network
improves performance over having expert defined probabilities in each node [Burn-
side et al., 2004a).

Level 2: Structure Learning. The relational database for the mammography
data contains one row for each abnormality described on a mammogram. Fields in
this relational table include all those shown in the Bayesian network of Figure 1.1.
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Patient | Abnormality | Date  |Mass Shape | ... MassSize | Location | Average Average Be/Ma
Patient Mammogram
MassSize | MassSize

P1 1 5/02 Spic 0.03 RU4 0.0367 0.03 B
P1 2 5/04 Var 0.04 RU4 0.0367 0.04 M
P1 3 5/04 Spic 0.04 LL4 0.0367 0.04 B

Table 1.2 Database after Aggregation on Mass Size Field. Note the addition of
two new fields, Average Patient Mass Size and Average Mammogram Mass Size,
which represent aggregate features.

Therefore it is straightforward to use existing Bayesian network structure learning
algorithms to learn a possibly improved structure for the Bayesian network.

Level 3: Aggregate Learning. We selected the numeric (e.g. the size of mass)
and ordered features (e.g. the density of a mass) in the database and computed
aggregates for each of these features. In all, we determined that 27 of the 36
attributes were suitable for aggregation. We computed aggregates on both the
patient and the mammogram level. On the patient level, we looked at all of the
abnormalities for a specific patient. On the mammogram level, we only considered
the abnormalities present on that specific mammogram. To discretize the averages,
we divided each range into three bins. For binary features we used predefined
bin sizes, while for the other features we attempted to get equal numbers of
abnormalities in each bin. For aggregation functions we used maximum and average.
The aggregation introduced 27 x 4 = 108 new features. The following paragraph
presents further details of our aggregation process.

We used a three-step process to construct aggregate features. First, we chose a
field to aggregate. Second, we selected an aggregation function. Third, we needed
to decide over which rows to aggregate the feature, that is, which keys or links to
follow. This is known as a slot chain in PRM terminology [Friedman et al., 1999a].
In our database, two such links exist. The patient ID field allows access to all the
abnormalities for a given patient, providing aggregation on the patient level. The
second key is the combination of patient ID and mammogram date, which returns
all abnormalities for a patient on a specific mammogram, providing aggregation
on the mammogram level. To demonstrate this process, we will work though an
example of computing an aggregate feature for patient 1 in the database given
in Figure 1.1. We will aggregate on the Mass Size field and use average as the
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aggregation function. Patient 1 has three abnormalities, one from a mammogram
in May 2002 and two from a mammogram in May 2004. To calculate the aggregate
on the patient level, we average the size for all three abnormalities, which is .0367.
To find the aggregate on the mammogram level for patient 1, we have to perform
two separate computations. First, we follow the link P1 and 5/02, which yields
abnormality 1. The average for this key mammogram is simply .03. Second, we
follow the link P1 and 5/04, which yields abnormalities 2 and 3. The average for
these abnormalities is .04. Table 1.2 shows the database following construction of
these aggregate features.

Level 4: View Learning. We used the ILP system Aleph [Srinivasan, 2001] to
implement Level 4 learning. Aleph was asked to learn rules predictive of malignancy.
We introduced three new intensional tables into Aleph’s background knowledge to
take advantage of relational information.

1. The prior Mammogram relation connects information about any prior abnormal-
ity that a given patient may have.

2. The same_Location relation is a specification of the previous predicate. It adds
the restriction that the prior abnormality must be in the same location as the
current abnormality. Radiology reports include information about the location of
abnormalities.

3. The in_Same Mammogram relation incorporates information about other abnor-
malities a patient may have on the current mammogram.

By default, Aleph is set up to generate rules that would fully explain the examples.
In contrast, our goal was to extract rules that would be beneficial as new views. The
major problem in implementing Level 4 learning was how to select rules that would
best complement Level 3 information. Clearly, Aleph’s standard coverage algorithm
was not designed for this application. Instead, we chose to first enumerate as many
rules of interest as possible, and then chose interesting rules.

In order to obtain a varied set of rules, we ran Aleph under induce max for each fold.
Induce max uses every positive example in each fold as a seed for the search. Also
note that induce max does not discard previously covered examples when scoring
a new clause. Several thousand distinct rules were learned for each fold, with each
rule covering many more malignant cases than (incorrectly covering) benign cases.
We avoid the rule overfitting found by other authors [Perlich and Provost, 2003] by
doing breadth-first search for rules and by having a minimal limit on coverage.
Each seed generated anywhere from zero to tens of thousands of rules. Adding all
rules would mean introducing thousands of often redundant features. We imple-
mented the following algorithm:

1. We scanned all rules looking for duplicates and for rules that performed worse
than a more general rule. This step significantly reduced the number of rules to
consider.
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2. We sorted rules according to their m-estimate.

3. We used a greedy algorithm that picks the rule with the highest m-estimate
such that it covers an unexplained training example. Furthermore, each rule needs
to cover a significant number of malignant cases. This step is similar to the standard
ILP greedy covering algorithm, except that we do not follow the original order of
the seed examples.

4. Last, we scanned the remaining rules, selecting those that covered a significant
number of examples, and that were different from all previous rules, even though
these rules would not cover any new examples.

It is important to note that the rule selection was an automated process. We picked
the top 50 clauses in our experiments, obtained from practical considerations on
the size of the Bayesian networks we would need to learn. The resulting views were
added as new features to the database.

1.4.3 Results

We present the results of our first experiment, comparing Levels 1 and 2, using
both ROC and precision-recall curves. Figure 1.3 shows the ROC curve for these
experiments, and Figure 1.4 shows the precision-recall curves. Because of our skewed
class distribution, due to the large number of benign cases, we prefer precision-
recall curves over ROC curves because they better show the number of “false
alarms,” or unnecessary biopsies. Therefore, we use precision-recall curves for the
remainder of the results. Here, precision is the percentage of abnormalities that
we classified as malignant that are truly cancerous. Recall is the percentage of
malignant abnormalities that were correctly classified. To generate the curves, we
pooled the results over all ten folds by treating each prediction as if it had been
generated from the same model. We sorted the estimates and used all possible split
points to create the graphs.

Figure 1.5 compares performance for all levels of learning. We can observe very
significant improvements when adding multi-relational features. Aggregates provide
the most benefit for higher recalls whereas rules help in the medium and low ranges
of recall. We believe this is because ILP rules are more accurate than the other
features, but have limited coverage.

Figure 1.6 shows the average area under the precision-recall curve for each level
of learning that we defined in Figure 1.2. We only consider recalls above 50%,
as for this application radiologists would be required to perform at least at this
level. We further use the paired t-test to compare the areas under the curve
(recall > 0.5) for every fold. We found improvement of Level 2 over Level 1 to
be statistically significant with a 99% level of confidence. According to the paired
t-test the improvement of Level 3 presents an improvement over Level 2 at the 97%
confidence level. Furthermore, Level 4 over Level 2 is significant, using the area
under the curve metric, at the 99% level. However, there is no significant difference
between Level 3 and Level 4.
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Figure 1.3 ROC Curves for Parameter Learning (Level 1) compared to Structure
Learning (Level 2).
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Figure 1.4 Precision-Recall Curves for Parameter Learning (Level 1) compared
to Structure Learning (Level 2).
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Figure 1.5 Precision-Recall Curves for Each Level of Learning

In this task, considering relational information is still crucial for improving perfor-
mance since the relational approaches outperform the propositional methods. We
mostly see significant improvement as we move the learning hierarchy outlined in
Figure 1.2. However, in this initial approach we see no significant difference between
Level 3 and Level 4.

The process of generating the views in Level 4 can be useful to the radiologist,
as it identifies potentially interesting correlations between attributes. During our
experiments, we presented co-author Burnside with a set of 130 rules to review. She
found several rules interesting, including the following;:

Abnormality A in mammogram M for patient P is maligant if:
has BI-RADS category 5,

has a mass present,

has a mass with high density,

has a prior history of breast cancer,

has an extra finding on same mammogram (B),

has no pleomorphic microcalcifications,

W w oY=

had no punctate calcificatioms.

This rule identified 42 malignant mammographic findings while only misclassifying
11 benign findings as cancer. The radiologist was intrigued by this rule because
it suggests a hitherto unknown relationship between malignancy and high density
masses. In general, mass density was not previously thought to be a highly predictive
feature, so this rule is valuable in its own right [Burnside et al., 2005].
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Figure 1.6 Area Under the Curve For Recalls Above 50%

Integrated View Learning Framework

The initial methodology for Level 4 follows a two-step process. In the first step,
an ILP algorithm learns a set of rules. In the second step, the learned rules are
added to the pre-existing features to form a final model. This approach suffers from
several weaknesses. First, we follow a brute-force approach to search for all good
rules, but we have no way to evaluate which ones will actually improve the network.
Second, the metric used to score the rules differs from the one we will ultimately
use to evaluate the final model. Thus, we have no guarantee that the rule learning
process will select the rules that best contribute to the final classifier.

We propose an alternative approach, based on the idea of constructing the classifier
as we learn the rules [Davis et al., 2005a]. In the new approach, rules are scored
by how much they improve the classifier, providing a tight coupling between rule
generation and rule usage. We call this methodology Score As You Use or SAYU.
SAYU is closely related to Landwehr, Kersting and De Raedt’s nFOIL [Landwehr
et al., 2005] and also to Popescul et al’s work on Structural Logistic Regres-
sion [Popescul et al., 2003]. The relationships to these important works are discussed
in Section 1.7.

Our implementation of SAYU depends on both an ILP system and a propositional
learner. Following the original work, we used Aleph as a rule proposer and Tree
Augmented Naive Bayes (TAN) as our propositional learner.

Our algorithm works as follows. We randomly choose a seed example, and obtain
its most specific, or saturated clause. We then perform a top down breadth-first
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Input: Train Set T, Tune Set S, Stop Criteria
Output: A TAN Model
M = BuildTANClassifier(T);
BestScore = AreaUnderPRCurve(M, S);
while Stop criteria not met do
done = false; Choose a positive example as a seed and saturate the example;
repeat
NewPFeature = Generate new clause according to saturated example;
Myey = BuildTANClassifier(T U NewFeature );
NewScore = AreaUnderPRCurve(M, S U NewFeature);
if NewScore > BestScore then
T =T U NewFeature;
S =S U NewPFeature;
BestScore = NewScore;

M = Mnew;
done = true;
end

until not(done);
end

return M
Algorithm 1: SAYU-View Algorithm

search of the subsumption lattice. We evaluate each clause by converting it to a
binary feature, which is added to the current training set. We learn a new Bayes net
incorporating this new feature, and score the network. If the new feature improves
the score of the network, then we retain the feature in the network. If the feature
degrades the performance of the network, it is discarded, we and revert back to the
old classifier and continue searching. One other central difference exists with our
algorithm compared to Aleph in that after the network accepts a rule, we randomly
select a new seed. Thus, we are not searching for the best rule, but only the first rule
that helps. However, nothing prevents the same seed from being selected multiple
times during the search.

Finally, we need to define a scoring function. The main goal is to use the same
scoring function for both learning and evaluation. Furthermore, we wish to be able
to handle datasets that have a highly skewed class distribution. In the presence of
skew, precision and recall are often used to evaluate classifier quality. In order to
characterize how the algorithm performs over the whole precision recall space, we
follow Goadrich et al. [Goadrich et al., 2004], and adopt the area under the precision-
recall curve as our scoring metric. When calculating the area under the precision-
recall curve, we integrate from recall levels of 0.5 or greater. As we previously noted,
a radiologist would have to achieve levels of recall in this range.

We have previously reported that SAYU performs on par with Level 3 and the initial
approach to Level 4. However, in these experiments we implemented SAYU as a
rule combiner only, not as a tool for view learning that adds fields to the existing
set of fields (features) in the database [Davis et al., 2005a]. We have modified SAYU
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to take advantage of the predefined features yielding a more integrated approach to
View Learning. We also report on a more natural design where SAYU starts from
the Level 3 network. We call this approach SAYU-View. Algorithm 1 gives psuedo
code for the SAYU-View algorithm.

Further Experiments and Results

We use essentially the same methodology as described previously for the initial
approach to view learning. On each round of cross-validation, we use four folds
as a training set, five folds as a tuning set and one fold as a test set. We only
saturate examples from the training set. For SAYU-View, we use only the training
set to learn the rules. The key difference between initial Level 4 and SAYU-View
is the following: for SAYU-View we use the training set to learn the structure and
parameters of the Bayes net, and we use the tuning set to calculate the score of a
network structure. Previously, we used the tune set to learn the network structure
and parameters. In order to retain a clause in the network, the area under the
precision-recall curve of the Bayes net incorporating the rule must achieve at least
a two percent improvement over the area of the precision-recall curve of the best
Bayes net.

Within SAYU, the time to score a rule has increased. The Bayes net algorithm has
to learn a new network topology and new parameters each time we score a rule
(feature). Furthermore, inference must be performed to compute the score after
incorporating a new feature. The SAYU algorithm is strictly more expensive than
standard ILP as SAYU also has to prove whether a rule covers each example in
order to create the new feature. To reflect the added cost, we use a time-based
stop criteria for the new algorithm. This criteria is described in further detail in
[Davis et al., 2005a]. For each fold, we use the times from the baseline experiments
in [Davis et al., 2005a], so that our new approach to view learning take the same
time as the old approach. In practice, our settings resulted in evaluating around
20000 clauses for each fold, requiring on average around 4 hours per fold on a Xeon
3MHz class machine.

Figure 1.7 includes a comparison of SAYU-View to Level 3 and the initial approach
to Level 4. Again, we perform a two tailed paired t-test on the area under the
precision recall curve for levels of recall > 0.5. SAYU-View performs significantly
better than both these approaches at the 99% confidence level. Although we do not
include the graph, SAYU-View performs significantly better than the SAYU-TAN
(no initial features), also with a p-value < 0.01. SAYU-View also performs better
than Level 1 and Level 2 with a p-value < 0.01. With the integrated framework for
Level 4, we now see significant improvement over lower levels of learning when we
ascend the hierarchy defined in Figure 1.2.

Figure 1.8 shows the average area under the precision-recall curve (AUCPR) for
levels of recall > 0.5 for Level 3, the initial approach to Level 4, and SAYU-View.
The average AUCPR for SAYU-View yields a 30% increase in the average AUCPR
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over the initial approach to Level 4. Furthermore, we see an increase in the average
AUCPR of 53% over Level 3. Another way to look at these results is the potential
reduction of benign biopsies: procedures done on women without cancer. When
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detecting 90% of cancers (i.e., recall = 0.9), SAYU-View achieves a 35% reduction
in benign biopsies over Level 3 and a 39% reduction over the initial Level 4 method.

Related Work

Research in SRL has advanced along two main lines: methods that allow graphical
models to represent relations, and frameworks that extend logic to handle probabil-
ities. Along the first line, probabilistic relational models, or PRMs, introduced by
Friedman, Getoor, Koller and Pfeffer, represent one of the first attempts to learn the
structure of graphical models while incorporating relational information[Friedman
et al., 1999a]. Recently Heckerman, Meek and Koller have discussed extensions to
PRMs and compared them to other graphical models[Heckerman et al., 2004]. A
statistical learning algorithm for probabilistic logic representations was first given
by Sato [Sato, 1995] and later, Cussens [Cussens, 2001] proposed a more general
algorithm to handle log linear models. Additionally, Muggleton [Muggleton, 2000]
has provided learning algorithms for stochastic logic programs. The structure of the
logic program is learned using ILP techniques, while the parameters are learned us-
ing an algorithm scaled up from that used for stochastic context-free grammars.

Newer representations garnering arguably the most attention are Bayesian logic pro-

grams [Kersting and Raedt, 2002] (BLPs), relational markov networks (RMNs) [Taskar

et al., 2002], constraint logic programming with Bayes net constraints, or CLP(BN)
[Santos Costa et al., 2003], and Markov Logic Networks (MLNs) [Richardson and
Domingos, 2004]. Markov Logic Networks are most similar to our approach. Nodes
of MLNs are the ground instances of the literals in the rule, and the arcs corre-
spond to the rules. One major difference is that, in our approach, nodes are the
rules themselves. Although we cannot work at the same level of detail, our approach
makes it straightforward to combine logical rules with other features, and we now
can take full advantage of propositional learning algorithms.

The present work builds upon previous work on using ILP for feature construction.
Such work treats ILP-constructed rules as Boolean features, re-represents each
example as a feature vector, and then uses a feature-vector learner to produce a final
classifier. To our knowledge, Pompe and Kononenko [Pompe and Kononenko, 1995]
were the first to apply Naive Bayes to combine clauses. Other work in this category
was by Srinivasan and King [Srinivasan and King, 1997], who used rules as extra
features for the task of predicting biological activities of molecules from their atom-
and-bond structures. Popescul et al. [Popescul and Ungar, 2004] use k — means to
derive cluster relations, which are then combined with the original features through
structural regression. In a different vein, Relational Decision Trees [Neville et al.,
2003] use aggregation to provide extra features on a multi-relational setting, and
are close to our Level 3 setting. Knobbe et al. [Knobbe et al., 2001] proposed
numeric aggregates in combination with logic-based feature construction for single
attributes. Perlich and Provost discuss several approaches for attribute construction
using aggregates over multi-relational features [Perlich and Provost, 2003]. The
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authors also propose a hierarchy of levels of learning: feature vectors, independent
attributes on a table, multidimensional aggregation on a table, and aggregation
across tables. Some of these techniques in their hierarchy could be applied to
perform view learning in SRL.

Another approach for a tight coupling between rule learning and rule usage is the
work appearing earlier this year (done in parallel with ours) by Landwehr, Kersting
and De Raedt [Landwehr et al., 2005]. That work presented a new system called
nFOIL. We would like to highlight several significant differences in the two pieces
of work appear to be the following. First, nFOIL scores clauses by conditional log
likelihood rather than improvement in classifier accuracy or classifier AUC (area
under ROC or PR curve). Second, nFOIL can handle multiple-class classification
tasks, which SAYU cannot. Third, the present chapter reports experiments on data
sets with significant class skew, to which probabilistic classifiers are often sensitive.
Fourth, this work looks at TAN opposed to Naive Bayes. Finally, this work extends
both [Landwehr et al., 2005] and [Davis et al., 2005a] by giving the network an
initial feature set.

Another related piece of work is that by Popescul et al. [Popescul et al., 2002,
Popescul and Ungar, 2003, Popescul et al., 2003] on Structural Logistic Regression.
They use an ILP-like (refinement graph) search over rules, expressed as database
queries, to define new features. Differences from the present work include their use
of the new features within alogistic regression model rather than a graphical model,
and the fact that they do not update the logistic regression model after adding each
rule. A notable strength of their approach is that the rule-learning process itself
can include aggregation.

Conclusions and Future Work

We presented a method for statistical relational learning which integrates learning
from attributes, aggregates, and rules. Our example application shows benefits
from the several levels of learning we proposed. Level 2, structure learning, clearly
outperforms the expert structure. We further show that multi-relational techniques
can achieve very significant improvements, even on a single table domain.

This chapter has shown that a simple form of view learning—treating rules induced
by a standard ILP system as the additional features of a new view—yields improved
performance over Level 2 learning. Nevertheless, this improvement is roughly equal
to that obtained by Level 3 learning—by aggregation, as might be performed for
example by a PRM. We have noted how this approach to view learning is quite
similar to earlier work using ILP for feature construction.

A more interesting form of view learning, or Level 4 learning, is SAYU-View, which
closely integrates the ILP system and Bayesian network learner. It significantly
improves performance over both Level 3 learning and the simple form of view
learning.

We believe many further improvements in view learning are possible. It makes
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sense to include aggregates in the background knowledge for rule generation.
Alternatively, one can extend rules with aggregation operators, as proposed in
recent work by Vens et al. [Vens et al., 2004]. We have found the rule selection
problem to be non-trivial. Our greedy algorithm often generates too similar rules,
and is not guaranteed to maximize coverage. We would like to approach this problem
as an optimization problem weighing coverage, diversity, and accuracy.

Our approach of using ILP to learn new features for an existing table merely
scratches the surface of the potential for view learning. A more ambitious approach
would be to more closely integrate structure learning and view learning. A search
could be performed in which each “move” in the search space is either to modify the
probabilistic model or to refine the intensional definition of some field in the new
view. Going further still, one might learn an intensional definition for an entirely
new table. As a concrete example, for mammography one could learn rules defining
a binary predicate that identifies “similar” abnormalities. Because such a predicate
would represent a many-to-many relationship among abnormalities, a new table
would be required.

SRL algorithms provide a substantial extension to existing statistical learning
algorithms, such as Bayesian networks, by permitting statistical learning to be
applied directly to relational databases with multiple tables. Nevertheless, the
schemas for relational databases often are defined based on criteria other than
effectiveness of learning. If a schema is not the most appropriate for a given learning
task, it may be necessary to change it—by defining a new view—before applying
other SRL techniques. View learning, as presented in this chapter, provides an
automated capability to make such schema changes. Our approaches so far to view
learning build on existing ILP technology. We believe ILP-based view learning
can be greatly improved and extended, as outlined in the preceding paragraphs,
for example to learn entirely new tables. Furthermore, many approaches to view
learning outside of ILP remain to be explored.
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