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Abstract

As advancesn technologyresultin theproductionof increasingamountof DNA sequencin
datain decreasingmountsof time, it is imperativehatcomputationaimethodsaredevelope:
thatallow dataanalysisto keeppace.In this dissertation] presenimethodghatimprovethe
speed and accuracy of DNA fragment assembly.

Onecritical characteristiof automatianethodgor fragmentassemblyis thattheymustbe
accurateCurrently,to ensureaccuratesequenceshe datathat underliesquestionabldase
callsmustbe examinedy humanreditorsso thatthe correctbasecall canbedeterminedThis
manualprocesss both error-proneand time-consumingAutomaticmethodghatyield high
accuracyand few questionablecalls can reduceerrors and lessenthe needfor manua
inspectionsin mywork, | developeda method, Trace-Evidencethatautomaticallyproduce:
highly accurate consensus sequences, even with few aligned sequences.

Mostassemblyprogramsanalyzeonly basecallswhendetermininga consensusequencs
The key to the high accuracyis thatl incorporatemorphologicainformationaboutthe
underlyingABI tracedata.Thisis accomplishedhrougha newrepresentatioaf traces,Trace-
Class thatcharacterizetheheightandshapeof traces.Thenewrepresentationotonly yields
high accuracywhenusedin consensus-callingiethods but alsoproducesmprovedresults
whenusedin removingpoor-qualitydata,andwhenusedasinputsfor neuralnetworksfor
consensus determination.

Theneedor fastprocessings becomingnoreimportantasthe sizeof sequencingrojects

increasesAlmostall existingfragmentassemblyprogramsperformpairwisecomparisonf



iii
reads,resultingin executiontimesproportionako n?, wheren is the numberof reads.|

describea newalgorithmfor fragmentayout,SLIC, thatrunsin timeproportionato n. SLIC
relieson subsequencesf basesthat occurin overlappingregionsof fragmentreads
Subsequencabatare commonto two or more fragmenteadsarealignedto determinehe
overall layout of reads.

Thework | presentprovidesimprovementso currentlyavailablecomputationamethod:
for DNA sequencinghatcanserveas a foundationfor furtherstudy in developingoettel

solutions to problems in fragment assembly.
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Chapter 1

Introduction

Are you a man or a mouse?

Actually, if youlook deepdowninside,atgenomesesidingin the depthsof cells, you will
find thattheanswelis not asobviousasyou mightguess Humangenomesmousegenomes
and,for thatmatter,thegenome®f all organismsharea surprisingsimilarity. As a matterof
fact, humangenesfor cell cycleandgrowth canbe swappedvithout harmwith thoseof an
extremely distant cousin, yeast (Green & Waterston 1991).
Genomegarrythetotality of the genetiomaterialfor anorganism.Theyareoneor more
moleculeof deoxyribonuclei@acid, commonlyknownas DNA. Sequencesomposedf four
typesof deoxynucleotiddbasesform DNA moleculesThe four basesare:adening(A),
cytosing(C), guanine(G), andthymine(T). Encodedn thebasesequenceare genes- the

blueprints for proteins that are responsible for the functions that enable us to grow anc

1.1 The Human Genome Project

Finding all the genes and discovering the functions of their proteins represent the Holy
knowledgefor humanrlife andhealth.Overl0yearsago,theUnited Statesalongwith severa
othercountriesembarkedn thesearctor this Holy Grail, christeningt theHumanGenom:u
Project(HGP). The taskis ambitious;thereareover threebillion basepairsin the humar

genomehatembedapproximatelyl00,000genesFor fiscalyearl990, nearthe beginningof
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the endeavorthe Nationallnstitutesof Health (NIH) and Departmenbf Energy(DOE)

budgetedalmost $90 million for the project, estimatingthat to reachtheir goal would
eventually require 15 years and about $3 billion (Goodman 1990).

From the start of the project,funding agenciesecognizedhe needfor computatione
approacheso problems.Initially, twenty percentof moniesbudgetedor the HGP were
earmarkedor researchnto bioinformaticsand a Joint InformaticsTask Force was formed
(Frenkel1991).The purposeof the taskforcewasto identify userneeds setgoals,establist
researchand developmenpriorities, and to enhancehe effectivenes®f computatione
solutions to genome informatics problems.

Clearly,computationasolutionsto problemsin genomicsarecrucialto thesucces®f the
HGP. Backin theearlyl1970s,it was alaboriougaskto determinghesequencef evena 25
base-paisequencevith confidence After 1977,with theintroductionof gel electrophoresis
basedsequencingechnology(Maxamé& Gilbert1977, Sanger,Nicklen & Coulson1977).
finding thesequencef severahundredbasepairshecameoutine.Fast-forwardo thepresen
andyou will find thatwe now havethe completesequencesf a numberof organisms- C.
elegans(Wilson1999),E. coli (Blattneretal. 1997),andHaemophilusinfuenzag(Suttonet
al. 1995),amongthem.In 1998, Dr. J. Craig Venter,Perkin-ElmerCorporation,andthe
Institute for GenomicResearci{TIGR), proposedo launcha joint venturethat would
sequence the entire human genontéieeyears(Marshall 1999). Inspired by this declarati
theNationalHumanGenomeResearcinstitutemovedup its targetfor completingthehumar
genome sequence by two years, to 2003 (Wade 1998).

Giventhe sizeandquantityof sequencingffortsandgoals,the amountof datathatmust
be storedandanalyzeds tremendousSequencelatais storedin public andprivatedatabase
throughoutthe world. A public repositoryfor annotatedNA sequencelatais GenBank
administeredby theNIH (Bensonetal. 1998).As of April 1999, GenBankalonecontainec
sequencdataon over2.5 billion basegNCBI 1999);thethoughtof analyzinghis muchdate
by hand is inconceivable.

Computationagjenomiadataanalysistoolshavematureddramaticallysincetheirdebut.In
theearlyyears,methodsto align DNA sequenceweredevelopedhatbecamehenecessar

coresof automaticsequenceanalysis.Thegoal of DNA sequencealignmenis to align the
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basesin two or more sequencesuch that the numberof mismatchess minimized.

Needleman-Wunsclwvas one of the original methodsthat madeits appearancéen 197C
(Needlemar& Wunschl1970). This techniquausesdynamicprogrammingo find an optimal
alignmentfor a pair of sequencesSinceNeedleman-Wunscivas introduced,a numberof
refined and new alignment methods have emerged (Vogt, Etzold, & Argos 1995, Huar
Brutlagetal. 1993, Streletcetal. 1992, Berger& Munson1991, Subbiah& Harrison1989.
Johnson& Doolittle 1986, Boswell & McLachlan1984, Fickett1984, Smith & Watermat
1980).

Of course,aligningsequencess only oneproblemin genomicsMyriad otherproblem:
mustalsobe addressedAmongthemare:basecalling (e.g. Tibbetts,Bowling & Golder
1994), finding proteincodingregions(e.g. Uberbache& Mural 1991),differentiatingexons
from introns(e.g. Chen& Zhang1998), predictingproteinstructure(e.g. Rost& Sande
1993), identifyingmotifs (e.g. Sunetal. 1996),finding sequencéomologiege.g. Karplus.
Barrett& Hughey1998),searchinglatabasege.g. Lavorgnaetal. 1999), detectingprotein
bindingsites(e.g. Heumann]apedes Stormo1994),andfinding RNA polymeraséinding
sites (e.g. Pedersen & Engelbrecht 1995).

1.2 DNA Seguencing

Specificto my work, DNA sequencingresentsnumerousomputationathallengesince
segment®f DNA longerthanabouta thousandasescannotbe sequencediirectly. First,
smalleroverlappingragmentsof the DNA aresequencedThe overlappingegionsof the
sequencesrealignedandtheir consensuss the sequencef the original fragment.This
processs calledfragmentassemblyandis describedn greaterdetailin Chapters2 and 8.
Major stepsin fragmentassemblyinclude:base calling (interpretingoutputfrom sequencin
machinesto call the sequenceof bases),sequencdayout (aligning overlappingbase
sequences)and consensugalling (determiningthe consensu®f the alignedsequences

Figure 1-1 illustrates an overview of the process of DNA sequencing.



‘ 1. Duplicate

/J\/\/
/M\/

‘ 2. Sonicate

/
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‘ 3. Sequence

_MA/L__“J_\#,L\JA__MMMM\_/\AI\MAU

‘ 4. Call Bases

CCGTAGCCGGGATCCCGTCC
CCCGAACAGGCTCCCGCCGTAGCCG
AAGCTTTTTTCCCGAACAGGCTCCCG

‘ 5. Layout

AAGCTTTTTTCCCGAACAGGCTCCCG
CCCGAACAGGCT CCCGCCGTAGCCG
CCGTAGCCGGGATCCCGTCC

‘ 6. Call Consensus
AAGCTTTTTTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

AAGCTTTTTTCCCGAACAGGCTCCCG
CCCGAACAGGCTCCCGCCGTAGCCG
CCGTAGCCGGGATCCCGTCC

Figure 1-1. DNA Sequencing. Thefirst threestepsin DNA sequencingccurin
the laboratorywhere largefragmentsof DNA are duplicatedand thenbrokeninto
smallerfragmentghataresequencethdividually. Computationamethodsareusedin
steps4 to 6. First thesequencef basesn theindividualfragmentss determinedThe
base-calkequencef the individualfragmentsare overlappedand alignedand their
consensus is the sequence of the original fragment of DNA.
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A numberof characteristicenherenin DNA andlimitationsin thechemistryof sequencin

reactioncanhinderthe completionof thesesteps.Oneproblemis noisein the data;the date
outputfrom a sequencingnachinds not perfect,leadingto miscalledbasesjnsertionsanc
deletiongn the base-calsequenceln addition,the fragmentof DNA may still havevector
sequencéafragmeniof DNA usedto carryandreplicatehefragmentof interest)attheirends
or evenwhole contaminanfragmentsnot from the targetof interestmaybe mixedin. One
significantproblemthathas yet to be effectivelyaddresseds the occurrenceof repeate
regionsin genomesAll of thesdeadto difficultiesin aligningthe overlappingportionsof
sequences and in determining the consensus sequence (Chapter 8).

An additionalayerof complexityis addedto problemsn DNA sequencing@stechnolog)
produceshotonly muchhigherthroughputfrom machinesputalsoallows thesequencingf
much largerfragmentsof DNA. As it becomegossible,the goal for many researchel
expanddo sequencindargerfragmentsandevenwhole genomeof DNA (Weber& Myers
1997). The amountof datathat must be processednay be gettingtoo large for curren

software to handle in reasonable amounts of time.

1.3 New Methods
In my work, | developsoftwarefor DNA sequencinglirectedat makingDNA fragmen
assemblyast and accurate Theneedfor fast processings becomingnoreimportantasthe

size of sequencingrojectsincreasesAlmost all existing programsperform pairwise

comparisonsf fragmenteads,resultingin executiortimesproportionalto n, wheren is the

numberof reads With ann? method the assemblyime maytakeyearsfor alargeproject.In

thisdissertation] describea newalgorithml developedor sequenctayout, SLIC (Sequenc
Layout into Contigk that, in practice, runs in linear time with respect the the number of

The SLIC layoutalgorithmrelies on subsequencesf bases,or mers that occurin
overlappingegionsof fragmentreads.Mersthatarecommorto two or morefragmentread:
arealignedto determinghe overalllayoutof reads.Thepremiseis thatlargeDNA fragment:
containmanymersthatoccuronly once(or infrequently)andthatcanbeusedto tag arelative

positions of fragment reads (Jain and Myers 1997).
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Anothercritical characteristiof automatianethodgor fragmentassemblyis thattheymust

be accuratelnaccuratesequencesanleadto seriousproblems;the change jnsertion,or
deletionof evena singlebasecanresultin a translategbroteinof dramaticallydifferentnature
thanthe true protein. Often, questionablesequencdasescan be identifiedby compute
software.Humansequence-editothenvisually inspectthe underlyingdatafor eachof these
guestionableallsanddeterminehe correctbasecall. This manualeditingis a real bottlenec}
in the sequencingrocess An evenworsecaseis whenacall thatis incorrectis notidentified
assuspiciousThesequencsavith theincorrectcallis analyzedr depositedn adatabasehile
containingthe error. Automaticmethodghat yield high accuracycangreatly diminishthe
numberof errorsand lessenthe needfor expensivemanualinspections.The cost of
sequencingan alsobe reducedby the useof a consensus-callinghethodthat is highly
accuratewvith fewersequencedn my work, | developed method,Trace-Evidenc€Chapte
6), refinedas Trace-Evidencell(Chapter8), that automaticallyproduceshighly accurat:
consensus sequences, even with few aligned sequences.

Most assemblyprogramsanalyzeonly the sequencef baseswhen determiningthe
consensusequencéor analignmentof fragmenteads.Thekeyto thehighaccuracyl realize
with the Trace-Evidencenethodis thatl look beyondthe basecallsto theunderlyingdataof
the sequenceAs shownin Figure 1-2, the underlyingdatais in the form of a setof four
sequencesf fluorescent-dyentensities,known as traces The tracesare outputfrom
sequencingnachinegsuchasthe Perkin-ElmeApplied Bioysystemsnc. (ABI) 3700)and
areusedfor determininghe basecall sequencedAs inputto the Trace-Evidencanethod,|
havedevelopedandrefineda new representationf the traces,Trace-Class thatl useto
improve the accuracy of consensus sequences (Chapter 3).

The Trace-Classrepresentatioand its various refinementsare also useful in other
fragment-assembliasks.For example,| obtainbetterquality assembliesvhen | use the
Trace-Classrepresentatiom trimmingpoor qualitydatafrom the endsof sequencebefore
assemblyChapterd). This helpsto eliminatesomeproblemscausedy noisy datacontaining
incorrectbase calls. Also, when used as inputs for neural networksfor consensu
determination, th@&race-Clasgepresentation produces more accurate sequences than n

thatuseonly basecallsasinputs(Chapter7). In everyproblemfor whichl incorporatedrace
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informationvia theTrace-Classepresentatioar oneof its variants/| find improvementn the

results | obtain.

“1-r‘w lu-’u‘-l—rL-: | |‘| ﬁif‘dru - ‘f/u\_ Ot 5 H-L/v\‘fd—/v\‘

P
C C CC CIiCCcCGC crcececacecrccercc
Figure 1-2. Fluorescent Trace Data. Sequences of fluorescent-dye intensities ar
used to call the sequence of bases for a fragment of DNA. (Actual data shown.)

1.4 Thesis Statement

In this dissertationl describenovelcomputationapproacheto problemsin DNA fragmen
assemblyThe hypothesisl put forwardis that the accuracyand speedof DNA fragmen
assemblymay be increasedoy computationamethodsthat incorporatefluorescenttrace
information,and by the useof a fragmentread layoutalgorithmthatidentifiesandaligns
probable unique subsequences that are common to two or more fragment reads. In pr.

layout algorithm executes in linear time with respect to the number of fragment reads.

1.5 Dissertation Organization

After backgroundnformationon DNA sequencings givenin Chapter2, the coreof this
dissertations organizednto threebroadsectionsi) definitionof thenew fluorescentrace
representatior) casestudiesutilizing thetracerepresentatiorand3) methoddor fragmen
assemblyln ChapteB | defineTrace-Classthenewrepresentatioof tracedata.Next, a case
studyapplyingit to trimming of low-quality sequencendsis coveredn Chapterd, and case
studiesin consensusalling arein Chapters through?7. In Chapter5, the consensusalling
problemis defined,Chapter6 describesan algorithmictechniqueand Chapter7 detailsa
neuralnetworkapproachFinally, the lastsection spreadamongChapters3 to 11, describe

methoddor fragmentassemblyChapter8 definesfragmeniassemblyexistingmethods and
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describesny new linear-timelayoutalgorithm,SLIC, andits ancillarymethoddor fragmen

assemblyln Chapte9, | evaluatehe effectivenessf SLIC andits companiormethodsoy
comparingt to Phrap from the Universityof WashingtorandDNASTAR Inc.’s SegManll
Chapterl0 analyzeshe computationatomplexityof SLIC. | thenreportadditionalrelatec
researchn Chapterll, andoutlineconclusionsandfuturework in Chapterl2. The chapter:
arefollowed by four appendicesA is aglossaryof biologicalterms,B containgpseudocod
for trimming algorithms,C lists pseudocodéor assigningTrace-Classcores,andD is a
detaileddefinition of the SLIC algorithm. Finally, a list of referencesompletesthe

dissertation.



Chapter 2
DNA-Sequencing Background

Thefocus of my researclhis computationamethodsfor DNA sequencing determininghe
sequencef basegA, C, G, andT) in DNA moleculesState-of-the-arsequencingystems
such as the Perkin-Elmer Applied Biosystems Inc. (ABI) 3700, use fluorescent-dye lab
DNA fragmentsn theirprocesse$Ansorgeetal. 1986, Smithetal. 1986). Fluorescent-dy
sequencing technology will be described in this chapter.

Thegoalof a sequencingffort may be asmodestas determininghe sequencef a small
fragmentof DNA lessthana kilobase(kb) long or as ambitiousas sequencingn entire
genomeThesizesof genomesarywidely; asmallgenomas abouta million basedong, the
sequencef atypicalbacteriagenomes millions of basedong, andthereareover 3 billion
basedgn the humangenome.For clarity in this chapter,| will assumethatthe goal is to
sequencan entiregenomewith the understandinghat genomemayreferto anylargeDNA
segmendf interest.In brief, the sequencingrocedureconsistsof producingoverlapping
shortfragmentof thegenomesequencingachfragmentandfinally aligningtheoverlapping
areasof the fragmentsto determinethe overallsequencef the genome.The procedureof
breakingthe genomeand sequencinghe smallerfragmentsis necessarypecausenoderr
technologyonly allowsthesequencindragmentshatare usuallylessthanonekb longandthe

segments of interest are generally much longer.
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2.1 Fragment Seguencing

Genomesgonsistof two strandsof DNA thatintertwineto form a doublehelix. The two
strandsareheldtogetheby bondsbetweerpairsof basesEachof thefour basedormsapair
with aspecificcomplementarpase A pairswith T andC pairswith G. In a doublehelix, one
strandof DNA is thecomplemenof the otherandwhenDNA is replicatedthe strandsare
usedasa templategor synthesizingomplementargtrands.Figure2-1 illustratesa double
strand of DNA and its replication.

To sequencan individual fragmentfirst a setof sub-fragmentsieedsto be produced
Buildinguponprimer fragmentgshortfragmentf DNA usedto primereplication),thesetis
generatedhroughDNA replication.At eachreplicationstep,deoxynucleotide§A, G, C, and
T) anddideoxynucleotidefA*, G*, C*, andT*) competdor additionto agrowingsequence
Deoxynucleotidepermitelongatiorwhereaslideoxynucleotideterminatereplication(Probe!
etal. 1987).Theresultis a setof sub-fragmentthatencompasseall possiblelengthgexcep
those of the initial primer).

Eachdideoxynucleotidehatterminatesa sub-fragments labeledwith a fluorescentlye.
Sinceadifferentdyelabelseachof the thefour basesall sub-fragmentsf a givenlengthare
labeled with the same dye. (A dye-primer labeling method also exists, but will not be de
here(Ansorgeetal. 1986).) Figure 2-2 showsan exampleof a fragmentsequencandits
corresponding set of sub-fragments.

Thesetof labeledsub-fragmentss placedon a plateof polyacrylamidegelandavoltageis
applied.The currentinducesthe migrationof sub-fragmentshroughthe gel. Sincesmallel
piecesof DNA migratemorequickly thanlargerones,thesub-fragmentbecomeseparatetly

size. The fluorescent labeling then provides the means for determining the fragment se
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Double Helix

<—template

new——s

Figure 2-1. DNA Replication. DNA forms a doublehelix whereeachbasepairs
with its complementT bondswith A and C bondswith G. Eachstrandservesasa
template during replication.
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Fragment: CTTGCTACCCTTCGGA
+ Primer: GAACG

+ Deoxynucleotides: AGCandT

+ Dideoxynucleotides: A*, G*, C*, and T*

Yields [

Complementary sub-fragments:
GAACGA*
GAACGAT*
GAACGATG*
GAACGATGG*
GAACGATGGG*
GAACGAT GGGA*
GAACGATGGGAA*
GAACGATGGGAAG*
GAACGATGGGAAGCH
GAACGATGGGAAGCCH
GAACGATGGGAAGCCT*

Figure 2-2. DNA Sub-Fragments. Quantitiesof deoxynucleotidesand dye-
labeleddideoxynucleotidéerminatorsareaddedo copiesof a fragmentto producea
setof sub-fragmentsThe asteriskslesignatéluorescentlylabeleddideoxynucleotide
terminators.

A detectiordevicein the sequencingnachinereadstheintensitytrace of eachof thefour
fluorescentlyesasthe sub-fragmentsnigratepast. This processs calledreadingthetrace,
andthe dataproducedare calledtraces Thereis one setof tracedatafor eachof the four
fluorescentlyes.Althougheachtraceis composedf discreteneasurementthepointscanbe
interpolatedo form acontinuousurve.A simplifieddiagranof anautomatedNA sequence

is in Figure 2-3.
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I f- sub-fragments

|
-«— polyacrylamide gel

computer data storage

e\ NN

00RO

O G*

Sasill sy

Figure 2-3. DNA Sequencer. DNA sub-fragmentare placedon a plate of

polyacrylamidegelandanelectriccurrentis applied Fragmentsn orderfrom smallest
to largesimigratepasta detectiordevice.Thedetectoreadshe fluorescenintensityof

eachof the four dyes. A computemrecordsthe sequenceof intensitiesthat are
subsequently used for determining the base call sequence of the fragment.

|

detector

2.2 Base Calling
The tracesare usedby base-callingsoftwareto determinethe sequencef basesin the
fragmentthisis referredto asbasecalling. Thefour setsof tracesarekeptsynchronizecs
they arescannedduring basecalling. The basecallerexpectso call a baseatfairly regula
intervalsandcallsonebasefor eachof thesentervalsin a trace(Perkin-EImerl995). There
areusuallyabout10 to 15 tracedatapointsperinterval,anda recordis keptof the pointsat
which the calls are made.

A sequencef basecallsand correspondingracegraphsand sequencef intensitiesare
depictedn Figure2-4. Thesequencecallsthebasesn orderfrom thebeginning(calledthe

5 end to theend(3 end of the sequenceCallsaremadeby examiningthe valuesof the
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tracesldeally,thetracevaluesfor only onebaseform a distinctpeak.In this case the base

correspondingp thattraceis theonethatis called.Sometimeshetracedor two or morebase:
form similar peaksln thiscase thesequencemakesa no-callandlabelsthe basewith anN.
Thegoalis to obtainthe exactsequencef baseghatis the complemenof thefragment.n
practice the accuracyf the basecalls madeby sequencerss 98-99%for the first severa
hundredbaseqChen 1994, Kelley 1994). (In personalobservationsl seethatin many

sequencing runs, the first 0 to lhése calls also have lower accuracy.)

Trace Graphs

.»@@-.'/k.wl‘w‘ v “—.\U‘&AJ.\&L&#A)—@ Arkec s
cc T G AC) N CACG

\*.
G

Base Calls

Trace intensities
A: 3448950 199 420633389 167402311200000000...
C: 012343942 453312 180 404 654 920 789 670 556 887...
G: 875035231232549 106 208 324 207 13588 47 18 6 10...
T: 1243377106200423262255310000000000...

Figure 2-4. Trace Graphs, Base Calls, and Intensities. Automaticbase
callersscansequencesf intensitiescallingthe basethatis associateavith thetrace
with the highestpeakintensity. The shadedaseis a no-call labeledwith anN since
two peaksaresimilar andthe correctcall is not obvious.(Actual tracegraphsandbase
calls shown.)

2.3 Fragment Assembly
Onceall the fragmentsof the original genomehavebeensequencedhe fragmentsare
assemblednto largersegmentgMcCombie& Martin-Gallardal994, Myers 1994, Rowené&

Koop 1994).Thefragmentoverlap,so anassemblys producedy aligningthe overlapping
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regionsof thesequenceshegoalof DNA sequencalignmentis to alignthebasesn two or

moresequencesuchthatthenumberof mismatchedasesn acolumnis minimized.Boththe
commonlyusedNeedleman-WunsckNeedlemar& Wunsch1970) and Smith-Waterma
(Smith& Watermarli980)alignmentmethodsisedynamicprogrammingo find analignmen
betweentwo sequencedn analignmentthebaseslignedin a columnareusedto determine
the consensugall of the column. Orderedby columns,the consensu$asecallsfor the
columnsform the overallconsensusequencéor an alignmeniseeFigure2-5). To makea
multiplealignmentagreedyapproachmaybeusedin whichsequenceesadsareaddedneata
time to a growing alignmentTo adda read,a pairwisealignmenis formedbetweernhereac
andthe consensusequencef thealignmentWhenall sequencebavebeenoverlappednd
aligned thealignmenformsacontiguoussequencef DNA thatis knownasa contig (Stadet

1980). The base call sequence of a contig is its consensus sequence.

Consensus: ACGAGCGGGCAGACAGCATTCGACACGCCCATGTACGCCAATG(

ACGAGCGGGCAGACAGCATTCGACACGCC
AGACAGCATTCGACACGCCCATGTAC
ACACGCCCATGTACGCCAATGGGT

Figure 2-5. Column Consensus Calls. Threesequences amultiple alignment
arelisted horizontally.The consensusequencés computedoy makinga consensus
call for each column in the alignment.

When sequencesare assembledhat contain errors, there are base locationswhere
sequencesalign but do not agreecompletely(McCombie& Martin-Gallardo1994). A
consensudasecall in thesecasesnay be assigneane of 12 ambiguity codesaslistedin
Table2-1. (An ambiguityis anycallthatis notA, G, C, norT.) In somecasesjt is necessar
to insertagap(indicatedby ahyphen)n asequencéo optimizethealignmentA gapindicates
thateithera bases missingfrom the sequencef basecalls (adeletior) or thata falsebasehas
beencalledin oneor moreof the alignedsequencegn insertior). Figure 2-6 portraysa
multiple sequencalignmentof overlappingfragmentreads containingsome gaps and

ambiguities.
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Table 2-1. Base Ambiguity Codes.

Base Code Base Code
Aor G R Cor T %4
Aor T w not A B
Aor C M not C D
Gor T K not G H
Gor C S not T %4

In anidealassemblywherethedatais flawlessandavailable the sequencealignto form
one contigandeachconsensudasecall is A, G, C, or T. In fact, this is rarely the case
Difficulties inherenin thepreparatiormndsequencing@f fragmentdeadto incorrectbasecalls.
Also, the quality of the tracesbecomegprogressivelywvorsenearthe endof the fragment

Many more incorrect calls and no-calls are in this region (Kelley 1994, Perkin-Elmer 1¢

Consensus: CACATACTTACGGEGGACAGCATTCGACKREATGACGGATTTT

CACATACTTACGCCGGACAGCATTCGAGC-GCATGACGGATTTT
CGGCAGG-CAGCATTCGACAGC-TGACGGATTT
TACTTACGGCG&GACAGCCTTCGACATATG-CGGAT
CATAC-TACGGG&GACAGCAT-CGACAGCATGA

Figure 2-6. DNA Sequence Alignment. Fouroverlappingragmentsarealigned
andgappedo determinghesequencef asegmenbf DNA. Ambiguouscallsoccurin
theconsensufor columng(in gray)thatarenot in totalagreemenfl'he basesequence
of this contig is the consensus of the aligned fragments.

A patrticularlydifficult problemis introducedinto the assemblyprocesshy subsequenci

thatoccurmorethanoncein a genome.Thesesubsequencesrecalledrepeatsor repetitive
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elements Whenfragmentsequencesontainrepeate@lementstheir placemenin a contigis

not clearly defined.Figure2-7 illustrateshis problem.Somerepeatsareexactduplicateof
others,while otherscontainssomevariance Repeats/ary bothin lengthandin numberof
tandemoccurrencesThosethatare lessthan a fragmentreadin lengthare fairly straigh
forward to handle,sinceflankingsequencesanbe usedto positionoverlapsLongerrepeat:
make finding correctoverlapsfar more difficult. Although most establishedassembl
programsaddressepeatsvith varyingamountsof sophisticatiomndsuccesstheproblemis

far from solved.

Genome
TCTTG ACGTC TGGTCCC

Sequence Reads

TCTTG
ACGTC
ACGIC
TGGTOCC
Layout
TCTTG
ACGTC
ACGTC
TGGTCCC
or
TCTTG
TGGTCCC
ACGTIC
ACGTC

Figure 2-7. Repeated Subsequences. A fictitious genome containsa
subsequencthat is repeatedshownin gray). Two layoutsare possiblewhen
overlappingherepeatedegionsin thesequenceeads.Onelayoutresultsin a single
contig (the correct layout), and the other in two contigs.

2.4 Manual Editing
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In general afterassemblhhumaneditorsresolveambiguouscallsto oneof the four base:

beforeanalysisor submissiorto GenBank. Ambiguouscallsserveto focuseditors’ attentior
onareasn theconsensuthatwarrantcloserexaminationManualeditingis atime-consumin
taskperformedoy humansequence-editothatentailsvisualanalysisof theassemblyanddate
(Rowen & Koop 1994).

As an exampleof manualeditingdecisionsjn Figure 2-8, threesequence$iavebeer
alignedandthe consensusomputedIn the shadedolumnthefirst andthird sequencéave
beencalledasa T andthe secondasaC, resultingin anambiguousonsensusall of Y (C or
T). An editorexamineghe tracesassociateavith the sequenceandobservesot only that
overallthetraceis quitegoodfor thefirst andthird sequencedjutalsothatthe T peaksin the
columnaresharpandwell-defined.In contrastthe tracefor the secondsequenceés not as
goodandfurthermore theC peakis not well-defined Giventhis evidencean editoris likely
to assigna T to the consensugall in this column. As the size of sequencingrojects
continuallygrows, it becomesncreasinglyimportantto reducethe needfor thesekinds of

costly manual operations (McCombie & Martin-Gallardo 1994, Rowen & Koop 1994).

2.5 Summary

Modernsequencingnachinecanonly determinghesequencef DNA fragmentsof at most
onekb. Themachingroduces trace of the dye intensitiedor eachof thefour baseswhile
scanningluorescent-dy&beledsub-fragmentasthey migratepasta detectiordevice.Base:
calling softwarescansthefour tracesn unisonto detectigh-intensitypeaks.Processedh
orderof migrationtime, thebasesassociatewith the peaksform the sequencef basesn a
fragment.This processs known as basecalling. The fragmenteadsare joinedinto larget
contiguoussegmentof DNA (contig9 by aligningoverlappingegionsof thereads.The
sequencef acontigis theconsensu®f its alignedreads.Somedifficultiesin aligningand
determininghe consensusequencareintroducedy errorsin basecalling. Unlessreliable
automatianethodsareavailable theseandotherdifficulties discussedh laterchaptersnustbe
correctedby humaneditors. Sincemanualeditingis time-consumingnd error-pronea

worthwhile task is to develop useful automatic methods.
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Figure 2-8. Manual Editing. Threesequencebavebeenaligned.The shaded
columncontainsconflicting basecalls resultingin an ambiguousonsensusHuman
editors examine the traces and resolve the ambiguity.
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Chapter 3

DNA Fluorescent-Trace Representation

Oneof my importantgoalsis to reducetheexpensandincreaseheaccuracyf sequencingy
improvingthequality of automati@assembliesl. believethatthis maybe accomplishetyy the
directincorporationof fluorescent-dydraceinformationinto automaticprocessesThis
solutionrequiresan appropriateaepresentationf the traces.Since existingrepresentatior
were inadequatdor this purposethe focus of this portion of my researclhs to developa
representatiorof trace datathat is descriptive,yet easyto incorporateinto automatic

sequencing tasks.

3.1 Existing Representations

Threefundamentatasksin DNA sequencingitilize tracespachusesa differentrepresentatio
of thetraces.The tasksare:basecalling, fragmentassemblyand manualediting. A brief
overview of each task follows.

A detailedrepresentationf tracedatais asa sequencef fluorescent-dy@ntensitiesThe
sequencéor eachbasecalllists aboutl0 to 15intensityvalues.The sequencef intensitiess
therepresentationsedin basecalling. Basecallingis a straightforwardaskwith traceghat
containpeaksthatarewell-definedandscaledhigh. The basecallercansimply call the base:
(A, C, G, orT) thatareassociatedith thehighestipeakintensitiesIn casesvhereacall must

bemade but two or morepeaksaresimilar,thebasecallermakesano-call andlabelsthebase
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with anN.

A secondrepresentationf tracedatais a sequencesf basecalls. This forms a much
simplifiedrepresentatiothatis usedin automatidragmentassemblyrograms.Virtually all
assemblyprogramsalign sequencesf baseso thattheir consensusanbecomputedFigure

3-1 shows an example of sequences aligned in an assembly.

|
i

(Y Hlignment of Euntig 1

=

220 230 240 250 260 270 280

CATGATGCTATGGCTGGARGGAARGCTGCCTGET TCCARAGGTCCTGCACT TTGAACGGCATGATGEGECTGEH

ATGATGCTATGGCTGGAAGGARAGC TGCCTGT TCCARAGGTCCTGCACT TTGRACGGCATGATGGCT GG

ATGATGCTATGGCTGGAR--A
ATGATGCTATGGCTGGAAGGARAGC TGCCTGT TCCARAGGTCCTGCACT TTGARCGGCATGATGGCTGGH
ATGATGCTATGGECTGGAAGGAAAGCTGCCTGT TCCARAGGTCCTGCACT TTGAACGGCATGATGGCTGER
ATGATGCTATGGCTGGAAGGARAGCTGCCTGTTCCARAGGTCCTGCACTT TGAACGGCATGATGGETGGH
ATGATGCTATGGCTGGAMGGARMGC TGCCTGT TCCARAGGTCCTGCACT TTGAMCGGCATGATGGCTGGH
ATGATGCTATGGCTGEAAGGAAARGCTGCCTGTTCCARAGGTCCTGCACT T TGRAACGGCATGATGGECTGGH
ATGATGCTATGGECTGGAAGGAAAGCTGCCTGT TCCARAGGTCCTGCACT TTGAACGGCATGATGGCTGER
ATGATGCTATGGCTGGAAMGRAAAGCTGCCTGTTCCARAGGTCCTGCACTT TGRAACGGCATGATGGETGGH
CTGGAAGGARAGC TGCCTGT TCCARAGGTCCTGCACT TTGRARCGGCATGATGGCTGGH
CTGCACTTTGARCGGCATGATGGCTEGH

T T T T T

ot L
Screen shot from DNASTAR Inc.SegManli
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Figure 3-1. DNA Fragment Assembly. Automaticfragmentassemblyrograms
align overlappingsequencesnd computetheir consensusin this example,11
sequences have been aligiaed their consensus appears across the top.

Thethird representationf tracess as2-D graphsmadeby interpolatinghe sequencef
traceintensities.The graphsarestudiedby humaneditorsto assistin resolvingambiguou:
calls, fine-tuningalignmentsand mergingcontigs(Rowen & Koop 1994). The tracedate
outputfrom an ABI DNA sequenceis found in the datafiles of the ABI Analysisprogram
Therearefour setsof datafor afragmenif DNA — onefor eachof thefour fluorescentlyes
Thetracesappeain two forms;oneis asequencef raw intensitiesandin theother,thedate
hasbeenprocessedia a proprietaryalgorithmsuchthattracepeaksare moredistinctand
uniform. It is the processedlatathatis usedto producethe graphsthataremadeavailableto

usersof fragmentassemblyprogramssuchas DNASTAR Inc.’s Segmanll GeneCodes'’s
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SequencherandPhrapViewfrom the University of Washington.

The goal is to reduce the need for time-consuming and expensive manual editing p
My premiseis thatthis canbe accomplishedby thedirectanalysisof tracecharacteristics
automatigrocessesl. examinedhedecisionamadeby humaneditorsandobservedhatmost
of theirdecisionsarequite straightforwardl believethatwith properinputrepresentation
manysuchdecisioncanbe madeautomaticallyThe problemis that currentrepresentatior
are inadequatdor incorporationinto automaticprocessesSequence®f intensitiesare
cumbersomandundescriptivesequencesf basecallsaretoo coarseandcrucialinformation
is lost, and2-D graphsareextremelycomplexto incorporatedirectly. My approacts to define
anewrepresentatiothatcaptureshesamanformationusedby editorsin theirwork in sucha

way that it can be easily incorporated into automated tasks.

3.2 Trace-Class

My personabbservations thatwhile studyingtraceshumanreditorspayparticularattentiorto
therelativeintensitiesandcharacteristishape®f tracedata.lt is a measureof theseshape
andrelativeintensitiefoundin the2-D graphsof processedBI datathatl describein my
new representatiorBy representinghis information,I canmakeavailableto an assembl'
programthe sameinformationthatis availableto editors.| callthe new representatiofirace-
Class(Allex et al. 1996).

For my new Trace-Classrepresentation, am interestedn classifyingthe shapeand
intensityof thelocaltracedatathatis usedfor eachparticularbasecall. | definethis localtrace
datato be the datafrom midway betweenthe previouscall and the currentcall to the date
midwaybetweenthe currentcall andthe next call (Figure 3-2). | will referto eachof these
intervalsof dataas basetrace-data Eachsetof baserace-datas composeaf about10to 15
data points representing the intensities of the fluorescent dyes.

In examininghe discreteregionsof dataassociateavith asinglebasecall, | observesix
basicshapesForthe Trace-Classepresentation, classifybaserace-dataccordingto these
six shapesFigure3-3 illustratesthe six classesndthe criteriausedto distinguishamonc

them.Therearethreepeakclasseandthreevalley classeslefinedby curvature At the base
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call location,peakshavenegativecurvatureand valleyshave positivecurvature Peakanc

valley classeeachcomein threevarietiesstrong medium andweak Whereagpeaksanc
valleysaredifferentiatedoy curvature slopedistinguishesamongstrong,medium,andweak
characterStrongis characterizetly achangen thesignof theslope,mediumis characterize
by the occurrence of a shoulder with a slope of zero, and weak has neither a change ii

an area of zero slope.

e~

G G T

Figure 3-2. Base Trace-Data Thenew Trace-Classepresentatiors designedo
capturethevisual characteristicef thetracedatafor a singlebasecallas shownin the
shaded region.

Strong Medium Weak
change in shoulder with otherwise
sign of slope zero slope
Peak
negative
curvature
Valley
positive
curvature

Figure 3-3. Stereotypical Trace-Classes. Peaksand valleys aredefinedby
curvature andstrong medium andweakclassesredefinedby slope.Thegrayline
indicates the location of the base call.

| believe that too much information would be lost by simply assigning to base trace-

singleclassthatbestcharacterizes. Ratherto eachof the six classed assignascorefrom O
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to 100thatreflectstheamounbf characteof thatclassthatis exhibitedoy thedata.Figure3-4

present@xample®f scoreshatareassignedo variouspeakshapegvalleyscoresareomitted
for clarity). Thescoresareon acontinuumgsothatanypairof adjacenscoreghatsumto 100
is possibleln fact,the scoresnay sumto lessthan100sincetheyarealsoadjustedo reflect

the distance from the base call location and intensity relative to the other three traces.

Shape
Class
Strong 100 50 0 0 0
Med 0 50 100 50 0
Weak 0 0 0 50 100

Figure 3-4. Peak Score Examples. As thedescendinglopeincreaseshescores
change from 100% strong to 50/50% strong/medium, to 100% medium, and so on

Thetracedataassociatewith a singlebasemaycontainapeak,or avalley,or both apeak
andavalley. Thebaseis calledata particulampointin thetracedata— | assignscoresfor both
the peakandthevalleythatarethe closestto this location.The classscoresareweightedby
proximity to the base-callocation.Peaksor valleysthatare closerto wherethe bases called
have a relatively higher score than those that are further away.

Sometimes$ mayneedto makecomparisoneamongthe four setsof tracedataassociate
with a singlebasecall. For this situation,the classscoresare adjustedo reflecttherelative
differencesamongthe intensitiegheights)of the A, C, G, and T peaksor valleys;highel

peaks score higher than lower peaks, and lower valleys score higher than higher valle
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3.2.1 Algorithmic Details

Thesequencef tracedatapointsis scannedor strongpeaksandvalleys,thenfor mediurr
peaksandvalleys,andfinally, if neitherof theseis found, aweakpeakor valleyis assumec

These steps are summarized next and in Appendix B.
Assign Trace-Class Scores

Assign Strong and Medium Scores
If no scores assigned then

Assign Medium and Weak Scores
If no scores assigned then

Assign Weak Scores

Sincemultiplepeaksor valleysmayexistin the data,at eachstep,| look for the peakanc
valleythataretheclosesto thepointwherethebasewas called.Scoresareassignedasedn
proximity to the base-callocation,relativeintensity,andon theamountof strong,medium
and weak character exhibited.

Eachclassscoreis adjustedsit is computedo reflectthe proximity of a peakor valleyto
the location where the base is called. The scores are adjusted as follows.

Shew = Spig*(L-|E-B|/N)
where
S is aTrace-Classcore
E is the location of the peak or valley
B is the locatiorof the base call
N is the numbeof base trace-data points

Peaksandvalleysthatarecloserto wherethe basas calledgethigherscoressincetheyarethe
ones that are most likely to have been detected by the base calling software.

After theTrace-Classscoreshavebeencomputedor all four setsof tracedatafor a base
the scoresare modifiedto accountfor the relativeintensitydifferencesamongthem. The
following formulas accomplish this.

P = Pyq* (P/max(T))

new
Vv Vg (1 -V / max(T))

new
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where

P is a strong, medium, or weak peak score
V is a strong, medium, or weak valley score
T is the set of four base trace-data values
Higher peaks and lower valleys get higher scores.
| first examinethedatafor strongpeaksor valleys.An overviewof the algorithmis given

next; pseudocode details are contained in Appendix B.

Assign Strong and Medium Scores

For each trace data point
Compare previous slope to current slope
If the slope goes from positive to negative, a peak is found then
If this peak is closer to base call location than any previous then
Save this peak
Else if the slope goes from negative to positive, a valley is found then
If this valley is closer to base call location than any previous then
Save this valley
If a peak was found then
Assign SP and MP scores
Adjust scores for peak distance from base call location
If a valley was found then
Assign SV and MV scores
Adjust scores for valley distance from base call location

A strongpeakis detectedvhenthereis a changerom a positiveto a negativeslope,and
likewise,astrongvalleyis detectedvhenthereis achangdrom anegativeo apositiveslope
The slopesare measureds the changen intensityfrom one datapoint to the next.In my
observationsthis sensitivemeasuref changdan directionworks well sincethe ABI datahas
beensmoothedduring processinginsignificantchangesn the directionof the sloperarely
occur.If a strongpeakor valleyis found, it mustbe checkedfor amountof stronganc

mediumcharacterPeakdhatstartatthe baselingzerointensity)andreturnto the baselineare
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scoredas100%strongand 0% medium.Thesamas truefor valleysthatstartatthe maximun

intensity,descendo the baseline andreturnto the maximumintensity.Any otherpeaksor
valleys found in this step possess a combination of strong and medium strengths.

To calculatethe strongand mediumscores,| measurehe local size of the peaksand
valleys.| do this by looking on eithersideof the peakor valleyto find extremesvherethe
slopes again change directions (changing from positive to negative or vice-versa). If th
changeon oneor both sides,thefirst and/onastintensityvalue(s)areused.Theintensitiesat
theextremdocationsare usedin determininghefractionof thetotal heightof thelocalaree
thatis thepeakor valley. Threelocalextremesarethususedin thecalculationoneatthecentel
of thepeakor valley,and oneto eachside. The scoresfor strongand mediumclassesare
computed as follows.

SP = 100*E-(L+R)/2)/E
MP = 100-SP
SV = 100*(L+R)/2-E)/(L+R)/2
MV = 100-SV
where
SP is a strong peak score
MP is a medium peak score
SV s a strong valley score
MV is a medium valley score
E isthe value at the peak or valley location
L isthe value of the extreme to the left of Ehiecation
R is the value of the extreme to the rightlo$ E location

An exampleof somedataandstrongandmediumscoresareshownin Figure3-5. In the
new Trace-Classepresentatiorg peakthatis 82% strongand18% mediumis at thebase-ca
location.A valley with 40%strongand42% mediumstrengthhasbeendetectedo theleft of
wherethe basewas called.Thevalley scoreshavebeenadjustedo reflectthatthe valleyis

offset from the base-call location.
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Intensities
Location Value
1 111
Strong Peak 82
2 42 .
3 130 Medium Peak 18
4 551 Strong Valley 40 (49)
5 528 Medium Valley 42 (51)
6 1098
7 1536 PE peak extreme
8 1110 PL peak left extreme
9 628 PR  peak right extreme
valley extreme
10 276 valley left extreme
11 31 valley right extreme

2 11

Figure 3-5. Trace-ClassStrong/Medium Scores. A basehasbeencalledat
point7 (atthegrayline). A strongpeakis detecteditthatpointandits left extremds at
point 5 wherethe slope changedirection. Sincethereis no changein the slope
directionto therightof thepeakthelastpoint, 11, is the locationof theright extreme.
(Thepeakatpoint4 is notscoredsincethe peakat7 is closerto thebasecalllocation.)
The peak scores are calculated as:

SP=100 * (1536 - (528 + 31)/2)/1536 = 82

MP=100-82=18
Sincethe peakis locatedwherethe baseis called,the scoresare not adjustedor
distance.

A valleyandits rightandleft extremesareat points5, 4, and7, respectivelyThe

valley scores are calculated as:

SV=100 * ((551 + 1536)/2 - 528)/(551 + 1536) /2 = 49

MV =100-49 =51
Thevalley scorehavebeenadjustedo reflectthe distanceof the valleyfrom thepoint
wherethebasewascalled.(The scoregprior to adjustmenarein parentheseshe
adjustment calculation is:

SV=49*(1-|5-7|/11) =40

MV=51*(1-1|5-7|/11) =42



29
If nostrongpeaksor valleysarefound,the datais scannedor peaksor valleysof mediurr

strength.An overviewof the algorithmis listed next; pseudocoddetailingthe calculationgs

contained in Appendix B.

Assign Medium and Weak Scores

For each trace data point
Compare previous slope and current slope
If the slope decreases (a peak is found) then
If an increasing slope (a valley) was previously found then
If the peak is closer to base call location than any previous then
Save this peak
If the previous increasing slope is closer to base call location
than any previous valley then
Save the increasing slope location as a valley
Else if slope increases (a valley is found) then
If a decreasing slope (a peak) was previously found then
If the valley is closer to base call location than any previous then
Save this valley
If the previous decreasing slope is closer to base call location
than any previous peak then
Save the decreasing slope location as a peak
If a peak was found then
Assign WP and MP scores
Adjust scores for peak distance from base call location
If a valley was found then
Assign WV and MV scores
Adjust scores for valley distance from base call location

A mediumpeakis found when a decreasinglopeis foundthatis eitherprecedeadr
followed by anincreasinglope(avalley). The peakis locatedat the pointwherethelarges
changen slopeoccursin thedecreasinglope.Likewise,if anincreasinglopeis precedear

followed by a decreasinglope(apeak),a valleyis identified. Thelocationof thevalleyis at
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the point where the largest change in slope occurs in the increasing slope.

If a mediumpeakor valley is found, the amountof mediumand weak characteis
computedTo assigrmediumandweakstrengthd determinghe fractionof the overallheight
of the local areathat is the peakor valley. | do this by first finding the locationsof the
precedingr following peak(for valley scores)r valley(for peakscores).Often,thereis not
botha precedingandfollowing peakor valley. In this casethefirst or lastdatapointlocation
is used.Theintensitiesat theselocationsandthatof thepeakor valley arethe threelocations

used in the following calculation of medium and weak scores.

WP = 100 * (max(L,R) - E) / max(L,R)
MP = 100 - WP
WV = 100* (E - min(L,R)) / E
MV = 100 - WV
where

MP is a medium peak score

WP is a weak peak score

MV is a medium valley score

WYV is a weak valley score

E isthe value at the peak or valley location

L isthe value at the increasing or decreasing slope to the th&Bfocation
R isthe value at the increasing or decreasing slope to the ritjig©Bfocation

The computationof the medium class scoresdefinedhere do not conflict with the
computatiorgivenfor assigningstrongand mediumscoressincemediumandweak score:
will not be calculated if strong and medium scores were already calculated in the previc

An exampleof the mediumandweakscorescalculatedor somedatais shownin Figure3-
6. A peakthatis 85% mediumand5% weakis detectedht theleft of the base-callocation.A
valleywith 77% mediumand 5% weakstrengthhasbeendetectedo theright of wherethe
basewas called.The peakandvalley scoreshavebeenadjustedo reflectthatthey areoffset

from the base-call location.
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Intensities
Location Value
1 10 Medium Peak 85 (94)
2 147 Weak Peak 5 (6)
3 250 Medium Valley 77 (94)
4 453 Weak Valley 5 (6)
5 710
6 852
7 880 PE peak extreme
8 901 PL peak left extreme
9 911 PR  peak right extreme
valley extreme
10 1249 valley left extreme
11 1588 valley right extreme

Figure 3-6. Trace-ClassMedium/Weak Scores. A basehasbeencalledat
point 7 (atthegrayline). A mediumpeakis detectedatpoint 6 andthelocationsof its
left and right slope extremesare points3 and 9 respectively.The peakscoresare
calculated as:

WP=100 * (max250, 911) - 852pax250, 911) =6
MP=100-6 =94
A mediumvalley is detectedat point 9 andits left extremes at point 6 wherea
decreasinglope(peak)is found. Sincethereis no decreasinglope(peak)to theright
of the valley, the last point, 11, is the location of the right extreme.
WV=100 * (911- min(852, 1588))/911 = 6
MV=100-6=94
Both the peakandthe valley scoreshavebeenadjustedo reflecttheir distances

from the point wherethe basewas called. (The scoresprior to adjustmentre in
parentheses.) The scores are adjusted as:

WP=6*(1-[6-7|/11) =5
MP=94*(1-|6-7|/11) =85
WP=6*(1-[9-7|/11) =5
MP=94*(1-19-7|/11) = 77
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Finally, if the datahasnotyet beenclassifiedin the strongor mediumassignmensteps a

weakpeakor valley is assume@ndassignec 100%weakscore.Thealgorithmis listednext;

detailed pseudocode is in Appendix B.

Assign Weak Scores

Compare slopes preceding and succeeding the base call location

If previous slope is greater than succeeding slope, a peak is found then
Assign WP score

Else if previous slope is less than succeeding slope, a valley is found then
Assign WV score

Partialweakandmediumscoresarenotassignederesincethatwould havebeendonein

the previous step. Figure 3-7 illustrates the assignment of weak scores to sample date

Intensities 11

Location Value
1 11
2 210
3 407
4 578
5 762
6 938

7 1098 Weak Peak 100

8 1252 Weak Valley 0
9 1361
10 1499
11 1597

Figure 3-7. Trace-ClassWeak Scor es. A basehasbeencalledat point6 (atthe
grayline). Thetracehasadecreasinglopeat point6, soaweakpeakscoreof 100%is
assigned.

Eachclassin the Trace-Classepresentatiors now assigned scorebetweerD and100.

For someapplications] mayneedo usea simplerrepresentationf a Trace-Class For these
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cased choosethe singleclassthatbestcharacterizethe data. This class,the characteristic

class,is assignedy first selectingpeakor valleyaccordingo which hasthe highersumof
scores,andthenstrong, medium,or weakaccordingto which has the highestscore.For
examplejf a setof tracedatais assignedgscoresof SP=75 MP=14, WP=0, SV=0, MV=11,
andWV=3, peakhasthe highersumof score75+ 14+ 0 = 89) comparedo valley(0 + 11
+ 3 = 14), andthehighestscoringclassis strong(75). Giventhis, the singlecharacteristi

class is strong peak.

3.2.2 Base-Call Weights
Oneof my usesfor Trace-Classscoreds to aidin determiningthelocal quality of thetrace

surroundingeachbase.Thequality of tracescan vary widely bothamongandwithin traces
Sincel incorporatdraceinformationinto automatigorocessest is importantthat| takethese
guality differencesnto considerationln makingdecisions] wantto give moreweightto
informationthatcomesfrom morereliable(higherquality) traces.To facilitatethis goal, |
assigna weightscoreto eachbasecall thatreflectsthe qualityof the tracein thelocality of the
base.

| usetheTrace-Classscoresasan indicatorof tracequality. My premises thatbasecalls
thatarehighly reliablearemadefrom tracepeakghataresharpandwell-defined- thosethat
classifyas strongpeaks.Basecalls madefrom basetrace-datdahat classifyas mediumpeak
arelessreliable,andthosemadefrom weakpeaksor valleysareevenlessreliable. Therefore
to determinequality, | examinetheTrace-Classscoredor thetracesassociatedith thecalled
bases(For examplejf thesequencef baseshasbeencalledasGGTACG only the Trace-
Classscoredor thecorresponding, G, T, A, C, andG tracesarecalculated.)f the stronc
peakscoresarehigh, it is likely thatthetraceis of goodquality— the higherthescoresthe
betterthe quality of the data.On the otherhand, if the baseshavebeencalledwith low peak
scores or valley scores, the base calls are not as obvious and the data is likely to be le

and of lower quality. Figure 3-8 compares the relative quality of some traces.
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A‘?—L“V e o — *-.l.‘:""“ D=
C C GGGGN CGGT GGGG

Figure 3-8. Quality of Trace Data. In thetopsequencehetraceassociatedith
eachcalledbaseexhibitsa sharpwell-definedpeak. The correspondindrace-Class
scoresall showhigh strongpeakscoresin contrastthetracesn the bottomsequence

areflattenedand overlappingcorrespondingtrongpeakscoresare generallymuch
lower. The top sequencés muchmorereliableandis of high quality. (Actual data

shown.)

For usein my calculationsof weights,| definea constantsummaryvector,V, so that
classegsuchas SP) thatimply better-qualitydatafor abasearegivenhighervalueshanthose
(such ass\) that imply lower-quality data. The definition follows.

Let

V = Nsp Vmp Vwp Vwv Vmv Vsvl
where

V; is the multiplier for class i

and

In upcomingsectionsl describework that usesweights. While performingtestsfor the
work, | find thatV =[1 .67 .33 00 0] yieldsgoodresults.Usingthisdefinition, theweights
W, arebetweerD and100 sincepeakclassificationscoressumto 100 or less.l chosethis

summaryvectorfrom amongthoselistedin Table3-1. | chosethesevectorsfor evaluatior
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becaus¢heyall conformto therestriction1 > Vgp > Vyp 2Vyyp= Viyv= Vv 2 Vgy 20,

while varyingthe emphasi®n thescoredfor differentclassesTwo of thevectors,describe
in thetableasLinearPeaksandParabolicPeaks assigreerovalueso the threevalleyclasses
| find thatthesevectorsconsistentlyoutperformedhe others(resultsnot reported).This
indicatesthatnot only do peakscorescontainsufficientinformation,butalsothatvalleysin a
trace rarely or never suggest a base call corresponding to the trace.

Oncea summaryectorhasbeenset,a weightfor eachbasecanbe determinedRathe!
thanassigninga scorethatonly reflectsthe qualityof a singlebase,l setscoresthatindicate
the quality of thetracein thelocal areasurroundinga base.To dothis, | calculatevaluesfor
eachindividualbasein awindow surroundinghe baseof interestandthenaverage¢hevalues

Specifically, the weight of the data for each sequence in a column is calculated as follo

1. For each base, i, in a window of size n centered on the base of interest,
calculate the vector of Trace-Class scores, S;, for the trace associated with
the base that has been called:

Si = [SPi MP; WP; WV MV, SVi]
2. The dot product of S;j and V produces a quality measure, W;, for base i :
Wi = Si oV

3. Average the measures to produce an overall quality score, W, for the base at
the center of the window:

W = (W +Wo+...+W,)/ n

Figure 3-9 contains an example calculation of a weight for a windownsiaé 3.



Table 3-1. Potential Summary Vectors.
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Description Function Graph (summar;// vector)
Linear V= % \ [1.8.6.4.20]

Linear Peaks

Parabolic

Parabolic
Peaks

Trigonometric

SP MPWFW\MV SV

-

SP MPWPW\MV SV

4

SP MPWFWVMVSV

=

SP MP WFWVMV SV

~

SP MPWPWVMVSV

[1.67.33000]

[1.64.36.16.040]

[1.44.11000]

[1.9.65.35.10]
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For the center base,

C —
|
_I_IJ'F'
ccC

W = 68.
SP MP WP WV MV SV SV
C 0 59 41 2 8 0 53
C | 83 17 0 1 5 0 94
T | 43 21 0 2 7 57
Total 204
W 68

Figure 3-9. Weight Calculation. In thisexamplethewindowsize,n, is 3 bases.
(The actualvalueof nin my work s 21, avaluefoundto work well in experiments-
resultsunreported.) wantto calculatehe weightscore,W, for the centerbase,C.
Threesetsof Trace-Classcores,S, havebeencalculatedonefor eachof theC traces
correspondingo thefirst two C basecalls, andathird for the T tracedataassociated
with theT call. Thedotproductof eachsetof scoreswith thesummaryvector([1 .67
.33 00 0]) is computedThe averageof thethreeis the weightfor the C basein the
center of the window.

Figure 3-10 graphsan actualexampleof the computedveightvaluesof dataasa function of
baseposition. Thegraphshowsa fast increaseo a high quality regionfollowed by a slow

decrease in quality. The pattern is as expected in ABI sequences (Chen & Hunkapillar
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Weight
(relative units)
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Base Call Position

Figure 3-10. Quality of Traces. Weight asa functionof positionaverageaver
thefirst 700 basecallsof 116 actualsequencess graphedBasecallsmadeby ABI
sequencerare highly reliable out to severalhundredbases.Reliability slowly
decreases to the &nd of the sequence.

3.3 Summary

Virtually all large-scalesequencingrojectsuseautomaticsequence-assemigyogramso aid
in the determinatiorof DNA sequencesThe computer-generategssembliesequire
substantiamanualediting to transformtheminto submissiongor GenBank As thesize of
sequencingrojectsincreasesit becomesessentiato improvethe quality of the automate:
assemblieso that this time-consumingnanual editing may be reduced.Current ABI
sequencingechnologyusesbasecallsmadefrom fluorescently-labeleBDNA fragmentsun on
gels.l presenanewrepresentationrace-Class for thefluorescentracedataassociatewith
individual basecalls.In summary,| definea Trace-Classepresentationf basetrace-dataas

follows:

» Threepeakand threevalleyclasses are defined as follows.

Peaks: negative curvature
Valleys: positive curvature

» Peakandvalleysaredividedinto strong, medium,andweak classeghat aredefinedas
follows.
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Strong: change of sign in slope

Medium: shoulder with zero slope
Weak  otherwise

» Scores reflect the amount of strong, medium, or weak peak and valley character ex
 Scores reflect the proximity of peaks and valleys to the base-call location.
 Scores reflect relative intensity to corresponding traces.

A single class (theharacteristic clagsmay be assigned that best characterizes the dat

In Figure3-11, thenew Trace-Classepresentationf tracedataas six Trace-Classscore:
basedntheshapeandintensityof tracedatais contrastedvith thepreviousrepresentationsf

trace data as sequences of discrete intensity values, 2-D graphs, and a base call.
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Sequence of Intensities Trace-Class
0, 108, 304, 598, 889, 1236, 1045, 856, 678, 523, 624 Peak
Strong 79
Medium 21
2-D Graph Base Call Weak 0
Valley
Strong 44
Medium 56
A Weak 0
Characteristic Class:
Strong Peak

Figure 3-11. Comparison of Trace-Data Representations. Shownin this
figure are four representationsf a single fluorescenttrace (the A trace).One
representationf tracedatais asequencef intensitiesassociatewith abasecall. A 2-
D graphof thetracedatashownasa curveinterpolatedrom thedatapointsis asecond
representatiorA muchsimplifiedrepresentatiors the basecall madefrom the four
traces.The newTrace-Classepresentatiors a classificatiorof the tracedatabasedn
thevisualshapeandintensityof thetracedata.A scorefrom 0 to 100is assignedor
eachof six classegshatreflectsthe amountof strong, medium,and weak peakand
valley characteristithat is exhibitedby the data. A single characteristiclassis

assigned that best characterizes the data.
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Chapter 4

Sequence End-Trimming Case Study

In Chapter3 | defineda new representatioffior tracedata, andthe questionis: Doesit
effectivelycapturecharacteristicof trace datasuchthatit canbeusedto improvethequalityof
automaticassemblieso answerthis question] incorporatedhetrace-datanformationvia
thenew TraceClassrepresentatiomto two processes) automaticassemblyend-trimmingof
suboptimal databeforeassemblyandcalling the consensusf alignedsequencesTheend-
trimmingexperimentsre describedn this chapterwork on consensusalling is coveredn
Chaptersb through7. For thesestudies,l use modificationsof DNASTARInc.’s SeqMat
fragment-assembly software.

Thefirst probleml addressed how to removepoorqualitydatabeforeassemblyAllex et
al. 1996).In generalasa sequencingun progresseghe qualityof thetracedatadeteriorate
(Kelley 1994).This ideais illustratedin Figure4-1. Nearthe 5 (beginning)end,the date
qualityis high— peaksaresharpandwell-defined(Perkin-Elmer1995),but nearthe3' end
(end),the datais erraticandcontainsseveraho-calls(Ns). Theuseof poor quality datalike
thatnearthe3' endtendsto producea poor quality assemblythatrequiresextensivemanua
editing.Onesolutionis to removethepoor qualitydatabeforeassemblySeto,Koop & Hood
1993, McCombie& Martin-Gallardol994, Rowen& Koop 1994). Thisis the approach
exploredin my work, with thegoalof reducingtheamountof poor qualitydataby a direct,

automatic examination of trace data.
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MJLMX\M‘\/\%

TTTT GG NGG NN TN

5' 3'
Figure 4-1. Deterioration of Trace Data. Tracedatabecomesrogressively
lower in quality as a gel is read. (Actual data shown.)

4.1 Existing Method
A schemethatusessequence-specifionformationto trim poor quality datais N-Trim, an
adaptatiorof the End-Clip method(Seto,Koop, & Hood 1993). N-Trim relies on the
assumptionhatastracedatadeteriorategshenumberof no-callsincreasesT heideais thatthe
numberof Ns canbe usedas an indicationof tracequality. With this procedurebasesare
scannedn a sliding window startingatthe3' end,anda countis keptof the numberof Ns
thatoccurin thewindow. Whenthe numberof Ns is sufficientlyfew, the poor quality date
from thatwindowto the3' endof thesequencés trimmedoff. In the examplen Figure4-2,
window_size is setto 20 andthemax_Ns allowedin a windowis two. Scanningrom the
3 endof thesequencetheboxedwindow is thefirst onethatcontaingwo or fewerNs. The
data to the 3 end of this window is considered poor quality and is trimmed off.

5' 3

— scan

bases ATGCTCAAGAAAGGGNGGCCCN|INTNCCGG

— trim —=—

Figure 4-2. N-Trim. The window_size is 20 and max_Ns is two. When

scanningrom the3' end,theboxedwindow is thefirst to containtwo or fewerNs
and data in the shaded region is trimmed.

My methodfor end-trimminghatincorporatedracedatavia Trace-Classscoress called
Trace-Classlrim. This methodalso scansdatain windows. As it scans,it assignsthe

characteristiclassassociateavith the calledbase.The classesanbe usedto indicatethe
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qualityof data.Basecallsthatarehighly reliableare madefrom peaksthataresharpandwell-

defined- the kind of dataclassifiedas strongpeaks Basecallsmadefrom tracedataclassifiec
as medium peaksare less reliable, and thosemade from weak peaksor valleysare

correspondingly less reliable.

4.2 Algorithmic Details

Trace-ClassIrim consistsof scanninghewindow from the3' endasin N-Trim, but rathel
thankeepingrackof thenumberof Ns, it countsthe numberof poor classesssociateavith
the calledbase Whenthe numberof poorclassess sufficiently few, | trim the datafrom that
window to the 3 end of the sequenceln additionto window_size and
max_poor_classes allowed,| mustalsodefinepoor_classes . Figure4-3 showsan
examplein which poor_classes is definedto be all classesxceptstrongand mediurr
peaks(SP andMP). The window_size is againsetto 20 and max_poor_classes
allowedin the window is two. Whenthe sequencéasbeenscannedas far as the boxec
window, the numberof poor classess sufficiently few anddatafrom thewindow to the 3'

end is trimmed. Appendix C contains pseudocodd face-Class Trim

5' 3I

— scan

bases ATGCTCAAGAAAGGGNGGCCCNNTNCCGG
classes [SSSSSSSSSSSSSMMSMMWMWS SMS MMMW
PPPPPPPPPPPPPPPVPPPPPVVVVPPPP

| trim —

Figure 4-3. Trace-ClassTrim. Inthisexample characteristiclassfor the A trace
dataassociateavith this leftmostbasecallis strongpeak(SP), the characteristiclass
for T tracedata associatedvith the next baseis also SP, and so on. Here,
poor_classes aredefinedas all but strongandmediumpeaks(SPandMP). The
window_size is 20andmax_poor_classes istwo. Whenscanningrom the3'
end,theboxedwindow s thefirst to containtwo or fewerpoor classesinddatain the
shaded region is trimmed.
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4.3 Evaluation

| empiricallyevaluatelrace-Clasgrim andcomparet to N-Trim by optimizingtheparameter
for eachmethodoveronesetof dataand thentestingthe bestparametersn a secondsetof
data.l useddatafrom the E. coli GenomeProjectat the Universityof Wisconsinthatwas
gatheredor anassemblyf a 243kb fragmenof E. coli (Blattneretal. 1997).Datasetswere
formedin thefollowing way. The 2021 sequences thesetof datafor the assemblywere
trimmedextensivelysuchthatonly basesrom locationss0 to 200remainedn eachsequencs
To thisset,| addedongerE. coli sequencefrom GenBankthatwerebelievedo fall in the
243 kb sectionof theE. coli genome.The sequencewere thenautomaticalllassembledn
this way, only the very bestdatawas usedand contigswere formed with sequencethat
should align (given the nearly ideal data).

All contigscontainingenor moresequencewerechoserfor inclusionin datasets.In these
contigs,the GenBanksequencewere removedand thefull untrimmedengthof sequence
was reinstatedEachsetof sequencem a contigformeda separatelataset, calleda project,
that could be independentliyassembledT he resultwas 20 projectsfor evaluatingtrimming
methodsTenprojectsform a training setusedto optimizeparameterandthe othertensets
form a testset usedto testthe quality of subsequenassembliesising the optimizec
parameterslrainingandtestsetswerechosersuchthatthe numberof projectsis equaland
the total contig lengths and total numbers of sequences and contigs are similar.

For usein my evaluations) estimatedhe expectechumberof contigsand total contig
lengthfor eachproject. Althougheachprojectis formedfrom a singlecontig,in somecases
the expectechumberof contigsis greaterthanonebecauseegionsin the contigwere bridgec
by (now removed)GenBanksequencedlo estimatehe expectedotal contiglength,| simply
use the length of the contigs after they have beenextendedwith complete,untrimmec

sequences. The data sets are described in Table 4-1.
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Table 4-1. End Trimming Data Sets. The numberof sequencess the actual
numberandthenumberof contigsandthe contiglengtharetheexpectedialuesfor the

project.

(@) Training Set

Project Number Numper Contig

Sequences Contigs Length

1 11 2 2235

2 14 1 1715

3 15 1 2364

4 18 1 3352

5 20 2 5229

6 22 1 1473

7 26 1 824

8 32 3 7067

9 69 3 11,088

10 37 3 9050

Total 264 18 44,397
(b) Test Set

Project Number Numt_)er Contig

Sequences Contigs Length

1 20 2 2810

2 16 1 1221

3 18 3 4271

4 24 3 6221

5 27 2 4503

6 35 2 6696

7 38 1 776

8 13 2 3010

9 15 1 3408

10 57 3 11,382

Total 263 20 44,298
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In additionto theprojectsin thetestset, | evaluateany systemwith anunrelatedsetof

sequencesTheseare from a 7 kb segmentof humanDNA. This projecthas reache:

completion so the number of contigs and contig length is known. Table 4-2 describes 1

Table 4-2. Human DNA Data Set.

Project Sequences Number Contigs | Contig Length

Human 98 2 7257

| optimizedparametertor theTrace-Clas3rim methodandseparatelyor N-Trim. For N-
Trim, | variedwindow_size from 10to 50 in incrementsf five andmax_Ns allowedin a
window from zeroto five. For Trace-Classl'rim, | variedthewindow_size from 10to 50,
max_poor_classes to be allowed from zero to five, and theor_classes  cutoffs ove
strong peaks, medium peaks, and weak peaks. Valleys were always included in
poor_classes . Eachprojectin thetrainingsetwasassembledvith everycombinatiorof
parameters and the quality of assemblies was evaluated.

The goal of end-trimmingis to producebetter-qualityautomatedassemblie®f DNA
fragments.| usedthreemetricsto measurahe quality of assembliesOneis the numberof
contigs.In general] wanta groupof sequencet assemblénto a smallnumberof contigs
(the ultimategoal is to haveonly a singlecontig). The secondmetricis the numberof
ambiguitiesn theconsensusequencel-ewerambiguitiesneansotonly thatthe sequence
align well, but also that less manual work is needed. The third measure is the total lenc
contigs. Contigs should be as long as possible without incorporating too many ambigu

I measurghenumberof contigsas thenumberin excessof theexpectechumber,and
contiglengthas the absolutadeviationfrom the expectedength.The numberof ambiguitie:
are measureds the averagenumberof ambiguouscalls per kb. To scoreeachset of
parameterd, normalizeandindividually sumthe threemetricsacrossall datasetsfor eachset

of parameters. The overall sco&, for parameter setis

Si=aCi+ BT+ yA
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whereC;, T;, andA, arethenormalizedsumsof thenumberof contigs totallengthof contigs

andnumberof ambiguitiesmetrics,respectivelya, B, andy areconstantsl believethatthe
orderof importanceof the metricsis: 1) numberof contigs,2) humberof ambiguitiesand 3)
total length of contigs. Consequently, | get3, =1, andy=2 to weight the metrics.

Usingthe schemealescribedabove,l scoredandsortedtheparametesets.l foundthat,in
generalthebestTrace-ClassIrim assembliesesultedvhenthe window_size  was large
(40to 50 bases) thecutoff definedall butstrongandmediumpeaksaspoor_classes , and
themax_poor_classes to beallowedwasbetweerb% and10%of thewindow size.The
bestN-Trim assembliesesultedwvhenthewindow_size waslarge(40to 50 bases)andthe
max_Ns allowed was small (0 to 2).

The ten minimum scoring parameter setdNefrim and forTrace-Class Trinwere chose
asoptimal parametesettings.Next, testsetprojectswereassembledisingeachof thetopten
parametesettingsfor N-Trim and Trace-Clasgrim settings.The humanDNA projectwas
assembledising only thetop-scoringparametesets.As a baselinethe projectswere alsc

assembled with no trimming.

4.4 Discussion

| compareassembliesesultingfrom Trace-Clas3rim to thoseperformedafterN-Trim andno
trimming.Figure4-4 graphgheresultsfor thetentest-seprojects With oneexception| find
thatin all 10 setsby all threemetrics,trimmingwith the Trace-Clas3rim methodresultsin
assembliesuperiorto thoseproducedafterN-Trim or no trimming. In eachcolumn,lower
valuesarebetter,andasignificantreductiorbetweertheresultsfor Trace-ClassTrim andthe
otherss seen Differencedor all threemeasurearestatisticallysignificantusinga pairedone-

tailed t-test at the 95% confidence level.
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Figure 4-4. End-Trimming Results. Resultsfor the 10 testsetsareshown.On
averageabouta 50% reductionfrom N-Trim to Trace-Clasgrim is seenfor excess
contigs and ambiguities per kb. Deviation from contig length falls by over 75%.
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On averagever thetest-setprojects,the absolutedeviationfrom the expectedength of

contigsfalls by over 75%andboththe excesbeyondthe expectechumberof contigsandthe
number of ambiguities per kb falls by about 50% from assemblies Nsifrgn to those usin
Trace-Classlrim. The decreasen thenumberof ambiguitiesrepresenta significantdecreas
in the amountof manualeditingthat would needto be doneon assemblegrojects.For
examplejn a 243kb project,the numberof ambiguitieso beresolvedwould decreasé&om
nearly10,000basesisingN-Trim to fewerthan5000using Trace-Clasgrim. Theseresults
demonstrat@ clearimprovemeniwhentrace-datanformationis includedin end-trimmingvia
the newTrace-Classepresentation.

With thehumanDNA project,l againseea significantimprovemenin theassemblydone
after Trace-ClassTrim over the assembliesloneafter N-Trim or no trimming. Table4-3
containsthe resultsfor the humanDNA project. After Trace-Classrim, the assembl
produceghreecontigs,comparedo five contigswith N-Trim (theexpectechumbeiis two). It
alsoresultsin a 40% reductionin the numberof ambiguitieger kb overtheassemblydone

afterN-Trim.

Table 4-3. Human DNA Project Test Results. Trace-Clasdrim yieldsan
assemblywith onemorethanthe expectechumberof contigscomparedo threemore
with N-Trim. The Trace-Clasgrim assemblyhad 40% fewer ambiguitieghanthe
assembly done witN-Trim.

OO Number of | Lengih | ATOgutes
Contigs Deviation
Trace-Class 1 576 32
N 3 3113 54
None 13 12,818 149
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4.5 Summary

Thekey to thesucces®f Trace-ClassTrim is thatit usestheinformationcontainedn trace
datain theform of baseTrace-Clasgepresentatiodefinedin ChapteB. Theseclassification:
directlyreflectthe morphologyof tracedata,and aregood indicatorsof theaccuracyof the
associatethasecalls. The N-Trim methoddoesnotusetracedata ratherit examine®nly the
sequencef basedor no-calls.Sincemodernsequencemnakebasecallsevenwhenthetrace
datais erratic,searchindor no-callsasdonein N-Trimis nolongerasusefulfor assessinthe
accuracy of base calls.

| incorporatedheTrace-Clasg rim methodinto the SeqManlisequencassemblyackag:
thatis partof the Lasergenesuite of applicationslevelopedy DNASTAR Inc. The previous
version, SeqMan offered the N-Trim method.The new Trace-ClassIrim methodwas
commerciallyavailableuntil it supersedeth Lasergene9%y the Trace-QualityTrim methoc

that | developed (described in Chapter 8).
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Chapter 5

Consensus-Calling Case Studies

The secondproblem! addressedvith the incorporatiorof Trace-Classscoress consensu
calling(Allex, Shavlik,& Blattner1999,Allex etal. 1997).Forthesecasestudied developes
both analgorithmicanda neuralnetworksolution. The algorithmicsolutionis describedn
Chapte6 andthe neuralnetworkapproachs coveredn Chapter7. In the currentchaptet
definethe consensusallingproblemanddescribehe developmenof the datasetsusedin the
studies.

Accuracyin consensusequencess animportantconcern- TheNationalHumanGenomu
Researchnstitute (NHGRI) seta standardor sequencingaccuracyof 99.99% (NHGRI
1998). Unfortunatelythe errorratefor sequencesm GenBankhasbeenestimatedo be from
0.3t0 0.03%(Lawrence& Solovyev1994)— muchhigherthanthestandard Whenimperfec
DNA sequencearetranslatedtheeffecton theresultingproteinsequenceanbe substantia
Eventhe mutationof a singlebasecan causecriticalchangesn the characteof a predictec
protein.Furthermorethe deletionor insertionof basescanresultin incorrecttranslationinto
protein and the failure to recognize regions that code for genes.

Currently,sequencingccuracyis significantlydependenipon carefulhumanexaminatiot
and editing of consensusequences fragmentassembliesThe handprocessis time-
consuming,expensiveand error-prone,makingit unsuitablefor large-scalesequencin

projects.Automaticmethodsthatproducehighly accurateconsensusalls reduceerrorsand
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alleviate the need for manual editing.

5.1 Existing Method

A common simplemethodo calculatehe consensusountsthenumberof calls of eachbase
in an alignedcolumn (Stadenl982a).If the majoritybasecountis abovea givenfractiona
thresholdof thetotal count,thatbaseis calledunambiguouslfA, C, G, or T); otherwisethe
consensuss calledastheappropriatembiguity(combinationof A, C, G, and/orT). Werefer
to this methodas Majority. Figure 5-1 containsan exampleof calculatinghe consensuby
Majority.

SincetheMajority approaclexamine®nly thebasecallsandnotthe underlyingtracedata
it is proneto errors. Thereis nodistinctionbetweerbasecalls madewith well-definedpeaks
andthosemadewith indefinitepeaks Majority alsorequiresa minimumnumberof sequence
to makeanunambiguougall whenacolumnof basecallsis notin totalagreementMethods

that directly analyze the trace data help to avoid these problems.

Consensus... AAGAAGCACTWAGGATTTGGT ..

..AAGAGGCACTAAGGATTTGGT..
Aligned ... AAGAAGCACTTAGGATTTGGT ..
Reads = AAGAAGCACTAAGGATTTGGT ..

_AAGAAGCACTTAGGATTTGGT ..

Figure 5-1. Majority Consensus Calls. Four sequencesrealignedandthe

consensuss computediusing Majority. In this examplethethresholdis setat 75%.

The consensusall for left shadeatolumnis an A sincethreeof four (at least75%) of

thecallsareA. In themiddleshadeatolumn,50% of thecallsareA and50%areT; the

callis W (A or T) sinceboth percentagearebelowthethreshold.In theright shaded
column, all calls ar@, resulting in a consensus callTof

5.2 Test Data Sets
| testthe effectivenes®f consensugallingmethodsby comparingtheir accuraciesvith

differentdistinctamountsof coverage(numberof alignedsequences)Sincealmostany
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reasonablalgorithmcan makecorrectcallswhenthe coveragas high, | believethatone

criterionthatcanbe usedto identify a superiomethods its accuracyevenwhenthecoverag:
is low. In addition, sinceevery steprequiredto sequencea fragmentaddsto the overall
expensef sequencingieducingthe needeccoveraganeansa decrease sequencin@osts
In largesequencingrojectsit is typicalto producea coveragef six to tento ensureaccurat
results(Li etal. 1997) Thismuchcoveragas not neededvhenusinga methodthatis highly
accurate with fewer aligned sequences.

Fragmentassemblie$or a124 kb sectiornof E. coli areusedto compareconsensusalling
methods.The datafor the assembliesre suppliedby the E. coli GenomeProjectat the
University of Wisconsin(Blattneret al. 1997). Correctconsensusallsaretakenfrom E. coli
sequencesubmittedo GenBank.Theoriginal assemblyof 2221 ABI sequencesngesin
coveragdrom 1 to 45 sequencesThe assembliesvere createdwith DNASTAR Inc.’s
SegManll fragment-assemblgrogram.Although most of the dataand alignmentsan the
assembliearequitegood,sequenciacedo vary in qualityandsomeareagpresentmoreof a
challengdor consensusalling.Figure5-2 containsanexampleof analignedregionin oneof
thetestassembliethatcontainsafair amounf discrepanciesndicatingimperfectunderlying

trace data and difficulties for consensus calling.

GCAAITAAACANTGCTTCCT TTGGGETCAANANCAAANATN-CCAIGCTGGS T
GCAACAAATACTCTCCGET-- GGGTCAG-AGHCCAACATT-CCCGCCTGG-
GCAACAAATATTATCCGN-- GGGTCAGAGGCEAACATTCCAGCTGG-
GCAACAAATACTCTNCG TN-GGGITAAA-AGEC- AANNNTCCCGNNGG-

Figure 5-2. Test Assembly Alignment. Thedatausedfor testingis of varying
guality. Displayedhereis a regionwith four alignedsequencefrom one of the test
assemblieColumnswhosebasecallsarenotin totalagreemerare markedwith a‘?.’
Thereis a fair amountof disagreemeramongthe basecalls, implying poorer-quality
underlyingtracedata.Consensusalling in this regionis moredifficult thanin areas
with near-perfect data.
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In orderto generatean abundancef testcaseswith variousamountsof coverage)

develope@ndapplieda greedyminimizationalgorithm,Minimize Coverage to theassembly
With MinimizeCoverage sequencéragmentsareremovedrom anassemblyaslong asthe
coveragdor any singlecolumndoesnot fall belowa specifiedcoveraggunlesshe coverag:
is alreadybelowthe threshold) Theideafor the MinimizeCoveragealgorithmis simple. At
eachpassthroughtheassemblyfor eachsequencé determinghe lowestcoveragejow-

coverage , of any column in which the sequence occurs. | then remove the sequence
highestiow-coverage , providedthatlow-coverage s notator belowthethreshold.f
morethanonesequencéasthe samelow-coverage , theshorteroneis removedPasse
overtheassemblyarerepeatedintil no moresequencesanbe removedwithoutviolating the
coveragedhresholdrestriction.At completion,somecolumnswill havemorethanthe desirec

coverage (due to the restriction) and some less. The algorithm is summarized next.

Minimize Coverage Algorithm
Let S be the list of all n sequences, S,, in the assembly.

S={S; ..., Sy}

Let L be the list of all n sequences considered for removal. Each sequence, S; is
paired with its low-coverage ,LCg;

L={(S, LCgq), .... (S, LCsp )}

While not_empty(L)
1. Remove from L sequences whose low-coverage is at or below the
threshold.
2. Remove from S and L the shortest sequence with the highest
low-coverage
3. Update low-coverage values.

Figure 5-3 steps through an execution ofNtieimize Coveragalgorithm.
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(@)
S1 GATCGGCTACATCTTACATCACCGTT
Sy CTACATCTTACATCACC
S3 CGGATCGGCTACATCTTACATCACCGTTGA
S4 ATCGGCTACATCTTAC
Sg ATCTTACATCACC
86 CGGCTACATCTTACATCACCGT
(b)
Pass S L
1 2@ 734 5 6 (84!3)’(8515)!(86!3)}
1 {S1,S2,S3,S4,Se} {(S2,4),(S4,3),(Se ,3)}
2 {S1,83,54,S6} {(S4.3), (S, 3)}
3 {S1,S3 ,S6} {(Se , 3)}
4 {S1.S3} {}

Figure 5-3. Minimize CoverageExample. (a) Six sequences$, to S, are
alignedin a fragmentassemblyThesequenceis bold, S; andSs, providetheoptimal
minimizationwhen the thresholdis setto two. With thesetwo sequences the
assemblyno columnhasfewerthantwo sequencegxceptthosethatalreadyhad
fewerin the originalassembly)Iln addition,neithersequenceanberemovedwithout
causingcoverageo fall belowthe minimum. (b) Thealgorithmto reducecoverageon
theassemblycompletesfter4 passesAt theoutsetall sequencearein SandL. The
first passremovesSg from bothlists sinceit is the shorterof two sequencewith the
highestiow-coverage (5 sequences)lso, S; and S; areremovedfrom L in the
first passsincetheirlow-coverage  is at or belowthreshold— thesesequences
cannotbe takenout. At the end of four passesl is emptyandthe two desired
sequencess; andSg, remain in the assembly.
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| repeatediappliedtheMinimizeCoveragealgorithmto theoriginalassemblyor therange

of coveragethresholddrom two to ten. This producednine assembliesvith differing
coverageseachwith an abundancef alignedcolumnswhosecoverageorrespondedo its
threshold. For testing, from each of the nine minimized assemblies, | extracted the sta
consensusalling only for columnsthatcorrespondetb thecoveragehreshold For example
for the assemblywith a minimum coveragehresholdof three,| compiledstatisticsonly for
thosecolumnswith a coveragef threesequenceslhe exceptions thatthe statisticdor the
assemblywith the desiredcoveragef tenincludeall columnswith coverageof tenor greate
(ratherthanjust thosewith exactlyten)sinceresultstendto remainconstantvith suchhigh

coverage. Table 5-1 lists the number of consensus calls used for each set of results.

Table 5-1. Consensus Calling Data Sets. For eachcoveragefrom two
sequenceto ten or more,the numberof consensusallsincludedin testresultsis
listed.

Number of
Coverage Consensus Calls

67,860
57,092
45,394
39,556
34,011
26,716
22,479

© 00 N o o A~ w DN

20,326

1\
=
o

47,239
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5.3 Summary

Thesimplestpproacho consensusalling is to countthenumberof basecallsof eachtypein
analignedcolumn.This methodis referredto as Majority. With this method,if the countof
the most commonlyoccurringbaseis abovea thresholdfractionof the total calls, the
consensuss calledasa base.If thefractionis belowthethreshold,an ambiguitycode(asin
Table 2-1) is used to call the consensus.

Onelimitation is theMajority methodis thatit reliesentirelyuponthe correctnessf base
calls. In the nexttwo chapterd introducehighly accuratanethodghatlook atthe underlying
tracedatain determininghe consensus. confirmthe effectivenessf the new methodsy
comparingheirconsensusccuraciefor arangeof coveragednumberof alignedsequences
To accumulatan adequateamountof datafor testingat eachcoverage] developedand
implementeda new algorithm, Minimize Coverage that systematicallyreducesthe
predominantoveragen anassemblyo a specifiedevel. Repeatedhapplyingthetechniqueo
anassemblyof E. coli dataproducedabundantlatafor testingat coverage$rom two to ten
andover. Accuracyatlow coveragess one criterionthatcanbe usedto evaluateeonsensu
calling approacheghigh accuracyat evenlow coveragesdentifiesa superiortechniqueln
addition,methodghatarehighly accurateatlow coveragesanreducethe costof sequencin

by lowering the required number of sequences in an assembly.
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Chapter 6

Trace-Evidenc€onsensus

The first approach to the consensus calling problem that | investigated is an algorithmic
thatdirectly incorporateABI trace-datanformationvia peakscoresfrom the Trace-Clas:
representation (Chapter 3). | refer to the new method asdlee-Evidence Consensumethoc
(Allex et al.1997).

The Trace-Evidencanethodis basedon theideathat eachof thethreepeakTrace-Clas:
scoressuppliesan amountof evidencehat the associatetbaseshouldbe assignedn the
consensusHigh strong-peaSP scoressupplythe greatesamountof evidence high
medium-peakMP) scoressupplythe nextgreatesamountof evidenceandhigh weak-peal

(WP) scores provide the least. Figure 6-1 demonstrates the evidence idea.

6.1 Algorithmic Details
To determinghe consensus$or a columnof alignedbases] sumtheevidenceE, basedn
Trace-Classcoredor eachof thefour basesTheevidenceor eachbases multipliedby the

weightvaluesdescribedn Section3.2.2. Thebasewith thehighestevidencesumis identified

astheleader andits evidencesumis theleading-evidence . Theotherthreebasesare
competitors , andtheirevidencesumsarecompeting-evidence . A thresholdbetweetr
0 and1 is specifiedthatdetermineshe ignorablefractionof competing-evidence to

leading-evidence . If the leader has no competitors with competing-
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evidence (greaterthan the threshold,the leader is assignedas the consensuslif

competing-evidence for any basessurpasseshe threshold,then thosebasesare
included in determining an ambiguous call.

To determinghe consensu$or a columnof alignedbases two typesof valuesmustbe
calculatedor eachsequencen thecolumn:the Trace-Classcoresanda measuref theweight
(quality) of the data.l usetheweightscoreso apply appropriateemphasigo the evidence
suppliedby eachsetof classificatiorscores.Thatway, morereliable higherquality tracedate
supplies more evidence than trace data of lower quality.

Whengapsoccurin acolumn,the weightscoresarealsousedto decideif the consensu
shouldbe calledas agap. To do this, | sumthe weightsfor sequencewith a gapin the
columnandcomparghemwith thesum of the weightsof sequencewithouta gap.If thegag

weight sum exceeds the non-gap sum, the consensus is called as a gap.

N 2 SN W o G S

Figure 6-1. Evidence in Traces. Consider the evidence found in the four traces il
theshadedegion.TheC tracewill producea highstrongpeak(SP scoretheT trace
will yielda relativelysmallerSPscore,andboththeA andG traceswill producepeak
scoresof 0. A visual examinatiorof the tracessupportsthe premisethat the vast
majority of the evidencas for a basecall of C andthatthereis essentiallyno evidence

for a base call oA or G. (Actual data shown.)
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The steps used in the consensus calculation for a single aligned column appear ne:

of the calculations mentioned follow the algorithm.

Trace-Evidence Consensus Algorithm

For a single aligned column

1.

For each sequence, find the quality of trace data, W, within a small window
centered on the column.

Sum W for each sequence with a gap in the column and compare it to the
sum of W for the remaining sequences. Ifthe gap sum exceeds the non-gap
sum, return gap.

Determine S, the 6x4 (six scores for each of four traces) matrix of Trace-
Class scores for each sequence.

Reduce each S to a vector, E, of four values that summarize the evidence for
each trace.

Multiply each value in E by its corresponding W to produce a vector E’ that
has been adjusted by data quality.

Sum each of the corresponding E’ s to produce a vector, T, of the total
evidence for each of the four bases.

. Find the highest evidence (leading-evidence ) in T; its corresponding

base is the leader

Multiply leading-evidence by the threshold to compute the maximum
ignorable competing-evidence

Compare leading-evidence to each competing-evidence . If no
competing-evidence surpasses the maximum ignorable, then return
leader as the consensus call, otherwise use all competitors  who surpass
the maximum to determine and return an ambiguity.
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| usethesamesummaryvector,V, usedfor weight calculationsanddefinedin Sectior

3.2.2, to summarizehe Trace-Classcoresduring consensusomputation Multiplication by
V ensureghatscoressupplyingthe mostevidencgsuchas thosewith high SP scores)are

given more credence than those that supply less evidence. Figure 6-2 demonstrates tt

C —
G —_—
SP MP WP WV MV SV S*V
A 0 4 30 8 0 13
C 89 11 0 96
G 3 1 0 4
T 0 0 0 0 13 76 0

Figure 6-2. Summarizing Trace-Class Scor es. The Trace-Classcores,S, for
eachof thefour tracesarecomputed Whenthedot productof S andV ([1.67.33 00
0]) is computedtheresultis ahighvaluefor the C trace- thetraceexhibitinghighest
evidenceThevaluesfor theA, G, andT tracesareall low. Whenthesesummarized
valuesare usedto provideevidencetheC traceappropriatelyhasthe highestvalue.
Note thatin thiscalculationthe Trace-Classcoresarecomputedor eachof thefour
tracesn contrastto thecalculationof theweightmeasuren which only thescoresfor
thetraceassociatewith thecalledbasearecomputedHere,l needto know how much
evidence each trace supplies.
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For eachsequencén a column,a vector,E, summarizeshe evidencdor eachpossible

basgA, C, G, andT). For eachbase thecomputedvaluereflectstheamountof evidencehat

the call should be that base. The vector is computed as follows.

1. Form a 6x4 matrix of Trace-Class scores, S, by computing the scores for
each trace:

SPa SPc SPg SPt
MPa MPc MPg MPT
WPa WPc WPg WPT
WV WVc WVg WVT
MVa MVc MVg MVT
SVa SVc SVg SVt

2. The matrix multiplication of V and S produces a vector of evidence values,
E, for the possible bases:

E =VxS =[E, Ec Eg Er]

3. Multiply E by the quality of the local trace data, W, to produce evidence
values, E’ , that have been adjusted by the quality of the data:

E' =E x W
Finally, | sum the evidence for each base in an aligned column as described next.

Sum corresponding E’ values to produce the total evidence, T; , for each
possible base i, where n is the number of sequences in the column:

TA = EAl, + EA2, + e + EAn1
TC = ECl’ + ECZ’ + e + ECn,
TG = EGl’ + EGZ’ + e + EGn,

Tr = Bp' + B + 4 By
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OnceT hasbeencalculatedconsensusalling canbe completecas describedn steps7-9

of the Trace-Evidenc€onsensuslgorithm.An exampledeterminatiorof a consensubase

call appears in Figure 6-3.

Seq W

\ 51 (0 0 52 0] O 0 265 0

82 (0 0 73 0] O 0 599 0

I~ 26 |0 0 22 5/ 0 0 54 13

Total 0 0 918 13

Figure 6-3. Trace-EvidenceConsensusExample. Theconsensubasefor the
centercolumnof threealignedsequencesnustbe called. For eachsequencethe
evidenceE, for eachbaseis multipliedby the correspondingveight, W, Whenthese
productsaresummedor thethreesequencegheevidenceor A andC is 0, for G is
91.8,andfor T is 1.3. If thethresholds .50, G will becalledunambiguouslginceno
competing-evidence surpasse#5.9 (91.8 x .50). In contrast,the Majority
method with a 75% threshold would make an ambiguous ckll(®for G).
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6.2 Evaluation

All codefor testingthe new consensusalling methodwas incorporatednto an experimente
version of the DNASTAR Inc.’s SegManfragmentassemblyprogramfor the Apple
Macintosh PowerPCSegMaruses théviajority consensus calling metho&dgMarhas sinc
beensupersededy SegManl] a more powerful, commerciallyavailable,version that
incorporates trace analysis as described in this dissertation.)

Fragmentassembliess describedn Chapter5 are usedto comparecorrectcalls to
Majority and Trace-Evidencealls. | reportresultsfor consensugallsmadewith coverage
from two to tenor morealignedsequenceshethresholds setto the SeqMardefaultvalueof
75%for Majority andto 50%for Trace-EvidenceGraphsn Figure6-4 displaythenumberof
correct calls, incorrect calls, and ambiguous calls per kb for the two methods.

Theresultsshow a significantimprovementith theTrace-Evidencenethod especiallyat
lowercoveragegnumbetrof alignedsequencesPDifferencesarestatisticallysignificantusinga
pairedone-tailedt-testat the 95% confidenceevel. With a coverageof only three,using
Trace-Evidencel seealevelingof thenumberof incorrectcallsandalargeimprovemenbver
the Majority methodin the numberof correctandambiguousalls. With a coveragef four,

the number of ambiguous calls has fallen to nominal valueslvatte-Evidence

6.3 Discussion
| observestriking exampleof theutility of the Trace-Evidencenethodwhen basecallsin a
columnaresystematicallyncorrectln someinstancesawell-definedpeakis hiddenbelow a
high-intensityvalley. The bases oftenincorrectlycalledasthe oneassociatedavith the high-
intensityvalley. Majority methodsancorrectlycall theconsensussthis base My new Trace-
Evidencemakeghe correctconsensusallevenwhenall or mostof thebaseshavebeencalled
incorrectly. Figure 6-5 contains an actual example of this occurrence.

| have identifiedthree situationsin which Trace-Evidencecan make incorrectcalls.
Overwhelmingly most problemsinvolve gaps.In rarercased havedifficulties with low
evidencesumsor poor-qualitydata.Next, | briefly describethesethreesourcesof incorrec

calls.
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In theresultsreportedhere,all of theincorrectcallsat coveragesibovethreeandat leas

half of thosefor coverage®f two or threeinvolve gapsin the column.The methodfor
determiningwhethera gap should be insertedin the consensusonsistsof a simple
comparisorof gapversusnon-gapsumsof theweightsof thetracesn the column.However
theinsertionof a gapaffectsnot only thecolumnin which it occurs,butalsothe columnsto
eitherside.Whendeterminingagapcall, it is probablynecessarjo consideimorecontextand
examinethe dataon eitherside of the baseof interest.Finding a solutionto calling the
consensusvhengapsarein the alignmentvould virtually eliminateincorrectcalls madewith
theTrace-Evidencenethod with a coverage of at least four.

In someinstancesincorrectcalls can be associatedavith extremelylow evidencesums
Whenthesumsarequitelow, eventhemaximumevidencas often notindicativeof thecorrec
call. One solutionis to label the consensuss an ambiguousN and defer consensu
determinatiorto humaneditors.For the resultsreportedin this chapter this is the solution
used(i.e. low-evidencecallsare countedn the ambiguouscategory)To circumventhe low-
evidenceproblemin the commercialversionof SegManl] consensusalling revertsto
Majority whenthe maximumevidences lessthanten. (This numberwas choserasonethat
works well in practice.)

A few incorrectcallsoccurin caseghataredifficult for bothMajority andTrace-Evidence
Theseareusuallyin regionsof poorer-qualitytracedatawherepeaksareoverlappingandill-
defined.The obstacldor Majority is thatone or moreof thebasecallsis likely to beincorrec
in suchregions.For Trace-Evidencehe difficulty liesin therelativelocationsof the trace
peaks Oftenthe peakassociatewith thecorrectbasecallis significantlyoffsetfrom thebase
call location.Theresultis thatwhentheTrace-Classscoresarecomputeda peakis eithernot
detectedris givenalow scoredueto its distancerom thebase-callocation.Anotherof the
tracesmay exhibita small, distinct peaknearthe base-callocationthatis scoredrelatively
higher.Trace-Evidenceghenhasmoreevidenceassociateavith the smallpeakthanwith the

correct trace and calls the consensus incorrectly. This case is illustrated in Figure 6-6.
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Figure 6-4. Trace-EvidenceTest Results. Accuracyresultsby amountof
coveragaregraphedEachdatapointis basedn 20 - 68 kb consensusalls(Table5-
1). The new Trace-Evidencenethodproducesnore correctcallsand fewerincorrect

and ambiguous calls.
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G G

N Correct Call: C
M\: Majority Call: T

G G

Trace-Evidence Call: C

G G

[\ C ——
G_

ANV

GICG

Figure 6-5. Trace-Evidenceversus Majority Consensus. In the shaded
column,threebasedavebeenncorrectlycalledasa T andonecorrectlyasaC. With a
75%threshold,the Majority methodincorrectlycomputeshe consensussa T. The
Trace-Evidencenethoddetectano evidenceor a T, ampleevidencdor a C, andcalls
the correctconsensusWith Majority this situationwould be evenmoretroublesoméf
the fourth sequenceaverenot in the assemblyln thatcase,thecall would haveno
conflicting basecalls and would likely go unquestionedaluring manualediting. In
contrast,Trace-Evidencecorrectlycomputesa C, evenin the absencef the fourth
sequence. (Actual data shown.)
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Figure 6-6. Difficult Consensus Call. Threesequencebavebeenaligned;the
correctcall for the shadedcolumnis C. Majority callsan ambiguousH for the
consensusincethe columnincludesconflictingbasecallsof T, C, andA. The Trace-
Evidencemethodassignaegligiblestrongpeakscoredo the offset peaksassociated
with the C tracesanda high strongpeakscorefor theT tracein thefirst sequencelhe
scoresincorrectlysum to adequatevidencdor a T andinsufficientevidencedor C.
(Actual data shown.)

6.4 Summary

Theoverallgoalof my work is to improvethe qualityand efficiencyof automatidragmen
assembliesTowardthis goal, | havedevelopeda new methodfor consensusalling, Trace-
Evidence that producesncreasedonsensusccuracytherebyreducingmanualeditinganc
decreasinghe amountof coverageneeded.Using the Trace-Evidencemethodresultsin

automaticallyproducedconsensusequencethatare moreaccurat@ndlessambiguoughan
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thoseproducedwith standarca majority-votingmethod.Additionally, theseimprovementsare

achieved with less coverage than required by the standard methods Fasegvidencand
acoverag®f only three,errorratesareaslow asthosewith a coveragef overtensequence
| accomplishedhis by directincorporatiorof traceinformationinto automaticconsensu
callingvia the Trace-Classepresentatioof tracedata.In contrastto my new method,less
accuratanethodsiseonly a limited representationf tracedata— basecalls— to determinghe
consensus.

I implementedhe Trace-Evidencemethodfor consensusallingin the commercially
availableversionof DNASTARInc.’s SeqManllfragmentassemblyprogram.The previous
version,SegMan usedtheMajority methodto makeconsensusalls. In the latestversionof
SegManl) availableaspartof the Lasergene98uiteof applicationsTrace-Evidencdasbeer

updated to th@&race-Evidencelinethod described in Chapter 8.
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Chapter 7

Neural-Network Consensus

The secondapproachto computinga consensushat! investigatedisesneuralnetworksto
procesdracedata(Allex, Shavlik,& Blattner1999). Giveninputsextractedrom an alignec
column of DNA basesand the underlying Perkin-ElmerApplied Biosystems(ABI)
fluorescentraces,my goalis to traina neuralnetworkto correctlydetermineghe consensu
basefor the column. Choosingan appropriatenetworkinput representatiors critical to
success$n this task(Baldi & Brunak1998, Craven& Shavlik1993). 1 empiricallycompare
five representations; one uses only base calls and the others include trace information.

One significantway that my systemfor consensusallingdiffers from most existing
methodss thatit directlyprocessemformationon the shapeandintensityof ABI fluorescen
traces.Othermethodssuchasthosein the TIGR Assemble(Suttonetal. 1995),andGAP
(Bonfield et al. 1995), examineonly previouslydeterminedasecalls whencalculatingthe
consensus.

Two existingassemblershatdo consideitracecharacteristicare Phrap (Green1997b
Phrap sourcecodedocumentationandDNASTAR Inc.’s SegManll.To makea consensu
call, Phrap chooseghe basecall in an alignedcolumnwith the highest-qualitytraceas
determinedy its companiorbase-callinggrogram Phred(Ewingetal. 1998,Ewing& Greer
1998). The methodusedin SeqManllis describedn Chapters$ and8. It extractsandsums

informationaboutthe shapeandintensityof thetracesn analignmentThe sumsareusedas
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evidence in determining the most likely consensus call.

Anotherdifferencebetweermy systemand othersis the use of neuralnetworks.Since
their introductionin the 1940s (McCulloch& Pitts 1943), artificial neuralnetworkshave
emergedrom therealmof pure academicesearchnto practicalsolutionsfor a plenitudeof
problems(Widrow, Rumelhart& Lehr 1994).In recentyears,interestin developingheura

network solutions for problems in molecular biology has surged. A sampling includes:

» protein-structurg@rediction(Rost& Sanderl993,Stolorz, Lapede® Xia 1992, Qian
& Sejnowski 1988),
» DNA base calling (Tibbetts, Bowling & Golden 1994),

» finding protein binding sites (Heumann, Lapedes & Stormo 1994),
» detectionof protein-codingegions(Craven& Shavlik1993, Snyder& Stormo1993.
Uberbacher & Mural 1991, Noordewier, Towell & Shavlik 1991), and

» identifyingRNA polymeraséinding sites(Pederser& Engelbrechtt995, Towell,
Shavlik & Noordewier 1990).

Neuralnetworksoftenprovidea good solutionto biologicalproblemssuchasthesesince
the problemsinvolveintricateinteractionsand the strengthof neuralnetworkslies in their
ability to learnto recognizecomplexpatterns.Given their successn the computatione
researcltommunity,neuralnetworkshavethe potentiakto be a powerfultool for dataanalysis
in biological researcHabs. Despitethis, the use of neuralnetworksfor tasksin DNA
sequencindnasbeenscarcelyexplored.In onepromisingexample heuralnetworksareusec
to makebasecallsin individualDNA sequenceéGolden, Torgersenand Tibbetts1993).
Note that Golden’swork calls basesin single sequencesvhereashe work | describe
determines the consensus for multiple aligned sequences.

Figure7-1 containsabrief descriptionof the operationof neuralnetworks;detailscanbe
found in McClelland and Rumelhart (1986).
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outputs
(consensus call)

weighted connection

inputs
(average peak intensities)

Inputs:  Average relative G, A, T, and C trace peak intensities
Outputs: A consensus call for the aligned column

Categorized Examples

Inputs Desired Outputs
example 1: .32 .01 0 .03 1 0 0 0
example 2: .05 0 .01 .35 0 0 0 1
examplen: .38 .01 .04 0 1 0 0 0

Figure 7-1. Neural Networks. A feed-forwardbackpropagatiomeural network
learnsto categorizgpatternsof inputs Inputsarenumericalrepresentationsf features
of a problem.Typically, thereis one output for eachcategoryof the problem;the
desiredoutputis 1 for thecorrectcategoryandis O otherwise.First the networkis
trainedby processing setof categorizeegxampleqa training set) A categorized
exampleis an instanceof the problemthatincludesits inputs and desiredoutputs.
Duringtraining,weightedconnectionsn the networkareadjustedso thattheerrorin
the actualoutputis reduced Hiddenunits in the networkaid by allowing the input
representatioto be transformedWhenthe differencebetweerthe desiredandactual
inputsis sufficiently low, trainingis haltedandthe networkcanbe usedto categorize
previouslyunseennstance®f the problem.Futureaccuracyof thetrainednetworkis
estimatedy measuring trainednetwork's performancen a disjoint set of testing
examples.

In this figure, | haveanexampleof a simpleneuralnetworkwhosefunctionis to
call the consensudor a single alignedcolumnof DNA baseswhen given inputs
extractedrom fluorescentraces.Thenetworkis givenfour inputs(therelativeG, A,
T, andC trace intensity averages), and outputs a consensuScaé| (T, or C).
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7.1 Algorithmic Details

The ability of a neuralnetwork to correctlycategorizanstance®f a problemis critically
dependentpontheinputrepresentatio(Baldi & Brunak1998, Craven& Shavlik1993).For
my work, this problem can be expressed as follows.

Given: An aligned column of base calls and traces
Do: Represent the column as numerical inputs

I definefour featuresof analignedcolumnthatcanbe usedsingly or in combinatiorto
form input representationf®r a neuralnetwork.Two of thefeaturesiseinformationextractet
from fluorescentraces.| believethat muchvaluablenformationis lost whenthe tracesare
reducedo basecalls. My hypothesigs thata neuralnetworkcanexploitthe traceinformation
to makeconsensusalls thataremoreaccuratehanthosemadewith networksthatuseonly
base calls as inputs.

Theinputsthatusetraceinformationare multiplied by the weight(quality) of thetraceso
thatmoreemphasiss givento betterdata.A descriptiorof thecalculatiorof theweightvalues
| useappearsn Chapter3. Oneof theinputfeatureshatusesfluorescentraceinformation
captureghe shapeof thetraces.To do this, | employTrace-Classcoresas describedn
Chapter 3.

The four input features | defined for an aligned column are listed next.

* Base Call Fraction

The fraction of occurrences of G, A, T, and C.

» Gap Fraction

The fraction of occurrences of gaps.

* Trace Peak Intensities

For each base, the trace peak intensity multiplied by its weight and averaged
over the number of aligned sequences.

» Trace Peak Shapes

For each base, the strong (S) and medium (M) Trace-Class peak scores
multiplied by its weight and averaged over the number of aligned sequences.
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Figures 7-2 to 7-5 contain the details of calculating the numerical inputs for these featu

.. CGAAGTAATA ...
.. CGAACTAATA ...
.. CGAACTAATA ...
..CGAA-TAATA ...

4 Inputs: 0.25 0 0 0.5

Figure 7-2. Base Call Fraction. Therearefour alignedsequencem the shaded
columnin this example.For eachof the four basesl divide the numberof its
occurrencedy the numberof sequencesThe G basecall occursoncein four
sequenceso its inputis setto 0.25. Likewise, theinputsfor A, T, andC are0, 0,
and 0.5 (2 of 4), respectively.

.. CGAAGTAATA ...
.. CGAACTAATA ...
.. CGAACTAATA ...
..CGAA -TAATA ...

1 Input: 0.25

Figure 7-3. Gap Fraction. Forthisexample] againhavefour alignedsequences
in theshadedtolumn.For thisinput, | amonly interestedn gaps,sothesingleinputis
the number of gap occurrences divided by the number of sequences. Since a gap (
once in the four sequences, the input is 0.25.
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Maximum intensity = 1600

Peak Intensity
(relative to maximum)

Aligned column | Weight G A T C
0.37 0 0.11 0.69 0
(0) (0.04) (0.26) (0)

TATTATT CTCA
0.42 0 0 0.18 0
{ © () (0.08) (0)

TATTATT CTCA
0.40 0 0 0.15 0.01

© (© (.086) (0
TATTATT CTCA

Weighted Average 0 0.01 0.13 0

4 Inputs: 0 0.01 0.13 O

Figure 7-4. Trace Peak Intensities Threesequencearealignedin the shaded
column.For eachof thefour basesn eachsequenceaheintensity(valueatthe center
of the column)of the traceis dividedby the maximumpossibletracevalue. This
fractionis thenmultiplied by theweight assignedo the base.The averagever the
weightedvaluesforms the inputfor eachbase.In this example the maximumtrace
valueis 1600(a typicalvaluefor ABI traces)In thefirst sequenceheintensityof the
T traceis 1104 andits intensityrelativeto the maximumis 0.69 (1104/1600) Values
for all otherbasesn eachsequencarecalculatedn thesameway. The valuesarethen
multiplied by their correspondingveightsand the resultsare givenin parentheses
below each relative intensity. When averaged, the values yield the inputs 0, 0.01,
and 0. (When averaged over three sequences, the 0.01 sGmotords to 0.)
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Trace-Class Scores
Aligned column |Weight| o GM S A M S T M S M
0.37 0O O 0.04 0.03 0.28 0.22 0 0
(0) (0) (0.01) (0.01) (0.10) (0.08) (0) (0
TATTATTCTCA
0.42 0O O 0 0 0.25 0.20 0 0
0) (0) 0 () (0.11)(0.08) (O (0
TATTATTCTCA
0.40 0O O 0 0 0.15 0.10 0 0
0) (0) (0) (0) (0.06)(0.04) (0) (0)
TATTATTCTCA
Weighted Average| 0 O 0 0 0.09 0.07 0 0
8 Inputs: 0 0 0 0 0.09 0.07 0

Figure 7-5. Trace Peak Shapes.To form the inputs for the three aligned
sequencem the shadeatolumn,| extractraceinformationusingTrace-Classcores|
first computethestrong(S) andmedium(M) peakscoredor eachof thefour tracesn
eachsequence(l found weakscoredo beirrelevantanddo not usethem.)Eachscore
is then multipliedby the weight for its base.The weightedscoresare givenin
parentheselBelowthe scores.Therearetwo inputsfor eachbasethe averagever all
thesequencesf theweightedstrongscoresandthe averagef theweightedmedium

scores. (When averaged over three sequences, the 0.01 A48 founds to 0.)
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| testedive networktopologies.Eachhasfive hiddenunits andfive outputs.The desirec

outputsfor the networksalwaysconsistof four Os anda singlel thatrepresentgitherone of
thefour basesor a gap. Theinputrepresentationgsecombinationf the four possibleinput
featuresdescribedabove. The simplestnetwork, referredto as BaseCall, usesan input
representatiothatconsistsof the BaseCall Fraction andthe Gap Fraction featuresThe Base
Call networkis usedasthe controlin testingmy hypothesighatinputs thatincludetrace
information produce more accurate results than those that only consider base calls.

A seconcdhetwork,calledTraceShape usesnine inputsthatincludethe TracePeakShape
and Gap Fraction input features A third network, Tracelntensity hasfive inputsthatuse
TracePeaklIntensitiesand Gap Fraction inputfeatures.The fourth network, referredto as
TraceShapeandIntensity usesboththeTracePeakintensitiesandtheTracePeakShapesas
well as the Gap Fraction featuresin its thirteeninputs. Finally, | testedone networkthat
includedall the possiblenput featuresBaseCall, TracePeakintensities TracePeakShapesg
andGap Fraction

Thefive networktopologiesaresummarizedh Table7-1. To makea consensusall with
oneof thesenetworks,| find thehighestoutputvalueandits correspondindpaseor gapis the
consensusall. Ambiguouscallsmay alsobe madeby settinga thresholdjf morethanone
outputexceedshethreshold thenthe appropriatembiguouscall is made.lf only oneoutput

is above threshold, the call is unambiguous.
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Table 7-1. Neural Network Topologies. Eachof thefive networkshasfive

hidden units and five outputs. The number of inputs range from 5 to 17.

Neural Number of Inbut Features
Network Name Inputs P
» Base Call Fraction
Base Call 5 :
* Gap Fraction
Trace Shape 9 » Trace Peak Shapes
P » Gap Fraction
. » Trace Peak Intensities
Trace Intensity 5

» Gap Fraction

» Trace Peak Shapes
13 » Trace Peak Intensities
» Gap Fraction

Trace Shape
and Intensity

e Base Call Fraction

All 17 « Trace Peak Shapes

* Trace Peak Intensities
» Gap Fraction

7.2 Evaluation

| usedthe assemblieproducedwvith the MinimizeCoveragemethodas describedn Sectior
5.2 to constructrainingand testsetsto analyzehe effectivenes®f the networks.| createt
examplesetsin whichall of the examplegor a particularsethavethesamecoveragghumbel
of alignedsequences).choseexamplesvith coveragesf two, three,four, five, andsix to
form five sets.Eachsetcontain20,000examplef categorizedlata.Ten trainingandtest
setsare constructedrom eachexampleset suchthat eachnetworkis trainedon 18,00(C
examplesandtestedon theremaining2000. Eachexampleoccursin exactlyonetestsetand
ninetrainingsetsdisjointfrom thetestset.In thesesets,examplesvith adesiredutputof gap
are far outnumberedy exampleswith desiredoutputsof G, A, T, or C. To enablethe
networksto learnto recognizegaps,gap examplesareduplicatedn thetrainingsetsso that

theyoccurwith aboutthesamédrequencyasexampledor eachbase.(Notethatgap example:
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are not duplicated in test sets.)

NeuralWardnc.’s NeuralWorksProfessionall softwarewasusedfor all neuralnetwork
tests. | ran this software on an HP Pentium Pro 6/200 rufdindows NT

| trainedandtestedeachof the neurainetworktopologieswith thefive examplesets.For
eachcoveragel usedl0-fold cross-validatiorandreportaccuraciesverageaverthelO0 test
sets.Duringthetrainingphase gachexamplen atrainingsetwas processeanly oncesince
accuracy fails to improve with more iterations.

Accuracyresultsfor thefive topologiesaregraphedn Figure7-6. Of thefive networks,|
find thatTraceShape Intensityproduceshe mostaccurateonsensusalls. With acoverag:
of six, it makes only three errors in 20,000 calls. The range of accuracies is from 99.2/

coverage of two to over 99.98% with a coverage of six.

% Accuracy
100.0

99.97
99.8
99.7 1
99.6 |
99.57
99.4

9927 4 —— Trace Shape & Intensity
99.1 ,/ — =— = Trace Intensity

/ Al

/ —=-—-== Trace Shape

98.97 Base Call

98.7 \ \ \
2 3 4 5 6

Coverage

Figure 7-6. Neural Network Consensus Results. The Trace Shape&
Intensity network producesthe most accurataesultsat every coverage With a
coveragef four or more,the accuraciefor all networksthatusetraceinformationare
above 99.9%.



80
The network thatusesonly base-callnformationin inputs, BaseCall, has the lowest

accuraciesit every coverageexceptfive. At a coverageof five, the other network that
incorporatedasecalls,All, hasthelowestaccuracyWith two or threealignedsequenceshis
networkhassubstantiallypoorerresultsthanany of theotherfour networks.Exceptwhenthe
coverages four sequencedlifferencedbetweerntheBaseCall andthe TraceShape Intensity
networks are statistically significant using a paired one-tailed t-test at the 95% confiden
As with the other networks, the best results usindgtseCall network are achieved when-
coverages six. With six alignedsequencesheerrorrateis eightin 20 kb — morethandouble
that of the best network that uses trace information.

| alsocomparedheperformanceof the mostaccurateneuralnetwork,the TraceShape&
Intensitynetwork, to the algorithmicTrace-Evidencemethod developedHerel reporton
resultsusing the refinedversionof Trace-Evidence Trace-Evidence]l thatis describedn
Chapter8.2.1. Figure7-7 graphsthe accuraciesf about20 kb consensusallsoutputby the
TraceShapek Intensitynetworkwith theaccuracie®f about680kb consensusallsmadeby
Trace-Evidencell Theneuralnetworkdatasetis describedn Chapter5 andthe datasetusec
to testTrace-Evidencelis describedn Chapte®.1. TheTrace-Evidenceltonsensusallsare

more accurate than the neural network at all coverages.

% Accuracy
100.0 — e e e =

99.9 7

99.8 71,

99.7 7

Trace Shape & Intensity
(Neural Network)

= = = Trace-Evidencell
(Chapter 8.2)

99.6

99.57

99.4 7

99.2 \ \ \

2 3 4 5 6
Coverage

Figure 7-7. Trace-Shape & Intensitywersus Trace-EvidencellAccuracy.
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7.3 Discussion

In additionalunreportedjests,| experimentedvith alternativeplausiblenputrepresentation
In oneexperiment| extractednputsfrom abroadeicontexthana singlecolumn.My premise
was thattheaccuracyof the consensusgallscould be increasedy extendinghe inputsto
includetraceinformationfor oneor morebase$' tothebaseof interest.Parkeretal. (1995)
andGolden,Torgersenand Tibbetts(1993) havereportecthatintensityvaluesfor abaseare
affectedby 5 adjacenbasesFor example Parkeretal. showthattheintensityof a C peak
following a G is relativelylow. Severapatternsuchasthesearedescribedor fluorescent
dye labeleddata(Perkin-EImen 995, Parkeretal. 1995).1 believedhatthe neuralnetworks
couldbetrainedto recognizehesepatternsputin practicefound noimprovementn accurac
with the extended inputs.

In anotherexperiment| providednot justa singleintensityinputfor eachtrace,butrathe:
the intensities in a window surrounding the center of the base peaks. These are the sa
thatl usein calculatingTrace-Classcores butratherthantransformingthemalgorithmically.
| allow the networkto processhem.The network using this alternatanput representatio
requiredmoreinputsbut yieldedresultsvery similarto the TraceShape& Intensitynetwork

(results not reported).

7.4 Summary

Given inputs extractedrom an alignedcolumnof DNA basesand the underlyingABI
fluorescentraces| trainedneuralnetworksto determineghe consensubasefor the column.
Choosingan effectiveinput representatiowas the focus of this work. | comparedive
representationand found that networkstrainedwith inputs incorporatingluorescentrace
informationare highly accurate Basedon estimatesderivedfrom using 10-fold cross
validation the bestnetworktopologyproducesonsensuaccuraciesangingfrom 99.26%to
over 99.98%for coveragegrom two to six alignedsequencesWith a coverageof six, it
makes only three errors in 20,000 consensus calls. In contrast, the network that only 1
callsin its input representatiohas over double that error rate— eighterrorsin 20,00(

consensusalls. This represents reductionin the needfor manualediting.However,| find
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thatwhen| compareheaccuracie®f the mostaccuratenetwork, Trace-Shap& Intensity

with thebestalgorithmicconsensusalling approach havedevelopedTrace-Evidence]l |

find that the algorithmic method outperforms the network at every coverage.



83

Chapter 8
SLIC Fragment Assembly

In this chapten introducea new systemfor fragmentassemblytheSLIC Assemblerthatis
anotheremphasi®f my thesisresearchFirst, recallfrom the discussionn Chapter2, thatto
determinghe sequencef basesin a genomeor large segmenbof DNA, researcherfrst
produce and sequence small, overlapping fragments of the genome. The base-call sec
the smallfragmentsarecommonlyreferredto asfragmentreads,sequencesor simply reads
The overlappingregionsof the fragmentreadsare alignedinto one or more contigs
(contiguousegmentsandtheresultinglayoutis usedto determinghe consensusequencef
thegenome Theprocesof determininghelayoutof thereadsis calledfragmentassemblyr
sequencassembly Assemblyis complicatedy repeats subsequencdgbatoccurmorethan
oncein a genomeWhena readcontainsa repeat,its placementn the layoutis often
ambiguous.

Techniquedor sequencingvhole genomesand other large fragmentsof DNA are
constantlyevolving. The whole genomeshotgunsequencingstrategyfor bacterianvolves
creatinga random,or shotgun,library of small fragmentdrom the whole genome then
sequencinghe small fragments This strategyis successfufor genomesup to severa
megabaseis size.For largergenomesa popularstrategyinvolvesfirst cloning largeDNA
fragmentgabout200kb long), thenapplyingthe shotgunsequencingtrategy(e.g. Boysen

Simon& Hood 1997).To determinghe sequenc®f thewhole largergenome,assemble
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contigsmustbearrangedaccordingto theirpositionson chromosomesThis strategyhasnot

yet beensuccessfuin completingthe sequencef a whole genomdargerthanthatof a
bacteria.

Althoughthereareargumentdor (Weber& Myers 1997) and against{Green1997a
applyingthe wholegenomeshotgunsequencing@pproacho sequencingenomesslargeas
Human it is clearthattheapproactwill work with genomesonsiderablyargerthanthoseof
a typical bacterigdWeber& Myers 1997). As strategiesvolve toward sequencindargel
fragmentsand evenwhole genomesthe amountof sequencealatathatwill needto be
assembleds immenselt is crucialthatfragment-assembloftwareevolvein tandento avoid

bottlenecks in sequencing.

8.1 Existing Method

Severalassemblysoftwareprogramsare commonlyusedto sequencéarge genomesThe
programfavoredby many largegenomecenterss Phrap, developedat the University of
Washingtor{Green1997b,Phrap sourcecodedocumentation)n this section] will describe
the operation oPhrap in Chapter 11, | describe five other methods.

Themethodfor assemblyusedin Phrap reliesheavilyon quality scoresassignedo eact
basecall by Phrags companiorbasecallingprogram,Phred (Ewing & Green1998). Eacl
basecall madeby Phred is assigned quality scorethat reflectsthe estimatedgrobabilityof
error of the basecall. During assemblyoy Phrap, pairwisecomparison®f thereadsareusec
to adjustthequality scores.If a basecallis confirmedby anothercall thatwas sequencedn
the oppositeDNA strandor with a different chemistry,the quality scoreis increasedy
summingit with thescoreof the confirmingcall. During assemblyby Phrap basecallswith
low quality scores are virtually ignored, allowing use of full fragment reads without trim

The adjustedPhrapqualityscoresare also usedto identify putativerepeatan fragmen
reads.If mismatchesccurin alignmentsvherethe quality scoresarehigh, theyareassume
to be dueto a near-repeatOn the otherhand, mismatcheshatoccurin alignmentsvhere
quality scoresarelow arepurportedio bedueto base-callingerrors.Subsequentlythe read:s

arenotoverlappedf arepeats suspectedA companiorprogramo Phrap, RepeatMaskehnas
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alsobeendevelopedo help avoidfalseoverlapsof repeatedegions.RepeatMaskescreen

sequencefor known repeatsWhenfound, known repeatedegionsare maskedirom use
during assembly.

To determinea consensusequencePhrap selectghe basewith the highestadjustec
qualityscorein eachalignedcolumn. The consensuss thena Mosaic of the highestquality
partsof thealignment.Using the Mosaic consensumethodcanhavea significantimpacton
the depthof coveragénumberof alignedsequences)eededor accuratesequencingn their
tests,thedeveloper®f Phrap find thatin a typicaldataset, about25% of the basecallshave
predictederrorratesof lessthanoneerrorin 10kb. Thismay eliminatetheneedfor filling in
low coverage areas when the error probability is nominal.

As researchermoveto sequencingargerfragmentsaand whole genomesassemblywill
requiresoftwarethat can efficiently handlelarge amountsof data.As with mostassembl
packagesthe Phrap packageisespairwisecomparison®f all fragmenteadsin assemblin
contigs.As arule, the executiortime for an algorithmthatperformspairwisecomparisonss
nz. With n2 algorithms,asthe sizeof assembliesncreasesso doestherateof increasen the
amount of time needed for execution.

Using nz time algorithmsfor large-scalsequencingrojectsis time-consumingperhap:
evenbecomingmpossiblyso. As anexample consideanassemblyf 22,000fragmentead:
for a 2 mb fragmenthattakesaboutfour hoursusingan nz algorithm.Extrapolatingoasedn
nz, it would takeover oneand a half yearsto assembleandomshotgunfragmentsof a
chromosomef the humangenome.In contrast,considerusinga methodthatrunsin time
proportionalto n. If four hours are requiredto assemble22,000 fragmentreads, a

chromosome could conceivably be assembled in less than ten days.

8.2 The SLIC Assembler

| describeafragmentiayoutalgorithmthatoffersa substantiagainin speedy runningin time
thatis, in practiceinearin thenumberof fragmentreadsn. | callthe algorithmSLIC, for
Sequencd.ayoutinto Contigs The layoutalgorithmhas beenincorporatednto a total

packagecalledthe SLIC AssemblerthattakesABI tracefiles asinputandproducesgyappet
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andalignedcontigswith correspondingonsensusequenced:our major stepsarerequirec

for this process First thereadsmustbe preprocessetb removeboth low-quality dataand
vector sequencda fragmentusedto carryandreplicatea fragmentof interest.)Secondthe
SLIClayoutmethodestablishesheapproximateffsetof eachreadin a contig. Thentheread:
aregappedndalignedto produceanassemblyFinally, aconsensusequencéor eachcontig

is determined. The steps are summarized here.

SLIC Assembly

1. Preprocess to trim poor-quality ends and remove vector sequence.
2. Determine the layout of fragment reads into contigs using SLIC.
3. Align the layout of reads in each contig.

4. Compute the consensus sequence for each contig.

8.2.1 Integral Ancillary Methods
Next | briefly explainthe integralancillarymethodsusedin preprocessingalignment,anc
consensus-callingteps(stepsl, 2, and4). | follow with a detaileddescriptiorof my new

linear-time layout metho&LIC

End-Trimming

Thefirst majorstep,preprocessingp trim low-qualityendsandvectorsequencarecompletec
with methods implemented in DNASTAR Inc&qgManll For use with th&LIC Assemble
| haveimprovedthe Trace-ClassTrim algorithmdevelopedn earlierwork as discussedn
Chapter 4. The new algorithm is call®&dce-QualityTrim.

As with the earlierTrace-Classlrim method the new Trace-Quality Trim algorithm
evaluateABI tracedgto trim low-qualitydatafrom the endsof sequencedt proceeddy first
assigninga qualityvalue,Q, to eachbasein a sequenceTheQ scorefor a basereflectsthe
confidencehatthe basehasbeencalledcorrectly.(Basecallsof N alwayshaveaQ of 0.) The

steps in assignin@ are listed next.
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Assign Quality Score

Let lyase-can € the individual quality for the trace associated with the base call.
Let I, b€ one of three quality values for traces not associated with the
base call.
1. Assign individual quality values, I, to each of the A, C, G, and T traces.
2. Find the maximum I, ;e :

Imax = max (lbasel ' Ibase2 ’ lbase3)
3. Qis the difference between Iy co.cq @nd |- (O if negative):

Q = max (O’ Ibase-call - Imax)

Thefirst stepof the calculationis to assignan individualquality value, |, to eachof the
four tracesassociateavith a basecall. Thevaluesreflectthe shapeandintensityof thetraces
For a simpleexampleof how thel valuesfor a basecall arecalculatedconsideia tall, sharg
tracepeakwhoseintensitystartsat 0, increaseso the maximum,andthenreturnsto 0. The
valuefor this peakis 100. At theotherextremeatotally flat tracewhoseintensityremainsat0
is assignedx scoreof 0. A tracepeakwhoseintensitybeginsat 0, increase$alf way to the
maximum,andreturnsto O getsan| valueof 50. Any valuefrom 0 to 100is possiblegiven
the variation in shape and intensity of traces.

Thecalculatiorof thel valueis nearlyidenticalto thecalculatiorof theevidencescoreusec
in consensusalling. Among severaldifferencesthe mainoneis thatthel valuesarerelative
to the maximumheightof a peakin the entiresequencewhereaghe evidencescoresare
relative only to the heights of the peak for that base call.

After thefour individualquality values,l, areassignedthe highestl valueof the three
tracesnotassociateavith thebasecallis identifiedandsubtractedrom thevaluefor the base
calltrace.Forexampleconsidethe casan whichthe basecallis A andl valuesfor C, A, G,
andT are2, 56, 0, and 10, respectivelyExcludingthe | valuefor A, thehighestvalueis 10.
Theresultinggualityscore,Q, scorefor thebasecallis 46 (56 - 10). Scoregnayrangefrom O
to 100. (In the case that the difference is negative, the score is 0.)

For eachbasecallan averaged value, A, is alsoassignedThis is simply theaverageof

the Q scoresovera window of 21 basesTheaveragingservego smoothtransitionsbetweel
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thevaluesandprovidea measuref thegenerabjuality of thetracein a region.Theideais the

same as the one used to assign weights described in Chapter 3.

The averaged) values,A, areusedfor the new Trace-QualityTrim algorithm.To use
Trace-Quality Trim, a user specifiesa trimming stringencythreshold.Recommende
thresholdsare in the rangeof 8 to 16. In general,the largestcontiguoussectionof the
sequencavith at or abovethresholdA scoresis retainedand the endson eithersideare
trimmed. Trace-Quality Trim pseudocodappearsn AppendixC andanexampleof usingA
quality scores for trimming is contained in Figure 8-1.

I haveimplementedhe Trace-QualityTrim methodfor end-trimmingin themostrecen
commerciallyavailableversionof theSegManlifragmentassemblera partof theLasergene9

suite of applications developed by DNASTAR Inc.

Alignment

The secondmajorstepin theSLIC Assembleis to layoutreaddnto contigs.This stepis the
majoremphasi®f this work andl will describeheSLIC algorithmlaterin Section8.2.2 and
in detailedpseudocode AppendixD. Oncethe SLIC methodhasbeenusedto determinghe
overalllayoutof thecontigs,thereadsmustbe alignedandgappedeforethe consensusan
be computed. Two existing methods that accomplish this task are compared.

One alignment method is implementedsiegManlj its steps are summarized next.

Align with SegManll

Let n be the number of sequence reads in a contig.

Let the n reads be ordered by the approximate offset determined by SLIC.
Create a new contig with sequence 1.
For reads 2 to n
1. Overlap the read with the contig at its approximate offset.
2. Compute the consensus of the contig.
3. Find exact substring matches between the read and the consensus.
4. Align exact matches whose order is consistent between the read

and the consensus.

ol

. Gap and align between exact matches.
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Figure 8-1. Trace-Quality Trim. Beginning,middle and endingsegment®f a
traceandbasecallsareshown.For eachbase thequality score,Q, andaveragescore,
A, for awindow of 21 basesareshownbelowthebase.In thisexample thetrimming
thresholdis setto 12; the largestsectionof the readwith an A scoreabovel? is
retainedand theendsaretrimmed. Thefirst six basesatthe 5 end of the readand
basegastnumber465 aretrimmedsincetheyarebelowthreshold.The centerof the
figure showshigh qualitysequencén the middleof thereadthatis within the retained
region. (Actual data shown.)
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In the SegManllapproachsequenceareaddedoneat a time, from left to right, to a

growing contig. As eachreadis added,its sequencés alignedto the regionof the contig
consensushatit overlaps.The approximateoffset of thereadin the contigas determinedy
SLIC is usedto determinghe overlappingregion.First Martinez (exactsubstring)matche:
(Martinez1983) arefound betweenthe readandthe consensusThenNeedleman-Wuns:
(Needlema& Wunsch1970)is usedto alignandgapthereadwith the consensubetweer
consistenpairsof MartinezmatchesFigure8-2 (continuedn the next page)stepsthrouglr

the alignment process using thegManlimethod.

Sequence Offset
Read 1. TOGAAGTOCCT ACGACCACTTTAGGACCEG 0
Read 2. AGTCCTAQGACCTCTTACGEOREGATCACCGCATCCATTTAC 6
Read 3. CTTAGGOEGATCACGCATCCATTTTACGAAAT 19

Create a new contig with read 1.

TCGAAGTCCCT ACCACCACT T TAGAACGEGE

Add read 2 at offset 6.

TCGAAGTCCCT ACCGACCACT T TAGEACGEGE
AGTOCCTACCACCTCT TACGGOGGCGAT CACCCATCCATTTAC

Align exact matches between consensus and read 2 (boxed).

TOGAAGT CCCTACCACCACT TTACGRCCEEG
AGTICCTACGACTT CT TAQGGCGRGATCACGCATCCATTTAC

consensus TOGAACT QCCTACCACTACT TT AGGECCE]

Gap and align between exact matches (grayed).

TCGAAGT CCCTACCACCACT TTACGACCEEG
AGT - CCTACCACOTCT T- AQGCCCEGATCACCCATCCATTTAC

consensus TCCGAACT ACCTACCACCACT TTAJGECCEJ

Figure 8-2. SegManll Alignment (continued on next page).
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Add read 3 at offset 19.

TOGAAGT CCCTACGACCACT TTAGEECGEG
AGT- CCTACGACCTCTT- ACGGCCEGATCACGCCATCCATTTAC
CTTAGECGEGATCACGCATCCATTTTACGAAAT

Align exact matches between consensus and read 3 (boxed).

TCGAAGT CCCTACGACCACTTTAGEECGEG
AGT- CCTACGACCTCTT- AGGGCGGEGATCACGCATCCATTTAC
CTTA (IBOGGGATCA|GGCATCCATTTTACGAAAT

consensus TCGAAGT CCCTACGACCACT TTACGSCIEGGA\TCAICC{IATCCATTTAC

Gap and align between exact matches (grayed).

TOGAAGT CCCTACGACCACT TTAGEECAEG
AGT- CCTACGACCTCTT- AGGECGEEATCACCCATCCATTT- AC

CIT- A GIIBCIBATO%GGDATCCATTTTACGAAAT
consensus TCGAAGT CCCTACGACCACT TTAGG(I:GGGATCAICG:ATCCATTT- AC

Figure 8-2. SegManll Alignment (continued from previous page). The
approximateoffsetfor threesequenceeadshavebeendeterminedy SLIC First, read
1 is usedto createanewcontig. The secondeadis addedatits offset. Consistenexact
substringmatchesbetweenthe read and the consensusare aligned, then the
Needleman-Wunsamethodis usedto gap andalign betweerthe matchesThethird
read is added in the same manner as the second.

The othermethod,ReAligner was developedo gapand alignnearlyalignedsequence

(Anson & Myers 1997). The steps usedRi@Alignerare listed next.

Align with ReAligner

Create a near multiple-sequence alignment with all sequence reads.
While alignment improves do

1. Get next column in alignment.

2. Gap and align columns following current column.
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Firsttheapproximateoffsetsasdeterminedy the SLIC layoutalgorithmareusedto create

a nearmultiple sequencalignment.ReAlignerthenmakesmultiple passegprocessingne
columnata time,improvingthealignmentwith eachiteration.Whenthereis no improvemen

in the alignment, processing ceases. Figure 8-3 illustrates an alignmeriResiigner

Sequence Offset
Read 1. TCGAAGTCCCTACGACCACTTTAGGECAEG 0
Read 2. AGTCCTACGACCTCTTACGGCAEGATCACGCATCCATTTAC 6
Read 3. CTTAGGCGEGATCACGCATCCATTTTACGAAAT 20

Create a near multiple-sequence alignment with all 3 reads.

TCGAAGT CCCTACGACCACT TTAEEECEE]

AGTCCTACGACCTCT TAQGECGEEATCACGCATCCATTTAC
CTTAGCCGEEATCACCCATCCATTTTACGAAAT

Iterate over columns, improving the alignment.

TCGAAGT CCCTACGACCACT TTAGGEGECEEGE

AGT- CCTACGACCTCTTACGGCGGEGATCACGCATCCATTTAC
CTTAGGCGGCGATCACGCATCCATTTTACGAAAT

Cease processing when the alignment fails to improve.

TCGAAGT CCCTACGACCACT TTAGEECEEG
AGT- CCTAGGACCTCTT- ACGCCGEEGATCACGCATCCATTT- AC
CTT- A- GGCCGGATCAGCCATCCATTTTACGAAAT

Figure 8-3. ReAlignerAlignment. A neamultiple-sequencalignmenis created
usingthe SLIC approximateoffsets. The offsetsweredeterminedby the alignmentof
the boxedsubsequenceReAligner iteratesover the alignedcolumns,gappingand
aligning, until there is no improvement.
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Consensus

Thebasicideafor the consensusalling algorithmusedin theSLIC Assemblers thesameas
theTrace-Evidencenethoddescribedn Chapte6. Tracesareexaminedndevidencdor eact
baseis summedHowever,the calculationof the evidencescoresandthe stepsin summing
havebeenrefined.l will referto the refinedmethodas Trace-Evidencelll incorporatedhis
consensusallingmethodinto DNASTARInc.’s SegManlifragmentassemblyprogram.t is
commercially available in theasergene98uite of applications.

With Trace-Evidence]l Trace-Classscoresare not usedto determineevidencescores
rathera single scoreis computed.Neverthelessthe sametrace characteristicshat are
examinedor Trace-Classcoresareevaluatedor the refinedcalculation Eachsetof tracedate
points(A, C, G, or T) associatedith asinglebasecallarescannedo find peaks(valleysare
nolongerused).Peaksmaybe asobviousasthosethathavechanges signfrom positiveto
negativeslopeor maysimply havea convexshape Themoredefinedthe peakandthehigher
its intensity, the higher the score.

An additionalchangein assigningevidencescoresis thatpeaksthatoccurin runs of
identicalbasesare assignedscoresthat more accuratelyreflecttheir intensity. Before the
refinementof thecalculation,peaksin runs were giveninappropriatelfow scoresbecaus
within arun thetracedoesnotdescendaslow on eithersideof thepeakasit doeswhennotin
arun. Theminimumintensityto eithersideof thepeakwasusedfor therightandleft extreme:
in calculatingthe evidencescore. The refined calculationin Trace-Evidencellusesthe
minimum intensitieson eitherside of the run, ratherthan eitherside of a peak for the
extremesresultingin moreaccuratescoresfor peaksin runs. The extremesare found as

follows.

Get Extremes

If the peak base call is in a run of identical bases then
The left peak extreme, L, is the min of all trace points
in the run to the left of the peak
The right peak extreme, R, is the min of all trace points
in the run to the right of the peak
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After all evidence scores for a column of aligned bases have been determined, the :

for summingthescorefor Trace-Evidencelis as previouslydescribedn Chapte6 for Trace-
Evidencewith onedifference.The changewas madenecessarpy spuriouspeakswhose
scoreoverwhelmedhe scoredor truepeaks.The falsepeakmaybethe resultof fluorescent
dye contaminatioror achimericread(a readthatcontainsrroneouslyoinedfragmentdrom
discontiguoussources)Figure 8-4 containsexamples.In determiningthe consensusa
spuriouspeakis identifiedby its singleoccurrenceamongat leastthreeothermatchingpeak:
in analignedcolumn.When a putativefalse peakis found, the summedscorefor the base
associatewvith thefalsepeakis reducedeforedetermininghe consensusBy adjustingthe
evidence sum in this way, far fewer ambiguous calls occur in the consensus. The algo

adjusting evidence scores follows.

Adjust Evidence Scores
For each sequence in a column

If the maximum evidence is for A, increment count

Else if maximum evidence is for C, increment count

Else if maximum evidence is for G, increment count

Else if maximum evidence is for T, increment count 1
Find the highest (max_count ) and second highest (next_count ) counts
If max_count is at least 3 and next_count is 1 then

Foreachi =A,C,G, T

evidence_sum ; =evidence_sum ; *count ; /max_count
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T

\
TGGGGGTN GTT T TTCTAT

TG GAG G T TTCTAT
TG GAG G T ATTCTAN

TG GAG G T TTTCTAT

Figure 8-4. Spurious Peaks. In the alignmenton the left, a chimericreadhas
beeralignedwith threeothermatchingeads.Thecorrectconsensusallfor theshaded
columnis anA, butwith theoriginal Trace-Evidencalgorithm,thehigh T peakin the
top sequenceesultsn anambiguougonsensusall of W. Ontheright, thecorrectcall
is alsoA in theshadeccolumn,but the unrefinedTrace-Evidenceeturnsa W dueto

the high T peakin the fourth sequenceWhenthe sum of the evidencescoresare
adjustedusingtheTrace-Evidencelinethod,the consensusall in both casess anA,
as desired. (Actual data shown.)

8.2.2 SLIC Algorithmic Details

TheSLIClayoutalgorithmrelieson subsequences basespr mers thatoccurin overlapping
regionsof fragmentreads Mersthatarecommonto two or morefragmenteadsarealignedio
determineghe overalllayoutof reads.The premisds thatlargeDNA fragmentscontainmany

mersthat occuronly once(or infrequently)and thatcanbe usedto tagrelativepositionsof
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fragmenteads(JainandMyers 1997). Theideaof usingmersto tagfragmentsandidentify

overlaps is illustrated in Figure 8-5.

Actual Sequence:
CGAATGTCATATGGCAGTACACGGCGTACGTTAGGTTTCTGAGGGATTTTC

Fragment Reads:

1. CGAATGTCPATGGBGTA
TATGGBGTACACGCGTAGT
GGCGTAGTTAGGTTT
TTAGGTTCTGASGGATT
AGGTTTTGASGGATTTCGAG

akrwn

Fragment Read Layout:
1. CGAATGTCPATGGBGTA

2. TATGGBGTACACGCGTAGT

3. GGCGTAGTTAGGTTT

4. TTAGGTTCTGAGGATT

5. AGGTTTCTGAGGATTTCGAG

Figure 8-5. Using Mer Tags to ldentify Overlaps. In this case, | have a 54 bp
actuakequencéhatis covereddy five overlappingragmenteads.The6-mertagsfor
eachfragmentreadareunderlined. align matchingmertagsto determinghe layoutof
the reads.

Sincethe SLIC algorithmrelieson mertagsto identify overlappingegionsof readsthis
approachcan work well only with datathatis fairly error free. Fortunately,sequencin
technologyhasnow advancedo the point thatat leastseverahundredconsecutivébasecalls
perfragmentreadarehighly accurateln addition,to removenoisy endsof thereads,| have
developednethodghattrim basedn thequality of thetraces.Thesebothhelpto ensurethat
the data is sufficiently error-free to assemble successfullySitle.

The fundamentathallengeof using mersto tag fragmentdies in choosingtagsthat are
mostlikely to beunique.In choosingiags,l considertwo factors.Thefirst is thelengthof
mersithelongerthe mer,the moreprobablethatthemeris unique.In practice thelengthof a

mertag is limited by the lengthof fragmentreadoverlapsandis setbeforeprocessingThe
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secondfactoris the numberof occurrencesf eachmerin the dataset.lf a meroccursmore

often than expected] suspectthat the mer is part of a repeatedegionof DNA and
preferentially choose a mer with fewer occurrences.

A Dbrief overview of SLIC the linear-timelayout algorithm,is listed next; detailec
pseudocodappearsn AppendixD. | makethreelinearscansthroughall of the basecall

sequences in the data set.

SLIC Overview

1. Initialize all variables and structures.

2. Read sequences.

3. Count occurrences of mers in all fragment reads.

4. For each fragment read, choose mer tags using mer counts.

5. For each read, if a mer is chosen as a tag for any previous read, choose
it as a tag for the current read.

6. Make contigs.

In the initializationstep, all variablesand structuresare cleared.In the secondstep
sequencearereadandstored.In stepthree,l scanall of thereadskeepingrackof thecounts
of theoccurrencesf mers.In thefourth step,| choosemertagsfor eachread. Thefifth ster
ensureshatif a merwas previouslychoserasatagfor anyfragmentread,it is choserfor all
readsn whichit occurs.In thelaststep,thelists of readsassociateavith mertagsareusedto
form contigs.

Thegoalof thefirst scan(step3 in the overview)is to obtaina countthe occurrencesf
eachmer of fixed lengthk thatappearsn thedataset. (I usethe countsin the next scanto
determinewhich k-mersto preferas mersusedto tagoverlapsof reads.)l processeact
fragmentreadin turn, incrementinghetotaltally of countsfor eachk-merthatoccurs.The
countsarekeptin a bucket-and-chaihashtableto preservehe linearnatureof the algorithm.
In the table,theintegervalue of anencodingof thefirst first x basesf themer specifiesa

bucket.In the encodingtwo bits areusedto represenéachbasecall; A, G, T, andC are
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representelly 00, 01, 10, and11, respectivelySincetwo bitsencodesachbasean thex-mer,

the lengthof thetableis 4X. Thelasty basesin the merspecifya merrecordin thechain.

Figure 8-6 gives an example of a mer hash table.

a)
Mer 2-Bit
Index (first x bases) Encoding
0 AAAAAAA/ 0000000000000000
1 AAAAAAA( 0000000000000001
2 AAAAAAAT 0000000000000010
65,533 CCcCccccC 1111111111111101
65,534 CCCcCcCcCC 1111111111111110
65,535 CCCcCcCCC 11111111111111112
b)
Hash Index Mer Chain
(first x bases) (last y bases)
Mer 1 Mer 2 Mer 3
31,352
mer GTCt | mer TTAC | mer GAAT
(GCTTGCTY}
count 1 | count 6 | count 3

Figure 8-6. Mer Bucket and Chain Hash Table and Lists. a) Thisis an
exampleof bucketindicesin ahashtableof mers.In thisexamplex = 8 andthelength
of thetableis 65,536. Theintegervaluesof the 2-bit encodingof the 8-mersindexes
thetable.b) | usethelasty basedn the currentmerto find the correspondinghain
recordfor aparticularmer. In thisexampleconsiderthefollowing threemerswherex
=8andy = 4:GCTTGCTAGTCA,GCTTGCTATTAC,andGCTTGCTAGAAT.The
first x basesareidentical,soall hashinto thetableatindex31,352.Thelasty basesare
different, so each has its own record. In the data set of fragment reads for this exai
I haveso far encounterednemerof GCTTGCTAGTCA,six of GCTTGCTATTAC,
andthreeof GCTTGCTAGAAT.At the endof step3, thereis onerecordfor eachmer
that occurs in the data set of fragment reads.
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Before counting,a thresholdis setthatspecifiesa maximumnumberof identicalmers

Whenthe numberof occurrencesurpasseghethresholdthe meris markedasa repeatMy
premise is that if the number of occurrences of a mer is significantly above expected, tt
likely to bearepeatedubsequenc&incemy goalis to chooseuniquemers,| do notconside
theputativerepeatsThedefaultsettingfor the thresholds 150%o0f expectededundancyThe
expected number is simply the average coverage for the actual sequence:

number of reads

2 read length;

i=
sequence length
The numeratoican be estimatedy multiplying the numberof readsby the expectedeac

length (usually about 500 bp).

A summary of step 3 (first of three read scans) follows.

Count Mers
For each read in a data set
For each mer of length k=x+y in the read
Index the hash table using the first x bases in the mer
If no record exists for the last y bases in the mer then
Create a new record
Increment the mer count in the record
If the count exceeds the repeats threshold then
mark the mer as a repeat

In the second of the three scans of the fragment reads (step 4 of the overview), | cl
initial setof putativeuniquemersfor eachof the fragmenteads.Theoreticallyany numberof
merscanbe chosenfor eachread,but | needto balanceeompleteneswith efficiency.If |
choosetoo few mers, | risk missingsome overlaps.Iln choosingmore mersthan are
necessaryl, wastestorageandprocessindime. Oneobviousanswers to choosewo mers
perread- oneat eitherend.With perfectdata thisis sufficient,butgiventhatthedatanearthe
endsis moreerror-prone,overlapsnay be missedusingthis schemeFigure 8-7 illustrates
somepotentialproblemswith variousnumbersof mertags.In practice,| choosethreeto five

mers per read; one near either end with the others distributed between.
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Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATCCA

Correct Fragment Read Layout
1. CGCATGCAAAAGTGATCGGGTATCACG

2. AAAGTGATCGGGTATCACGCACGTATTC
3. CACGCACGTATTCTTAGCAGAGTT
4. GTATTCTTAGCAGAGTTATCCAACC

a) First possible result

Contig 1

1. CGCATGCAAGTGATGEGTATBCG

2. AAAGTGATCGGTATBCGCACGTAT
Contig 2
3. CACGCACRTTCTIAGQRAGAGTT

GTATTCTTAGAAGAGTATCCAACCA

b) Second possible result

Contig 1

1. CGCATGAAAAGTBTCGGGATCACG

2. AAAGTATCGGGATCACGCBGTATTC
3. CACGCAGTATTOTAGAGAGTT
4. GTATTATAGQGAGTATCCAACCA

Figure 8-7. Unidentified Overlaps (continued on next page).
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¢) Third possible result

Contig 1

1. CGCATGAAAAGTABTCGGGATCACG

2e. AAAGTATCGGGATCACGACTATTC
Contig 2
3. CACGCAGTATTAOTAGAGAGTT
4. GTATTAOTAGAGAGTATGCAACCA

Figure 8-7. Unidentified Overlaps (continued from previous page). |have
an actual sequence that is covered by four fragment reads. In a)-c), the mer tags cl
initially are singly underlined; their matches are marked with a double underline. a) |
choose a single 6-mer tag in the center of each read. The tags identify overlaps bet
reads 1 and 2 and between reads 3 and 4, but miss the overlap of read 2 with 3. b’
tag is chosen for either end of each read. The tags correctly identify all read overlag
Choosing one mer for either end of the read is not sufficient if base calling errors re
mismatched tags. A base calling error in the base sixth from the end in read 2 preve
finding its overlap with reads 3 and 4.

As | makethesecondscan,| first divide eachreadinto as manypartitionsasthe specifiec
numberof mersperread.Then,if possible,a mertagis chosenn eachof thesepartitions.|
usea simplecriterionto choosea mer;| prefermerswith thefewestnumberof occurrence:
(Thenumbermustbe at leasttwo to identify overlappingfragments.)Again, my premises
that the fewer the number of occurrences, the more likely that the mer is unique in a gi\
DNA fragmentor genome Oftentherearetiesin thenumberof occurrencesndmy choiceof
mertagis dependeniponwhich partitionl amprocessingldeally,| wantto choosemertags
thatareat eitherendof thefragmenteadandspacedvenlythroughoutherestof theread
Giventhis, if | amchoosingfor thefirst partition,I choosethe first mer with the fewes
occurrencegConverselyjf | amchoosingfor the lastpartition,| choosehelastmerwith the
fewestoccurrencedror middle partitions,| chooseghemerwith the fewestoccurrencethatis

nearest the center of the partition. Figure 8-8 illustrates breaking ties in a partition.
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Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATCCA

Fragment Read Layout

1. CGCATGCAAAAGTGATCGGGTATCACGCACGTATTC

2. TGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTTATC
3. CACGCACGTATTCTTAGCAGAGTTATCCAAC
4, CACGTATTCTTAGCAGAGTTATCCAACCA
Read 1

Partitions: CGCAGCAAAAGTGATCGGGTRC ACGCACGTATC

Number of Occurrences:; 111122222222 222222222223 33344-------

Figure 8-8. Breaking Mer Tag Ties. | show an actualsequencend three
fragmentreads| wantto choosehree8-mertagsperread.Beforechoosingmersfor
readl, | divideit into threepartitions.Thenl examinehenumberof meroccurrences
for eachpartition.In thefirst partition,| do notchooseanyof thefirst four merssince
they occuronly onceand cannot identify an overlap.Next, | havean eight-waytie
with two occurrencegach.l wanta mernearestheend,so | choosethefirst merin
thetie. In themiddle partition,] wantto chooseoneof themerswith two occurrences,
sincethatis thefewest.| breakthe tie by choosingthe mer nearesthe centerof the
partition.In thelastpartition,| choosehelastmerwith threeoccurrenceso thatthe
mer will be as nearto the end as possible.Eachmer tag chosenfor read 1 is
underlined.

A summary of step 4 (second of three read scans) follows.

Choose Mer Tags
For each read in a data set
Divide the read into m partitions.
(mis the specified number of mers per read)
For partition 1 (choose the first mer with the lowest count)
While a mer tag is not chosen
Get the next mer (in 5’ to 3’ order)
If the mer is not a repeat then
Get the count of the occurrence of the mer
If the count is greater than 1 then choose the mer as a tag
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For partitions 2 to m - 1 (choose the most central mer with the lowest count)
For each mer in the partition
If the mer is not a repeat then
Get the count of the occurrence of the mer

If the count is greater than 1,
less than or equal to the count of a previous mer tag,

and nearer to the center of the partition than a previous
mer tag then
Choose the mer as a tag
For partition m (choose the last mer with the lowest count)
While a mer tag is not chosen
Get the next mer (in 3° to 5’ order)
If the mer is not a repeat then
Get the count of the occurrence of the mer
If the count is greater than 1 then choose the mer as a tag

Thethird scanthroughthe data(step5 in the overview)ensureghatif amerwaschoser

for anyread,the meris alsochoserfor all otherreadscontainingthatmer. Thesummaryfor

this scan is listed next.

Choose Previously Chosen Mer Tags
For each read in a data set
For each mer in the read
If the mer is already chosen as a mer tag for any read then
Choose the mer as a tag for the current read

By doingthis, all fragmenteadshatalignwill beplacedin thesamecontig. The necessityf
this stepis shownin an examplen Figure8-9 wherea merhasbeenchosenasatagby one

fragmentin thesecondscan,andis chosenin the third scanby anotherfragmenthatalsc

contains the mer.
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Actual Sequence

XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBBCCCCCCCCYYYYYYYYYY

Fragment Reads

1. XXXXXXXXXXXXXXXAAAAAAAAABBBBBBBB
2. AAAAAAAAABBBBBBBBCCCCCCCC
3. CCCCCCCCYYYYYYYYYYYYY

Scan 2

1. XXXXAKXXXKXXXXXXXAAAAAABSBBBBBB

2. AAAAAAAARBBBBBBEBCCCCCCC

3. CCCCCCOYYYYYYYYYYYY
Scan 3

1. XXX AKXXXXXXOBAAAAAAARBBBBBBB

2. AAAAAAAABBBBBBBEBCCCCCCC

3. CCCCCCOLYYYYYYYYYYYY

Figure 8-9. Choosing Mer Tags. The actual sequence has five regions designatt
by X, A, B, C, andY. RegionsA, B, andC representhethreemertagsthatwill be
chosenn scans2 and3. In this example] amgoingto choosewo 8-mersperread;
i.e. | divide eachreadinto two partsand choosea merin eachpartitionwhenever
possible Mer tagschosenn the secondscanaresingleunderlinedandthosechoserin
thethird scanaredoubleunderlinedTherearethreefragmentseadsn thedataset.In
thesecondscan,thereis no merto choosdor thefirst half of readl sincethemers
occuronly once.In thesecondhalf, | choosdhethe merclosesto the endof theread
(BBBBBBBB). For the secondread, | choosethe mers closestto either end
(AAAAAAAAA and CCCCCCCC).The mer tag chosenfor the third read is
CCCCCCCCAt thispointl haveestablished relationshibetweerreads2 and3, but
not betweerreadsl and2. In thethird scan,l additionallychooseAAAAAAAAA for
read 1 and BBBBBBBB for read 2. At this point | have accounted for all overlaps.

Note thatthe amountof storageand processingime canbe reducedby incorporatinga
checkfor previouslychosenmersin the secondscan.In thatscan,if a merin the curren

partitionhasbeenpreviouslychosenthemercanbeimmediatelychoserasthemertagfor the
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currentfragment.However,checkingfor previouslychosermersin the secondgscandoesnot

eliminate the need for the third scan, as shown in Figure 8-10.

Scan 2

1. XXXXXXXXXXXXXXXAAAAAAAZZBSBBBBB

2. XXAXXX XXAAAAAAAABBBBBBBBCCCCCCC

3. CCCCCCOLYYYYYYYYYYYY
Scan 3

1. XXXXAKAKXXXXXXXXXAAAAAA/BSBBBBBB

2. XAXXX XXAAAAAAAABBBBBBBBCCCCCCC

3. CCCCCCOLYYYYYYYYYYYY

Figure 8-10. Choosing Mer Tags More Efficiently. | havethesameactual
sequencesegions,reads,andnumberof mersasin Figure8-9. Again, in the second
scan,l choosethemer BBBBBBBB for readl. Forread2, | chooseBBBBBBBB

sinceit is in the secondhalf and was alreadychosenfor read1. Notethatl do not
chooseCCCCCCCdor read2 sincel havealreadychosera merfor thesecondhalf.

The mertagchoserfor thethird readis still CCCCCCCC Eventhoughl checkedor

previouslychosenmersduringthesecondscan,l havenot establishea relationship
betweenmeads2 and3. Toidentify theoverlap,l still needthethethird scanin whichl

additionallychooseCCCCCCCCor read2. | have,however reducedhe amountof

mer informationthatl muststoreandprocessMertagschosenn the secondscanare
single underlined and the mer chosen in the third scan is double underlined.

By the endof thethird scanof thedata,l havealist of mersthathavebeenchosenastags
for reads.Associatedvith eachmertaglist is a correspondingjst of all fragmentreadsthat
containthe mer. This is theinformationl will useto determinghelayoutof fragmentreadsn
contigs.

To form contigs,| iteratethroughthe lists of chosenmer tags, checkingthe pairwise
similarity of the fragmentreadq Thecomputationatomplexityanalysisin Chapterl0 explains
why this pairwisecomparisoroesnotcompromisghelinearnatureof algorithm.) Thecheck
is necessaryo ensurethatthemerstagsidentify actualoverlapsof fragmentseads.Figure8-

11 illustrates this point.
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Actual Sequence

AAAAAAAAAAABBBBBBBBCCCCCCCCCCCCcCcCcCcCcCcCBBBBBBBBDDDDDDDDI

Fragment Reads

1. AAAAAAAAAABBBBBBBECCCC

2. ABBBBBBBE CCCCCCCCCCCCCCCCCBB
3. CCCCccccceececcaBeBBBBBDD

4. CCCCCBBBBBBBBDDDDDDDDDDDD

Overlaps (via mer BBBBBBBB)

1. AAAAAAAAAABBBBBBBECCCC

2. ABBBBBBBECCCCCCCCCCCCCCCCCBB
3. CCCCCcccccecceBeBBBBBDD

4. cCcCCCBBBBBBBBDDDDDDDDDDDD

Figure 8-11. False Overlaps with Non-Unique Mer Tags. Intheexample]
have an actualsequenceand four fragmentreads. Sectionsof the fragmentare
designatedby A, B, C, andD. Notethatthereadidentifiedby B is repeatedWhenl
aligntheB mertagfor the four readsand checkthepairwiseoverlapsimilarity,| find
thatthe four readsdo not matchand shouldnot be overlappedAt the sametime |
recognizehatthefirst two andthelasttwo readsmatchso| dividethelist into two,
placing each matching pair in a new list.

Althoughin theoryall merschosenas tagsare uniquein the originallarge fragmentof
DNA, thisis not the casein practice. Somemertagschosemmay not beunique;the pairwise
comparisonselpto identify thesetags.For the comparisona thresholdis setthatspecifies
therequiredamounbf matchsimilarity. Thesimilarity is checkedn a rolling window overthe
overlappingregionso thatan extremelygood matchin oneregiondoesnot compensatéor a
poor matchin another.SeeFigure 8-12 for an exampleof the needto checkingmatcl
similarity in a rolling window. Pseudocodé&r checkingmatchsimilarityin arolling window

follows.
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ACCCATAGATGCGACTGGTAGACAGTGACACGATAGGCTAATRAGCATAAAGT
ACCCATAGATGCGACTGGTAGACAGTGACACGATAGGCTAKTATCACTCAGCC

Figure 8-12. Pairwise Similarity in a Rolling Window. This examplealigns
two fragmentreads(‘?’s mark mismatches)The overall matchsimilarity is 82%
(49/60)whichwould exceedan80% thresholdHowever,if thereadis all gooddata,
the first part is probably a repeat or chimeric and it is clear that the fragments shoulc
bealigned By doinga rolling similarity checkwith awindow of size 20, | find thatthe
lasttwelvewindows havesimilaritiesrangingfrom 45-75%. Thesefall belowan 80%
threshold and result in marking the mer as a repeat.

Check Similarity

Set all positions in window to O

Set window_idx to1l

Set max_mismatches to window_size * (1- threshold )
Set num_mismatches to 0

Align overlapping region
Start scanning with the first aligned bases in the overlap
While num_mismatches <= max_mismatches and more
aligned bases in overlap
Subtract window [window_idx ] from num_mismatches
If the aligned bases do not match then
Increment num_mismatches
Set window [window_idx ]to 1 to record a mismatch
Increment window_idx , wrapping when necessary
Advance scan to next aligned bases
If num_mismatches <= max_mismatches then similarity is OK

After thepairwisesimilarity checksall readsin alist havesufficientpairwisesimilarity in
theiroverlapsHowever,if anyof thefragmentsrealreadyin acontig,| mustthenalsocheck
thepairwisesimilarity of all fragmentsn the contigwith anyoverlappingragmentsn thelist.

(Thefragmentan a contigmight not containthe currentmer, but mightstill overlapsomeof
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the fragmentreadsin the currentlist.) An examplein Figure8-13 illustratesthe needfor

checking all fragments in an existing contig with any overlapping fragment reads in the

Actual Sequence

AAAAAAAABBBBBBBBCCCCCCCCCCCcCcCcCcCcCcCcCBBBBBBBBDDDDDDDDEEE!

Fragment Reads

1. AAAAAAAABBBBBBBCCCCCCCCCCCCCC
2. AAAAAAAABBBBBBBB

3. BBBBBBBBDDDDDDDD

4. BBBBBBBBDDDDDDDDEEEEEEE

Contig 1 via mer AAAAAAAA
(fragments 1 and 2 are in the list of reads)

1. AAAAAAABBBBBBBCCCCCCCCCCCCCC
2. AAAAAAABBBBBBBB

Contig 2 via mer DDDDDDDD
(fragments 3 and 4 are in the list of reads)

3. BBBBBBBBDDDDDDD
4. BBBBBBBBDDDDDHEEEEEE

Overlap of Contigs 1 and 2 via mer BBBBBBBB
(fragments 2, 3, and 4 are in the list of reads)

1. AAAAAAAABBBBBBBCCCCCCCCCCCCCC
2. AAAAAAABBBBBBBB

3. BBBBBBBBDDDDDDD
4. BBBBBBBBDDDDDDDEEEEEEE

Figure 8-13. False Overlaps with Sequencing Errors. | have an actual
sequencandfour fragmentreads Section®f thefragmentaredesignatedby A, B, C,
D, andE. Thistime, in fragmenteadl, thefirst B sectioncontainsa sequencingrror
in which the fourth base is called incorrectly. The result is that fragment read 1 does
occurin thefragmenteadlist for BBBBBBBB. Whenl considethemergeof Contig
1 and2, it is clearthat! needto checkthe overlapsimilarity of fragmentl with the
otherseventhoughit doesnot appearin the list. To avoid the risk of incorrect
alignments of fragments, | check all overlapping regions of both reads and contigs.
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If not all overlappingegionsin contigsandreaddn alist haveabove-thresholdimilarity,

| divide thelist into newlists suchthatall the overlappingegionsspecifiedby eachlist do
havesufficientsimilarity.| canthenproceedo form contigswith the readsin the lists. A
contig in this scenarias alist of readsandtheir approximateffsets.If no readin alist is yet
in acontig,anew contigis madeandall otherreadsin the samdist areaddedto it. If atleas
onefragmentis alreadyin a contig,thenotherfragmentsn thesamdist notyetin a contigare
addedo it. If anyotherfragmentdn thelist are alreadyin a differentcontig, thefragment:

bridge a gap between contigs, and the contigs are merged. This procedure is listed ne

Make List into Contig

If no reads in the list are in a contig then
Make a new contig
Add all reads with their approximate offsets to the new contig
Else (at least one read in the list is already in a contig)
Add to a contig each read in the list that is not in a contig
If the reads in the list are in more than one contig then merge the contigs

Figure 8-14 gives a brief exampleof makinga list into a contigand Figure8-15 illustrates

merging contigs.

Read Index Contig
63 none
1. Add read 63 to contig 3
125 3 2. Add read 15 to contig 3
42 4 3. Merge contigs 3 and 4
15 none

Figure 8-14. Making aList into a Single Contig. A mertaglist containdour
reads,two in contigsandtwo not. First the two readsnot in a contigare addedto
contig 3. This leaves the four reads in two contigs so contigs 3 and 4 are merged.



110
Actual Sequence

CGCATGCAAAAGTGATCGGGTATCACGCACGTATTCTTAGCAGAGTT

Fragment Read Layout

1. CGCATGCAAAAGTGATCGG

2. AAAGTGATCGGGTATCA

3. CGGGTATCACGCACGTATTC

4. CACGCACGTATTCTTAGCAGAGTT
a)

Contig 1 (via mer AAAGTGAT)

1. CGCATGGRAAGTGATGG
2. AAAGTGATGGGTATCA

Contig 2 (via mer CACGCACG

3. CGGGTATACGCACTATTC
4. CACGCACTATTCTTAGCAGAGTT

Merged Contigs 1 and 2 (via mer GGGTATCA)
1. CGCATGCAAAAGTGATCGG

2. AAAGTGATGGGTATCA
3. CGGGTATGBGCACGTATTC
4. CACGCACGTATTCTTAGCAGAGTT

Figure 8-15. Merging Contigs. Two contigs have been formed using overlappin
mers.The list of fragmentreadsfor mer GGGTATCA indicateghatthe readsare
already in different contigs so | merge the contigs.

At the completiorof theiterationthroughthe list of mertags,| havealist of contigs.Eact
contigis representedsa list of informationaboutthe fragmenteadsthatarecontainedn the
contig. Theinformationincludesanidentifierfor the fragmenteadandtheoffsetof thereadin
the contig. Figure 8-16 containsan examplecontig list and theimplied layoutsof fragmen

reads.
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Contig Read List
1 index 16 index 6 index 2 index 14 index 10
offset O offset 8 offset 14 offset 25 offset 34
5 index 1 index 7 index 15
offset O offset 9 offset 19
3 index 12 index 3 index 13 index 5
offset O offset 6 offset 17 offset 33
b) Layout
Contig 1
Read 16: TAGGCTAGGCCCCATATGC
Read : GCCCCATATGCTGACGGCGCA
Read : TATGCTGACGGCGCATTTGAC
Read 14: CGCATTTGACCCCAAAGTC
Read 10: CCCCAAAGTCCCCG
Contig 2
Read 1: GATTGGGGACCAGCACCACCTTAGC
Read 7: CCAGCACCACCTTAGCAGGA
Read 15: CTTAGCAGGATTGACACGGGTA
Contig 3
Read 12: TTAGGATCGCGAGCTTA
Read 3: TCGCGAGCTTATCCAGAGTCGACCGG
Read 13: TCCAGAGTCGACCGGTAGGGCTACACAAG
Read 5: AGGGCTACACAAGCCI

Figure 8-16. Contig Lists. Threecontiglists areshown. Eachlist containsan
identifier and offsetfor eachreadin the contig. Thereadsareorderedby offsetin the

lists.
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| havedescribedn detailthe 6 stepsrequiredor determininghe layoutof sequencesad:

usingthe SLIC algorithm.First all variablesand datastructuresareinitialized. Thenthree
linearscanof thereadsareexecutedT hefirst countsthenumberof uniquemersthatoccurin
thedataset. The secondscanchoosesners(subsequencesf bases)o tagthereads.In the
third scanof thereads,any mertagsthatwere previouslychoserfor any readarechosenas
tagsfor everyreadin which theyoccur. Finally, in the step6, the mertagsare usedto
determinghe layoutof reads Matchingtagsbetweeneadsarealignedanda rolling similarity
checkis usedto determindf indeedthesequenceshouldbe overlappedAll readsthathave
sufficientsimilarity arejoinedin a contig.Informationfor eachcontigincludesan identifier

and offset for each read included in the contig.

8.3 Summary
As the speedf producingsequencinglataincreasesgomputationainethodgor assemblini
large amountsof datain a time-efficientmannermustbe developedFragmentassembl

programsurrentlyfavoredby largegenomesequencingentersexecutgairwisecomparison
of fragmentreads,resultingin assemblytimesthat are proportionalto n? (wheren is the

numberof reads).l havedevelopedn algorithmfor fragmentayout,SLIC (Sequenceayoul
into Contig9, thatavoidsexplicitpairwisecomparison®f all reads.By usinga hashtableto
storeandretrieveinformationon the subsequencdbatoccurin readstheSLIC algorithmis,
in practice, a function ai. This represents a dramatic decrease in assembly time as the
of reads in an assembly increases.

The SLIClayoutalgorithmis incorporatednto a total packagdor fragmentassemblythe
SLIC AssemblerThe assembltepsincludedin thepackageare:1) preprocesso trim poor-
guality endsand removevectorsequence?) determinehe layoutof fragmentreadsusing
SLIC, 3) align the layout of reads,and 4) computethe consensusequencel have
incorporatedwo of the revisedmethodsdescribedn this chapter,Trace-QualityTrim and
Trace-Evidence]l into the latestcommercialversionof SeqgManll It is availableas part of

DNASTAR Inc.’s suite of applicationtasergene99
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A comparativeevaluationof the SLIC Assemblerwith Phrap and DNASTAR Inc.’s

SegManllis described in the next chapter.
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Chapter 9
Evaluation ofSLIC

| compareassemblyperformancef the SLIC (Sequencéayoutinto Contig9 Assembleto
Phrap from the University of Washingtorand DNASTAR Inc.’s SegManll In comparisons
Phrap is usedbecausenanyresearchergspecialljthosein largegenomecentersconsiderit
to be the assemblypackageof choice. SeqManll is includedsincemy earlierwork is
incorporated into this program. All tests were conducted on a Hewlett P&Gkgal X Uwith
a450 Mhz Pentiumll and256 MB RAM runningWindowsNT 4.0. In my evaluation] find

thatSLIC compares favorably tBhrapand is superior t&egManll

9.1 Data Sets

| usedfour datasetsprovidedby theE. coli GenomeProjectattheUniversity of Wisconsirnto
compargheperformancef SLIC. ThedatasetscontainABI 377readdrom E. coli segment
H, J, K, andL fromtheE. Coli GenomeProject(Blattneretal. 1997).Thesegmentsrefrom
211to 265 kb long andapproximately3000fragmentseadscompriseeachdataset. The date
setsaresummarizedn Table9-1. Theinputsfor thetestsare ABI 377 datafiles. Outputfor

each test includes assembled contigs in which the reads have been aligned and gappe
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Table 9-1. Fragment Assembly Test Data Sets. E. colisegment#d, J, K, and

L areusedto compareassembliesf SLICwith SeqManllandPhrap. Eachfragmentis
over 200 kb long and the expected depth of coverage is about six to seven sequen

E. coli Segment |Fragment Length (kb) | Number of Reads
H 223 2925
J 240 3381
K 265 3443
L 211 3077

9.2 Time
Eachof the threeprogramsrequireprocessingf the databeforeassemblyo promoteoptimal
results.In thecaseof SeqManl) this includegrimminglow-quality data,vectorremoval,anc
optimizingthe entryorderof thereads.SLIC requirestrimminglow-qualitydataandvector
removal.Phrap performsbestwhenbasecalls anderror probabilitieshavebeenassignedy
Phred(Ewing & Green1998).In addition,anothercompaniorprogram,CrossMatchis usec
to remove vector from reads before assembli?timap. | report the running time of each of
packages in terms of the time needed for both assembly and preprocessing.

Onthefour datasets,SLIC runsin aboutiwo thirdsthetime it takesto run SegManllanc
from 52% to 93%o0f thetimeit takesto assemblavith Phrap. Figure9-1 showsthe resultsof
timing testsin a bar graphwith stackegreprocessingndassemblytimes.Note thatoverall,
whenpreprocessingtepsareincluded,SLIC assembleseadsfasterthaneitherof the other
programdor all four segmentsThereductionfrom the Phrapand SegManllassemblytimes
tothe SLICassemblyimeis statisticallysignificantatthe 95% confidencdevelusinga pairec
one-tailed t-test.

Sincel proposehatthelinearrun-timeof the SLIC layoutalgorithmmakesit especially
well-suitedto assemblindarge numbersof sequencesit is importantto establishits

scalability.To do so, | usedSLIC to determinghe layoutsof datasetswith numbersof
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sequencesangingfrom 2925to 17,233.For comparison| alsoassemblethesamedatasets

with Phrap. A graphcomparinghumberof sequence® timeof executiorareshownin Figure
9-2.In thegraph,evidencdor alinearrelationshipvith SLICis strongandtherelationshipas

Phrapscales is inconclusive.

Minutes Preprocessing

45 U Assembly -

40 -

35 7] ]

30 _

25 ™

20 -

15

10 I

5] L

0
Method

SLIC
I SegManll |
Phrap
SLIC
Phrap
SLIC
Phrap
SLIC
Phrap

— SegManll |

< SegManll |
X~ SegManll |

Segment

Figure 9-1. Assembly Timing Results. The time to preprocess and assemble th
four E. coli segmentsvith thethreemethodds shown.In onesegmentK, thetimeto
assembl@singPhrap is the minimumamongthe threemethodsalthoughthe overall
timeto preprocesandassemblavith SLIC s still less.In theotherthreesegments,

SLIChas the lowest assembly and overall times.
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Figure 9-2. Scalability of SLIC. The executiontimes for executingSLIC
comparedo Phrap with arangeof numbersf sequences shown.With SLIC the
relationshipremainglinear with increasingnumbersof sequencesThe relationship
with Phrapis unclear.

9.3 Layout
The layoutsproducedby SLIC, SegManl] and Phrap differ most significantlyin the
placemenbf repeatedegionsandin thenumberof contigsproducedA layout of fragmen
readsin a contigis correct when all overlappingreadsare correctlyplacedrelativeto eact
other. | check the correctness of the layouts by aligning the contigs with the GenBank
the E. coli sequencesln the layouts,somecontigscontainfalse joins — readsthat are
erroneousloverlappediueto repeatedpr nearlyrepeategsequencesA falsejoin indicates
that an incorrect layout has been produced.

Figures9-3through9-6 show thelayoutsproducedy thethreeprogramsin thefigures.
horizontalblack bars represenindividual contigs.To displaythe relativepositionsof the

contigs,thebarsarealignedwith the GenBankentryfor eachsegmen{the horizontalgray
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bar). Contigscontainingfalse joins havebeensplit and correctlyplacedrelativeto the

GenBanksequenceScissorgandicatewherecontigshavebeensplit andthin linesconnecthe
split contigs so that the original layout can be deduced.

The SegManlllayoutfor segmenK containgthreefalsejoins andfor segment contain
one. Both SegManlland SLIC fold a tandenrepeatin segment. In addition,SLIC anc

Phrapmake one false join in segment K. All three programs correctly assemble segme

E. coli Segment H
GenBank Entry

SLIC

SegManll
|

ﬁ!___-

| | | | | | |
0 40 80 120 160 200 240

kilobases

Figure 9-3. Layout of Segment H. SLICandPhrapproduce correct layouts
while theSegManlllayout contains one false join.
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E. coli Segment J

GenBank Entry

SLIC

SegManll
N | ]
| | [

Phrap

| | | | | | |
0 40 80 120 160 200 240

kilobases

Figure 9-4. Layout of Segment J. All three methods produce correct layouts.
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E. coli Segment K

GenBank Entry

SegManll - — 0

o = __(_TE

0 40 80 120 160 200 240 280

kilobases

Figure 9-5. Layout of Segment K. All three methods make false joins: one each
for SLICandPhrap, and three foBeqManl!
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E. coli Segment L

GenBank Entry
SLIC

& e —

SeqManll
| I

| | | | | | |
0 40 80 120 160 200 240

kilobases

Figure 9-6. Layout of Segment L. SLICandSeqManliproduce a fold of a
tandem repeat th&hrapavoids.

Figure9-7 graphghe numberof contigs(largerthan2 kb) generatedby eachof thethree
programsfor the four datasets.The numberof contigsinitially producedas well as after
splittingthefalsejoinsaregraphedIn general Phrap producegewercontigsthaneitherSLIC
or SegManll SincePhrap doesnot requiretrimmingof poor quality databeforeassemblyjt
makesfull useof consistenfragmentreads.The trimming thatis requiredfor SLIC and
SegManllresultsin somegapsbetweercontigs.In addition,overlapsthatcould havemergec

contigsmaynot berecognizedf theyareshort, if thereareno mersin commonor if thereis
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insufficientsimilarityin the overlappingegionof thereads.Someinstance®f insufficient

similarity may be due to trimmingthatis too conservativeleavingsignificantlynoisy ends
WhenusingSLIC, theproblemis amelioratedby a stepl addedhatmakesa postpassusinga

smaller mer size to check for overlaps between contigs.

11 — . . B
| | added after splitting false joins
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8 — _u —
- - L] L L
Number
of 6 | M M
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(> 2kb) 5 ]
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3 — ]
, —
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0
o= < o= o= o= <
Method =5 § S 558 558 =558
n=g " =g ns=sg " =g
oy (on (op o
Q Q QO (<5}
n N n n
Segment H J K L

Figure 9-7. Number of Contigs. The numberof contigsgreaterthan?2 kb in
lengthproducedbothinitially and after breakingfalsejoins is shownfor the three
methods.Phrap has the leastfor all segmentsSLIC producesfewer contigsthan
SeqgManlifor three of the segments and ties for the fourth.



123
It is possiblethatthe SLIC algorithmproducedifferentlayoutsdependingipontheinput

orderof fragmentreads.Recallthatin step4 of thealgorithm(Section8.2.2), efficiencyis
increasedy incorporatinga checkfor previouslychosemmersin the secondscan.In that
scan,if a merin thecurrentpartitionhasbeenpreviouslychosenthemercanbe immediately
choserasthemertagfor the currentfragment.This checkintroducesrder-dependenagto
thealgorithm.To evaluatehestability of SLICrelativeto theorderof reads,| assembledact
of thefour E. coli segmentéive times,eachime usingadifferentrandomorderof reads.In
generalthe contigsproducedare essentiallfthe samethe majority containexactlythe same
numberof sequences the five assembliesOf theremaining themaximumdifferencen the
numberof sequencefor the samecontigis 0.7%. For segment& andL, thesameoverall
layoutwasproducedor all five assembliest-or the othertwo segmentsiH andJ, theoverall
layoutsarethe saman four of five assembliesin thefifth, onecontigsin eachwassplit into
two separateontigs.Note thatsince SeqManllordersfragmentreadsduring preprocessing
varyingtheinputorder shouldhaveno effecton resultingassembliesTestson Phrap using

varying orders of fragment reads are future work.

9.4 Consensus

As partof my testing,| comparedheaccuracyf threeconsensus-callingiethodsmy refinec
Trace-Evidence]lMosaig andMajority. The Trace-Evidencenethodis detailedn Chapter6
and its refinements infdrace-Evidencelare described in Chapter 8. TMajority method wa
alsocovereckarlier,in Chaptes. Recallthatin a Phrap contigalignmentpnebasecall choser
per aligned column forms a consenbigsaic The base call chosen is the one with the hig
quality scoreas initially assignedy Phred (Ewing et al. 1998, Ewing & Greenl1998)and
adjusted byPhrap (Green 1997b, Phrap source code documentation).

All three methodshavea systemfor identifying low-confidenceconsensusalls that
warrantmanualexaminationTo indicatelow confidenceMajority and Trace-Evidence
return ambiguouscalls, and Phrap returnslower-casecalls. In reportingthe accuracyof
Mosaic consensusequencesalthoughthe obviousinterpretatiorof lower-casecallsis that

they mustbe examinedndividually, lower-casecalls can alsobe interpretedas definitive
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consensusalls. | reportresultsbasedn bothinterpretationsf thecalls. For onesetof tests

| interpretlower-casePhrap calls as definitiveand setthresholdgor Trace-Evidencelland
Majority suchthatno ambiguouscallsaremade.For othertests,| interpretiower-caséMosaic
callsas ambiguousand setthethresholdsor the othermethodgo defaultvaluesthatallow
ambiguous calls.

Theaccuracyof consensugallsmadeusingthe Majority and Trace-Evidencelmethod:
arebasedonanassemblyproducedy the SLIC Assembleusing ABI dataandtheReAligne!
gappingandalignmenimethod.Theaccuracyf callsmadeusingtheMosaicmethodarebaser
on a PhrapassemblythattakesPhred basecallsand qualityscoresasinput. For eachmethod
| reportthe accuracyof about680kconsensusallsthatarealignedwith the E. coli GenBanl
entry.

Test results when no ambiguous calls are madednye-Evidencelbr Majority and lower
caseMosaiccallsareinterpretedasdefinitive callsarecontainedn Figure9-8 andTable9-2.
In Figure 9-8, thenumberof correctcallsperkb aregraphedoy amountsof coveragdrom
two to tenor more alignedsequenceslrace-Evidencelreturnsthe sameor higheraccurac

than the other two methods at all coverages above two.

Correct calls
per kb

1000

999 —
998 —

997 —

996 — - Trace-Evidencell (SLIC)

995 | Majority
=— = Mosaic (Phrap)

994 —

2 3 4 5 6 7 8 9 10+
Coverage

Figure 9-8. Consensus Accuracy with No Ambiguities. Theaccuracyof the
Trace-Evidencellconsensuss equalto or higherthanthe othertwo methoddor all
coverages of three or more.
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Table9-2 listsa summaryof the consensuaccuraciefor alignedcolumnswith coverage

of four or morereadsandno ambiguoustalls. The Trace-Evidencellmethodproducesone
incorrectconsensusall per 20 kb, comparedo aboutonein 13 kb usingtheMosaic methoc
andaboutoneper4 kb for theMajority method.Thedifferencedbetweertheresultsof Trace-
Evidencellandthe Mosaic methodwith four or moresequencearestatisticallysignificant at

the 95% confidence level using a paired one-tailed t-test.

Table 9-2. Consensus Accuracy with No Ambiguities Summary. The
numberof correctconsensusallsperkb arelistedfor the Trace-Evidence|lMajority,
andMosaic consensusalling methodsThe accuraciefistedare for columnswith a
coverage of four or more aligned reads.

Method Correct per kb
Trace-Evidencell 999.95
Majority 999.77
Mosaic 999.92

Testresultswhen thresholdsn Trace-Evidencelland Majority allow ambiguitiesand
lower-caseMosaiccallsareconsiderecambiguousarecontainedn Figure9-9 andTable9-2.
In Figure9-9, resultsof the accuracytestsaregraphedoy amountsof coveragdrom two to
tenor morealignedsequences hegraphsrevealadramaticallygreatenumberof ambiguou:
callsmadeby Mosaig especiallyat lower coveragesThe numberof incorrectis very similar
for Trace-EvidencelbndMosaicfor coverage®f threeor more.At the95% confidencdevel,
the differencesbetweencorrectcalls and ambiguouscalls madeby Trace-Evidencelland

Mosaicare statistically significant using a paired one-tailed t-test.



126
Table9-3lists asummaryof theconsensuaccuracie$or alignedcolumnswith coverage

of four or morereadswhenambiguousallsareallowed. The error ratefor Trace-Evidence
and Mosaic are extremelylow; bothmakethreeor fewererrorsper 100 kb. However,the
numberof ambiguouscallsis far lessfor Trace-Evidencell Respectivelythe Majority and
Mosaic methodsoutput377 and472 ambiguousallsper 100 kb, comparedo 8 for Trace-
Evidencell Thisis a significantreductionin the numberof calls that mustbe examinet
manuallywhen using Trace-Evidencell In addition,note that when ambiguouscalls are
allowed,Trace-Evidencelis theonly methodhatproducesanaccuracyf 99.98%thatall but
meetghe NationalHumanGenomeResearclnstitute accuracystandardof 99.99%without
handediting(NHGRI 1998). In theresultsof usingfour or morealignedsequencewith
ambiguousalls, the differencedetweerusing Trace-Evidencelandthe Mosaic methodare
statistically significant using a paired one-tailed t-test at the 95% confidence level.

In Table9-3, althoughthe numberof ambiguitiegs far lesswith Trace-Evidencelthan
with Mosaig theamountof erroris slightly higher. This resultsuggestshattheremaybe a
trade-offbetweenaccuracyandambiguities However,whenl sumresultsfor coveragesf
eightor more, theerrorratefor boththemethodss 0.01 perkb. Evenwith theequalerror
rate,Mosaicstill outputsmanymoreambiguougalls; 120 per100 kb comparedo 1 per 100

kb for Trace-Evidencell
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Figure 9-9. Consensus Accuracy with Ambiguities. Phrap returnsfar more
ambiguitieshaneitherof the othertwo methodsAt coveragesf four or more,the
number of incorrect consensus calls is nearly equal for all three methods.
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Table 9-3. Consensus Accuracy with Ambiguities Summary. Thenumber

of correct,incorrect,andambiguousconsensusalls perkb arelisted for the Trace-
Evidencel] Majority, andMosaic consensusallingmethods.Theaccuracie$istedare
for columns with a coverage of four or more aligned reads.

Correct Incorrect Ambiguous
Method per kb per kb per kb
Trace-Evidencell 999.89 0.03 0.08
Majority 996.08 0.14 3.77
Mosaic 995.27 0.01 4.72

I examinedPhrap consensusgallsthatarenotin agreementith GenBankand find that
errorsusuallyoccurdueto the interactiorof theMosaic schemeawith inaccuratédasecalls. In
an alignedcolumn,eventhoughoneor eventhe majority of the basecallsis correct,an
incorrectconsensusallis madef thehighestqualityscoreis associatewith amiscalledbase
Figure9-10 containgwo examplespnein which the erroneousallis a gapandthe otherin
which it is a base.

Many Trace-Evidenceltonsensugrrorsoccurwhena nearlyequalnumberof gapsanc
basesarein the alignedcolumn.In generaljf the sumof theweightsof thebasesxceedshe
sumof the weights,the consensuss calledasa baseandis calledasa gapif thegapweight
sumis greatethanthebaseweightsum.Othererrorsaremadeby Trace-Evidencelivhenthe
evidencefor a spuriouspeakdominateghe sumof the evidencdor true peaks.This problenr
hasbeendiminishedby the refinementlescribedearlierin Section8.2.1, but hasnot beer

eliminated. Examples of gap and spurious peak errors are shown in Figure 9-11.
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Figure 9-10. Mosaic Consensus Errors. Mosaic returnsincorrectconsensus
calls when the highest quality base call is erroneous. (Actual data shown.)
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Figure 9-11. Trace-EvidencellConsensus Errors. Spurious peaks in the left
alignment and a missing base call in the right result in errdnsaoe-Evidencell
consensus calls. (Actual data shown.)

9.5 Alignment

To comparghetwo SLIC AssembleralignmenmethodsSegManllandReAligner(Anson&
Myers1997),l reporttheamounbf timeto align,thenumberof conflictsin analignmentanc
the consensuaccuracyof alignmentsFirst, | compardhetime to align of theSegManlland
ReAligner methods As canbe seenin Table9-4, on averageoverfour E. coli segmer

assemblies, thReAlignermethod takes just over two thirds the time it takesStEgManll
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Table 9-4. Alignment Time. The time to aligrE. colisegments H, J, K, and L in

minutes are listed in along with average times for the two alignment methods.

Method H J K L Average
ReAligner 6.1 8.9 8.3 7.1 7.6
SegManll 9 12.8 12.3 10.1 11.1

For thesecondcomparison) countthe numberof basecallsthatarein conflictwith the

consensus thefour E. coli segmenassembliesA higher-qualityalignmentshouldhave

fewer conflicts. Table9-5 lists the numberof conflictingandtotal basecallsfoundin the

comparison(Gapsaddedoy themethodsareincludedin thebasecall counts.)The percenbf

conflictsis very similarfor thetwo methods1.45%for ReAlignerand1.48%for SegManl! |

hypothesizedhatwith thelow errorratesproducedby the SLIC Assemblereventhis small

differencecould havesomeeffecton consensuaccuracy.To confirmthisbelief,| compare:

consensusequencaccuracie®f thetwo methodgFigure9-12.)1 find thatthealthoughthe

ReAligner consensusppeardo containfewer errors, the differenceis not statistically

significant.

Table 9-5. Alignment Conflicts. The total and conflicting number of base calls

are shown for the two methods. Although the percent of conflicts is lower for

ReAligner the percentages are close.

Method Number of Total Number Percent
Base Conflicts of Bases Conflicts
ReAligner 89,153 6,141,734 1.45
SegManll 91,075 6,135,870 1.48
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Figure 9-12. ReAlignerand SegManll Alignment Consensus Accuracy.
Theaccuracyf 242 kb of consensusallsfor segmend is graphedThedifferencesn

the accuracies are not statistically significant.
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| alsoobservethat ReAlignertendsto add moregapsthanSegManllin areasof high

disagreementgsultingin longeralignmentsFigure 9-13illustrateghis with a comparisorof

alignmentgproducedy ReAlignerandSegManlifor the sameaegionof sequencelhereis no

disadvantagevith using either methodby this criterion since the consensudor both

alignments is accurate compared to the GenBank entry.
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a)

Consensus .. CTTGGTGCTGGCGGTCA-G-AT------ AG--CCCGCCAT.
CTTGGTGCTGGCGGTCA-G-AT------ AG--CCCGCCAT.
CTTGGTGCTGGCGGTCA-G-AT------ AG--CCCGCCAT.
CTTGGTGCTGGCGGTCA-G-AT------ NG--CCCGCCAA
TTINGGTGCTGGCGGTCA-G-AT------ AG--CCCGCCAT.

ACATGAATACGCCAAGCTCCCGCCA
b)
Consensus .. CTTGGTGCTGGCGGTCAGATAGCCCGCCAT

CTTGGTGCTGGCGGTCAGATAGCCCGCCAT
CTTGGTGCTGGCGGTCAGATAGCCCGCCAT
CTTGGTGCTGGCGGTCAGATNGCCCGCCAA
CTTGGTGCTGGCGGTCAGATAGCCCGCCAT
ACATGAATACGC-CA-AGCTCCCGCCAT

Figure 9-13. ReAligner and SegManll Alignments. Five sequencesre
aligned;thefirst four matchwell throughoutheir length,butthefifth onehasa noisy

5 end.a) ReAligneraddsmultiplegapsto thematchingsequencet® alignthemwith
thenoisyend.b) SegManllalignsby allowingmoremismatcheamonghesequences.
In either case, the consensus sequence generated is correct. (Actual data shown.)

Overall,sincetheredoesnot seemto be any significantdifferencebetweerthe consensu
accuracie®f alignmentgroducedby ReAlignerand SeqManl] the preferredalignmen

method isReAlignerdue to the advantage it realizes in shortened execution time.

9.6 Quality Scores

Accuratetrimmingis criticalto the effectivenes®f the SLIC Assembler If trimmingis too
conservativenoisy ends may preventelongationof a contig and trimming that is too
aggressivavill resultin alossof overlapsthatcould mergecontigs.The Trace-Quality Trim
algorithmemployedn the preprocessingtepsof the SLIC Assembleris basedon quality
scoresassociateavith individualbasecalls. The mosteffectivescoresshouldhavea strong

correlatiorwith theaccuracyof basecalls. To investigateheexistencef sucha correlation)
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measurediccuracyas a function of quality score.Resultsare graphedn Figure9-14. The

percentof correctbasecalls obviouslyrisesalongwith the quality scoresor scoresup to
about20. Above20, althoughthe percentof correctbasecallsslowly increaseshe rangeof
scores is not significantly indicative of the expected accuracy of base calls.

Ideally, | would like to obtaina linearrelationshipoetweenguality scoreand base-ca
correctness$or the entirespectrunof quality scores.However,thelow correlatiorfor score:
above20 is notaproblemfor theSLIC Assemblesinceaveragedjualityscoresareusedonly
for thresholdsn trimming. Thethresholdd recommendarein the 8 to 16 range well within

the discriminating region of quality scores.
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Quality Score

Figure 9-14. Accuracy as a Function of Quality Score. A definite correlation
can be seen between quality scores and the percent of correct base calls for scores
about 20.
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9.7 Discussion and Summary

Overall,the SLIC Assemblerproduceshigh-quality fragmentassemblieslt outperform:
SegManllin everyaspecbf this evaluationand producesesultssimilaror superiorto Phrap
in mostways. In particular,the assemblytime andconsensusccuracyarea provenstrengtt
of the SLIC Assembler Not only doesthe consensusequenceproducedby the SLIC
Assembletavelow error ratesthat competewith Phrap, they also containfar fewer low-
confidence calls that must be examined manually.

The SLIC Assemblertakesa simpleapproacho detectingepeatsThe approachs to
eliminatemeroverlapswhenthe numberof identicalmersexceedsomefractionabovethe
expectedcoverageThis methodresultedin fewerfalsejoins thanSegManl] but one more
thanPhrap. An important next step is to develop more sophisticated methods for avoidir
joins due to repeated regions.

Arguably, the most significantweaknes®of the SLIC Assembleris in its needto use
trimmed fragmentreads,resultingin fragmentationnto multiple contigs. In unreporte:
experimentsising a lower trimming stringencywith SLIC, evenmorecontigsareproducer
sincemismatchesn noisy ends causethe pairwisesimilarity to fall below threshold.The
Phrapassembledoesdo somevirtualtrimming, butonly by adjustingoasecall qualityscore:
in the contextof all otherreadsin an assemblyproject.This allows the confirmationanc
utilization of all reasonablelata.The Trace-Quality Trim usedin preprocessingpr theSLIC
Assembletrims sequencewithout regardfor otherreadsn the project. Thisis a significant
drawback and is a problem for future work.

As part of the SLIC Assemblerevaluation,] comparedhe SeqgManll and ReAligne
alignmentalgorithms.Althoughthe numberof conflictsin a ReAligneralignmentshowsa
smalldecreas@verthenumberin a SegManllalignment,the decreasenakesno significant
differencein consensusccuracyas shownin Figure9-12. However,dueto its relatively
shorterexecutiortime, ReAligneris a betterchoicethanSeqManlifor aligninglayoutsin the
SLICAssembler

Eventhoughthequalityscoreproducedy the SLIC Assembleareadequatéor theiruse

in thetrimming, refinemenbf the scorecalculationis anothersubjectfor futurework. In the



136
analysis,only scoresbelowabout20 arehighly correlatedo basecall correctnessSincethe

preferredtrimmingthresholdsarein thatrange,the quality scoreswork well for trimming.
However,qualityscoresarealsousefulto applyto otherproblemsn DNA sequencingkor
example manyresearcherg/anta reliablemeasuref the overallquality of their readsso that
they can adjust laboratory procedures to increase the quality of data they produce.
The SLIC Assembleprovidesa fastandaccuratesystemfor assemblingragmentreads
Improvementsn the systemwill berealizedby refiningit to trim in thecontextof all sequenc
readsin a project,handlerepeatsn a moresophisticatesnannerandproducequality score:

that correlate linearly with base-call correctness.
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Chapter 10
Computational Complexity dsLIC

In practicethe computationatomplexityof the SLIC layoutalgorithmis linearwith respecto
n, thenumberof fragmenteads.Thecomplexityanalysigeliesontheassumptiothatthereis
a practicalupperboundto the sizeof the mertagsthatdependseitheron the numberof
fragmentreadsnor on the lengthof the actualsequenceln theory, the complexitymay be
analyzedas O(n log n), butin practicethe assumptions valid and the complexityof the

algorithm is ON). | first discuss why | assume that the mer size may be considered con

| define the following symbols:

k size of mer tag
n number of fragment reads
S length of the actual sequence

—h

average length of a fragment read

average coverage

30

number of mer tags to choose pbases

~—+

total number of mer tags to choose
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| state the following:

>
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A mertagsizeof k provides4K possibleuniquetagssincetherearefour DNA bases! mus

haveatleastasmanypossiblanertagsasthetotal numberof tagsl chooseGiventhisanda
series of substitutions I find the following:

4K >t

k = log,T"
k=>logyn +log,m-log,C
k=log4n + constant

At this point, it appeardhatthesizeof themertag, k, is a functionof n, the numberof
fragmentsAlthoughthisis truein theory,in practicethereis an upperboundto k. Theuppel
boundcanbe approximatedy usinga Poissondistributionto estimatethe probabilitythata
randomk-mer occursmorethanoncein a sequencé€Studier1989). The probabilitythata

random mer has exacfbyoccurrences is estimated by

P(p)= Xpsl_x wherex = (ﬁ)

and the probability that a randomly chogemer occurs two or more times is

P(>2)=1-(P(0) +P(1)] .
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Whenl considera genometentimesthe size of Humanandgraphthe probabilitiesfor

varioussizesof mers(Figurel0-1)| seethatthe probabilityof two or moremeroccurrence
approachezgeroneara mersizeof 19. Thiscanbeusedto estimateareasonabl@pperbounc

onk.

P(=2)
1

05

0 | | | | |
15 16 17 18 19 20 21

mer size
Figure 10-1. Mer Sizes for a Large Genome. The probabilitythata randomly

chosen mer of a given size will occur two or more times in a genome containifi§ 3x:
basepairs.Mer sizesfrom 15to 21 aregraphedThe probabilityapproachegeroat a
mer size of 19.

An absolutaupperboundon k is setby thelengthof fragmentreads At presentalthougt
sometechnologieproducereadsin excesof 1000 basepairs,theusableportionis usually
about500basepairslong. Clearly,the mertag sizemustbe lessthanthis or thealgorithmis
uselessor identifyingoverlaps! canstatethatthe absolutaipperboundonthemersizeis not
setby thelengthof theactualsequenceaor of thenumberof fragmenteads,butratheronthe
lengthof fragmentoverlapsin thedegeneratease,theboundis approximatelys600. | can
thereforeconsidelk, the sizeof mertags,to be aconstanin my analysisof the complexityof
the algorithm.Given this assumptionan analysisof the complexityof individual stepsas

listed in Figure 10-2 is provided next.
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Complexity Step

O(constant) 1. |Initialize all variables and structures
o(n) 2. Read sequences
O(n) 3. Count occurrences of mers in all fragment reads
O(n) 4. For each read, choose mer tags using mer counts
o(n) 5. For each read, if a mer is chosen as a tag for any

read, choose it as a tag for the current read

O(n) 6. Make contigs

Figure 10-2. SLIC Computational Complexity. The computational
complexity of each major step in the implementation of the layout algorithm is listed.

Stepl is completedn constantime. The threemajordatastructuresisedarethehashtable
for themers,thelist of fragmentreads,andthelist of contigs.Eachof theentriesin the hast
tableis an emptylist of mers. Thetime to accomplisthits initializationis thereforeconstan
sincethelengthof thetableis dependeniponthesize of themer, which is constant.The
fragmentreadandcontiglists arebothemptyat this point, so thetime to clearthemis alsc
constant.

In step2, | readoncethrougheachof thefragmentsbase-calsequencedeterminingts
length. This iteration depends on the number of fragments and takes time proportional

Step3 requiresa singlereadthroughall of the base-calsequences;ountingoccurrence
of mers.To readthesequencewkestimeproportionato n. To countthemers, it is necessar
to accessabucketandchainhashtable. Thesizeof amer, k, is x +y. Recallthatin thetable.
theintegervalueof anencodingof thefirst first x base®of the merspecifiesabucket.In the
encodingiwo bitsareusedto represeneéachbasecall; A, G, T, andC arerepresentedly 00,

01, 10, and11, respectivelySincetwo bits encodeeachbasein the x-mer, thelengthof the

tableis 4%. The lasty basedn themer specifya merrecordin the chain.Indexingthe hast
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tabletherefordakesplacein constantime sincel usetheintegervalueof the encodingof the

first x basef the merastheindex, andthelasty basego specifya recordin thechain.The
lengthof the merlists thatform the chainof thehashtablecanbe at most4Y. Sincey is

constantaccessing merin thelist is also constantThe overall complexityof this stepis
proportional ton.

Duringeachof steps4 and5, | againscanthroughthe base-calsequencef eachof the
fragmentreads,accessinghe hashtableoncefor eachmerthatis containedn the sequenc
Thescangequiretime proportionako n and accessinghetableis constantin addition,for
eachnew mertag, | addontothe mer’slist of associatettagmentreads.l alwaysaddto the
endof thelist, so this steptakesconstantime. The timecomplexityfor eachof steps4 and5
is O().

In step6, | iteratethrougheachof thelists in thehashtableof mers,possiblymaking

contigswith eachof thefragmentlists associatesvith mertags. Sincethe greatespossible
numbermf mertagsthatcanbechosenis 4*Y, andx + y is aconstantthenumbernf mertag
lists thatmustbe processeds constant(Note thatthe numberchosens actuallymuchless
than4X*Y). Making a contigwith eachof themertagslists is alsoconstantRecallthat| seta

thresholdfor the maximumcountof mer occurrencesllowedbeforea meris markedas a
repeat.This keepsthe maximumlengthof anylist atlessthanthethresholdso thelists are
constantn length. (Recallthat the thresholdis a functionof the depthof coverageof
sequencesyhichis a constanusuallyabout6 to 10 sequences$incethelists’ lengthsare
constant, the number of pairwise comparisons required for the similarity check is depe
a constant. Making a new contig is constant in time and adding to or merging contigs is
proportional tan. Overall, step 6 completes in time proportional.to

I haveshownthat, in practice the computationatomplexityof the SLIC algorithmis
proportionato n, thenumberof fragmenteads.Thefirst stepis completedn constantime,a
serienf scanghroughthereadsin steps2 to 5 eachrequirelineartimewith respecto n, and
constructinghe contigsin step6 is alsolinear.The analysisis basedon the assumptiorihat

thereis a practicalupperboundto the sizeof merthatcanbe used.Note thatalthoughbase
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callingerrorsin thedatasetmayresultin productionof an inferiorassemblygerrorsdo not

affect the computational complexity of the algorithm.
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Chapter 11

Additional Related Research

Researclinto computationamethodgor DNA sequencindnasbeenongoingsincethe adven
of sequencingnethodsStartingasearlyasthelate 1970s,RodgerStaderpublisheda series
of papersdescribingsoftwareprogramsdesignedo analyzeand manipulatesequencelate
(Stadenl986, 1984a,1984b, 1982a,1982b, 1980, 1979, 1978, 1977). Recentwork by
variousresearcherfias progressednto methodsthat use artificial intelligence,genetic
algorithms,and examinatiorof fluorescentracedata.ln this chapterl reviewresearc
includingmethoddor sequencassemblybasecalling,andquality assessmentt.alsoreport

observations about patterns found in trace data that may be useful.

11.1 Fragment Assembly
ThePhrap assemblyrogramwasdescribedn ChapteB. Herel describdive otherassembl

methodsTIGR, GAP, CAP2 Alewife and an approach that uses genetic algorithms.

11.1.1 TIGR
TheTIGR Assemblerdevelopedt thelnstitutefor GenomicResearchwasusedto assembl
the 1.8 mb HaemophilusnfuenzaeggenomgSuttonetal. 1995).In theTIGR assemblerjrst

apairwisecomparisorof all readdn adatasetidentifiespotentialoverlapbetweeneads.The

pairwisecomparisorfor n readsis a function of n2. To speedup this step,ratherthan
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executinga full Smith-Watermaralignment(Smith & Watermanl980) on eachpair, an

evaluationof thenumberof substringscommonto both readsis performedOnly thosepairs
with a sufficient number of substrings in common are fully aligned and checked for sim

Duringthepairwisecomparisonsputativerepeatedegionsareidentifiedin readshathave
anoverlyabundanhumberof potentialoverlaps Assemblyof thesereadsis deferrecuntil last
andis carriedoutwith ahighermatchstringency.n addition,distanceonstraintareusedto
help properlyplacesequenceshathave beenidentifiedas potentialrepeatsThe distanct
betweensomepairsof readscontaininga repeatmay be known. In that case,if a reac
containinga repeatalreadyhasits pairedreadin a contig, then only regionsat the given
distance from the paired read are considered for overlap with the repeat read.

The consensusequencés generatedby examiningthe basecallsin an alignedcolumn. A
profile is producedhatindicateghetotalnumberof readsn thecolumnwith callsof A, C, G,
T, andgap Allowableconsensusallsinclude:upperandlower-casdasegA, C, G, T, a ¢,
g, andt), gap, two-baseambiguitycodes(r, k, s, w, m, andy), andn. A smallsetof rules
determineshe consensusgall basedon theprofile. If thelargestcomponenin the profileis
greaterthan two-thirdsthe total, an upper-caséaseor gap is called.If two non-gay
componentsare significant,a lower-caseambiguityis called. If the largestcomponenis
betweerone-halfandtwo-thirdsthetotal, a lower-casdaseor gapis called.In all remaining
casesalower-casen is called.Lower caselettersindicatewhenthe confidencen thecallis
not high. In addition,if the confidencean a gap call is not high, thecall following the gapis
lower-caseUsingthismethod|ower-caséettersin theconsensusequenceinpointcallsthat

require examination by human editors.

11.1.2 GAP

The GenomeAssemblyProgram (GAP) usesa greedyapproachto fragmentassembl
(Bonfield, Smith, & Stadenl995). First a companiorprogram,PREGAP assignsguality
valuesto basecalls andtrims readsto removepoor qualitydataandvector. Then,one ata
time, eachreadis addedto a contigif it is sufficiently similar. First the readis compare:

againsall otherreadgor matchingsubsequenceén alignmenis thenmadebetweerthereac
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andeachotherreadfor which it hasa match,andthequality of eachalignmenis noted.The

readis overlappedvith the readwith which it hasthehighest-qualityalignment(over some
minimumthreshold)lf thereadalignssufficiently well with morethanoneread,thenafterit
is overlappedvith thebest-aligningsequencet is usedto join thecontigsof thetwo matching
reads.

The GAP programcanalsousedistanceconstraintsTo usethe constraintsthe placemer
of areadmaybe restrictedo anapproximategivendistancerom an anchorread.If anabove
thresholdalignmentcanbefound for the readwithin thespecifiedregion,thereadis addedo
the contig. The programalsoallows for a variety of tagsto be used.Onetagis usedto label
repeated regions in reads. A region that is tagged as having a repeat is not used in se:

subsequence matches but is aligned during assembly.

11.1.3 CAP2

CAP2is an improvedversionof the ContigAssemblyProgram (CAP) (Huang1996). The
assemblymethodsdevelopedor CAP areatthecoreof the ABI Prism AutoAssemblerThis
programassemblessadsin threephasesi) overlapdetection?) contigformation,and 3)
consensusequenceeterminationln thefirst phasea filter identifieswhich pairsof readsare
likely to overlap.Betweenall suchpairs,the matchsimilarityis computediusinga variantof
the Smith-Watermanalignmentalgorithm (Smith & Watermanl1980). Error vectorsare
computedandusedto evaluatehe strengthof overlapsandto identify chimericreads.In the
secondphasea preliminaryassemblys formedby joining pairsof readsin decreasingrdel
of pairwisesimilarity. Inconsistenbverlapsn the preliminaryassemblyare usedto identify
andpartitionrepeatedeads.The partitionsareusedto establisithefinal assemblyln phase

three, the contigs are fully aligned and the consensus is computed.

11.1.4 Alewife
A methodcalled Alewife thatis reportedto run in time lessthannz is describedn the
Whiteheadnstitute/MITGenomeSequencingdProjectweb site (MIT 1998). The basicideaof

thisassembleis similarto theideal usein my layoutalgorithm.TheAlewifemethoduses25-
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mersastagsto identify overlapsn fragmenteads By usinga hashtable Alewifeis reportec

to assembléragmentst aratethatis proportionato n log n. It thusappearso bebasednan
algorithmcapableof performingsequencassemblymore quickly thanprogramsusing nz
algorithms.However, the linear algorithml have developed,SLIC, performssequenc
assemblyproportionako n, andis theoreticallyfasterthanAlewife Sincethe detailsof the
MIT algorithmarenotyet publishedptherpossibledifferencedetweermy layoutalgorithm

andAlewifeare not known.

11.1.5 Genetic Algorithms
A unigueapproacho sequencassemblyis to use geneticalgorithmgParsons& Johnsol

1995,Parsonsl993).In thiswork, the layoutof adatasetwith n fragmentss representeds
abit stringwith n* k bits (k bits perfragment)wheren < 2X. For eachfragmenttheintege!

valueof its k bitsidentifiesthe positionof thereadin theoveralllayout. Addedto then * k bit
stringis anadditionak bits usedto identify thestartingfragmenin thelayout. Thetotallength
of thebit stringis then(n + 1) * k. Standardperatorareusedwhile the mappingfrom bit
stringsto layoutsensureghatlegallayoutsaregeneratedThefitnessfunction evaluateshe

strengthof overlapsbetweeradjacenteadsn thelayout. Two variantsof the fithessfunction

weredevelopedoneis proportionalto n andtheotherto n?. Dependingn whichfunctionis

chosen, the overall time to run the algorithm is then proportiomgldon3.

In initial work, althoughthe geneticalgorithmapproactproducedyoodlayoutsfor small
datasetsunder20kb, thelargesearchspaceoftenled to thefailureto find good solutionsfor
largerdatasets.Laterwork producedacceptableesultswith a 35 kb dataset, butthis sizeis
still far from the sizeof sequencingrojectsundertakerby large sequencingentersandis
certainlyfar lessthanmostwhole genomesAnotherdrawbackof the methods its failure to
deal with highly conservedepeatregions. With the presenceof repeats,the resulting

consensus tends to be shorter than expected, indicating a compression of the repeate
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11.2 Base Calling

Commerciatompaniessuchas ABI, thatperformone of the mostcommonlyusedbase
calling methodsfor fluorescentlylabeledsequencesave not disclosedtheir algorithms
However,someresearchior basecallingon fluorescentiatahasbeenperformecandreported
A systemthatis rapidly gainingpopularity,challengingABI basecalling, is Phred (Ewing et
al. 1998). Tibbetts,Bowling, and Golden(1994)havestudiedusingneuralnetworksfor base
calling. Giddingset al.(1993) describe a system that uses an object-oriented filtering sy
A basecallerthatreportserrorratedower thanABI softwareis Phred(Ewing etal. 1998).
GivenABI tracefiles, Phredcallsbasesandassignserrorprobabilitieso eachbasecall. Base
calls are determinedvith a four-phasemethod:1) determinegpeaklocations,?2) identify
observed peaks, 3) match locations to observed peaks, and 4) call unmatched observ
Thefirst phasdas basedn thepremiseahatin alocalarea,basecall peaksarefairly evenly
spacedThe expectedpacingof the peakss usedto predictthenumberandlocationsof base
calls.In phasdwo, observegeaksarefoundby scanningeachof thefour tracesjookingfor
concavedown regions.The areaof eachconcavedown regionfound is computedand
compared to preceding observed peaks. If the area is within 10% of the last ten obsen
and within 5% of the immediately preceding peak, it is identified as an observed peak.
As observegeaksarematchedvith predictedocationsin phasehree,somepeakanaybe
eliminatedandothersmay be brokeninto two or moreidenticalbasecalls. This phaseis the
mostcomplicatechnd progressethroughthreestagesin thefirst stage,obviousmatchesare
made.In the secondstagedynamicprogrammings usedto alignotherpeakswith locations
Finally, unmatche@dbservedeaksthatappeato berealarematchedo locations.At the enc
of phasehree,theremaystill bepeaksn troublesomeegionsthatseento be actualpeaksut
still havenot beenassignedocationsIn phasdour thesgpeaksareassignedocationsf they
meet specific criteria.
Tibbetts,Bowling, andGoldenbuild their neuralnetworkbasecallingsystemon previous
work that conditionsthe raw dataoutputfrom sequenceréGolden, Torgerser& Tibbetts
1993). In the conditionedtraces,peaksare narrower,betterseparatedand have less

crossoverThis conditioneddatais usedto form theinputsfor a neural-networloasecaller.
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Thebasecallertakesthreeinputs:the primary sequenceéeterminan{relatedto theintensity

andprobabledentity of the peak),intensityrelativeto the5 base andseparationelativeto
the5 base.Therearefour outputs,onefor eachof thefour possiblebasesTheytestedheir
systenon datageneratetty a Du PontGenesi00U; thebasecalling outputby the Du Pont
systemis 90-95%accurateThe neuralnetwork basecallerachieved®5% accuracywithout
usingrelativeintensitiesandseparationsandreache®9%accuracysingthesefeaturesThe
limitation in the use of these features is that they are specific to chemistries and conditi

Giddingsetal. (1993)also preprocessaw tracedatabeforebasecallingto makepeak:
moredistinctand disjoint. Basecalling, usingthis processedlata,consistsof threemajor
steps:l) identify peaks,2) determinenhich peaksarelikely to representragmentsand3)
assignconfidencevaluesto basecalls. The basecalling systemiteratesoversteps2 and 3,
removingunlikely peaksaftereachiteration. This cycle continuesfor a given numberof
iterations,or until all confidencevaluesareadequater unchanged-or step2, filtering likely
basestheysuggesthatmultiplecharacteristicef tracedatamaybe used.Theychosethree
peakheight,peakspacing,andpeakwidth. (For peakspacingtheyusethevalueascomputec
globally over an entire run.)

Gidding’s systenrequiresa substantiahumberof parametersSomeareautomaticallyset
accordingto characteristicef the run — thisis anappealingcomponenbf this system.Many
other(more thanten) parametersmust be setby a user.This is ordinarily an undesirabl
featurein a system,but the authorsclaim that it is not difficult to find a reasonabl
combination,and that once set, the parameterseednot be changedunlessexperimente
conditionschangeOneof thestrength®of thesystemis thatthefiltersin step2 arecompletely

modular; additional filters may be developed and added readily.

11.3 Quality Assessment

Throughthe last decadejnterestin quality assessment®r DNA sequencinghas beer
increasing Ewing & Greenl1998, Richterich1998,Li etal. 1997, Bonfield & Stadenl995.
Naeveetal. 1995, Lawrence& Solovyevl1994,Lipshutzetal. 1994, Khurshid& Beck1993.
and Chen & Hunkapiller 1992).
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Currently,the mostwidely acceptedjuality standards thatwhichis producedby Phrec

(Ewing & Green1998). Eachbasecall madeby Phredis assigneda quality score,Q, that
reflectsthe estimategrobabilityof error, P(e), of the basecall. The interpretatiorof the
quality scoreis Q = n10 log,(P(€)). For examplewith Q = 20, the Phred quality score
estimateghatthe probabilityof erroris 1 in 100. The mosteffectivecriteriausedin assigning
guality scoresexaminalatain a window surroundinghe basecall of interest.The four most
influential measurementssedare:the ratio of thelargestto the smallestpeakspacingin a
window of seventheratio of the highestto the lowestpeakintensityin awindow of seven
theratio of the highestto thelowestpeakintensityin a window of three,andthe numberof
bases separating the base of interest from the nearest basécall of

Themethodusedto combinethe measurementsito a quality scoremustbe calibratecby
using a known sequencend a training setof reads.This constrainghe usefulnesf the
guality scoressincethe methodmustbe calibratedfor eachmachinethatproducedraceswith
differentcharacteristicg-or example ABI hasrecentlyreleasedts new sequencethe 3700.
andthedevelopenf Phredpredictsat will bemonthsbeforetheir qualityassessmemethods
calibrated to work with the 3700 (Wade 1999).

Anothermethodthat usesa known sequencend training readsin assigningerror
probabilitieswas developedby Lawrenceand Solovyev (1994). This method uses
discriminantanalysigso combine25 tracecharacteristicgto an error probabilityfor a base
call. Modelsfor threetypesof basecalling errorsare developedmiscalls,insertions,and
deletions. For each of the three models, an iterative process adds characteristics one ¢

decreasing order of significance until the discriminating power of the model fails to incr

11.4 Patterns in Trace Data

With dye-terminatingchemistries,the intensity signal reflects the number of
dideoxynucleotidethatareinsertedduring replication.The likelihood of insertinga chain-
terminatingdideoxynucleotideatherthana chain-elongatingleoxynucleotidés influencedby
adjacen® basedn thegrowingfragment.Theresultis thatpatterngn intensitiesareseen

This observationled to some of the (unreported)experiments performedusing neura
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networksfor consensugalling(Chapter7). In someexperimentd input informationabou

one or more bases to either side of the base of interest in hopes of increasing accurac
experiments) found no increasen accuracyover input representationthatinclude only
single-columrdata.Herel relatesomeresearchnvolving the discoveryof patternsn DNA
trace data.

Perkin-Elmen(1995) reportspatternsgheyhavedetectedn fluorescent-dydabeledtrace
data.Parkeretal. (1995)systematicallywariedpairsof neighboringoasedo discovelpattern:
in peakintensities.Theyfound that peakheightcanoftenbe predictedby 5 neighboring
bases.Theyreportpredictionsbasedn one,two, andthreebasess' tothebaseof interest
Golden, Torgersenand Tibbetts(1993) usedneuralnetworksto extractpatternsn peak
intensities.They reportthat different proteinsseemto have complexsystemsof rules
dependendn 5 basedhatdeterminavhethera dideoxynucleotider a deoxynucleotidevill
be addedo agrowing fragment.Theyfound thatthe base®ne, two, three,andtenbasess
to thebaseof interesthavethe mostinfluenceon the dideoxynucleotidanddeoxynucleotid
competition.

Golden,TorgersenandTibbetts(1993)havealsofoundpatternsn theseparationgateof
migration) of adjacent bases. They show that separations are dependent on a dideoxy!
andits 5 neighboringoases.Particulampatternsan neighboringoasesmayform secondar
structures that result in the predictable variance in rate of migration of adjacent bases.

Someresearchersavereportedthattheseparationalsovary globallyover anentirerun of
fragments.Giddingset al. (1993) establishethat the separationare bestfit by a negative
guadratidunction— the fragmentdendto migrateprogressivelyasterbeforeslowingin the
latterpartof therun. BouriakovandMayhew(1995)havefoundthattherateof migrationover

a run steadily increases and then drops off sharply after about the last 100 bases.

11.5 Summary
Researchnto computationamethodsfor DNA sequencings a growing and exciting
endeavor.Someapproacheso problemsarewell-studiedand mature,while other, more

innovativeapproacheare also underinvestigation For example researchnto applyingAl
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techniquedo problemsin moleculabiology hasbecomdairly commonin academicettings

Oneexampleof an Al approachthatis widely usedis GRAIL, a systemthatusesneura
networksto searchfor genes(Uberbache& Mural 1991). Unfortunately,many solutions
haveyet to makea strongappearanc freelyavailableor commerciakoftware.In thefuture,
morenovelsolutionsshouldmaketheirway into commonusageasresearcimovesawayfrom

conventional methods.
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Chapter 12

Conclusions

The goalof my work is to developcomputationamethodsfor increasingthe speedand
accuracyf DNA fragmentassemblyAs advancesn technologyesultin the productionof
increasingamountsof sequencinglatain decreasingmountsof time, it is imperativethat
computational methods are developed that allow data analysis to keep pace. In this dis
| presentedseveramethodsthatimprovethe speedandaccuracyof fragmentassemblyanc

that lay a foundation for further research.

12.1 Contributions

| contributeeffectivecomputationamethodsor DNA fragmentassemblyin two primary
directions.Onethrustis in the developmenandapplicationof a descriptiverepresentationf
fluorescentraces.The representationfrace-Class is usefulfor trimmingpoor-qualitydate
from the endsof fragmentreads,in methodgor determininghe consensusequencef an
assemblyof alignedreads,andin assessinglataquality. Theotherthrustis in developingan
algorithmfor fragmenteadiayout,SLIC (Sequencéayoutinto Contig9, thatin practiceruns
in timelinearwith the numberof reads.l incorporatedSLICinto atotal packagdor fragmen
assembly,the SLIC Assembler that includesrefinementsof trimming and consensu

algorithms.
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12.1.1 Trace-ClassRepresentation

Fluorescentracesoutputby sequencingnachinesre the key to modernDNA sequencing
Thetracesare scannedo callthebasesfor individualreads.Previousrepresentationsf the
tracesinclude:a raw representatioas a sequenc®f dye intensities,the collapseof the
intensitiegnto a basecall, and the visual representationf a 2-D graph.l defineda new
representationfrace-Classthatcapturegsheshapeandintensityof thetracegChaptei). In
particular,the representatiorecognizeghe heightanddefinition of peaksandvalleysin
tracesIn assemblyrocessesit is usefulto haveaccesso thesecharacteristicdf not, any
decisionsthat require examinationof the tracesmust be madeby hand;incorporating
characteristicgito computationamethodsallows manydecisiongo be madewithout humar

intervention.

12.1.2 Trace-ClassTrim
Most assemblyprogramsrequirethatthe poor quality databe trimmedfrom the ends of
fragmenteadsbeforeassemblyWithouttrimming,inclusionof the poor datamay resultin
fragmented contigs. When attempting to align overlapping reads, the poor data on the
read may have insufficient similarity to allow overlapping and aligning the read in a con
Onecommonpreviousmethodfor end-trimmingN-Trim, merelycountsthe numberof
no-calls (Ns) in a window of bases. Ends with above-threshold numbés af a window ar
trimmedfrom theread. Thenewmethod! introduced;Trace-ClassTrim examineghenumbe
of high quality characteristicclasses as definedby the Trace-Classrepresentationin a
window (Chapter4). Assemblieproducedrom readgrimmedwith Trace-ClassTrim areof
higherquality thanthoseproducedafter N-Trim or no trimming. Thekey to the succes®f
Trace-Class Trim is in its use of descriptivetrace information via the Trace-Clas:

representation.

12.1.3 Trace-EvidenceConsensus
Thespecificgoalof DNA sequencings to determinghe sequencef basesn a fragmentof
DNA. In a fragmentassemblythis sequencés the consensusf the alignedreadsin the

assemblyAs such,the consensumustbeaccuratef thespecificgoal of sequencings to be
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attainedlnaccuratesequencesanhavesignificantlyadverseesffectson sequencanalysisas

miscalled, inserted, or deleted bases change the characteristics of predicted proteins.

Automaticallygeneratedonsensusequencegsuallycontainsomeerrorsandanumberof
ambiguouglow-confidencegalls. Ambiguouscallsaddto thework of sequencingincethese
callsmustbe examinedandresolvedby hand. Reducinghe numberof ambiguousallsand
eliminating errors are eminently worthwhile objectives for developers of automatic metr
consensusalling. My new methodfor consensusalling, Trace-Evidencemakessubstantie
progresdowardtheseobjectiveChaptei6). A standardgreviousmethod,Majority, simply
countsthe numberof eachkind of basecall in analignedcolumnandappliesa thresholdn
callinga base,gap, or ambiguity.In contrastthe Trace-Evidencanethodtakesinto accoun
underlying trace characteristichy summing evidenceas suppliedby the Trace-Clas:
representation.

Whencomparedo the previousMajority methodfor consensusalling, Trace-Evidenc
consensussequencesre substantiallymore accuratewhile making significantly fewer
ambiguouscalls, especiallyatlow coveragegnumbersof alignedsequences)Reducinghe
neededcoverageneansadecreasén costs,sinceeverystepin sequencingddsto the overall
expenseA typical coveragef 6 to 10 maynot be requiredwhenconsensusallsarehighly
accuratewith fewer alignedsequencesAs with Trace-ClassIrim, the strengthof Trace-
Evidence consensuss in its use of traceinformation providedby the Trace-Clas:

representation.

12.1.4 Neural-Network Consensus

| contributeto researchn the applicatiorof neuralnetworksto problemsn moleculabiology
by training neuralnetworksto makeconsensusalls(Chapter7). In my work, | trainedneura
networkswith five differentinput representatiort® outputoneof thefour basesor agapasa
consensusall. Onenetworkusesonly basecall informationin its inputrepresentationyhile
the other four includetracecharacteristicsising the Trace-Classrepresentationtracepeak
intensities,or both. Again | find that using trace characteristicsignificantlyimproves
consensufccuracy.The network that uses only basecalls as inputs produceslower

consensus accuracies.
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12.1.5 SLIC Assembler

Onemajor contributionof my work is in thedevelopmenof analgorithmfor fragmentayout,
SLIC (Sequencéayoutinto Contig9, that,in practice runsin lineartimewith the numbetrof
fragmentreadgChapter8). In addition,building on thelayoutalgorithm,| havedeveloped
comprehensivpackagefor fragmentassemblythe SLIC Assembler The packageis still

evolving and is expected to be available commercially through DNASTAR Inc. in the fu

Quality Scores

Usedin variousmethodsn assemblingvith the SLIC Assemblerarequality scoregChapte
8). | assigna singletracequality scoreto eachbasecall in areadbasedon the shapeand
intensity of the underlying trace data. In some cases, the quality score is relative to the
of theentiretrace while in otherst is appropriatéo makethescorerelativeonly to theportion
of the trace that underlies a base call.

Thepurposeof thequality scorels to defineameasuref theconfidenceof abasecall. For
someapplicationsthescoresareaverageaverawindow centeredn the baseof interestso
thatthe localquality of the tracescanbe evaluatedThe quality scoresmayrangefrom 0O to
100. Thescoresupto about20 show astrongcorrelationwith correctnessf basecalls. This

relationship indicates that using scores under 20 to evaluate quality is reasonable and

Trace-Quality Trim

For usein the SLIC Assembler | developedh secondapproachto end trimming, Trace-
Quality Trim, thatalso examinegracecharacteristicéChapter8). Ratherthanusing Trace-
Classscores,| usetheaveragedjuality scoreqwith intensitiesrelativeto theentiretrace).A
thresholdf theaveragedjualityvaluesspecifiesvheretrimmingoccursthelargesportionof
thereadat or abovethresholds retainedwhile therestis trimmed.This trimmingmethoduse:

more information thafirace-Classlrim, making trimming decisions less arbitrary.
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Trace-EvidencellConsensus

| refinedthe Trace-Evidenceconsensugor incorporationinto the SLIC Assembler The
refinedconsensumethod,Trace-Evidence]ldoesnot usetheTrace-Classcoredor evidenct
as Trace-Evidencdoes(Chapter8). Instead,it usesthe singlequality scorebasedon the
shapeandintensity of tracesasis usedin the refinedTrace-Quality Trim. However, the
intensitiesused for trimming are relativeto an entire trace,and the intensitiesusedfor
consensusalling arerelativeonly to the local areaof the basecall. Beforesumming,the
evidencescoresare weightedby the quality of the traceaccordinghe the averagedjuality
values (identical to those used in trimming).

AnotherdifferencebetweenTrace-Evidencend Trace-Evidencells thatwhile summing
the evidencébasedon the quality scores,adjustmentsre madeto reflectthe detectiorof a
spuriouspeakin a columnof bases.This helpsto preventspuriouspeakevidencefrom
overwhelming the evidence for true peaks and results in fewer ambiguous calls.

The improvementsn the Trace-Evidencellconsensusnethod resultin consensu
sequencesvith extremelyhigh accuraciesand substantialliffewer ambiguouscalls. The
accuracyof consensusallsmadewhenthe coveragas four or moresequences 99.989%
This all but meetsthe standardf 99.99%setby the National[Human GenomeResearc
Institute (NHGRI 1998).

SLIC Algorithm
Most existingassemblerperformpairwisecomparison®f reads,resultingin layouttimes
proportional tan?, wheren is the number of reads. An important contribution of my work

the developmenbf an algorithm,SLIC, thatin practiceexecutesn time proportionalto n
(Chapter8). No other existingassembleclaimsa linearlayouttime. As scientistsmove
towardsequencindargerDNA fragmentandwholegenomesgexecutiortimesmayrepreser

thedifferencebetweera possibleandimpossibldask. With alargenumberof fragmenteads
ann? algorithm may take years to execute, compared to days for a linear time algorithrr

In general, the layouts produced®kIC are of good quality. In evaluative tests, the ti

to assemblandthe layoutsproducedusing SLIC compardavorably. Observation®f repea
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handling capabilities show th&LICis superior or similar to other methods.

12.1.6 Commercial Availability

| haveimplementedeveralof my new methodsinto commerciallyavailableversionsof
DNASTAR Inc.’s SegManllfragmentassemblyprogram.The original versionof SegMat
usedtheN-Trim approactio endtrimming andtheMajority methodo makeconsensusalls.
For SeqgManl) | replacedN-Trim with Trace-Clasdrim for trimming, andfor consensu
calling | replacedthe Majority methodwith Trace-Evidence For the latestreleaseof
DNASTARInc.’s suiteof applications]asergene99! implementedrace-QualityTrim anc
enhancedheTrace-Evidencenethodwith theTrace-EvidencelimprovementsAlso available
as a featureof SegManllin Lasergene99s a visual displayof quality valuesand average:
gualityvaluesasdescribedn ChapteB. The SLIC Assemblers expectedo be releasedy

DNASTAR Inc. as commercial software in the future.

12.2 Limitations and Future Work
Thework | havecompletedepresents realimprovemenin methodsfor DNA fragmen
assemblyAlthoughthe work haslimitations,it still providesasolidgroundfor buildingmore

sophisticated solutions to unsolved problems.

12.2.1 Quality Scores

The Trace-Classrepresentatiowas originally developedor use with neuralnetworks. |
wantedo give thenetworka gooddescriptionof thetraceghatcapturedrisualcharacteristic:
As it turnedout, when| appliedthe scoresto other problems,the scoresneededo be
combinedinto a single score. Althoughevaluatedcempirically,the methodfor combining
scoregs fairly arbitrary.lt is muchmorestraightforwardo assigrasinglescoreattheoutset
In laterwork, thisis whatl didin determininghe qualityscoresusedin theSLIC Assemble
ancillarymethods.Theglaringweaknessn thequality scoress theirinability to discriminate
amonghecorrectnessf basecallswhentheirvaluesexceedbout20. Thereis a greatdealof
interestin the developmenbf quality scoresthataccuratelyreflectbasecall correctnesandl

believe that this is an important direction for my work to take in the future.
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12.2.2 Neural-Network Consensus

Onemajorlimitationwith the useof neuralnetworkis thatthey mustbe trainedon a dataset
with characteristicsimilarto thoseof the datathattheywill laterprocess.The problemis in
forming atrainingset;a trainingsetcontainsnotonly instance®f theproblem,butmustalsc
includethe correctclassificatiorfor the instanceA researchemay nothaveaccess$o datathat
allowsthemto form trainingsetswith both anadequat@umberof instancesaswell asthe
correctclassificationAlternately,usingnetworkstrainedoy developersvho do haveaccess$o
suchdatais not usefulunlessthecharacteristicef the dataarethesameasthatwhichis to be
analyzed An undertakingor futurework is to developa methodfor trainingaccurateneura
networksusingonly smallamountof trainingdatafor whichthecorrectclassificationrmaybe

only an estimate.

12.2.3 SLIC Assembler
Evaluationsof the currentimplementatiorof the SLIC Assemblerdictateseveralpathsfor
improvementsLimitationsthat mustbe addressedcludeissueswith endtrimming, repea

handling, consensus accuracy, and memory use.

End Trimming

Onelimitationof theSLIC Assemblers thatit requiregelativelyerror-freedatafor successft
assemblyl helpto ensurégheuseof accuratedataby trimmingpoorqualitydatafrom theends
of sequencebeforeassemblyHowever,theendsin areadare trimmedwithoutregardto
otherreadsin the dataset. The resultis thatthe trimmingis arbitraryin the contextof the
wholedataset. Someendsaretrimmedtoo excessivelyandoverlapswith otherreadsarelost.
Somearetrimmedtoo conservativelandnoisyendspreventaligningwith otherreadsdueto
below threshold similarity in overlapping regions.

To addresshis problem,| first planto usedatasetswith varyingamount=of artificially
introducecdhoiseto characteriz@ow base-callingrrorsaffectassemblyl cantheninvestigate
possiblesolutions.Oneideais to usethe mer countsmadein the first passof the SLIC
algorithmas a possiblesourceof informationfor trimming in the contextof otherreads

Regionsf sequencethathaveno mersin commornwith otherreadsarearelikely to benoisy,
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chimeric,or non-overlappingvith otherreads.In anycase,it may be safeto ignorethese

regions of reads during assembly. | plan to try this approach is in future work.

Repeat Handling

Repeahandlingin the SLIC Assemblelis primitive; it assumes& meris in a repeatf its
occurrences excessivaiventhe expectedcoverageThis approachs usedby otherexisting
assemblerdyut it is not sufficientto distinguishbetweenepetitiveand non-repetitiveegions
Theamountof coverageanvary dramaticallyin anassemblylueto inconsistenciegmheren
in thefragmentpreparatiorandsequencingrocess.Therepeahandlingapproaclalsodoes
not addresshow the correctplacementor the putativerepeatsnightbe determinedCorrec
handlingof sequencesontainingrepeatss asignificantundertakingor futurework. I planto
researclyraph-traversaandotheralgorithmicsolutionsfor casesn which theSLICalgorithm

fails when assembling repeated regions.

Consensus Accuracy

Errorsin theconsensusf aSLICassemblyappeakwhentheevidencesuppliedoy thereadss
notin total agreement. believethatmanyerrorscanbeavoidedoy notjust examiningasingle
columnof traceinformation,but alsotheinformationsurroundingcolumns.If thereis good
agreemenamongmostreadsalignedin alocal area,but a minority do not correspondreads
associatedith theminority shouldbe discountedAlthoughthe errorrateis alreadyquitelow

with Trace-Evidence]ll think it is worthwhile to pursue this idea for increasing accuracy

Memory Use

In the presenimplementatiorof the SLIC algorithm,all readsandancillaryinformationare
keptin memory.Clearly,this is a significantdetrimentto assemblindargefragmentsanc
wholegenomesFluorescensequencingnachinegproduceandividualfragmenteadsof abou
500 usablebasepairs. Assuminga coverageof five, the numberof fragmentreadsis almos
10,000to coverasmallbacteriumijs aboutl120,000for the yeasigenome andnumbersover
onemillion for C. elegans To executeSLIC on thesenumbersof readswould requireabou

40MB, 500MB, and5 GB of memory,respectivelyWhileto manyusers 40 MB, andever
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500 MB is not a problem, others will not have access to sufficient RAM.

My aimfor futurework on memoryusageis that, giventhe lengthof theoverallfragmen
andthe numberof sequencesSLIC will automaticallisegmenprocessingo work within
memoryanddisk spacelimitations.SLIC requiresspacenot only for the sequencesnd
ancillaryinformation, but also for severallarge tablesof information collectedduring
processingBoth of thesespacerequirementwill be addressedhrough appropriat
segmentingf the SLIC algorithm.Thebasicideais thatlayoutcanbe accomplishethougt

iterative accumulation of interim results that can be saved on disk and merged later.

12.3 Final Remarks

Computationaimethodsfor DNA fragmentassemblyhavebeenevolvingfor a numberof
years.Throughagreatdealof dedicatedesearclovertime, considerablenprovementsn the
effectivenes®f the methodshave beenmade.The work | havepresentechere provides
additionaimprovementandcanserveasa foundationfor furtherstudyin developingoettel

solutions to problems in fragment assembly.
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Appendix A

Glossary of Biological Terms

This appendixcontainsa glossaryof biologicaltermsas usedin this dissertationFurthel

details may be found in textbooks suctvaxlern Genetic Analys{&riffiths et al. 1998).

5 end
The endof a DNA moleculethat originateswith the sugarring containinga 5° carbor

atom. Often used to refer to the start of a fragment read.

3 end
The endof a DNA moleculethatterminatesvith the sugarring containinga 3 carbor
atom. Often used to refer to the end of a fragment read.

ABI
AppliedBiosystemdnc. A divisionof Perkin-Elmethatproduceshe mostwidely usec

DNA sequencing machines.

adenine

Seebase.

ambiguous

A base call that is any combinationafC, G, and/orT.
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assembly

Determininghe layoutof fragmentreadsby aligningtheir overlappingregionsof base

calls.

base
One of four molecules(A), cytosine(C), guanineg(G), andthymine(T), thatwhen

bonded to phosphate and sugar make up a deoxynucleotide.

base call

The base associated with a particular sequence of fluorescent-dye intensities.

base calling
Interpretingoutputfrom sequencingnachinego callthe sequencef basedor a fragmen
of DNA.

base pair

A pair of complementary basesis complementary td andC is complementary t&.

chimera

Two erroneously joined fragments of DNA from discontiguous sources.

complementary bases

Bases that bond in a pak.is complementary td andC is complementary tG&.

consensus

Refers to either a consensus call or a consensus sequence.

consensus call

The most likely base given an aligned column of base calls.

consensus calling

Determining the most likely base given an aligned column of base calls.

consensus sequence

The most likely sequence of bases given an alignment of sequences.
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contaminant sequence

A sequence that is not from the organism of interest.

contig

Contiguous segments of DNA formed by aligning overlapping regions of reads.

coverage

The number of aligned sequences.

cytosine

Seebase.

deoxyribonucleic acid

A molecule composed of a chain of deoxynucleotides. Commonly called DNA.

deoxynucleotide

A base bonded to phosphate and sugar.

dideoxynucleotides

A modified deoxynucleotide that terminates elongation during DNA replication.

DNA

seedeoxyribonucleic acid.

DNA sequencing

Determining the sequence of bases in a fragment of DNA.

dye contamination
Excessdye that migrateswith fragmentsiuring sequencingesultingin a spurioushigh

fluctuation in the trace.

electrophoresis

Seegel electrophoresis.

false join

Reads erroneously overlapped due to repeated or near-repeated sequences.
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fluorescent dye

Dyes usedto label fragmentsof DNA. Eachof four dyeslabelsone of the four
dideoxynucleotidesiVhen excitedby a laser,eachof the four dyes emitsa distinct

spectrum of light.

fluorescent-dye traces

Seetraces.

fragment assembly

Seeassembly.

fragment layout

Seelayout.

fragment read

Seeread.

gap
Usedin analignmentto indicatethat eithera baseis missingfrom the sequencef base
calls (adeletion) or that a false base has been called in one or more of the aligned se

(aninsertion).

gel electrophoresis

A process in which fragments of DNA migrate through a gel when a voltage is appli

genes

Regions in DNA that enocde proteins and other products.

genome

A molecule of DNA that is the genetic material for an organism.

guanine

Seebase.
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Human Genome Project

A projectto find all the genesn humanDNA and to discoverthe functionsof their

proteins.

kb

Seekilobase.

kilobase

A measure of the length of DNA fragments; 1000 bases.

layout

The order and offset of reads in a fragment assembly.

no-call
Thecall madeby a basecallerwhenit mustmakea call, but the correctbasecannotbe

determined.

polyacrylamide gel

A gel that allows electropheretic separation of DNA fragments.

primer

A short fragment of DNA used to prime replication.

read

The sequence of base calls for a fragment of DNA.

reading a trace
Thedetectionandrecordingof the intensitief fluorescentlyesby a sequencingnachine

as fragments pass a detector.

repeat

A subsequence of DNA that occurs more than once in a DNA fragment or genome.

repeated sequence

Seerepeat.
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seguence alignment

Aligning two or more sequence®sf basessuch that the numberof mismatchess
minimized.
sequence assembly

Seeassembly.

sequence layout

Seelayout.

sequence read

Seeread.

shotgun sequencing
A strategyfor sequencindNA thatinvolvesfirst creatinga random(shotgun)library of

small fragments from a whole genome and then sequencing the small fragments.

thymine

Seebase.

traces

Sequences of the intensities (amounts) of fluorescent dyes advancing through time

Vector seguence

A fragment of DNA used to carry and replicate a fragment of interest.

whole-genome shotgun sequencing

Seeshotgun sequencing.
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Trace-ClassScore Pseudocode
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In this appendixl presentpseudocodéor calculatinghe Trace-Classscoresdescribedn

Chapter 3. Four functions are included:

Assign_Trace-Class_Scores,
Assign_Strong_Med_Scores
Assign_Med_Weak_Scoresd

Assign_Weak_Scores

Assign_Trace-Class_Scores

Parameters
int pt_array[]; [* Array of intensity data points */
int num_pts; /* Number of data points in pt_array */
int base pt; [* pt_array index of base call location */
int max_pt; /* Max intensity of all four traces */
int *strong_peak; /* Pointer to Strong peak score */
int *med_peak; [* Pointer to Medium peak score */
int *weak peak; [* Pointer to Weak peak score */

int

*strong_valley; [* Pointer to Strong valley score */
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int *med_valley; [* Pointer to Medium valley score */
int *weak_valley; [* Pointer to Weak valley score */
Algorithm

if( Assign_Strong_Med_Scor es(pt_array, num_pts, base_pt,
max_pt, &strong_peak, &med_peak, &strong_valley,

&med_valley) == false) {

if ( Assign_Med_Weak _Scor es(pt_array, num_pts, base_pt,
max_pt, &med_peak, &weak peak, &med_valley,

&weak_valley) == false) {

Assi gn_Weak Scor es(pt_array, num_pts base_pt, max_pt, &weak peak,

&weak_valley);

Assign_Strong_Med_Scores

/* Returns true if strong peak or valley found */

Parameters
int pt_array[]; [* Array of intensity data points */
int num_pts; /* Number of data points in pt_array */
int base pt; [* pt_array index of base call location */
int max_pt; [* Max intensity of all four traces */
int *strong_peak; [* Pointer to strong peak score */
int *med_peak; [* Pointer to medium peak score */
int *strong_valley; [* Pointer to strong valley score */

int *med_valley; [* Pointer to medium valley score */
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Local Variables

int curr_pt; [* pt_array index of current point */

int prev_slope; [* Slope between previous point and curr_pt */
int next_slope; /* Slope between curr_pt and next point */

int peak_pt; [* pt_array index of peak */

int valley_pt; [* pt_array index of valley */

int left_extreme_pt; [* pt_array index of change to left of

peak_pt or valley pt */

int right_extreme_pt; [* pt_array index of change to right of
peak_pt or valley pt */

int extreme_arrayl[]; /* Indices in pt_array where slope sign
changes; used to find left_extreme_pt and
right_extreme_pt */

int idx; /* Index into extreme_array */

int extreme_peak_idx; /* Index of peak_pt pt_array index in
extreme_array */

int extreme_valley_idx; /* Index of valley_pt pt_array in
extreme_array */

float  distance_ad;; [* Score multiplier based on distance of
peak_pt and valley_pt from base_pt */

float  height_adj; [* Score multiplier based on relative

intensities of peak_pt and valley_pt with

max_pt */
Algorithm
idx = 1;
extreme_array[idx] = 1; [* use first point if no changes */
idx =idx + 1;
peak pt =-1;

valley pt =-1;
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for curr_pt = 2 to num_pts - 1
prev_slope = pt_array[curr_pt] - pt_array[curr_pt -1
next_slope = pt_array[curr_pt + 1] - pt_array[curr_pt];

* if change in sign of slope, peak or valley found */

if (prev_slope * next_slope < 0) {

if (prev_slope > 0) { [* peak found */
if ( abs_value (curr_pt - base pt) < abs value (peak pt - base_pt)){
peak_pt = curr_pt; [* closer peak found */

extreme_peak_idx = idx;

}
}
else { [* valley found */
if ( abs_value (curr_pt - base pt) <
abs_value (valley pt - base pt)) {
valley_pt = curr_pt; [* closer valley found */
extreme_valley_idx = idx;
}
}
extreme_array[idx] = curr_pt;
idx = idx + 1;
}
}
extreme_array[idx] = num_pts; /* use last point if no changes */

idx = idx + 1;
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if (peak_pt <> -1) {

left_extreme_pt = extreme_array[extreme_peak_idx - 1]

right_extreme_pt = extreme_array[extreme_peak_idx + 1];

*strong_peak = 100 * (pt_array[peak_pt] - (pt_array[left_extreme_pt]
+ pt_array[right_extreme_pt]) / 2) / pt_array[peak_pt];

*med_peak =100 - *strong_peak;

distance_adj = (num_pts - abs value (peak pt - base_ pt)) / num_pts;

height_adj = pt_array[peak_pt] / max_pt;

*strong_peak *= distance_adj * height_ad;;

*med_peak *= distance_adj * height_ad;;

if (valley_pt <> -1) {
left_extreme_pt = extreme_array[extreme_valley_idx - 1]

right_extreme_pt = extreme_array[extreme_valley idx + 1];

*strong_valley = 100 * (pt_array[valley_pt] - (pt_array[left_extreme_pt]

+ pt_array[right_extreme_pt]) / 2) / pt_array[valley_pt];

*med_valley = 100 - *strong_valley;
distance_adj = (num_pts - abs value (valley pt - base_pt)) / num_pts;
height_adj = (1 - pt_array[valley pt] / max_pt);

*strong_valley *= distance_adj * height_ad;;

*med_valley *= distance_ad] * height_ad;j;

return (peak pt <> -1 or valley_pt <> -1);
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Assign_Med_Weak_Scores

/* Returns true if medium peak or valley found */

Parameters
int pt_array[];
int num_pts;
int base pt;
int max_pt;
int *med_peak;
int *weak_peak;
int *med_valley;
int *weak_valley;

Local

int
int
int
int
int
Bool
Bool
int
int

int

int

int

Variables

curr_pt;
prev_slope;
next_slope;
max_change,;
max_change_pt;
in_peak;
in_valley;
peak_pt;
valley_pt;

left_extreme_pt;

right_extreme_pt;

extreme_array([];

[* Array of intensity data points */

/* Number of data points in pt_array */
[* pt_array index of base call location */
/* Max intensity of all four traces */

[* Pointer to medium peak score */

[* Pointer to weak peak score */

[* Pointer to medium valley score */

[* Pointer to weak valley score */

[* pt_array index of current point */
[* Slope between previous point and curr_pt */
/* Slope between curr_pt and next point */
/* Amount of max change between slopes */
/* Data point where max_change occurs */
[* True when in slopes decreasing */
[* True when in slopes increasing */
[* pt_array index of peak */
[* pt_array index of valley */
[* pt_array index of change to left of
peak_pt or valley pt */
[* pt_array index of change to right of
peak_pt or valley pt */
/* Indices of data points with curvature
changes; used to find left_extreme_pt and

right_extreme_pt */



int idx;
int extreme_peak_idx;
int extreme_valley_idx;

float  distance_adij;

float  height_adj;

Algorithm

idx = 1;
extreme_array[idx] = 1;
idx =idx + 1;
max_change = 0;
max_change_pt = 1;
in_peak = false;

in_valley = false;

/* Index into extreme_array */

/* Index of peak_pt in extreme_array */

/* Index of valley_pt in extreme_array */

/* Score multiplier based on distance of
peak_pt and valley_pt from base_pt */

/* Score multiplier based on relative
intensities of peak_pt and valley_pt with

max_pt */

[* first point */

peak pt =-1;

valley pt =-1;

for curr_pt = 2 to num_pts - 1
prev_slope = pt_array[curr_pt] - pt_array[curr_pt -1
next_slope = pt_array[curr_pt + 1] - pt_array[curr_pt];

if (prev_slope > next_slope) {

if (in_peak) {

if (prev_slope

[* peak, decreasing slope */

[* still in peak */

- next_slope > max_change) {

max_change = prev_slope - next_slope; /* change is greater */

max_change_pt = curr_pt;
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else if (in_valley) { /* were in peak, now in valley */
if ( abs_value (max_change pt - base pt) <
abs value (peak pt - base_pt)){
peak_pt = max_change_pt; [* save closer peak */
extreme_peak_idx = idx;
}
extreme_array[idx++] = max_change_pt;

max_change = 0;

in_valley = false; /* no longer in valley */
in_peak = true; /* now in peak */
}
}
else if (prev_slope > next_slope) { [* valley, increasing slope */
if (in_valley) { [* still in valley */
if (next_slope - prev_slope > max_change) {
max_change = next_slope - prev_slope; /* change is greater */
max_change_pt = curr_pt;
}
}
else if (in_peak) { /* were in valley, now in peak */
if ( abs_value (max_change pt - base pt)<
abs value (peak pt - base pt)){
valley_pt = max_change_pt; [* save closer valley */
extreme_valley_idx = idx;
}

extreme_array[idx] = max_change_pt;

idx = idx + 1;

max_change = 0;

in_peak = false; /* no longer in peak */

in_valley = true; /* now in valley */
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abs value (peak pt - base_pt)){

[* closer valley found */

}
}
}
if (in_peak) {
if (valley_pt <> -1) {
if ( abs_value (max _change pt - base pt) <
peak_pt = max_change_pt;
extreme_peak_idx = idx;
}
extreme_array[idx] = max_change_pt;
idx = idx + 1;
}
}

else if (in_valley) {

if (peak_pt <> -1) {

if ( abs_value (max_change pt - base pt)<

abs_value (valley pt - base pt)) {

valley_pt = max_change_pt;

extreme_valley_idx = idx;

[* closer valley found */

}
extreme_array[idx] = max_change_pt;
idx = idx + 1;
}
}
extreme_array[idx] = num_pts; [* last point */

idx = idx + 1;



if (peak_pt <> -1) {

}

left_extreme_pt = extreme_array[extreme_peak_idx - 1]

right_extreme_pt = extreme_array[extreme_peak_idx + 1];

*weak peak =100 * ( max(pt_array[left_extreme_pt],
pt_array[right_extreme_pt]) - pt_array[peak_pt]) /
max(pt_array[left_extreme_pt], pt_array[right_extreme_pt]);

*med_peak =100 - *med_peak;

distance_adj = (num_pts - abs value (peak pt - base pt))/ num_pts;

height_adj = pt_array[peak_pt] / max_pt;

*strong_peak *= distance_adj * height_ad;;

*med_peak *= distance_adj * height_ad;;

if (valley_pt <> -1) {

left_extreme_pt = extreme_array[extreme_valley_idx - 1]

right_extreme_pt = extreme_array[extreme_valley_idx + 1];

*weak valley = 100 * (pt_array[valley pt] -
min (pt_array[left_extreme_pt],

pt_array[right_extreme_pt])) / pt_array[valley_pt];

*med_valley = 100 - *med_valley;
distance_adj = (num_pts - abs value (valley pt - base_pt)) / num_pts;
height_adj = (1 - pt_array[valley pt] / max_pt);

*strong_valley *= distance_adj * height_ad;;

*med_valley *= distance_adj * height_ad;j;

return (peak_pt <> -1 or valley_pt <> -1);
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Assign_Weak_Scores

Parameters
int pt_array[l]; [* Array of intensity data points */
int base pt; [* pt_array index of base call location */
int max_pt; /* Max intensity of all four traces */
int *weak peak; [* Pointer to weak peak score */
int *weak_valley; [* Pointer to weak valley score */

Local Variables

int prev_slope; /* Slope between previous point and curr_pt */
int next_slope; [* Slope between curr_pt and next point */
float  height_adj; [* Score multiplier based on relative

intensities of peak_pt and valley_pt with

max_pt */
Algorithm
prev_slope = pt_array[base_pt] - pt_array[base pt - 2]
next_slope = pt_array[base_pt + 2] - pt_array[base pt];
if (prev_slope > next_slope) { [* peak, decreasing slope */
*weak peak = 100;
height_adj = (1 - pt_array[base_pt] / max_pt);
*weak peak *= height_ad;j;
}
else if (prev_slope < next_slope) { [* peak, increasing slope */
*weak_valley = 100;
height_adj = (1 - pt_array[base_pt] / max_pt);

*weak_valley *= height_adj;
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In this appendixl presentpseudocodéor trimming poor datawith Trace-ClassTrim as

described in Chapter 4 and theace-Quality Trimdescribed in Chapter 8.

Trace-Class Trim

/* Trims the 3’ end of a sequence read. */

/* Returns base_array index of first base to trim. */

Parameters
char  base_array[];
int num_bases;
int trace_array[4][];
int max_poor;

*/
Bool  poor_classes[];
int window_size;

/* Array of base calls */
/* Number of bases in base_array */
/* Array of traces for each of the 4 bases */

/* Max number of poor_classes allowed in window

/* Array position 1= SP, 2= MR 3= WR4= WVY5= MV
6=SV, true if defined as poor_class */

/* Number of bases in a window */
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Local Variables

int base_idx; /* Index into base_array */
int curr_class; I* Characteristic class for trace of curr_base,

1=SP, 2= MR 3= WR4= WVY5= MV 6= SV *
int window_array([]; /* Rolling window array of poor classes, set to 1

if classified as a poor class & 0 otherwise */

int num_poor; /* Number of poor_classes in current window */
int window_idx; /* Index into window_array */

Algorithm

base_idx = num_bases; [* start at 3' end */

num_poor = 0;

clear (window_array); * set all window positions to 0 */

/* Fill the first window, then continue counting number of poor classes
until num_poor <= max_poor */
While (base_idx > 0 && (num_poor > max_poor or /* too many poor */
base_idx >= num_bases - window_size)) { /* filling 1st window */
num_poor= num_poor - window_array[window_idx];
curr_class = get_class(base_idx, bases_array, trace_array);
If (poor_classes|curr_class] == true) {
window_array[window_idx] = 1; /* record occurrence of poor class */
num_poor = num_poor + 1;
}

Else window_array[window_idx] = 0;

window_idx = (window_idx + 1) mod window_size;
--base_idx;

}

base_index = base_idx + window_size + 1,

return base_index;



Trace-Quality Trim

/* Trims 3’ end and 5’ ends of a sequence read. */

Parameters

char bases_array]];

int  num_bases;
int  trace_array[4][];
int  threshold,;
int  *end3_base;
int  *end5_base;
Local Variables
int Q;
int  curr_base;
int  curr_seq_length;
int  curr_end3_base;
int  curr_end5_base;
int  seq_length;
Algorithm
seq_length =0

curr_seq_length=0

[* Array of base calls */
/* Number of bases in base_array */
[* Array of traces for each of the 4 bases */
/* Regions above this quality threshold are ok */
[* Pointer to base_array index of 3’ trim
location */
/* Pointer to base_array index of 5’ trim

location */

/* Quality score for curr_base */

/* Index of current base in base_array */

/* Length of potential ok subsequence */

/* base_array index of potential 3’ trim location */
/* base_array index of potential 5’ trim location */

/* Length of longest ok subsequence so far */

/* Scan bases from 3’ to 5’, keeping track of the longest ok subsequence

found so far */

For curr_base = 1 to num_bases {

Q = get_quality

If Q >= threshold {

(curr_base, traces);

/* base Q meets threshold */

180



181
curr_seq_length = curr_seq_length + 1;

curr_end3_base = curr_base;

}
Else { /* found a base with Q below threshold */
/* potential ok subsequence is longer */
If (curr_seq_length > seq_length) {
end5_base = curr_end3_base - curr_seq_length + 1;
end3_base = curr_end3_base;
seq_length = curr_seq_length;
}
curr_seq_length = 0; /* reset length of potential ok subsequence */
}
}
If (curr_seq_length > seq_length) { [* ok subsequence goes to 3’ end */

*end5_base = curr_end3_base - curr_seq_length + 1;

*end3_base = curr_end3_base;
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In this appendix | present type definitions, variables, data structures, function prototyp

pseudocode followed by a detailed description o&h&Clayout algorithm.

Type Definitions

Name

StreamT

MerT

FrgRec

FrgListT

MerFrgRec

Type

string

StreamT

Record
int
StreamT
int

End

FrgRec List

Record

int

int

length
stream

ctgListldx

frgldx

merOffset

Description

Base call sequence, encoded with 2 bits per base
(A=00,C=11,G =01, T=10)

Encoded mer

Fragment read information

Read length

Base call sequence of read

Index in a CtgListT

List of FrgRec

Information on a fragment read that contains a
given mer

Index of a FrgRec ina FrgListT

Offset of mer in a FrgRec.stream



MerFrgListT
MatchListT

MerRec

MerListT

MerTableT

ScoreRec

CtgFrgRec

CtgFrgListT

CtgListT

End
MerFrgRec List

MerFrgListT List

Record
MerT mer
int count

Boolean repeat
MerFrgListT

End

MerRec List

MerListT List

Record
MerT mer
int merOffset
int score
End
Record
int frgldx
int offset
End

CtgFrgRec List

CtgFrgListT List
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List of MerFrgRec

List of MerFrgListT

Mer information

Mer

Count of mer occurrences in all fragment reads
True if the mer is a putative repeat

merFrgList  List of MerFrgRec

List of MerRec

Hash table of mers, hashed on first x bases in mer,
chained by last y bases in mer; chains are of

type MerListT

Score information

Encoded last y bases of mer

Offset of mer in a FrgRec.stream

Mer score

Information on a fragment read that is in a contig
Index of a fragment read in a FrgListT

Offset of fragment read in a contig

List of CtgFrgRec , ordered by offset
List of CtgFrgListT , one CtgFrgListT  per

contig
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Variables and Data Structures

Name

newCtgFrg
ctglList
ctgListldx
found
frgList
frgRec

maxCount

matchListT
mer
newMerFrg
merFrgRec
merRec
merTable
numFrgs
numMers
merOffset

scoreRec

tagScoreRec

Functions

Prototype

Type
CtgFrgRec
CtgListT
int
Boolean
FrgListT
FrgRec

int

MatchFrgListT

MerT
MerFrgRec
MerFrgRec
MerRec
MerTableT
int

int

int
ScoreRec

ScoreRec

addTolList(List, Item)

assignScore(MerT, int)

betterScore(ScoreRec,

getCtgListldx(MerFrgListT)

Description

New CtgFrgRec

List of contigs

Current index of a contig in a CtgListT

True if found

List of FrgListRec for fragment reads in the dataset
Current FrgRec

Count threshold for the number of occurrences of a mer
in the dataset

List of MerFrgListTs

Current mer

New MerFrgRec

Current MerFrgRec

Current MerRec

Hash table of all mers of length x + y that occur in the dataset
Number of fragment reads in frgList

Number of mer tags to choose for each fragment read
Offset of a mer in a fragment read

Current ScoreRec

ScoreRec of highest scoring mer for current partition

Returns Description

List Adds Item to List

ScoreRec Assigns score for MerT

Boolean Returns true if 1st ScoreRec is better
than 2nd for given partition

int Returns index of any contig in the list, O if



getMerRec(MerTableT, MerT)

getNextFrgRead()

getNextMer(FrgRec, int)

inMerFrgList(MerFrgListT, int)

listLen(List)

makeMatchFrgLists(MerFrgListT)

mergeCtgs(CtgListT, int, int)

newCtgFrgRec(CtgFrgListT, int)

newCtg(CtgListT, int)

newMerFrgRec(int, int)

oneCtg(MerFrgListT)
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none

MerRec Returns MerRec for MerT from
MerTableT

FrgRec Returns next fragment read, stored in a
FrgRec

MerT Returns next mer from FrgRec for
current partition;
if int is O, partition is entire 5’ to 3' read

Boolean Returns true if the read indexed by int
is in MerFrgListT

int Returns length of List

MatchFrgListT
Divides a MerFrgListT into separate
lists in MatchFrgListT  such that all
fragment overlaps within each list have
above-threshold similarity

CtgListT Merges contigs indexed by the two
ints

CtgFrgRec  Makes a new CtgFrgRec

int Makes a new contig, returns its index in a
CtgListT

MerFrgRec Makes a new MerFrgRec

Boolean Returns true if all in the MerFrgListT

are in the same contig

Figure D-1 charts the three main data structures and their relationships.
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hash idx
/\ mer mer
frgList count count
Bt 0 repeat repeat
Lag frgidx frgRec merFrgList merFrgList ‘
| h null
engt mer frgldx
1 stream count merOffset
ctgListldx 1 repeat frgldx
length merFrgList merOffset
2 stream null frgldx
ctgListldx merOffset
frgldx
mer mer
merOffset
count count
num | 'ength tableLen repeat repeat
Frgs | Stream merFrgListy | merFrgList
ctgListldx ¢ } null
frgldx
merOffset
o frgldx
merOffset
—— ctglistldx ctgFrgList
frgldx frgldx frgldx
1 offset offset offset
5 frgldx frgldx frgldx frgldx
offset offset offset offset
frgldx ¢ frgldx
numctgs offset offset

Figure D-1. SLIC Data Structures. ThefrgList  containsaFrgRec for eachfragmen
readin the datasetln FrgRec, ctgListldx is anindexinto thectgList  (thelist of all
contigs). ThenerTable is a bucket-and-chain hash table. The frsases of a mer are usel
indexinto the tableand the lasty basesarein MerRec recordsin the MerRecList . Eacl
MerRec may have anerFrgList associated with it. AnerFrgList is a list ofMerFrgRec . In a
MerFrgRec , thefrgldx indexesafragmenteadrecordin thefrgList . ThemerOffset isthe
offsetof the merin thefragmentead.ThectgList is alist of all contigsfor thedatasetEact
contigis representelly alist of CtgFrgRec . Thefrgldx in a CtgFrgRec indexesafrgRec in
thefrgList . Theoffset specifies the position of the fragment read in the contig.



Pseudocode

1. Initialize all variables and structures

/* Get fragment reads */
2. While frgRec = getNextFrgRead()
2.1 frgList =addToList(frgList, frgRec)

2.2 numFrgs =numFrgs + 1

/* Count occurrences of mers */
3. Fori =1to numFrgs
3.1 While mer = getNextMer(frgList[i], 0)
3.1.1 merRec = getMerRec(merTable, mer)
3.1.2 If merRec.count < maxCount
3.1.2.1 merRec.count =merRec.count+1

3.1.3 Else merRec.repeat =true

/* Choose mer tags in each fragment read */
4. Fori =1to numFrgs
4.1 merOffset =0
4.2 Forj =1to numMers
4.3.1 found =false

4.3.2 While mer = getNextMer(frgList[i], j)

4.3.2.1 scoreRec =assignScore(mer, merOffset++)

4.3.2.2 If betterScore(scoreRec, tagScoreRec, j)

4.3.2.2.1 tagScoreRec =scoreRec
4.3.2.2.2 found =true

4.3.3 If found

4.3.3.1 newMerFrg =newMerFrgRec(i, tagScoreRec.merOffset)

4.3.3.2 merRec = getMerRec(merTable, tagScoreRec.mer)
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4.3.3.3 merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

/* If not in the list, add fragment reads that contain a previously chosen mer tag to the mer's
merFrgList  */
5. Fori =1to numFrgs
5.1 merOffset =0
5.2 While mer = getNextMer(frgList[i], 0)
5.2.1 merRec = getMerRec(merTable, mer)
5.2.2 If merRec.merFrgList and not inMerFrgList(merRec.merFrgList, i)
5.2.2.1 newMerFrg =newMerFrgRec(i, merOffset++)

5.2.2.2 merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

/* Make, add to, and merge contigs */
6. Fori =1to listLen(merTable)
6.1 Forj =0to listLen(merTable[i])
6.1.1 merRec = merTablel[i][j]
6.1.2 If merRec.merFrgList and not oneCtg(merRec.merFrgList)
6.1.2.1 makeMatchFrgLists(merRec.merFrgList, matchFrgList)

6.1.2.2 Forj =0to listLen(matchingMerFrgLists)

6.1.2.2.1 ctgListldx = getCtgListldx(matchFrgList[K])
6.1.2.2.2 If ctgListldx =0
6.1.2.2.2.1 ctgListldx = newCtg(ctgList, matchFrgList[k][1])

6.1.2.2.3 For m=1 to listLen(matchFrgList[k])
6.1.2.2.3.1 merFrgRec = matchFrgList[k][m]
6.1.2.2.3.2 If frgListimerFrgRec.frgldx].ctgListldx =0
6.1.2.2.3.2.1 newCtgFrg =newCtgFrgRec(ctgList[ctgListldx],
merFrgRec.frgldx)
6.1.2.2.3.2.2 ctgList[ctgListldx] = addTolList(ctgList[ctgListldx],
newCtgFrg)

6.1.2.2.3.2.3 frgListimerFrgRec.frgldx].ctgListldx = ctgListldx
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6.1.2.2.3.3 Else If frgListimerFrgRec.frgldx].ctgListldx <>

ctglListldx
6.1.2.2.3.3.1 ctgList =mergeCtgs(ctgList,

frgListfmerFrgRec.frgldx].ctgListldx, ctgListldx)

Detailed Description

1. Initialize all variables and structures.

2. While frgRec = getNextFrgRead()
Sequences of base calls for fragment reads are read and information is stored in a
typeFrgRec . Information includes:
1) length , the total number of base calls;
2) stream , the sequence of base calls;
3) ctglistldx , an index intatgList  that specifies which contig includes the

fragment (initialized to 0).

The base calls are encodedtieam such that two bits are used to represent each ba:

call; A, G, T, andC are represented by 00, 01, 10, and 11, respectively.

2.1 frgList  =addToList(frgList, frgRec)
At this point, reads that are too short to be useful can be excluded from the dataset
Otherwise, | add the nerrgRec record tofrgList  (the list of all fragment reads in the

dataset).
2.2 numFrgs =numFrgs + 1

3. Fori =1to numFrgs
Iterate through each of the read#gnist , counting the total occurrences of individue

mers.

3.1 While mer = getNextMer(frgList[i], 0)
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Get the next mer for the current fragment read. (The ‘0’ in the function call indicates

am scanning the entire read, 5’ to 3'.) Only the mer or its reverse complement need
processed; | arbitrarily choose the one with the smaller integer value. For example,
bit encoding, the bit stream for the sequence GATT is 01001010, yielding an intege
of 74.The reverse complement and its corresponding bit stream are AAd' G0001011
yielding an integer value of 11. | return the reverse complement of the mer since its
(11) is less than that of the mer (74). Null is returned after the last mer in the seque

stream has been returned.

3.1.1 merRec = getMerRec(merTable, mer)
Get themerRec corresponding the the current mer. First, the integer value of the 2-bi
encoding of the first bases of the mer is used as the indexnidable . Abstractly, the

merTable is a bucket-and-chain hash table where theXibgtises specify the buckets.
Since two bits encode each base inxtmeer, the length of the table i8.4igure D-2 give

an example omerTable indexing and length.

If no merRec exists for the mer whegetMerRec() is called, a newnerRec is created
and added to theerRecList . Since the records are dynamically allocated, only mers
occur in the dataset have an associated record. Note tiatrfList fields remaimull

until step 4.

3.1.2 IfmerRec.count < maxCount
Increment the count for the curremirRec if it is less than thenaxCount threshold. A
threshold is set that specifies the maximum number of identical mers that occur in t
dataset. (The default setting is 150% of expected redundancy.) When the number ¢
occurrences reaches the threshold, the mer is marked as a repeat. As an example,
a dataset with an expected redundancy of six. If a mer occurs more than nine times
presume that it is repeated in the original DNA fragment. In that casepéhe field of

theMerRec is set tarue .

3.1.2.1 merRec.count =merRec.count + 1
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3.1.3 Else merRec.repeat =true

4. Fori =1to numFrgs

Iterate through the fragment reads, choosing mer tags.

4.1 merOffset =0
Initialize merOffset  to 0. The offset of the current mer iF@Rec.stream  is needed for

themerOffset  field in aMerFrgRec .

4.2 Forj =1tonumMers
Choose a mer tag for each patrtition of the fragment read. The user specifies how
mers to choose per fragment read. The read is divided into that many partitions anc
chosen for each partition. Multiple mers are usually needed to help ensure that eact
has a chosen mer tag. It is especially important to have mers near either end of the

reads.

4.3.1 found =false

found remaingalse if no mer tag is found the the partition.

4.3.2 While mer = getNextMer(frgList[i], j)
Get the next mer for the current partition and fragment read. | am only interested in
a mer in the current partition of the fragment read, so | only return mers in the that
partition. For example, consider the case where the number of partitions is three ar
a fragment read of 440 bases. The three partitions will include bases 1 to 147, bas
294, and bases 295 to 440. If possible, a mer tag is chosen in each of these partiti

is returned after | have returned the last mer in the partition.

4.3.2.1 scoreRec =assignScore(mer, merOffset++)
Assign a score for the current mer by preferring mers with the fewest number of
occurrences (greater than one). The score for a mex@®unt - merRec.count . The
merOffset IS incremented at the completion of the function call. If the mer is marked

repeat, a score of 0 is assigned.
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a)
Index Mer (first x bases) 2-Bit Encoding
0 AAAAAAA/ 000000000000000
1 AAAAAAAC 000000000000000
2 AAAAAAAT 000000000000001
65,533 Ccccceccce 111111111111110
65,534 CcCccccce 111111111211111710
65,535 Cccccecce 111111111111111
b)
hash index merList
(first x bases) (last y bases)
merRec 1 merRec 2 merRec 3
31,352 mer GTCt | mer TTAC | mer GAAT
(GCTTGCTY count 1 | count 6 | count 3
repeat false | repeat false | repeat false
merFrgList  null | merFrgList  null | merFrgList  null

Figure D-2. Mer Table and Lists. a)Thisis anexamplemerTable . In thisexamplex =
8 andthelengthof thetableis 65,536. The integevaluesof the 2-bitencodingof the 8-mers
indexesthetable.l usethelasty basesn the currentmerto find the correspondingnerRec.
Each entry in thenerTable is amerRecList ; the lists form the chains for the hash table. It
list, thereis onemerRec for eachmerthatoccursn thedatasebf fragmentreadsb) Thisis an
exampleof amerRecList . In thisexampleconsiderthefollowing threemerswherex = 8 and
y = 4: GCTTGCTAGTCAGCTTGCTATTACand GCTTGCTAGAATThe first x basesare
identical, so all hash intaerTable at index 31,352. The last y bases are different, so ea
its ownrecordin themerRecList . In thedatasebf fragmentreaddor thisexample| haveso
far encounteredne mer of GCTTGCTAGTCAsix of GCTTGCTATTACand three of

GCTTGCTAGAAT



193
4.3.2.2 If betterScore(scoreRec, tagScoreRec, j)

Check if the current score is better than the best score so far. There are often ties i
and the identification of the better score is dependent upon which partition | am pro:
| want to choose mer tags that are near either end of the fragment read and spaced
as possible throughout the rest of the read. If | am scoring the first partition, | choos
first mer with the highest score. Conversely, if | am scoring the last partition, | choo
mer with the last occurrence of the highest score. For middle partitions, | choose th
with the highest score that is nearest the center of the partition. If the seaneRec is

0, false is returned.

4.3.2.2.1 tagScoreRec = scoreRec
UpdatetagScoreRec if the current score iscoreRec is better than the score in

tagScoreRec .

4.3.2.2.1 found =true

Indicate that at least one possible mer tag has been found.
4.3.3 If found

4.3.3.1 newMerFrg =newMerFrgRec(i, tagScoreRec.merOffset)
Make a newMerFrgRec using the fragment index and the direction and offset of the n

tag.

4.3.3.2 merRec = getMerRec(merTable, tagScoreRec.mer)

Find themerRec associated with the mer tag (as in step 3.1.1).

4.3.3.3 merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)
Add the newmerFrgRec to the mer tag'snerFrgList . ThemerFrgList is the list of all

fragment reads for which the mer has been chosen as a mer tag.

5. For i =1tonumFrgs
This iteration through the data ensures that if a mer was chosen for one read, all ot

with that mer are in the mer’s associatetFrgList . For each mer, the existence of a
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merFrgList  indicates that the mer has been chosen as a tag for at least one fragme

list remainsll  until the mer has been chosen by a fragment.)

The amount of storage and processing time can be reduced by incorporating a ¢
existingmerFrgList's  in step 4. In that step, ifraerFrgList ~ exists for a mer in the
current partition, the mer can be immediately chosen as the mer tag for the current
fragment. Checking for previously chosen mers in step 4 does not eliminate the nes

step 5.

5.1 merOffset =0
SetmerOffset to 0. As in step 4.1, the offset of the current merrrgRec.stream IS

needed for thenerOffset  field in aMerFrgRec .

5.2 While mer = getNextMer(frgList[i], 0)
Get the next mer for the current fragment. (The ‘0’ in the function call indicates that |

scanning the entire read, 5’ to 3'.)

5.2.1 merRec = getMerRec(merTable, mer)

Find themerRec associated with the mer (as in step 3.1.1).

5.2.2 ifmerRec.merFrgList and not inMerFrgList(merRec.merFrgList, i)
Check if amerFrgList ~ exists and if the fragment is already in the list. If there is no
merFrgList ~ for the current mer, then the mer has never been chosen as a tag and |
it. Otherwise, | check if the current fragment read already has an entryMartiygist

If not, | add a newerFrgRec containing the fragment information to the list.

5.2.2.1 newMerFrg =newMerFrgRec(i, merOffset++)
Make a newMerFrgRec using the fragment index and position of the mer. mé®ffset

is incremented at the completion of the function call.

5.2.2.2 merRec.merFrgList = addToList(merRec.merFrgList, newMerFrg)

Add the newMerFrgRec to themerRec.merFrgList

6. Fori =1to listLen(merTable)
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Iterate through thenerTable , making, adding to, and merging contigs. At the complet

of this step | have a list of contigsdmList . Each contig is represented as a list of
ctgFrgRec records that each contain an index intofitlieést ~ and the offset of the
fragment read in the contig. Each contig listtgfrgRec are ordered by offset to simpli
further processing of the contig layouts. Figure D-3 contains an example of a compl

ctglList and its associated layout.

6.1 Forj =0 to listLen(merTable[i])
Each entry in thenerTable is a list ofmerRec’s . | check each entry in the list to see if t

fragment reads in theerFrgList  should be overlapped in a contig.

6.1.1 merRec = merTableli][j]

Get the neximerRec in themerRecList.

6.1.2 IfmerRec.merFrgList  and not oneCtg(merRec.merFrgList)
First | check if thenerRec has amerFrgList , indicating that the mer has been chosen

tag. Then | check if all the fragments in the list are already in the same contig

6.1.2.1makeMatchFrgLists(merRec.merFrgList, matchFrgList)

I check for pairwise overlap similarity between all fragment readeiRec.merFrgList

In addition, if any of the fragments are already in a contig, | check the pairwise simil
of all fragments in the contig with any overlapping fragments imthRec.merFrgList
(The fragments in a contig might not contain the current mer, but might still overlap :
of the fragment reads in the currertrRec.merFrgList  .) A threshold is set that specifi
the required amount of match similarity. If not all the fragments and contigs in a list |
above-threshold pairwise similarity, then the list is dividethbyeMatchFrgLists  into

multiple lists such that the similarity within each list is above threshold.
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6.1.2.2Forj =0 to listLen(matchingMerFrgLists)

Iterate through the fragment read lists inrtfagchingMerFrgLists.

6.1.2.2.1ctgListldx = getCtgListldx(matchFrgList[K])
Check if any of the fragments in thetchFrgList[k] is in a contig. If a
merRec.ctgListldx is 0, the fragment is not yet in a contig; otherwise, it identifies a
index into thectgList . In this step, if any of the fragmentsnierRec.merFrgList IS in a
contig, | return ittgListidx  ; otherwise | return 0. If none of the fragments is in a
contig, | make a new one and add all other fragments to the same contig. If any fra

are in other contigs, | add them to the same contig also.

6.1.2.2.2IfctgListldx =0
If the ctgListldx is O, none of the fragments is in a contig. If the ctgListldx is greater
0, | enter all other fragment reads in th@Rec.merFrgList  into the contig indexed by

ctgListldx.

6.1.2.2.2.IctgListldx = newCtg(ctgList, matchFrgList[K][1])
| arbitrarily make a new contig with tltagFrgrec of the first fragment read in the
matchFrgList[k] . The offset of this fragment read in thigFrgRec is 0. The
ctgListidx ~is recorded as thegListidx  field in the fragment'sgRec . Subsequently

all other fragments in the list will be added to the new contig.

6.1.2.2.3For m=1to listLen(matchFrgList[k])
Iterate through the fragment reads inrttagchFrgList[k].

6.1.2.2.3.ImerFrgRec = matchFrgList[k][m]

Get the nexinerFrgRec in the list.

6.1.2.2.3.2f frgListimerFrgRec.frgldx].ctgListldx =0

If thectgListidx  for the fragment is O, the fragment is not in a contig.
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a)ctglList
ctgListldx ctgFrgList
1 frgldx 16 | frgldx 6 frgldx 2 frgldx 14 | frgldx 10
offset 0 offset 8 offset 14 | offset 25 | offset 34
2 frgldx 1 frgldx 7 frgldx 15
offset 0 offset 9 offset 19
3 frgldx 12 | frgldx 3 frgldx 13 | frgldx 5
offset 0 offset 6 offset 17 | offset 33
b) L ayout
Contig 1
frgldx 16: TAGGCTAGGCCCCATATGC
frgldx 6: GCCCCATATGCTGACGGCGCA
frgldx 2: TATGCTGACGGCGCATTTGAC
frgldx 14: CGCATTTGACCCCAAAGTC
frgldx 10: CCCCAAAGTCCCC
Contig 2
frgldx 1: GATTGGGGACCAGCACCACCTTAGC
frgldx 7: CCAGCACCACCTTAGCAGGA
frgldx 15: CTTAGCAGGATTGACACGGGTA
Contig 3
frgldx 12: TTAGGATCGCGAGCTTA
frgldx 3: TCGCGAGCTTATCCAGAGTCGACCGG
frgldx 13: TCCAGAGTCGACCGGTAGGGCTACACA
frgldx 5: AGGGCTACACAAGC(

Figure D-3. A Contig List and Layout. In thisexample16 fragmenteadsarein the
dataseta) Twelvereadsarealignedinto threecontigs.EachctgFrgList ~ containstgFrgRec
thatincludethefrgldx  (anindexinto thefrgList ) for eachreadin thecontig. Therecord:s
alsoincludetheoffset  of thereadin the contig. Fourreadgfrgldx =4, 8, 9, and11) did
notoverlapanyotherreadandarenotin any contig.b) The fragmenteadsor eachcontigare
aligned according to the offsets listed in ¢iErgRec .



198
6.1.2.2.3.2.lnewCtgFrg = newCtgFrgRec(ctgList[ctgListldx], merFrgRec.frgldx)

Make a newctgFrgRec using the index of the fragment read. The offset of the read ii
contig is calculated in the function. If the mer for the current fragment read is not in 1
same direction as in the contig, then | must set the offset to reflect the reverse comy

of the read. An example is given in Figure D-4.

6.1.2.2.3.2. 2tgList[ctgListldx] = addToList(ctgList[ctgListldx], newCtgFrg)
Add the newctgFrgRec to the contig. The list aftgFrgRec is ordered by offset.

6.1.2.2.3.2.3frgListmerFrgRec.frgldx].ctgListldx = ctgListldx

Record thetgListldx in thefrgrRec  for the current fragment read.

6.1.2.2.3.3Else If frgListimerFrgRec.frgldx].ctgListldx <> ctgListldx
If the ctgListidx  for the current fragment does not matchdieistidx  for the contig

am building, then | have two separate contigs that | merge.

Fragment reads imerfrgList ~ for merACCACACC

1. G ACCACACGTAGTG

2. AGGATAG ACCACACGTAG

3f. GGGGTGGGTCACTAGGTGTGGEIT (Forward)

3r. AG ACCACACGTAGTGACCCACCC@Reverse-complemented)

Make a new contig with fragment read 1:
1. G ACCACACGTAGTG offset =0

Add fragment read 2:

1. G ACCACACGTAGTG offset =6
2. AGGATAG ACCACACGTAG offset =0

Add fragment read 3:

1. G ACCACACGTAGTG offset = 6
2. AGGATAG ACCACACGTAG offset =0
3r.  AG ACCACACGTAGTGACCCACCCffset =5

Figure D-4. Reversing Reads when Forming Contigs. Theexamplein showsthree
fragment reads added one at a time to a growing contig. The mer occurs in the reverse
in the third fragment, so the offset is from the original 3’ end of the read.
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6.1.2.2.3.3.lctgList =mergeCtgs(ctglList,

frgListimerFrgRec.frgldx].ctgListldx, ctgListldx)

Merging contigs requires the adjustment of all the offsets of the fragment reads in 0
the contigs to reflect their new positions relative to fragment reads in the other conti
the case that the mer is in the forward direction in one contig and reversed in the ot|
offset adjustment must also reflect the reverse complementation of one contig. Durii
merging, thectgListidx ~ is updated for all the affected fragmeritgRec . After moving

all fragment reads from oneyFrgList  to another, the empty list is deleted.
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