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Protein X-ray crystallography ��� the most popular method for determining protein

structures��� remains a laborious process requiring a great deal ofmanual crystallographer effort

to interpret low-quality protein images. Automating this process is critical in creating a high-

throughput protein-structure determination pipeline. Previously, our group developedACMI, a

probabilistic framework for producing protein-structure models from electron-density maps

produced via X-ray crystallography. ACMI uses a Markov Random Field to model the three-

dimensional (3D) location of each non-hydrogen atom in a protein.Calculating the best structure

in this model is intractable, so ACMI uses approximate inference methods to estimate the

optimal structure.While previous results have shownACMI to be the state-of-the-artmethod on

this task, its approximate inference algorithm remains computationally expensive and suscep-

tible to errors. In this work, we develop Probabilistic Ensembles in ACMI (PEA), a framework

for leveraging multiple, independent runs of approximate inference to produce estimates of

protein structures. Our results show statistically significant improvements in the accuracy of

inference resulting in more complete and accurate protein structures. In addition, PEA provides

a general framework for advanced approximate inferencemethods in complex problem domains.

Keywords: Statistical inference; protein-structure determination; computational biology.

1. Introduction

Over the past decade, the field of machine learning has seen a large increase in the

use and study of probabilistic graphical models due to their ability to provide a

compact representation of complex, multidimensional problems.1 Recently, the
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complexity of problems posed in many areas of data analysis has stressed the ability

to reason in graphical models. New techniques for inference are essential to meet the

demands of these problems in an efficient and accurate manner.

One such application is our group’s work on ACMI (Automated Crystallographic

Map Interpretation), a three-phase, probabilistic method for determining protein

structures from electron-density maps.2�5 The task of determining protein struc-

tures has been a central one to the biological community, with recent years seeing

significant investments in structural-genomic initiatives. X-ray crystallography, a

molecular imaging technique, is at the core of many of these initiatives as it is the

most popular method for determining protein structures. The final step of crystal-

lography involves constructing an all-atom protein model from an electron-density

map (a three-dimensional (3D) image). This step remains a major bottleneck in need

of automation, taking months of manual effort by a crystallographer to solve.

Previous results show that ACMI outperforms other automated density-map

interpretation methods on difficult protein structures, producing complete and

accurate protein structures where other methods fail.3 ACMI uses a graphical model

known as pairwise Markov random field (MRF)6 to combine visual features derived

from the electron-density map with biochemical constraints in order to identify the

most probable locations for each amino acid in the electron-density map. Unfor-

tunately, exact inference (i.e. finding the best protein structure model) is intractable

due to the complexity of the MRF. ACMI, instead, must employ approximate

inference techniques to estimate each amino acid’s location in the density map.

In this paper, we propose Probabilistic Ensembles in ACMI (PEA), a general

framework for performing approximate inference in complex domains. Our previous

approach produced a single probability estimate of the protein’s location. PEA,

instead performs multiple, independent runs of approximate inference in ACMI to

produce multiple probability estimates of the protein’s locations. Our results show

PEA dramatically outperforms ACMI in both the quality of inference and accuracy

of protein structures produced.

2. Background

2.1. Protein X-ray crystallography

Amino acids form the building blocks of proteins, linking end-to-end to form the

linear protein sequence. The chain of atoms linking amino acids is known as the

backbone, and the molecules hanging off of the backbone are called side chains. All

side chains connect to the backbone via the C� atom ��� the central atom in an

amino acid ��� and are unique for each of the 20 types of amino acids.

X-ray crystallography is the most popular wet-lab technique for determining

protein structures, producing �88% of protein structures in the Protein Data

Bank.7 The final step in the X-ray crystallography process is taking an electron-

density map ��� a fuzzy, 3D image of a protein ��� and determining (or interpreting)

the underlying protein molecular model that produced the image. Figure 1 shows a
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sample density map and the resulting interpretation. Figure 1(a) is a contoured

electron-density map, similar to what a crystallographer would see at the beginning

of interpretation. In Fig. 1(b) we see the resulting protein structure with all non-

hydrogen atoms in a stick representation. The crystallographer’s task is: given a

protein’s amino-acid sequence and an electron-density map of the protein, produce

the underlying protein structure.

Several factors make determining the protein structure a difficult and time-

consuming process, mainly by affecting the quality of the electron-density map. The

most significant factor is crystallographic resolution, which describes the highest

spatial frequency terms used to assemble the electron-density map. Resolution is

measured in angstroms (�A), with higher values indicating poorer quality maps with

less detail. Additionally, crystallographers can only estimate the phases needed to

calculate the electron-density map (the phase problem), reducing the interpret-

ability of the image. Lastly, imperfections in the crystal structure and the stochastic

nature of protein structure can create areas of distortion or smeared density in the

image that contain very little or unreliable features.

The most popular method for automated density-map interpretation is ARP/

wARP,8 which efficiently finds solutions in maps with 2.7-�A resolution or better.

TEXTAL9 and RESOLVE10 work on more difficult maps and have successfully

interpreted density maps up to 3.2�A in quality. A more detailed description and

evaluation of these techniques can be found in our previous work.2,3

2.2. Ensemble-learning methods

Ensemble-learning methods come primarily from the supervised machine learning

community. The goal of supervised learning is to develop a model (or classifier) with

high predictive performance on future instances of a problem. Traditional learning

methods yield a single-best model, f̂ ðxÞ, to estimate the underlying (but unknown)

true function, fðxÞ. Ensemble-learning methods, instead, develop a collection of

(a) (b)

Fig. 1. The last step in the protein X-ray crystallography pipeline takes (a) an electron-density map

(3D image) of the protein and finds (b) the most likely protein structure that explains the map.
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models, f̂
1ðxÞ; f̂ 2ðxÞ; . . . ; f̂ NðxÞ, that, in aggregate, produce a classifier with better

performance than any single constituent model. Empirical evaluations of ensemble-

learning methods (or ensembles) show that such methods outperform the best

individual constituent models.11,12

There are two primary design choices in developing an ensemble-learning

method. First, the learner must generate models that are diverse. A lack of diversity

means each model will produce the same answer to a given instance and thus the

collective performance will mirror individual performance. Second, the learner must

aggregate the decisions (or predictions) of each model. This is often accomplished

with majority voting, where each model gets a weighted or unweighted \vote" on

the answer to a query instance.

While most work on ensembles is on supervised machine-learning problems, we

are interested in structured-prediction problems such as ACMI. Weiss et al.13

proposed Structural Ensemble Cascades (SECs), an iterative, hierarchical method

for structured prediction problems. As in Wainwright et al.,14 ensembles are

used in inference, where an intractable graph is converted to a set of tractable

(i.e. tree-structured) graphs.

3. Automated Crystallographic Map Interpretation

In previous work, our group developed ACMI (Automated Crystallographic Map

Interpretation),2�5 a probabilistic method for determining protein structures from

low-quality electron-density maps (�3 to 4�A resolution). Figure 2 provides an

overview of ACMI and its three-phase process. At the heart of ACMI is a prob-

abilistic model known as MRF.6 An MRF is an undirected graphical model that

defines a probability distribution on a graph. Vertices (or nodes) are associated with

random variables, and edges enforce pairwise constraints on those variables. In our

task, ACMI seeks to probabilistically represent all possible structures of a protein in

a compact manner. ACMI constructs a graph where each vertex describes the

location, ui
!
, of the C� atom for the amino acid at position i in the sequence. Edges

exist between every two amino acids in the sequence and model the interactions

between the pair of connected amino acids. A sample MRF is show on the right side

of the Phase 2 box in Fig. 2.

Formally, ACMI’s MRF model G ¼ ðV ;EÞ consists of vertices i 2 V connected

by undirected edges ði; jÞ 2 E. We define the full-joint probability of all amino acid

locations, U, as

P ðUjMÞ ¼
Y

i2V
 iðui

!jMÞ �
Y

ði;jÞ2E
 i;jðui

!
;uj
!Þ: ð1Þ

The first term,  ið~ui jMÞ, is associated with vertex i and is known as the observation

potential function. It can be thought of as prior probability on the location of an

amino acid given the map, M, and ignoring all other amino acids in the protein.

ACMI calculates this function in Phase 1 by calculating the correlation between
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(a) the electron-density map and (b) instances of amino acid i from previously

solved structures from the Protein Data Bank (PDB).

The second term,  i;jð~ui ; ~ujÞ, is associated with edges and represents one of two

pairwise chemical constraints on the protein structure. Edges between neighboring

amino acids in the linear sequence are represented by the adjacency potential ���
adjacent amino acids must maintain an approximate 3.8�A spacing as well as proper

angles (according to the distributions of bond lengths and angles in the PDB). Edges

between non-neighboring amino acids contain an occupancy potential ��� no two

amino acids can occupy the same space.

Given this MRF, we construct a three-phase pipeline (Fig. 2) to calculate the

most probable protein structure for a given protein sequence and electron-density

map. Phase 1 estimates the observation potential ��� the location of each amino acid

in the density map independent of information about other amino acids. Phase 2

then takes these results and combines them with chemical constraints by performing

inference on the MRF outlined earlier. Phase 3 uses these probabilities to sample

physically-feasible, all-atom protein structures.

This paper concentrates on the role of inference in ACMI, which occurs in

Phase 2. The model in Eq. (1) represents the full-joint probability distribution over

all possible locations for each amino acid in the target protein. Calculating this

probability exactly, however, is intractable due to the cyclical nature and large size
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Fig. 2. The three-phase ACMI pipeline. Given an electron-density map and protein sequence, Phase 1

performs a local-match search independently for each amino acid. Phase 2 combines these results with

global constraints to create posterior probabilities of each amino acid’s location. Finally, Phase 3 uses

these marginals to sample physically feasible, all-atom protein structures. The box on the right in Phase 2

shows a portion of an MRF for an example protein sequence.
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of ACMI’s graph. ACMI, instead, employs loopy belief propagation (BP),15 a fast

approximate-inference algorithm, to calculate an approximate marginal probability

distribution for the location of each amino acid’s C� atom.

Briefly, belief propagation calculates marginal probabilities by utilizing an

iterative, local message-passing scheme to propagate information across a graphical

model. A marginal probability represents the posterior probability of a single amino

acid’s location, incorporating all available information. A message, going from some

amino acid i to some amino acid j, states, \Based on my current belief in my

location, you should be here (with weight)." Details of ACMI’s belief propagation

implementation can be found in DiMaio et al.2 and Soni et al.5

4. Methods

ACMI’s Phase 2 utilizes an approximate inference technique known as loopy belief

propagation (BP) to calculate the location of each amino acid in the protein

sequence (see Sec. 3). Empirically, ACMI’s Phase 2 rarely converges to a solution,

and while ACMI performs well on difficult proteins, there are shortcomings in the

inference process.3,5 This section discusses the major contribution of this paper: the

use of statistical ensembles to improve approximate inference solutions in ACMI.

4.1. Probabilistic ensembles in ACMI

With the well-documented success of ensemble methods in classification tasks, we

seek to extend the idea of aggregating multiple estimates to probabilistic graphical

models. As discussed in Sec. 2.2, current efforts in the area rely on simplifying the

structure of an intractable graph to create a collection of tractable problems.13,14

These techniques, however, do not easily extend to the graph in ACMI, which is

fully connected and thus difficult to convert to the necessary number of tree-

structured graphs. In addition, previous work in ACMI introduced an approxi-

mation that exploited redundancies in messages passing to dramatically reduce the

complexity of inference.2 Converting ACMI to a tree-structured graph loses the

gains from this approximation as well as important information encoded in edges.

Thus, unlike previous approaches, we are interested in an ensemble solution that

boosts the accuracy of inference, not that tractability.

We propose PEA, shown in Fig. 3. PEA is a framework for generating and

combining multiple approximate inference solutions to create more accurate protein

structures. As with ensemble-learning methods in classification, there are two major

design components to address: generating (diverse) solutions and aggregating

multiple estimates.

4.1.1. Generating ensemble components

From Sec. 3, Eq. (1) calculates P ðU jMÞ ��� the probability distribution over

all possible protein structures given the density map. Since this calculation is
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intractable, Phase 2 of ACMI produces p̂i, the approximate marginal probability of

each amino acid i’s location. Rather than performing inference once, our proposed

framework, PEA, performs several independent runs of inference. As shown in

Fig. 3, each run (C in total) uses a unique protocol and outputs its own marginal

probability distribution for each amino acid’s location. Phase 2, in total, produces a

matrix of probability distributions P ¼ ðP̂1; P̂2; . . . ; P̂CÞ, where each ensemble

component c produces P̂c ¼ ðp̂1c ; p̂2c ; . . . ; p̂icÞ. Here, p̂ic represents the probability of

amino acid i’s location in the density map according component c of the ensemble.

As mentioned in Sec. 2.2, a desired property of an ensemble is that the individual

components are diverse. Fortunately, previous work5 showed the choice of a

message-passing protocol (i.e. what order to send and receive messages between

nodes) has a large effect on the outcome of belief propagation in ACMI. Section 4.2

provides example protocols for generating ensemble components in PEA, each

modifying how and when evidence is shared in the graph.

4.1.2. Aggregating ensemble components

In DiMaio et al.,3 we developed Phase 3 of ACMI, which utilizes particle filtering,16

a sampling algorithm, to generate all-atom protein structures given the posterior
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Fig. 3. Probabilistic Ensembles in ACMI (PEA). Phase 1 (omitted) is the same as in the ACMI fra-

mework (Fig. 2). Phase 2 performs C independent inference runs, each with a unique protocol. This

results in a set of C marginal probabilities for each amino acid’s location. Phase 3 aggregates the set of

marginal probabilities to produce a protein structure.
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marginal probabilities from Phase 2. Briefly, Phase 3 is an iterative process that

sequentially grows a protein structure one amino acid at a time.a Figure 4 shows

how, at a given iteration, Phase 3 samples the location, ui, of amino acid i.

Phase 3 first samples M potential locations for the new amino acid based on

the location of already placed amino acids in the sequence and a distribution

of known angles and distances between neighboring amino acids. Next, Phase 3

assigns a weight, wm, to each sampled estimate, uim , correlated with the likelihood

of amino acid i being in that location (i.e. the Phase 2 posterior marginal

probabilities):

wm / p̂iðuimÞ: ð2Þ
Lastly, Phase 3 chooses one of the M samples as its prediction for amino acid i’s

location in the structure. The sample is chosen with probability proportional to wm.

In PEA, we no longer have one probability estimate for each amino acid’s

location, but C estimates. We propose several functions for combining these

probabilities into a single weight measurement. First, we look at the average score

over all ensemble components using a mixture model:

wm /
X

c

�c � p̂icðuimÞ; ð3Þ

where �c is the mixture weight, representing the confidence that component c

provides the correct distribution.b The average score should perform well if the true

location tends to have a high score across all runs of inference while false positives

are uncorrelated between runs. False positives would be smoothed out and consis-

tent peaks would maintain high probabilities.

aPhase 3 maintains multiple estimates (or particles) during the sampling process and uses separate steps

to sample backbone and side-chain atoms. For simplicity, we only consider one particle’s backbone

placement in this description.

..
.

ui-2

ui-1

(u     )p̂
1ii

ui-2 

ui-1 ui

(u     )p̂
Mii

(u     )p̂
2ii

Fig. 4. ACMI’s Phase 3 sampling step for amino acid i. In (a) Phase 3 samplesM possible new locations,

uim . In (b) these locations are weighted by their agreement with the Phase 2 probability, p̂i. In (c) one

location is chosen from the weighted distribution to be amino acid i’s location, ui.

b�c can be set by various measures, such as entropy or prior knowledge. We use uniform weights in our

experiments.

A. Soni & J. Shavlik

1240009-8



Another proposed weight function is to instead take the maximum score for a

given location across all components:

wm / max
c

p̂icðuimÞ: ð4Þ

In difficult sections of a protein, it is very likely that most models will miss the

correct location since there is very little evidence. Given multiple estimates, it is

more likely that one model found the correct answer.

Lastly, we consider using a subsampling approach, where Phase 3 will randomly

select one of the ensemble components to score the location:

c � U ½1;C�;
wm / p̂icðuimÞ;

ð5Þ

where U ½1;C� returns an integer between 1 and C with uniform weight. This

technique fits intuitively into the sampling framework of particle filtering where

multiple structure estimates exist to explore several different paths to the end state.

4.2. Experimental methodology

In Sec. 5, we compare the performance of our original ACMI framework from DiMaio

et al.3 to our proposed algorithm, PEA. We use a set of 10 experimentally phased

electron-densitymapsdescribed inDiMaio et al.3 for validation.Thisdatawas provided

by theCenter forEukaryotic StructuralGenomics (CESG) atUW�Madison.Based on

the electron density quality, expert crystallographers selected these maps as the \most

difficult" from a larger data set. These structures have been previously solved and

deposited to the PDB, enabling a direct comparison with the correct model. However,

all ten required a great deal of human effort to build the final atomic model. Test-set

solutions are hidden from all phases of ACMI to prevent biasing results.

Phase 1 (performing an independent search for local features) is the same for

both algorithms, meaning Phase 2 for both the original ACMI and proposed PEA

algorithms begin with the same input. For the experiments in Secs. 5.1 and 5.2, we

consider three variations of ACMI’s belief-propagation protocol for Phase 2:

. ORIG, the original protocol of ACMI which is run for 40 iterations per amino acid

in a round-robin fashion starting with amino acid 1, proceeding left to right, and

then reversing at the end of each pass.

. EXT, an extended version of the original protocol going for 160 iterations.

. BEST, the top-performing individual version of ACMI from the four protocols

considered for PEA (see below).

The BEST protocol provides an overly optimistic estimate of ACMI to see how PEA

performs as an ensemble relative to its individual components. For PEA, we gen-

erate an ensemble of size 4 with each component having its own protocol:

. Protocol 1 is the same as ORIG above.

. Protocol 2 is similar to Protocol 1, but starts halfway through the sequence.
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. Protocol 3 is similar to Protocol 1, but runs for 20 iterations

. Protocol 4 employs guided belief propagation introduced in Soni et al.5

For the learning curve in Sec. 5.3, 50 protocols were generated. All were based on

the standard, round-robin schedule and executed for 40 iterations. Each varies in

the starting location and the direction of the first iteration with half going left to

right and the other half going right to left.

5. Results

Using the methodology described in Sec. 4.2, we compare the performance of our

new approach of using Probabilistic Ensembles in ACMI (PEA) against the original

ACMI algorithm.3 We compare the results across a set of 10 difficult protein

structures. Previous results show ACMI is the state-of-the-art technique for low-

quality protein images, thus related approaches are not compared in this paper.

Section 5.1 first assesses the quality of approximate inference by comparing the

accuracy of the Phase 2 outputs by the two approaches. In Sec. 5.2, we feed these

Phase 2 probabilities to Phase 3 to measure the accuracy of the all-atom protein

structure models produced by PEA and ACMI. Lastly, Sec. 5.3 shows how the

accuracy of PEA changes as the number of ensemble components increases.

5.1. Approximate inference

Our first experiment assesses the quality of approximate inference solutions pro-

duced in Phase 2 for both ACMI and PEA by examining the accuracy of posterior

marginal probabilities. In this experiment, ACMI and PEA use the same Phase 1

outputs to run their respective Phase 2 algorithms and halt before executing

Phase 3. PEA runs Phase 2 with four ensemble components using the protocols

specified in Sec. 4.2. We consider the maximum score aggregator from Eq. (4) and

the average score aggregator from Eq. (3) (MAX and AVG, respectively). The

sampling algorithm from Eq. (5) performs aggregation as a step in Phase 3 and

cannot be compared here. For ACMI, we test the original, round-robin protocol

(ORIG), an extended run of inference (i.e. 160 iterations) in ACMI (EXT), and the

best-performing individual component of PEA (BEST).

Figures 5(a) and 5(b) show the results of running these techniques on a set of

difficult protein images. Figure 5(a) shows the percentile rank which represents how

highly ranked the correct solution (i.e. location from the deposited structure in the

PDB) is in the posterior marginal probabilities. The optimal score of 100 means the

true location had the highest probability value in the map. In Fig. 5(b), the negative

log-likelihood is the probability value for the true location, transformed as a negative-

log score. Here, we desire lower values as they indicate higher probabilities.

Both figures show that the ensemble method, PEA, drastically outperforms the

existing, single inference version of ACMI across all protocols. Both the maximum

and average aggregators obtain scores in the 89th percentile compared to the
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original ACMI protocol which averages scores in the 66th percentile. This implies

that, on average, there are three times as many false positives in ACMI versus PEA.

The negative log-likelihoods tell a similar story; the probability scores improve by

over three orders of magnitude by using ensembles. The results for the best indi-

vidual component of PEA are only slightly better than standard ACMI, showing

that PEA benefits from combining multiple, good models rather than from gen-

erating one very good model. The extended run of standard ACMI shows minor

improvements as well, but comes nowhere near the performance of PEA, showing

that the gains of our ensemble method cannot be explained away by an increase in

CPU resources. In fact, the results of all pairwise differences between the PEA

variations and the three ACMI variations are statistically significantly at scores of

p < 0:01 for both metrics in Fig. 5 based on a paired t-test.

5.2. Protein structures

While the previous results indicate our ensemble technique improves the accuracy of

approximate inference probabilities, biochemists are more interested in the actual

protein structures produced. As a follow-up experiment, we used the marginal

probabilities from Sec. 5.1 as the input for Phase 3 of the ACMI and PEA algor-

ithms, respectively, to produce all-atom protein structures for all 10 of our test-set

proteins. We use the completeness and correctness of the resulting protein struc-

tures to compare our proposed aggregators for PEA against ACMI.

Figure 6(a) shows the averaged results of our experiments. The first three pairs of

columns represent the maximum (MAX), average (AVG), and sampling (SAMP)

aggregators for PEA presented in Sec. 4.1.2. The fourth pair of columns represent

the original ACMI protocol. Within each pair, the first column represents the

correctness of the predicted protein structure ��� what percentage of amino acids
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predicted were within 2�A of their corresponding true-solution location. This is

similar to the precision metric used in information retrieval. The second column

represents the completeness of the predictions ��� what percent of amino acids

available in the PDB solution were accurately predicted (within 2�A). This is akin to

a recallmetric. Each column represents an average over all 10 test proteins. The top

performer across both metrics was PEA using the averaging function to aggregate

ensemble components. On average, 90.3% of its predicted amino acid locations were

correct (compared to 79.3% for the original ACMI algorithm) while completing

84.3% of the real structure (78.6% for ACMI). Importantly, all three PEA methods

outperform ACMI in both correctness and completeness measures.

Figrue 6(b) provides a closer comparison of PEA versus ACMI. Here, each

datapoint represents the results of one protein in our test set. The x-axis value is the

accuracy of the original ACMI algorithm and the y-axis is the accuracy of PEA

using the average aggregator. To assess accuracy, we use an F -measure to combine

the correctness and completeness metrics from Fig. 6(a). The F -measure is com-

monly used in the information retrieval community to balance both the need for

high precision and high recall. Here, we use the traditional F1 metric, which is the

harmonic mean of correctness and completeness.

The line represents equivalent performance, and the shaded region represents

values, where PEA outperforms ACMI. In every test case, PEA performs better

than or equal to ACMI in the F1 metric, affirming the results from Fig. 6(a). The

largest improvement comes in the most difficult test case, with the F1-score

improving from 0.25 to 0.66. This corresponds to an extra 41 percentage points of

the true structure being built and 42 percentage points of extra predictions being
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Fig. 6. Protein-structure prediction accuracy. In (a), we show correctness (light blue) and completeness

(dark red) of PEA. *indicates statistically significant difference compared to ORIG at p < 0:05. In (b) we

show a detailed comparison of F1-scores for ACMI (x-axis) and PEA using the averaging aggregator

(y-axis). Each point represents one protein and the shaded region indicates better scores for PEA.
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correct. Overall, PEA shows substantial improvement in 6 of the 10 proteins, with

equal performance in the other 4, although these values are not statistically

significant.

Figure 6(b) only considers the average aggregator for PEA since it performed

better than the alternative options. As hypothesized in Sec. 4.1.2, the averaging

aggregator’s main advantage is that it can smooth away \noisy" probabilities.

The maximum aggregator and sampling aggregator also produced improved infer-

ence probabilities but did not translate into the same level of improvement in

structure quality as the averaging aggregator. It is difficult to pinpoint the exact

reason, but the areas of major difference happened to be in regions of the map

with this least amount of signal, implying the averaging aggregator handles noise

the best.

5.3. Ensemble learning curve

As a final experiment, we consider how the size of an ensemble effects the accuracy

of inference in PEA. Due to resource limitations, we could not run larger ensembles

sizes for the previous experiments. Instead, for the seven smallest test-set proteins,

we generated ensembles with various number of components, ranging from 1 to 50.

We assessed each using percentile scores as described for Fig. 5(a). Figure 7 shows

the learning curve for seven of our test-set proteins as the number of ensemble

components increases (the values past 30 are not shown since no change occurred).

PEA uses the mixture-model average aggregator to combine posteriors. As Fig. 7

shows, PEA gains accuracy from adding more components, making its largest leap

in performance with the first 10 ensemble components before seeing very little

improvement after 20 component ensembles.
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6. Conclusions and Future Work

While ACMI was previously shown to outperform other automated density-map

interpretation methods in building all-atom protein structures in low-quality

electron-density maps,3 performing approximate inference in ACMI’s model is an

expensive process in need of advanced inferencemethods. In thiswork,we developed a

new approximate inference method based on the concept of ensemble-learning

methods from the supervised machine learning community. Our new framework,

PEA, executes several independent runs of inference to provide multiple, diverse

solutions to the problem.We suggest several protocols for generating unique solutions

for each component of the ensemble as well as different techniques for aggregating

these models to produce a single accurate prediction of the protein structure.

Our results show PEA provides improved performance on a test-set of 10 difficult

protein images. This improvement is seen in the accuracy of the inference process,

where the probability distributions fromPEAwere statistically significantly better in

terms of both percentile rank and probability value assigned to the correct location of

each amino acid. The results show that this improvement could not be explained by

extra CPU resources or by using the single-best component of PEA. More impor-

tantly, PEA’s improved inference translates into more complete and correct protein

structures. Future work will gather a larger set of evaluation proteins, including

membrane proteins which present many difficulties for crystallographers.

While we presented ensembles of approximate inference solutions for the task of

protein-structure determination, our method can generally be applied to difficult

inference problems where the complexity of probabilistic graphical models limits the

accuracy of current methods. In future work, we look to find such applications, and

to provide an in-depth comparison to related inference techniques that rely on

simplifying the graph structure.14
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