

HARDWARE TECHNIQUES TO IMPROVE THE PERFORMANCE

OF THE PROCESSOR/MEMORY INTERFACE

by

DOUGLAS CHRISTOPHER BURGER

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

1998

© copyright by Douglas C. Burger 1999

All Rights Reserved

i

more

ation

for

lls due

data

dis-

plored.

e over

raffic

to two

ech-

tering

e

exist.

uce

cessor

page

both

ory

calar

offer

Abstract

Technology trends are making communication, both on and off the microprocessor chip,

expensive relative to computation. In this dissertation, it is shown how a current-gener

microprocessor spends over two-thirds of its time performing no useful work, stalled

memory. For the aggressive, modern processors that were measured, over half of the sta

to memory result from insufficient memory bandwidth, as opposed to bank access or

transmission latency.

While bandwidth limitations can be obviated by paying a sufficiently high price, in this

sertation hardware techniques to mitigate bandwidth-related performance losses are ex

The efficiency of caches is measured, showing that the fraction of useful data in the cach

time is generally under 20%. A theoretical lower bound is placed on the amount of bus t

that a cache may produce, and it is shown that current caches generally produce one

orders of magnitude more traffic than is necessary.

A number of solutions are proposed for reducing traffic to improve performance. Two t

niques are measured that dynamically adapt what is fetched upon a block miss, fil

unneeded data. The first policy isdual-size fetching, which alternates between fetching larg

and small blocks depending on how much spatial locality exists. The second issubblock

prefetching, which fetches discontiguous sets of small blocks when stable usage patterns

A technique calledbus prioritization schedules speculative fetches on the bus, to red

queueing delays for data that are needed by the processor.

Cache and physical memory hybrids are explored, to better manage large on-pro

memories. A memory hierarchy taxonomy is proposed, and a hybrid called theIndirect Cache

(ICE)—which manages an on-chip cache much like a physical memory, with its own

table and translation buffer—is evaluated. It is shown that the performance of ICE is

superior to and more stable than conventional alternatives.

Finally, the distribution of processing power into physical memory, to reduce both mem

latency and traffic, is explored. One such architecture is evaluated in detail (the DataS

architecture), and it is shown that—for memory-limited applications—this scheme can

significant speedups (9% to 100%).

ii

ach-

nsin

s of a

Sohi,

, and

nsin

diffi-

mar

died,

Pala-

ntel-

and

tions,

Sci-

my

oint. I

nical

I am

will

ork,

f “I”.

Acknowledgments

This dissertation is the culmination of not only years of effort, but also of the training, te

ing, and support of many people. I would first like to acknowledge gratefully the Wisco

architecture faculty, who have educated me and trained me in innumerable aspect

research and academic career: Jim Goodman, my advisor, David Wood, Mark Hill, Guri

and Jim Smith. I cannot thank them enough for their support, advice, training, squash

friendship. I hope that my subsequent career makes them proud.

Equally important in my development (and enjoyment of the process) were the Wisco

architecture students, who helped to create an environment and excitement that will be

cult to replicate ever again. Babak Falsafi, Scott Breach, Alain Kägi, and T.N. Vijayku

were my closest friends through graduate school; wonderful people with whom I stu

worked, lived, and played. I also owe Stefanos Kaxiras, Andreas Moshovos, Subbarao

charla, Todd Austin, Steve Reinhardt, and Alvy Lebeck a debt of thanks, for both their i

lectual support, collaborations, and friendship.

I would also like to acknowledge the institutions that provided our group with funds

equipment that supported my research: the Intel Research Council, for funds, worksta

and my fellowship; Sun Microsystems, for their workstation donations, and the National

ence Foundation, whose grants funded the majority of my graduate career.

Last and most important, I thank my family: my parents, Ann and Bob Burger, and

brother Bob, who gave me the upbringing and education that allowed me to reach this p

never could have done it without them.

Given the large number of people who have provided me with advice, support, and tech

interaction, I have chosen to write the dissertation in the first person plural. By doing so,

acknowledging the daily intangible contributions of many of my advisors and peers. I

mention explicitly significant and concrete contributions that others have made to this w

so that others’ contributions are not hidden or buried in my choice to use “we” instead o

iii

. ii

. 3

6

. 6

9

5

6

6

18

0

1

2

23

24

27

Contents

Abstract . i

Acknowledgments .

Chapter 1 Introduction . 1

1.1 Dissertation roadmap and contributions .

1.2 Increasing importance of memory bandwidth .

1.2.1 Increasing bandwidth needs .

1.2.2 The interactions of latency and bandwidth .

1.3 Bandwidth-specific solutions . 1

1.3.1 Tuning the PMI . 1

1.3.1.1 Traffic-efficient caches . 1

1.3.1.2 Large on-chip caches .

1.3.2 Distributing the PMI . 2

1.3.3 Flattening the PMI . 2

1.3.4 Shrinking the PMI . 2

1.4 A word about cost .

Chapter 2 Experimental Methodology. 24

2.1 Software simulation .

2.2 The SimpleScalar tools .

iv

8

2

2

35

35

36

44

46

9

3

57

0

61

3

7

2

2.2.1 Machine model . 2

2.2.2 Functional simulation . 3

2.2.3 Timing simulation . 3

2.3 SPEC95 benchmarks .

2.3.1 Choosing the input set .

2.3.2 Benchmark characterizations .

2.3.3 SPEC95 benchmark analysis .

2.3.3.1 SPEC95 integer codes .

2.3.3.2 SPEC95 floating point codes . 4

2.4 Sampling validation . 5

Chapter 3 Measuring Cache and Traffic Efficiency. 57

3.1 Cache efficiency .

3.1.1 Methodology . 6

3.1.2 Measurement of cache efficiencies .

3.2 Traffic efficiency . 6

3.2.1 Definition of traffic ratios . 63

3.2.2 Definition of traffic efficiency . 65

3.2.3 Measurement of traffic ratios . 6

3.2.4 Methodology for measuring traffic efficiency . 68

3.2.5 Measuring traffic efficiency . 7

3.2.6 Factorization of traffic efficiency . 73

v

79

83

88

3

6

4

7

9

10

1

13

14

17

20

6

6

28

9

Chapter 4 Reducing the Impact of Memory Traffic. 78

4.1 What to fetch .

4.2 Dual-size fetching .

4.3 Subblock prefetching .

4.4 Unifying DSF and SBP . 9

4.5 Bus prioritization . 9

Chapter 5 Merging Caches and Physical Memory . 101

5.1 A taxonomy for memory hierarchies . 10

5.2 A logical hybrid - the Indirect Cache . 10

5.2.1 Additional hit latency . 10

5.2.1.1 Tag cache misses . 1

5.2.1.2 Complex replacement . 11

5.2.2 Coherence issues . 1

5.2.3 Performance analysis . 1

5.3 Physical hybrids . 1

5.4 Processor/memory integration . 1

Chapter 6 Memory-Centric Architectures . 124

6.1 The Massive Memory Machine . 12

6.1.1 Operation of the MMM . 12

6.1.2 Limitations of the MMM . 128

6.2 DataScalar Architectures . 1

6.2.1 Asynchronous ESP (traffic reduction) . 12

vi

0

32

32

5

6

37

38

9

39

42

0

50

53

6.2.2 Datathreading (latency reduction) . 13

6.2.3 Implementation issues . 1

6.2.3.1 Cache correspondence . 1

6.2.3.2 Speculative execution . 13

6.2.3.3 Inter-chip communication . 13

6.2.4 Other pertinent issues . 1

6.3 Evaluating DataScalar architectures . 1

6.3.1 Traffic reduction . 13

6.3.2 Datathread lengths . 1

6.3.3 Performance evaluation . 1

Chapter 7 Conclusions. 15

7.1 Summary . 1

7.2 Looking back . 1

 References. 157

Appendix A Quantifying Latency and Bandwidth Stalls. 167

Appendix B Cache performance of SPEC95. 181

vii

2

 . 8

 . 8

 . 9

19

28

29

30

1

33

33

59

61

1

4

4

0

7

99

02

03

06

09

11

5

7

21

List of Figures

Figure 1-1: Typical modern memory hierarchy .

Figure 1-2: Processor pin counts .

Figure 1-3: Raw performance per pin .

Figure 1-4: Performance per processor pin bandwidth .

Figure 1-5: Fraction of processor transistors devoted to cache

Figure 2-1: Overview of the SimpleScalar tools .

Figure 2-2: Summary of SimpleScalar instructions .

Figure 2-3: SimpleScalar architecture instruction formats .

Figure 2-4: Virtual memory organization . 3

Figure 2-5: Pipeline for sim-outorder .

Figure 2-6: Structure of the Register Update Unit core .

Figure 3-1: Examples of block liveness .

Figure 3-2: Efficiency measurements .

Figure 3-3: Extending Belady’s min algorithm . 7

Figure 3-4: Total traffic generated by different cache and MTC sizes 7

Figure 4-1: Logic for dual-size fetch policy . 8

Figure 4-2: Logic for subblock prefetching policy . 9

Figure 4-3: Datapath for bus prioritization . 9

Figure 4-4: Performance of traffic optimization schemes .

Figure 5-1: Access penalties for levels in the memory hierarchy 1

Figure 5-2: Trends in microprocessor memory hierarchies . 1

Figure 5-3: A sample of points in the taxonomy space . 1

Figure 5-3: Organization of the base ICE . 1

Figure 5-4: Accelerating tag cache misses. 1

Figure 5-5: Performance of an ICE with traffic optimization schemes 11

Figure 5-6: Comparing ICE++ to traditional caches . 11

Figure 5-7: Performance of perfect L2 caches. 1

viii

7

27

31

135

3

43

7

48

2

5

8

Figure 6-1: Operation of the ESP Massive Memory Machine 12

Figure 6-2: Replicated vs. communicated memory . 1

Figure 6-3: Comparing off-chip access serializations . 1

Figure 6-4: Cache correspondence example .

Figure 6-5: Comparing two IRAM organizations . 14

Figure 6-6: Simulated DataScalar chip datapath. 1

Figure 6-7: Timing simulation results of a DataScalar architecture 14

Figure 6-8: Sensitivity analysis of DataScalar experiments . 1

Figure A-1: Execution time breakdown for E1 (SPEC92) . 17

Figure A-2: Execution time breakdown for E2 (SPEC95) . 17

Figure A-3: Execution time breakdown for E3 (SPEC95) . 17

ix

4

29

37

8

9

0

1

42

. 43

. 44

 . 45

4

55

8

3

75

6

6

82

85

86

87

91

92

93

5

95

List of Tables

Table 1-1: Effect of memory latency optimizations on execution time breakdown . . . 1

Table 2-1: SimpleScalar architecture register definitions .

Table 2-2: Simulation speeds of the five simulators .

Table 2-3: Instruction profile for SPECINT95 . 3

Table 2-4: Instruction profile for SPECFP95 . 3

Table 2-5: Memory operation profile for SPECINT95 . 4

Table 2-6: Memory operation profile for SPECFP95 . 4

Table 2-7: Data set and segment sizes for SPECINT95 .

Table 2-8: Data set and segment sizes for SPECFP95 .

Table 2-9: Cache miss rates for varied SPECINT95 data sets

Table 2-10: Cache miss rates for varied SPECFP95 data sets .

Table 2-11: Sampling validation for SPECINT95 . 5

Table 2-12: Sampling validation for SPECFP95 .

Table 3-1: Traffic ratios for 32-byte block, direct-mapped caches 6

Table 3-2: Traffic efficiencies for 32-byte block, direct-mapped caches 7

Table 3-3: Experimental parameters for Table 3-4 .

Table 3-4: Efficiency gap for different optimizations . 7

Table 3-5: Fraction of traffic efficiency per factor . 7

Table 4-1: Performance versus pollution points .

Table 4-2: Dual-size fetch functional results, part 1 .

Table 4-3: Dual-size fetch functional results, part 2 .

Table 4-4: Dual-size fetch functional results, part 3 .

Table 4-5: Subblock prefetch functional results, part 1 .

Table 4-6: Subblock prefetch functional results, part 2 .

Table 4-7: Subblock prefetch functional results, part 3 .

Table 4-8: Trading off misses and traffic for a 1MB, 4-way set associative L2 9

Table 4-9: Policy efficiencies .

x

2

13

13

16

19

0

41

149

9

69

70

81

82

83

83

84

185

86

87

87

88

89

90

191

91

92

93

Table 5-1: Performance impact of an imperfect tag cache (1MB ICE) 11

Table 5-2: Relative misses for the ICE . 1

Table 5-3: Performance impact of 16-way subblocked tags) 1

Table 5-4: Mean speedup (across SPEC95) of ICE++ . 1

Table 5-5: Global miss rates for physical hybrid experiments 1

Table 6-1: Fractions of off-chip data traffic reduced by ESP 14

Table 6-2: Approximate datathread measurements for a four-processor system 1

Table 6-3: DataScalar broadcast statistics .

Table A-1: Input files used for benchmarks in experiments E1-E3 16

Table A-2: Memory system simulation parameters . 1

Table A-3: Processor simulation parameters (E1/E2/E3) . 1

Table A-4: Shift from fL to fB for E1 . 174

Table A-5: Shift from fL to fB for E2 . 177

Table A-6: Shift from fL to fB for E3 . 179

Table B-1: Miss rates for varied associativities on the SPECINT95 data stream 1

Table B-2: Miss rates for varied associativities on the SPECFP95 data stream 1

Table B-3: Cache miss rates for 099.go . 1

Table B-4: Cache miss rates for 124.m88ksim . 1

Table B-5: Cache miss rates for 026.gcc . 1

Table B-6: Cache miss rates for 129.compress .

Table B-7: Cache miss rates for 130.li . 1

Table B-8: Cache miss rates for 132.ijpeg . 1

Table B-9: Cache miss rates for 134.perl . 1

Table B-10:Cache miss rates for 147.vortex . 1

Table B-11:Cache miss rates for 101.tomcatv . 1

Table B-12:Cache miss rates for 102.swim . 1

Table B-13:Cache miss rates for 103.su2cor .

Table B-14:Cache miss rates for 104.hydro2d . 1

Table B-15:Cache miss rates for 107.mgrid . 1

Table B-16:Cache miss rates for 110.applu . 1

xi

94

195

95

96

8

98

Table B-17:Cache miss rates for 125.turb3d . 1

Table B-18:Cache miss rates for 141.apsi .

Table B-19:Cache miss rates for 145.fpppp . 1

Table B-20:Cache miss rates for 146.wave5 . 1

Table B-21:Cache performance varying simulator and indexing for SPECINT95 19

Table B-22:Cache performance varying simulator and indexing for SPECFP95 1

1

gen-

forms

hmetic

tore

al

en the

ation

nce.

I, for

usly.

access

essor

to be

emo-

d level-

is not

good

ween

-

r, and

Chapter 1

Introduction

The purpose of a computer is to perform useful processing of information. In modern,

eral-purpose computers, this purpose is achieved with an electronic engine that per

arithmetic computations on data. These data must be stored in such a way that the arit

engine, orprocessor, can access them quickly and simply. Modern computer systems s

data as bits of information in thememory system. We believe that there are two fundament

issues in computer system design. One is the orchestration of the communication betwe

arithmetic units and the stored data (theprocessor/memory interface). (The other is the

method of expressing an algorithm to the computational hardware). Effective communic

between the processor and memory is crucial in preventing overall computing performa

The ideal processor/memory interface (to which we shall henceforth refer as the PM

brevity) would allow any computational unit to receive any needed operand instantaneo

An ideal memory system has three desirable properties: it is fast (the processor may

any operand quickly), it is large (the memory system holds all the operands that the proc

needs), and it is cheap. Unfortunately, technology permits only two of these properties

improved at the expense of the third [17]. It is therefore possible to build large, cheap m

ries that are slow (disks and tapes), or fast, cheap memories that are small (registers an

one caches), and so on. Since the ideal memory system (and consequently the PMI)

implementable, the PMI must be carefully designed so as not to be the bottleneck for

overall system performance.

The ubiquitous approach for building cost-effective, high performance interfaces bet

the processor and memory is the use of a memoryhierarchy. In a memory hierarchy, a central

ized processing core is connected to multiple memories, each of which is larger, slowe

2

pict a

file)

l-one

chy is

size

ctive

ta (the

core

is to

em-

ess

nica-

mpiler,

uted

aches

and

point,

osen

ed

cheaper (per bit) than the memories closer to the processing core. In Figure 1-1, we de

memory hierarchy that is typical for 1998, in which a small, fast memory (the register

contains the most important subset of data, a slightly larger, slower memory (the leve

cache) contains a larger subset of data, and so on. At the bottom of this particular hierar

the disk (or network), which is extremely slow but holds all of the operands. By varying

and speed, a memory hierarchy may provide the illusion of a single large, fast, cost-effe

memory, which can match the rate at which the processor consumes instructions and da

processor bandwidth [80]).

If microprocessor cores become sufficiently powerful, streaming data into a centralized

at a sufficiently high rate may not be possible to do cost-effectively. A potential solution

distribute the PMI among multiple processing cores [49, 57, 76, 133], each with its own m

ory hierarchy. A distributed PMI is more difficult to program, and its relative effectiven

may be highly dependent on application behavior. The burden of distributing the commu

tion between processing cores and memory must be placed on the programmer, the co

the run-time system software, the hardware, or a combination of the four. Most distrib

PMI architectures also use memory hierarchies (SIMD and processor-in-memory appro

can be an exception [7, 49, 50, 57, 67, 75, 76, 130]), both above the level of distribution

below (for instance, SMPs have registers, L1, and L2 caches above the distribution

physical memory and disk below). The level at which distribution occurs is now often ch

to widen the PMI cost-effectively (e.g.higher bandwidth out of the register banks in cluster

DiskProcessor

Level 2/3 Physical
memorycache

Mem. busCache bus

I/O bus

Figure 1-1: Typical modern memory hierarchy

Level 1
I/D caches

Registers

NI

3

[37],

evels

ures,

MI is

h has

r

es to

ng the

ny of

rams,

rst to

ather

rage,

sure a

w that

first

others

traffic

mecha-

tech-

rchies

ned to

architectures, such as in the Alpha 21264 [55] and proposed MultiCluster architecture

and higher instruction fetch bandwidth in Multiscalar processors [114]). Choosing other l

in the memory hierarchy at which to distribute the PMI can result in interesting architect

as we shall see in Chapter 6.

1.1 Dissertation roadmap and contributions

In this dissertation, we demonstrate experimentally that careful consideration of the P

becoming increasingly important to system designers. Although much previous researc

focused on average memory latency (or thedepthof the PMI), we discuss in this introduction

how it is memorybandwidth(the width of the PMI) that is coming to limit microprocesso

performance. Consequently, the focus of the rest of the dissertation is on techniqu

improve system performance by reducing cache and memory bus traffic, thus increasi

system’s effective bandwidth. One of our previous papers [13] pointed out both that ma

the traditional latency tolerance techniques have little effect on bandwidth-bound prog

and that programs are becoming more bandwidth bound. To our knowledge, it was the fi

make this case comprehensively.

We show in Chapter 3 that traditional memory hierarchies (caches in particular) make r

poor use of both of their capacity and available memory bandwidth. We show that on ave

caches generally use less than 20% of their capacity effectively. We also place and mea

formal upper bound on the effectiveness of caches at reducing communication, and sho

the potential exists for up to two orders of magnitude in traffic reduction. This was the

formal bound on cache traffic that we have seen, and it has been extended recently by

[122]. We extend this bound analysis by dissecting the gap between optimal and actual

into a breakdown of cache mechanisms, which measures the usefulness of each cache

nism at reducing memory traffic.

Using the results of the bounded traffic analysis, in Chapter 4 we propose a number of

niques to improve the bandwidth performance of traditional, cache-based memory hiera

that assume a centralized PMI. The techniques we propose in this chapter are desig

4

ed

, and

ce by

imi-

f large

hich

n-chip

ns. We

uses

that

d in

resent

rge

r the

ufac-

tem

nto

n one

hus

that,

pro-

ell-tra-

no

re, we

cture

make cache traffic moreefficient(reducing unneeded communication) for caches of a fix

size. These traffic optimization techniques are: dual-size fetching, subblock prefetching

bus prioritization. Taken together, they are an aggressive attempt to improve performan

reducing memory traffic, thus increasing effective bandwidth and mitigating bandwidth l

tations.

In Chapter 5, we examine how the cache hierarchy may change with the emergence o

(multi-megabyte) on-chip memories. We describe a new memory hierarchy taxonomy, w

compares cache mechanisms to those of physical memory, the goals being to rethink o

memory management mechanisms and to propose new, alternative cache organizatio

propose three classes of cache/memory hybrids:logical, physical, andunified. Using the tax-

onomy, we propose a logical hybrid for large caches called an Indirect Cache, which

page-table-like structures to manage large on-chip level two caches efficiently. We show

the Indirect Cache works synergistically with the traffic optimization techniques describe

Chapter 4 improving overall performance across a wide range of benchmarks. We p

some brief functional results for a simple physical hybrid, showing that for extremely la

on-chip memories, it is possible to map a fraction of physical memory on-chip and incu

same or fewer number of slow off chip accesses. Finally, we examine the effect that man

turing technology may have on improving the PMI, by integrating more of the sys

(DRAM) onto the processor, which includes eventually combining all memory and logic o

a single substrate [13, 92, 100]. If the processes permit, merging the DRAM and logic o

die may allow the memory hierarchy to be “flatter,” bringing it closer to the ideal and t

reducing the need for distributing it. We present some simulation results that indicate

with current processors and workloads, full processor/memory integration is unlikely to

vide the performance boosts necessary to make it cost-effective. This space has been w

versed by the IRAM group [42, 78], and our results confirm theirs. We make

fundamentally new contributions in this section, but include it for completeness.

In case centralized PMIs prove unsuitable for high-performance processors in the futu

explore a class of distributed PMI architectures in Chapter 6 calledmemory-centric architec-

tures, in which processors are distributed to portions of the physical memory. The archite

5

o per-

itec-

out

ution

work

syn-

ociated

ance

ur last

-term

AM

ce will

past.

r and

]) is

f sys-

ded to

l solu-

emory

n pro-

er, we

make

ving

described in this chapter is the DataScalar architecture, which relies on the hardware t

form the distribution of work across the multiple PMIs. We show that the DataScalar arch

ture can reduce the global traffic significantly—thus improving performance—with

placing any complexity burdens on the programmer or compiler. While the base exec

model of DataScalar is not new (it was first proposed by the Massive Memory Machine

[45]), we recognized that this execution model could improve performance for modern, a

chronous processors. We also proposed new techniques that solved the problems ass

with running this execution model on an implementation that actually improved perform

(these problems included asynchronous communication, speculation, and caching). In o

chapter (Chapter 7), we summarize our results and draw conclusions about the long

implications of this work.

Both technology trends (the oft-cited fact that processor clocks are outstripping DR

access speeds) and our experimental results indicate that the processor/memory interfa

play a more critical role in determining sustained system performance than it has in the

A number of publications [71, 132] have referred to the unequal scaling of processo

memory performance as a “wall.” Implicit in that term (and explicit in some papers [132

the assumption that the memory system will act as an eventual hard limit on the growth o

tem performance. This belief is mistaken; system designers will redesign the PMI as nee

keep it balanced and cost-effective. The divergent trends may result in less conventiona

tions to keeping the system in balance, ranging from more sophisticated and complex m

hierarchies to distributed processor/memory interfaces. In later chapters, this dissertatio

poses and explores a number of such solutions. For the rest of this chapter, howev

explore the subtle relationship between memory latency and memory bandwidth, and

the case that memory bandwidth will be a significantly more important resource in dri

future designs.

6

high

oces-

may

vides

con-

ical

rage

rk in

on the

ub-

mory

oces-

scaling

lity to

band-

re con-

cropro-

reases

ll the

pack-

es, or

uture,

1.2 Increasing importance of memory bandwidth

The memory system must provide operands to the processor with both low latency and

bandwidth. If the memory system provides a high-bandwidth, high-latency path to the pr

sor, data dependences on the critical path will limit the rate at which the processor

request data, resulting in a low effective use of the bandwidth. If the memory system pro

a low-latency, low-bandwidth path to the processor, the saturated connection will cause

tention delays on the critical path, effectively lengthening the critical path with non-crit

work. It is therefore important that the memory system support both a sufficiently low ave

latency per request and a sufficiently high rate of request completions. While much wo

the past has focused on reducing memory latency, the focus has not generally been

additional latency incurred as a result of insufficient memory bandwidth. In the following s

section, we make the case that the latter will soon be a more important component of me

system performance than row access latency alone.

1.2.1 Increasing bandwidth needs

Memory bandwidth issues will come to dominate performance considerations in micropr

sor-based systems for three reasons: (1) exponential performance growth, (2) unequal

of bandwidth costs for different components in the system, and (3) the nascent capabi

place as many functional units on a die as needed to consume the available memory

width.

As performance increases exponentially, the rate at which instructions and operands a

sumed increases correspondingly. Furthermore, as data sets and binaries grow, the mi

cessor must consume larger data sets in a shorter period of time. This requirement inc

the rate at which large quantities of data must be moved from disk or main memory a

way up the memory hierarchy into the processor’s registers.

We predict that the primary bandwidth bottleneck—for processors that are sensitive to

aging costs—will be at the processor pin interface, not the on-chip buses, system bus

DRAM interfaces. The on-chip buses will not be a problem because in the foreseeable f

7

ncy,

aths

on-

sid-

he on-

leaved

ses, or

vari-

roces-

and

t be

n the

show

d this

ith a

ts have

7 SIA

pack-

mati-

higher

ions.

ansis-

per-

in is

This

across

the primary problem with moving data from the pin interface to the registers will be late

not bandwidth. Increased device counts will allow replication of key structures and wide p

on-chip, so bandwidth will be less of an issue than will the delays associated with long

chip wires [86]. In terms of sustaining sufficient bandwidth, the pin interface will be a con

erably more serious problem, simply because it cannot be widened nearly as much as t

chip paths. Furthermore, the processor pins cannot be distributed, replicated, or inter

cheaply as can other communication resources in the system (such as replication of bu

interleaving of DRAM banks). While carefully designed transmission lines, such as the

ous Rambus interfaces [96] may bring data across the pins at a rate keeping pace with p

sor clock improvements, increased exploitation of both instruction-level parallelism (ILP)

speculation will continue to increase pin counts.

If pin counts could scale indefinitely with performance, processor bandwidth would no

an issue. However, we believe that packages are unlikely to scale cost-effectively (i

absence of bandwidth-specific solutions) with on-chip device counts. In Figure 1-2, we

the growth in microprocessor package pin counts over the past 20 years. We compile

data by hand, from both the processors’ original manuals and back issues ofMicroprocessor

Report. The y-axis uses log scales, and the x-axis use a linear scale. Plotting a line w

least-mean-squares analysis, we find that, for the microprocessors surveyed, pin coun

been growing an average of 16% per year for this period. For the next decade, the 199

National Technology Roadmap [102] forecasts a lower (~11%/year) increase, predicting

ages of 7300 pins for the high-performance microprocessor of 2012. Should these dra

cally large packages prove too costly, other techniques must compensate by providing

effective bandwidth across a narrower channel.

This disparity in pin counts versus performance is by no means limited to future project

The rate of increase of processor pins has traditionally been much slower than that of tr

tor densityandperformance. In Figure 1-4, we plot (again on a semi-log scale) processor

formance1 per pin versus time over the past 20 years. The raw performance per p

increasing exponentially, despite the increase rate in pin count shown in Figure 1-2.

graph, however, does not consider pin frequency (the rate at which signals are clocked

8

each

alling

graph

peak

tor of

ce the

sive

ue
ffi-

the pins)—packages and buses are designed to provide sufficient off-chip bandwidth to

generation of processors. In Figure 1-4, we therefore incorporate increased pin sign

speeds, and plot the raw performance to total package bandwidth ratio versus time. The

shows that performance increases are also exponentially outstripping the growth in raw

package bandwidth.

In terms of future projections, the projected package pin count of 2012 is about a fac

ten greater than is typical today, but performance is projected to increase 700-fold. Sin

processor bandwidth will likely increase by a proportional factor (or even more, if aggres

1. Performance here is measured in VAX MIPS for the 680x0 and early 80x86 processors, and iss
width times clock rate for the others. These two measures cannot be compared directly, but are su
cient to view 20-year trends.

Figure 1-2: Processor pin counts

32

64

125

250

500

1000

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

N
um

be
r

of
 p

in
s

8086

80286

68000

80386

68020

68030

80486

R3000

68040

UltraSparc

Pentium

Harp1

SSparc2

P6

68060

R10000

PA8000

21164

Figure 1-3: Raw performance per pin

0.002

0.005

0.01

0.03

0.08

0.2

0.5

1.3

3.2

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

M
IP

S
/p

in

8086
80286

6800080386

68020
68030

80486

R3000

SSparc2

68040

68060

UltraSparc
R10000

21164

P6

Pentium

Harp1

PA8000

9

e), the

ins.

by a

por-

likely to

ce—

chip

fea-

uture

mputer

) We

, and

ubtle.

request

duce

speculation increases processor bandwidth requirements more quickly than performanc

effective off-chip bandwidth will need to be increased by a factor of 70 without adding p

Assuming a ten-fold increase in pin frequencies, the off-chip traffic must still be reduced

factor of seven to balance the PMI. Techniques to reduce off-chip traffic could play an im

tant role in rebalancing the system.

While these numbers are debatable—as applications and cache access patterns are

affect off-chip bandwidth requirements significantly more than raw processor performan

it is clear that reducing off-chip traffic would ease the difficulty of scaling the processor

interface along with processor performance growth. Even if this scaling is technologically

sible, adding bandwidth adds cost. Reducing the need for extra bandwidth will make f

systems cheaper while achieving the same level of performance (since, as the superco

domain has shown, more bandwidth is always available if the customer is willing to pay.

discuss techniques and structures to reduce off-chip traffic in Chapter 4, Chapter 5

Chapter 6.

1.2.2 The interactions of latency and bandwidth

The relationship between latency and bandwidth in the memory system is intricate and s

Some techniques (such as increasing the bus clock) that reduce the latency of a single

will improve memory bandwidth, while others (such as hardware prefetching) actually re

0.006

0.010

0.016

0.025

0.040

0.064

0.100

0.16

0.25

0.40

0.64

1.0

1.6

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997

Year

(M
IP

S
)/

(P
in

 M
B

/S
)

8086
80286

68000

80386

68020
68030

80486

R3000

SSparc2

68040

Harp1

Pentium

68060

P6

PA8000

UltraSparc

R10000

21164

Figure 1-4: Performance per processor pin bandwidth

10

ther

hared

as addi-

th is

cy off

reased

tive to

teadily

ccess

y opti-

eed.

ars, at

have

aches

ission

olerate)

hread-

more

f these

While

tions

emory

rallel-

saction

mean

effective memory bandwidth. When the available memory bandwidth is insufficient, o

requests may be stalled or queued in the memory system due to contention for s

resources (such as buses, cache ports, or memory ports). This queueing is manifested

tional latency, which may reduce processor performance. In the end, limited bandwid

measured as additional latency for memory requests. When we describe “trading laten

for bandwidth,” we mean that some latencies are reduced while other latencies are inc

as a result of more memory traffic.

There has been a historical focus on memory latency because it has been growing rela

processor cycles. The number of cycles required to service a main memory access has s

increased over the past 20 years. This trend is the result of two factors. First, DRAM a

times are being outstripped by processor clock speeds, since DRAM chips are generall

mized for capacity (through high density), while microprocessors are optimized for sp

(This is true even though DRAM access times have dropped considerably over the ye

the rate of approximately 7% per year [97].) Second, the path lengths to main memory

increased, as both the depth and complexity of the memory hierarchy (non-blocking c

[79], multiple levels or cache, and sophisticated memory scheduling and data transm

[30]) have increased.

Consequently, researchers have proposed numerous techniques to reduce (and/or t

the average effective memory access latency. Some of these techniques include multit

ing, dynamic scheduling, decoupling, hardware prefetching, software prefetching, and

aggressive hardware in the memory system. In modern processors, however, some o

optimizations that were intended to reduce average memory latency actually worsen it.

they may improve the latency of a single operation, they may also slow down other opera

by generating extra traffic and thus causing contention that results in a higher average m

latency, and worse overall performance. As processors exploit more instruction-level pa

ism, and memory systems come to resemble queueing systems more than single-tran

systems, sustained memory bandwidth will become a more important quantity than the

latency of individual requests.

11

y pro-

slate

ance

p-free

istinct

screte

-

” for

eruti-

ulta-

ed

ideal

ution

uch

e could

e, etc.)

ache or

or. By

f multi-

never

sys-

eing

experi-

d. That

Traditional metrics—such as cache miss ratio or average memory access time—ma

vide a first-order approximation to memory system performance, but they neither tran

directly into system performance, nor do they provide insight as to the sources of perform

loss in the memory system. For example, four simultaneous cache misses in a locku

cache will appear as one cache miss latency to the processor, but would count as four d

misses when calculating average memory access time.

In this subsection, we address this problem by dissecting execution time into three di

components:processor time, latency time, andbandwidth time.These categories are not dis

crete time periods of execution. They are more similar to “assignments of responsibility

underutilized resources. Thus, at any given cycle in a program’s execution, various und

lized resources in the microprocessor may be contributing to all three categories sim

neously.

Processor timeis the time in which the processor is either fully utilized, or is underutiliz

due to insufficient fine-grained parallelism (as opposed to the memory system). In an

system with a perfectly balanced PMI, processor time would equal the program exec

time (i.e., the processor would never suffer lower utilization due to the memory system). S

a situation does not represent an upper bound on processor performance; execution tim

still be decreased by improving the processor core (better branch prediction, wider issu

Latency timeis the increase in execution time caused by untolerated,contentionlessmemory

latencies. These latencies include the time required to resolve cache misses, access c

memory banks, and the minimum time required to transmit the data back to the process

contentionless we mean that the latency measured is never increased by interference o

ple requests. Thus, adding more bandwidth anywhere in the memory system should

reduce latency time.

Bandwidth timeis the increase in execution time caused by contention in the memory

tem, resultant from insufficient bandwidth between levels of the memory hierarchy. Queu

delays can occur at either the memory banks or at the buses. When memory requests

ence queueing delays in the memory system, their latencies to completion are increase

12

ation

.

ess-

). We

(i.e.,

o-

f

erfect

em-

toler-

te that

ncies:

the

n tech-

fore

d more

ncy

ory

letely

increase may inflate total program execution time. Bandwidth time measures the infl

caused by memory queueing delays.

We now define this execution time dissection formally. LetT be a program’s execution time

TP, TL, andTB are a partitioning ofT, the time spent in each of these three categories (proc

ing, latency, and bandwidth, respectively). LetfP, fL, and fB be these times normalized toT

(thus representing the fractions of time spent in processor, latency, and bandwidth time

defineTP as the execution time of the program assuming a perfect memory hierarchy

every memory access completes in one cycle).TI is measured as the execution time of the pr

gram assuming an infinitely wide path (i.e., infinite bandwidth) in between adjacent levels o

the memory hierarchy.fP, fL, andfB are computed as follows:

(1-1)

(1-2)

(1-3)

These metrics enable us to estimate more accurately the performance impact of an imp

PMI in complex modern processors, which cannot be calculated directly from average m

ory latency or miss ratio. They also enable us to view the performance impact of latency

ance and reduction techniques directly, which we discuss in the next subsection. We no

a similar dissection was independently proposed by Kontothanassiset al. [77].

There are two major classes of techniques for reducing the impact of long memory late

latency reductionand latency tolerance. Latency reduction decreases the time between

issue of a memory request and the return of the needed operand. Some latency reductio

niques include hardware prefetching [21, 43, 47] (which speculatively bring in data be

they are requested), increased cache block size, larger caches (improved hit ratio), an

aggressive memory hierarchies (e.g., faster buses, sub-banked caches, and lower-late

DRAM cores). Latency tolerance involves performing other computation while a mem

request is being serviced, so that the memory latency for that request is partially or comp

f P TP T⁄=

f L TL T⁄ TI TP–() T⁄= =

f B TB T⁄ T TI–() T⁄= =

13

2, 31,

mic

(or

eads

1A),

), may

nge to

. For

time

opti-

of the

sfully

h the

rease

will

t in

on of

st

t four

ucing

oved

, thus

hidden. Some common latency tolerance techniques include software prefetching [18, 2

54, 124], dynamic scheduling [123] (allowing instructions ahead of a load in the dyna

instruction stream to execute), decoupling [108, 109] (allowing the memory unit to run

slip) ahead of the execute unit), and multithreading [1, 107, 125] (switching to other thr

during long-latency operations).

In Table 1-1, we list the effects that various latency reduction techniques (Table 1-

latency tolerance techniques (Table 1-1B), and processor enhancements (Table 1-1C

have upon overall system performance. The arrows in the table represent the relative cha

each fractional component of execution time when the optimization in question is applied

example, an up arrow indicates that an optimization will cause that fraction of execution

to increase. A question mark indicates that a given fraction is not directly affected by the

mization, but may either increase or decrease depending on the relative contributions

other two fractions.

The latency reduction techniques listed in Table 1-1A increasefB in two ways: (1) by

increasing the amount of traffic that must be moved across the PMI, and (2) by succes

reducingfL, which reduces the execution time, and therefore increases the rate at whic

same amount of data must be moved across the pins. Hardware prefetching will inc

bandwidth stalls (fB) by fetching unnecessary data (when the prefetch is unneeded), but it

generally reduce latency stalls (fL) when it does successfully issue a needed reques

advance. If the latency stall reduction outweighs the bandwidth stall increase, the fracti

time spent doing useful computation (fP) will increase, if fB outweighs fL, then fP will

decrease. Larger cache blocks have an effect similar to hardware prefetching, reducingfL and

increasingfB. Both techniques, however, could increasefL if pushed too far, due to interfer-

ence/cache pollution effects.

As do the latency reduction techniques,all of the latency tolerance techniques that we li

reduce memory latency stalls at the expense of increasing bandwidth stalls. The firs

latency tolerance techniques listed in Table 1-1B increase bandwidth stalls only by red

execution time, thus increasing the rate at which the same quantity of data must be m

across the PMI. Lockup-free caches allow the processor to overlap memory requests

14

there-

value

oads.

(with

pecu-

the

with

re in

emory

the

a

or a

omes

che

reducing execution time but increasing the rate at which data must be brought in (and

fore increasing contention). Software prefetching, aggressive load scheduling, and data

speculation all reduce latency stalls by early acquisition (or speculation) of the result of l

Such techniques do not reduce bandwidth stalls, since memory traffic is not reduced

data value speculation, the operands must still be fetched from memory to validate the s

lation). However, since these four techniques increasefP as well asfB, a larger relative fraction

of execution time is spent both doing useful work and stalling for contention.

The fifth and sixth optimizations listed in Table 1-1B increase memory traffic, unlike

first four listed in section B of the table. Speculative loads increase total memory traffic

each misspeculation. Multithreading increases total memory traffic when threads interfe

the cache, causing more cache misses and thus more memory traffic. This additional m

traffic will increasefB in addition to the increases caused by execution time reduction. If

increases infB outweigh the reduction infL, the result will be a lower processor utilization (

decrease infP). Conceptually, a technique such as multithreading can be effective f

latency-bound program, but multithreading will become less effective as a program bec

more bandwidth-bound (i.e., fB increases), and may even be detrimental. Finally, if the ca

A. Latency reduction fP fL fB
Hardware prefetching ? ↓ ↑

Larger cache blocks ? ↓ ↑

B. Latency tolerance fP fL fB
Lockup-free caches ↑ ↓ ↑

Software prefetching ↑ ↓ ↑
Intelligent load scheduling ↑ ↓ ↑

Data value speculation ↑ ↓ ↑
Speculative loads ? ↓ ↑

Multithreading ? ↓ ↑

C. Processor enhancements fP fL fB
Faster clock ↓ ? ↑
Wider issue ↓ ↑ ↑

Dynamic scheduling ? ↓ ↑
CMPs ↓ ? ↑

Speculative threads ? ? ↑

Table 1-1: Effect of memory latency optimizations on execution time breakdown

15

ments

table

ations

eased

reduce

extra

result,

ucing

d

will all

ection

g and

time,

xperi-

and-

ache

not

oces-

interference caused by multithreading grows sufficiently high,fL will also increase. (This

effect corresponds to the pollution effect previously discussed for large cache blocks).

In Table 1-1C we list the effects that some common microprocessor ILP-style enhance

have on our execution time breakdown. All of the enhancements listed in this part of the

reduce the time it takes to perform the computations, whether by executing the comput

faster (increased clock speed), and/or by executing more operations in parallel (incr

issue width, speculative threads, or chip multiprocessors). None of these techniques

memory traffic, and some may actually increase it (speculative threads may generate

memory traffic due to both cache interference and coarse-grain misspeculations). As a

these techniques increasefB uniformly.

The techniques discussed in this subsection focus on reducing execution time by red

either latency stalls (fL) or processing time (fP). As programs become more bandwidth-boun

(fB grows larger), for the reasons discussed previously in this chapter, these techniques

become less effective. In previous studies [13, 14], we measured the execution time diss

experimentally for current-generation memory systems, and found thatfB is in fact growing

substantially as processors become more aggressive. For simple processors,fB was 14% of

execution time. For fast, aggressive out-of-order processors that incorporated prefetchin

speculative execution, the time spent stalling for memory was over 50% of execution

and over a third of execution time was consumed by bandwidth time. We present the e

mental results from the previous papers with an expanded analysis in Appendix A.

The remainder of this introduction is dedicated to a survey and classification of the b

width-specific techniques that we propose in this dissertation.

1.3 Bandwidth-specific solutions

There are a variety of ways to improve the effective width of the PMI (i.e. the effective band-

width). In this section, we survey four such categories. The first is the improvement of c

memories in a traditional memory hierarchy with optimizations that reduce traffic, but do

incur correspondingly large penalties in latency. The second category is distribution of pr

16

ally

rar-

ether

ry we

n this

funda-

g miss

emory

s are

traffic

on two

atio,

ased

l

roved

sized

emory,

ents

that a

ctors

ch the

and

d that

sors into the memory, splitting the processor/memory interface into multiple points (ide

making a wide PMI more cost-effective). The third category is flattening the memory hie

chy with tighter integration (specifically, placing the processor and physical memory tog

on one or more chips), using new manufacturing processes. The fourth and final catego

describe to improve cost-effective bandwidth is the only method that we do not address i

dissertation, outside of this chapter. This category consists of techniques to reduce the

mental, intrinsic amount of PMI communication required to solve a particular problem.

1.3.1 Tuning the PMI (reducing memory hierarchy traffic)

Most of the cache research of the past two decades has focused on two issues: reducin

rates and improving cache access time (throughput), without necessarily considering m

traffic. Since reducing miss rates may also reduce memory traffic [51], the two goal

closely related. However, minimizing the miss ratio at the expense of increased memory

can degrade performance, as we shall see in Chapter 4. For our cache studies, we focus

related goals: (1) how to reduce memory traffic with only minor increases in the miss r

and (2) how to reduce the number of misses without paying the price of significantly incre

traffic.

1.3.1.1 Traffic-efficient caches

We will show in Chapter 3 that caches have a lowefficiency; most of the space of a typica

cache holds useless bits at any given time. This result led us to hypothesize that imp

mappings could reduce hit rates by holding more useful data on-chip. We also hypothe

that much of the wasted space resulted from unnecessary bytes being loaded from m

thereby also wasting bandwidth. We validated this hypothesis by performing experim

(presented in Chapter 3) that measured a lower bound on the amount of memory traffic

cache could produce. We found that caches produce significantly more memory traffic (fa

of 2 to 100) than is theoretically necessary. We dissected this gap into the factors by whi

lower bound differs from a traditional cache (block size, write policy, associativity,

replacement policy), measuring the relative combinations of each. Our results showe

17

ch be

mory

cur-

affic.

k

in the

s

sub-

uming

ng as

dware

pro-

ant

the

me in

tivity

fol-

ory

on-

as

block size is, unsurprisingly, the largest contributor, but that the other three factors can ea

equally or more important, depending on the application.

Since all four of the cache factors we measured have the potential to help reduce me

traffic, we propose distinct solutions for each factor, aimed at reducing traffic without in

ring penalties that offset the gains from traffic reduction:

• Block size/read traffic: we propose three techniques to reduce unnecessary read tr

The first isdual-size fetching, in which cache misses may either bring in an entire bloc1

or simply a subblock into a subblocked cache, based on the expected spatial locality

block. The second technique issubblock prefetching, which loads a subset of subblock

within an address upon a miss to that block. Ideally, the hardware will load only the

blocks that will be needed, preventing the useless (non-loaded) subblocks from cons

bus bandwidth. The third technique isbus prioritization, in which non-critical subblocks,

specified by the former two policies, are speculatively loaded across the bus so lo

there are no other requests pending. Upon arrival of a higher-priority request, the har

finishes loading the current subblock and then allows the higher-priority request to

ceed.

• Write traffic : we propose one techniques to eliminate write traffic. By using redund

computation at multiple processors, we can completely eliminate write traffic from

inter-processor bus, at the cost of some extra read traffic. We will describe this sche

more detail in Section 1.3.2.

• Associativity: cache conflicts can generally be reduced by increasing set associa

(barring pathological interaction of the application and replacement policy). In this

lowing subsection, we will discuss a cache organization that borrows from virtual mem

designs to allow full associativity with less impact upon hit time than conventional c

1. Multiple terms exist to describe sector caches [84], in which a largesectoris broken up into multiple
blocks. Sector caches are sometimes called subblocked caches, and the sectors are referred to
address blocks. The blocks are sometimes also calledtransfer blocksor subblocks. For consistency,
throughout the dissertation we will refer to address blocks (sectors) simply asblocks, and transfer
blocks assubblocks.

18

the

y, or

ner-

its

dead

nsmis-

ue that

essly

ps to

nefit

er in

of the

ncing

each

eir PA-

ious

s, but

l also

ven if

nential

e pro-

g for

tent-addressable memories.

• Replacement policy: the ideal replacement policy would use prescience to predict

best victim in a set. Many caches today use either a least-recently-used (LRU) polic

an LRU approximation. Our study of optimal caches shows that while this policy is ge

ally effective, there are cases where further improvements are possible. We proposecorre-

lated replacement, in which the address of a block influences the choice of

replacement, as a technique for improving cache efficiency by better identifying

blocks in the cache.

The goal of these techniques is to make both the use of the cache capacity and the tra

sion interconnect more efficient, by loading and storing less useless data. One might arg

all this additional complexity is not worth the trouble, as cache sizes are growing relentl

with each new generation of chips. We believe that cross-chip wiring delays will force chi

be heavily partitioned, and these partitions will have a finite capacity, and will thus be

from being more efficient since their size may be restricted. We discuss this issue furth

Chapter 6. For now, we turn to a discussion of design strategies for large on-chip caches

near future.

1.3.1.2 Large on-chip caches

Given the performance increases of microprocessors and the growing difficulty of bala

the PMI, processor designers have been building progressively larger caches with

improved process generation. For example, the Hewlett-Packard has announced that th

8500 processor will have 1.5 MB of on-chip cache, in a radical departure from their prev

design strategy (such as the PA-8000 and the PA-8200, which had no on-chip cache

high-performance connections to large off-chip caches.) The Compaq Alpha 21364 wil

have 1.5MB of on-chip cache.

This trend of increasing cache sizes shows no sign of abatement in the near future. E

caches consume the same proportion of the processor die that they do today, the expo

growth in device counts presages giant on-chip memories. In Figure 1-5 we show that th

portion of processor chip transistors consumed by caches is growing, now accountin

19

e pro-

f the

btless

es. In

al lev-

-chip

size of

direct

g and

ce of

ribe a

between 50% and 92% of the on-chip transistor budget. If these trends continue, futur

cessors will be mostly memory.

These large caches will shield the lower levels of the memory system from much o

increased processor bandwidth requirements. Current cache designs, while they will dou

work well for these large caches, may not be the best operating point for such huge cach

Chapter 4, we revisit cache design, and propose a taxonomy of mechanisms for individu

els in a memory hierarchy. Using this taxonomy, we propose designs for these huge on

caches that may be better suited to traffic-sensitive systems than simply increasing the

current designs. Specifically, we propose and evaluate an alternative that we call an In

Cache (ICE). The ICE is a cache that is managed like a page table, with indirect indexin

a translation cache.

The goal of the optimizations described in this subsection is to improve the performan

conventional systems by improving cache performance. In the next subsection, we desc

more radical approach to improving scalability of the processor-memory interface.

Figure 1-5: Fraction of processor transistors devoted to cache

0

10

20

30

40

50

60

70

80

90

100

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Year

P
er

ce
nt

 c
ac

he
 tr

an
si

st
or

s

PA 7100

PA 7200

PA 7300LC

PA 8000 PA 8200

PA 8500

386 SX

486 DX

386 SL

486 SX

Pentium

486 DX4

Pentium Pro 256

P55C

Pentium Pro 512
Merced (est.)

Cyrix M1

Cyrix M2

AMD K5

AMD K6

68030

68040

68060

PowerPC 601

PowerPC 604

PowerPC 604e

21064

21064a

21164

21264

21364All
x86 processors
Motorola

20

that is

grows

orting

omes

is a

tation

prac-

hines.

l, and

el. To

le PMI,

tation

. The

chip,

out of

and

e will

ically

istri-

ered

ibute

ffec-

ease

) as

1.3.2 Distributing the PMI (memory-centric architectures)

Traditional uniprocessors have been designed assuming a centralized processing core

connected to the memory hierarchy using a single logical interface. As the processor

more powerful and the required physical space for both the processor and the supp

memory system increases, supporting communication through a single logical pipe bec

harder to do. Distributing the PMI among multiple computational units and memories

more scalable approach, but can introduce significant difficulties in mapping the compu

onto the distributed substrate.

Many examples of distributed PMIs have already appeared in both the literature and in

tice. Traditional parallel processors are distributed processor/memory interface mac

Symmetric multiprocessors (SMPs), for example, are distributed at the L2 cache leve

distributed shared memory machines (DSMs) are distributed at the physical memory lev

date, however, most of these machines were constructed not because of an unscalab

but because volumes of commodity components (either CPU chips in SMPs or works

boxes in DSMs) offered significant cost savings over comparably powered alternatives

proposed RAW architecture [128] is an exception, distributing multiple processors on-

each with its own data cache and instruction store, to increase total effective bandwidth

the PMI. However, the RAW architecture assumes that nearly all distribution of data

assignments of computation to processing nodes is done by the compiler. Henceforth, w

restrict our discussions of distributed PMI organizations to those that assume a log

sequential instruction stream (i.e. a uniprocessor programming interface).

Examples of distributed PMIs with sequential programming interfaces exist, with the d

bution occurring at different levels in the memory hierarchy. At the register level, clust

architectures, such as the Alpha 21264 (or proposed MultiCluster architecture [37]) distr

the register interface to multiple banks of functional units, thus achieving high, yet cost-e

tive, bandwidth out of the global register files. Multiscalar processors [41, 114] incr

instruction fetch bandwidth by distributing the instruction fetch (at the L1 I-cache interface

21

hough

l pro-

than

d. In

dified

such

ecture

chitec-

a read

erial

c that

and-

wer

lev-

sor.

essor.

rs and

stem

tion is

ory

emory

ry cells.

be a

e per-

well as the register banks. The Multiscalar work assumed centralized L1 data caches, alt

more recent proposals distribute the L1 data caches as well [53].

To our knowledge, the only proposal (besides our own) of an architecture with a seria

gramming interface that distributes the PMI at any level of the memory hierarchy lower

the level-one caches is the Massive Memory Machine [45], from which our work is derive

Chapter 6, we propose a related class of architectures calledmemory-centric architectures,

which distribute the PMI to the physical memory. These architectures execute unmo

serial binaries, and they reduce inter-processor traffic significantly. We propose two

architectures: DataScalar and Dynamic Data Threaded (DDT). The DataScalar archit

[15] uses redundant computation to reduce memory latencies and traffic. DataScalar ar

tures completely eliminate all request and writeback traffic, at the expense of some extr

traffic. DDT architectures perform a partial dynamic parallelization (in hardware) of the s

program, thus eliminating some of the read traffic, as well as the write and request traffi

DataScalar architectures eliminate.

1.3.3 Flattening the PMI (integrating the processor and physical memory)

In the previous two subsections, we discussed ways of improving systems’ effective b

width by reducing traffic in conventional hierarchies and by distributing processing po

(moving the PMI) into the physical memory. A third alternative is to reduce the number of

els in the memory hierarchy by bringing the large physical memory closer to the proces

Physical memories have already begun to become more tightly coupled with the proc

The Rambus interface [30] provides close electrical coupling between some processo

physical memory. However, a tight physical coupling is also possible, if the entire sy

memory and the processing logic were integrated on a single substrate. Such integra

possible only if two factors hold: (1) there is a market for systems with only as much mem

capacity (at least for the base models) as can be held on one processor, (2) merged m

and logic processes can be developed that support both fast gates and dense memo

Otherwise, the chip will have either insufficient performance or insufficient capacity to

viable product in the market. Whether the processor support is developed depends on th

22

rform

erfor-

arious

ic and

need

tation,

be

algo-

[19],

uni-

uces

es).

to

e effec-

xpen-

se of

g vari-

resses

n-

pro-

ion

match

ught

ay be

formance advantages of putting all of the physical memory on-chip. In Chapter 5, we pe

a trend and performance analysis, and find that complete integration improves the p

mance of current systems surprisingly little.

1.3.4 Shrinking the PMI (reducing processor/memory communication)

The previous three subsections dealt with organizing the distribution of processors and v

memories to improve the cost-effectiveness of communication between processing log

storage. An alternative solution to optimizing communication is to actually reduce the

for communication across that interface. We do not evaluate such solutions in this disser

but survey three of them here.

• Algorithmic : If the PMI becomes a major system bottleneck, different algorithms may

selected that use less cross-PMI communication. In addition to choosing different

rithms, code tuning that improves memory system behavior, such as cache blocking

may reduce PMI limitations. Finally, other optimizations exist that reduce PMI comm

cation for a given algorithm (such as common subexpression elimination, which red

register accesses, or memoization, which reduces both memory and register access

• Compression: If the bandwidth of a certain level of the memory hierarchy is difficult

scale, and/or becomes a bottleneck, compression of the transmissions to increase th

tive bandwidth may be a viable solution. Particularly as computation becomes less e

sive relative to communication, compression is a feasible way of reducing the expen

communication. Researchers have examined numerous techniques for compressin

ous information being transmitted over the memory bus, such as data [24, 94], add

[38], and instructions [28].

• Instruction reuse: Another way to reduce PMI communication is to avoid doing redu

dant operations, e.g. avoiding a load if the result of the load is already available in the

cessor code.Instruction reusedoes exactly that; an on-chip buffer keeps track of operat

results based on their input values, and when an operation is fetched whose inputs

those in the buffer, the result is returned from the buffer rather than computed or bro

from memory [112]. In this manner, both register accesses and memory operations m

23

eit at a

otion

e bot-

omput-

lution.

th are

f the

ness

ible to

Micro-

urrent-

t-gen-

up for

emory.

the

ckage

costs,

ture is

s the

anti-

f the

reduced. In some sense, instruction reuse is a hardware version of memoization, alb

finer grain.

While these techniques may reduce the volume of communication across the PMI, the n

of operating on data is fundamental to computing. These techniques may help to alleviat

tlenecks and balance the processor and memory system; however, the very nature of c

ing makes it impossible to push these methods sufficiently far to be a comprehensive so

We also note that these algorithmic techniques for increasing effective memory bandwid

orthogonal and complimentary to those evaluated in this dissertation.

1.4 A word about cost

One of the things that makes quantitative computer architecture hard is sensitivity o

“best” solutions to cost. Throughout this introduction, we have talked about cost-effective

and cost/performance, but have no cost models to back up these assertions. It is poss

produce reasonably accurate cost models for current-generation systems. For example,

processor Report has a complex cost model that estimates manufacturing costs for c

generation microprocessors. Also, Wood and Hill have proposed a cost model for curren

eration multiprocessors [131], and showed that costup was a better metric than speed

scaling parallel simulation systems, and that the dominant costs of these systems was m

While similar models for future systems would be useful in evaluating tradeoffs among

systems, they are nigh impossible to construct with any confidence in their accuracy.

We attempted to model cost using several different metrics, such as bits of storage, pa

pins, dollars, and silicon area. Unfortunately, there are too many parameters affecting

the constants are frequently closely guarded secrets, and how they scale into the fu

determined by market forces that are wholly unpredictable. We will therefore not addres

issue of cost quantitatively in this dissertation, but will address performance tradeoffs qu

tatively and cost qualitatively, leaving it to the interested industrial reader to determine i

performance gains are worth the price.

24

ft-

e

ser-

odol-

il. We

on of

t sig-

tation.

bugs

wed

lated

cution

used

ported

made

now

Chapter 2

Experimental Methodology

We performed all of the experiments in this dissertation usingsoftware simulation, in which

a microprocessor (called thetarget) is modeled in software at various levels of detail by a so

ware simulator, which executes on thehost. The simulation environment we used was th

SimpleScalar tool suite [9, 8], originally written by Todd Austin and extended for this dis

tation research.

In this chapter, we first describe the limitations associated with our experimental meth

ogy. We then describe both our simulation environment and our simulated target in deta

conclude this chapter with an characterization of our benchmark suite, including validati

our sampling methodology.

2.1 Software simulation

There are risks involved with using software simulation as the sole methodology. Mos

nificant, our tools have never been validated against an actual hardware implemen

Black and Shen [6] showed that microprocessor timing simulators can contain numerous

that can affect results significantly (errors on the order of 3% to 5%); specifically, they sho

that small bugs can cause significant instability in the reported execution time of a simu

microprocessor, and that the correction of one bug can cause the error in simulated exe

time to increase or even change signs.

An advantage to using the SimpleScalar tool suite, however, is that it is now being

extensively throughout the architecture research community. Several bugs have been re

by other people using the tools (and subsequently fixed, of course). In addition, we have

our memory hierarchy extensions (described later in this chapter) public, and they are

25

es not

ntially

ts that

racy;

the

ted

rs a

. The

eful

imula-

arks

l data

the

tely

tly to

least

ons

s have

ring a

ortion-

tion

n the

being used by several research groups. While the extensive distribution of the tools do

guarantee their accuracy or correctness, our confidence in their accuracy is substa

higher with the extensive external sanity checking.

Another serious concern with software simulation is the size of programs and data se

can be simulated. Our simulation environment supports two levels of simulation accu

cycle-by-cycle microarchitectural simulation, in which the simulated execution time is

output (timing simulation) and fast simulation, in which the execution trace for the simula

program is generated, but the only statistics that are maintained are a few counters (functional

simulation). The former (timing simulation) models the microarchitectural state, but incu

four order-of-magnitude slowdown over running the target benchmark on real hardware

functional simulation incurs only a two order-of-magnitude slowdown, but gives little us

data other than number of instructions traced and a few other statistics.

We have characterized the attempt to evaluate future microprocessors with software s

tion as “simulating the processors of tomorrow on the machines of today with the benchm

of yesterday” [15]. Even using yesterday’s benchmarks (such as SPEC95) with smal

sets, a four order-of-magnitude slowdown is prohibitively large. For example, simulating

longest-running SPEC95 benchmark with our timing simulator would require approxima

100 days. There are a number of possibilities for reducing the simulation time sufficien

perform tractable timing simulation of these benchmarks. We list them below in order of

to greatest complexity:

• Small inputs: by simulating the benchmarks with small inputs, the number of instructi

that the target benchmark takes to execute may be reduced. However, small input

two disadvantages: they may demonstrate different memory system behavior (requi

less aggressive memory system for a balanced PMI), and they may spend a disprop

ate amount of time in specialized routines (such as initialization) for which the execu

characteristics are atypical of the program when executed with large inputs. Whe

26

sets

k

thus

this

d of

tial-

on of

his

of

as a

exe-

e are

imu-

ed to

ula-

te is

ought

ted

sam-

start

ng, or

re

d

rallel,

effects of these two conditions are acceptably small, running benchmarks with data

that reduce execution time is an acceptable solution.

• Simulate an initial fraction of the instructions : it is possible to simulate a benchmar

with its full data set, terminating the simulation before the benchmark completes,

simulating some initial fraction of the benchmark execution. The main drawback with

strategy is that, as with small inputs, the initial fraction may capture an atypical perio

execution (the initialization phase is a particular problem with this strategy). The ini

ization issue may be countered by starting up the timing simulation after some fracti

the program has already been simulated by a faster simulator (e.g.performing functional

simulation to get through initialization, and then timing a fraction of the execution). T

solution eliminates the most visible problem (initialization behavior), but the fraction

the program measured with timing simulation may still be atypical of the execution

whole.

• Sampling: an improvement on the latter scheme is to simulate small fractions of the

cution with a detailed (timing) simulator, racing from onesampleto the next with a faster

simulator (such as a functional simulator). The statistics taken from each sampl

aggregated upon completion of the simulation, and should ideally approximate the s

lated behavior of the entire application. Sampling has two drawbacks: the time requir

move from sample to sample (which can be significant, even with a fast functional sim

tor), andcold starteffects at the commencement of each sample (the simulator sta

stale at the beginning of each sample, thus affecting the sample results until it is br

up to date, orwarm). The overhead of moving from sample to sample may be elimina

by saving the architectural and I/O state at intervals (saving astate checkpoint), and jump-

ing directly to the next checkpoint when a sample period completes, to begin the next

ple (the drawback to this strategy is that each checkpoint requires disk space). Cold

effects may be mitigated by either ensuring that the samples are each sufficiently lo

by explicitly warming up the simulator (i.e., branch predictor and cache) state befo

beginning the measurement of each sample.

• Parallel simulation: if completion time of a particular simulation is critical, the perio

between each state checkpoint may be simulated in full on different machines, in pa

27

lable

o this

comes

time

run-

n. If

ld be

data

ctions

pical

use a

hile

he

ks (in

caches,

trans-

ssure

on that

s part

u-

t in

d on-

ce-

effectively reducing the simulation time by a factor of as many machines are avai

(provided enough disk space is available to hold the checkpoints). The drawbacks t

approach are that maintaining numerous runs (and aggregating the statistics) be

more complicated, plus this approach does not improve throughput, only latency. If

to completion of a particular run is not critical, each machine could be dedicated to

ning its own independent simulation, reducing the complexity of statistics aggregatio

throughput is critical, the techniques listed above (or a combination thereof) shou

used instead.

The approach we take in this dissertation is twofold. For some benchmarks, which have

sets that lend themselves to reduction, we alter the inputs to reduce the number of instru

that must be simulated to run the benchmark to completion, but maintain the behavior ty

of the full reference data sets. For some others, we use sampling. For still others, we

combination of the two techniques.

2.2 The SimpleScalar tools

The SimpleScalar tools were originally developed by Todd Austin for his thesis work, w

working for Guri Sohi in the MultiScalar project. Alain Kägi wrote the first instance of t

detailed memory hierarchy simulator, extending the cache module to support callbac

which the requests and responses to the memory system are decoupled), non-blocking

and MSHRs. We extended his efforts by adding a virtual memory system, with address

lation (physical or virtual caches), a generalized cache and bus network, back pre

throughout the memory system, and subblocked caches.

Software simulators may be eithertrace-drivenor execution-driven. Trace-driven simulators

accept a stream of execution events (from the benchmark) and calculate results based

stream, whereas execution-driven simulators perform the execution of the benchmark a

of the actual simulation engine (i.e., results from the simulation engine can affect the exec

tion itself). We depict the organization of the SimpleScalar simulation environmen

Figure 2-1. The tools generate an execution trace in a functional simulator, which is fe

the-fly to a simulation engine (the timing simulator). The timing simulator is thus a tra

28

tim-

ffect

erged

tor,

aries

te the

aring

tation.

ilar

r sup-

modes

archi-

driven simulator, albeit one tightly coupled with the execution engine. The separation of

ing and execution is a source for some concern, as bugs in the timing simulator will not a

correctness of the benchmark execution (making them harder to detect). Ravi Rajwar m

our timing simulator with the functional core, resulting in a true execution-driven simula

which was useful as a sanity check for the split simulation model. The simulators take bin

compiled to the SimpleScalar assembly format, decode the program text, and execu

instructions one by one. Correct execution of the benchmarks may be verified by comp

the outputs against outputs from binaries run on native machines.

2.2.1 Machine model

We assume a single machine model for the simulation results presented in this disser

In Figure 2-2, we list the SimpleScalar instruction set (ISA). The SimpleScalar ISA is sim

to that of MIPS [95], except that there are no architected delay slots, and SimpleScala

ports both some additional instructions (square root) and some additional addressing

(register+register addressing and auto increment/decrement). In Table 2-1, we show the

Host C compiler

Functional

Simplescalar
GLD

FORTRAN C

SimpleScalar

Object files

SimpleScalar

SimpleScalar

SimpleScalar

SS libm.a

SS libF77.a

GCC

GAS

f2c

benchmark source

assembly

executables

SS libc.a

Simulator source
(e.g., sim-outorder.c)benchmark source

Figure 2-1: Overview of the SimpleScalar tools

simulator
Timing

simulator

Execution
trace

Functional results
(e.g., inst. profiles)

Timing result s

29

Hardware
Name

Software Name Description

$0 $zero zero-valued source/sink
$1 $at reserved by assembler

$2-$3 $v0-$v1 fn return result regs
$4-$7 $a0-$a3 fn argument value regs

$8-$15 $t0-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $k0-$k1 reserved by OS

$28 $gp global pointer
$29 $sp stack pointer
$30 $s8 saved regs, callee saved
$31 $ra return address reg
$hi $hi high result register
$lo $lo low result register

$f0-$f31 $f0-$f31 floating point registers
$fcc $fcc floating point condition code

Table 2-1: SimpleScalar architecture register definitions

j - jump
jal - jump and link
jr - jump register
jalr - jump and link register
beq - branch == 0
bne - branch != 0

blez - branch <= 0
bgtz - branch > 0
bltz - branch < 0
bgez - branch >= 0
bct - branch FCC TRUE
bcf - branch FCC FALSE

lb - load byte
lbu - load byte unsigned
lh - load half (short)
lhu - load half (short) unsigned
lw - load word
dlw - load double word
l.s - load single-precision FP
l.d - load double-precision FP
sb - store byte
sbu - store byte unsigned
sh - store half (short)
shu - store half (short) unsigned
sw - store word
dsw - store double word
s.s - store single-precision FP
s.d - store double-precision FP

add - integer add
addu - int. add unsigned
sub - integer subtract
subu - int.sub.unsigned
mult - integer multiply
multu - int. mult. unsigned
div - integer divide
divu - int. div. unsigned
and - logical AND
or - logical OR
xor - logical XOR
nor - logical NOR
sll - shift left logical
srl - shift right logical
sra - shift right arithmetic
slt - set less than
sltu - set less than unsigned

add.s - single-precision (SP) add
add.d - double-precision (DP) add
sub.s - SP subtract
sub.d - DP subtract
mult.s - SP multiply
mult.d - DP multiply
div.s - SP divide
div.d - DP divide
abs.s - SP absolute value
abs.d - DP absolute value
neg.s - SP negation
neg.d - DP negation
sqrt.s - SP square root
sqrt.d - DP square root
cvt - int., single, double conversion
c.s - SP compare
c.d - DP compare

nop - no operation
syscall - system call
break - declare program error

(C)
(reg+C) (with pre/post inc/dec)
(reg+reg) (with pre/post inc/dec)

Miscellaneous

Floating Point Arithmetic

Control

Load/Store Integer Arithmetic

Addressing modes:

Figure 2-2: Summary of SimpleScalar instructions

30

d as

r hold-

ister,

each

ware.

late

. At

physi-

sume a

of the

the

ies

ed, it

on, the

d to a

ys-

tectural registers supported in our machine model (32 integer registers, distribute

described in the figure, 32 floating point registers, and three special-purpose registers fo

ing results and condition codes). The SS ISA supports three formats of instructions—reg

immediate, and jump—depicted in Figure 2-3. The instructions are 64 bits long, and

include a 16-bit annote field, which can be used for passing extra information to the hard

Although the instructions are 64 bits long, our simulators have the capability to simu

instruction fetch as if they were 32 bits, since we are simulating a 32-bit machine.

In Figure 2-4, we depict the virtual memory organization that we assume in our system

some point in the target’s memory hierarchy, address translation is needed to provide a

cal address, whether to access physical memory or a physically tagged cache. We as

32-bit virtual address space, with 4KB pages. Upon a translation, the high-order 20 bits

virtual address—the virtual tag—is forwarded to the translation lookaside buffer (TLB), if

system has one (refer to(a) in Figure 2-4). On a TLB hit(b), the physical tag is combined

with the 12 low-order bits of the virtual address (the page offset,(c)) to produce the physical

address. On a TLB miss(d), or if the system has no TLB(e), the virtual tag is shifted right 10

bits to produce the virtual address(f) of the page table entry (PTE). The page table occup

the low 4 MB in the virtual address space. Once the virtual address of the PTE is obtain

must also be translated to produce the physical address of the PTE. To do this translati

high-order 20 bits (actually bits 13-22, since the high-order 10 bits are zero) are passe

table that we call the MMU (for memory management unit), which holds 1024 virtual to ph

Register format:

Immediate format:

Jump format:

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt

16-imm

6-unused 26-target

16-annote 16-opcode 8-rs 8-rt

16-annote 16-opcode

63 32 31 0

63 32 31 0

63 32 31 0

Figure 2-3: SimpleScalar architecture instruction formats

31

thus

(4KB

tual

ical tag

PTE

n be

B, the

ical

ical mappings of PTE pages(g). Since the PTEs are each 4 bytes, each page of PTEs can

hold 1024 PTEs. Since each PTE maps one page (4 KB), each page of PTEs maps 4MB

* 1024). Since the MMU holds translations for 1K PTE pages, it can cover 4GB of vir

address space, which is complete coverage for a 32-bit address space. Once the phys

for the PTE page is obtained from the MMU, it is concatenated with the offset from the

virtual address(h) to obtain the PTE physical address. With that address, the PTE ca

obtained, providing the physical tag for the requested translation. If the system has a TL

PTE is loaded into the TLB(i). The memory access then continues using the required phys

address(j) .

Figure 2-4: Virtual memory organization

Virtual tag (20) Offset (12)

Offset (12)Physical tag (20) Physical address (32)

Virtual address (32)

Virtual tag (20)
Virtual PTE address (32)TLB hit TLB miss

PTE offset (12)

Virtual PTE index (10)
MMU lookup

Physical PTE tag (20)

Physical PTE address (32)

TLB lookup

(1024 entries)

0000000000

Start of address translation

Page table lookup
(and TLB fill)MUX

TLB exists

No TLB

(a)

(e)

(g)

(h)

(i)

(c)

(j)

(b)

(d) (f)

00

32

nting

lude

e our

e,

Our

ny

ughly

.

er-

not

or is a

d in

pecula-

f fetch

speeds

ely

buffer

e tail

as the

2.2.2 Functional simulation

Functional simulation merely executes the benchmark program operations without accou

for time (i.e., how long it takes to execute those instructions). The SimpleScalar tools inc

two functional simulators that we use in this dissertation,sim-profile and sim-cache. sim-

profile maintains statistics based on individual instructions, which we use to characteriz

benchmarks later in this chapter.sim-cachetracks miss ratios for a functional cache modul

which does not account for contention or finite resources (having no notion of time).

modified version ofsim-cachesupports virtually or physically tagged caches, and as ma

levels of cache as desired connected in an arbitrary topology. These simulations run ro

an order of magnitude faster than the timing simulator described in the following section

2.2.3 Timing simulation

The timing simulator (sim-outorder) models a dynamically scheduled microprocessor, p

forming cycle-by-cycle simulation at a high level. The effects of circuit technology are

modeled; all delays are specified whole numbers of cycles. The simulated microprocess

five-stage execution pipeline (with a sixth stage for commitment of instructions), depicte

Figure 2-5. Instructions are fetched, and the branch predictor accessed to determine a s

tive address from which to fetch on branches. Thefetch engineis set to run at an integer mul-

tiple of the core speed, and can fetch across one fewer taken branches than the ratio o

engine speed to core speed. In all our simulations, we assumed that the fetch and core

were identical, so a taken branch would terminate fetches within a given cycle.

Once fetched, instructions are decoded and sent to the reservation stations in thedispatch

stage of the pipeline. The execution core ofsim-outorder is derived from the Register Update

Unit (RUU) [113], depicted in Figure 2-6. The RUU is a centralized structure that effectiv

acts as a combined register renaming unit, reservation station pool [123], and reorder

[110, 115]. The RUU is implemented as a circular queue, with head and tail pointers. Th

pointer is advanced as new instructions are dispatched to the RUU, and the head moves

33

RUU,

’s input

ready

2-5.

lways

e pro-

order.

ot is

mpan-

to

oads

oldest instructions are committed to the architectural state. Operands are stored in the

and are identified with unique tags to preserve data dependences. Once an operation

operands are all available, it is marked as ready for issue. Each cycle, a number of

instructions are issued to the functional units through the scheduler, shown in Figure

Branches, memory operations, and long latency operations (such as multiplies) are a

inserted directly at the head of the ready queue since they are most likely to be on th

gram’s critical path. All other instructions are queued so that they are issued in program

When a load is dispatched to the issue units, it is split into two components. A sl

reserved in the RUU for the effective address computation, and a slot is reserved in a co

ion structure called theload/store queue(LSQ), which performs the actual communication

memory. The LSQ is responsible for identifying which loads may be sent to memory—l

Fetch

Loads

ExecSchedulerDispatch

I-Cache

Memory

CommitWriteback

scheduler

D-TLBD-Cache

Figure 2-5: Pipeline for sim-outorder

I-TLB

Physical memory

Stores

Source 1 Tag/Ready/Content

Figure 2-6: Structure of the Register Update Unit core

Source 2 Tag/Ready/Content
Destination Tag/Ready/Content

Dispatched
Functional unit ID

Executed
PC

Load/store Address/Data/Ready
RUU entry ID

Dispatched Executed

Register update unit

Load/store queue

Head Tail

Head Tail

34

essive

issue

load’s

con-

es

accu-

input

regis-

this

ilable

due

ue the

tion

UU),

, and

issue.

occur

the

sume

tural

stores

stores.

e are

erfor-

r

imilar

are not issued if an earlier store with an unresolved address is in the LSQ. (A more aggr

implementation might perform data dependence speculation [89], allowing the loads to

speculatively). If an earlier store’s address is resolved and it matches an unissued

address, the value is forwarded to the load directly in the LSQ. Our simulator does not

sider whether a value is a partial word (e.g., store byte instructions) when matching address

on word boundaries, which introduces some inaccuracy. Another potential source of in

racy occurs when the program uses a double word (held in two registers) as an input; the

dependence tracking in the simulator only creates a dependence link for one of the two

ters holding the double word. If the two halves become available at different times,

assumption may allow the dependent instruction to issue early.

The simulator does not issue ready instructions if there are insufficient resources ava

(functional units or cache ports) for that class of instruction. Instructions that are blocked

to insufficient resources are returned to the ready list; the issue unit attempts to reiss

ready instructions each successive cycle.

Thewritebackstage of the pipeline is that which returns computed values to the execu

core. When an instruction completes, its result is written back on the result bus (to the R

the value is copied into the RUU entries of the instructions that depend on that result

those instructions were waiting solely for the result in question are marked as ready for

This stage is the point at which mispredicted branches are resolved, so pipeline flushes

when identified in the writeback stage.

The final stage of the pipeline, which is generally off the execution’s critical path, is

commitstage. In this stage, results are written back to the RUU in program order. We as

in our simulations that the number of instructions that can be committed to the architec

register file each cycle is the same as the fetch and issue widths. It is in this stage that

are issued to the memory system, since they are guaranteed not to be mis-speculative

Retirement of instructions can be blocked if a store takes a cache or TLB miss, or if ther

insufficient store ports to the memory system. The commit stage can affect program p

mance when it is blocked for enough time (e.g.a long latency cache miss) that the RUU o

LSQ fills up, preventing instructions from being dispatched. Streams of stores cause a s

35

ss than

cur-

code.

quiva-

sys-

, and

stanta-

These

of sev-

ench-

ks are

r than

diffi-

lica-

at

nded

to be

tually

ce

effect even without cache misses, since the number of cache store ports we assume is le

the commit width.

Our simulations model user-level programs down to the physical memory. We do not

rently simulate disk accesses (demand paging), nor do we simulate operating system

System calls in SimpleScalar are handled throughproxy system calls, in which a system call

generated by a SimpleScalar binary is intercepted by the simulator, translated into an e

lent call on the host system, and then called directly on the host. Upon completion of the

tem call, the results are copied back into the appropriate registers for the target system

simulation resumes. From the target’s perspective, it appears as if system calls occur in

neously.

2.3 SPEC95 benchmarks

The benchmarks we use throughout this dissertation are those from the SPEC95 suite.

benchmarks are well understood by the architecture research community, and consist

eral different application types. There are 18 total benchmarks in the suite; 8 integer b

marks (SPECINT95) and 10 floating-point benchmarks (SPECFP95). These benchmar

not without their problems; their data sets (particularly their code sizes) are much smalle

many applications today, as are their corresponding footprints in memory. However, the

culty of obtaining sources (or traces, for that matter) of current-generation industrial app

tions restricts us to using these benchmarks for this dissertation.

2.3.1 Choosing the input set

Each of the SPEC95 benchmarks is distributed with three data sets: a test set (test), a train-

ing set (train), and a reference data set (ref). The test inputs are intended as small inputs th

allow the user to see if the benchmark runs to completion. The training inputs were inte

for use in training a compiler with profile-directed feedback. Both data sets are intended

significantly smaller than the reference data set, which is the data set intended for ac

running to measure the performance of various machine configurations. However, sinref

36

simu-

xecu-

tializa-

ating

f

s no

.3.3).

bers of

number

r the

e

istics of

truc-

west,

imu-

y. We

imu-

ith as

han typ-

the

ant

ets that

was intended for long runs on real machines, most of the reference sets take too long to

late to completion with timing simulation. The simulation times withtestandtrain tend to be

more tractable, but they may not provide an accurate characterization of real programs’ e

tion (either because their data sets are too small, or because they are dominated by ini

tion code). To choose which inputs to use, we take a two-tiered approach. For the flo

point codes, most of which are loop-bound, we use theref data set with reduced numbers o

iterations. We ensure that the number of iterations is sufficiently large that initialization i

more than 10% of the total running time (with a few exceptions as discussed in Section 2

For the integer codes and the floating point codes that are not amenable to reduced num

iterations, we profile the three data sets and use the data set that requires the smallest

of instructions while exhibiting behavior similar to that ofref.

When trying to determine how long a program we can simulate, we must conside

speeds of the various simulators. InTable 2-2, we list the simulation speed ranges of the fiv

simulators we use (the speed of each one varies depending on the execution character

the benchmark). We also list the low and high times required to simulate one billion ins

tions with each simulator. We took the measurements on a 266-MHz Pentium II. The slo

most detailed simulator required approximately one day for each billion instructions s

lated.

2.3.2 Benchmark characterizations

In this subsection, we characterize the behavior of each benchmark experimentall

choose one input set for each experiment (trying to minimize the number of instructions s

lated while maintaining behavior similar to simulating theref data set in full). We refer to this

set collectively as thestandardinput set (orstd). We choose thestd input set for each bench-

mark based on profiled program characteristics. Our goal is to simulate benchmarks w

large a data set as possible (since the SPEC95 data sets are already generally smaller t

ical applications today), but to simulate as few instructions as possible while retaining

behavior typical of the full application. Since the focus of this dissertation is the PMI, we w

to choose the workloads that stress the memory system. We therefore choose the data s

37

ulsory

ll as

sults

r

float-

one

here

odes;

struc-

ome-

ically

53%),

rcent-

e a

s of

n of

to the

5. The

sustain high miss rates, but must ensure that we do not reduce execution so that comp

(cold start) misses inflate the cache miss rates.

We list the number of instructions for each input set of SPECINT95 in Table 2-3, as we

the breakdown of instructions into memory, computation, and control (we obtained all re

in the following four tables withsim-profile). In Table 2-4, we display similar statistics fo

SPECFP95. In all subsequent tables in this section, we will represent thestd input set in bold-

face. These profiles show that the integer codes are much more control-bound than the

ing-point codes; the integer codes’ instructions are generally 15%-25% control, with the

exception being ijpeg, for which control instructions account for about 8% of the total. T

is more variance among the distribution of computation versus memory for the integer c

the over half of the vortex instructions are memory operations, whereas the memory in

tions for ijpeg account for about a quarter of the total. The rest of the benchmarks fall s

where in between. The floating-point codes have more consistent distributions; they typ

have between 25% and 35% memory operations (the one exception is fpppp, at about

less than 8% control instructions (the sole exception is hydro2d, at 12%), and high pe

ages of computation (greater than 60%, except for fpppp, at 45%).

The instruction counts listed range from 3.5M (compress with thetest input) to 175G (fpppp

with the ref input). Thestd inputs we chose (described in more detail in Section 2.3) hav

maximum instruction count of 16G instructions (go), placing an upper bound of 18 day

simulation time for any benchmark with the slowest simulator. On average, thestd inputs run

for approximately 29 hours withsim-outorder, and about 4 hours withsim-cache.

In Table 2-5, we list memory operation profiles for SPECINT95, showing the breakdow

memory operations into loads and stores, plus the distribution of memory operations

data, stack, and heap segments. In Table 2-6, we show the same results for SPECFP9

Simulator sim-fast sim-cheetah sim-cache sim-profile sim-outorder

Speed (insts/s) 2M-3M 400K-700K 200K-400K 30K-300K 10K-80K

Time/G inst (low) 8.3 min. 41.7 min. 1.4 hr. 9.3 hr. 27.8 hr.

Time/G inst (high) 5.6 min. 23.8 min. 41.7 min. 55.6 min. 3.5 hr.

Table 2-2: Simulation speeds of the five simulators

38

bench-

, with

ores).

75%

k vary

end to

issues

p.

integer benchmarks tend to have a higher percentage of stores than the floating-point

marks; the floating benchmarks tend to use about 20%-25% stores (75%-80% loads)

two notable exceptions: mgrid (96%/4% loads/stores) and turb3d (60%/40% loads/st

The integer codes are roughly 63% loads, except for ijpeg and go, which are 70% and

loads, respectively.

The distribution of the memory operations among the data segment, heap, and stac

widely across the benchmarks, particularly the integer codes. The floating point codes t

make a much higher use of the data segment (a notable exception is tomcatv, which

over 90% of its memory operations to the stack), and they almost never access the hea

benchmark input inst %comp %mem %ctrl

099.go test 16389.6 0.563 0.290 0.148
train 548.1 0.567 0.287 0.146
ref 33119.1 0.564 0.288 0.148

124.m88ksim test 416.5 0.474 0.311 0.216
train 111.9 0.483 0.333 0.184
ref 63408.5 0.460 0.350 0.190

126.gcc test 1265.2 0.396 0.405 0.199
train 1277.6 0.389 0.409 0.201
ref 1023.2 0.400 0.403 0.198

129.compress test (100) 3.5 0.292 0.611 0.096
train (10K) 35.7 0.454 0.374 0.172
std (400K) 1257.5 0.472 0.320 0.208
ref (14M) 43064.8 0.473 0.324 0.204

130.li test 956.7 0.288 0.476 0.236
train 183.3 0.347 0.425 0.228
ref 76570.0 0.332 0.430 0.238

132.ijpeg test 553.1 0.652 0.255 0.093
train 1462.5 0.664 0.255 0.081
ref1 (vigo) 30819.9 0.668 0.258 0.074
ref2 (specmun) 27011.4 0.670 0.258 0.072
ref3 (penguin) 29810.1 0.671 0.256 0.073

134.perl test 10.5 0.349 0.447 0.204
train 2391.5 0.370 0.436 0.193
ref1 (primes) 14282.3 0.330 0.480 0.190
ref2 (scrabble) 24240.3 0.345 0.462 0.193

147.vortex test 9051.6 0.309 0.526 0.165
train 2520.2 0.308 0.528 0.164
ref.1it 7712.7 0.309 0.526 0.165
ref (14 it) 74014.3 0.312 0.514 0.174

Table 2-3: Instruction profile for SPECINT95

39

stack

ata set

ically

me of

In Table 2-7, we show the sizes of each segment for SPECINT95 (text, data, heap, and

segments). We show the sum of these four segments, and compare that with the total d

that was statically allocated for each benchmark. Simply examining the size of the stat

allocated segments is insufficient because most of the FORTRAN benchmarks (and so

benchmark input inst %comp %mem %ctrl

101.tomcatv test 2798.9 0.532 0.310 0.157
train 17660.7 0.715 0.259 0.026
ref.62it 10651.7 0.673 0.270 0.057
ref (750 it) 105323.2 0.718 0.258 0.025

102.swim test 849.9 0.630 0.310 0.060
train 849.9 0.630 0.310 0.060
ref.45it 2846.2 0.650 0.322 0.028
ref (900 it) 51613.0 0.659 0.327 0.015

103.su2cor test 1054.1 0.583 0.329 0.088
train 19851.1 0.614 0.324 0.062
ref.5it 11548.7 0.589 0.327 0.084
ref (40 it) 62616.3 0.614 0.324 0.062

104.hydro2d test 974.5 0.600 0.264 0.136
train 7583.0 0.635 0.247 0.118
ref.6it 2443.1 0.624 0.252 0.124
ref (200 it) 73666.6 0.639 0.244 0.116

107.mgrid test 4422.3 0.619 0.367 0.013
test.4it 480.3 0.621 0.363 0.017
train 14292.1 0.622 0.363 0.015
ref (40 it) 110556.9 0.619 0.367 0.013

110.applu test 19408.1 0.712 0.255 0.034
train 531.9 0.711 0.255 0.034
ref.5it 1748.1 0.713 0.254 0.033
ref (300 it) 93423.3 0.712 0.255 0.034

125.turb3d test, train 17120.6 0.720 0.227 0.052
ref.2it 2836.8 0.717 0.230 0.052
ref (111 it) 169598.6 0.717 0.231 0.053

141.apsi test 9191.7 0.639 0.316 0.046
train 2350.0 0.623 0.323 0.054
ref.6it 318.2 0.643 0.310 0.047
ref (960 it) 47883.2 0.648 0.311 0.041

145.fpppp test 1872.3 0.456 0.531 0.013
train 331.1 0.454 0.532 0.014
ref 175465.0 0.464 0.520 0.016

146.wave5 test 4627.1 0.605 0.324 0.071
train 3132.8 0.603 0.318 0.079
ref.10it 13072.9 0.608 0.332 0.060
ref (40 it) 44888.9 0.610 0.337 0.053

Table 2-4: Instruction profile for SPECFP95

40

depen-

met-

the

of the

ta sets

: go,

ench-

the integer codes) statically allocate some maximum data set, but access only an input-

dent fraction. We measured accessed regions of memory at a 4KB (page) granularity (i.e., if a

single word in a single page is touched, that 4KB page is counted toward the total). This

ric thus quantifies the application’s footprint in physical memory. In Table 2-8, we show

same statistics for SPECFP95. We obtained these numbers using a modified version

sim-cache simulator.

Thestd data set sizes vary widely across the benchmarks as well. li and fpppp have da

of less than 1MB. Most of the integer codes have data sets between 1MB and 10MB

m88ksim, gcc, compress, and ijpeg. apsi, hydro2d, and mgrid are the floating-point b

benchmark input %loads %stores %data %heap %stack

099.go test 0.737 0.263 0.679 0.000 0.321
train 0.737 0.263 0.668 0.000 0.332
ref 0.741 0.259 0.687 0.000 0.313

124.m88ksim test 0.669 0.331 0.656 0.075 0.269
train 0.615 0.385 0.355 0.112 0.533
ref 0.638 0.362 0.501 0.052 0.447

126.gcc test 0.637 0.363 0.160 0.215 0.625
train 0.649 0.351 0.162 0.222 0.616
ref 0.638 0.362 0.164 0.216 0.620

129.compress test 0.123 0.877 0.973 0.003 0.025
train 0.552 0.448 0.914 0.000 0.085
std 0.649 0.351 0.925 0.000 0.075
ref 0.644 0.356 0.925 0.000 0.075

130.li test 0.629 0.371 0.182 0.362 0.456
train 0.610 0.390 0.163 0.395 0.442
ref 0.634 0.366 0.138 0.451 0.411

132.ijpeg test 0.692 0.308 0.035 0.598 0.366
train 0.699 0.301 0.032 0.647 0.321
ref1 (vigo) 0.703 0.297 0.030 0.657 0.312
ref2 (specmun) 0.705 0.295 0.030 0.670 0.300
ref3 (penguin) 0.704 0.296 0.030 0.662 0.308

134.perl test 0.613 0.387 0.130 0.337 0.533
train 0.591 0.409 0.112 0.392 0.495
ref1 (primes) 0.633 0.367 0.130 0.297 0.573
ref2 (scrabble) 0.607 0.393 0.140 0.361 0.499

147.vortex test 0.586 0.414 0.120 0.150 0.730
train 0.581 0.419 0.116 0.152 0.732
ref.1it 0.584 0.416 0.120 0.149 0.731
ref 0.619 0.381 0.138 0.167 0.695

Table 2-5: Memory operation profile for SPECINT95

41

benchmark input %loads %stores %data %heap %stack

101.tomcatv test 0.674 0.326 0.287 0.050 0.663
train 0.794 0.206 0.028 0.002 0.970
ref.62it 0.762 0.238 0.097 0.015 0.888
ref (750 it) 0.796 0.204 0.024 0.002 0.975

102.swim test 0.778 0.222 0.818 0.000 0.182
train 0.778 0.222 0.818 0.000 0.182
ref.45it 0.806 0.194 0.948 0.000 0.052
ref (900 it) 0.816 0.184 0.997 0.000 0.003

103.su2cor test 0.756 0.244 0.319 0.026 0.655
train 0.767 0.233 0.343 0.003 0.653
ref.5it 0.756 0.244 0.334 0.019 0.647
ref (40 it) 0.768 0.232 0.342 0.003 0.655

104.hydro2d test 0.763 0.237 0.802 0.022 0.177
train 0.807 0.193 0.936 0.003 0.062
ref.6it 0.792 0.208 0.892 0.009 0.099
ref (200 it) 0.813 0.187 0.955 0.000 0.045

107.mgrid test 0.962 0.038 0.784 0.000 0.216
test.4it 0.954 0.046 0.777 0.000 0.223
train 0.960 0.040 0.783 0.000 0.217
ref (40 it) 0.962 0.038 0.784 0.000 0.216

110.applu test 0.815 0.185 0.667 0.000 0.333
train 0.814 0.186 0.667 0.000 0.333
ref.5it 0.817 0.183 0.669 0.000 0.331
ref (300 it) 0.815 0.185 0.667 0.000 0.333

125.turb3d test 0.610 0.390 0.218 0.000 0.782
train 0.610 0.390 0.218 0.000 0.782
ref.2it 0.607 0.393 0.217 0.000 0.783
ref 0.606 0.394 0.211 0.000 0.789

141.apsi test 0.724 0.276 0.641 0.000 0.359
train 0.712 0.288 0.584 0.000 0.416
ref.6it 0.725 0.275 0.633 0.002 0.365
ref 0.731 0.269 0.660 0.000 0.340

145.fpppp test 0.725 0.275 0.420 0.000 0.580
train 0.722 0.278 0.420 0.000 0.580
ref 0.733 0.267 0.418 0.000 0.582

146.wave5 test 0.722 0.278 0.889 0.000 0.111
train 0.717 0.283 0.848 0.000 0.152
ref.10it 0.732 0.268 0.930 0.000 0.070
ref 0.736 0.264 0.960 0.000 0.040

Table 2-6: Memory operation profile for SPECFP95

42

ts fall

, are

s with

at are

results

tah

ali-

marks that fall into that category. Tomcatv and Swim are the two codes whose data se

between 10MB and 20MB. The six benchmarks with the largest data sets, all over 20MB

perl, vortex, su2cor, applu, turb3D, and wave5.

In Table 2-9 and Table 2-10, we list cache miss rates for thestd inputs of SPECINT95 and

SPECFP95, respectively. We show miss rates for direct-mapped, write-allocate cache

32-bytes blocks, and sizes ranging from 4KB to 1MB. Dotted lines denote cache sizes th

larger than the data set sizes, which we therefore did not simulate. We obtained these

using sim-cheetah, which couples the SimpleScalar functional simulator with the Chee

cache simulation library developed at Michigan [119]. In Appendix B (Section B.3), we v

benchmark input text data heap stack total allocated

099.go test 580 K 524 K 20 K 8 K 1.1 M 1.1 M
train 560 K 496 K 24 K 8 K 1.0 M 1.1 M

ref 584 K 528 K 24 K 8 K 1.1 M 1.1 M
124.m88ksim test 248 K 128 K 472 K 12 K 860 K 918 K

train 252 K 128 K 3.8 M 12 K 4.1 M 4.2 M
ref 268 K 128 K 18.5 M 12 K 18.9 M 18.9 M

126.gcc test 1.9 M 252 K 1.6 M 308 K 4.1 M 3.9 M
train 1.9 M 252 K 1.3 M 200 K 3.7 M 3.6 M

ref 1.9 M 252 K 2.8 M 568 K 5.5 M 5.1 M
129.compress test 80 K 536 K 20 K 8 K 644 K 42.2 M

train 80 K 640 K 20 K 8 K 748 K 42.2 M
std 80 K 1.5 M 20 K 8 K 1.6 M 42.2 M
ref 80 K 34.8 M 20 K 8 K 34.9 M 42.2 M

130.li test 152 K 20 K 84 K 12 K 268 K 304 K
train 144 K 20 K 160 K 28 K 352 K 380 K

ref 156 K 20 K 392 K 28 K 596 K 612 K
132.ijpeg test 268 K 36 K 4.3 M 12 K 4.6 M 21.0 M

train 268 K 40 K 7.8 M 12 K 8.1 M 24.5 M
ref (vigo) 268 K 224 K 7.4 M 12 K 7.9 M 25.6 M

ref (specmun) 268 K 172 K 6.6 M 12 K 7.1 M 24.7 M
ref (penguin) 268 K 196 K 7.1 M 12 K 7.6 M 25.3 M

134.perl test 392 K 72 K 56 K 8 K 528 K 685 K
train 432 K 72 K 25.0 M 8 K 25.5 M 25.6 M

ref (primes) 392 K 72 K 56 K 8 K 528 K 625 K
ref (scrabble) 428 K 72 K 18.4 M 12 K 18.9 M 19.0 M

147.vortex test 896 K 116 K 25.2 M 12 K 26.2 M 26.3 M
train 896 K 116 K 10.3 M 12 K 11.3 M 11.4 M

ref.1it 896 K 1116 K 29.1 M 12 K 30.1 M 30.2 M
ref 896 K 116 K 45.7 M 12 K 46.7 M 46.8 M

Table 2-7: Data set and segment sizes for SPECINT95

43

benchmark input text data heap stack total allocated

101.tomcatv test 160 K 28 K 36 K 14.0 M 14.2 M 14.3 M
train 160 K 28 K 36 K 7.0 M 7.2 M 14.3 M

ref.62it 160 K 28 K 36 K 14.0 M 14.2 M 14.3 M
ref 160 K 28 K 36 K 14.0 M 14.2 M 14.3 M

102.swim test 160 K 14.0 M 24 K 12 K 14.2 M 14.2 M
train 160 K 14.0 M 24 K 12 K 14.2 M 14.2 M

ref.45it 160 K 14.0 M 24 K 12 K 14.2 M 14.2 M
ref 160 K 14.0 M 24 K 12 K 14.2 M 14.2 M

103.su2cor test 256 K 2.2 M 36 K 5.7 M 8.2 M 8.6 M
train 256 K 3.7 M 36 K 8.3 M 12.4 M 8.6 M

ref.5it 256 K 8.3 M 36 K 13.6 M 22.2 M 8.6 M
ref 256 K 8.3 M 36 K 13.6 M 22.2 M 8.6 M

104.hydro2d test 208 K 8.4 M 40 K 16 K 8.6 M 8.7 M
train 208 K 8.4 M 40 K 16 K 8.6 M 8.7 M

ref.6it 208 K 8.4 M 48 K 16 K 8.6 M 8.7 M
ref 208 K 8.4 M 40 K 16 K 8.6 M 8.7 M

107.mgrid test 168 K 7.3 M 24 K 12 K 7.5 M 7.5 M
test.4it 168 K 7.3 M 24 K 12 K 7.5 M 7.5 M

train 168 K 1.0 M 24 K 12 K 1.2 M 7.5 M
ref 168 K 7.3 M 24 K 12 K 7.5 M 7.5 M

110.applu test 228 K 13.5 M 24 K 28 K 13.7 M 31.8 M
train 228 K 3.0 M 24 K 28 K 3.2 M 31.8 M

ref.5it 228 K 28.7 M 24 K 28 K 29.0 M 31.8 M
ref 228 K 28.7 M 24 K 28 K 29.0 M 31.8 M

125.turb3d test 228 K 24.7 M 36 K 12 K 25.0 M 25.0 M
train 228 K 24.7 M 36 K 12 K 25.0 M 25.0 M

ref.2it 228 K 24.7 M 36 K 12 K 25.0 M 25.0 M
ref 228 K 24.7 M 44 K 12 K 25.0 M 25.0 M

141.apsi test 340 K 556 K 48 K 16 K 960 K 9.6 M
train 340 K 184 K 48 K 16 K 588 K 9.6 M

ref.6it 340 K 1.9 M 48 K 16 K 2.3 M 9.6 M
ref 340 K 1.9 M 48 K 16 K 2.3 M 9.6 M

145.fpppp test 284 K 140 K 24 K 24 K 472 K 803 K
train 284 K 136 K 24 K 24 K 468 K 803 K

ref 284 K 232 K 24 K 24 K 564 K 803 K
146.wave5 test 312 K 27.2 M 32 K 12 K 27.5 M 41.2 M

train 312 K 27.2 M 32 K 12 K 27.5 M 41.2 M
ref.10it 308 K 40.1 M 36 K 12 K 40.5 M 41.2 M

ref 308 K 40.1 M 32 K 12 K 40.5 M 41.2 M

Table 2-8: Data set and segment sizes for SPECFP95

44

how-

using

ks fol-

of the

date the Cheetah simulation by comparing it with miss rates fromsim-cache(and vice-versa).

Also in Appendix B, we provide a comprehensive set of cache miss rates for SPEC95, s

ing miss rates for varied associativities (Section B.1) and block sizes (Section B.2),

three reference streams (instruction, data, and unified).

2.3.3 SPEC95 benchmark analysis

In this subsection, we describe each of the benchmarks (the eight integer benchmar

lowed by the ten floating-point benchmarks). We justify our choice of thestd input set for

each benchmark, and characterize each benchmark’s behavior with that input set. Most

benchmark input 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

099.go test 28.007 21.403 9.971 5.468 3.035 1.681 1.481 0.001 0.000
train 24.305 18.014 6.070 2.935 1.590 0.097 0.065 0.009 0.004

ref 28.974 22.209 10.644 5.772 3.255 1.846 1.587 0.001 0.000
124.m88ksim test 4.546 2.564 1.522 0.904 0.426 0.141 0.132 0.007 ------

train 3.268 2.407 1.111 0.669 0.528 0.423 0.334 0.328 0.326
ref 4.016 2.583 1.173 0.556 0.313 0.052 0.008 0.007 ------

126.gcc test 7.951 5.146 3.265 1.975 1.043 0.619 0.359 0.128 0.064
train 8.332 5.218 3.197 1.960 1.021 0.553 0.309 0.096 0.060

ref 8.136 5.385 3.428 2.143 1.126 0.735 0.465 0.215 0.109
129.compress test 5.617 5.519 5.466 5.427 5.380 5.162 1.113 0.369 ------

train 7.873 6.157 4.912 3.654 2.643 1.539 0.920 0.126 ------
std 15.722 13.458 11.758 9.745 7.858 5.407 2.561 0.228 0.168
ref 15.137 12.851 11.166 9.215 7.399 5.121 2.642 0.206 0.165

130.li test 3.829 2.241 1.127 0.476 0.016 0.000 0.000 ------ ------
train 4.929 3.231 2.178 1.464 0.810 0.136 0.004 ------ ------

ref 4.912 3.085 2.152 1.519 1.035 0.585 0.125 ------ ------
132.ijpeg test 9.607 3.577 1.843 0.826 0.552 0.360 0.278 0.233 0.217

train 10.499 3.988 1.837 1.148 0.795 0.638 0.515 0.465 0.449
ref1 18.107 8.171 4.175 1.171 0.469 0.349 0.255 0.230 0.210
ref2 17.596 8.371 4.343 1.336 0.676 0.444 0.281 0.235 0.216
ref3 16.069 8.243 4.223 1.200 0.873 0.340 0.278 0.252 0.215

134.perl test 6.817 3.014 1.790 1.304 0.869 0.778 0.021 0.021 0.021
train 5.688 3.145 2.150 1.679 0.801 0.495 0.257 0.205 0.165
ref1 6.108 2.841 1.038 0.779 0.007 0.006 0.000 0.000 0.000
ref2 8.934 5.944 3.880 2.443 0.829 0.654 0.019 0.016 0.014

147.vortex test 6.955 5.103 3.141 1.464 0.922 0.519 0.318 0.215 0.133
train 7.342 5.537 4.263 2.356 1.738 0.538 0.364 0.229 0.143

ref.1it 7.017 5.094 2.548 1.700 1.184 0.794 0.464 0.350 0.161
ref 6.772 3.469 2.365 1.669 1.135 0.720 0.480 0.317 0.217

Table 2-9: Cache miss rates for varied SPECINT95 data sets (data stream)

45

benchmark input 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

101.tomcatv test 8.955 7.561 4.275 1.933 1.175 1.157 1.145 1.137 1.126
train 24.021 22.557 14.626 6.774 4.134 4.102 4.063 4.020 3.982

ref.62it 20.989 19.507 12.542 5.817 3.534 3.486 3.457 3.433 3.401
ref 24.550 23.001 14.960 6.954 4.223 4.167 4.133 4.104 4.066

102.swim test 49.698 39.780 21.024 6.658 2.015 1.989 1.976 1.968 1.960
train 49.698 39.780 21.024 6.658 2.015 1.989 1.976 1.968 1.960

ref.45it 65.062 52.319 27.894 8.314 2.299 2.265 2.248 2.239 2.234
ref 70.934 57.111 30.520 8.947 2.408 2.371 2.353 2.343 2.338

103.su2cor test 10.110 8.058 7.279 6.693 2.350 1.883 1.372 0.640 0.286
train 9.940 8.465 7.794 7.326 2.381 2.005 1.557 1.020 0.442

ref.5it 9.775 7.843 7.136 6.623 2.229 2.051 1.740 1.201 0.675
ref 9.952 8.440 7.811 7.311 2.406 2.200 1.862 1.371 0.760

104.hydro2d test 5.203 4.258 3.539 2.880 2.728 2.660 2.636 2.523 2.289
train 5.520 4.578 3.990 3.297 3.158 3.076 3.049 2.932 2.653

ref.6it 5.425 4.482 3.855 3.173 3.029 2.952 2.925 2.810 2.544
ref 5.561 4.619 4.047 3.350 3.211 3.128 3.100 2.983 2.698

107.mgrid test 5.934 2.620 1.865 1.457 1.235 0.966 0.901 0.596 0.566
test.4it 5.941 2.635 1.884 1.480 1.259 0.992 0.928 0.632 0.602

train 5.409 3.986 3.126 2.447 2.248 2.136 2.033 0.355 0.147
ref 5.934 2.620 1.865 1.437 1.235 0.966 0.901 0.596 0.566

110.applu test 5.092 2.630 1.913 1.573 1.380 1.266 1.226 1.184 1.098
train 4.949 2.549 1.902 1.574 1.387 1.208 1.054 0.761 0.470

ref.5it 5.105 2.571 1.839 1.494 1.319 1.228 1.179 1.150 1.094
ref 5.194 2.677 1.934 1.574 1.393 1.299 1.250 1.220 1.175

125.turb3d test 4.065 3.461 3.255 2.158 1.364 1.271 0.871 0.394 0.386
train 4.065 3.461 3.255 2.158 1.364 1.271 0.871 0.394 0.386

ref.2it 4.010 3.408 3.202 2.111 1.426 1.345 0.909 0.409 0.398
ref 3.839 3.228 3.019 1.908 1.293 1.198 0.801 0.323 0.315

141.apsi test 6.995 5.911 5.646 4.450 2.943 1.673 0.816 0.056 0.001
train 6.306 5.369 3.070 1.731 0.838 0.119 0.000 0.000 0.000

ref.6it 11.056 5.675 4.945 4.832 4.572 4.408 2.914 1.630 0.757
ref 11.327 5.761 5.019 4.908 4.641 4.486 2.945 1.648 0.779

145.fpppp test 5.638 4.334 3.726 2.986 2.921 2.823 0.000 ------ ------
train 5.689 4.401 3.798 3.064 2.988 2.898 0.001 ------ ------

ref 5.631 4.160 3.441 2.652 2.605 2.508 0.003 ------ ------
146.wave5 test 24.882 21.038 12.873 7.568 1.888 1.057 0.824 0.680 0.610

train 23.635 19.994 12.247 7.213 1.797 1.001 0.772 0.638 0.575
ref.10it 26.548 22.492 13.769 8.138 2.004 1.155 0.922 0.773 0.673

ref 27.820 23.619 14.553 8.763 2.343 1.466 1.195 1.002 0.851

Table 2-10: Cache miss rates for varied SPECFP95 data sets (data stream)

46

crip-

ench-

aging

e

im-

ugh to

y),

t

ted

reas

mem-

benchmarks showed less than a 2% difference between thestd andref data sets for instruction

distribution, load/store distribution, and segment access distribution. In the following des

tions of individual benchmarks, we note and address only those disparities for whichstd and

ref differ by more than 2%.

2.3.3.1 SPEC95 integer codes

• 099.go

The go benchmark is a simplified version of a program that plays the game Go. The b

mark plays against itself, and spends much of its execution doing pattern matching, man

data structures, and doing look-ahead computations on the board. For Go, we use thtest

input set asstd, since all three data sets have approximately the same data set size. Thetrain

set has the fewest instructions, but has a vastly different profile than does theref data set

(about 60% computational instructions as opposed to about 10% forref). Thetestdata set has

a similar percentage of loads, instruction distributions, and cache miss rates.

• 124.m88ksim

m88ksim is a timing simulator that models the Motorola 88100 microprocessor. Like S

pleScalar, it takes target binaries and simulates them, passing proxy system calls thro

the host. Bothtest and train have small instruction counts (400M and 100M, respectivel

while ref has an intractably large instruction count (60G).test does little actual simulation

other than initializing the simulator, and has a much smaller data set than the other two.train

performs actual simulation, and has a 4.2 MB data set. Althoughref has a much larger data se

than doestrain (18.9 MB), train ’s cache miss rates are much higher, due to the infla

effects of compulsory misses (train issues about 40 references per byte of its data set, whe

ref issues about 3000 references per byte). The instruction distributions betweentrain andref

differ more than the difference betweenstd and ref for any other benchmark.train issues

fewer (15% fewer of all memory operations) to the data segment, but 6% and 8% more

ory operations to the heap and stack, respectively. Despite these differences, we usetrain as

47

the

nch-

s. The

tion

the

ve

(the

input,

ately

num-

is

can

of

t

M as

e

r draw-

or

the std set, sincetrain does perform a complete simulation of a small benchmark, and

number of instructions inref is too large.

• 126.gcc

gcc is a version of the Free Software Foundation’s GNU C compiler version 2.5.3. The be

mark compiles pre-processed C source files into optimized Sparc assembly language file

ref data set is actually a collection of multiple distinct compilations. Since our simula

environment does not currently support multiple distinct initiations from a shell, we chose

largest of the C files in theref data set to use for the simulation. All three data sets ha

extremely similar profiles and instruction counts. We therefore useref for std, sinceref has

the largest data set size and highest cache miss rate of the three.

• 129.compress

compress applies the adaptive Lempel-Ziv compression algorithm to a buffer in memory

SPEC version implements three statically allocated 14 MB buffers that are used for the

comparison, and output buffers). The major data structures are a hash table of approxim

400KB, and the memory buffers. The inputs each consist of a number that represents the

ber of bytes to compress from the memory buffer. Thetest input compresses 1KB,train com-

presses 10KB, andref compresses the full 14MB buffer. Since the number of instructions

roughly linear in the number of bytes from the memory buffer that are compressed, we

effectively choose the simulation length by setting the input. Theref input set requires an

intractable 43G instructions. We chosestd to be 400KB, which gives a total data set size

merely a megabyte, but requires a more tractable 1.2G instructions.

• 130.li

li is a Lisp interpreter written in C. We usetrain as thestd input set, since it has the larges

data set (about 200K) of any of the inputs with a tractable number of instructions (111

opposed to 76G forref). train differs from ref in the distribution of loads and stores to th

memory segments (6% fewer accesses to the heap, and about 3% more stores). Anothe

back to usingtrain is the fact that only theref input set has significant cache miss rates f

48

medi-

eatedly

n-

,

and

G

is-

The

re

en the

reting

appli-

hmarks

ibuted

d

one

.6G

caches larger than about 64K. However, as with m88ksim, we are unable to find an inter

ate input, and sinceref is far too long, we usetrain for std.

• 132.ijpeg

The ijpeg benchmark reads an image into a memory buffer and processes the image rep

with different compression settings. Like gcc, theref data set processes multiple files indepe

dently but sequentially. We present the profiles for each of those files (vigo , specmun , and

penguin) separately. Forstd, we use thetrain input set, since it has an instruction profile

data set size, and cache miss rate comparable to each of the three input files from theref set,

but only produces 1.4G instructions, instead of the 27G-30G produced by theref inputs.

• 134.perl

The perl benchmark interprets code files written in the Perl scripting language. Like gcc

ijpeg, the perlref set contains multiple (two) files:primes andscrabble . The test set is a

smaller version ofprimes , and thetrain set uses a file calledjumble . We use thetrain set

(2.4G instructions) forstd, since theref set executions are prohibitively long (14G and 24

instructions) andtest is tiny (10M instructions).train also has a data set size that is, surpr

ingly, larger than that of any of theref files (and also generates higher cache miss rates).

execution profile of train is slightly different from either of the two ref data files (3% mo

heap accesses and 4% more computation instructions). However, the difference betwe

two ref data files is even larger, so the difference is an inevitable consequence of interp

different scripts.

• 147.vortex

vortex is a object-oriented database benchmark, coded in C, that uses “schema” to map

cation queries into the database files. The benchmark accesses three different benc

through the schema: a mailing list, a parts list, and geometric data. The database distr

with SPEC95 holds about 45MB of data. We use theref input set with one iteration forstd,

since theref data set is significantly larger data set thantrain or test (30MB). By running for

only one iteration, the data set size is smaller thanref, since the amount of data accesse

increases with the number of iterations. Unfortunately, the initialization is high with only

iteration, accounting for 34% of the execution time (5.1G instructions per iteration plus 2

49

pay

as

s in

ing

ssem-

in the

tima-

er of

ions

ima-

justing

We

total

s no

% the

s fur-

instructions for initialization). Since the number of instructions per iteration is so high, we

the price of having to simulate a high fraction of initialization instructions. We view this

justifiable since the instruction profiles in Table 2-3 and the memory operation profile

Table 2-5 for ourstd input more closely resemble theref set than does thetrain set, which

was the alternative candidate forstd (plus, the differences betweenstd andref instruction and

access distributions are all less than 4%).

2.3.3.2 SPEC95 floating point codes

All of the floating-point codes were originally written in FORTRAN, and converted to C us

AT&T’s f2c tool. The benchmarks were then compiled with thepeakoptimizations that SPEC

defines (which includes -O3), using the version of gcc 2.6.3 retargeted to SimpleScalar a

bly.

For the loop-based floating point codes, we can adjust the number of loop iterations

input files, to reduce the running length of the benchmarks. We can obtain a first-order es

tion of the loop-based codes’ execution time using the following equation:

(2-1)

is the running time of the program (number of instructions executed), is the numb

“overhead” instructions (initialization and cleanup/output), is the number of instruct

executed per loop iteration, and is the number of loop iterations. This is only an approx

tion, and since and depend on the input, the data set must be held constant when ad

the number of iterations. By measuring for two values of , we can solve for and .

want to find the minimal such that is less than or equal to a certain fraction of the

number of instructions. We adjust , the number of iterations, such that initialization i

more than 10% of the total execution time. There are a few exceptions where even at 10

program running time is still too long; in these cases we reduce the number of iteration

ther so that initialization accounts for no more that 20% of all execution instructions.

• 101.tomcatv

T I El+=

T I

E

l

I E

T l E I

l I

l

50

xima-

or

l

d

a

hich

et

sults

. Also

ima-

tack

with a

m-

ysics

l the

, and

tomcatv is a vectorized mesh generation program that performs finite difference appro

tion and LU factorization on two two-dimensional arrays. Thetest input does little other than

initialization, at 2.7G instructions.train uses a smaller data set (7MB instead of 14MB f

testandref), and runs for 17.6G instructions.ref runs for 750 outer loop iterations, for a tota

of 105G instructions. We ran theref set with 60 iterations, and found that an

instructions. Since holding initialization to 10% of execution would result in

execution length of over 20G instructions, we set the initialization to be less than 20%, w

resulted in 62 loop iterations for thestd input set (just over 10G instructions). The ref data s

uses almost all stack references and little control. The higher fraction of initialization re

in thestd input set issuing 9% of the references to the data segment instead of the stack

in std, 3% more of the instructions thanref are branches, rather than computation.

• 102.swim

Swim solves a system of shallow water equations (also using finite difference approx

tions) on a two-dimensional grid. Theref data set runs for 900 iterations.testandtrain run on

the same data set, but for a mere 10 iterations. Solving for and , we find that

and instructions. We set the number ofstd iterations to be 45, at which initializa-

tion is under 10%. Even so, thestd input issues 5% more of the memory accesses to the s

(theref set issues almost no accesses to the stack).

• 103.su2cor

Su2cor is a vectorizable program that computes the masses of elementary particles

monte carlo method.testandtrain use data sets that are about a third and a half of theref data

set size, respectively. Our measurements show that, using theref data set, and

instructions. Given this high number of instructions needed for initialization, li

iting initialization to 10% requires too high of an instruction count (18.5G). For thestd input,

we therefore limit initialization to 20%, running theref data set for 5 iterations (9.4G).

• 104.hydro2d

Hydro2d uses double-precision floating point computations for solving the astroph

problem of computing galactical jets, using hydrodynamic Navier-Stokes equations. Al

inputs use the same data set, and simply run for differing numbers of iterations (2, 20

E 137.6M=

I 2.12G=

E I I 279.5M=

E 57.0M=

E 1.52G=

I 1.77G=

51

ns.

-

ory

The

alcu-

loop

h the

ch

inde-

, we

tial

imen-

a-

atial

ectral

m-

200, fortest, train , andref, respectively). The 200 iterations forref require 62G instructions

of simulation. Our measurements showed that and instructio

We hold initialization to under 10% forstd by running theref data set for 6 iterations, requir

ing 2.4G instructions. The residual effects of the initialization cause an extra 5% of mem

access to go to the stack (5% inref and 10% instd) instead of the data segment.

• 107.mgrid

Mgrid implements a multigrid solver for computing a three-dimensional potential field.

input files specify a grid size, a number of points to solve, and a number of timesteps to c

late solutions for each point. The execution is a two-deep nested loop, with the outer

incrementing through each spatial point from the input, and the inner loop running throug

timesteps for each point. Thetest andref inputs both use a grid that is twice as large in ea

dimension as thetrain input. test computes one point for 40 timesteps, andref computes the

effect of 25 points for 40 timesteps each. Since the effects of each point on the grid are

pendent, we simulate the effects of only one point (i.e., thetest input set) for thestd input set.

Since our measurements show that, for one point, and instructions

run for 4 timesteps to keep the initialization under 10%.

• 110.applu

Applu, from the NAS benchmark suite [4], is a solver for five coupled partial differen

equations. The code solves a computational fluid dynamics (CFD) problem on a three-d

sional grid. Theref data set is larger (29MB) thantest or train (13MB and 3MB, respec-

tively), so we use theref input with a reduced number of iterations forstd. Our results show

that and instructions, so we run for 5 iterations to keep initializ

tion under 10%.

• 125.turb3d

Turb3d simulates turbulence in a cube with periodic boundary conditions in all three sp

dimensions. It does so by solving the Navier-Stokes equations using a pseudo-sp

method. All three input files (test, train , ref) use the same data set, but they differ in the nu

E 367.1M= I 240.3M=

E 109.5= I 42.3=

E 315.0M= I 173.0M=

52

pute

ssure

and

ernel,

me is

time

istics

and

oat-

of the

ow

ns

-

ra-

ber of iterations (test andtrain are identical with 11 iterations each, andref runs for 111 iter-

ations). Our results show that , so we set thestd input to run only 2 iterations.

• 141.apsi

Apsi is an atmospheric simulator that uses double-precision floating point code to com

the variations of potential temperature, wind components, mesoscale vertical velocity pre

and distribution of pollutants in a three-dimensional environment. Theref data set size is

2MB, larger than both that oftest (1MB) andtrain (512KB). ref runs for 960 iterations and

47G instructions, which is prohibitively long. Our measurements show that

 instructions, so we use theref data set with 6 iterations forstd.

• 145.fpppp

Fpppp is a quantum chemistry benchmark that simulates an important computational k

the two electron integral derivative. The input is a number of atoms, and the execution ti

proportional to the fourth power of the number of atoms. The data sets oftest, train , andref

are of similar magnitudes (472KB, 468KB, and 564KB, respectively). Since computation

grows so explosively with increases in data set size (number of atoms), we use thetrain input,

which has a short (333.1M instructions) running time but has similar execution character

to the other inputs. The profiled statistics—including instruction type, load/store ratio,

distribution of memory access to different segments—differ betweentrain andref by no more

than 1.2%, and generally much less than that.

• 146.wave5

Wave5 solves Maxwell’s equations on a two-dimensional mesh with double precision fl

ing point arithmetic. The computation is used to study plasma phenomena. Unlike many

other SPECFP benchmarks, Wave5 uses heavy indirect addressing.test and train have the

same data set size (27MB). Theref data set is much larger, at 40MB. Our measurements sh

that and instructions. Given the large number of instructio

per loop iteration, we limit the initialization to 20% instead of 10%, and set thestd input to

use theref data set for 10 loop iterations (theref input runs for 40 iterations). The larger frac

tion of initialization affects the distribution by issuing 3% more of the total memory ope

tions to the stack instead of the data segment.

E I»

E 29.2M=

I 48.6M=

E 1061.2M= I 2440.5M=

53

pling

1 and

nch-

erfor-

e the

ing the

or here

y set

row,

repre-

diction.

ective

com-

ming

tion

f sam-

bones

onal

rarchy

g cold

cold

ode

itch-

edic-

ranch

2.4 Sampling validation

Since sampling may introduce unknown error into the simulation, we validate our sam

methodology against a baseline for a range of sampling parameters. In Table 2-1

Table 2-12 we present our sampling validation for the SPEC integer and floating point be

marks, respectively. For each benchmark, we perform two baseline simulations, the p

mance of which (in IPC) are listed in the third column. The two baseline simulations us

same set of target parameters as the timing experiments described in Chapter 4 (includ

Rambus timing model), except that we measure a 4-wide issue superscalar process

instead of an 8-wide issue machine (with 64KB split level-one caches and a 1MB, 4-wa

associative level-two cache). The first baseline for each benchmark, listed in the “cold”

represents the IPC of the target system. The second baseline, listed in the “perfect” row,

sents the IPC of the target CPU core assuming perfect memory and perfect branch pre

For each benchmark, we display the IPC of the sampled runs, normalized to their resp

baselines. We take samples at intervals of one, ten, and one hundred million instructions

mitted (listed in the second heading row of each table). For each interval, we perform ti

simulation for 1/5, 1/20, and 1/100 of the sample interval (the fractions of timing simula

are listed in the first heading row of each table). There are three modes for each set o

pling parameters: cold, lukewarm, and warm. Cold sampling means that we run in bare-

functional mode in between timing intervals. Warm sampling means that in the functi

(fast) portions in between timing intervals, we send memory references to the cache hie

and branch decisions to the branch predictors, keeping both of them updated, eliminatin

start effects at the beginning of each timing interval. In lukewarm sampling, we run in

mode for most of the non-timing parts of the sampling interval, but then switch to warm m

for a period equal to the length of the timing interval, to warm up the state right before sw

ing into timing mode. The only present cold results for the perfect memory and branch pr

tion set, since there is no difference between cold and warm mode if the cache or b

predictors aren’t used.

54

Fract. sampled/period 1/5 1/20 1/100
Benchmark Method IPC 1M 10M 100M 1M 10M 100M 1M 10M 100M

099.go cold 1.321 0.97 0.99 1.00 0.93 0.98 0.99 0.84 0.95 0.96
lukewarm 0.95 0.98 1.00 0.87 0.97 0.98 0.76 0.91 0.95

warm 0.93 0.98 1.00 0.80 0.96 0.98 0.56 0.85 0.95
perfect 2.749 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

124.m88ksim cold 1.627 1.03 1.07 1.08 1.01 1.06 1.06 0.92 0.97 0.98
lukewarm 1.02 1.07 1.09 1.01 1.06 1.07 0.95 1.00 1.02

warm 1.02 1.06 1.09 1.00 1.05 1.07 0.93 0.97 1.00
perfect 2.748 1.00 1.00 0.96 1.00 1.00 0.96 1.00 1.00 0.96

126.gcc cold 1.338 0.91 0.97 0.92 0.77 0.90 0.89 0.53 0.75 0.82
lukewarm 0.88 0.96 0.92 0.72 0.89 0.88 0.47 0.74 0.83

warm 0.86 0.95 0.92 0.67 0.86 0.88 0.38 0.65 0.80
perfect 2.619 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

129.compress cold 1.347 1.00 0.98 0.98 0.98 0.96 0.94 0.97 1.02 0.93
lukewarm 0.98 0.99 0.98 0.99 0.97 0.95 1.00 1.05 0.95

warm 0.99 0.98 0.98 0.96 0.93 0.94 0.98 0.95 0.92
perfect 2.761 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

130.li cold 1.917 1.00 1.00 0.99 0.97 0.98 0.96 0.86 0.89 0.86
lukewarm 1.00 1.00 1.00 0.98 0.99 0.99 0.92 0.95 0.96

warm 1.00 1.00 1.00 0.99 0.99 0.99 0.95 0.97 0.97
perfect 2.650 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.03 1.00

132.ijpeg cold 2.691 **** 0.98 0.99 0.95 0.95 0.96 **** 0.89 0.92
lukewarm **** 0.99 0.99 **** 0.97 0.97 **** 0.92 0.93

warm **** 0.98 0.99 0.94 0.95 0.95 **** 0.89 0.87
perfect 2.806 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

134.perl cold 1.569 1.00 0.98 0.96 0.96 0.88 1.03 0.80 0.83 1.00
lukewarm 1.00 0.99 0.95 0.94 0.87 1.02 0.82 0.82 1.00

warm 0.99 0.98 0.95 0.96 0.88 1.02 0.86 0.81 0.99
perfect 2.594 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

147.vortex cold 1.639 0.98 1.00 1.00 0.95 0.98 1.00 0.88 0.93 0.97
lukewarm 0.92 0.97 0.99 0.86 0.94 0.98 0.78 0.87 0.95

warm 0.88 0.94 0.99 0.73 0.82 0.97 **** 0.59 0.85
perfect 2.453 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2-11: Sampling validation for SPECINT95

55

Fract. sampled/period 1/5 1/20 1/100
Benchmark Method IPC 1M 10M 100M 1M 10M 100M 1M 10M 100M
101.tomcatv cold 1.931 0.92 0.99 0.98 0.84 0.98 1.00 0.70 0.90 0.99

lukewarm 0.99 1.02 0.98 0.92 1.02 1.01 0.79 0.98 1.00
warm 1.02 1.02 1.00 0.99 1.00 0.97 0.93 0.99 0.94

perfect 2.883 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
102.swim cold 1.772 0.92 0.99 0.95 0.75 0.99 0.96 0.59 0.87 0.97

lukewarm 1.02 1.01 0.95 0.95 1.04 0.98 0.67 1.02 0.96
warm 1.00 1.02 0.95 1.00 1.03 0.97 0.96 1.02 0.92

perfect 2.916 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.01 0.99
103.su2cor cold 2.068 0.96 0.97 1.00 0.93 0.95 0.98 0.81 0.92 0.98

lukewarm 0.96 0.99 0.99 0.95 0.96 0.99 0.90 0.92 1.00
warm 0.97 0.99 0.99 0.96 0.98 0.98 0.93 0.96 0.99

perfect 2.761 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00
104.hydro2d cold 1.112 1.03 1.03 0.97 1.01 1.05 1.08 0.91 1.05 1.16

lukewarm 1.04 1.02 0.97 1.02 1.03 1.07 0.92 1.06 1.15
warm 0.99 1.02 0.97 0.96 1.02 1.07 0.90 0.99 1.14

perfect 2.494 1.00 1.01 1.00 1.00 1.01 0.91 1.00 1.01 0.87
107.mgrid cold 2.037 0.89 0.98 1.02 0.82 1.01 1.02 0.65 0.95 1.08

lukewarm 0.90 0.99 1.02 0.86 1.13 1.04 0.84 1.03 1.17
warm 1.00 1.00 1.02 0.99 1.10 1.04 0.95 1.10 1.17

perfect 2.817 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99
110.applu cold 1.817 0.98 1.01 1.07 0.90 1.01 1.02 0.67 0.98 1.01

lukewarm 0.99 1.00 1.07 0.96 1.02 1.03 0.82 1.00 1.01
warm 0.98 1.01 1.07 0.93 1.02 1.03 0.86 0.96 1.01

perfect 2.732 1.00 1.00 1.01 1.00 1.00 1.00 0.99 1.00 1.00
125.turb3d cold 2.294 0.81 0.95 0.99 0.54 0.86 1.00 0.30 0.66 0.90

lukewarm 0.94 1.01 1.00 0.74 0.98 1.02 0.40 0.76 0.95
warm 0.98 1.02 0.99 0.94 1.01 1.01 0.86 0.93 0.90

perfect 2.785 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
141.apsi cold 1.844 0.95 0.97 1.05 0.83 0.92 0.94 0.58 0.77 0.88

lukewarm 0.97 0.97 1.05 0.93 0.95 0.93 0.69 0.89 0.92
warm 0.97 0.95 1.05 0.93 0.94 0.93 0.78 0.87 0.94

perfect 2.090 1.00 0.97 1.01 0.99 0.97 0.93 0.98 0.96 0.92
145.fpppp cold 0.539 1.02 0.95 0.86 1.02 0.97 1.01 1.18 0.93 2.21

lukewarm 1.02 0.95 0.86 1.02 0.97 1.01 1.14 0.94 2.28
warm 1.02 0.95 0.86 1.01 0.97 1.02 1.07 0.93 2.30

perfect 2.554 1.00 1.00 1.01 1.00 1.00 1.00 0.99 1.01 0.98
146.wave5 cold 1.968 0.93 0.98 1.00 0.81 0.91 0.92 0.55 0.83 0.91

lukewarm 0.94 0.99 1.01 0.86 0.97 0.97 0.74 0.87 0.95
warm 0.97 1.00 1.01 0.90 0.99 0.97 0.84 0.94 0.99

perfect 2.549 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2-12: Sampling validation for SPECFP95

56

ling in

pling

e

ample

, but

arm

ark

long-

In both tables, we shade the parameter set for each benchmark that we use for samp

our experiments. If no table cell is shaded for a particular benchmark, we did not use sam

for that benchmark, as the simulation time with thestd input set was tractable. For most of th

benchmarks, the sampling was inaccurate when the timing period was 1/100 of the s

interval. Some of the benchmarks were sufficiently accurate at 1/20 timing simulation

most of them required 1/5 timing simulation. All of the simulations needed lukewarm or w

simulation to be maximally accurate. By varying the sampling interval on a per-benchm

bases, we never exceeded a 1% error in IPC for those benchmarks that were sufficiently

running to require sampling.

57

with

ow-

dth are

cross

vious

to hold

given

. By

g the

hat

ently

in the

d upon

s to a

will

Chapter 3

Measuring Cache and Traffic Efficiency

Caches reduce bus traffic by buffering data so that they may service multiple requests

only one transmission of data from the next lower level of the memory hierarchy [51]. H

ever, since cache lines are larger than one word, both cache capacity and bus bandwi

wasted when spatial locality is poor. Words that will not be referenced are transmitted a

the bus, wasting a critical resource for the bandwidth-bound programs defined in the pre

chapter. Useless words also reside in the cache, taking up space that could be used

needed data. In this chapter, we define and evaluate two metrics:cache efficiencyand traffic

efficiency. Cache efficiency measures the fraction of useful data that a cache holds at any

time. Traffic efficiency measures the effectiveness with which bus bandwidth is utilized

measuring and analyzing these two metrics, we can discover opportunities for improvin

effectiveness with which both resources are used.

3.1 Cache efficiency

We define thecache efficiencyof a given memory to be the average fraction of the cache t

holdslive data [87] over the execution of a program. We define a word in the cache to belive

if it will be read again before it is overwritten or evicted. A word in the cache isdeadif its

valuewill not be read again before being evicted. If the block is thrown out and subsequ

loaded, that space in the cache is dead between its last read and its eviction. A word

cache is also dead in between a read and a write to that word, since the value is destroye

the write and is never reused. Only the period between a write and a read or two read

given value is considered to be live. For simplicity, during the following discussion, we

assume a cache that uses one-word blocks.

58

Once

nced

pro-

in the

e first

nt.

cy are

that

e cate-

live

This

is live

ad and

lock,

fol-

with

er

e in

uired

show

after

When a block is first referenced (we will assume by a read), it is loaded into the cache.

that occurs, there are three possibilities:

• The second reference to the block is a read. In that case, we define the block to belive for

the period between the two reads.

• The second reference to the block is a write. In that case, we define the block to bedead

for the period in between the read and the write. Even though the block is refere

again, the data in the block are destroyed (overwritten) with a value produced by the

cessor; thus the contents of the cache block before the write were not needed.

• The block in question is replaced by a second block that maps to the same location

cache, before a second reference to the first block occurs. In this case, we define th

block to be dead for the period between the read to the first block and its replaceme

When cache blocks are larger than a single word, the definitions of liveness and efficien

slightly more complicated. Liveness of a large block can be measured in two ways:

• coarse grain, in which we consider the block to be live in between successive reads to

block. This approach is crude, as it lumps operations to separate addresses into on

gory, and is thus less suitable for evaluating intra-block efficiency.

• fine grain, in which we consider a block to be live so long as any word in that block is

(with the definition of liveness for each word being the same as previously defined.

approach is more difficult to measure, since the determination as to whether a block

cannot be made at the time of each reference to that block. For instance, when a re

then a write are issued to the same cache block, but to different offsets within the b

the block could be live for the period between the read and the write if the write is

lowed by another read to the same address as the first read (we illustrate this problem

the two reads to addressX1 in Figure 3-1). If the cache block is evicted before anoth

read to a non-overwritten word, then the block should have been dead for the tim

between the read and the write. Thus, at the time of the write, future knowledge is req

to determine the status of the block.

We depict an example of a cache efficiency calculation in Figure 3-1. In Figure 3-1a, we

an example of how efficiency would be calculated for a one-word block.X andY are two

cache lines that conflict in the cache. In each box, we show the contents of a cache line

59

for the

e

verwrit-

gain

s, as it

riods

oach,

ne

f

f the

bit”

ad

ount

), or

dead.

the operation above it completes. The bars between the boxes represent live periods

block (hatched) and dead periods (grey). WhenX is brought into the cache with a read, w

mark it as dead between the read and the write, since the read data are subsequently o

ten (and thus did not hold useful data). For the next period, it is live, since it will be read a

after the write. The cache line is marked dead, live, and dead over the next three period

is replaced, consumed, and replaced again, in this example. Assuming unit time pe

between each operation to this line, the efficiency of this line would be .

In Figure 3-1b, we depict an example (measuring efficiency using the fine-grained appr

in which a block is live if any word in the block is live) with two-word cache lines. Each li

holds two addresses (cache lineX holds wordsX1 andX2, for example). In the upper part o

the two-word figure, we show the status (live or dead) for each word. In the lower part o

figure, we show the status for the cache line as a whole (applying a logical OR to the “live

of every word in a given cache line). For the first two time periods, wordX2 is never live

because it is never read, butX1 is live for both periods because it is loaded in and then re

two operations later. All the words in the block are dead between the last reference toX and its

replacement byY. There are two methods of measuring efficiency in this case; we can c

the entire line as live if any of its constituent words are live (effectively using a logical OR

we can measure the intra-block efficiency, considering words within a cache line that are

Figure 3-1: Examples of block liveness

Read XRead X Write X Read X Read Y Read Y

Read Y2Read X1 Write X2 Read X1 Read Y1 Write Y1

X X X Y Y X

X1

X2

X1

X2

X1

X2

Y1

Y2

Y1

Y2

Y1

Y2

X X X Y Y X

(a) One-word blocks:

(b) Two-word blocks:

Live

Dead

40%

80%

2 5⁄ 0.40=

60

um-

, the

be

ases

t here.

ols—

an

write-

MB,

ost of

small

at the

We ran

m256

nch-

2.6.0

mod-

ion 10

ur
e
e

With the former approach, the efficiency of this line for the time period shown (again ass

ing constant time between operations) would be . Using the latter approach

efficiency would be . With the latter approach, the efficiency will always

lower than a cache of equivalent size with one-word blocks, except in pathological c

where the replacement policy punishes finer-grain mapping of blocks into the cache.

3.1.1 Methodology

We measured cache efficiencies in a previous study [12], the results of which we presen

In that study—performed before we had brought up our version of the SimpleScalar to

we used a modified version of DineroIII [60] (a cache simulator written by Mark Hill) to sc

address traces produced by Shade [26] (a tracing tool written by Sun Microsystems).

We measured cache efficiencies for caches with 32-byte blocks and a write-allocate,

back policy. We simulated all cache sizes that were powers of two between 4KB and 2

and with set associativities of 1, 2, and 4. We did not simulate larger caches because m

the benchmarks we used for this study were the SPEC92 benchmarks [116], which had

data sets (all less than 4 MB). We used SPEC92 because SPEC95 was not available

time.

The SPEC92 benchmarks we used were compress, eqntott, swm256, and su2cor.

Compress and Eqntott with the default inputs. We ran su2cor with a short input, and sw

with the default input for 20 iterations. In addition to SPEC92, we used two other be

marks: buk and g++. Buk is a NAS [4] kernel that implements bucket sort. g++ is release

of the Gnu C++ compiler, which generates the assembly code of the preprocessed CPU

ule of a multiprocessor simulator. We produced all Shade traces using Sun Sparcstat

workstations, compiled with-O3 -mflat 1 using GCC version 2.6.0.

1. The “mflat” option compiles code without using the SPARC register windows. Running with register
windows would have hidden a fraction of the addresses produced by the benchmark code from o
trace, as instructions from traps on window overflows and underflows are not output by Shade. Th
libraries we used were unavoidably compiled with register windows, and therefore generated som
addresses that were not included in our trace.

4 5⁄ 0.80=

4 10⁄ 0.40=

61

cold-

mea-

ntities

g to

sume

y dif-

ache

idual

con-

traced

cache

entire

iently

To establish that the low efficiencies were caused by poor use of the cache, and not

start or dead data (program commencement and termination effects, respectively), we

sured the dead time before a frame’s first and after a frame’s last reference. Those qua

were appropriately negligible, indicating that the programs were sufficiently long-runnin

prevent endpoint effects from affecting our results.

3.1.2 Measurement of cache efficiencies

In Figure 3-2 we plot the measured efficiency of 4-way set-associative caches. We as

32-byte blocks for both graphs shown. In Figure 3-2a, we depict efficiencies calculated b

ferentiating between live and dead words within blocks, and in Figure 3-2b, we show c

efficiencies examining the coarse-grain method of measuring blocks rather than indiv

words (e.g., the period in between two reads to different words in the same line would be

sidered live).

Caches substantially smaller than the data set size (and/or the working set size) of the

application show poor efficiency, as loaded lines are evicted after few uses and the

thrashes. Efficiency improves with increasing cache size, peaking at the point where the

data set just fits in the cache. Peaks with a lower value occur when the cache is just suffic

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4K 8K 16K 32K 64K 256K 1M 2M
Size of cache

E
ff

ic
ie

nc
y

(a) Word-level granularity

buk

compress

eqntott

g++

su2cor

swm256

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

4K 8K 16K 32K 64K 256K 1M 2M
Size of cache

E
ff

ic
ie

nc
y

(b) Block-level granularity

Figure 3-2: Efficiency measurements

62

and

ciency

never

. We

lly low

es to

for

granu-

cien-

Codes

ord-

on. In

nce if

oint

y is

iment

dead.

n the

level

r the

ndence

larger

for a

the

bout

(we

large to hold the working set; two such peaks are visible for swm with a 16KB cache

su2cor with a 64KB cache. Once the cache is larger than a benchmark’s data set, the effi

decreases inversely proportionally to increased cache size, as the added cache is

touched.

Higher set associativities produce slightly—but not qualitatively—more efficient caches

present the 4-way set associative results here to show that the efficiencies are genera

even with a high associativity. The direct-mapped efficiencies are even lower.

Although the shapes of the curves match our intuition, we found the height of the curv

be surprisingly low. The word-level granularity efficiencies tend to remain under 20%

cache sizes that are less than a quarter of an application’s data set size (for block-level

larity, the efficiencies are under 30%). The ratio between the block- and word-level effi

cies gives a rough idea of what percentage of the words in the block are actually used.

that access arrays linearly, with a unit stride, will produce similar efficiencies for the w

and block-level efficiency measurements. The swm benchmark shows this phenomen

general, the word-level efficiencies should always be less than block-level efficiencies, si

any word in a block is live, block-level runs count the whole block as live. The one data p

where this relation does not hold is Swm with a 2MB cache. The block-level efficienc

lower than the word-level efficiency here because of the method we used in this exper

for calculating block liveness (coarse grained); a store marks everything in the block as

In this particular case, blocks that contained multiple live words were declared dead i

block-level calculation, enough that the block-level efficiency was driven under the word-

efficiency.

Although the efficiencies for the larger caches tend to be high compared to those fo

smaller caches, these are uninteresting data points because of the close correspo

between the larger cache sizes and the applications’ data sets. The two benchmarks with

data sets (Swm and Buk with 4MB and 6MB, respectively) have efficiencies of under 5%

one megabytecache. As with the other benchmarks, efficiency rises precipitously when

cache is sufficiently large to hold the working set, which for these two benchmarks is a

2MB. Buk and Swm efficiencies for a 4MB cache are lower than those of a 2MB cache

63

e, the

uch

ce useful

mber of

r, we

nd on

note

ossi-

r per-

y be

better

s

to the

a

fic.

cient

mpt to

ucing

seen

nt to

did not plot the 4MB results). Even when the cache size is closest to the working-set siz

highest word-level efficiencies were just above 50%, which is a poorbest-case utilization.

The implications of these low cache efficiencies are twofold: that the cache moves m

useless data across the bus (data that are dead on arrival), and that the cache keeps on

data in the cache longer than necessary. In Chapter 4 and Chapter 5, we propose a nu

techniques for addressing both sources of low efficiency. In the remainder of this chapte

quantify the amount of superfluous traffic moved across the bus, and place a lower bou

bus traffic, thus measuring the highest possible effective bandwidth for a given bus. We

that these efficiencies do not necessarily correlate directly with performance; it may be p

ble to have a cache with a lower efficiency and still have the system demonstrate superio

formance. The low efficiencies that we measured are simply an indicator that it ma

possible to improve cache performance; they are evidence that there is potential to make

use of the cache space.

3.2 Traffic efficiency

In this section, we explore three metrics: (1)traffic ratio, a well-known metric that measure

how much traffic a cache reduces (or increases) from one level of the memory hierarchy

next, (2) optimal traffic ratio, which defines the maximal possible traffic reduction that

cache of a given capacity could perform, and (3)traffic efficiency, which quantifies the gap

between how much traffic reduction a cachecould perform and actuallydoesperform. With

this metric, we are able to quantify how much individual cache features may reduce traf

3.2.1 Definition of traffic ratios

In Chapter 1, we discussed how—for a class of programs—stalls caused by insuffi

memory bandwidth may become dominant as processors and memory hierarchies atte

tolerate memory latencies more aggressively. On-chip memory plays a crucial role in red

off-chip traffic [51]. This reduction increases the effective pin and/or bus bandwidth, as

by the processor. When bandwidth limits performance, an important metric is the exte

64

ction

t pro-

sed

ls of

the

c

regis-

-back

s rate

ies: a

ching

sizes

th to

m-

which caches reduce traffic to lower levels of the memory hierarchy, since the traffic redu

increases the effective bandwidth to and from those lower levels.

Therefore, in Section 3.2.3, we measure thetraffic ratios of a number of caches, which

allows us to calculate effective memory bandwidth for a given processor. Goodman firs

posed the concept of a traffic ratio, calling it bus transfer ratio [51]. Hill and Smith propo

the term traffic ratio, which we use herein [61]. We generalize this metric to multiple leve

cache. LetDi represent the traffic volume—the total amount of transmitted bytes—during

execution of a given program. For a leveli in the memory hierarchy, we obtain the data traffi

ratio (Ri) by dividing the traffic between levelsi and (Di) by the traffic between levels

andi ():

(3-1)

For example, if a level-one data cache had 1K 4-byte loads issued to it from level 0 (the

ters), and the cache produced 32 misses (with 32-byte lines), the traffic ratio would be:

(3-2)

For simple caches with a write-through policy, we can calculateRi directly from the cache

miss ratio, the number of issued loads and stores, and the cache block size. A write

cache decouples the direct correlation between miss rate and traffic ratio. Using the mis

to estimate traffic ratios becomes less accurate for more complicated memory hierarch

lockup-free cache may combine two misses with one response from memory, prefet

increases traffic more than it reduces the miss rate, and support for variable transfer

makes it difficult to measure cache traffic accurately with miss rate alone.

We use the traffic ratio at each level in the hierarchy to calculate the effective bandwid

the next lower level of the hierarchy. By dividing the bandwidth from level of the me

ory hierarchy byRi, we obtain theeffective bandwidth from level . By taking

i 1+

i 1– Di 1–

Ri Di Di 1–⁄=

R1 D1 D0⁄ 32 32×() 1024 4×()⁄ 0.25= = =

i 1+

i 1+

65

or.

ote

g set

eri-

ed in

st rate

ives

or if

ctive

y

-

le to

te that

r-

chy,

refer-

(3-3)

wherek is the number of levels of on-chip caches, andBpin is the pin bandwidth for the pro-

cessor in question, we obtainEpin, which is the effective pin bandwidth seen by the process

Higher traffic ratios for on-chip caches will thus increase the effective pin bandwidth. N

that this metric assumes uniformity in the access patterns. In a real system, workin

changes will produce “bursty” periods of traffic, which may be followed by underutilized p

ods. As memory systems come to look more like queueing systems (as discuss

Chapter 1), and the processor continues to exploit larger instruction windows, the reque

will become more uniform.

3.2.2 Definition of traffic efficiency

While the traffic ratio of a cache shows how effective a cache is at traffic reduction, it g

no indication as to whether the amount of traffic the cache produces close to optimal,

there is much remaining potential for traffic reduction. Theoptimal traffic ratioof a cache

allows us to compute a lower bound on memory traffic, and thus an upper bound on effe

memory bandwidth. Assume thatDi
opt is the theoretically minimal volume of traffic that ma

be produced by a memory of a given capacity at leveli in the hierarchy. We compute the opti

mal traffic ratio (Ri
opt) as follows:

(3-4)

This upper bound is only valid if the processor model remains unchanged; it is possib

change the memory reference stream and therefore further reduce traffic. Also, we no

the traffic volume at a given leveli (Di) is dependent on the organization of the memory hie

archy in the higher levels (). Measurements for different levels in the hierar

whether normally or optimally managed, may not therefore be taken with independent

ence streams and then multiplied.

E
pin

B
pin

Ri
i 1=

k

∏⁄=

Ri
opt

Di
opt

Di 1–⁄=

1 i 1–→

66

opti-

this

c-

ffic is

of

es

s. In

If processor pin bandwidth is the primary bottleneck in a system, we can compute the

mal pin bandwidth (the same could be done for memory bus bandwidth). LetOpin be the

upper bound on effective pin bandwidth. Using the optimal traffic ratio, we can compute

upper bound as follows (k andBpin are the same as in Equation 3-6):

(3-5)

Now that we have an expression for the optimal traffic ratio, we can computetraffic efficiency,

which we shall denote asE. Traffic efficiency measures how close to optimal the traffic redu

tion of a given cache is, by expressing the number of times greater the actual cache tra

than the minimal amount of traffic. Formally, we defineE as the ratio of the traffic ratios of a

normal cache and a perfectly managed cache of the same size.

The traffic efficiency for leveli in the memory hierarchy,Ei, is therefore:

(3-6)

whereDi
cacheis the traffic generated by the cache at leveli, andDi

opt is the minimal volume

of traffic that could be generated by a perfectly managed cache at leveli.

A level in the memory hierarchy with is therefore perfectly managed, in terms

memory traffic reduction. Large values ofEi indicate a memory organization that generat

much more traffic below it than is necessary. Large values ofEi also indicate that there is

potential to reduce unnecessary traffic.

In this subsection, we have not discussed how to obtain optimal cache traffic volume

Section 3.2.4 we propose a structure that enables us to approximateDopt experimentally, and

thus obtain bothRopt andE.

O
pin

B
pin

Ri
opt

i 1=

k

∏⁄=

Ei

Ri
cache

Ri
opt

Di

cache

Di 1–

Di 1–

Di
opt

------------×
Di

cache

Di
opt

--------------- 1≥= = =

Ei 1=

67

d con-

refer-

es by

ured

ted in

 grid.

, and

size.

. We

ped,

with

stion

esting,

ould

an a

le 3-1,

or if

six or

igher

. com-

ystem.

3.2.3 Measurement of traffic ratios

We used trace-driven simulation to measure memory traffic for various cache sizes an

figurations. We used QPT to generate traces [60]. The traces contained data memory

ences but no instructions or TLB miss traffic. QPT handles double-word memory access

consecutively issuing the two adjacent single-word addresses.

We used the DineroIII cache simulator [60] to perform our cache simulations. We meas

cache traffic for the same set of SPEC92 benchmarks and inputs as listed in theE1 experiment

set shown in Table A-1. We list results here for one other SPEC92 benchmark not evalua

Appendix A: dnasa2, an FFT-based floating-point code, which we ran with a 128x64x64

We measure the traffic ratio by measuring the total traffic for a given cache with Dinero

dividing the total traffic by the product of the loads and stores issued and the load/store

“Total traffic” in these experiments includes write-back traffic but not request traffic (i.e.,

addresses). We flush the cache upon program completion, writing back all dirty data

include these flushed write-backs in our traffic measurements.

In Table 3-1, we list traffic ratio measurements for a range of single-level, direct-map

32-byte-block, write-allocate, write-back cache sizes. We saw similar results for caches

higher associativities. Table cells marked “—” are those for which the cache size in que

is larger than the benchmark’s data set size. This area of the experiment space is uninter

sinceR will always approach 0 when the program runs out of the cache.

When , a cache generates exactly as much total traffic to memory as there w

be with no cache. It is well known [51, 61] that small caches may generate more traffic th

cacheless reference stream. For five of the eight benchmarks, we see this effect in Tab

for caches with sizes of 4KB and less. If a block is replaced quickly after its first use—

there is little spatial locality associated with the access that caused the miss—the other

seven words loaded with the 32-byte block are superfluous, and will contribute to a h

traffic ratio.

We see the effect of caches increasing total traffic for some larger cache sizes as well

press and su2cor generate more traffic with a 64KB cache than would a cacheless s

Ri 1.0=

68

ins little

over

than

che

y and

each

t the

erly

ve on-

bench-

d to an

n sys-

duced

results

hmarks

imen-

compress repeatedly accesses a large hash table, so its memory reference stream conta

spatial locality (a larger block size will consequently waste bandwidth). Su2cor iterates

several large arrays, some of which conflict heavily in its main loop for cache sizes less

64KB. In contrast to su2cor, swm has roughly the same traffic ratio from 16KB to 1MB ca

sizes. Swm iterates over large arrays, with a reference pattern that contains little localit

no small working sets [99]. Swm does have high spatial locality, however, allowing one

cache miss to service multiple loads, thus keeping the traffic ratio under 1.0 for all bu

smallest cache sizes. In general,Ri ranges between 0.1 and 1.0 for caches that are not ov

large or small for a given program.

The generation of machines that these benchmarks were designed to test did not ha

chip caches larger than 64KB. We therefore calculated the arithmetic mean of theRi for all

caches with sizes greater than or equal to 64KB and less than the data set size of each

mark. The mean across all benchmarks was 0.51. While this estimate cannot be applie

individual program/cache combination, we can say that for these benchmarks running o

tems with cache sizes typical of the benchmarks’ generation, the processor traffic is re

about in half. Since the SPEC92 benchmarks’ data sets are not large, however, these

are conservative—many of these programs run out of the caches, whereas larger benc

would incur more conflict misses, thus increasing the traffic ratio.

3.2.4 Methodology for measuring traffic efficiency

In this section, we measure an upper bound on effective memory bandwidth. By exper

tally measuring a value that approachesDopt, we can calculate traffic efficiency using

Equation 3-6, and thus obtain the highest effective memory bandwidth for a given bus.

Trace 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

Compress 1.76 1.59 1.46 1.29 1.10 0.82 0.43 — — —
Dnasa2 1.34 0.94 0.73 0.62 0.29 0.05 — — — —
Eqntott 0.55 0.47 0.43 0.39 0.34 0.27 0.18 0.11 0.06 —

Espresso 0.39 0.20 0.08 0.01 — — — — — —
Su2cor 6.88 6.11 4.75 2.99 1.43 0.82 0.61 0.29 0.13 —

Swm 3.94 1.79 0.63 0.60 0.59 0.58 0.58 0.56 — —

Table 3-1: Traffic ratios for 32-byte block, direct-mapped caches

69

ini-

al

Thus,

MTC.

ded

hat

ck that

che,

cache

that

he

riting

-

of a

),

TC,

r it is

We approximateDopt by simulating a special cache organization that comes close to m

mizing the traffic it generates from misses and write-backs. We call this structure aminimal-

traffic cache, and will henceforth refer to it as an MTC. An MTC differs from a tradition

cache in four respects:

• Block size: both the transfer size and the block size are equal to the request size.

only data that are needed by the processor are loaded across the bus or stored in the

• Associativity: the MTC is fully associative. No conflicts can therefore ever evict a nee

block, which would cause it to be reloaded and increase traffic.

• Replacement policy: the ideal replacement policy would choose to evict the block t

will cause the least total memory traffic. Belady’smin policy [5]—which uses oracular

knowledge, and thus can never be implemented in a real machine—replaces the blo

the processor will reference the farthest in the future (or any dead block in the ca

which either will never be referenced again or will be overwritten). Themin policy is an

approximation of the optimal policy; we shall discuss the difference betweenmin and

optimal subsequently. If the next reference to the loaded block is of lower priority (i.e.,

will be read farther in the future) than any block in the cache, the block bypasses the

rather than evicting something of higher priority.

• Write policy : the traffic-optimal write policy iswrite-back, write-validate[70]. A write-

back policy will always produce less memory traffic than write-through for caches

have one-word blocks1. A write-validate policy overwrites the contents of a block and t

block’s associated tag, rather than fetching the block from memory and then overw

the word, as in awrite-allocatepolicy. For blocks with multiple words per block, a write

validate policy requires valid bits for individual words, and if a read accesses part

write-validated block that is not valid (i.e., has not received a store to that particular word

a read miss occurs. Read misses to write-validated blocks do not occur in an M

because the blocks contain one word, and thus no part of the block is invalid wheneve

created in the cache by a write. We also incorporatewrite bypassinto the MTC, in which a

write that has a lower priority than anything else in the cache—according to themin

1. For larger cache lines, write-back will have less traffic only when the number of writes to a line
(while it is in the cache) is greater than the number of words in the cache line.

70

next

rea-

of

witz

backs

tz

here-

raints

-

lady’s

ites

Since

o be

, it is a

any-

duce

-vali-

ithm

e two

ream

d

and

icted).

e

replacement policy—is not loaded into the cache, but instead is sent directly to the

level of the memory hierarchy.

The MTC we measured does not place an optimal lower bound on memory traffic for two

sons. First, themin policy is sub-optimal for write-back caches, since in our application

min there is an additional cost (extra traffic) associated with replacing a dirty block. Hor

et al. proposed an algorithm to manage optimal replacement in the presence of write-

[63]. We implemented only themin algorithm, and not the optimal write-conscious Horwi

algorithm. We believe that the disparity between the two is small for large caches, and t

fore not worth the large additional complexity of simulating the Horwitz algorithm.

Second, after we published this study [13], we discovered that, under the const

imposed by the MTC, Belady’smin algorithm is sub-optimal for read traffic. For write-vali

date caches with one-word blocks, we can generate less read traffic by modifying Be

algorithm. When prioritizing blocks for replacement, we must ignore both all future wr

and all reads that follow any future writes and are to the same address as the writes.

writes effectively create a block (with one-word blocks), the block can be considered t

dead beforehand, as described in Section 3.1. Since the block is dead before the write

good candidate for replacement, and when the write to that block occurs, it can be written

where in the cache (overwriting another block that may have recently died). We can re

misses over Belady’s algorithm essentially because, with one-word blocks and a write

date policy, we are treating blocks asvaluesand notaddresses. If the caching paradigm was

thrown away, and only individual values were considered, Belady’s scheduling algor

would still be optimal.

We show an example of this extension in Figure 3-3. The figure shows the effects of th

different priority schemes on an MTC with a fixed reference stream. The reference st

(time) goes from left to right. The initial contents of the MTC are addressesX, Y, andZ. In the

original priority scheme, whenW is loaded (1),Z is the cache block that will be reference

farthest in the future, soZ is replaced byW. The subsequent three accesses (2,3,4) all hit (

X dies on reference (2); we assume that it won’t be referenced again before being ev

Finally, Z is loaded, and replacesX. In the original prioritization, we load a total of two cach

71

e

y is

the

e more

paci-

blocks from memory. In the modified priority scheme, we loadW (1), and considerY to be

dead, since it will be overwritten before the next read toY. We therefore replaceY with W. We

then readX (2), which subsequently dies. When we writeY (3), we overwriteX, since it is

dead. The following reads (4,5) toY andZ are hits. With the modified priority scheme, w

only loaded one cache block from memory, but loaded two withmin. Thus,min is non-opti-

mal for read traffic with caches that have a write-validate policy and one-word blocks (min

may be non-optimal for write-validate caches with larger blocks as well, but that stud

beyond the scope of this dissertation).

For the above two reasons, are our measurements ofDopt are not an optimal bound, but an

approximation. We show in the following section, however, thatDopt is still substantially

smaller thanDcachein most cases. Finally, we note that we do not consider tag overhead in

MTC. Since tag overhead increases when smaller blocks are used (because there ar

blocks and the tags are slightly larger), thegross cache size[61] of an MTC with one-word

blocks and a traditional cache with larger blocks will be different. We equate the data ca

ties, not the gross cache sizes, in this study.

Figure 3-3: Extending Belady’s min algorithm

(1) Read W (2) Read X (3) Write Y (4) Read Y (5) Read Z

X

W

Z

X

W

Z

Y

W

Z

Y

W

Z

Y

W

Z

X

Y

W

X

Y

W

X

Y

W

X

Y

W

Z

Y

W

Initial contents

X

Y

Z

X

Y

Z

(a) Original:

Evict Z
Load W

Evict X
Load Z

Evict Y
Load W

Overwrite X

(b) Modified:

Time

X dies

X dies

72

xi-

isions

a live

o per-

ence

time

e

ing the

epoch,

, we

space

easure-

32-

lts

e

en for

refer-

large

cia-

for

3.2.5 Measuring traffic efficiency

We used QPT-generated traces, coupled with the Dinero cache simulator, to measureD1
cache

for the numerator ofE1, the traffic efficiency expression shown in Equation 3-6. We appro

mate the denominator ofE1 (Dopt) by measuringDMTC—for which the definition of MTC is

as described in Section 3.2.4—with our own two-pass simulator. Since replacement dec

in an MTC require future knowledge, our simulator scanned each trace once to construct

range graph (necessary for prioritizing blocks in the cache for replacement), and once t

form the actual cache simulation. Since maintaining live range information for each refer

in the compressed QPT trace would have required prohibitively large disk space (at the

we did this study), we broke the program down intoepochs(constant segments of time). In th

first pass, we saved to disk only those live ranges that crossed the epoch boundary. Dur

second pass, we scanned ahead in the trace and constructed all live ranges within each

using the file on disk to fill in those inter-epoch live ranges. By increasing epoch size

could increase time (scanning each epoch during MTC simulation) at the expense of

(the inter-epoch disk file).

We used the same benchmarks and inputs as described in Section 3.2.3. The traffic m

ments for both simulators also include the same components (e.g., write-back traffic) as did

the traffic ratio experiments. For theDcachemeasurements, we assumed direct-mapped,

byte block, write-allocate, write-back caches.

In Table 3-2, we list traffic efficiencies for caches ranging from 4KB to 2MB. Our resu

show that there is a wide disparity of values forE across the different benchmarks. Four of th

benchmarks haveE between 20 and 100 (compress, eqntott, espresso, and su2cor)—ev

large caches. The other two—dnasa2 and swm—typically have values ofE between 2 and 10.

These two benchmarks are scientific codes that display little temporal locality, thus the

ence stream contains less opportunity for optimization by a better-managed cache. The

jump to aE of 124 for swm with a 1MB cache occurs because the MTC (being fully asso

tive) is able to eliminate the conflicts of the major data arrays, which are significant in swm

73

are

rease

se of

gaps.

ree

re rep-

t-asso-

fully

gaps

he and

any

ncrease

the

tween

s not

uting

ular

traditional caches. Only when a traditional cache is sufficiently large (4MB or greater)

these conflicts in Swm ameliorated.

3.2.6 Factorization of traffic efficiency

These high traffic efficiencies demonstrate that there is a significant opportunity to inc

effective pin bandwidth—between one and two orders of magnitude—by making better u

the on-chip memory. We now turn to determining which factors contribute to these large

In Figure 3-4, we show a log-log plot of traffic volumes (in KB) versus cache sizes, for th

of the SPEC92 benchmarks. We include only compress, eqntott, and swm, since they a

resentative of the other benchmarks. The top six lines in each graph represent 4-way, se

ciative caches with block sizes from 4B to 128B. The thick dotted line represents a

associative, write-allocate, write-back cache that usesmin as its replacement policy. The thick

solid line represents the MTC that we used for all traffic efficiency calculations. Large

between a line and the MTC line indicate large traffic efficiencies.

There are three factors visible on Figure 3-4 that contribute to large gaps between cac

MTC traffic. The first is increased block size. Compress has little spatial locality, since m

of its accesses are to a hash table. Any increase in block size causes a corresponding i

in traffic. The same effect is visible for Eqntott (to a lesser extent), and for Swm when

cache sizes are smaller than 32KB. Swm shows spatial locality for larger caches (be

32KB and 2MB) because the extra words in larger blocks are used when the block i

quickly replaced—when the working set fits into the cache. The second factor contrib

substantially to the cache/MTC traffic gap is the combination of associativity and orac

Trace 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB

compress 18.7 19.5 21.9 25.5 29.2 30.7 32.5 — — —
dnasa2 6.2 4.7 4.1 4.6 7.0 10.0 — — — —
eqntott 34.5 35.8 49.7 94.4 100.5 94.1 72.7 47.7 28.6 —

espresso 26.3 40.4 82.2 28.9 — — — — — —
su2cor 15.1 16.4 17.2 21.9 20.1 25.7 40.3 28.7 35.8 —

swm 17.2 7.9 2.8 2.7 2.8 3.0 3.5 5.4 124.1 74.8

Table 3-2: Traffic efficiencies for 32-byte block, direct-mapped caches

74

-vali-

xperi-

re the

tor in

col-

res of

niza-

it was

,

ck

d the

n the

replacement, which causes the large gap for Swm at 1MB. The third factor is the write

date policy, which causes the majority of the gap for Eqntott.

To better understand which of these factors are significant, we isolate each factor e

mentally. Traditional caches and an MTC differ by four factors. To dissectE into its compo-

nents, we begin with a cache and add one MTC-like factor at a time. We can measu

addition of each factor by simulating and comparing structures that have all but one fac

common. We list the factors isolated with the pairs of structures in Table 3-3. In the first

umn, we list the factors that we isolated. In the second column, we list the common featu

the experiment pairs for each isolation. The third and fourth columns list the two orga

tions used for each isolated factor. We did not isolate cache bypassing as a factor, since

implicit in themin replacement policy.

The traffic reduction for each factor depends on the underlying structure—for instancemin

replacement will reduce traffic differently for a write-validate, fully associative, 4-byte blo

cache than it will for a write-allocate, 32-byte block, direct-mapped cache. We can ad

four MTC mechanisms successively in a number of orders. There are two restrictions o

10^2

10^3

10^4

10^5

10^6

10^7

64 256 1K 4K 16K 64K 256K 1M
Cache and MTC size (bytes)

T
ra

ffi
c

(K
B

)
(a) Compress

10^3

10^4

10^5

10^6

10^7

10^8

64 256 1K 4K 16K 64K 256K 1M 4M

T
ra

ffi
c

(K
B

)

(b) Eqntott

10^2

10^3

10^4

10^5

10^6

10^7

64 256 1K 4K 16K 64K 256K 1M 4M
Cache and MTC size (bytes)

T
ra

ffi
c

(K
B

)

(c) Swm

128B blocks
64B blocks
32B blocks
16B blocks
8B blocks
4B blocks
MTC with write-allocate
MTC with write-validate

Figure 3-4: Total traffic generated by different cache and MTC sizes

75

s

re the

the

ed two

t is

xperi-

s

d one

so, for

ents,

traffic

s of

anges

trib-

t con-

and

25 and

order; full associativity should be measured beforemin replacement (replacement policy i

irrelevant for a direct-mapped cache), and the small blocks should be measured befo

write-validate policy. With these restrictions, there are still six possible orders in which

mechanisms may be measured. We show only one such order in Table 3-3. We perform

separate experiments for isolating the effect of block size—one withmin (Factor IIIa) and one

with LRU replacement (Factor IIIb). The block size experiment with LRU replacemen

shaded because it is not part of the successive addition of factors that the other four e

ments are.

In Table 3-4, we quantify how toggling each factor affectsE for each benchmark. The value

in the table show the change in traffic efficiency as each factor is toggled. We simulate

cache size per benchmark, using 64KB data caches for all benchmarks except espres

which we simulated a cache size of 16KB (because of its small data set). In these experim

we do not include request traffic, which increases with smaller block sizes, and thus our

results are biased in favor of smaller blocks.

Below the four rows for individual mechanisms, we compare the sum of the contribution

the individual factors to the traffic efficiency. The rows containing the sum andE should be

equal. We are not yet able to adequately explain the gap between the two rows (which r

from 0.2 to 1.0).

In Table 3-5, we show the relative fraction of traffic efficiency that each mechanism con

utes to the total. Of these mechanisms, reduced block size is, unsurprisingly, the larges

tributor to E, constituting the largest component of two of the benchmarks (compress

eqntott, at 0.48 and 0.37) and the second largest for another two (su2cor and swm, at 0.

0.11). The other three mechanisms are the largest component ofE for at least one benchmark

Factor Common Exp1 Exp2

I. Associativity LRU, 32B, write-allocate direct mapped fully associative
II. Replacement fully assoc., 32B, write-allocate LRU replacement min replacement
IIIa. Blk. size (MTC) min, fully assoc., write-allocate 32B blocks 4B blocks
IIIb. Blk. size (cache) LRU, fully assoc., write-allocate 32B blocks 4B blocks
IV. Write-validate min , fully assoc., 4B write-allocate write-validate

Table 3-3: Experimental parameters for Table 3-4

76

), and

f one

duce

cross

nge is

ped

rence

orks

rect-

ing the

t

olicy

each: associativity for espresso and su2cor (0.89 and 0.42), write-validate for swm (0.46

min replacement for dnasa7 (1.20). What is surprising about these results is the lack o

factor (or even two) that dominates in traffic reduction. This result indicates that—to re

traffic substantially—caches must incorporate a range of mechanisms to be effective a

different benchmarks.

One aberration in Table 3-5 stands out: the negative value for dnasa7. The sign cha

caused by anincreasein traffic when a fully associative cache is compared to a direct-map

one. The increase in traffic is caused by a antagonistic interaction between the refe

stream and the LRU replacement policy; a well-known case in which LRU replacement w

poorly for sequentially accessed data [48]. In this case, less mapping flexibility (a di

mapped cache) prevents the replacement policy from evicting some useful blocks, caus

direct-mapped cache to produce less traffic. (When themin replacement policy is added, i

eliminates that problem and reduces traffic much further, which is why the replacement p

component of traffic reduction is larger than the final traffic efficiency for dnasa7).

Benchmark compress dnasa7 eqntott espresso su2cor swm

Cache size 64KB 64KB 64KB 16KB 64KB 64KB
I. Associativity 1.8 -3.8 0.5 73.0 8.4 0.1
II. Replacement 12.0 8.4 31.0 3.9 4.6 0.3
IIIa. Block size (MTC) 14.0 0.4 37.0 3.5 5.0 0.3
IV. Write-validate 1.2 1.2 31.0 1.0 1.2 1.3
Sum (I+II+IV+V) 29.0 6.2 99.5 81.4 19.2 2.0
Traffic efficiency 29.2 7.0 100.5 82.2 20.1 2.8
IIIb. Block size (cache) 25.0 2.7 47.0 68.0 14.0 0.3

Table 3-4: Efficiency gap for different optimizations

Benchmark compress dnasa7 eqntott espresso su2cor swm

Cache size 64KB 64KB 64KB 16KB 64KB 64KB
I. Associativity 0.062 -0.543 0.005 0.888 0.418 0.036
II. Replacement 0.411 1.200 0.308 0.047 0.229 0.107
IIIa. Block size (MTC) 0.479 0.057 0.368 0.043 0.249 0.107
Write-validate 0.041 0.171 0.308 0.012 0.060 0.464
IIIb. Block size (cache) 0.856 0.386 0.468 0.827 0.697 0.107

Table 3-5: Fraction of traffic efficiency per factor

77

ully

i-

olicy,

tt), to

place-

de—

e opti-

ccess-

the

and/or

rfor-

In the last row of Table 3-5, we show the relative effect of reducing block size in a f

associative LRU replacement cache, instead of amin replacement cache. The relative contr

butions of reduced block size are much larger for a cache with an LRU replacement p

ranging from a small 0.11 (Swm), to over a third (0.39 and 0.47 for dnasa7 and eqnto

well over half (0.86, 0.83, and 0.70, for compress, espresso, and su2cor). Since LRU re

ment is less efficient at packing data into the cache thanmin, increasing the number of blocks

under LRU produces a large reduction in traffic.

We have shown in this chapter that a large gap—as much as two orders of magnitu

exists between the amount of traffic that a cache generates and an approximation of th

mal. Furthermore, each of the design aspects (block size, associativity, direct/indirect a

ing, etc.) in the near-optimal structure can contribute significantly to traffic reduction. In

next three chapters, we discuss how each of these mechanisms can be implemented

approximated in a cost-effective manner, reducing memory traffic and thus improving pe

mance for bandwidth-bound codes.

78

ons in

avier

traf-

iques

hat

cement

d). In

ed. In

upon a

r ben-

ssor

ch new

essor

p and

In this

erfor-

the

ck is

Chapter 4

Reducing the Impact of Memory Traffic

In Chapter 1, we discussed how and why memory traffic can cause significant degradati

processor performance. In Chapter 3, we showed that memory traffic was significantly he

than a theoretical lower bound. However, the bound that we derived for minimal memory

fic is not reachable in practice. In this chapter, we explore several implementable techn

that ideally lessen both the amount and the performance impact of memory traffic.

The minimal traffic cache differs from traditional caches in four respects: block size (w

data are fetched upon a miss), associativity (how data are mapped into the cache), repla

policy (what is thrown out of the cache), and write policy (how created values are handle

this chapter, we explore techniques that address the first factor: what data are fetch

Chapter 5, we address how data are mapped on-chip, and what data should be fetched

demand miss. In Chapter 6, we propose the DataScalar architecture, which (among othe

efits) eliminates all inter-processor write traffic.

Because of long memory latencies and limited off-chip memory bandwidth, microproce

designers have been placing successively larger caches on the processor dies with ea

generation. The Dec Alpha 21364 [56], for example, will use essentially the same proc

core as the 21264 [55], but with a faster clock, and significantly more aggressive on-chi

off-chip memory systems (including a large on-chip cache greater than one megabyte).

chapter, we explore three policies that we designed to improve the memory system p

mance of large on-chip caches. The policies use information dynamically saved with

cache tag to track the long-term behavior of a block, attempting to improve how the blo

managed each time it is fetched. The three policies are:dual-size fetching, in which the level-

two cache issues a large (block) or small (subblock) request as needed,subblock prefetching,

79

ed,

om

erfor-

asure

d fetch

raffic

ractice,

patial

from

roving

a net

e both

ension

Since

would

blocks

this

e or

er-

ance

cause

nts the

in which the L2 cache tries to bring in only the portions of a large block that will be need

and bus prioritization, in which data that are to be speculatively loaded are brought fr

memory only when the interconnect is idle. At the end of this chapter, we evaluate the p

mance of all those policies together. In the following subsection, however, we simply me

what the parameters of large, traditionally managed L2 caches should be.

4.1 What to fetch

When designing a system, the architect must decide how much data the cache shoul

upon each miss, in other words, how large the cache block should be. The minimal-t

cache used one-word blocks to prevent unnecessary data from ever being loaded. In p

one-word blocks would result in dreadful performance, as all applications exhibit some s

locality. Furthermore, increased address traffic would offset the reductions in traffic

smaller blocks. Fetching larger blocks, conversely, reduces the number of misses, imp

performance (unless the block is so large that it pollutes the cache enough to result in

increase in misses). However, the larger blocks also load more unnecessary traffic. Sinc

cache misses and superfluous traffic can hurt performance, there is an inherent t

between trading reduced misses for increased traffic and vice-versa.

Small on-chip caches have typically had block sizes in the range of 16 to 64 bytes.

these caches were small, they had few blocks; thus blocks much larger than 64 bytes

have caused excessive pollution and a higher miss ratio. In these caches, the small

made efficient use of memory bandwidth while keeping the miss ratio low. We show in

section that having both low traffic and ideal miss ratios is difficult for large (a megabyt

more) caches.

To illustrate, we define two operating points for a cache’s block size: theperformance point

and thepollution point. The performance point is the block size at which overall system p

formance is highest. Blocks larger than the performance point will cause reduced perform

because of bus contention, whereas blocks smaller than the performance point will

reduced performance because of more numerous misses. The pollution point represe

80

arger

aller

lity as

more

yte

ance

sor L2

03, in

ed in

GHz,

with a

integer

to

(128K

rs will

block,

unced

ble in

ocia-

quired

L2

hysi-

ice L2

ed at

f the

and

block size at which the miss ratio, and not absolute performance, is minimized. Blocks l

than the pollution point will cause more misses due to cache pollution, whereas blocks sm

than the pollution point cause more misses because they are not exploiting spatial loca

well.

Since cache pollution becomes less of a problem for larger caches (since there are

blocks of a given size), the pollution point will tend toward larger blocks. For multi-megab

caches, the pollution point may well be at block sizes significantly larger than the perform

point. For the rest of this chapter, we perform experiments assuming a large, on-proces

cache, with the processor technology targeted approximately five years hence (circa 20

line with the Intel and SIA projections [102, 136]). We assume a target system as describ

Chapter 2, with the following parameters: the processor core we simulated was a 2

dynamically scheduled, 8-way issue superscalar core. We assumed a 256-entry RUU,

corresponding 128-entry load-store queue. We assumed that the core contained six

ALUs, three integer multipliers, six FP ALUs, two FP multiply/dividers, and six ports

memory. The branch misprediction penalty was three cycles, and we assumed a huge

entry) gshare branch predictor, in an attempt to gain the accuracy that branch predicto

doubtless have five years hence. For the memory system, we simulated 64KB, 32-byte

2-way set associative split instruction and data caches (similar to the recently anno

Compaq Alpha 21364), which were virtually indexed and physically tagged, and accessi

a single cycle. We simulated split 8KB instruction and data TLBs, each two-way set ass

tive. We assumed a 256-bit cache bus, clocked at the core speed, with a single cycle re

for arbitration/turnaround. We simulated a 1MB physically indexed, physically tagged

cache, assuming a 10-cycle hit penalty and a write-allocate, write-back policy. For the p

cal memory, we simulated a detailed Direct Rambus channel [30] and subsystem to serv

misses off-chip. We assumed four simply interleaved RDRAM channels, each clock

500MHz, with two bytes per channel transmitted on both the rising and falling edges o

clock. We simulated all resources in the RDRAM chips, including precharge penalties

page hits on open senseamps, bank conflicts, and access pipelining.

81

C95

marks

che,

he L2

s, we

. The

e (the

k size

able

nd the

oints

rteen

ll the

m a

also

ce and

the

ratio

nding

k size

such a

cache

oint.

fully

slight

In Table 4-1, we show the pollution and performance points for a number of the SPE

benchmarks running on the described target system. We omitted several of the bench

(m88ksim, li, ijpeg, fpppp) because their working sets fit nearly completely in the L2 ca

making optimizations to reduce the impact of L2 misses useless. In the table, we vary t

cache block size across the columns, from 64 bytes to 4 Kilobytes. In each pair of row

show both the IPC (performance) and the L2 miss ratios for a particular benchmark

shaded number in each IPC row indicates the block size with the highest performanc

performance point), and the shaded number in each miss ratio row indicates the bloc

with the lowest miss ratio (the pollution point). The results in this table have three not

implications:

• The best mean performance (average performance point) is at 256-byte blocks, a

lowest mean miss ratio (average pollution point) is at 4KB bytes. The performance p

are thus significantly larger than block sizes for caches to date; only three of the thi

benchmarks have performance points under 256-byte blocks.

• The performance points are highly application-dependent; they range from 64 bytes a

way to 4 KB. Selecting a block size at either extreme will lead to poor performance fro

subset of the applications. Selecting a block size in the middle (e.g., 256 bytes) will

lead to degraded performance for a number of the applications.

• For almost half of the benchmarks, there is a significant gap between the performan

pollution points (ranging from factors of 4 to 32). This gap presents an opportunity: if

cache could fetch only those portions of the large blocks that are needed, the miss

could be reduced (since pollution is not an issue for these codes) without a correspo

reduction in performance due to bus contention.

These implications lead us to three requirements for large on-chip caches. (1) The bloc

should be larger than that of traditional caches, (2) the caches should be managed in

way as to provide good performance across the entire range of applications, and (3) the

could use intelligent fetching to improve performance beyond that of the performance p

We measured the pollution and performance points for smaller caches (512KB) and

associative caches with random replacement (both 512KB and 1MB). There were some

82

ame-

lower

n the

rend

r the

pacity

hich

n two

not

rela-

changes in the pollution and performance points when running with the alternative par

ters. For the 512KB cache, the random replacement caused pollution to occur with a

block size than it did with the 1MB cache, slightly decreasing the average gap betwee

performance point and pollution point for six of the benchmarks. The exception to that t

was applu, which had an identical pollution point but experienced a higher miss ratio fo

fully associative cache, thus lowering the performance point. Increasing the cache ca

from 512KB to 1MB tended to increase both the pollution and performance points, w

caused the gap to shrink slightly in four cases (gcc, vortex, applu, and wave5) and grow i

others (compress, turb3d). All in all, high associativity and halving the cache size did

qualitatively change the relationship between the performance and pollution points. The

Block size

Benchmark Metric 64 128 256 512 1024 2048 4096 8192

 126.gcc IPC 1.498 1.522 1.536 1.538 1.521 1.468 1.328 1.010
Miss ratio 3.600 2.640 1.880 1.320 1.020 0.910 0.940 1.210

129.compress IPC 1.264 1.208 1.112 0.937 0.655 0.389 0.206 0.101
Miss ratio 9.870 9.450 9.010 8.400 8.810 9.580 10.990 12.680

 134.perl IPC 1.711 1.784 1.782 1.718 1.578 1.343 1.029 0.635
Miss ratio 5.770 3.910 2.930 2.450 2.250 2.190 2.190 2.490

 147.vortex IPC 2.078 2.086 2.051 1.938 1.703 1.185 0.631 0.238
Miss ratio 6.670 5.390 4.850 4.970 5.390 7.020 9.390 13.010

 101.tomcatv IPC 1.492 2.048 2.451 2.694 2.833 2.908 2.953 2.929
Miss ratio 33.970 17.070 8.590 4.310 2.170 1.100 0.570 0.380

 102.swim IPC 1.172 1.734 2.221 2.518 2.554 2.345 2.268 1.899
Miss ratio 31.450 16.010 8.260 4.430 2.670 1.820 1.260 1.140

 103.su2cor IPC 1.853 2.395 2.707 2.882 2.979 3.009 2.990 2.780
Miss ratio 13.860 7.030 3.720 1.940 1.010 0.530 0.290 0.220

 104.hydro2d IPC 0.568 0.898 1.236 1.528 1.702 1.745 1.736 1.296
Miss ratio 50.320 33.290 19.340 10.030 5.110 2.670 1.410 1.180

 107.mgrid IPC 1.673 2.313 2.728 2.570 2.716 2.840 2.901 2.835
Miss ratio 28.070 17.500 10.770 7.200 5.060 3.720 2.570 1.480

 110.applu IPC 1.229 1.847 2.327 2.586 2.716 2.787 2.333 1.439
Miss ratio 43.240 30.380 18.190 9.570 4.950 2.730 1.920 1.710

 125.turb3d IPC 2.441 2.922 3.239 3.015 2.843 2.838 2.685 1.467
Miss ratio 40.960 24.500 14.640 12.810 9.630 7.260 5.680 7.380

 141.apsi IPC 2.244 2.590 2.645 2.786 2.763 2.859 2.849 0.949
Miss ratio 8.360 6.260 4.580 2.150 1.280 0.550 0.310 3.370

 146.wave5 IPC 1.919 2.349 2.643 2.712 2.821 2.671 1.236 0.455
Miss ratio 8.760 5.540 4.000 1.900 1.240 1.510 2.880 3.790

Table 4-1: Performance versus pollution points, 1MB 4-way set associative L2 cache

83

t the

s

t be

ake

and

olicy.

patial

h is to

pon a

the

block

maxi-

block

to the

d as an

the

ory

pro-

size

, we

r-

er the

ecide

tive stability in the average size of the performance/pollution point gap indicates tha

cache requirements listed above are applicable to a range of large on-chip caches.

4.2 Dual-size fetching

The first policy we propose isdual-size fetches, in which the cache dynamically decide

whether to fetch a large block (spatial locality is high, so the consumed bus traffic will no

wasted) or a smaller block (spatial locality is low). Supporting multiple block sizes can m

for complex and difficult hardware design (particularly when addressing fragmentation

packing issues). Here we describe two hardware-elegant methods of implementing this p

The first is to map small blocks into the cache, and fetch a number of blocks when s

locality was high (as proposed by Johnson and Hwu [69]). We evaluate the second, whic

implement a subblocked cache in which either a subblock or a block may be fetched u

miss. We set the block to the block size of the pollution point (the data is mapped into

cache at a granularity that minimizes the miss ratio, on average 4KB) and we set the sub

size to the block size of the performance point (data is transferred at a granularity that

mizes performance, on average 256B).

The dual-size fetch policy (DSF) maintains state describing the characteristics of a

after the block has been evicted from the cache. Since we are using blocks equivalent

page size in our target system, this state can be stored for fast access, and maintaine

extension to the TLB entries until the TLB entry is evicted. When an entry is evicted from

TLB, the system may store the per-block information in a special region of physical mem

or, in theory, as a part of the page table itself. The former solution limits overhead to be

portional to the size of physical memory, whereas the latter would be proportional to the

of touched virtual memory (but is conceptually a cleaner solution). In our simulations

assume that the extra state is stored per physical page.

DSF stores one bit of state (called afetch bit) and a counter (three bits) per block to dete

mine whether, on a block miss, only the requested subblock should be loaded, or wheth

entire block should be loaded all at once. Upon a miss, the fetch bit is examined to d

84

Upon

ult in

path.

block

n or

. If the

leared.

thus

ause

ntire

n few

other

s and

y are:

what to fetch (a zero results in a subblock fetch, whereas a one results in a block fetch).

a replacement of a block, DSF updates the state for the victim, which may or may not res

the fetch bit being toggled. This processing occurs off-line and not on any access critical

In Figure 4-1, we depict the logic that updates the fetch bit. WhenX is evicted from the

cache, the hardware counts the number ofusedsubblocks (shown by theSUM function). Note

that the used bit vector, maintained as a part of the cache state, is distinct from the sub

valid bit vector (i.e., a subblock may be valid but never used). If that number is greater tha

equal to a predetermined threshold, the three-bit saturating counter associated withX is incre-

mented (if the valid subblocks are less than the threshold, the counter is decremented)

counter reaches a hardware-specified bound, the fetch bit is toggled and the counter is c

The XOR gate is used to allow the policy to work in the reverse direction; the same logic

handles promotion and demotion.

The cache can thus dynamically determine blocks for which spatial locality is high (bec

numerous subblocks are valid when the block is evicted), and will eventually fetch the e

block upon a miss. If DSF dictates that a block should be fetched in its entirety, and the

of the fetched subblocks actually get used before replacement, DSF will adapt in the

direction, eventually fetching only a subblock at a time for the block in question.

In Table 4-2, Table 4-3, and Table 4-4, we show the effects that DSF has upon L2 misse

traffic. In each table, we list nine cache organizations along the columns of the table. The

Used bit vector

Bound

Fetch

Threshold

SUM >=

J

K

0 = fetch subblock
1 = fetch block

=

Saturating inc/dec
counter (0-bound)

clear

Figure 4-1: Logic for dual-size fetch policy

bit

85

256B

fetch

ound

ould

victed,

ound

for

a cache with 256B blocks, a cache with 4KB blocks, a subblocked cache (4KB blocks,

subblocks), and a similar subblocked cache that implements DSF. For the dual-size

cache, we present results for six combinations of different values for the threshold and b

depicted in Figure 4-1 (2-2, 2-4, 4-2, 4-4, 8-2, 8-4). For example, the 4-2 experiment w

increment the counter when four or more subblocks had been used when a block was e

and would promote the block to fetching the whole block when the counter reached the b

of two. Higher values of either will be less likely to promote blocks. The default policy is

all blocks to load only a subblock at a time.

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
126.gcc 512K, 4sa Miss 0.064 0.46 1.91 1.40 1.45 1.53 1.59 1.66 1.69

Traff. 7.47 1.89 3.01 2.76 2.52 2.33 2.19 2.09
512K, fa Miss 0.064 0.47 2.06 1.47 1.53 1.60 1.68 1.75 1.83

Traff. 7.44 1.99 3.17 2.94 2.66 2.47 2.29 2.19
1M, 4sa Miss 0.023 0.38 2.24 1.48 1.54 1.59 1.65 1.74 1.80

Traff. 5.62 2.09 2.95 2.81 2.70 2.60 2.47 2.39
1M, fa Miss 0.024 0.39 2.62 1.69 1.76 1.81 1.90 2.00 2.11

Traff. 5.78 2.39 3.37 3.26 3.09 2.96 2.78 2.67
129.compress 512K, 4sa Miss 0.007 0.69 3.73 2.56 2.69 2.74 2.90 2.97 3.13

Traff. 10.62 3.33 4.81 4.46 4.27 3.97 3.81 3.63
512K, fa Miss 0.017 0.12 1.66 0.92 0.93 0.94 0.95 0.97 0.99

Traff. 2.09 1.65 1.82 1.82 1.81 1.80 1.78 1.77
1M, 4sa Miss 0.003 0.07 1.08 0.62 0.61 0.62 0.61 0.68 0.61

Traff. 1.16 1.09 1.11 1.11 1.11 1.11 1.10 1.11
1M, fa Miss 0.004 0.07 1.11 0.62 0.64 0.62 0.64 0.63 0.65

Traff. 1.21 1.11 1.14 1.14 1.13 1.13 1.13 1.13
134.perl 512K, 4sa Miss 0.139 0.67 1.50 1.27 1.29 1.30 1.33 1.33 1.35

Traff. 9.87 1.49 1.93 1.73 1.68 1.59 1.58 1.54
512K, fa Miss 0.154 0.67 1.55 1.31 1.37 1.37 1.42 1.41 1.45

Traff. 9.96 1.53 2.11 1.92 1.79 1.69 1.63 1.60
1M, 4sa Miss 0.109 0.58 1.44 1.19 1.21 1.23 1.25 1.27 1.27

Traff. 8.39 1.39 1.85 1.67 1.60 1.50 1.49 1.46
1M, fa Miss 0.122 0.59 1.57 1.29 1.37 1.35 1.43 1.40 1.47

Traff. 8.62 1.52 2.16 1.98 1.83 1.75 1.67 1.62
147.vortex 512K, 4sa Miss 0.140 1.76 2.72 2.64 2.69 2.70 2.71 2.71 2.71

Traff. 26.56 2.44 3.14 2.63 2.57 2.46 2.46 2.46
512K, fa Miss 0.113 2.32 3.53 3.34 3.39 3.45 3.48 3.51 3.52

Traff. 34.63 3.15 4.23 3.70 3.37 3.24 3.17 3.15
1M, 4sa Miss 0.076 1.99 3.32 3.15 3.23 3.27 3.31 3.31 3.32

Traff. 29.29 2.89 4.04 3.32 3.13 2.93 2.94 2.90
1M, fa Miss 0.077 2.08 3.63 3.30 3.37 3.48 3.53 3.60 3.61

Traff. 30.85 3.18 4.75 4.16 3.58 3.37 3.24 3.19

Table 4-2: Dual-size fetch functional results, part 1

86

e size

RU

al to

there

vary

of the

block

For each benchmark in the tables, we list four caches in separate rows: varying th

between 512KB and 1MB, and varying the associativity between 4-way (with an L

replacement policy) and full (with a random replacement policy, since LRU is not practic

implement in fully associative caches, particularly lower-level caches). For each cache,

are two rows, in which we show how the misses (higher row) and the traffic (lower row)

across the different cache organizations. The misses and traffic are normalized to that

256B block cache for each pair of rows. The column containing the misses for the 256B

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
101.tomcatv 512K, 4sa Miss 0.074 0.06 1.03 0.55 0.55 0.55 0.55 0.55 -0.00

Traff. 1.05 1.03 1.05 1.05 1.05 1.05 1.05 -0.00
512K, fa Miss 0.078 0.07 1.03 0.56 0.56 0.56 0.57 0.56 0.57

Traff. 1.10 1.03 1.06 1.06 1.06 1.06 1.06 1.06
1M, 4sa Miss 0.073 0.06 1.03 0.56 0.56 0.56 0.56 0.56 0.56

Traff. 1.05 1.03 1.05 1.05 1.05 1.05 1.05 1.05
1M, fa Miss 0.075 0.06 1.03 0.55 0.56 0.55 0.56 0.55 0.56

Traff. 1.07 1.03 1.05 1.05 1.05 1.05 1.05 1.05
102.swim 512K, 4sa Miss 0.092 0.14 1.02 0.58 0.57 0.58 0.57 0.58 0.57

Traff. 2.44 1.03 1.09 1.09 1.08 1.09 1.09 1.09
512K, fa Miss 0.096 0.14 1.03 0.88 0.92 0.89 0.93 0.90 -0.00

Traff. 2.47 1.04 1.57 1.14 1.56 1.12 1.55 -0.00
1M, 4sa Miss 0.090 0.14 1.04 0.68 0.59 0.68 0.59 0.68 0.58

Traff. 2.37 1.05 1.16 1.12 1.16 1.12 1.16 1.11
1M, fa Miss 0.092 0.13 1.03 0.89 0.92 0.89 0.93 0.90 -0.00

Traff. 2.30 1.05 1.58 1.15 1.58 1.13 1.57 -0.00
103.su2cor 512K, 4sa Miss 0.055 0.11 1.14 0.66 0.67 0.67 0.68 -0.00 0.70

Traff. 1.80 1.14 1.28 1.28 1.27 1.27 -0.00 1.26
512K, fa Miss 0.058 0.09 1.11 0.64 0.65 0.65 0.66 0.67 0.69

Traff. 1.53 1.11 1.24 1.23 1.22 1.21 1.20 1.19
1M, 4sa Miss 0.036 0.08 1.07 0.60 0.60 0.60 0.60 0.62 0.62

Traff. 1.28 1.06 1.15 1.15 1.15 1.15 1.15 1.14
1M, fa Miss 0.041 0.08 1.09 0.61 -0.00 0.62 0.63 0.63 0.64

Traff. 1.37 1.09 1.18 -0.00 1.16 1.16 1.15 1.14
104.hydro2d 512K, 4sa Miss 0.095 0.08 1.01 0.58 0.58 0.58 0.57 0.58 0.58

Traff. 1.30 1.01 1.09 1.09 1.08 1.09 1.08 1.09
512K, fa Miss 0.098 0.08 1.02 0.61 0.64 0.62 0.65 0.63 0.66

Traff. 1.32 1.02 1.14 1.15 1.13 1.15 1.13 1.15
1M, 4sa Miss 0.090 0.08 1.02 0.58 0.58 0.58 0.57 0.58 0.58

Traff. 1.26 1.02 1.09 1.09 1.09 1.09 1.09 1.09
1M, fa Miss 0.086 0.08 1.04 0.61 0.63 0.61 0.63 0.62 0.64

Traff. 1.27 1.04 1.13 1.14 1.13 1.14 1.12 1.13

Table 4-3: Dual-size fetch functional results, part 2

87

other

up as

ight in

ases as

t gen-

fewer

ks too

cache contains the absolute (unnormalized) miss ratio for that experiment, to which the

columns are normalized.

Several trends are visible in this data. First, as expected, the miss rate generally goes

DSF becomes more restrictive (harder to promote or demote pages, moving toward the r

the tables). The traffic, which generally increases as the miss rates are lowered, decre

the policies become more restrictive. The fully associative runs with random replacemen

erally incur more misses than the 4-way set associative runs. DSF tends to eliminate

misses with the fully associative experiments, as the random replacement can evict bloc

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
107.mgrid 512K, 4sa Miss 0.079 0.12 1.10 0.62 0.63 0.63 0.66 0.75 0.76

Traff. 2.02 1.10 1.40 1.36 1.34 1.33 1.16 1.15
512K, fa Miss 0.089 0.10 1.08 0.63 0.65 0.70 0.72 0.77 0.92

Traff. 1.73 1.07 1.38 1.36 1.34 1.35 1.27 1.17
1M, 4sa Miss 0.069 0.10 1.16 0.66 0.64 0.67 0.65 0.77 0.78

Traff. 1.72 1.14 1.40 1.40 1.38 1.40 1.21 1.21
1M, fa Miss 0.075 0.09 1.11 0.64 0.66 0.70 0.71 0.78 0.90

Traff. 1.60 1.10 1.35 1.32 1.36 1.30 1.32 1.19
110.applu 512K, 4sa Miss 0.091 0.22 1.14 0.72 0.72 0.73 0.72 0.74 0.72

Traff. 3.72 1.15 1.22 1.22 1.22 1.21 1.21 1.21
512K, fa Miss 0.097 0.08 1.01 0.61 0.63 0.63 0.66 0.66 0.70

Traff. 1.42 1.01 1.18 1.15 1.17 1.12 1.15 1.10
1M, 4sa Miss 0.087 0.13 1.08 0.64 0.64 0.65 0.65 0.66 0.66

Traff. 2.28 1.08 1.17 1.15 1.15 1.15 1.15 1.15
1M, fa Miss 0.090 0.08 1.00 0.60 0.62 0.62 0.65 0.64 0.68

Traff. 1.29 1.00 1.14 1.10 1.14 1.08 1.13 1.07
125.turb3d 512K, 4sa Miss 0.110 0.83 1.82 1.42 1.44 1.61 1.62 1.63 1.64

Traff. 13.63 1.83 3.01 3.01 2.00 2.01 1.86 1.86
512K, fa Miss 0.092 0.77 1.59 1.41 1.52 1.44 1.55 1.47 1.57

Traff. 12.24 1.57 1.98 1.78 1.71 1.65 1.67 1.61
1M, 4sa Miss 0.098 0.38 1.52 1.03 1.02 1.23 1.23 1.30 1.31

Traff. 6.24 1.52 2.67 2.69 1.74 1.75 1.57 1.55
1M, fa Miss 0.083 0.22 1.17 0.86 0.94 0.97 1.10 1.03 1.14

Traff. 3.72 1.17 1.91 1.78 1.52 1.35 1.30 1.22
141.apsi 512K, 4sa Miss 0.107 0.53 1.73 1.63 1.64 1.63 1.64 1.64 1.64

Traff. 8.11 1.66 1.76 1.71 1.70 1.70 1.70 1.70
512K, fa Miss 0.033 0.47 1.92 1.53 1.62 1.57 1.66 1.61 1.70

Traff. 6.78 1.78 2.05 2.01 2.00 1.96 1.96 1.92
1M, 4sa Miss 0.015 0.09 1.80 1.32 1.38 1.33 1.38 1.32 1.40

Traff. 1.41 1.64 1.74 1.72 1.70 1.71 1.69 1.69
1M, fa Miss 0.018 0.09 1.16 0.69 0.73 0.70 0.73 0.71 0.75

Traff. 1.37 1.15 1.22 1.22 1.22 1.21 1.21 1.20

Table 4-4: Dual-size fetch functional results, part 3

88

lock

effi-

isses

rs. In

y with

rfor-

which

actor)

s we

more

isses,

ses in

u2cor,

cked

d the

s from

x. For

e, but

ause

ewer

sses

ithin

nd not

early (while they are still in the working set), introducing less accurate state into the b

counters. There is little correlation when comparing the effect of cache size against the

cacy of the policy; for many of the benchmarks, the policy is more effective at reducing m

for the larger 1MB cache; for others, DSF works better for the 512KB cache.

In terms of overall performance, DSF performs well in some cases and poorly in othe

every case, DSF reduces the miss ratio over a traditional subblocked cache, frequentl

only a minor increase in traffic. However, the subblocked cache itself incurs a large pe

mance penalty for some of the benchmarks when compared to a 256B block cache,

loads the same amount of data but has many more sets (multiplied by the subblocking f

in which to store data. The performance penalty is particularly acute for the integer code

measured, which tend to have finer-grain accesses and thus could benefit from having

sets. For gcc, the subblocked cache incurred twice as many misses, for perl, 50% more m

and for vortex, three times as many misses. Turb3d and Apsi see 80% and 60% increa

misses, respectively. The other floating point codes we measured (tomcatv, swim, s

hydro2d, mgrid, and applu) typically incur miss increases of more than 10% for a subblo

cache, primarily because there is a closer correlation between their pollution point an

block size.

In most cases, the penalty incurred by using a subblocked cache outweighs the gain

DSF, which incurs more misses than a 256B block cache for turn3d, gcc, perl, and vorte

tomcatv, su2cor, hydro2d, and mgrid, DSF has lower miss ratios than a 256B block cach

not nearly as low as those of a 4KB block cache (which shows little additional traffic bec

spatial locality is so high for these benchmarks). For swim and applu, DSF shows f

misses than any of the alternatives, with minor additional traffic (roughly 30% fewer mi

with 15% extra traffic for both benchmarks).

4.3 Subblock prefetching

DSF may be effective if most of a large block is used, but if discontiguous subblocks w

a block are rarely accessed, the system could benefit from identifying those subblocks a

89

t will

ed

block

spec-

] the

ion

used

tching

pro-

or

heme

on a

that

d and

alysis

e

e

-

loading them upon a block miss. Ideally, the cache would fetch only those subblocks tha

be accessed.

Hill [58] describes several prefetching policies for subblocked instruction caches:remain-

der, wrap-around, andalways, which prefetch the next subblock (if the subblock referenc

was not the last in the block), the next subblock (wrapping around if the referenced sub

is the last one), and fetching the next subblock (even if it resides in the next block) re

tively. All of these policies initiate the prefetches on a reference. Hill also proposed [58

SPUR prefetch algorithm, which waits for an idle bus cycle (similar to bus prioritizat

described in Section 4.5) to initiate a prefetch of the subblock adjacent to that which ca

the last demand miss. In this section, we describe a scheme that differs from these prefe

schemes by fetching discontiguous sets of subblocks at once.

Kumar and Wilkerson proposed a policy calledspatial footprinting, in which a (possibly

discontiguous) set of subblocks are loaded upon a block miss [81]. We independently

posed a nearly identical policy that we calledsubblock prefetching(or SBP) [16]. SBP saves

not just a bit and counter when some blockX is evicted, as in DSF, but also the used bit vect

representing the subblocks that were accessed whileX was in the cache. IfX shows enough

consistency for the set of subblocks that are used among block misses toX, the SBP policy

will begin fetching only those subblocks that were touched whileX was last in the cache (plus

the requested subblock, if it was not marked in the vector).

Since not every block is likely to show consistent usage patterns, we use a dynamic sc

(similar to DSF) to identify those blocks that do show consistent usage of subblocks. Up

block miss, the SBP bit is examined to determined whether subblocks other than

requested should be fetched. When a block is replaced, the block’s state is examine

saved, and the SBP bit is updated. We show the logic that performs this replacement an

in Figure 4-2.

While a blockX is in the cache, three bit vectors are maintained. Thevalid bit vectoridenti-

fies those subblocks inX that are valid. Theused bit vectoridentifies those subblocks that th

processor has actually accessed. Theprevious use vectorcontains the subblocks that wer

used the last time thatX was resident in the cache. WhenX is replaced, the hardware com

90

. If the

e pol-

ertain

to

tored

n of

ify

blocks

s. As

valid

dis-

r the

Like

crease

or the

cache

locked

ench-

putes the hamming distance between the used bit vector and the previous use vector

Hamming distance is below some threshold, a saturating counter (similar to the dual-siz

icy) is incremented, otherwise the counter is decremented. If the counter reaches a c

value,X is marked as a candidate for subblock prefetching, and upon the next block missX,

the subblocks that are marked in the previous use vector are loaded from memory.

WhenX is evicted, the used bit vector becomes the previous bit vector, and is then s

along with the counter in the TLB or separate table). Like DSF, SBP supports demotio

blocks from performing the used bit vector prefetching. Ideally, this policy will ident

blocks that have consistent usage patterns, and subsequently refrain from fetching sub

that are rarely used, thus reducing bus contention without significantly increasing misse

an optimization (not shown in Figure 4-2), we require that more than one subblock be

for the promotion counter to be incremented (in addition to requiring that the Hamming

tance be sufficiently low).

In Table 4-5, Table 4-6, and Table 4-7, we show the misses versus traffic behavior fo

SBP policy, which are formatted identically to the results shown for DSF in Section 4.2.

DSF, SBP is unable, except in a few cases, to reduce the miss rate more than the in

caused by incorporating the subblocked cache. This phenomenon is particularly true f

integer benchmarks (gcc, perl, vortex), which lose considerable performance when the

is subblocked. SBP does, however, demonstrate consistent improvement over the subb

cache. SBP is also less effective than DSF at reducing the miss rate for most of the b

Previous use vector

Bound

SBP

ThresholdHamming

J

K

0 = fetch subblock
1 = fetch used bit vector + subblock

=

Saturating inc/dec
counter (0-bound)

clear

Figure 4-2: Logic for subblock prefetching policy

Used bit vector
<

bit

91

erably

the L2

e two

marks, since it loads less data into the cache speculatively. However, SBP is consid

more efficient at reducing misses without increasing traffic. We can quantifypolicy efficiency

by calculating the ratio of the percent of misses reduced to the percent traffic increase:

(4-1)

where represents the L2 misses for the subblocked cache, and represents

misses for a subblocked cache with SBP. and represent the total traffic for thos

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
126.gcc 512K, 4sa Miss 0.064 0.46 1.91 1.80 1.81 1.75 1.76 1.59 1.55

Traff. 7.47 1.89 1.95 1.94 2.05 2.01 2.35 2.41
512K, fa Miss 0.064 0.47 2.06 1.91 1.95 1.83 1.87 1.71 1.73

Traff. 7.44 1.99 2.09 2.07 2.17 2.16 2.30 2.31
1M, 4sa Miss 0.023 0.38 2.24 2.04 2.07 1.98 2.02 1.80 1.76

Traff. 5.62 2.09 2.15 2.13 2.20 2.17 2.39 2.44
1M, fa Miss 0.024 0.39 2.62 2.36 2.42 2.27 2.33 2.12 2.16

Traff. 5.78 2.39 2.46 2.45 2.51 2.50 2.59 2.58
129.compress 512K, 4sa Miss 0.007 0.69 3.73 3.42 3.47 3.33 3.39 3.05 2.95

Traff. 10.62 3.33 3.41 3.39 3.49 3.47 3.80 3.91
512K, fa Miss 0.017 0.12 1.66 1.36 1.39 1.34 1.36 1.30 1.31

Traff. 2.09 1.65 1.67 1.66 1.67 1.67 1.68 1.67
1M, 4sa Miss 0.003 0.07 1.08 0.56 0.53 0.56 0.53 0.54 0.53

Traff. 1.16 1.09 1.09 1.09 1.09 1.09 1.09 1.09
1M, fa Miss 0.004 0.07 1.11 0.87 0.88 0.87 0.88 0.86 0.87

Traff. 1.21 1.11 1.11 1.11 1.11 1.11 1.11 1.11
134.perl 512K, 4sa Miss 0.139 0.67 1.50 1.38 1.38 1.36 1.36 1.32 1.31

Traff. 9.87 1.49 1.55 1.52 1.82 1.67 2.00 1.90
512K, fa Miss 0.154 0.67 1.55 1.49 1.51 1.47 1.50 1.43 1.47

Traff. 9.96 1.53 1.59 1.55 1.78 1.62 1.96 1.83
1M, 4sa Miss 0.109 0.58 1.44 1.32 1.32 1.30 1.31 1.25 1.25

Traff. 8.39 1.39 1.44 1.41 1.64 1.57 1.84 1.79
1M, fa Miss 0.122 0.59 1.57 1.51 1.54 1.49 1.53 1.44 1.48

Traff. 8.62 1.52 1.56 1.54 1.72 1.59 1.91 1.80
147.vortex 512K, 4sa Miss 0.140 1.76 2.72 2.67 2.67 2.63 2.63 2.57 2.56

Traff. 26.56 2.44 2.82 2.83 3.22 3.26 3.64 3.69
512K, fa Miss 0.113 2.32 3.53 3.33 3.34 3.25 3.24 3.19 3.18

Traff. 34.63 3.15 3.56 3.56 3.90 3.92 4.08 4.08
1M, 4sa Miss 0.076 1.99 3.32 3.27 3.28 3.21 3.22 3.10 3.09

Traff. 29.29 2.89 3.25 3.22 3.73 3.80 4.23 4.30
1M, fa Miss 0.077 2.08 3.63 3.40 3.41 3.29 3.29 3.19 3.18

Traff. 30.85 3.18 3.50 3.48 3.82 3.80 4.08 4.09

Table 4-5: Subblock prefetch functional results, part 1

Msb MSBP–() Msb⁄
TSBP Msb–() Tsb⁄

Msb MSBP

Tsb TSBP

92

ucing

min-

. The

ld and

s are

tex,

the

caches, respectively. Informally, this metric measures how successful a policy is at red

misses while increasing traffic as little as possible (or vice-versa, decreasing traffic while

imally increasing misses). In Table 4-9, we show the policy efficiencies for DSF and SBP

efficiencies shown were calculated for 1MB, 4-way set associative caches, with thresho

bound values of 2 for both DSF and SBP. The table shows that the policy efficiencie

indeed significantly higher for SBP in all cases but two; swim and vortex (and with vor

they are nearly identical, and uniformly poor). Note that this metric does not quantify

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
101.tomcatv 512K, 4sa Miss 0.074 0.06 1.03 0.54 0.54 0.54 0.54 0.54 0.54

Traff. 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03
512K, fa Miss 0.078 0.07 1.03 0.79 0.80 0.79 0.80 0.79 0.80

Traff. 1.10 1.03 1.03 1.03 1.03 1.03 1.04 1.03
1M, 4sa Miss 0.073 0.06 1.03 0.55 0.56 0.55 0.56 0.55 0.56

Traff. 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03
1M, fa Miss 0.075 0.06 1.03 0.79 0.79 0.79 0.79 0.79 0.79

Traff. 1.07 1.03 1.03 1.03 1.03 1.03 1.03 1.03
102.swim 512K, 4sa Miss 0.092 0.14 1.02 0.75 0.70 0.75 0.70 0.75 0.70

Traff. 2.44 1.03 1.16 1.20 1.16 1.20 1.17 1.20
512K, fa Miss 0.096 0.14 1.03 0.93 0.99 0.93 0.97 0.91 0.95

Traff. 2.47 1.04 1.07 1.06 1.07 1.06 1.08 1.07
1M, 4sa Miss 0.090 0.14 1.04 0.78 0.76 0.77 0.76 0.76 0.75

Traff. 2.37 1.05 1.19 1.23 1.19 1.23 1.19 1.22
1M, fa Miss 0.092 0.13 1.03 0.94 0.98 0.94 0.96 0.92 0.94

Traff. 2.30 1.05 1.06 1.06 1.06 1.06 1.07 1.07
103.su2cor 512K, 4sa Miss 0.055 0.11 1.14 0.81 0.80 0.80 0.78 0.77 0.74

Traff. 1.80 1.14 1.18 1.18 1.18 1.19 1.19 1.20
512K, fa Miss 0.058 0.09 1.11 0.91 0.93 0.91 0.92 0.89 0.90

Traff. 1.53 1.11 1.13 1.13 1.13 1.13 1.14 1.14
1M, 4sa Miss 0.036 0.08 1.07 0.73 0.72 0.72 0.70 0.70 0.67

Traff. 1.28 1.06 1.09 1.09 1.09 1.09 1.09 1.10
1M, fa Miss 0.041 0.08 1.09 0.87 0.88 0.86 0.88 0.85 0.86

Traff. 1.37 1.09 1.10 1.10 1.10 1.10 1.10 1.10
104.hydro2d 512K, 4sa Miss 0.095 0.08 1.01 0.62 0.61 0.62 0.60 0.61 0.60

Traff. 1.30 1.01 1.07 1.07 1.08 1.07 1.08 1.07
512K, fa Miss 0.098 0.08 1.02 0.84 0.87 0.84 0.86 0.83 0.85

Traff. 1.32 1.02 1.06 1.05 1.06 1.05 1.06 1.06
1M, 4sa Miss 0.090 0.08 1.02 0.64 0.62 0.63 0.61 0.63 0.61

Traff. 1.26 1.02 1.07 1.08 1.08 1.08 1.08 1.08
1M, fa Miss 0.086 0.08 1.04 0.84 0.86 0.84 0.86 0.83 0.85

Traff. 1.27 1.04 1.06 1.06 1.06 1.06 1.07 1.06

Table 4-6: Subblock prefetch functional results, part 2

93

cy is

DSF

sses,

ows:

absolute performance of a policy in terms of miss reduction, simply how efficient the poli

at balancing misses and traffic.

4.4 Unifying DSF and SBP

Since the SBP policy is generally more efficient at balancing traffic and misses than the

policy, but the DSF policy shows a much larger absolute reduction in the number of mi

we implemented a policy that incorporates both DSF and SBP. The policy works as foll

threshold-bound

Benchmark L2 cache Unit 256B 4KB SUB 2-2 2-4 4-2 4-4 8-2 8-4
107.mgrid 512K, 4sa Miss 0.079 0.12 1.10 0.79 0.78 0.77 0.77 0.73 0.70

Traff. 2.02 1.10 1.15 1.14 1.17 1.16 1.21 1.23
512K, fa Miss 0.089 0.10 1.08 1.00 1.04 0.96 1.02 0.82 0.83

Traff. 1.73 1.07 1.10 1.08 1.10 1.08 1.12 1.12
1M, 4sa Miss 0.069 0.10 1.16 0.82 0.79 0.79 0.78 0.74 0.73

Traff. 1.72 1.14 1.19 1.19 1.19 1.20 1.23 1.23
1M, fa Miss 0.075 0.09 1.11 1.04 1.07 1.01 1.06 0.84 0.85

Traff. 1.60 1.10 1.12 1.10 1.12 1.10 1.13 1.13
110.applu 512K, 4sa Miss 0.091 0.22 1.14 0.87 0.83 0.86 0.80 0.82 0.78

Traff. 3.72 1.15 1.18 1.19 1.19 1.28 1.27 1.29
512K, fa Miss 0.097 0.08 1.01 0.88 0.91 0.87 0.90 0.84 0.87

Traff. 1.42 1.01 1.03 1.02 1.03 1.02 1.04 1.03
1M, 4sa Miss 0.087 0.13 1.08 0.71 0.71 0.70 0.68 0.67 0.66

Traff. 2.28 1.08 1.13 1.13 1.13 1.14 1.15 1.18
1M, fa Miss 0.090 0.08 1.00 0.85 0.87 0.84 0.87 0.83 0.85

Traff. 1.29 1.00 1.02 1.01 1.02 1.01 1.02 1.02
125.turb3d 512K, 4sa Miss 0.110 0.83 1.82 1.66 1.65 1.65 1.64 1.63 1.62

Traff. 13.63 1.83 2.03 2.04 2.08 2.08 2.34 2.34
512K, fa Miss 0.092 0.77 1.59 1.49 1.47 1.47 1.45 1.46 1.44

Traff. 12.24 1.57 1.70 1.71 1.73 1.74 1.78 1.76
1M, 4sa Miss 0.098 0.38 1.52 1.33 1.33 1.31 1.31 1.27 1.27

Traff. 6.24 1.52 1.61 1.61 1.67 1.65 1.93 1.95
1M, fa Miss 0.083 0.22 1.17 1.12 1.15 1.08 1.09 0.99 0.99

Traff. 3.72 1.17 1.21 1.19 1.26 1.24 1.36 1.34
141.apsi 512K, 4sa Miss 0.107 0.53 1.73 1.31 1.31 1.31 1.30 1.30 1.29

Traff. 8.11 1.66 1.73 1.73 1.73 1.73 1.74 1.74
512K, fa Miss 0.033 0.47 1.92 1.60 1.60 1.58 1.58 1.55 1.55

Traff. 6.78 1.78 1.87 1.87 1.88 1.88 1.90 1.90
1M, 4sa Miss 0.015 0.09 1.80 1.32 1.29 1.33 1.28 1.32 1.26

Traff. 1.41 1.64 1.68 1.69 1.69 1.69 1.69 1.70
1M, fa Miss 0.018 0.09 1.16 0.96 0.98 0.95 0.98 0.94 0.96

Traff. 1.37 1.15 1.16 1.15 1.16 1.16 1.16 1.16

Table 4-7: Subblock prefetch functional results, part 3

94

re 4-1

e uni-

its to

policy

only

c for

ate for

those

d pol-

d that

small

duc-

ely).

um

ol-

and

es in

apsi).

opu-

olicy,

sub-

licy

affic.

n, we

both sets of state are maintained and updated upon each block eviction as shown in Figu

and Figure 4-2. (The total new state required equals 34 bits per block, about 0.1%.) In th

fied policy, we append the fetch bit to the subblock prefetch bit, and use those two b

decide what to fetch upon a block miss. If the state contains 11 or 10, we use the SBP

(the SBP bit overrides the fetch bit). On a 01, we fetch the block, and on a 00, we fetch

the requested subblock.

In Table 4-8, we show the results of functional simulations comparing misses and traffi

DSF, SBP, and the two together. As in the previous tables, we show the absolute miss r

256B block caches, and then relative misses and traffic for all other runs, normalized to

of the 256B block cache runs. For two of the benchmarks (apsi and compress), the unifie

icy shows a significant reduction in misses (9% and 22%, respectively) above and beyon

offered by the best of either DSF or SBP. For several of the other benchmarks, we see

reductions in misses with unified (1% for turb3d, su2cor, and gcc) coupled with slight re

tions in traffic as well (1%, 2%, 2%, and 3% for gcc, tomcatv, mgrid, and applu, respectiv

Only for one case (swim) is the miss ratio larger for the unified policy than for the minim

of DSF and SBP (in this case, it is higher than DSF by 7%).

In the third column of Table 4-9 we list the policy efficiencies of the unified DSF/SBP p

icy. We see that the policy efficiencies (except for swim) all fall in between those of DSF

SBP. The efficiencies tend to be much closer to those of DSF, except for the two cas

which the unified misses are lower than either of the two policies alone (compress and

In these cases, the policies are working synergistically. In many of the others, highly p

lated blocks that do not show tightly consistent subblock usage patterns dominate the p

which causes the unified policy to fetch full blocks rather than discontiguous sets of

blocks.

Most of the reduction in misses comes from the DSF policy, although the unified po

occasionally provides an additional reduction in misses and slight reductions in total tr

These miss reductions come at the expense of added traffic. In the next subsectio

describe a mechanism for mitigating the performance impact of this additional traffic.

95

locked

r the

reg-

While these schemes can improve the performance of the subblocked cache, the subb

cache itself takes enough of a performance hit, due to cache pollution (particularly fo

finer grained codes) that even with the optimizing policies, it often does not outperform a

Benchmark Metric 256B 4096B Subblocked DSF SBP Unified
126.gcc Misses 0.023 0.38 2.24 1.48 2.04 1.47

Traffic 5.62 2.09 2.95 2.15 2.93
129.compress Misses 0.003 0.07 1.08 0.62 0.56 0.46

Traffic 1.16 1.09 1.11 1.09 1.10
134.perl Misses 0.109 0.58 1.44 1.19 1.32 1.19

Traffic 8.39 1.39 1.85 1.44 1.86
147.vortex Misses 0.076 1.99 3.32 3.15 3.27 ----

Traffic 29.29 2.89 4.04 3.25 ----
101.tomcatv Misses 0.073 0.06 1.03 0.56 0.55 0.56

Traffic 1.05 1.03 1.05 1.03 1.03
102.swim Misses 0.090 0.14 1.04 0.68 0.78 0.73

Traffic 2.37 1.05 1.16 1.19 1.25
103.su2cor Misses 0.036 0.08 1.07 0.60 0.73 0.59

Traffic 1.28 1.06 1.15 1.09 1.14
104.hydro2d Misses 0.090 0.08 1.02 0.58 0.64 0.59

Traffic 1.26 1.02 1.09 1.07 1.08
107.mgrid Misses 0.069 0.10 1.16 0.66 0.82 0.66

Traffic 1.72 1.14 1.40 1.19 1.37
110.applu Misses 0.087 0.13 1.08 0.64 0.71 0.64

Traffic 2.28 1.08 1.17 1.13 1.17
125.turb3d Misses 0.098 0.38 1.52 1.03 1.33 1.02

Traffic 6.24 1.52 2.67 1.61 2.58
141.apsi Misses 0.015 0.09 1.80 1.32 1.32 1.20

Traffic 1.41 1.64 1.74 1.68 1.72

Table 4-8: Trading off misses and traffic for a 1MB, 4-way set associative L2

Policy efficiency

Benchmark DSF SBP Unified
126.gcc 0.821 2.906 0.847

129.compress 24.633 119.008 50.446
134.perl 0.527 2.660 0.529

147.vortex 0.129 0.121 -----
101.tomcatv 25.591 451.727 440.828

102.swim 3.206 1.938 1.556
103.su2cor 5.055 12.780 5.910

104.hydro2d 5.799 6.970 6.605
107.mgrid 1.898 7.037 2.150
110.applu 4.540 7.678 4.686

125.turb3d 0.431 2.234 0.468
141.apsi 4.243 9.883 6.397

Table 4-9: Policy efficiencies; 1MB 4-way set associative L2, threshold and bound = 2

96

anisms

is the

ter 5,

ty, but

ance

ulative

ere is

d.

d

can-

tually

n the

a

ed in

nts

ueue

bears

ching

-

it pri-

HRs is

ved to

ular cache. The performance penalty of the subblocked cache may be reduced by mech

that allow data to be mapped into the cache at a finer granularity. One possible solution

decoupled sector cache [103], which associates multiple tags with each block. In Chap

we propose a different solution, which maps data into the cache at a subblock granulari

uses block-sized tags to keep track of the data.

4.5 Bus prioritization

Speculative loading of subblocks (as determined by DSF and SBP) can worsen perform

when higher-priority requests experience longer queueing delays as a result of the spec

loading. Conversely, if no demand fetches are pending, and the bus is otherwise idle, th

no penalty (other than consumed power) for loading subblocks that may soon be neede

We have implemented a policy calledbus prioritization that harvests otherwise waste

cycles on the Rambus channel. When DSF or SBP identify subblocks that might be good

didates for prefetches (during a block miss) only the processor-requested subblock is ac

requested from main memory. The non-critical subblocks are buffered for loading whe

Rambus channel is idle. They are loaded into a circular queue structure that we callsoft

prefetchqueue, depicted in Figure 4-3. An address tag and subblock bit vector are stor

each soft queue entry. We call the queuesoft because its contents represent prefetch hi

only; the tail pointer can overwrite the head pointer at any time if the queue is full. The q

thus simply buffers addresses that might be good candidates for prefetching. This queue

some resemblance to how a non-blocking cache buffer should be implemented for fet

large blocks. The difference between the two are twofold: (1)whatdata are chosen for fetch

ing (bus prioritization uses the SBP and DSF policies, as opposed to fetching large, albe

oritized, blocks on every transfer), and (2) that the queue issoft; data may not be fetched if the

bus is highly utilized and fetches are overwritten in the soft queue.

In addition to the soft prefetch queue, there are also 2hard prefetchMSHRs, which hold

actual prefetch requests issued to the Rambus channel. When one of the prefetch MS

freed, the soft prefetch queue is accessed and, if non-empty, a subblock request is mo

97

troller

The

oller.

fetch

erwise

k that is

th the

refetch

ceases

e, all

long

tches.

eueing

gest

n pro-

es are

the MSHR, and the prefetch request is sent to the Rambus controller. The Rambus con

buffers up to two prefetch requests, only initiating one when the channel is idle.

prefetches can wait indefinitely if demand fetches keep arriving at the Rambus contr

Once the prefetch initiates, however, it is not superseded by arriving requests. Two pre

MSHRs are sufficient to ensure that a prefetch is always in progress when the bus is oth

idle, so long as there are subblocks to prefetch. When the processor requests a subbloc

held in the soft prefetch queue, it is removed from the queue (the valid bit associated wi

requested block is cleared). When the processor requests a subblock that is in a p

MSHR, an upgrade signal is sent to the Rambus controller. The upgraded request then

to be superseded by other demand fetches.

This policy attempts to find a balance between two extreme endpoints. At one extrem

data are fetched with equal priority, lowering the L2 miss ratio but possibly causing

queueing delays for demand fetches, which get queued behind speculative subblock fe

At the other extreme, no subblocks are fetched speculatively, guaranteeing less qu

delay for demand fetches, but resulting in more L2 misses. With bus prioritization, the lon

delay that any demand fetch will see as a result of a speculative subblock fetch is sixtee

cessor cycles (in our simulated implementation), which occurs when no demand fetch

L2 cache

MSHRs

Rambus
controller

Block tag
Subblock fetch vector

Prefetch
buffers

Prefetch
MSHR #1

Prefetch
MSHR #2

Rambus channels

Soft prefetch queue

Hard prefetch queue

Figure 4-3: Datapath for bus prioritization

98

r that

oriti-

Ram-

hese

ance

mark.

a 10-

che, a

block

cache

olicy

adding

rms

us pri-

ases

ance

ever,

erfor-

om-

ance

r the

loss,

nels.

“per-

tion

rwise

queued, so the Rambus controller initiates a speculative subblock fetch, and right afte

initiation, a demand fetch request arrives.

We measured the execution performance of our traffic policies with and without bus pri

zation. The system parameters were identical to those described in Section 4.1 (Direct

bus, 8-way issue, dynamically scheduled core, etc.) We ran timing simulations for all t

policies, and graph the performance results in Figure 4-4. On the y-axis we show perform

(measured in IPC), and on the x-axis we display one cluster of seven bars for each bench

The left-most bar in each cluster represents an ideal L2 that never misses (but still incurs

cycle hit penalty). The next three bars represent the performance of a 256-byte block ca

cache with the block size set at the performance point for that benchmark, and a 4KB

cache, respectively. The fifth bar represents the performance of the base subblocked

(4KB blocks, 256-byte subblocks). The sixth bar shows the performance of our unified p

on the subblocked cache, and the right-most bar shows the performance resultant from

bus prioritization to the unified policy.

As expected from our functional results, the unified policy breaks even with or outperfo

the subblocked cache in most cases (particularly swim, mgrid, su2cor, and compress). B

oritization improves performance further in every case except for compress. In two c

(swim and mgrid), the bus prefetching improves performance over that of the “perform

point” blocksize by a significant margin (10%). For many of the other benchmarks, how

the subblocked cache degrades performance enough that even with bus prioritization, p

mance is still lower than a “vanilla” 4-way set associative cache with 256 byte blocks (c

press, gcc, vortex, apsi, and turb3d). In vortex, the unified policy itself reduces perform

below that of even the subblocked cache, as there is little consistent spatial locality fo

DSF and SBP policies to exploit. The bus prioritization regains some of this performance

finding idle cycles with which to bring unneeded (in vortex) data across the Rambus chan

Another interesting result can be seen in this graph: in two cases (su2cor and apsi), the

fect” L2 actually haslower performance than some of the other experiments. This aberra

occurs because the perfect L2 returns certain blocks too quickly (blocks that would othe

99

or still

“per-

s of

at a

. One

led to

ould

red in

ibility.

locks

have missed in the L2); those blocks evict data in the L1 data cache that the process

needs for a short time, causing a conflict miss. Thus, the L1 miss rates are higher for the

fect” L2 runs; those extra misses are the source of the performance loss.

Overall, these policies show potential to improve performance. However, the limitation

the implementation (mapping inflexibility) forces the data to be mapped into the cache

coarse granularity, which results in non-competitive performance (except in two cases)

alternative is to map small blocks into the cache and manage the behavioral state coup

larger logical regions, as proposed by Johnson and Hwu [69]. While this scheme w

require extra buffering near the cache to hold active state (since the state couldn’t be sto

the tag array), that extra buffering would be proportional to the cache size and is a poss

This implementation would increase the number of conflicts generated from the extra b

being loaded into the cache.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

gcc compress perl vortex tomcatv swim

IP
C

Missless L2

256B blocks

Best blocksize

4096B blocks

4096B/25B6 subblk

Dual + Footprint

Bus prefetching

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

su2cor hydro2d mgrid applu turb3d apsi

IP
C

Figure 4-4: Performance of traffic optimization schemes

100

nt a

d sub-

ving

ction,

ache

ing:

ags at

at the

ance,

Another alternative to mitigating the mapping granularity problem would be to impleme

decoupled sector cache [103], associating multiple tags with each block. The decouple

blocked cache has the potential to work synergistically with the proposed policies, impro

performance above and beyond that attainable with a fixed block size. In the next se

however, we propose a different solution to supporting these policies with a finer-grain c

mapping. Our solution uses indirect indexing to provide flexibility in the cache mapp

mapping data into the cache at a subblock granularity and reducing conflicts, but using t

the granularity of a block to keep the policy state associated with the blocks. We show th

combination of the traffic policies and the indirect cache provides outstanding perform

which is true for neither of the two individually.

101

MB

B of

sub-

rs will

ese

arti-

ulk of

(that

uce

at is

—will

simi-

f the

hese

terms

s and

some

ce. In

f tra-

Chapter 5

Merging Caches and Physical Memory

In Chapter 4, we evaluated a number of policies for improving the performance of 1

caches. Caches of this size will soon appear; the Compaq Alpha 21364 will have 1.5 M

on-chip cache [56], as will the HP PA-8500. On-processor memory capacities will grow

stantially larger than one or two megabytes, however. Intel estimates that microprocesso

contain 350 million transistors by 2006, and well over a billion by 2010 [136]. Most of th

transistors will be devoted to memory cells in one form or another—a recent collection of

cles on possible directions for microprocessors were unanimous in predicting that the b

on-chip transistors will be organized as memory storage [11]. Large on-chip memories

we will henceforth callMOPs,for “memory on processor”) are desirable because they red

both the number of times long memory latencies are incurred and off-chip traffic. Wh

unclear is how these large MOPs—from megabytes to tens and hundreds of megabytes

be organized.

Caches and physical memory are managed quite differently, even though they perform

lar functions: buffering subsets of frequently used regions of data from a lower level o

memory hierarchy (whether from main memory or disks). As we shall describe below, t

future MOPs will come to resemble past physical memories more than caches, both in

of access times and capacities. As they grow more similar—in terms of critical parameter

ratios—to the physical memories of yore, and less similar to the original caches, using

of the management mechanisms from physical memory may enhance overall performan

this section, we evaluate a few possible paths by which MOPs may evolve into hybrids o

ditional caches and main memories.

102

issue

ile an

mber

the

archy

issue

k rate,

locks,

access

on cur-

essing

disk

s than

of the

sical

f the

rs that

already

The access penalties of MOPs, measured ininstruction issue opportunities, are beginning to

resemble those of physical memories from two decades ago. We consider instruction

opportunities to be the number of instructions that could be issued by the processor wh

access to that level is being serviced.

Cache memories were originally designed to provide low latency access to a small nu

of operands, which is a role quite different from that which MOPs will play. To illustrate

difference, in Figure 5-1 we show access penalties for various levels in the memory hier

in 1978, today, and estimated for a decade hence. In this figure, we calculate instruction

opportunities as the product of the access time of that memory level, the processor cloc

and the sustained instructions per cycle. For 1977, we assumed a CPI of ~10, 5 MHz c

and disk latencies of 50 ms. For 2007, we estimate disk latencies at 5 ms, large on-chip

penalties at 5 ns, 4GHz clocks, and a sustained IPC of 10 (about what is needed to stay

rent performance curves).

By these estimates, the expense of accessing a MOP in 2008 will approach that of acc

main memory today, and accessing physical memory in 2008 is growing close to that of a

access in 1978. Furthermore, a 2008 MOP will be considerably more expensive to acces

physical memory was in 1978.

In addition to access penalties, the capacities of future MOPs (with respect to the rest

memory hierarchy) will fall somewhere between the traditional sizes of caches and phy

memory. Unlike today, on-chip memories may eventually contain a substantial fraction o

physical memory capacity. In Figure 1-5 we show the percentage of processor transisto

are allocated to cache memories, for numerous recent processors. This percentage,

Figure 5-1: Access penalties for levels in the memory hierarchy

0 1 2 3 4 5 6 7 8
Log10 IIOs (Instruction Issue Opportunities)

Past (1978)

Now (1998)

Fut. (2008)

Caches

L1

Physical

DiskL2

MOPsL1

memory Disk

Disk

Physical
memory

Physical
memory

103

their

bank

em-

s will

ium-

s and

tion

uming

r and

[97].

their

e two

ostly

s are

be

ut 10%

high, continues to grow. As this trend continues, future processors will have the bulk of

transistors devoted to memory. There will always be fast level-one caches, with a large

(or banks) residing under the level-one caches.

Given that future processors will be mostly memory, the capacity of the on-processor m

ories will track processor capacities. In Figure 5-2, we show how processor capacitie

scale compared to single DRAM chip capacities and main memory capacities (for med

cost PCs). Main memory sizes are growing more slowly than both on-processor densitie

DRAM densities. Main memory size is primarily driven by operating system and applica

working set sizes, rather than semiconductor processing technology. It is possible, ass

logic and DRAM processes remain distinct, that we will see systems with one processo

one DRAM chip (for medium-range systems, but not servers or high-end workstations)

The difference in capacity between the two chips will thus be approximately the ratio of

respective sizes times the difference in the density of dense memory structures on th

chips. For example, according to Figure 5-2, a future processor in 2010, which is m

memory, will have an eighth of the capacity of main memory, assuming that the chip area

similar (the actual difference is likely to be more, since SIA projects that DRAM dies will

twice the size of processor dies by 2010, whereas now the processor, on average, is abo

Figure 5-2: Trends in microprocessor memory hierarchies

2 Kb

4 Kb

8 Kb

16 Kb

32 Kb

64 Kb

128 Kb

256 Kb

512 Kb

1 Mb

2 Mb

4 Mb

8 Mb

16 Mb

32 Mb

64 Mb

128 Mb

256 Mb

512 Mb

1 Gb

2 Gb

4 Gb

8 Gb

1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Year

N
um

be
r

of
 b

its
 (

m
em

or
y)

, t
ra

ns
is

to
rs

 (
pr

oc
es

so
rs

)

(b) Density increases

Processor trend (LMS)
Main memory trend (LMS)

Processor transistors
Main memory sizes ($2000 PC)
Single-chip DRAM capacities

104

ss the

possi-

ional

this

s:

ical

gical

el-

s in

y or

eval-

typical

of this

essor/

hile

e two

y has

xpen-

ticated

hanical

some-

larger [102]). New processes may affect the slopes of these lines considerably; we discu

process issue in more depth in Section 5.4.

Regardless of whether support for dense on-processor memory cells arises, it is quite

ble that future MOPs will contain a substantial fraction of the system memory. Convent

wisdom states that the MOP will be organized simply as a giant level-two cache [56]. In

section, we question that assumption, and discuss three types of hybrid memory system

• Logical hybrids, which combine various mechanisms from both caches and phys

memories, to realize higher overall performance. We propose and evaluate one lo

hybrid in Section 5.2.

• Physical hybrids, which use physically distinct a part of the on-chip memory as a lev

two cache and a part as a fraction of main memory. We discuss physical hybrid

Section 5.3.

• Unified hybrids, which can treat portions of on-chip storage as either physical memor

as a cache (or both simultaneously). We discuss this type of hybrid briefly and do not

uate it experimentally as we do the previous two.

In the next subsection, we describe a taxonomy that captures the differences between

caches and physical memory, treating them as endpoints on a spectrum. In the rest

chapter, we discuss logical hybrids, physical hybrids, unified hybrids, and complete proc

memory integration.

5.1 A taxonomy for memory hierarchies

Memory hierarchies exist to provide the illusion of memory that is both fast and large. W

caches and physical memories perform the same function in a memory hierarchy, th

structures are optimized quite differently due to the constants involved. Physical memor

traditionally been organized to minimize disk accesses [27], since going to disk is so e

sive. Physical memory is thus fully associative, replacements are handled using sophis

software schemes, and the blocks (pages) are large to amortize the overhead of the mec

latencies incurred upon misses. Furthermore, inclusion is often relaxed, as a page may

times exist in main memory but not on the disk (swap in Solaris is one example).

105

l set of

e miss

cess),

ince

dupli-

imes

ache

emory

xt of

pol-

grain

have

appli-

g

le,

may

icated

.

ing

okup

more

the

erally

Caches, conversely, have traditionally been organized to provide fast access to a smal

operands. Cache lines are typically small (since early caches had few lines and cach

penalties were small), they use bits of the address to index into the cache (for faster ac

and they generally hold copies of blocks that exist at lower levels of the hierarchy (s

caches have traditionally been much smaller than physical memories, the cost of the

cated bits was small) [106].

As both the MOP capacity (absolute and relative to physical memory), and hit/miss t

change qualitatively, the best design may lie in between the traditional definitions of c

and physical memory. To examine this space, we categorize a generalized level of the m

hierarchy by the following five components, and discuss the components in the conte

MOPs.

• Block size(large or small): as MOPs grow to a larger fraction of the system memory,

lution will decrease (since there is a larger total number of blocks). In theory, coarser-

blocks could be mapped into the MOP without hurting performance. However, as we

seen in Chapter 4, coarser-grained mappings can hurt performance for fine-grained

cations. Ideally, data could be transferredand storedat a coarse or fine-grain, dependin

on the application, but mapped at a coarse grain.

• Associativity (low or high): long off-chip delays will make high associativities desirab

to reduce (or eliminate) the chance of mapping conflicts. Already long hit latencies

make a slight additional penalty for reduced misses palatable. Furthermore, sophist

replacement policies could exploit the added flexibility that full associativity provides

• Indexing (direct or indirect): a block may be found either by indexing into a set and do

a direct compare of the tag with one or more stored tags, or by performing a table lo

to obtain the pointer to the operand’s exact location. Indirect access memories have

flexibility with respect to allocation and mapping, but at the cost of serializing

accesses. Conversely, direct access memories have limited associativity, but gen

106

e flexi-

in a

mited

CAM

a set

vel

s that

ste-

nica-

ists

ional

ement

much

. In the

allow parallel accesses to tags and data. Traditional caches use direct access, but th

bility of indirection may be superior for MOPs with long miss penalties.

• Cached translations(cached or uncached): caching commonly used translations (as

TLB) could reduces the overhead of lookups for data. Cached translations are not li

to indirect access memories; designers could conceivably cache translations for a

(they have also proposed caching translations to speculate on which block within

should be driven before performing the tag compare) [20].

• Inclusion (enforced or not): enforcing the principle of inclusion means that a given le

of the hierarchy contains no data not also contained in the level below. For memorie

are not substantially smaller than the level below, enforcing inclusion would prove wa

ful. Enforced inclusion simplifies the control necessary to handle inter-cache commu

tion (L1 to L2, for example) and is thus worthwhile when a large size disparity ex

between two levels in the hierarchy.

In Figure 5-3, we list some logical hybrids in the space in between the extremes of tradit

caches and traditional physical memories. Content-addressable memories (CAMs) impl

high associativities while retaining direct access. Hardware page caches are organized

the same as traditional caches, except that they map full pages instead of smaller lines

Direct access
Low associativity
Small blocks
Uncached trans.

Cache

Indirect access
High associativity
Large blocks
Cached trans.

Physical memory

HW page cache

CAMs

Direct access
Low associativity
Large blocks
Uncached trans.

Direct access
High associativity
Small blocks
Uncached trans (?)

SW page cache

Indirect access
High associativity
Large blocks
Cached trans.

Inclusion

Inclusion

Inclusion Inclusion

No inclusion

Figure 5-3: A sample of points in the taxonomy space

Indirect cache

Indirect access
High associativity
Small blocks
Cached trans.
Inclusion

107

d using

ge

cache

tech-

e not

) or

y for

were

ue to

erbate

4KB

tware

aniza-

affic

mo-

d a tag

in the

sed to

con-

n. To

[74,

m was

indirect cache scheme (evaluated in the next subsection), small cache lines are accesse

a table lookup and TLB-like structure to provide full associativity. Finally, software pa

caches behave much like physical memory, except that they duplicate the pages in the

and in physical memory [85]. This list is intended to be illustrative, not exhaustive.

5.2 A logical hybrid - the Indirect Cache

While there are many points in the taxonomy space, many of them are not good fits for

nological trends. Both CAMs and traditional, direct-indexed fully associative caches ar

well-suited for large on-chip structures. They either consume significant power (CAMs

exhibit high latency if the large number of tag compares is serialized (trading off latenc

power consumed and design complexity). A hardware page cache (in which the pages

accessed by indexing the tags, like conventional cache lines) would incur extra conflicts d

the restricted mapping, which would generate extra loading of the large pages and exac

bandwidth limitations (as evidence, the performance of a hardware page cache with

blocks can be seen for ten benchmarks at the end of this section, in Figure 5-6). A sof

page cache may perform better than the hardware page cache if the fully associative org

tion resulted in fewer misses, but would still likely incur performance losses due to high tr

volumes.

We have identified one candidate for a competitive logical hybrid, which we call anIndirect

Cache Extended, or ICE. The ICE manages an on-chip cache similar to how physical me

ries are managed: a hash table holds the mappings of where blocks reside in the ICE, an

cache holds a subset of recently referenced cache mappings (like a TLB) for fast access

common case. The translations used to map data into the ICE are not identical to those u

map physical pages into memory; the location of blocks in the ICE are determined by the

troller that manages the ICE, not the virtual or physical addresses of the block in questio

our knowledge, the first computer to re-map memory from physical store was the Atlas

105], which allocated 32 pages in core memory, and took a fault when a requested datu

108

rom

ies

xtra

or

, not

traf-

por-

, the

he

x is

blocks

m the

ts the

nsla-

ey are

che,

her than

data

esses.

zation

ess tag

ck is

com-

ism;

out of core, at which point it would load the page from drum memory, choose a victim f

core with a software scheme, and perform the replacement.

The design goals of the ICE were twofold: (1) to provide full associativity, allowing polic

to creatively exploit the mapping flexibility, while at the same time compensating for the e

overheads of providing high associativity (and incurring lower penalties than a CAM

direct-indexed fully associative cache), and (2) to pack data efficiently into the cache

incurring the pollution penalty of a subblocked cache, while still being able to exploit the

fic policies we presented in Chapter 4. Efficient handling of different-sized fetches is im

tant.

In Figure 5-3, we display the organization of the base ICE. As with physical memory

indices into the data array are held in a table (analogous to a page table) that we call ttag

store. For fast access, a subset of the indices are held in atag cache, which is analogous to a

TLB in a virtual memory system. On a tag cache hit, if the valid bit is set, the data inde

used to access the data array. On a tag cache miss, the tag store, which is kept in pinned

in the data array, is accessed to find the requested block. If found, the entry is loaded fro

tag store into the tag cache. If the tag is not found in the tag store, the system reques

block from main memory. We note that we are not performing virtual memory address tra

tion here; the ICE uses physical tags, and the data indices are restricted to the ICE (th

not part of the virtual memory system).

The main source of overhead incurred by an ICE, which is not intrinsic to an ordinary ca

is the extra latency needed to access and manage the indexing table (the tag store). Rat

cycle through the inverted tag table (which is effectively a chained hash table) on each

array lookup, the tag cache provides a lower-latency access path for the majority of acc

Even with the tag cache, there are still three sources of overhead. The first is the seriali

of the tag cache access and the data lookup. The second is the time required to proc

cache misses;i.e., to access the tag store to find the mapping (or determine that the blo

not in the store). The third source of overhead is that associated with performing more

plex replacement. All three result from the added flexibility provided by the ICE mechan

109

enefits

he tag

d data

ccesses

hich

Such a

cache

he ICE

lly, if

would

index

possi-

the challenge is to reduce these overheads sufficiently that they are overcome by the b

of the mapping flexibility. We address each in subsections below.

5.2.1 Additional hit latency

The ICE reduces average tag store latency by keeping frequently used mappings in t

cache. Conventional set-associative caches can generally perform the tag lookup an

lookup in parallel. However, some modern set-associative caches do the tag and data a

serially: the Alpha 21364 contains a 1.5MB, 6-way set associative L2 cache [56], for w

the tag and data accesses are processed serially, due to power and timing constraints.

cache would have no intrinsic access time advantage over the ICE. To compare against a

that does do the accesses in parallel, we ran some simulations in which we increased t

access time by one cycle, and found that the performance impact was negligible. Fina

there were cases where an extra cycle or two on the hit path did impact performance, it

be possible to speculate by accessing the data array in advance of obtaining the data

(based on the previous access). This is less likely to be useful for large caches, but is a

ble avenue to explore.

Tag Tag index Offset (8)

Stored tag Valid Data index

Match?

Tag cache

Tag store

Data array

1 = hit, access data array with data index
0 = tag cache miss, search tag store with miss handler

Figure 5-3: Organization of the base ICE

110

a tag

tag

a hash

n the

ize of

to the

E). In

ndary

h is not

.

e hash

re to

imple-

hold-

tag is

ag in

everal

bears

cheme

then

s.

erfor-

et the

ompa-

e we

ock in

into the

5.2.1.1 Tag cache misses

A potentially worse source of overhead is the latency required to fill the tag cache upon

cache miss. In joint work, Reinhardt came up with an efficient organization to handle

cache misses quickly. In the organization that he proposed, the tag store is organized as

table (similar to an inverted page table in conventional microprocessors, such as i

POWER and PowerPC architectures [65, 129]). As in the PowerPC architectures, the s

the hash table was set to be twice as large as the power of two greater than or equal

number of physical mapped regions (physical pages in PowerPC and cache blocks in IC

the PowerPC architecture, each hash table entry maps to onepage table entry group(PTEG),

which holds 8 mappings that are searched linearly for a match. If the match fails, a seco

hash function generates a different address, which searches a second PTEG. If a matc

found in the second PTEG, the page is not in physical memory and a page fault occurs

The ICE implementation assumed a similar model, but searched adjacent entries in th

table instead of grouping multiple entries into a single PTEG. ICE also used hardwa

accelerate the hash table search. To reduce the latency for resolution of misses, the ICE

mentation had multiple comparators placed by the read-out rows of the memory banks

ing the tag store. Upon a tag cache miss, the appropriate hash table entry for the given

read out, with the rest of its row in the memory bank. The comparators search for the t

both the indicated hash table entry plus the adjacent entries in the row, thus scanning s

possible locations of the tag simultaneously (in addition to the PowerPC, this solution

some resemblance to clustered hash tables [121]). We depict a diagram of Reinhardt’s s

in Figure 5-4, showing how the tag is hashed to get the hash table index, which is

accessed and read out (the whole row) to multiple comparators, looking for tag matche

We implemented the proposed organization, and ran simulations to compare the p

mance impact of a perfect tag cache (which never misses) to a finite tag cache. We s

capacity of the finite tag cache to be smaller than the size of the tag array needed for a c

rable, traditional cache (4-way set associative, 1MB L2 with 256B blocks). The tag cach

used was a 4-way associative tag cache with 2K entries (each of which maps a 256B bl

the data array). The hash table held twice as many entries as needed to map the blocks

111

le takes

with

to the

cks).

but the

d per-

el one

blocks

ed to

he is

re con-

cache. Since the tag cache is smaller than the conventional tag array, and the hash tab

up what would otherwise be data blocks in the data array, thegross cache size[61] of the ICE,

is less than the gross cache size of the conventional cache.

We show the results of this comparison in Table 5-1, in which we list the IPCs of ICEs

perfect and imperfect tag caches. In this table, we normalized the performance numbers

performance of a comparable cache (1MB, 4-way set associative L2 cache with 256B blo

The worst performance losses are 3.3% and 3.1% degradations (compress and applu),

others are much smaller. Two of the benchmarks (apsi and wave5) even show improve

formance with the imperfect tag cache, because of reduced cache thrashing in the lev

data cache. In all simulation results that we present in this section, we assume that 256

(64KB) of the data array were allocated to hold the tag store. Those blocks were not us

hold data, and were thus factored into ICE performance.

5.2.1.2 Complex replacement

The third source of overhead is handling more complex replacement when the cac

highly associative and managed by software. In our experiments, we assumed a hardwa

tag hash table

data array

Tag Tag index Offset (8)

Hash1

Hash2

First hash missed?

== == == ==

Cache hit on tag miss

Figure 5-4: Accelerating tag cache misses

Comparators

112

Rein-

a low-

t

to

g the

rela-

o a 4-

ses is

algo-

later

es are

rviced

ultiple

use of

ri and

ribed

data

d the

4-way

s. We

y 512

effects

troller that was tightly coupled to the cache, which was designed and implemented by

hardt [16]. He also proposed the replacement policy that we used to evaluate the ICE,

overhead policy calledgenerational replacement, which is a frequency-based policy tha

groups blocks into one of several prioritized “bins”. This policy—which was designed

counter the effect of “filtering” that the L1 caches do on the reference stream reachin

L2—is described in considerable more detail elsewhere [16]. In Table 5-2, we show the

tive number of misses that the ICE incurs with generational replacement, as opposed t

way set associative cache (with LRU replacement) of the same size. The number of mis

only slightly lower on average than the baseline, so while the generational replacement

rithm is competitive, it is not a source of high performance gains in the results we show

in this section. (For our simulations, we assume that the policy code and data structur

pinned in the data array, and that the replacement handlers run while a miss is being se

[82]). We also assume the replacement handler has enough bandwidth to handle m

simultaneous outstanding misses before they return.

To increase the coverage of the space we can map in the tag store, we evaluated the

subblocked tags, analogous to the complete subblocking of the TLB proposed by Tallu

Hill [120]. In our complete design, each tag maps 4KB instead of the 256B as desc

above, with 16-way complete subblocking within the tag. Thus each subtag has its own

index and valid bit, and each tag maps sixteen 256B blocks in the data array. We limite

tag cache size to be smaller than the equivalent tag store size for our baseline (1MB,

256B block) cache. This bound resulted in a 4-way associative tag cache with 512 entrie

can thus cover 2MB with the tag cache, but since the number of tags is reduced to onl

entries, there is a resultant increase in tag cache misses. In Table 5-3, we display the

Benchmark gcc compress perl vortex tomcatv swim su2cor

IPC (perf. tag cache) 1.007 0.892 1.007 1.032 0.962 1.003 1.008
IPC (real) 0.999 0.862 1.001 1.022 0.954 0.992 0.998

Benchmark hydro2d mgrid applu turb3d apsi wave5

IPC (perf. tag cache) 0.993 0.995 1.020 1.015 1.026 0.996
IPC (real) 0.973 0.977 0.988 1.015 1.033 1.000

Table 5-1: Performance impact of an imperfect tag cache (1MB ICE)

113

asured

. The

an 18%

misses

s, they

n the

r simu-

still

exam-

array.

will

ly to be

r. It is

ough a

cache

that the subblocked tag cache has on (a) the number of misses, and (b) performance me

in IPC. Both metrics are normalized to those of the base ICE with non-subblocked tags

results show small increases and decreases in both performance and misses: at worst

increase in tag cache misses (compress), and at best, a 22% reduction in tag cache

(apsi). While the subblocked tags do not provide across the board performance increase

do permit us to combine the ICE with the traffic policies from Chapter 4, as we describe i

next subsection.

5.2.2 Coherence issues

The ICE uses physical addresses to index into the tag cache and hash table, since in ou

lations the primary caches are virtually indexed and physically tagged. Thus, the ICE is

capable of snooping on a bus, and transactions that are snooped from a bus may still be

ined in the tag cache, as quickly as a conventional cache would examine them in the tag

The tag cache may also be duplicated to provide extra bandwidth for snooping. The ICE

incur extra overhead when snooped transactions cause tag cache misses, which are like

more frequent than those caused by the reference stream from the local processo

unlikely that tag cache misses caused by snooping should cause a tag cache fill, alth

small, separate buffer to cache snooped translations may reduce the overhead of tag

misses for blocks with certain types of access patterns (such as migratory sharing).

Benchmark gcc compress perl vortex tomcatv swim su2cor

Normalized misses 0.917 1.364 0.983 0.778 1.075 1.007 0.963

Benchmark hydro2d mgrid applu turb3d apsi wave5

Normalized misses 1.023 1.010 0.990 0.875 0.728 0.978

Table 5-2: Relative misses for the ICE (compared to 1MB, 4-way set associative LRU)

Benchmark gcc compress perl vortex tomcatv swim su2cor

Normalized misses 1.024 1.185 1.038 0.964 1.073 1.012 1.070
Normalized IPC 0.997 0.966 1.012 1.007 0.970 1.027 0.972

Benchmark hydro2d mgrid applu turb3d apsi wave5

Normalized misses 1.064 1.043 0.999 0.869 0.779 0.971
Normalized IPC 0.984 0.973 0.953 1.020 1.033 1.044

Table 5-3: Performance impact of 16-way subblocked tags)

114

affic

uffer

an be

rans-

ates a

nnels

s the

ten

l mem-

mpare

first

ag ICE

nts

e L2

mark

effect

d two

tion

, and

rl and

ctions

s the

ICE++

5.2.3 Performance analysis

In this section we evaluate both the ICE and the ICE combined with the optimizing tr

policies. We show that DSF and SFP are compatible with the ICE, since they will not s

from the performance penalty of having a subblocked data cache. Since the ICE tags c

subblocked, the traffic optimization policies may still operate on transfer blocks, but the t

fer blocks are now packed more efficiently into the cache. Also, since the ICE demonstr

lower miss ratio due to full associativity and generational replacement, the Rambus cha

are more often free, and the bus prioritization has more opportunity to bring data acros

channel speculatively, while keeping latency for critical requests low.

In Figure 5-5, we plot the performance (in instructions per cycle) of a 1MB ICE for

SPEC95 benchmarks. Our simulation parameters (processor core, L1 caches, physica

ory, buses) are identical to those described in Section 4.1. For each benchmark, we co

four experiments, shown by the four-bar clusters in Figure 5-5. From left to right, the

three bars in each cluster represent the base ICE, the subblocked tag ICE, subblocked t

with DSF, SFP, and bus prioritization (which we will call ICE++). The fourth bar represe

the performance of our baseline system with a traditional, 1MB, 4-way set-associativ

cache for which the block size is set at the performance point on a per-application bench

(i.e., the best block size is chosen for each benchmark).

The figure shows that, as also shown in Section 5.2.1.2, the subblocked tags have little

on ICE performance, causing two slight improvements (compress, swim, and wave5) an

minor degradations in performance (vortex and applu). The addition of the traffic optimiza

policies, however, makes a large difference for several benchmarks (mgrid, hydro2d

applu), slight improvements for several others, and two minor performance drops for pe

vortex (we hypothesize that the additional latency required to complete prefetch transa

when a demand fetch arrives is responsible for this drop).

The most significant result in this figure is the fact that ICE++ nearly equals or exceed

performance of the performance-point cache in every case but one (compress). The

115

-point

plu).

each

ench-

at, on

marks

block

f IPC

) over

epre-

performance of seven of the other benchmarks is extremely close to the performance

cache (apsi, swim, turb3d, hydro2d, vortex, gcc, apsi) or significantly better (mgrid, ap

We computed the speedup of the ICE++ over the cache at the performance point for

benchmark, and found that the mean speedup of ICE+ over traditional caches with b

mark-specific block sizes is under 1.6%. This result is significant because it indicates th

average, ICE++ performs better than any cache, no matter the block size (for the bench

we studied).

That result does not show how ICE++ would fare against traditional caches when their

size was fixed across all applications. In Table 5-4, we list the mean speedup (a ratio o

measurements) that ICE++ obtained across all benchmarks (those listed in Figure 5-5

cache with a fixed block size. For example, in the first column of Table 5-4, the number r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

126.gcc 129.compress 134.perl 147.vortex 102.swim

IP
C

IIC

IIC with subblocked tags

IIC++

Cache/optimal blocksize

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

104.hydro2d 107.mgrid 110.applu 125.turb3d 141.apsi

IP
C

Figure 5-5: Performance of an ICE with traffic optimization schemes

116

on 4-

from a

er-

used

tradi-

bench-

E++.

each

nch-

-axis;

or a

ach

mark.

1.05

points

-byte

plu,

ove

dro2d,

result

ven-

rfor-

sents the mean speedup that ICE++ showed over all our SPEC95 benchmarks running

way set associative, 1MB L2 caches with 64-byte blocks. The mean speedups range

low of 0.08 (512-byte blocks) to a high of 0.28 (4KB blocks). In Figure 5-6, we plot the p

formance of traditional caches in IPC—assuming the same simulation parameters as

elsewhere in this chapter—as a function of block size on the x-axis. We assume that the

tional caches are 1MB and 4-way set associative. Each line represents the IPC for one

mark as the L2 block size is increased. The individual points represent the IPC for the IC

We placed each ICE point on the x-axis at the performance point for that benchmark;

point will appear at the same position on the x-axis where the blocksize curve for that be

mark peaks. Note that the ICE uses a constant block size, and is thus invariant on the x

they are placed at different x -coordinates for illustrative purposes.

Each ICE++ point is simply a heavier or dark-filled version of the mark used in the line f

given application. This graph illustrates our earlier claim: the ICE++ performance for e

benchmark is close to (or above) the peak of the traditional cache curve for each bench

At the 64-byte point on the x-axis, the only ICE point is the inverted triangle, at just over

IPC (and somewhat under the corresponding point for compress, at 1.2 IPC). The ICE

for perl and vortex are superimposed at 128-byte blocks (at about 2.0 IPC). At 256

blocks is the turb3d point. The gcc point is at 512 bytes, the swim point is at 1KB, the ap

hydro2d, and applu points are at 2KB, and finally the mgrid point is at 4KB. Most are ab

the peaks of their corresponding curves; the exceptions are compress, vortex, and hy

which are all reasonably close to the peaks of their application performance curves.

These results show that the performance of ICE++ isstable: it shows significant improve-

ments in actual performance when compared against any specific block size. When this

is coupled with the previous result—that ICE++ significantly outperforms the best con

tional cache for several of our benchmarks—it shows that ICE++ offers both high pe

Block size 64 128 256 512 1024 2048 4096

Mean speedup 0.27 0.16 0.09 0.08 0.12 0.18 0.28

Table 5-4: Mean speedup (across SPEC95) of ICE++ over 1MB, 4-way set assoc. caches

117

and

hich

sub-

mes

hold-

teris-

d sig-

ict

mance and high stability across varied workloads. This performance stability

improvement comes from the synergy of the traffic policies and the base ICE; neither of w

does nearly as well individually.

5.3 Physical hybrids

At the beginning of this chapter, we described how MOPs may grow to encompass a

stantial fraction of main memory, particularly if support for denser memory cells beco

incorporated into logic manufacturing processes. Should this scenario arise, with MOPs

ing a significant fraction of the total system memory, there will be three desirable charac

tics for the MOPs:

1. MOPs should not enforce inclusion, since the total system memory could be increase

nificantly if inclusion were not enforced (inclusion simplifies caching policies for a str

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

64 128 256 512 1K 2K 4K

Block size

IP
C

126.gcc
129.compress
134.perl
147.vortex
102.swim

104.hydro2d
107.mgrid
110.applu
125.turb3d
141.apsi

Figure 5-6: Comparing ICE++ to traditional caches

118

as

ple,

le,

hysi-

Stan-

aniza-

ical

ata,

mory,

n of

pen-

maller

ar with

uld be

lected

hose

hose a

peri-

caches

ed by

results

phys-

hierarchy, which would no longer be as applicable if a logical level of the hierarchy w

divided into on- and off-chip banks).

2. MOPs should still minimize the off-chip accesses, which will be considerably more

expensive than accesses to the memory on-chip.

3. MOPs should allow for fine-grain off-chip accesses; loading a page at a time, for exam

will cause poor performance for applications that show little spatial locality (for examp

the SPEC95 integer codes in Figure 5-6).

In this section, we perform a brief evaluation ofphysical hybrids, in which a MOP is divided

into two physically distinct structures. One of the structures is an on-chip extension of p

cal memory, and the other is an L2 cache for off-chip data (analogous to the RAC in the

ford DASH [83], albeit in a uniprocessor context).

We measured the miss rates of our benchmarks running on five different simulated org

tions: (1) all on-chip memory is a fast fraction of physical memory, (2, 3, 4) three phys

hybrids, in which 1/2, 1/4, and 1/8 of the on-chip memory are a cache for off-chip d

respectively, with the remainder of the on-chip storage in each case going to physical me

and (5) all on-chip memory is a cache, and all physical memory is off-chip. For any portio

the chip devoted to physical memory, we increased the simulated capacity by 20% to com

sate for the fact that physical memory would incur smaller area overhead than a cache (s

tag overhead, no comparators, etc.) The actual overhead for cache support is non-line

respect to cache size. We intend the 20% to be a crude first-order approximation that sho

refined in subsequent studies, in which specific implementations are evaluated. We se

the pages for the on-chip fraction of physical memory by profiling them, and mapping t

pages that had the highest total static reference counts to the on-chip memory. We c

block size of 256 bytes for the cache portions of the MOP, consistent with the earlier ex

ments in this chapter, but assumed a direct-mapped cache due to the large size of these

[59].

In Table 5-5, we list the global miss rate for the data segment (number of misses divid

the total number of references) for each organization. For each benchmark, we present

assuming MOPs with capacities equal to 1/2, 1/8, and 1/32 of the data set size. The “all

119

ata.

as high

ments

/8 of

to all-

l to or

ical memory” experiment performs quite badly, since there is no buffering of off-chip d

For a MOP at 1/32 of the data set size, the ratio of off-chip accesses to total accesses is

as 0.41 (turb3d) and 0.48 (gcc). However, the combined physical memory/cache experi

exhibit miss ratios comparable to those of the all-cache experiments. Even when only 1

the MOP area is devoted to a cache for off-chip data, the miss rates are comparable

cache. When 1/4 of the MOP is devoted to a cache, the total off-chip miss rate is equa

better than “all-cache” in fully half of the measured cases.

Benchmark/
% data set Fraction of on-chip cache

gcc All 1/2 1/4 1/8 None
1/2 0.0002 0.0002 0.0003 0.0006 0.0063
1/8 0.0017 0.0002 0.0025 0.0038 0.1522
1/32 0.0051 ----- X X 0.4813
perl All 1/2 1/4 1/8 None
1/2 0.0003 0.0003 0.0005 0.0006 0.0064
1/8 0.0006 0.0007 0.0009 0.0011 0.0226
1/32 0.0012 0.0013 0.0018 0.0021 0.0353
vortex All 1/2 1/4 1/8 None
1/2 0.0002 0.0002 0.0002 0.0003 0.0017
1/8 0.0010 0.0005 0.0009 0.0017 0.0060
1/32 0.0028 0.0025 0.0040 0.0058 0.0213
swim All 1/2 1/4 1/8 None
1/2 0.0026 0.0025 0.0024 0.0024 0.0687
1/8 0.0035 0.0029 0.0031 0.0036 0.1279
1/32 0.0044 0.0039 0.0047 X 0.1497
su2cor All 1/2 1/4 1/8 None
1/2 0.0002 0.0001 0.0002 0.0002 0.0074
1/8 0.0010 0.0007 0.0010 0.0021 0.0497
1/32 0.0024 0.0033 0.0039 X 0.1610
applu All 1/2 1/4 1/8 None
1/2 0.0044 0.0043 0.0044 0.0044 0.0432
1/8 0.0053 0.0052 0.0052 0.0059 0.0987
1/32 0.0061 0.0063 0.0071 X 0.1353
turb3d All 1/2 1/4 1/8 None
1/2 0.0008 0.0009 0.0008 0.0009 0.1122
1/8 0.0019 0.0017 0.0018 0.0026 0.3509
1/32 0.0029 0.0030 0.0037 0.0054 0.4111
wave5 All 1/2 1/4 1/8 None
1/2 0.0007 0.0006 0.0006 0.0007 0.0264
1/8 0.0024 0.0010 0.0013 0.0019 0.0926
1/32 0.0040 0.0026 0.0050 0.0080 0.1933

Table 5-5: Global miss rates for physical hybrid experiments

120

lower

at we

ion is

ed on

form

es, the

with

ssor

suf-

ow-

chips

ur-

ec-

cells

[40]

hip,

eed to

apac-

ufac-

etal

w end

s they

new

The physical hybrids thus have the potential to provide competitive performance at a

cost if MOPs grow to be a sizable fraction of the total system memory. The caveat is th

used profiling to choose which pages to map on-chip. An interesting research quest

whether heuristics that infrequently promote pages to be on-chip (or demote them) bas

dynamic usage patterns (similar to reactive NUMA [36]) could approach or even outper

the static, profiled mapping of pages.

5.4 Processor/memory integration

As on-chip storage capacity grows, and system integration on the processor die increas

possibility exists that all physical memory will eventually end up on the processor die,

processor interfaces connecting only to I/O. In Figure 5-2, we track the trend in proce

capacity versus DRAM capacity, and show that they are slowly converging. Extrapolated

ficiently far, one might assume that complete processor/memory integration was likely. H

ever, the 1997 SIA Roadmap [102] project that the capacities of processors and DRAM

will diverge quickly for two reasons. First, SIA projects that DRAM chips, with areas c

rently slightly smaller than processor chips (10%), will grow to be twice as big by 2012. S

ond (and more important), the density differential between packed logic-process SRAM

and DRAM cells is projected to grow rapidly. Current estimates range from a factor of 21

to 25 [102]. SIA projects density differentials of73 by 2009 and94 by 2012.

For full integration to occur (or even a substantial fraction of the memory residing on-c

as discussed in Section 5.3), the manufacturing process used to make processors will n

incorporate support for dense cells (thin gate oxides, support for 3-D stacked or trench c

itors, and multiple layers of polysilicon). Conversely, processors could start to be man

tured in a more DRAM-like process, with support for fast gates (and more levels of m

wiring) added. While such hybrid processes may be used for embedded systems at the lo

(for which great cell density or gate speed may not be needed), for high-end processor

must either offer a performance potential commensurate with the cost of developing the

121

essor

peri-

per-

by the

epre-

fourth

ter, but

se

e L2

right-

ation

nd an

perfor-

ys for

better

per-

ed to

process, or be developed in a different market and then move over to high-end proc

design once the development costs have been recouped.

We performed a limited set of experiments to evaluate the potential (at least for our ex

mental setup) of having all of the physical memory on-chip. In Figure 5-7, we display the

formance, measured in IPC, for five different experiments per benchmark, represented

five bars in each cluster. The left-most four assume various ideal memories. The first r

sents a perfect memory system (all accesses return in one cycle). The second, third, and

assume a system with the same processor and L1 caches described earlier in this chap

with the all physical memory in place instead of the L2 (we call this “perfect L2”). The

three caches effectively never miss (i.e., all of the physical memory is on-chip where th

would be), but have hit latencies of 1 cycle, 10 cycles, and 20 cycles, respectively. The

most bar, representing the fifth experiment, shows the performance of the ICE++ organiz

described in Section 5.2.

We see that there is not a large performance differential between the ICE++ runs a

integrated system with the same access time (10 cycles) as the ICE. On average, this

mance differential is 13.3%. In one case (apsi), we again see the effect where longer dela

some operations (L2 misses) result in less L1 thrashing, a lower L1 miss rate, and thus

performance for the ICE than for an ideal L2. Only one benchmark (swim) shows a large

formance gap between an ideal, 10-cycle on-chip memory and the ICE. If the time requir

0.0

1.0

2.0

3.0

4.0

5.0

6.0

gcc compress perl vortex swim hydro2d mgrid applu turb3d apsi

IP
C

Perfect memory

Perfect L2, hit=1

Perfect L2, hit=10

Perfect L2, hit=20

IIC++

Figure 5-7: Performance of perfect L2 caches

122

E may

ideal

y the

r a

AM

marks

costly

iven

ly be

he per-

buff-

y be

pport

oba-

upled

rio in

ized

be

ould

larger

rises

ng that

ause

sed to

a class

posed

access the denser store increases, due to heavier banking or larger data arrays, the IC

actually outperform an integrated system; the ICE (with 10-cycle access) outperforms an

L2 with a 20-cycle access penalty inevery case.

Our result of a mean 13.3% performance gap is consistent with the results reported b

Berkeley IRAM group, in which they showed a negligible performance improvement fo

large IRAM chip (a mean of 4%) and a result comparable to ours (16%) for a small IR

chip, over a conventional alternative [42]. These results indicate that (for these bench

and target system assumptions) there is not a sufficient performance gain to justify any

process support. Different applications may result in different conclusions, of course. G

the large real estate that will be available on future chips, processor designers will like

able to implement as many processors on-chip as makes sense, either for increasing t

formance of a specific job, or for throughput-oriented processing. In either case, on-chip

ering and off-chip bandwidth are likely to be the resources that limit how many cores ma

placed on a chip and used effectively. If that were the case, modifying the process to su

denser memory cells on-chip—and thus higher off-chip effective bandwidths—would pr

bly be worthwhile.

In the nearer term, however, the projected disparity between the two technologies—co

with the dropping number of DRAM chips in (uniprocessor) systems—makes the scena

which the system consists of two main chips likely. One chip will be the processor, optim

for speed and throughput, and the other will be optimized for density. The two will likely

closely coupled, perhaps in a single package or in a multi-chip module. This package w

offer both dense storage and fast processing, and could be used as a building block for

systems.

If all of the DRAM for a small system is packaged closely to a processor, the question a

as to how more memory should be added, and/or how the system can be extended usi

single package as a building block. Also, if the DRAM moves onto the processor die bec

of numerous processors on the main processor die, how those multiple units can be u

accelerate a single application is an important question. In the next chapter, we propose

of architectures called memory-centric architectures, that address the two questions

123

ch of

above: how to transparently run codes on systems with multiple processing units, ea

which is closely coupled to some local memory.

124

could

two

hier-

and

ors)

r mes-

ance

ctively

se of

e, so

m as

t on a

ss the

itec-

long

haps

sor has

. Both

wing,

Chapter 6

Memory-Centric Architectures

In Chapter 1, we discussed how both memory hierarchies and distributed processing

increase the width of the processor/memory interface cost-effectively. In the previous

chapters, we described techniques to improve PMI performance in a traditional memory

archy. In this chapter, we describe a class of architectures, calledmemory-centric architec-

tures, which provide a PMI that is both distributed and transparent to the programmer

compiler.

A large number of distributed PMI architectures (which includes all parallel process

have been built in the past. Traditional parallel processors, whether shared-memory o

sage-passing machines, were primarily proposed and/or built not to improve perform

across the PMI, but because codes needed more functional units than could be cost-effe

provided in one chip. When computational capability was the system bottleneck, the u

multiple inexpensive, commodity processors was the best way to improve performanc

long as parallel binaries were available. Future architectures will face a different proble

discussed in Chapter 1: not the challenge of providing enough functional unit throughpu

given chip, but the dual challenges of building architectures that can move the data acro

PMI at a sufficiently high rate, and finding ways to map the computation onto these arch

tures.

The current model of a centralized PMI will allow performance to scale acceptably so

as two conditions hold: first, that the processing core has sufficient work to do (ILP or per

other lightweight threads) to tolerate cache miss latencies, and second, that the proces

enough bandwidth to load changes to the cache working set without excessive queueing

of these conditions are growing more difficult to meet. Cache miss latencies are gro

125

laten-

which

owing

. As

with

hitec-

ocal

we

dwidth

sible,

cost

m one

into

Both

ctual

om-

die

tively

larity:

itec-

es-

ysical

In this

t do

making it harder for the processor to find enough work to tolerate those latencies. The

cies are growing for two reasons: first, because of increasing DRAM access latencies (

is a market-driven problem that is solvable in the long term), and second, because of gr

relative delays with smaller wires [86], which is a less tractable problem in the long term

we have discussed extensively in this dissertation, off-chip bandwidth is difficult to scale

on-chip performance.

One class of architectures that can mitigate these two problems is memory-centric arc

tures, in which processing power is distributed uniformly into physical memory, and the l

availability of data is what individual processors use to drive decisions dynamically. As

show in this chapter, this class of solutions can reduce both access latencies and the ban

required for a balanced system. For memory-centric architectures to be commercially fea

two conditions must hold. First, processing capability must be inexpensive; the system

must be dominated by communication and storage costs. Second, communication fro

part of physical memory to another must be slow (if physical memory is partitioned

regions, inter-region communication must be slower than intra-region communication).

of those conditions are becoming more true; the fraction of the CPU die devoted to a

computation is shrinking rapidly (see Figure 1-5), and wire delays will eventually make c

munication latency proportional to intra-chip distance. The processor of 2010 will have

area sufficient to hold 300 Pentiums, making processors (as implemented today) effec

free.

These memory-centric architectures may be implemented at several levels of granu

intra-chip (small processors strewn along the copious storage on billion-transistor arch

tures),inter-chip (distributing physical memory among multiple chips, and placing a proc

sor on each chip, effectively making them IRAM chips), andinter-box (building clusters of

workstations, each of which contains a processor and a fraction of the total system ph

memory, connected by a local bus that is faster than the inter-processor interconnect).

dissertation, we evaluate memory-centric architectures at the inter-chip (IRAM) level, bu

not imply that the other foci could not be viable candidates as well.

126

, the

re, an

calar

ly an

uni-

mber

mory

em-

m-

ner of

p-

ro-

ting

at the

o-

at cycle

nts.

cated

-

In this chapter, we first describe our historical inspiration for this class of architectures

Massive Memory Machine, in Section 6.1. We then describe the DataScalar architectu

asynchronous derivative of the MMM, in Section 6.2. We present the results of our DataS

performance analysis in Section 6.3.1

6.1 The Massive Memory Machine

The DataScalar work was inspired by the Massive Memory Machine, and is effective

asynchronous version of the MMM, updated to work with modern processors and comm

cation topologies. The MMM was a synchronous, SISD architecture that connected a nu

of minicomputers with a global broadcast bus [45]. Each computer contained a large me

(for the time), which was some fraction of the total program memory. Each operand in m

ory was thusownedby only one processor (i.e., each processor resided in the physical me

ory of only one processor). All computers ran the same program in lock-step, and the ow

each operand broadcast it on the global bus when accessed.

6.1.1 Operation of the MMM

This broadcast model was calledESP(which actually does stand for “extra sensory perce

tion”) in the MMM work. We depict an example of synchronous ESP in Figure 6-1. One p

cessor (thelead processor) executes slightly ahead of the others while it is broadcas

(initially processor 3 in Figure 6-1). When the program execution accesses an operand th

lead processor does not own, alead changeoccurs. All processors stall until the new lead pr

cessor catches up and broadcasts its operand. In Figure 6-1, a lead change occurs

seven, when processor 2 begins broadcasting .

The MMM supported two classes of physical memory, to which we shall refer asreplicated

andcommunicated. Replicated memory is duplicated at every node, with identical conte

Communicated memory is owned by one node only; there are no copies of communi

1. Most of the exposition and all of the results in this chapter were taken direcly from previously pub
lished work [15].

w5

127

ssible

ir is to

loca-

em-

and

g their

cessor

ithout

y copy

asts it

When

sors,

model.

duces

traffic

locations at other processors. In Figure 6-2, we depict the set of memory operations po

in ESP. At processor B, there are three sets of loads and stores. The first load/store pa

locations in replicated memory. The second load/store pair is to remote communicated

tions, owned by processor A. The third load/store pair is to locations in communicated m

ory that is owned by processor B. Load 1 is serviced locally by both processor A

processor B, as they both have copies. Store 1 completes on both processors, overwritin

respective local copies. Load 2, owned by processor A, is broadcast and received by pro

B without B issuing a request. When processor B issues store 2, it discards the store w

completing it, since processor A generates the same store value, and overwrites the onl

with that correct value. When processor B issues load 3, it consumes it and also broadc

on the network, since B is the owner and the operand resides in communicated memory.

processor B issues store 3, it overwrites its local copy without sending it to other proces

since it is the owner and has the only copy.

The ESP execution model has several advantages over a conventional execution

First, since all communication is one-way, no requests ever need to be sent, which re

access latency. Second, writes never appear on the global bus, which may reduce bus

w1 w2 w3 w4 w5 w6 w7 w8
w1 w2 w3 w4 w5 w6 w7 w8
w1 w2 w3 w4 w5 w6 w7 w8

w9

time at which processor

processors Reference string: w1, w2, ... w9

Locations: w5, w6, w7 at proc.2

2
3

1

Figure 6-1: Operation of the ESP Massive Memory Machine (from [45])

1 2 3 4 5 6 7 8 9 10 11 12 13 14 receives a word

All others at processor 1

S2

Proc. A Proc. B
replicated

communicated

replicated

Memory

communicated

MemoryL1

S1

S2

L2

L1

L2

Broadcast network

Figure 6-2: Replicated vs. communicated memory

S1

S3

L3

128

values,

hro-

ses need

eavy

tems.

rfor-

e fol-

ions of

cution

pendent

o a pro-

dent of

chains

nt of a

l (ESP

how

(since all processors are running the same program, they all generate the same store

which need complete only on the owning processor). Third, since the MMM is fully sync

nous, and all processors generate the address for each successive operand, no addres

to be sent with the data on the global bus.

6.1.2 Limitations of the MMM

The Massive Memory Machine may have been an interesting idea for its time, but its h

reliance on synchronous behavior renders it conceptually incompatible with today’s sys

The limitations of systems even at that time were such that it would show little, if any, pe

mance improvements over conventional alternatives [52]. In fact, Jim Goodman wrote th

lowing after visiting Princeton for a site review in December of 1984:

The article and discussions with the authors did not convince me that the novel

ESP architecture is worth further study. In particular, I see little point in the

project to simulate ESP with microprocessors.

The DataScalar architecture, described in the next subsection, addresses the limitat

synchronous ESP, as well as solving the problems associated with running the ESP exe

model on modern processors.

6.2 DataScalar Architectures

The DataScalar architecture benefits from asynchronous ESP because consecutive de

memory operands at a processor may be processed quickly. Dependence chains local t

cessor will be traversed at local speeds and broadcast to participating nodes, indepen

on which processor the chains reside. Ideally, each processor handles local dependence

simultaneously, moving the entire computation ahead at a faster rate. We call a segme

dependence chain local to one processor adatathread.

In this subsection, we describe the benefits associated with the base DataScalar mode

and datathreading) in detail. We describe how ESP reduces off-chip traffic, and we show

129

r, we

duces

rite

educe

tional

oad to

there-

ersely,

st on-

-chip.

mplete

never

loca-

entual

ress.

ssor is

y pro-

nferred

is ben-

table

t any

their

datathreading offers the potential for reductions in memory latency. Later in this chapte

present simulation results that quantify each of these benefits.

6.2.1 Asynchronous ESP (traffic reduction)

DataScalar systems enjoy, and extend, the benefits of ESP that MMM obtained. ESP re

traffic—thereby increasing effective bandwidth—by eliminating both request traffic and w

traffic from the global interconnect. ESP, asynchronous or otherwise, does not further r

the number of read operands that must be communicated off-chip over that of a conven

architecture.

ESP-based systems eliminate request traffic because ESP uses aresponse-only(or data-

pushing) model. Since all processors run the same program, if one processor issues a l

an address, all the other processors will eventually issue that same load. The owner is

fore assured that when it broadcasts the load, all other processors will consume it. Conv

when a processor issues a load to a datum that it does not own, it can buffer the reque

chip, and the matching data will eventually arrive. Thus, requests need never be sent off

Similarly, when a store is generated at all nodes, only the owner of that address need co

the store on-chip. Since every chip is generating the value locally, created store values

need be sent off-chip. All processors will complete the store if the address is a replicated

tion. If the address is cached at all nodes, the store will complete in the cache, and the ev

write-back (or write-through) operation will be dropped at nodes that do not own that add

Note that there are none of the traditional cache consistency issues, since every proce

running the same program.

In a synchronous implementation of ESP, tags need not be broadcast with data—ever

cessor is generating the same instruction stream in the same order, so tags can be i

from the order in which the broadcasts are received. DataScalar systems do not enjoy th

efit; the out-of-order issue processors will all issue multiple broadcasts in an unpredic

order. In addition, more than one processor generally will be attempting to broadcast a

given time. This lack of predictability means that data must be broadcast along with

130

s may

one-

s the

ueue-

ncies,

depen-

endent

s with-

ors by

sors

.

-chip

mory.

f the

sys-

m can

f those

access

al-

chip

ple The

de in

ystem.

addresses and/or some other identifying tags (multiple instances of the same addres

require supplementary tag information, such as a sequence number).

6.2.2 Datathreading (latency reduction)

ESP-based systems reduce memory latency by making all off-chip communications

way only. These savings might be large if the remote communication time dominate

memory request latency, or small if the memory access latency and/or memory system q

ing delays dominate the request latency.

ESP-based systems offer the potential for further reductions in memory access late

however. Consider a stream of accesses to memory locations, each address of which is

dent on the value of the previous address (e.g., pointer chasing). When two or more dep

addresses reside in one processor’s local memory, that processor may fetch those value

out incurring any off-chip latencies. Those values may then be sent to the other process

pipelining the broadcasts, incurring only one off-chip delay on the critical path. All proces

thus complete the processing of those addresses faster than would a traditional system

To illustrate this concept, we depict a simple example in Figure 6-3a shows a four

DataScalar system in which each MOP contains a quarter of the program’s physical me

Figure 6-3b shows a more traditional organization, in which one MOP holds a quarter o

program’s memory and traditional DRAM chips hold the other three-quarters. In both

tems, operands x1, x2, x3 all reside on one chip, and operand x4 resides on a different chip.

The address of each is dependent on . One processor in the DataScalar syste

access the first three without a single off-chip access, and then pipeline the broadcasts o

three operands to the other nodes (the broadcasts will be separated by the memory

time, of course). There will be a serialized off-chip access between x3 and x4 (analogous to a

lead change in the MMM), and then x4 will be broadcast. The system thus incurs two seri

ized off-chip delays. The traditional system, conversely, incurs two serialized off-

accesses (one request, one response) for each operand, for a total of eight in this exam

traditional system would incur zero off-chip delays if all the operands happened to resi

the on-chip quarter of the memory, as opposed to a minimum of one for a DataScalar s

xi 1+ xi

131

non-

dence

to the

grating

nsive

loads

’s per-

resid-

sends

tching.

ourse.

en a

ds w

pen-

us ESP

ently.

arently

We call a series of accesses to consecutive local dependent operands adatathread. If the

operands are not dependent, then a traditional system could simply pipeline multiple

blocking accesses, obtaining them in two serialized off-chip crossings. When a depen

spans two nodes, we view that point as initiating a datathread migration from one node

other, beginning the access stream of that thread at the new node. The overhead of mi

this conceptual thread is one serialized off-chip access. The cost of maintaining inexpe

datathread migrations is precisely that of maintaining SPSD execution— broadcasting

and performing computation redundantly at all nodes.

Another conceptual view of asynchronous ESP execution is that from each processor

spective, it is the main processor, and the others are simply intelligent prefetch engines

ing in the main memory modules. From this perspective, the broadcasts the processor

are merely the state the prefetch engines need to continue performing the accurate prefe

Since this is a homogenous system, each processor will have this view of the others, of c

The Massive Memory Machine was able to exploit only one datathread at any time; wh

lead change occurred, a new datathread began at the new leader (in Figure 6-1, operan1-

w4, w5-w7, and w8-w9 would constitute three datathreads, assuming each operand is de

dent on the previous one). DataScalar systems, because they implement asynchrono

with out-of-order issue at each node, may have multiple datathreads running concurr

DataScalar systems do not require special support for datathreads, since they transp

Serialized off-chip accesses: 8

(a) DataScalar system:
Pipelined broadcasts
Serialized off-chip accesses: 2

(b) Traditional system:
Request/response for each operand

MM M

P
M

P
M P

M

P
M

P
M

x1x2x3 x4

x1x2x3

x4

x1,x2,x3

Figure 6-3: Comparing off-chip access serializations

x1x2x3 x4
x4

132

nefit

execut-

r Data-

discus-

ter, in

cop-

that it

d pre-

cru-

r; pro-

ly for a

stead

hing.

mber

datum

er-

up the

). Cer-

y the

same

exploit the locality already inherent in reference streams. However, programs would be

from special support to increase datathread length or raise the number of datathreads

ing concurrently.

6.2.3 Implementation issues

In this subsection, we address three of the implementation issues that must be solved fo

Scalar systems to have good performance: caching, speculation, and broadcasts. The

sion in this subsection is in the context of the processor datapath shown later in this chap

Figure 6-6.

6.2.3.1 Cache correspondence

In Section 6.1.1 we described static replication of data, in which heavily used pages are

ied at each processor running as a DataScalar machine. Static replication is limited in

cannot use run-time information to reduce off-chip accesses—caches are universally use

cisely because this run-time information is so crucial. Dynamic replication, therefore, is

cial to the competitiveness of DataScalar systems.

Dynamic replication in a DataScalar system is analogous to caching in a uniprocesso

cessors take a broadcast operand or block of data, and decide to cache the data local

period of time (the difference is that multiple processors are all caching the same data in

of just one). However, replicating data dynamically is more complicated than simple cac

The goal of replication is to improve average memory access latency by reducing the nu

of broadcasts (which are analogous to cache misses in a uniprocessor). If the owner of a

decides not to broadcast it upon a load, assuming it to be replicated,every other node must

still have that operand, or deadlock will result. Conversely, if the owner broadcasts the op

and and other nodes already have that operand locally, superfluous messages may fill

queues on the remote nodes (depending on the broadcasting/receiving implementation

tainly unnecessary broadcasts will waste bandwidth.

One solution for this problem is for all nodes in a DataScalar system to keep exactl

same set of dynamically replicated data, choosing to stop replicating a datum at the

133

s about

make

that

ami-

ng as

ust

s on a

t

oces-

truc-

lowing

he set

d the

com-

rders.

tents.

ent out

r we

he

r.

point in the access stream. Furthermore, these nodes should ideally make the decision

what to keep replicated and what to throw out based onlocal information only—requiring

continuous remote communication solely to reduce the number of broadcasts would

DataScalar systems non-competitive.

While many solutions are conceivable, in this dissertation we describe only the solution

we have implemented. Our solution is to fold the decisions about what to replicate dyn

cally into the first-level caches—a block is considered to be dynamically replicated so lo

it is in those caches.1 If a level one cache miss occurs for communicated data, the owner m

broadcast that line to the other nodes. This solution implies that no node may ever mis

communicated line if another node hits on that line for the same load. We call this thecache

correspondenceproblem; data must be keptcorrespondentin the primary caches to preven

deadlocks.2

Keeping the caches correspondent is a non-trivial problem. Dynamically scheduled pr

sors will send loads to the cache in different orders, and will also send different sets of ins

tions (when branch conditions take longer to resolve at some processors than others, al

more mis-speculated instructions to issue). If two loads to different lines in the same cac

are issued in a different order at two processors, that set will replace different lines, an

caches will cease to be correspondent.

Our solution is to update the primary cache state only when a memory operation iscommit-

ted, not when it is issued. To maintain correct program semantics, instructions must be

mitted in the same order at all processors, even though they may be issued in different o

This solution also prevents mis-speculated instructions from affecting the cache con

Although the caches are updated at instruction commit, broadcasts on misses are still s

when a load is issued (this policy will result in extra required tag bandwidth).

We implement this solution with a structure called aCommit Update Buffer(CUB). We

envision separate CUBs for instructions and data (ICUBs and DCUBs), but in this pape

1. It is possible to use lower levels of a multi-level cache hierarchy to perform dynamic replication. We
chose to use only the level-one caches because our particular solution requires a tight coupling of t
cache tags and the load/store queue in the processor.

2. Stefanos Kaxiras was a co-inventor of the cache correspondence scheme we present in this pape

134

cache,

load/

same

head

dated,

allo-

tion to

esents

ient to

proces-

ruction

using

red at

ective

de is

if the

t

e

ime

e

en

dcast

e deal

nerate

only evaluate a DCUB. When a cache miss returns, rather than loading the data into the

the line is placed into an entry of the DCUB, and a pointer to that entry is placed in the

store queue at the entry of the load that generated the miss. Memory operations to the

line are serviced by the data in the DCUB (loads may still be serviced by stores farther a

in the load/store queue). When a memory operation is committed, the cache tags are up

and, if necessary, the line is loaded from the DCUB into the cache. A DCUB entry is de

cated when the last entry in the load/store queue that uses that line is committed. In addi

a pointer to the DCUB entry, each entry in the load/store queue contains state that repr

whether the instruction missed in the correspondent tags at issue time.

This extra state is necessary because updating the cache at commit time only is suffic

guarantee cache correspondence, but not to guarantee identical hit/miss behavior at all

sors. Since instructions may issue at different times across processors, the same inst

will issue at different commit points in the instruction stream across the processors, ca

some to hit and others to miss in their caches. By saving whether a hit or miss occur

issue time, we can compare that event with the correct commit-time event, and take corr

action if there is a disparity. Corrective actions include issuing a late broadcast (if the no

the owner, and took a false miss), or re-reading the commit-update buffer for the data (

node is not the owner, and took a false hit).

We show a simple example in Figure 6-4. Two addresses,X andY, conflict in the cache.

Instructions commit from left to right. The second load toX (X2) misses when issued, bu

would have hit at commit time if the instructions were issued in program order (becausX1

would have already generated the miss). This is an example of afalse miss. Analogously,Y2

hits at issue time becauseY1 had just been committed, but should have missed at commit t

(e.g., at another processor,Y2 might issue afterX1 is committed, causing a miss at issue tim

instead of a hit). We call this afalse hit, and deal with it by generating a reparative miss wh

this situation is detected at commit time (a reparative miss consists of a reparative broa

by the owner, or a squash to the local receive queue by a non-owner of that datum). W

with false misses by recognizing that any sequence of accesses to the same line will ge

135

that

ccess-

e see

race

st be

d)

ints for

dition

send a

er con-

while

s we

lative

orrect,

n is

only one miss (X1 andX2 in this example). IfX1 issues afterX2, we can “assign” the miss

generated byX2 to X1, thus ensuring that all processors will generate only one miss for

line.

6.2.3.2 Speculative execution

Fine-grain speculative execution is now present in state-of-the-art processors, and a su

ful DataScalar architecture must be compatible with speculation. Much of the promise w

in DataScalar comes from out-of-order execution, which enables multiple processors to

ahead simultaneously on different instruction sequences. However, speculation mu

tightly controlled: if remote bandwidth is one of the important (and heavily utilize

resources, frequent superfluous broadcasts would hinder performance. The two endpo

speculative policies are (1) to hold onto speculative broadcasts until the speculative con

is resolved, and (2) to send the broadcast immediately upon issue, and eventually then

corresponding squash if the load that generated the broadcast is squashed. The form

serves bandwidth at the expense of added latency, while the latter consumes bandwidth

reducing latency (again trading off global bandwidth for reduced remote latency, just a

explored in Chapter 4). A promising approach is to assign confidence values to specu

loads; loads with high correctness confidence should be broadcast and squashed if inc

whereas loads with low confidence should be held locally until the speculative conditio

resolved.

X1 Y2X2Y1

1 4 2 3

UncommittedCommitted

Issue order:

Program order:

1. Y1 is committed, is loaded into cache
2. X2 is issued, and misses in the cache
3. Y2 hits in the cache
4. X1 misses, but hits in the MSHR

X and Y are accesses to two lines that conflict in the cache

False miss : X2 missed at issue but would have hit if in-order issue
False hit : Y2 hit at issue but would have missed if in-order issue

Figure 6-4: Cache correspondence example

Load/store queue

136

until

or the

d, how-

ache

clear

send a

ented

erical

nd

deallo-

rocess

ust be

precise

values

nd not

h only

pli-

wever,

the bus

, the

e time

111]

des if

nnect

If broadcasts are sent speculatively, they will remain in the remote receive queues

explicitly deallocated. One method for clearing them from the remote receive queues is f

sending processor to send squashes when the misspeculation was resolved. This metho

ever, consumes remote bandwidth. A more elegant approach is similar in spirit to our c

correspondence protocol. In the alternative approach, we use local information only to

receive queues of stale broadcasts that will not be consumed. With each broadcast, we

tag that is also buffered in the receive queue. The tag consists of a counter that is increm

every time the RUU cycles around (as it is a circular queue). Whenever the highest num

slot in the RUU is committed (i.e., the RUU cycles around), the counter is incremented a

sent to the receive queue. Any receive queue entry whose tag is less than the counter is

cated (the deallocations can be done in parallel). The counter thus becomes part of the p

state and the precise interrupt mechanism, since all of the counters and RUU positions m

made correspondent once a DataScalar task is being restarted after having taken a

interrupt.

6.2.3.3 Inter-chip communication

Because of the symmetric nature of the DataScalar execution model, all communicated

must be broadcast to all nodes. In general, broadcast operations are both expensive a

scalable. On certain interconnects—such as on a ring or bus—they may be effected wit

minor additional cost, though reliable delivery and error recovery are inevitably more com

cated for broadcast operations.

Broadcasts on a bus are free, since every bus transaction is an implicit broadcast. Ho

the very feature that makes broadcasts cheap—the centralized nature of a bus—makes

an unlikely candidate for the high-performance interconnect of the future. However

demise of the bus has been much slower than predicted, and buses may persist for som

to come.

Ring operations, such as the IEEE/ANSI standard Scalable Coherent Interface [66,

seem well-suited for this kind of operation. On a ring, operations are observed by all no

the sender is responsible for removing its own message. We envision a ring interco

137

ed by

differ-

licated

o arise

or can-

large

ects is

stems

ce the

Scalar

on of

ost of

ch of

com-

“dumb

-effec-

r inter-

-effec-

h the

ratio

because of the high-performance capability [101], but broadcast on a ring is complicat

the fact that operands originating at different processors are received at other nodes in

ent orders. A simple tag can sort out data to different addresses, but the issue is comp

when two accesses to the same datum are broadcast close in time. Complications als

whenever certain data items must be rebroadcast (e.g., because a receive queue is full),

celled.

One technology that may be an excellent match for DataScalar programs running on

systems is optical interconnects. One of the properties of free-space optical interconn

that they have extremely cheap (essentially free) broadcasts. For massively parallel sy

that use optical interconnects, the SPSD execution model may be a good way to redu

execution time spent in serialized code, thus improving scalability [10].

6.2.4 Other pertinent issues

In this subsection, we discuss the issues of cost and required software support for a Data

system.

Cost: Conventional systems today typically consist of a single processor and a collecti

memory chips. Each of these components comprise a significant fraction of the total c

the system. A DataScalar system would consist of a collection of identical chips, ea

which costs more than a conventional DRAM chip, but less than a processor chip. When

paring the cost of a DataScalar system and a traditional system with one processor and

memory” (such as the comparison in Figure 6-5), the DataScalar system becomes cost

tive when the performance it adds outstrips the cost of the additional processors.

Wood and Hill showed [131] that for a parallel system to be cost-effective, thecostup(the

relative increase in total cost as more processors are added) should be less than thespeedup

(the relative increase in performance as more processors are added). When memory o

connect costs dominate those of the additional processors, the system may still be cost

tive even if the speedups are comparatively small.

A majority of the die of most modern processors is devoted to memory, even thoug

total cache capacity for each is generally only in the tens of kilobytes. We believe that the

138

ela-

and

e cost-

ting

ns, such

oces-

a page

other

page

d the

have

ration.

to the

bserve

e not

ust be

e point

oten-

ion)

er of

n lead

with

of on-chip memory area to total chip area will continue to grow in the future, making the r

tive expense of the processing logic shrink over time. If true, this trend will make memory

packaging the dominant costs of future systems. DataScalar architectures could thus b

effective, even though the speedups they provide are much less than linear.

Software support: To the extent that an executing program is non-deterministic, opera

system code can be executed in the same manner as user code. Synchronous exceptio

as for an unaligned address, would be observed at slightly different times at different pr

sors, but would cause no special problems. Consider the case in which a write causes

fault. Since only one processor actually performs a write to communicated data—the

processors all simply discard their result—only the owning processor would observe the

fault. If the other processors did not recognize the page fault, they might proceed beyon

fault point indefinitely. This problem can be avoided by making sure that all processors

the same page table entries, and actually check for exceptions on every memory ope

(The check could be accomplished by requiring that the store be successfully written in

primary, correspondent cache before being committed.) Thus each processor would o

this page fault. However, asynchronous events could potentially cause difficulty if they ar

observed at precisely the same point by all processors. External interrupts, likewise, m

injected into the system with care to assure that all processors observe them at the sam

in their execution.

6.3 Evaluating DataScalar architectures

In this section we evaluate the feasibility of DataScalar architectures, in terms of their p

tial to outperform conventional alternatives. We first quantify (through functional simulat

the amount of traffic that they reduce, which is substantial. Next, we measure the numb

consecutive memory operands that fall on a single node, on average, to see how ofte

changes occur. Finally, we present the timing results of a full implementation, running

two and four processors.

139

cation.

rite-

ache

rom the

s were

nch-

tinct

, for this

om

action

m—

st to

ey do

tercon-

g con-

o not

. These

tical to

n each

saved

se the 32

s round-

ks of

6.3.1 Traffic reduction

We measured the extent to which the ESP execution model reduces remote communi

With our simulation environment, we simulated a 64-Kbyte, two-way set-associative, w

allocate, write-back, on-chip level-one data cache (this size is consistent with typical c

sizes at the time that SPEC95 was released). We measured the aggregate miss traffic f

cache, and calculated the fraction of traffic that remained once write-backs and request

eliminated. In Table 6-1, we show this measured fraction for fourteen of the SPEC95 be

marks. We show both total traffic eliminated, and the reduction in the total number of dis

messages (we count a request/response pair as two transactions). The table shows that

cache size, ESP eliminates roughly to of the off-chip traffic in bytes, and fr

to of the individual transactions (because no requests are sent, the trans

reduction will always be at least).

These results indicate that—for systems in which memory bandwidth is at a premiu

implementing ESP is likely to improve performance, or reduce the required system co

achieve the same performance. These results focus solely on bus traffic reduction—th

not address the performance penalties associated with necessitating broadcasts on in

nects other than buses.

6.3.2 Datathread lengths

In Table 6-2 we show experimental results that measure the mean number of loads fallin

secutively on a single node. This is an approximation of datathread length, since we d

account for dependences. All results presented here assumed a four-processor system

simulations also used the SimpleScalar tools and assumed a cache configuration iden

that presented in Section 6.2.1. For each benchmark, we replicated 32 4-Kbyte pages o

node. We selected the pages to replicate using static profiling. For each benchmark, we

the number of accesses to each page, sorted the pages by number of accesses, and cho

most heavily accessed pages. We distributed the communicated pages among the node

robin, in blocks with sizes ranging from 4 to 32 pages. The sizes of the distributed bloc

0.15 0.50

0.52 0.75

0.50

140

rk, we

ing

t. This

tuation

four

s using

s on a

some

ocal to

mem-

using

licated

erage

to be

case.

pages,

erage

e repli-

refer-

data are shown for each benchmark in the first column of Table 6-2. For each benchma

tried to maximize the distribution block size (to improve datathread length) while still keep

it smaller than 1/4 of both the text and the largest data (globals, heap, stack) segmen

action prevented either segment from being completely contained at one processor, a si

which would make the datathread length equal to the number of references.)

The next four columns in Table 6-2 show the distribution of replicated pages among the

segments. Columns seven through nine show the mean (arithmetic) datathread length

three different definitions of datathreads. All three methods count consecutive reference

node, beginning the count upon the first reference to a communicated datum local to

node, ending (and restarting) the count upon the next reference to communicated data l

a different node. Column seven approximates datathread lengths using all references to

ory (e.g., all cache misses). The second and third columns compute datathread length

only instruction and data references to memory, respectively.

The right-most column shows the average number of contiguous accesses to rep

pages in main memory. High numbers of references to replicated pages will extend av

datathread lengths. If references to replicated data are frequent, the threads will tend

long.

The average datathread lengths in Table 6-2 are high for instructions—over 20 in every

These large numbers are partially due to the replication of a high percentage of the text

which is significant for most programs (li, tomcatv, m88ksim, turb3d, and fpppp have av

code datathreads in the hundreds or thousands, and each has from 1/3 to 1/2 of the cod

cated across all processors). However the high spatial locality generally found in code

ence streams also serves to increase the datathread length.

Metric m88ksm gcc compress li perl vortex

Traffic .14 .19 .54 .39 .32 .21

Transactions .52 .55 .74 .66 .62 .56

Metric tomcatv swim hydro2d mgrid applu turb3d fpppp wave5

Traffic .16 .39 .33 .31 .38 .40 .17 .46

Transactions .52 .66 .62 .61 .65 .66 .53 .70

Table 6-1: Fractions of off-chip data traffic reduced by ESP

141

thread

rb3d,

our

nt pro-

e

wever,

an do

is rep-

each

oper-

etimes

Data reference thread lengths that we see tend to be shorter than the instruction

lengths. They are low (less than 3) for some of the floating point codes (swim, applu, tu

mgrid, and hydro2d). Although floating-point codes tend to have high spatial locality,

approximation of datathreads is cut by interleaved accesses to arrays residing at differe

cessors (e.g.,). Also, some of the spatial locality is filtered out by th

cache. The three other floating-point codes have higher average datathread lengths, ho

ranging from about 6 to 33. The integer codes tend to have higher datathread lengths th

the floating-point codes. The datathread length for li is high because most of its data set

licated. The others show average datathread lengths from about three to over 130.

These results show that many programs will be able to exploit datathreading. Ideally,

processor in a DataScalar system will run ahead of the others, finding multiple needed

ands and instructions locally, and sending them to the other processors early—som

even before the other processors have resolved those addresses.

Benchmark
Dist.

size (Kb)
Replicated pages (128Kb) Datathread length approximation

text global heap stack total text data repl.

tomcatv 32 22 6 2 2 42.3 31486.7 6.7 21.7
swim 32 7 24 0 1 2.1 60.2 2.1 1.0
hydro2d 32 25 5 0 2 1.7 176.9 1.6 1.1
mgrid 32 4 27 0 1 1.5 31.4 1.5 1.0
applu 32 23 8 0 1 2.6 43.3 2.6 1.0
m88ksim 64 16 10 5 1 157.3 859.2 69.1 16.2
turb3d 64 19 12 0 1 1.7 1541.6 1.6 1.1
gcc 256 25 1 0 6 7.4 23.9 4.5 1.2
compress 16 6 25 0 1 103.5 41.7 134.7 1.3
li 16 17 2 12 1 841.2 777.2 2027.1 208.4
perl 128 26 2 3 1 7.6 34.5 4.1 2.1
fpppp 64 27 4 0 1 165.6 755.9 33.7 3.7
wave5 64 17 14 0 1 6.4 171.6 5.9 1.7
vortex 128 27 2 1 2 5.5 21.0 2.9 1.9

Table 6-2: Approximate datathread measurements for a four-processor system

Each row shows the experimental parameters for each benchmark, followed by the results. The first
column contains the granularity at which communicated data are distributed round-robin across the
processors. The second through fifth columns show the number of pages (4KB each) from each seg-
ment that were replicated for each benchmark. The right-most four columns show the arithmetic mean
of our datathread length approximations for all reads, all reads to code and data separately, and reads
to replicated memory, respectively.

c i[] a i[] b i[]+=

142

mory

con-

tradi-

achine

off-

stant.

hip area

h chip

Data-

te the

(and

f data,

assume

set,

ess of

iously

6.3.3 Performance evaluation

We evaluated a DataScalar system consisting of multiple integrated processor/me

(IRAM) modules connected via a global bus. In Figure 6-5 we show the DataScalar and

ventional system organizations that we compare (for a four-node processor system). A

tional system (Figure 6-5a) being compared against a four-processor DataScalar m

(Figure 6-5b) would thus have one-fourth of its main memory on-chip and three-fourths

chip. We hold the bus, packaging (number of chips), and physical memory storage con

The DataScalar system contains extra processors and level-one caches, so the total c

in the DataScalar system is higher (but how much higher depends on the fraction of eac

consumed by the processor and L1 data cache).

In Figure 6-6 we show a diagram of the high-level datapaths present in our simulated

Scalar implementation. We assume split primary instruction and data caches. We replica

program text at each node, obviating the need for dynamically replicated instructions

therefore a speculative correspondence protocol). We do support dynamic replication o

so a DCUB, not the accesses themselves, updates the data cache tags and storage. We

a fast on-chip main memory, which is insufficiently large to hold an entire program data

but which is fast enough to eliminate the need for a level-two cache.

We use a simple queue to buffer broadcasts being placed on the global bus. The proc

receiving broadcasts is more involved. We call the broadcast-receiving structures (prev

called receive queues) that we simulateBroadcast Status Holding Registers, or BSHRs. We

143

k, the

t entry

r. If no

s case,

, and

icated

ntry if,

t pro-

path is

implement the BSHRs as a circular queue. When a broadcast arrives from the networ

BSHR performs an associative search on that address. If a match occurs, the earlies

matching that address in the queue is freed and the data are forwarded to the processo

match occurs, the BSHR allocates the next entry in the queue and buffers the data. In thi

when the processor issues the request for the data, it finds them waiting in the BSHR

effectively sees an on-chip hit.

Level-one cache misses become broadcasts if the missing cache line is in commun

memory, and the processor is the owner of that cache line. The miss allocates a BSHR e

at a given processor, the miss is to a line that is both communicated and unowned by tha

cessor. In Figure 6-6 we show a datapath from the processor to the BSHR queue; this

used to squash BSHR entries allocated due to false misses.

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

CPU $

DRAM
(1/4 M)

Global bus

(a) More traditional architecture

Global bus

(b) DataScalar architecture (4 nodes)

CPU $

DRAM
(1/4 M)

DRAM
(1/4 M)

DRAM
(1/4 M)

DRAM
(1/4 M)

Figure 6-5: Comparing two IRAM organizations

Main

CPU logic

I-cache

(DRAM)
memory

BSHRs

Broadcasts

Interface
logic

network in

network out

DCUB

D-cache

BSHR = Broadcast status holding register
DCUB = Data commit update buffer

Figure 6-6: Simulated DataScalar chip datapath

Statically replicated data

Dynamically replicated data

Communicated data

Memory bus

144

out-of-

after

-level

. Each

e pro-

eared

es the

pon a

ts in

s are

nd that

curate,

nt in

ecula-

edic-

nalties

that is

sub-

ten-

RAM

s laten-

brid

first

es are

te pol-

To obtain performance results for DataScalar systems, we extended the SimpleScalar

order processor simulator with multiple target contexts. The simulator switches contexts

executing each cycle (i.e., it simulates cycle for all contexts before simulating cycle

for any context). Unlike the other simulations in this dissertation, we assumed a single

page table that was locked in physical memory, as opposed to residing in virtual space

page table entry has one bit that determines ownership of a communicated page (only on

cessor will have the ownership bit set for a communicated page; the bit for that page is cl

in the page table entries of all other processors). Address translation thus also produc

ownership status of a page, to more quickly determine the action that must be taken u

primary cache miss.

For all our experiments, we simulated a processor similar to our timing experimen

Section 5.2 (8-way issue, dynamically scheduled, etc.). The two significant difference

that we assumed a 1GHz processor, instead of the 2GHz used in the previous chapter, a

we assumed perfect branch prediction. Modern branch predictors are already quite ac

however, and we have no way of knowing what prediction techniques will be prevale

future processors, or the extent to which these processors will engage in aggressive sp

tion. This assumption simplified our handling of the BSHRs. Assuming perfect branch pr

tion will also increase the measured IPC, due to the absence of branch misprediction pe

(the IPC of future processors is likely to be even higher as they engage in speculation

much more aggressive than branch prediction [114]).

On-chip memories are likely to be significantly faster than DRAMs are today. Using

banking, with hierarchical word- and bit-lines, will enable DRAM banks to have access la

cies that are comparable with those of cache memories. Current high-density (1 Gb) D

prototypes, the processes of which are optimized for density and not speed, have acces

cies in the low 30’s of nanoseconds [62, 135]. On-chip DRAM banks implemented in hy

memory/logic processes are likely to be significantly faster.

For our simulations, we assume a memory hierarchy on-chip that is just two levels. The

level is split instruction and data caches, 64KB each with single-cycle access. The cach

direct-mapped (for speed) and the data cache implements a write-back, write-noalloca

n n 1+

145

stem

, only

arbi-

ed of

with a

is 128

put-

e off-

assume

enalty

ilarly,

n the

the

so we

tions

he

, and

ame

robin

Scalar

ta set,

with a

which

ent (as

cution

hip (to

icy. We believe that this write policy is superior to write-allocate in an ESP-based sy

(with a write-allocate protocol, a write miss requires sending an inter-processor message

to overwrite the received data). Both caches are fully non-blocking and can support an

trarily high number of outstanding requests. The second level of the hierarchy is compos

high-capacity, on-chip memory banks that can be accessed in 8 ns. They are connected

256 bit bus that is clocked at the processor frequency. We assume that our off-chip bus

bits wide and is clocked at 200 MHz (commodity parts that expect to do most of their com

ing and memory accesses on-chip are not likely to have support for extremely aggressiv

chip connections). We assume BSHRs with 3-ns access latencies and 128 entries. We

a broadcast queue for the DataScalar simulations, which incurs a two-cycle access p

before broadcasting data onto the global interconnect (the baseline architecture, sim

buffers off-chip requests at a network interface that functions as a connection betwee

local and global buses, also incurring a two-cycle penalty).

As with the previous experiments, the benchmarks that we used were drawn from

SPEC95 suite [117]. This study was performed before we had defined the std input set,

used thetest input set in all cases. For some of the inputs, we reduced the number of itera

for some of the benchmarks, as in thestd set, after performing an analysis to ensure that t

reduced number of iterations did not perturb our results).

We simulated six of the SPEC95 benchmarks: go, mgrid, applu, compress, turb3d

wave5. We ran each benchmark for 200 million instructions or to completion, whichever c

first. We did not statically replicate any data pages; all pages were distributed round-

across all nodes. We ran simulations for both two-processor and four-processor Data

systems. Each processor has sufficient capacity to hold one-half and one-fourth of the da

respectively, for each benchmark.

We compared the Datascalar performance against two points: an identical processor

perfect data cache (single-cycle access to any operand), and a more traditional system

has the same amount of on-chip memory as does one chip in each DataScalar experim

described earlier in this chapter). We thus compare a two-processor DataScalar exe

against a system which has the same processor, half the memory on-chip, and half off-c

146

ry data

rge

rgani-

roces-

could

st of the

e pro-

puta-

odel.

, we

graph,

We see

, partic-

ata-

icular

y more

-chip

capture

s (spe-

s the

or to

on the

reads

and

stem.

false

make a fair comparison, the buses are the same, and both systems update the prima

caches at instruction commit, not issue).

The traditional system is likely to benefit if all of the on-chip memory is devoted to a la

second- or third-level cache. Such an organization may well outperform a DataScalar o

zation. A DataScalar system would thus be a better match for systems where multiple p

sors were available and coupled with regions of memory to begin with; i.e. the designer

use one processor as the sole processor and its local memory as a cache, treating the re

processor/memory regions as “dumb memory”, or the designer could make use of thos

cessors and run in DataScalar mode. Future partitioned processors (with copious com

tional capabilities spread across single chips) may be a better match for this execution m

In Figure 6-7 we plot the instructions per cycle for each experiment. In the upper graph

show the performance comparison of a two-node DataScalar system, and in the lower

we show a four-node DataScalar system. The actual IPC value resides atop each bar.

that the performance benefits that the DataScalar system has to offer can be substantial

ularly for four nodes. The results are particularly striking for compress, in which the D

Scalar system gains almost a doubling of IPC over the traditional architecture. That part

performance gain is so larger because compress, running with the test input, issues man

stores than loads (a ratio of 7:1). The writes and write-back traffic never needs to go off

in a DataScalar system. For all other benchmarks, the DataScalar system manages to

much of the available ILP, approaching the IPC of the perfect data cache in some case

cifically, wave5 and go).

The DataScalar system deals with a finer-grain distribution of memory better than doe

traditional system; the drops in DataScalar performance when going from two-process

four-processor systems are less than 0.05 IPC (the comparable drops in performance

traditional system range from 0.1 to 0.6 IPC). The IPC forwave actually improves when run-

ning on four processors instead of two (the benefits of more processors running datath

concurrently outweigh the additional off-chip communication). In only two cases (mgrid

turb3d with two nodes) does the DataScalar system perform worse than the traditional sy

This abnormality results from poor correspondence protocol performance (a high rate of

147

it the

ented

e plot

except

cache

mber

red in

hits at one node causes the other node to stall frequently, waiting for the owner to comm

offending load and issue a reparative broadcast).

We present the results of a sensitivity analysis in Figure 6-8. The two benchmarks pres

are go and compress, each of which was run to completion. For each benchmark, w

results assuming the same parameters that we used for the experiments in Figure 6-7,

that we vary only one parameter in each graph. The parameters we varied were: data

size, main memory access time, global bus clock speed, width of the global bus, and nu

of RUU entries. On each graph, we plot the IPC for the same five systems as we measu

0.0

1.0

2.0

3.0

4.0

5.0

Applu Compress Go Mgrid Turb3d Wave5

2 processors

In
st

ru
ct

io
ns

 p
er

 c
yc

le

3.0 3.1

3.3

2.0

3.0

3.9

1.7

2.5
2.8

3.9
3.7

4.9

2.7
2.5

4.0

3.3
3.5 3.6

Traditional

DataScalar

Perfect data

0.0

1.0

2.0

3.0

4.0

5.0

Applu Compress Go Mgrid Turb3d Wave5

4 processors

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2.6

3.0

3.3

1.5

3.0

3.9

1.6

2.4

2.8

3.3

3.6

4.9

2.3
2.5

4.0

3.2

3.6 3.6

Traditional

DataScalar

Perfect data

Figure 6-7: Timing simulation results of a DataScalar architecture

148

itional

wide

verges

ecause

). Con-

es the

tions.

ers are

broad-

s two

due to

Figure 6-7 (perfect data cache, two- and four-processor DataScalar machines, and trad

systems assuming one-half and one-fourth of the main memory on-chip).

We see that the DataScalar runs consistently outperform the traditional runs over a

range of parameters. As expected, the performance of the two types of systems con

when memory bank access times come to dominate the latency of a memory request (b

DataScalar systems reduce the overhead of transmitting the data, not accessing them

versely, when the speed differential between the global and on-chip buses grows, so do

disparity between DataScalar and traditional performance.

In Table 6-3 we list BSHR and broadcast queue statistics from the performance simula

The parameters are the same as for the experiments reported in Figure 6-7. The numb

the arithmetic mean across all nodes. The percentages are out of the total number of

casts (column one) and out of total BSHR accesses (columns two and three) In column

and three, we list the percentage of broadcasts that were issued late, at commit time,

Perfect data cache
DataScalar (2 nodes)
DataScalar (4 nodes)
Traditional (1/2 on-chip)
Traditional (1/4 on-chip)

Go Compress

0

1

2

3

 16 32 64 128 512

Cache size (KB)

IP
C

0

1

2

3

4

 16 32 64 128 512

Cache size (KB)
0

1

2

3

 8 16 32 64

Mem. access time (ns)
0

1

2

3

4

 8 16 32 64 128256

Mem. access time (ns)

0

1

2

3

. 8 16 32 64

Bus width (bytes)
0

1

2

3

4

. 8 16 32 64

Bus width (bytes)
0

1

2

3

 2 4 6 8 10

Bus clock (proc. cycles)

IP
C

0

1

2

3

4

 2 4 6 8 10

Bus clock (proc. cycles)

0

1

2

3

 8 32 128 512

RUU entries

IP
C

0

1

2

3

4

 8 32 128 512

RUU entries

Figure 6-8: Sensitivity analysis of DataScalar experiments

149

k will

ize.

false

by far,

l was

wn in

in the

hat at

s to be

lar, are

con-

ss of

onent

ques-

false hits. These percentages will drop for larger caches, since the probability that a bloc

be replaced in between issue time and commit time is inversely proportional to cache s

The middle column lists the percentage of BSHR entries that were squashed due to

hits. We note that mgrid and turb3d show the two highest percentages of late broadcasts

which confirms our hypothesis that poor behavior of the cache correspondence protoco

responsible for the slight two-node performance drops for these two benchmarks (sho

Figure 6-7).

The right-most column lists the percentage of remote accesses that were waiting

BSHR for the local processor’s request. Those values range from 2% to 9%, showing t

least some of the time, some effective datathreading is occurring, since a processor need

running significantly ahead of another to completely tolerate the transmission latency.

We have shown that memory-centric architectures, and DataScalar systems in particu

feasible alternative system organizations. Cost issues aside, they generally outperform

ventional alternatives. As communication grows in cost relative to computation, this cla

architectures will become progressively more cost-effective. Whether the relative comp

costs shift enough to make DataScalar architectures clearly cost-competitive is an open

tion, and only time will tell.

Benchmark
Late

broadcasts
BSHR

squashes
Data found

in BSHR
(# of nodes): 2 4 2 4 2 4

applu 10% 9% 12% 12% 10% 7%
compress 11% 8% 16% 22% 8% 4%

go 9% 10% 12% 15% 19% 7%
mgrid 23% 21% 31% 31% 6% 4%

turb3d 38% 37% 59% 59% 3% 1%
wave5 9% 7% 11% 3% 3% 1%

Table 6-3: DataScalar broadcast statistics

150

st be

h new

n this

. Pro-

ost,

intel-

ecline,

omes

mem-

PMI

se per-

band-

ling

ed exe-

spent

g for

essors

n our

Chapter 7

Conclusions

The processor/memory interface is a concept that is fundamental to computing. It mu

balanced for best cost/performance, and is continually in need of readjustment with eac

improvement in microprocessors, memory systems, and manufacturing technology. I

dissertation, we have shown that the memory system is limiting processor improvements

viding a sufficiently high performance memory system is simple given unlimited c

whereas improving processor performance, even given unlimited cost, is more difficult

lectually. As the relative costs of the memory system increase and those of processors d

the problem of providing a good enough memory system—given cost constraints—bec

the paramount emerging challenge.

7.1 Summary

In this dissertation, we focused on the interface between the processing core and the

ory system. Specifically, we examined how the volume of traffic moving across the

affects performance, and then proposed techniques and solutions to mitigate the adver

formance impact of that processor/memory traffic.

We first made a case, by analyzing technology and architectural trends, that memory

width will be one of the dominant limits—and perhaps the paramount limit—of sca

microprocessor performance. We then proposed a performance breakdown that dissect

cution time into three components: the time spent doing useful processing, the time

stalling for bank access and transmission memory latency, and the time spent stallin

queueing delays and contention in the memory system. We showed that as microproc

become more aggressive, with faster clocks and higher levels of ILP, the balance i

151

rows

mory

lated

ll time

h more

63%

being

much

tally

con-

affic

olicy,

large

e is no

are

de off

olicy

ng on

hing

etch-

those

olicy.

ucing

e sub-

decomposition shifts. The fraction of time that processors spend stalling for memory g

significantly, accounting for over half of execution time in aggressive processors (me

stall time grew from an average of 27% to 48% for our least and most aggressive simu

processors, respectively). Furthermore, the balance of latency versus bandwidth sta

shifts for more aggressive processors; the higher-performance processors become muc

bandwidth-bound. The bandwidth component of memory stall time grew from 54% to

from our least to most aggressive processor, resulting in over 30% of execution time

spent stalling because of memory contention.

Given these results, we proposed a construct called theminimal-traffic cache(MTC), to

evaluate the potential for reducing unnecessary traffic by placing a lower bound on how

is actually needed. We proposed a related metric calledtraffic efficiency, which compared the

traffic ratios of a traditional cache with those of a minimal-traffic cache. Our experimen

measured traffic efficiency results showed the MTC reduced traffic by sometimes large

stant factors, with reductions ranging from factors of 2 to factors of 100. We broke this tr

reduction into the component factors of the MTC (fetch size, associativity, replacement p

and write policy). Our results showed that each of the components can reduce traffic by

constant factors, but the degree to which they do are highly benchmark dependent; ther

“magic bullet” factor that can uniformly reduce traffic (although, naturally, read fetches

more important than the other three factors).

We then proposed a number of policies, targeted at large L2 caches, that attempt to tra

misses and traffic in such a way as to maximize performance. The dual-size fetch p

switched between fetching blocks and subblocks in a subblocked cache, dependi

whether spatial locality was high (fetching whole blocks to reduce misses) or low (fetc

subblocks to reduce traffic). We evaluated another policy, which we called subblock pref

ing, which saved the subblocks used while a block was in the cache, and reloaded only

subblocks upon the next tag miss to that block. We then combined the two into a single p

Finally, we extended those polices withbus prioritization, in which non-critical subblocks

predicted by those policies were fetched only when the Rambus channel was idle, red

contention delays for subblocks that were actually requested. Our results were mixed; th

152

hing,

ance

tradi-

ance

mem-

ent (as

ries in

sepa-

are

on the

ass of

major

to sift

e that

to

process.

s, did

e ICE

ow-

per-

), and

block

draw-

block prefetching policy did not reduce misses nearly as much as did the dual-size fetc

and the unified policy beat the two individually only in a few cases. Worse, the perform

penalty of using a subblocked cache—necessary to implement our policies cleanly in a

tionally managed cache—was sufficiently high that the policies recouped the lost perform

in only a few cases.

The next area that we explored was the organization and management of large on-chip

ories. We discussed how the use of some mechanisms from virtual memory managem

opposed to traditional cache management) may be a good match for the on-chip memo

the near- and medium-term future. We proposed three classes of hybrids:physical hybrids, in

which the processor chip contains some physical memory and some cache, physically

rate; logical hybrids, in which a combination of cache and virtual memory mechanisms

used to manage a single structure uniformly; andunified hybrids, in which blocks of data in a

single structure are either treated as cached data or virtual memory pages, depending

management policies. We evaluated the former two, and merely described the third cl

hybrids.

To explore the space of logical hybrids, we described a taxonomy that specified the

differences between cache and virtual memory mechanisms, and used this taxonomy

through a number of possible hybrids. We discarded most, but chose to evaluate on

looked promising: theindirect cache (extended). The ICE used software address translation

access cache lines in a large L2 cache, and used a tag cache to speed the translation

The performance results for the ICE were good in some cases, but, like the traffic policie

not show consistent improvement over an aggressive baseline. When we evaluated th

with subblocked tags, and coupled that implementation with the unified traffic policies, h

ever, we found that the two sets of techniques worked synergistically. Together, the two

formed both uniformly and substantially better than the aggressive baseline (8% - 30%

even outperforming (on average, by 1.6%) the baseline with per-benchmark optimal

sizes chosen. This synergy occurred because the ICE removed the main implementation

back to the traffic policies: caching data at a coarse (block) granularity.

153

veral

mory

t are a

ing a

n be

a few

se the

quency

isses.

ove-

ional

elated

tation.

cture,

nect.

erfor-

r deal-

ution

owed

cess,

por-

6, is

initial

ber-

We presented a brief analysis of a physical hybrid, showing global miss rates for se

organizations that had all on-chip memory managed as physical memory, all on-chip me

managed as a large L2 cache, and various points in between. For on-chip capacities tha

significant fraction (1/32 to 1/2) of the applications’ data set sizes, we showed that hav

large physical memory structure on-chip, with a smaller L2 cache for off-chip data, ca

competitive with an all-cache scheme, and furthermore shows reduced miss rates in

cases. The caveat is that we used application (and data set) specific profiling to choo

pages mapped on the processor chip in the physical memory banks (based on total fre

of accesses), and less intelligent static mappings are likely to incur significantly more m

With the traffic optimizing policies and the ICE, we have proposed implementable impr

ments that address fetch size and associativity, two of the four factors by which tradit

caches and MTCs differ. We proposed two techniques (selective write validate and corr

replacement) that address the other two factors, but did not evaluate them in this disser

The last major study we presented in this dissertation was the DataScalar archite

which, among other benefits, eliminated write and request traffic from the global intercon

We showed that it is possible to implement a working DataScalar system that achieves p

mance that is consistently higher than a competitive baseline. We proposed solutions fo

ing with caching and speculation in an asynchronous implementation of the ESP exec

model, and implemented them in our simulator. Our experiments with four processors sh

speedups from 9% to 100% on unmodified serial binaries.

7.2 Looking back

In this final section, I discuss our results from the perspective at the end of the Ph.D. pro

and describe what I consider to be the impact of this work, the impact thus far, and which

tions of the work are likely to have the most impact in the future.

The memory bandwidth portion of my dissertation research, which appeared in ISCA’9

probably the most cited so far, and thus ostensibly has been the most influential. The

publication that described some of our ideas and philosophical framework (with the cum

154

pro-

otal

azy)

hard-

mpiler

wpoint

cach-

mag-

ith

that

mely

]) has

of the

predic-

had

rime

cache

nd-

umed

nter-

small

case

AM

nte-

early

ntu-

have

are

some title “The Declining Effectiveness of Dynamic Caching for General-Purpose Micro

cessors” [12]) was widely disseminated and read (particularly by industry, if anecd

evidence can be believed). The report, while it contained some potentially good (if h

ideas, was fairly naive. I saw the low efficiency measurements, and concluded that the

ware caching paradigm was wasteful and that explicit cache management by the co

could make much better use of the resources, and thus be more cost-effective. That vie

was certainly supported by Shen’s results [64], which showed that if you discarded the

ing paradigm, and just focused on optimally managed values, you could obtain orders of

nitude more effective bandwidth. After months of trying, I was unable to come up w

anything implementable that could outperform caches. Our report failed to recognize

once you have the software break the dynamic caching paradigm, you must work extre

hard just to break even. Recent and ongoing work at Wisconsin [90] (and elsewhere [126

had elements of this philosophy (separating values from the name space to bypass all

baggage of virtual memory and the memory hierarchy), but they used data dependence

tion rather than compiler analysis.

The follow-on paper to our technical report, the ISCA memory bandwidth paper [13],

two main contributions. The first was the case that pin bandwidth was going to be the p

bottleneck in future systems. The second was to place and analyze lower bounds on

traffic. I used experimental evidence to show that limited bandwidth, particularly pin ba

width, was growing as a contributor to performance loss. However, my simulations ass

large, fast off-chip L2 caches, which essentially forced the memory bottleneck to the pin i

face (main memory latencies were thus rarely incurred because of the large caches and

benchmarks, plus the bus width to the L2 was necessarily constrained, which is not the

for more modern L2 caches that are on-chip). That is why both my results and the IR

group’s earlier results [42] showed such little gain from having full processor/memory i

gration; the truth is that once you have a large on-chip L2, the off-chip bandwidth is not n

as much of a problem. I honestly believe that we are currently in an “inflection point”–eve

ally, designers will be able to place as much computational power on the chip as they

available off-chip bandwidth (which the on-chip storage will enhance). Right now, we

155

mod-

he die

ation

asons

such

e like.

ing

(par-

like

either

pre-

show

PEC,

d 149

ain

ther

try)

having

the

caches

ked

se to

(such

ring

ther

m-

erm

widely

starting to see large on-chip storage, but not yet effectively unlimited processing power (

ern processors still consume too large a percentage of the die, but their footprints on t

are shrinking quickly). In the short term, the only places that processor/memory integr

could be realized are in other markets, which need systems with fewer chips for cost re

(price/performance as opposed to performance). The IRAM group seems to be moving in

a direction, toward low-power, embedded processors that are designed for PDAs and th

My work in improving the performance of large L2 caches, with both the traffic optimiz

policies and alternative management organizations, was initially disappointing. Caches

ticularly large L2 caches) work well, particularly when you feed them small benchmarks

most of SPEC95. We (Steve Reinhardt and I) didn’t see large or consistent gains from

the traffic policies or the ICE, until we put them all together, and saw (as our intuition had

dicted) that they worked synergistically. We have some evidence that these techniques

even larger performance gains (using some traces obtained from Intel) than they did for S

which is encouraging. The traces were instruction traces that contained between 19 an

million instructions, and ranged from 0.2 to 2.7 million distinct references. The two m

drawbacks of this work are the complexity of implementing all of these techniques toge

(that requirement makes it much less likely that industry will give some of these ideas a

and the persistent, per-tag state store. We need to explore the performance impact of

state for a finite number of physical tags, before industrial architects are likely to buy

results. Another question is whether some of these ideas should be applied to current

without implementing everything together; if designers were going to build a subbloc

cache for other reasons, then some of the traffic optimizing policies might make sen

include. Finding a way to get around the granularity issue in a hardware-managed cache

as decoupled sectoring) could also permit the traffic policies to work well without requi

the ICE. Finally, something like the ICE could have impact if industrial designers have o

needs for flexibility (partitioning the L2 for multiprogramming or multithreading, for exa

ple). Whether this work will have any industrial impact is too early to tell, but possible.

The DataScalar work was the part of my thesis that I think will have the most long-t

impact. Near-term, it seems to have been largely ignored (although the ideas have been

156

ts we

y is a

ywhere

enta-

exe-

ets of

ation).

lts in

with

sary

d sys-

erfor-

long

ay be

elect

search

utper-

n to

mory

), the

l for

d.

disseminated within a major microprocessor vendor). Although the performance resul

reported in our ISCA paper were essentially meaningless (by the time the technolog

good match for a DataScalar-like system, the processors, workloads, and latencies ever

will bear no resemblance to those we used), we did show that an asynchronous implem

tion of the ESP execution model could outperform a conventional alternative. For such an

cution model to become cost-effective, the underlying system must have the correct s

parameters and costs (distributed memory, cheap processors, high-latency communic

We evaluated the architecture in a MOP context, but given our performance resu

Section 5.4, it seems unlikely that high-performance processors will be fully integrated

memory anytime soon (and designers would likely be unwilling to put in all of the neces

hardware and software support to run asynchronous ESP in low-end, low-cost embedde

tems). The technology that may be a better match is the implementation of large, high-p

mance chips, which have multiple powerful, distributed computational units on-chip, but

delays to transmit global signals. Running in the base DataScalar mode all the time m

overkill, but having an asynchronous ESP mode, running part of the time (or running s

subsets of the computation as a virtual DataScalar system) may be advantageous. My re

plans for the next few years include trying to develop a system that uses these ideas to o

form all the alternatives both in terms of performance and cost/performance, in additio

showing that it is implementable.

While other parts of this dissertation may have had some short-term impact (the me

bandwidth work), and other parts have potential for some medium-term impact (the ICE

DataScalar work is the only part of this research, in my opinion, which has any potentia

fundamental, long-term impact on how computation and storage resources are organize

157

n for
o-

ent

llel
nter,

dels.

ed
iers

ical
WI,

ors:
t, Uni-

Se-
ely

Dy-
puter

s of
on

References

[1] Anant Agarwal. Performance Tradeoffs in Multithreaded Processors.IEEE Transactions
on Parallel and Distributed Systems, 3(5):525–539, September 1992.

[2] Thomas Alexander and Gershon Kedem. Distributed Prefetch-buffer/Cache Desig
High Performance Memory Systems. InProceedings of the Second International Symp
sium on High-Performance Computer Architecture, pages 254–263, February 1996.

[3] A. Asthana, H. V. Jagadish, J. A. Chandross, D. Lin, and S. C. Knauer. An Intellig
Memory System.Computer Architecture News, 16(4):12–20, September 1988.

[4] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS Para
Benchmarks. Technical Report RNR-91-002 Revision 2, NASA Ames Research Ce
Ames, CA, August 1991.

[5] L. A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer.IBM
Systems Journal, 5(2):78–101, 1966.

[6] Bryan Black and John Paul Shen. Calibration of Microprocessor Performance Mo
IEEE Computer, 31(5):59–65, May 1998.

[7] D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif. BLITZEN: a Highly Integrat
Massively Parallel Machine. InProceedings of the Second Symposium on the Front
of Massively Parallel Computation, pages 399–406, October 1988.

[8] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set Version 2.0. Techn
Report 1342, Computer Sciences Department, University of Wisconsin, Madison,
June 1997.

[9] Doug Burger, Todd M. Austin, and Steven Bennett. Evaluating Future Microprocess
the SimpleScalar Tool Set. Technical Report 1308, Computer Sciences Departmen
versity of Wisconsin, Madison, WI, July 1996.

[10] Doug Burger and James R. Goodman. Exploiting Optical Interconnects to Eliminate
rial Bottlenecks. InProceedings of the Third International Conference on Massiv
Parallel Processing Using Optical Interconnects, October 1996.

[11] Doug Burger and James R. Goodman. Billion-Transistor Architectures.IEEE Computer,
30(9):46–48, September 1997.

[12] Doug Burger, James R. Goodman, and Alain Kägi. The Declining Effectiveness of
namic Caching for General-Purpose Microprocessors. Technical Report 1261, Com
Sciences Department, University of Wisconsin, Madison, WI, January 1995.

[13] Doug Burger, James R. Goodman, and Alain Kägi. Memory Bandwidth Limitation
Future Microprocessors. InProceedings of the 23rd Annual International Symposium
Computer Architecture, pages 78–89, May 1996.

158

es-

es. In
ture

On-

sion
rmy

ges

ies.
tific

0. In
ture

and
for

ess
hing.

sor.

s. In
r Ar-

tion
s and

[14] Doug Burger, James R. Goodman, and Alain Kägi. Limited Bandwidth to Affect Proc
sor Design.IEEE Micro, 17(6):55–62, December 1997.

[15] Doug Burger, Stefanos Kaxiras, and James R. Goodman. DataScalar Architectur
Proceedings of the 24th Annual International Symposium on Computer Architec,
pages 338–349, June 1997.

[16] Doug Burger, Steven K. Reinhardt, and Wei fen Lin. Alternative Designs for Large
Chip Caches. Technical Report 1390, UWCS, Feb 1999.

[17] Arthur W. Burks, Herman H. Goldstine, and John von Neumann. Preliminary discus
of the logical design of an electronic computing instrument. Technical report, U.S. A
Ordinance Department, 1946.

[18] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. InProceed-
ings of the Fourth Symposium on Architectural Support for Programming Langua
and Operating Systems, pages 40–52, April 1991.

[19] Steve Carr and Ken Kennedy. Blocking Linear Algebra Codes for Memory Hierarch
In Proceedings of the Fourth SIAM Conference on Parallel Processing for Scien
Computing, page ?, December 1989.

[20] J. H. Chang, H. Chao, and K. So. Cache Design of a Sub-Micron CMOS System/37
Proceedings of the 14th Annual International Symposium on Computer Architec,
pages 208–213, June 1987.

[21] Tien-Fu Chen and Jean-Loup Baer. Reducing Memory Latency via Non-blocking
Prefetching Caches. InProceedings of the Fifth Symposium on Architectural Support
Programming Languages and Operating Systems, pages 51–61, October 1992.

[22] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen mei W. Hwu. Data Acc
Microarchitectures for Superscalar Processors with Compiler-Assisted Data Prefetc
In Proceedings of the 24th International Symposium on Microarchitecture, pages 69–73,
November 1991.

[23] Jim Childers, Peter Reinecke, and Hiroshi Miyaguchi. SVP: A Serial Video Proces
In Proceedings of the 1990 IEEE Custom Integrated Circuits Conference, pages 17.3.1–
17.3.4, May 1990.

[24] Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching Technique
Proceedings of the First International Symposium on High-Performance Compute
chitecture, pages 90–99, January 1995.

[25] Eugene L. Cloud. The Geometric Arithmetic Parallel Processor. InProceedings of the
Second Symposium on the Frontiers of Massively Parallel Computation, pages 373–381,
October 1988.

[26] Bob Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execu
Profiling. InProceedings of the 1994 ACM Sigmetrics Conference on Measurement
Modeling of Computer Systems, pages 128–137, May 1994.

[27] E. G. Coffman and P. J. Denning.Operating Systems Theory. Prentice-Hall, Englewood

159

l K.

erat-

are-
eton

-Chip

p-
,

. A

: A

A
m-

Re-
-

r Re-
m

ces-

.

,

Cliffs, NJ, 1973.

[28] Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and Pau
Rodman. A VLIW Architecture for a Trace Scheduling Compiler. InProceedings of the
Second Symposium on Architectural Support for Programming Languages and Op
ing Systems, pages 180–192, October 1987.

[29] Jordi Cortadella and Teodor Jové. Dynamic RAM for On-chip Instruction Caches.Com-
puter Architecture News, 16(4):45–50, September 1988.

[30] Richard Crisp. Direct Rambus Technology: The New Main Memory Standard.IEEEM,
17(6):18–27, December 1997.

[31] Stefanos Damianakis, Kai Li, and Anne Rogers. An Analysis of a Combined Hardw
Software Mechanism for Speculative Loads. Technical Report TR-455-94, Princ
University, Princeton, NJ, April 1994.

[32] Per-Erik Danielsson, Par Emanuelsson, Keping Chen, and Per Ingelhag. Single
High-Speed Computation of Optical Flow. InIn IAPR International Workshop on Ma-
chine Vision Applications, pages 331–335, November 1990.

[33] M. F. Deering, S. A. Schlapp, and M. G. Lavelle. FBRAM: A New Form of Memory O
timized for 3D Graphics. InProceedings of SIGGRAPH 94, pages 167–174, Orlando
FL, July 1994.

[34] Duncan G. Elliott, W. Martin Snelgrove, Christian Cojocaru, and Michael Stumm
PetaOp/s is Currently Feasible by Computing in RAM. InIn PetaFLOPS Frontier Work-
shop, Washington DC, February 1995.

[35] Duncan G. Elliott, W. Martin Snelgrove, and Michael Stumm. Computational Ram
Memory-SIMD Hybrid and its Application to DSP. InCustom Integrated Circuits Con-
ference, pages 30.6.1–30.6.4, Boston, MA, May 1992.

[36] Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COM
and CC-NUMA. InProceedings of the 24th Annual International Symposium on Co
puter Architecture, June 1997.

[37] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture:
ducing Cycle Time Through Partitioning. InProceedings of the 30th International Sym
posium on Microarchitecture, December 1997.

[38] Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A Technique fo
ducing Address Bus Width. InProceedings of the 18th Annual International Symposiu
on Computer Architecture, pages 128–137, May 1991.

[39] Matthew Farrens, Gary Tyson, and Andrew R. Pleszkun. A Study of Single-Chip Pro
sor/Cache Organizations for Large Numbers of Transistors. InProceedings of the 21st
Annual International Symposium on Computer Architecture, pages 338–347, April 1994

[40] Richard C. Foss. Implementing Application Specific Memory. InProceedings of the
1996 International Solid-State Circuits Conference, pages 260–261, February 1996.

[41] Manoj Franklin.The Multiscalar Architecture. PhD thesis, University of Wisconsin

160

ruce
ffi-

o-

ache
Ar-

n, Jr.
xtures,

Ma-

ter-
its

rence
s and

as-

ly
Re-

lyses,

ic. In
ture

Ma-

ing
nce

-Di-

Madison, WI, December 1993.

[42] Richard Fromm, Stylianos Perissakis, Neal Cardwell, Christoforos Kozyrakis, B
McGaughy, David Patterson, Tom ANderson, and Katherine Yelick. The Energy E
ciency of IRAM Architectures. InProceedings of the 24th Annual International Symp
sium on Computer Architecture, pages 327–337, June 1997.

[43] John W. C. Fu and Janak H. Patel. Data Prefetching in Multiprocessor Vector C
Memories. InProceedings of the 18th Annual International Symposium on Computer
chitecture, pages 54–63, May 1991.

[44] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D. Austi
Frederick P. Brooks, John G. Eyles, and John Poulton. Fast Spheres, Shadows, Te
Transparencies, and Image Enhancemts in Pixel-Planes. InProceedings of SIG-
GRAPH’85, pages 111–120, San Francisco, CA, July 1985.

[45] Hector Garcia-Molina, Richard J. Lipton, and Jacobo Valdes. A Massive Memory
chine.IEEE Transactions on Computers, C-33(5):391–399, May 1984.

[46] Glenn Giacalone0et0al. A 1MB, 100MHz Integrated L2 Cache Memory with 128b In
face and ECC Protection. InProceedings of the 1996 International Solid-State Circu
Conference, pages 370–371. IBM, February 1996.

[47] J. D. Gindele. Buffer Block Prefetching Method.IBM Tech. Disclosure Bull., 20(2):696–
697, July 1977.

[48] Gideon Glass and Pei Cao. Adaptive Page Replacement Based on Memory Refe
Behavior. InProceedings of the 1997 ACM Sigmetrics Conference on Measurement
Modeling of Computer Systems, pages 115–126, June 1997.

[49] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in Memory: the Terasys M
sively Parallel PIM Array.IEEE Computer, 28(3):23–31, April 1995.

[50] Maya Gokhale, Bill Holmes, Ken Iobst, Alan Murray, and Tom Turnbull. A Massive
Parallel Processor-in-Memory Array and its Programming Environment. Technical
port SRC-TR-92-076, Supercomputer Research Centre - Institute for Defense Ana
17100 Science Drive, Bowie, MD, November 1992.

[51] James R. Goodman. Using Cache Memory To Reduce Processor-Memory Traff
Proceedings of the 10th Annual International Symposium on Computer Architec,
pages 124–131, June 1983.

[52] James R. Goodman and Honesty C. Young. Comments on "A Massive Memory
chine".IEEE Transactions on Computers, C-35(10):907–910, October 1986.

[53] Sridhar Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi. Speculative Version
Cache. InProceedings of the Fourth International Symposium on High-Performa
Computer Architecture, February 1998.

[54] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum. Compiler
rected Data Prefetching in Multiprocessor with Memory Hierarchies. InProceedings of
the 1990 International Conference on Supercomputing, pages 354–368, June 1990.

161

.

r

i-

A.

sor
m-

y

n.

Val-
hi-

-

lable

on of
as-

ting
r-

t via
on

.

[55] Linley Gwennap. Digital 21264 Sets New Standard.MPR, pages 1–6, October 28 1996

[56] Linley Gwennap. Alpha 21364 to Ease Memory Bottleneck.MPR, pages 12–15, Octobe
26 1998.

[57] R. A. Heaton and D. W. Blevins. BLITZEN: a VLSI Array Processing Chip. InProceed-
ings of the 1989 Custom Integrated Circuits Conference, pages 12.1.1–12.1.5, San D
ego, CA, May 1989.

[58] Mark D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. PhD the-
sis, University of California at Berkeley, November 1987.

[59] Mark D. Hill. A Case for Direct-Mapped Caches.IEEE Computer, 21(1), January 1998.

[60] Mark D. Hill, James R. Larus, Alvin R. Lebeck, Madhusudhan Talluri, and David
Wood. Wisconsin Architectural Research Tool Set.Computer Architecture News,
21(4):8–10, August 1993.

[61] Mark D. Hill and Alan Jay Smith. Experimental Evaluation of On-Chip Microproces
Cache Memories. InProceedings of the 11th Annual International Symposium on Co
puter Architecture, pages 158–166, June 1984.

[62] Masashi Horiguchi0et0al. An Experimental 220MHz 1Gb DRAM. InProceedings of the
1995 International Solid-State Circuits Conference, pages 252–253. Hitachi, Februar
1995.

[63] L. P. Horwitz, R. M. Karp, R. E. Miller, and A. Winograd. Index Register Allocatio
Journal of the ACM, 13(1):43–61, January 1966.

[64] Andrew S. Huang and John P. Shen. A Limit Study of Memory Requirements Using
ue Reuse Profiles. InProceedings of the 28th International Symposium on Microarc
tecture, pages 71–81, December 1995.

[65] IBM Microelectronics and Motorola.PowerPC 601: RISC Microprocessor User’s Man
ual, 1993.

[66] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Sca
Coherent Interface.IEEE Computer, 23(6):74–77, June 1990.

[67] J. M. Jennings, E. W. Davis, and R. A. Heaton. Comparative Performance Evaluati
a New SIMD Machine. InProceedings of the Third Symposium on the Frontiers of M
sively Parallel Computation, pages 255–258, October 1990.

[68] Lizy Kurian John, Raghuveer Reddy, Vijay Kammila, and Peter Maurer. Investiga
the Use of Cache as a Local Memory. InProceedings of the 1995 International Confe
ence on High Performance Computing, 1995.

[69] T.L. Johnson and W.W. Hwu. Run-time Adaptive Cache Hierarchy Managemen
Reference Analysis. InProceedings of the 24th Annual International Symposium
Computer Architecture, pages 315–326, June 1997.

[70] Norman P. Jouppi. Cache Write Policies and Performance. InProceedings of the 20th
Annual International Symposium on Computer Architecture, pages 191–201, May 1993

162

emory

85,

Sys-

tter.

.

, and

Krste
erly

ors in

. In
ling,

hes
on

sh
up-
r. In
ture

oop
lti-

[71] Norman P. Jouppi and Parthasarathy Ranganathan. The Relative Importance of M
Latency, Bandwidth, and Branch Limits to Performance. InWorkshop on Mixing Logic
and DRAM, held at the 24th International Symposium on Computer Architecture, June
1997.

[72] Toni Juan, Dolors Royo, and Juan J. Navarro. Dynamic Cache Splitting. InProceedings
of the XV International Conference of the Chilean Computer Society, November 1995.

[73] Richard Eugene Kessler.Analysis of Multi-Megabyte Secondary CPU Caches. PhD the-
sis, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706-16
July 1991.

[74] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-Level Storage
tem.IRE Transactions, EC-11, 2:223–235, April 1962.

[75] Peter M. Kogge. EXECUBE - A New Architecture for Scalable MPPs. InProceedings
of the 1994 International Conference on Parallel Processing, pages I77–I84, August
1994.

[76] Peter M. Kogge, Toshio Sunaga, Hisatada Miyataka, Koji Kitamura, and Eric Re
Combined DRAM and Logic for Massively Parallel Systems. InProceedings of the 1995
Conference on Advanced Research in VLSI, pages 4–16, Chapel Hill, NC, March 1995

[77] Leonidas I. Kontothanassis, Rabin A. Sugumar, G. J. Faanes, James E. Smith
Michael L. Scott. Cache Performance in Vector Supercomputers. InProceedings of Su-
percomputing ’94, pages 255–264, November 1994.

[78] Christoforos Kozyrakis, Stylianos Perissakis, David Patterson, Thomas Anderson,
Asanovic, Neal Cardwell, Richard Fromm, Jason Golbus, Benjamin Gribstad, Kimb
Keeton, , Randi Thomas, Noah Treuhaft, and Katherine Yelick. Scalable Process
the Billion-Transistor Era: IRAM.IEEE Computer, 30(9):75–78, September 1997.

[79] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. InProceed-
ings of the 8th Annual International Symposium on Computer Architecture, pages 81–87,
May 1981.

[80] D. J. Kuck and B. Kumar. A System Model for Computer Performance Evaluation
Proceedings of the International Symposium on Computer Performance, Mode
Measurement, and Evaluation, pages 187–199, March 1976.

[81] Sanjeev Kumar and Christopher Wilkerson. Exploiting Spatial Locality in Data Cac
using Spatial Footprints. InProceedings of the 25th Annual International Symposium
Computer Architecture, July 1998.

[82] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kouro
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop G
ta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multiprocesso
Proceedings of the 21st Annual International Symposium on Computer Architec,
pages 302–313, April 1994.

[83] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, An
Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford DASH Mu

163

ffs in

Op-

Be-
l

ial

mic

ica-
-

n of
-

ton,
ent

ew

y Ap-

processor.IEEE Computer, 25(3):63–79, March 1992.

[84] J. S. Liptay. Structural Aspects of the System/360 Model 85 II: The Cache.IBM Systems
Journal, 7(1), 1968.

[85] Philip Machanick, Pierre Salverda, and Lance Pompe. Hardware-Software Trade-O
a Direct Rambus Implementation of the RAMpage Memory Hierarchy. InProceedings
of the Eighth Symposium on Architectural Support for Programming Languages and
erating Systems, pages 105–114, October 1998.

[86] Doug Matzke. Will Physical Scalability Sabotage Performance Gains?IEEE Computer,
30(9):37–39, September 1997.

[87] Geoffrey D. McNiven and Edward S. Davidson. Analysis for Memory Referencing
havior For Design of Local Memories. InProceedings of the 15th Annual Internationa
Symposium on Computer Architecture, pages 56–63, May 1988.

[88] Hiroshi Miyaguchi, Hujime Krasawa, and Xhinichi Watanabe. Digital TV with Ser
Video Processor.IEEE Transactions on Consumer Electronics, 36(3):318–326, August
1990.

[89] Andreas Moshovos, Scott E. Breach, T.N. Vijaykumar, and Gurindar S. Sohi. Dyna
Speculation and Synchronization of Data Dependences. InProceedings of the 24th An-
nual International Symposium on Computer Architecture, June 1997.

[90] Andreas Moshovos and Guri Sohi. Streamlining Inter-operation Memory Commun
tion via Data Dependence Prediction. InProceedings of the 30th International Sympo
sium on Microarchitecture, December 1997.

[91] David Nagle, Richard Uhlig, Trevor Mudge, and Stuart Sechrest. Optimal Allocatio
On-chip Memory for Multiple-API Operating Systems. InProceedings of the 21st Annu
al International Symposium on Computer Architecture, pages 358–369, April 1994.

[92] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Kee
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for Intellig
RAM. IEEE Micro, 17(2):34–44, March/April 1997.

[93] David Patterson, Tom Anderson, and Kathy Yelick. The Case for IRAM. InProceedings
of HOT Chips 8, Stanford, CA, August 1996.

[94] Andrew R. Pleszkun and E. S. Davidson. Structured memory access architecture. InPro-
ceedings of the 1983 International Conference on Parallel Processing, pages 461–471,
August 1983.

[95] Charles Price.MIPS IV Instruction Set, revision 3.1. MIPS Technologies, Inc., Mountain
View, CA, January 1995.

[96] Betty Prince. Memory in the fast lane.IEEE Spectrum, 31(2):38–41, February 1994.

[97] Steven A. Przybylski.New DRAM Technologies: A Comprehensive Analysis of the N
Architectures. MicroDesign Resources, Sebastopol, CA, 1994.

[98] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace Cache: A Low Latenc

164

l

Sizes,

The
l

Ring.
ture

icon-

cost
m-

.

uter

Pipe-
m-

iple

proach to High Bandwidth Instruction Fetching. InProceedings of the 29th Internationa
Symposium on Microarchitecture, December 1996.

[99] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache
and Node Granularity Issues for Large-Scale Multiprocessors. InProceedings of the 20th
Annual International Symposium on Computer Architecture, pages 14–25, May 1993.

[100] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the Memory Wall:
Case for Processor/Memory Integration. InProceedings of the 23rd Annual Internationa
Symposium on Computer Architecture, pages 90–101, May 1996.

[101] Steven L. Scott, James R. Goodman, and Mary K. Vernon. Performance of the SCI
In Proceedings of the 19th Annual International Symposium on Computer Architec,
pages 403–414, May 1992.

[102] Semiconductor Industry Association. The National Technology Roadmap for Sem
ductors. 1997.

[103] André Seznec. Decoupled Sectored Caches: conciliating low tag implementation
and low miss ratio. InProceedings of the 21st Annual International Symposium on Co
puter Architecture, pages 384–393, April 1994.

[104] Toru Shimizu et al. A Multimedia 32b RISC Microprocessor with 16Mb DRAM. InPro-
ceedings of the 1996 International Solid-State Circuits Conference, pages 216–217. Mit-
subishi Electric Co., February 1996.

[105] Daniel P. Siewiorek, C. Gordon Bell, and Annel Newell.Computer Structures: Princi-
ples and Examples. McGraw-Hill, 1982.

[106] Alan Jay Smith. Cache Memories.Computing Surveys, 14(3):473–530, September 1982

[107] Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Comp
System. InReal-Time Signal Processing IV, pages 241–248, 1981.

[108] James E. Smith. Decoupled Access/Execute Computer Architectures. InProceedings of
the 9th Annual International Symposium on Computer Architecture, pages 112–119,
April 1982.

[109] James E. Smith. Decoupled Access/Execute Computer Architectures.ACM Transac-
tions on Computer Systems, 2(4):289–308, November 1984.

[110] James E. Smith and Andrew R. Pleszkun. Implementation of Precise Interrupts in
lined Processors. InProceedings of the 12th Annual International Symposium on Co
puter Architecture, pages 36–44, June 1985.

[111] IEEE Computer Society. Scalable Coherent Interface (SCI).ANSI/IEEE Std 1596-1992,
August 1993.

[112] Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reuse. InProceedings of the
24th Annual International Symposium on Computer Architecture, pages 194–205, June
1997.

[113] Gurindar S. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Mult

165

s. In
ture

nce,
-

r Op-

Sys-

ages
i-

4-
ems

per-

ased
put-

ing:
-

ory
-

Functional Unit, Pipelined Computers.IEEE Transactions on Computers, 39(3):349–
359, March 1990.

[114] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar Processor
Proceedings of the 22nd Annual International Symposium on Computer Architec,
pages 414–425, June 1995.

[115] Gurindar S. Sohi and Sriram Vajapeyam. Instruction Issue Logic for High-Performa
Interruptable Pipelined Processors. InProceedings of the 14th Annual International Sym
posium on Computer Architecture, pages 27–34, June 1987.

[116] Standard Performance Evaluation Corporation.SPEC Newsletter, Fairfax, VA, Decem-
ber 1991.

[117] Standard Performance Evaluation Corporation.SPEC Newsletter, Fairfax, VA, Septem-
ber 1995.

[118] Harold S. Stone. A Logic-in-Memory Computer.IEEE Transactions on Computers, pag-
es 73–78, January 1970.

[119] Rabin A. Sugumar and Santosh G. Abraham. Efficient Simulation of Caches unde
timal Replacement with Applications to Miss Characterization. InProceedings of the
1993 ACM Sigmetrics Conference on Measurements and Modeling of Computer
tems, pages 24–35, May 1993.

[120] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB Performance of Superp
with Less Operating System Support. InProceedings of the Sixth Symposium on Arch
tectural Support for Programming Languages and Operating Systems, pages 171–193,
October 1994.

[121] Madhusudhan Talluri, Mark D. Hill, and Yousef A. Khalidi. A New Page Table for 6
bit Address Spaces. InProceedings of the 15th ACM Symposium on Operating Syst
Principles, pages 184–200, December 1995.

[122] Olivier Temam. Investigating Optimal Local Memory Performance. InProceedings of
the Eighth Symposium on Architectural Support for Programming Languages and O
ating Systems, pages 218–226, October 1998.

[123] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.IBM
Journal of Research and Development, 11(1):25–33, January 1967.

[124] Dean M. Tullsen and Susan J. Eggers. Limitations of Cache Prefetching on a Bus-B
Multiprocessor. InProceedings of the 20th Annual International Symposium on Com
er Architecture, pages 278–288, May 1993.

[125] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithread
Maximizing On-Chip Parallelism. InProceedings of the 22nd Annual International Sym
posium on Computer Architecture, pages 392–403, June 1995.

[126] Gary Tyson and Todd Austin. Improving the Accuracy and Performance of Mem
Communication Through Renaming. InProceedings of the 30th International Sympo
sium on Microarchitecture, December 1997.

166

Ap-
m

ee,
, Sa-

-

shi
. A
and

ce

es-
th

n-

.

[127] Gary Tyson, Matthew Farrens, John Matthews, and Andrew Pleszkun. A Modified
proach to Data Cache Management. InProceedings of the 28th International Symposiu
on Microarchitecture, pages 93–103, December 1995.

[128] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter L
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb
man Amarasinghe, and Anant Agarwal. Baring It All to Software: Raw Machines.IEEE
Computer, 30(9):86–93, September 1997.

[129] Shlomo Weiss and James E. Smith.POWER and PowerPC. Morgan Kaufmann Publish-
ers, Inc., San Francisco, CA, 1994.

[130] Loring Wirbel. NSA taps Cray Computer, National.Electronic Engineering Times,
1(816):39–40, September 1994.

[131] David A. Wood and Mark D. Hill. Cost-Effective Parallel Computing.IEEE Computer,
28(2):69–72, February 1995.

[132] William A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the Ob
vious.Computer Architecture News, 23(1):24, March 1995.

[133] Nobuyuki Yamashita, Tohru Kimura, Yoshihiro Fujita, Yoshiharu Aimoto, Taka
Manaba, Shin’ichiro Okazaki, Kazuyuki Nakamura, and Masakazu Yamashina
3.84GIPS Integrated Memory Array Processor LSI with 64 Processing Elements
2Mb SRAM. InProceedings of the 1994 International Solid-State Circuits Conferen,
pages 260–261. NEC, February 1994.

[134] Tadaaki Yamauchi, Lance Hammond, and Kunle Olukotun. A Single Chip Multiproc
sor Integrated with DRAM. InWorkshop on Mixing Logic and DRAM, held at the 24
International Symposium on Computer Architecture, June 1997.

[135] J. H. Yoo et sal. A 32-bank 1Gb DRAM with 1 GB/s Bandwidth. InProceedings of the
1996 International Solid-State Circuits Conference, pages 378–379. Samsung Electro
ics Co., February 1996.

[136] Albert Yu. The Future of Microprocessors.IEEE Micro, pages 46–53, December 1996

167

s on

lerate

ases.

reduc-

eri-

lar

n. To

tore

g

” by

in one

hed in

we

5

were

the

Appendix A

Quantifying Latency and Bandwidth Stalls

In this appendix, we quantify experimentally the effects of latency tolerance optimization

the execution time breakdown. Our results show that as we incorporate techniques to to

memory latency more aggressively, the fraction of time spent stalling for bandwidth incre

Furthermore, while the latency tolerance techniques that we measure are successful at

ing raw latency stalls (fL), they are ineffective at reducingfB.

A.1 Experimental methodology

To measurefP, fL, fB (derived in Section 1.2.2), we simulate three configurations per exp

ment (from which we obtainTP, TI, andT). Our simulations were based on the SimpleSca

target machine described in Chapter 2, with parameters described later in this sectio

obtainTP, we run a simulation with a perfect memory system, in which every load and s

hits in the L1 cache (one cycle). We measureTI by simulating a memory hierarchy assumin

infinitely wide paths between adjacent levels of the hierarchy. (We define “infinitely wide

assuming that any number of requests of any size can be transmitted across any bus

cycle, and that there is no need for arbitration). Finally, we measureT by simulating the full

memory system, including contention at all buses.

In this appendix, we present breakdowns for three separate sets of experiments, publis

previous studies. We will denote the experiment sets asE1, E2, E3, respectively. In the first

execution time breakdown that we measured (E1), we used the SPEC92 benchmarks, as

did not yet have access to SPEC95. In the second set (E2), we used a subset of the SPEC9

benchmarks. We published both sets of results in ISCA23 [13]. More recently, we

invited to publish a rewrite of the ISCA paper in IEEE Micro [14]. We reran a set of

168

over

current

ata set

signif-

t the

from a

nt set.

ts, the

n). At

or-

l-two

mpen-

the L2

a sets

eration

e and

values,

ggres-

bank

) kept

tream

that

tion

rve to

SPEC95 benchmarks with our more mature simulation environment, which we improved

the intervening year, and ran the experiments with updated parameters that were more

than those inE1 andE2. We will refer to that most recent set of experiments asE3.

In Table A-1, we list the inputs used for the various benchmarks inE1-E3. At the time of

these studies, we had not yet performed the analysis on the benchmark inputs and d

sizes presented in Chapter 2. Consequently, in many cases we used input sets that were

icantly smaller than theref data sets. Since smaller inputs and data set sizes tend to shif

results to be more processor-bound, however, these results are therefore conservative

memory system perspective.

In Table A-2 we list the memory system parameters associated with each experime

Since we did not scale the data set sizes of the benchmarks for the newer experimen

sizes of the various levels of the memory hierarchy remain the same (with one exceptio

the time of the first study (E1 andE2), we chose cache sizes that were typical of high-perf

mance machines at the time (64 KB split level-one caches and an off-chip, 1MB leve

cache). When we moved to the newer study, we doubled the size of the L2 cache to co

sate for the fact that SPEC95 has larger data sets than SPEC92, but we did not scale up

cache to more than 2MB, and we left the L1 caches the same size. Since the dat

remained unchanged, our goal was to use cache sizes that were from a processor gen

equivalent to the benchmark generation (circa 1995, when SPEC92 was still in wide us

SPEC95 was just released). We did scale the timing parameters to reflect more current

however, assuming that the memory banks got faster (in particular, assuming a more a

sive 14ns for the L2 cache; 30ns was too slow for newer machines). We did not simulate

contention at main memory, since the large L2 caches (coupled with the small data sets

the global L2 miss rates sufficiently low (a mean global miss ratio, measuring the data s

only, of 0.004 across all benchmarks for the 1MB cache, and lower for the 2MB cache)

memory bank contention would be a small factor. Like the small inputs, this assump

makes the results more conservative, since the absence of bank contention will only se

increase processor utilization.

169

each

on the

xperi-

o

In Table A-3 we list the processor parameters that we used for the experiments. For

experiment set, we ran 6 experiments, which we labelA-F. In Table A-3, parameters that dif-

fer amongE1, E2, andE3 are listed for all three, separated by slashes, in the orderE1/E2/E3.

We ran six experiments per set to examine the effects of latency tolerance techniques up

execution time breakdown. We used 4-wide issue superscalar processor cores for all e

ments, each of which uses a two-level adaptive gshare branch predictor. ExperimentsA, B,

andC all use statically scheduled (in-order issue) cores, whileD, E, andF all use dynamically

scheduled (out-of-order issue) cores, based on the RUU described in Chapter 2.A andB use

blocking caches, whileC, D, E, and F use non-blocking (lock-up free) caches [79]. T

improve cache performance,B uses large cache lines (factor of two larger), whileE andF use

tagged prefetching [47].F uses a more aggressive processor core thanA-E for each of the

E1
compress eqntott espresso su2cor swm tomcatv

train int_pri_3.eqn mlp4 only in.short 180x180, 50 it. 256x256, 10 it.

E2
applu hydro2d li su2cor swim vortex

33x33x33, 2 it. test, 1 it. test test test test

E3
compress ijpeg perl su2cor swim vortex

train train test test test train, 1it

Table A-1: Input files used for benchmarks in experiments E1-E3

Structure E1 (SPEC92) E2 (SPEC95) E3 (SPEC95)

L1 cache 128KB unified 64KB I, 64 KB D 64KB I, 64 KB D

Direct mapped Direct mapped Direct mapped

On-chip, 1-cycle access On-chip, 1-cycle access On-chip, 1-cycle access

L1/L2 bus 128 bits wide 128 bits wide 128 bits wide

bus/proc clock: 1/3 bus/proc clock: 1/4 bus/proc clock: 1/5

L2 cache 1MB 2MB 2MB

4-way set assoc. 4-way set assoc. 4-way set assoc.

Off-chip, 30 ns access Off-chip, 30 ns access Off-chip, 14 ns access

L2/memory
bus

64 bits wide 64 bits wide 64 bits wide

bus/proc clock: 1/3 bus/proc clock: 1/4 bus/proc clock: 1/5

Memory 90 ns access 90 ns access 80 ns access

No bank conflicts No bank conflicts No bank conflicts

Table A-2: Memory system simulation parameters

170

ms by

re

tem is

l-

om-

e may

emory

nels are

tely

ution

nt.

experiment sets. We can isolate the effects of the individual latency tolerance mechanis

comparing pairs of experiments: larger cache blocks (B/A), non-blocking caches (C/A),

dynamic scheduling (D/C), tagged prefetching (E/D), and a more aggressive processor co

(F/E).

Our implementation of blocking caches differs betweenE1/E2 andE3. In E1 andE2, we

assume that a miss blocks the cache, but that hits may still occur while the memory sys

servicing the miss (hit-under-miss). InE3, we implemented the blocking, hit-under-miss po

icy by restricting all caches to one miss status holding register (MSHR), which allows c

bining of up to 8 separate requests for the same cache block (MSHR hits). The cach

thereby service multiple misses simultaneously if they are to the same cache block.

Finally, we assume that multiplexed data/address lines are used only on the main m

bus (the on-chip and cache buses have separate address and data lines), that all chan

bidirectional, that all memories return the critical word first, and that we have an infini

deep write buffer.

A.2 Simulation results

In Figure A-1, Figure A-2, and Figure A-3, we depict the execution time breakdowns forE1,

E2, andE3, respectively. In all three figures, each bar represents the breakdown of exec

time into fP, fL, andfB (black, dark grey, and light grey bars, respectively) for one experime

Experiment A B C D E F

Processor in-order issue out-of-order issue

Clock speed 300/400/500 MHz 0.3/0.6/1 GHz

RUU slots 16/64/128 64/128/256

L/S Q entries 8/32/64 32/64/128

Branch predictor 8K/8K/16K 16K/16K/32K

Cache Blocking Lockup-free

L1:L2 block sizes 32:64 64:128 32:64

HW prefetch no yes

Table A-3: Processor simulation parameters (E1/E2/E3)

171

s

partic-

s pro-

e to

-

ignif-

e for

s

cores

.

e L2

ents

miss

slight

ase in

extra

ss the

ase in

larger

The number atop each bar represents the value offB for that experiment. The execution time

for each benchmark are normalized to the processing time (TP) for experimentA.

A.2.1 E1 results

In this experiment set (Figure A-1), several of the benchmarks (eqntott and espresso in

ular) do not spend much of their time stalled for memory; for these benchmarks,fP is high

(over 0.90 for all experiments). The small data sets typical of the SPEC92 benchmark

duce high hit rates in both the 64KB L1 caches and in the 1MB L2 cache, causing little tim

be spent in the memory system. For experimentsA-C with the other four benchmarks (com

press, su2cor, swm, and tomcatv), the time spent stalled for memory () is more s

icant: roughly a quarter (su2cor) to a half (compress). The bulk of the memory stall tim

experimentsA-C is spent stalling for latency (fL). Adding dynamically scheduled core

changes the breakdown substantially. For the experiments with dynamically scheduled

(D-F), the processing time (fP) is cut roughly in half, the latency stall time (fL) is reduced (dra-

matically in some cases), and the bandwidth stall time (fB) increases, both in relative and in

absolute terms, becoming the dominant component of memory stall time in most cases

Increasing the block size from 32 to 64 bytes in the L1 cache, and 64 to 128 bytes in th

cache, improved the performance of some applications but not others (compare experimB

andA). For the SPEC92 version of compress, the unified 128KB L1 cache has a high

rate of 4.20% for 32 byte blocks. Increasing the L1 block size to 64 bytes causes a

increase in the miss rate, to 4.53%. This increase causes a correspondingly small incre

fL. fB increases by a factor of four, however (0.03 to 0.13), since each L1 miss requires 6

cycles to fill the cache (2 additional bus cycles, since 32 extra bytes must be moved acro

16-byte bus, at 3 processor cycles per bus cycle), contributing tofB for every miss. For su2cor,

the larger block size reduces the L1 miss rate slightly (2.97% to 2.53%), causing a decre

fL, but the increase infB (0.02 to 0.08) overcomes the reduction infL, causing a net increase in

execution time. For swm and tomcatv, the L1 miss rates are reduced substantially by the

block size (1.27% to 0.82% and 2.82% to 1.49%, respectively), sofL is reduced substantially,

causing negligible increases infB, and resulting in a net improvement in execution time.

f L f B+

172

mory

eueing.

y

or and

-

s-

viced

tions

rom

the

ch)
f
rd

Adding non-blocking caches to the statically scheduled cores (compare experimentsC and

A) had a uniform effect on applications’ performance: in each case, a fraction of the me

latency was hidden by overlapping misses, but contention was increased because of qu

With non-blocking caches, two factors drivefB in opposite directions: memory requests ma

become queued behind others for bus access, increasing latency and thereforefB, but the data

transmission portion of the cache miss latency (which contributes directly tofB) may be toler-

ated by overlapping it with other requests, thus having a smaller impact on the process

reducingfB. For experimentsA andC, the portion of a L1 cache fill attributable to finite band

width is six of nineteen cycles1, which is sufficiently small that the overlapping of transmi

sion time was outweighed by the contention introduced by multiple misses being ser

simultaneously. For every benchmark in this set, therefore,fB increased slightly, but not as

much asfL was reduced, causing small net reductions in execution time. The total reduc

in were small because—since the cores for experimentC were statically scheduled—

the non-blocking caches had only small instruction windows (at most two fetch widths) f

which to find memory requests that could be overlapped.

Using dynamically scheduled cores with non-blocking caches (compare experimentsD and

C) had three effects on execution time decomposition. First, the time required to perform

1. The L2 lookup accounts for ten processor cycles, and one bus cycle (at three processor cycles ea
accounts for each of critical word forwarding, bus arbitration, and three transmission of the rest o
the cache line across the cache bus. Of those four latency components, only the last two count towa
fB.

0.0

0.5

1.0

1.5

2.0

2.5

ABC
Compress

DEF ABC
Eqntott

DEF ABC
Espresso

DEF ABC
Su2cor

DEF ABC
Swm

DEF ABC
Tomcatv

DEF

SPEC92 benchmarks

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

 .03

.13

.06

.12

.17

.30

 .01

 .01

 .01

 .01

 .01

 .01

 .01

 .02

.01

.03

.03

.04

 .02

.08

 .04

 .07

.10

.16

 .01

 .02

 .02

 .07

 .06

.15

 .02

 .02

.04

.09

.10

.18

f B (limited b/w stalls)

f L (raw latency stalls)

f P (compute time)

Figure A-1: Execution time breakdown for E1 (SPEC92)

f L f B+

173

ffect

n

tol-

use of

to be

d

.4% to

ved

% to

-

ates

mcatv,

.1% to

miss

e

n

ll

of

re

r which

tant).

actual computation (TP) was reduced, on average by about a third. In the graphs, this e

corresponds to a reduction infP for experimentsD-F, since we are normalizing all executio

times toTP for experimentA. Second, the effect of uncontested memory latencies is better

erated by the dynamically scheduled core, resulting in 30% to 50% reductions infL. Third, the

fraction of execution time resulting from memory contention increases in all cases, beca

bothabsolutedifferences (the dynamically scheduled core allows more memory requests

in the memory system simultaneously), andrelative differences (execution time is reduce

without changing the amount of contention).

The incorporation of tagged prefetching (compareE and D) causes mixed results. The

prefetching increases the L1 miss rates for compress (4.2% to 4.7%) and espresso (0

0.5%), which results in bothfL andfB increases, even though the L2 miss rates are impro

slightly by the prefetching. For su2cor, the L1 and L2 miss rates are both reduced (3.0

2.2% and 3.5% to 0.3%, respectively), but the increases infB due to increased contention nul

lify the reduction infL, causing no net change in execution time. This example demonstr

that cache miss ratios can be inaccurate predictors of performance. For swm and to

however, the prefetching causes large reductions in the miss ratios (1.2% to 0.3% and 3

1.0% in the L1 caches, respectively), which reduces thefL component to near-zero in both

cases. (Both codes, particularly swm, contain sufficient ILP to tolerate almost all cache

latencies if the miss rate is sufficiently low).fB changes only slightly for both codes, as th

reductions in misses counterbalance the relative increases infB due to decreased executio

time.

Finally, a more aggressive processor core (compareF andE) serves to reducefP, reducefL,

and increasefB, in all cases. For experimentF, fB is the dominant component of memory sta

time (i.e., fB is larger thanfL) in every case. In Table A-4, we show how the composition

memory stall time shifts fromfL to fB as we compare a simple, statically scheduled co

(experimentA) to an aggressive, dynamically scheduled core (experimentF) that includes

several latency tolerance mechanisms. The shaded cells represent those experiments fo

memory stall time accounts for less than 10% of execution time (and are thus unimpor

For the other four benchmarks, significant shifts fromfL to fB occur.

174

er.

erably

cache

emory

s

nts),

tch

n

non-

regu-

miss

n

hid-

fect by

r

ks see

A.2.2 E2 results

In Figure A-2 we show the execution time breakdown forE2. The most notable difference

from the comparable results ofE1 is that the total memory stall time is (on average) larg

This effect is caused by three factors: the fact that the SPEC95 data sets are consid

larger than SPEC92 (resulting in higher miss ratios), the longer access times for the L2

and memory (twelve cycles versus ten for the L2 cache, and 36 versus 30 cycles per m

access), and the slower off-chip buses (we assume forE1 andE2 that the bus is clocked at

100MHz, except for experimentF in E2, in which the bus is clocked at 150MHz). Vortex ha

an extremely high L1 instruction cache miss ratio (between 2% and 4% for all experime

which causes high values for bothfL andfB, since our microarchitecture assumes that the fe

unit blocks completely on instruction cache misses.

The addition of non-blocking caches forE2 has a different effect on the time breakdow

than it does forE1. Like E1, execution time is reduced, but unlikeE1, the non-blocking

caches inE2 causefB to be reduced instead of increased. This effect occurs because the

blocking caches tend to cause higher L1 data cache miss rates, particularly for the more

lar (floating-point) codes. For example, the L1 data cache in the Applu experiment has a

rate of 2.2% forA and 4.9% forC. The extra misses overcome the most of the reductions ifL

due to the non-blocking cache (in two cases, Li and Su2cor,fL is actuallyincreasedby the

non-blocking cache).fB is reduced in these cases because the transmission time is mostly

den in the latency of the extra misses (the statically scheduled cores exacerbate this ef

preventing other instructions from issuing), and is thus not counted.

Using larger blocks (B) has similar effects inE2 as inE1. In all six benchmarks, the large

L1 cache lines result in lower L1 data cache miss rates. As in E1, most of the benchmar

Compress Eqntott Espresso Su2cor Swm Tomcatv

Exp. fL fB fL fB fL fB fL fB fL fB fL fB

A 0.936 0.064 0.964 0.036 0.922 0.078 0.903 0.097 0.941 0.059 0.936 0.064

F 0.452 0.548 0.769 0.231 0.628 0.372 0.175 0.825 0.075 0.925 0.216 0.784

Table A-4: Shift from fL to fB for E1

175

ata

pplu,

for

he six

ake

erms).

opera-

cts of

core

e-

-

, the

0.7%).

e

reducedfL, with slightly increasedfB (because of greater bus contention, due to more d

transfer per miss), resultant in a net decrease in execution time. The only exception is A

for which bothfL andfB are reduced by larger blocks. We do not have a good explanation

why this aberration occurred in applu.

The addition of a dynamically scheduled core also has consistent effects across t

benchmarks inE2. In all cases,fP is reduced, since the dynamically scheduled core can t

arithmetic dependences off of the critical path.fB also increases in every case (becauseTB

increases in every case, making the bandwidth increase both in absolute and relative t

The bandwidth increases occur because the dynamically scheduled core allows more

tions into the memory system, greatly increasing contention, which overwhelms the effe

the core tolerating the portions of memory delay due to finite bandwidth.TL is reduced in four

of the benchmarks (applu, hydro2D, su2cor, and swim), as the dynamically scheduled

better tolerates memory latencies. For these benchmarks,fL sometimes increases and som

times decreases, depending on the absolute change inTL and the relative effects of the inde

pendent changes infP andfB. TL increases in one case and stays the same in another: in Li

dynamically scheduled core causes an increase in the L1 data cache miss rate (0.5% to

In Vortex, the dynamically scheduled core does not affect the prime component ofTL, the L1

instruction cache miss rate, so the absolute value ofTL remains the same, and the relativ

component of memory latency stalls (fL) increases.

0.0

0.4

0.8

1.2

1.6

2.0

2.4

A B C
Applu

D E F A B C
Hydro2d

D E F A B C
Li

D E F A B C
Su2cor

D E F A B C
Swim

D E F A B C
Vortex

D E F

SPEC95 benchmarks

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

.15

.07

 .02

.10

 .08

.11

.12

.14

.11

.23

.25

.25

 .01 .02 .02

.05

.05

.06

.09

.11

 .04

.16

.13

.15

.06

.07

 .02

.24

.21

.24

.15

.26

.15

.19

.19

.17

Figure A-2: Execution time breakdown for E2 (SPEC95)

176

ntly

ion. In

tches

efetch-

s

cor,

t the

ting in

aling

e

li,

,

er

es

ur

g

mory

er-

rtex

e

cessor

ficant

h-

Tagged prefetching shows no effect in li or vortex. In li, the cache miss ratio is sufficie

low that the extra traffic caused by prefetches does not cause much additional content

Vortex, the memory stalling is due to I-cache misses. Since we only implemented prefe

on the L1 data and L2 caches, the stalls caused by I-cache misses are not affected by pr

ing. In hydro2D, the prefetching causesfB to increase slightly due to extra traffic, but work

well enough to reducefL, resulting in a net win. In the other three benchmarks (applu, su2

and swim), the tagged prefetching is so effective—due to the programs’ regularity—tha

miss rate is reduced enough to overcome the effect of superfluous prefetches, resul

reductions in bothfL and fB.

In experimentF, we improved the processor core and sped up the processor clock (sc

the off-chip buses but not the memory access latencies).TB remains unchanged for most of th

benchmarks, but sincefP shrinks slightly,fB increases for most of the benchmarks (applu,

su2cor, and swim) because the relative size ofTB grows. The exceptions, vortex and hydro2D

are the only two that still have significantfL components for the aggressive core (the oth

experiments manage to tolerate most of that latency), and the faster clock increasTL,

increasingfL even more, and causingfB to decrease slightly. This result corresponds with o

intuition: if the processor clock scales faster than cache and memory bank access times,fL will

grow, and if the processor clock scales faster than bus clocks,fB will grow. Since the latency

tolerance mechanisms seem to almost eliminatefL in most cases, it would seem that scalin

bus clocks (as do Rambus interfaces [30]) is more important than providing fast me

banks.

In Table A-5 we present the relative contributions to memory stall time () for exp

imentsA andF in setE2. Li is shaded out because its L1 cache miss rate is so low. Vo

shows little change in the distribution betweenfB and fL because its high instruction cach

miss ratio is little affected by the latenc4444y tolerance mechanisms and aggressive pro

core. The other four benchmarks (applu, hydro2D, su2cor, and swim) all show a signi

shift from fL to fB, in which fB is over 50% of memory stall time for all four of these benc

marks with experimentF.

f L f B+

177

runs,

bench-

alient

-

cles

ier-

ll

ch

po-

y

t sets:

d by

ed

han is

A.2.3 E3 results

In Figure A-3, we display the execution time breakdown for the updated SPEC95

using a more mature simulator and more up-to-date parameters. Since many of these

marks were analyzed in the previous subsection, in this subsection we only describe s

differences in the results.

The most prominent difference between the results fromE2 andE3 is thatfB is much higher

across the board for almost all of the benchmarks inE3. This difference occurs for two rea

sons: (1) theE3 experiments were run with a higher ratio of processor cycles to bus cy

(5:1 instead of the 4:1 ratio used forE2), and (2) we assumed a more aggressive memory h

archy that had lower L2 cache access latencies (7 cycles instead of 12 forE2). The main mem-

ory access times were actually slightly larger forE3 (40 versus 36 cycles), but that sma

difference is negligible considering the fairly low global L2 miss ratios.

Another effect that we see inE3 is that the aggressive dynamically scheduled core (mu

more aggressive thanE1 or E2, see Table A-3) causes a larger drop infP than occurs inE1 or

E2. This larger drop has the effect of amplifying the relative size of the memory stall com

nents, even though the absolute value ofTL is typically reduced by the use of a dynamicall

scheduled core.

Compress shows different behavior than any other application in any of the experimen

most of the memory stall time in each experiment—which is non-negligible—is cause

contention. This result is an artifact of the version of the simulator with which we perform

these experiments. The compress input set we used for this experiment set wastrain . Accord-

ing to Table 2-5, the smaller input sets for compress have higher frequencies of stores t

usual (88% of memory operations fortest were stores, and 45% fortrain , as opposed to 35%

applu hydro2d li su2cor swim vortex

Exp fL fB fL fB fL fB fL fB fL fB fL fB

A 0.421 0.579 0.714 0.286 0.789 0.211 0.674 0.326 0.817 0.183 0.731 0.269

F 0.270 0.730 0.454 0.546 0.600 0.400 0.372 0.628 0.113 0.887 0.770 0.230

Table A-5: Shift from fL to fB for E2

178

er.

ds, but

efore

ses

stall-

om-

red

r

miza-

e miss

-

stall

-

his in

for std and ref). The older version of our simulator did not simulate a finite write buff

Stores could therefore cause cache misses, causing contention that interfered with loa

never directly stalled the commit stage of the pipeline. High frequencies of stores ther

added toTB but notTL. In the newer version of the memory system simulator, write mis

will stall the commit stage, exerting back pressure on the execution stage, and eventually

ing it if the frequency or duration of the write misses are sufficiently high (as they are for c

press with thetest or train inputs). For these results, however, the older simulator measu

an optimistically lowTL.

Perl displays an effect similar to vortex: high L1 instruction cache miss ratios (1.6% foA)

cause a high memory stall component that is unmitigated by the latency tolerance opti

tions that we implemented (except for the larger cache blocks, which reduced the I-cach

ratio to 1.1%).

In Table A-6, we list the effects that going fromA to F have on the memory stall time distri

bution for E3. Ijpeg is shaded because its cache miss rates are too low for the memory

time distribution to be meaningful (since bothfL andfB are negligible). Perl and vortex actu

ally show a reduction in the fraction of memory stall time attributable tofB when comparingF

to A. This reduction occurs because both benchmarks have highfL components due to high

instruction cache miss rates. When the clock rate is increased for experimentF, TB changes lit-

tle, butTL increases since L2 and memory instruction fetches become more expensive. T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A B C
Compress

D E F A B C
Ijpeg

D E F A B C
Perl

D E F A B C
Su2cor

D E F A B C
Swim

D E F A B C
Vortex

D E F

SPEC95 benchmarks

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

.18

.16

.13

.37

.40

.40

.03

.03

.03

 .06 .05 .05

.14

.11

.14

.26

.26

.23

.22

.15

.20

.43

.51

.50

.16

.12

.14

.40

.39

.43

.16

.13

.15

.25

.27

.23

Figure A-3: Execution time breakdown for E3 (SPEC95)

179

y

xploit

ory

sh-

ause

bench-

stalls

ng on

es and

stalls,

Also,

ulta-

further

t they

ssing

turn increasesfL, which decreasesfB. Su2cor and swim show significant increases in thefB

component of memory stall time. For experimentF, swim spends almost all of its memor

stall time in bandwidth stalls. This aberration occurs because the large core can e

enough ILP in swim to fully tolerate almost all memory latencies in the absence of mem

contention, makingTL negligible. Because of contention, however, memory stall time mu

rooms to 43% of execution time, nearly all of which results from finite bandwidth.

A.3 Summary

Our results show that limited bandwidth and contention in the memory system can c

serious performance degradation in processor performance. For smaller (SPEC92)

marks running on less aggressive processors, the fraction of time spent in bandwidth

averaged 14%. For slightly larger applications (even using their small data sets) runni

highly aggressive processor, this fraction swelled to over 34%, on average.

Two factors contribute to these large bandwidth stalls. The success of processor cor

latency tolerance techniques at reducing computation time and raw memory latency

respectively, increases the bandwidth stalls as a relative component of execution time.

the presence of so many memory operations existing in the memory hierarchy sim

neously—for the more aggressive processor models—causes contention to increase,

contributing to bandwidth stalls.

We see three classes of application behavior in these experiments. The first class isproces-

sor-boundapplications: these are applications that have such low cache miss ratios tha

are dominated byfP. Eqntott and espresso inE1, li in E2, and ijpeg inE3 are all examples of

this class of applications. To improve performance for these applications, better proce

compress ijpeg perl su2cor swim vortex

Exp fL fB fL fB fL fB fL fB fL fB fL fB

A 0.120 0.880 0.348 0.652 0.594 0.406 0.371 0.629 0.468 0.532 0.598 0.402

F 0.106 0.894 0.350 0.650 0.620 0.380 0.218 0.782 0.008 0.992 0.663 0.337

Table A-6: Shift from fL to fB for E3

180

e call

ates

ns. To

roved,

emes

latency

these

ve the

ed in

cores and faster clocks are the only hardware solution. The second application class w

instruction-boundapplications; these are applications for which high instruction cache r

are the performance bottleneck. Perl and vortex are examples of this class of applicatio

improve performance for these applications, instruction cache performance must be imp

whether with larger instruction caches, trace caches [98], or instruction prefetching sch

[58]. The third class of applications isbandwidth-boundapplications, into which all the other

benchmarks we measured in these studies fall. ILP processor cores and sophisticated

tolerance techniques make these programs progressively more bandwidth-bound as

techniques are pursued more aggressively. Many research efforts are underway to impro

performance of the first two classes of applications. It is on the third class that we focus

this dissertation.

181

Appendix B

Cache performance of SPEC95

B.1 Set associativity

benchmark assoc. 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
099.go 1 28.007 21.403 9.971 5.468 3.035 1.681 1.481 0.001 0.000

2 ------ 15.339 8.781 2.749 0.913 0.356 0.025 0.000 0.000
4 ------ ------ 5.955 2.409 0.532 0.066 0.008 0.000 0.000
8 ------ ------ ------ 1.892 0.477 0.032 0.001 0.000 0.000

124.m88ksim 1 4.546 2.564 1.522 0.904 0.426 0.141 0.132 0.007 ------
2 ------ 0.653 0.297 0.165 0.061 0.025 0.008 0.007 ------
4 ------ ------ 0.099 0.061 0.021 0.009 0.008 0.007 ------
8 ------ ------ ------ 0.049 0.012 0.009 0.008 0.007 ------

126.gcc 1 7.951 5.146 3.265 1.975 1.043 0.619 0.359 0.128 0.064
2 ------ 3.223 1.848 1.051 0.575 0.312 0.145 0.055 0.015
4 ------ ------ 1.435 0.818 0.469 0.283 0.129 0.040 0.013
8 ------ ------ ------ 0.781 0.444 0.279 0.124 0.036 0.012

129.compress 1 5.617 5.519 5.466 5.427 5.380 5.162 1.113 0.369 ------
2 ------ 5.367 5.337 5.320 5.304 5.191 1.464 0.351 ------
4 ------ ------ 5.333 5.315 5.301 5.216 2.063 0.351 ------
8 ------ ------ ------ 5.315 5.300 5.228 3.216 0.351 ------

130.li 1 3.829 2.241 1.127 0.476 0.016 0.000 0.000 ------ ------
2 ------ 1.083 0.555 0.192 0.012 0.000 0.000 ------ ------
4 ------ ------ 0.483 0.215 0.000 0.000 0.000 ------ ------
8 ------ ------ ------ 0.234 0.000 0.000 0.000 ------ ------

132.ijpeg 1 9.607 3.577 1.843 0.826 0.552 0.360 0.278 0.233 0.217
2 ------ 1.942 0.671 0.338 0.205 0.100 0.047 0.042 0.042
4 ------ ------ 0.492 0.265 0.199 0.098 0.044 0.042 0.042
8 ------ ------ ------ 0.251 0.202 0.101 0.042 0.042 0.042

134.perl 1 5.688 3.145 2.150 1.679 0.801 0.495 0.257 0.205 0.165
2 ------ 1.719 1.055 0.590 0.515 0.370 0.209 0.174 0.155
4 ------ ------ 0.569 0.458 0.423 0.376 0.214 0.175 0.155
8 ------ ------ ------ 0.441 0.423 0.381 0.226 0.175 0.156

147.vortex 1 6.955 5.103 3.141 1.464 0.922 0.519 0.318 0.215 0.133
2 ------ 2.674 1.805 1.009 0.570 0.308 0.194 0.129 0.086
4 ------ ------ 1.468 0.840 0.439 0.258 0.156 0.100 0.073
8 ------ ------ ------ 0.730 0.402 0.228 0.149 0.095 0.071

Table B-1: Miss rates for varied associativities on the SPECINT95 data stream

182

benchmark assoc. 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB
101.tomcatv 1 8.955 7.561 4.275 1.933 1.175 1.157 1.145 1.137 1.126

2 ------ 5.626 4.446 0.929 0.390 0.365 0.361 0.356 0.347
4 ------ ------ 3.647 1.075 0.363 0.362 0.361 0.358 0.353
8 ------ ------ ------ 1.105 0.363 0.362 0.361 0.358 0.353

102.swim 1 49.698 39.780 21.024 6.658 2.015 1.989 1.976 1.968 1.960
2 ------ 38.302 23.768 3.296 1.963 1.943 1.943 1.942 1.940
4 ------ ------ 24.958 3.391 1.956 1.676 1.675 1.674 1.671
8 ------ ------ ------ 3.988 1.956 1.676 1.675 1.674 1.671

103.su2cor 1 10.110 8.058 7.279 6.693 2.350 1.883 1.372 0.640 0.286
2 ------ 2.913 2.440 2.294 2.136 1.742 1.292 0.460 0.199
4 ------ ------ 2.107 1.977 1.883 1.761 1.329 0.443 0.180
8 ------ ------ ------ 1.931 1.692 1.527 1.358 0.447 0.168

104.hydro2d 1 5.203 4.258 3.539 2.880 2.728 2.660 2.636 2.523 2.289
2 ------ 3.250 3.001 2.662 2.594 2.587 2.583 2.562 2.332
4 ------ ------ 2.910 2.631 2.584 2.583 2.582 2.565 2.389
8 ------ ------ ------ 2.644 2.584 2.584 2.582 2.567 2.400

107.mgrid 1 5.934 2.620 1.865 1.457 1.235 0.966 0.901 0.596 0.566
2 ------ 1.224 1.001 0.967 0.933 0.775 0.602 0.572 0.551
4 ------ ------ 0.994 0.977 0.932 0.918 0.603 0.575 0.548
8 ------ ------ ------ 0.975 0.932 0.904 0.601 0.581 0.545

110.applu 1 5.092 2.630 1.913 1.573 1.380 1.266 1.226 1.184 1.098
2 ------ 1.560 1.280 1.234 1.222 1.217 1.200 1.156 1.085
4 ------ ------ 1.255 1.219 1.217 1.215 1.204 1.155 1.086
8 ------ ------ ------ 1.218 1.217 1.215 1.207 1.141 1.098

125.turb3d 1 4.065 3.461 3.255 2.158 1.364 1.271 0.871 0.394 0.386
2 ------ 2.584 2.306 2.072 1.234 1.166 0.883 0.379 0.377
4 ------ ------ 1.843 1.727 1.040 0.934 0.932 0.378 0.374
8 ------ ------ ------ 1.190 0.578 0.394 0.394 0.378 0.374

141.apsi 1 6.995 5.911 5.646 4.450 2.943 1.673 0.816 0.056 0.001
2 ------ 2.970 2.732 2.611 2.130 1.478 0.381 0.021 0.000
4 ------ ------ 2.074 2.021 1.677 0.394 0.223 0.008 0.000
8 ------ ------ ------ 2.002 1.739 0.388 0.158 0.011 0.000

145.fpppp 1 5.638 4.334 3.726 2.986 2.921 2.823 0.000 ------ ------
2 ------ 1.536 0.703 0.379 0.072 0.045 0.000 ------ ------
4 ------ ------ 0.242 0.065 0.014 0.000 0.000 ------ ------
8 ------ ------ ------ 0.054 0.008 0.000 0.000 ------ ------

146.wave5 1 24.882 21.038 12.873 7.568 1.888 1.057 0.824 0.680 0.610
2 ------ 20.266 13.995 6.446 1.234 0.700 0.438 0.315 0.249
4 ------ ------ 15.304 6.327 1.245 0.606 0.384 0.283 0.219
8 ------ ------ ------ 6.448 1.293 0.613 0.361 0.285 0.216

Table B-2: Miss rates for varied associativities on the SPECFP95 data stream

183

B.2 Block size

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 16.270 10.366 6.159 3.605 2.064 1.064 0.835 0.002 0.001
32B 20.450 13.322 7.539 4.218 2.377 1.291 1.092 0.002 0.000
64B 28.007 21.403 9.971 5.468 3.035 1.681 1.481 0.001 0.000

128B 32.791 26.280 12.884 7.049 3.957 2.283 2.049 0.001 0.000
256B 37.808 30.704 16.867 9.378 5.274 3.098 2.804 0.002 0.000
512B 44.510 36.112 22.459 13.202 7.460 4.290 3.923 0.003 0.000

1024B 53.363 43.870 30.361 18.400 10.885 6.135 5.521 0.004 0.000
2048B ------ 50.711 37.615 25.455 14.553 8.325 7.045 0.232 0.000
4096B ------ ------ 47.549 32.105 20.485 12.932 9.439 0.483 0.000
8192B ------ ------ ------ 41.768 30.578 21.073 11.938 1.307 0.000

instruction request stream
16B 21.629 18.027 13.931 8.220 2.821 0.740 0.176 0.001 0.000
32B 11.917 9.905 7.697 4.572 1.580 0.392 0.094 0.001 0.000
64B 6.912 5.758 4.490 2.673 0.924 0.215 0.051 0.000 0.000

128B 4.301 3.564 2.784 1.676 0.561 0.122 0.028 0.000 0.000
256B 2.838 2.337 1.816 1.131 0.368 0.073 0.017 0.000 0.000
512B 2.236 1.768 1.322 0.837 0.270 0.045 0.010 0.000 0.000

1024B 1.979 1.518 1.093 0.679 0.237 0.031 0.006 0.000 0.000
2048B ------ 1.476 1.052 0.709 0.182 0.022 0.004 0.000 0.000
4096B ------ ------ 1.225 0.856 0.215 0.022 0.004 0.000 0.000
8192B ------ ------ ------ 1.031 0.263 0.026 0.006 0.000 0.000

unified instruction and data stream
16B 26.504 21.372 16.477 10.256 5.176 2.468 1.335 0.536 0.534
32B 18.964 14.976 11.260 7.177 3.925 1.923 1.167 0.439 0.437
64B 15.801 12.620 8.841 5.726 3.350 1.666 1.091 0.369 0.368

128B 14.549 11.599 7.800 5.063 3.087 1.562 1.071 0.306 0.305
256B 15.279 12.108 7.870 5.100 3.257 1.692 1.181 0.251 0.250
512B 17.902 13.670 9.233 5.792 3.795 1.948 1.387 0.216 0.215

1024B 22.485 16.488 11.506 7.206 4.822 2.552 1.783 0.204 0.203
2048B ------ 22.456 15.569 10.007 6.872 3.788 2.333 0.312 0.260
4096B ------ ------ ------ ------ ------ ------ ------ ------ ------
8192B ------ ------ ------ 20.390 15.210 9.215 4.838 1.332 1.034

Table B-3: Cache miss rates for 099.go, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 3.773 1.807 1.182 0.549 0.275 0.123 0.117 0.028 ------
32B 4.189 2.157 1.387 0.713 0.337 0.120 0.116 0.014 ------
64B 4.546 2.564 1.522 0.904 0.426 0.141 0.132 0.007 ------

128B 6.394 3.934 1.800 0.976 0.496 0.203 0.183 0.004 ------
256B 10.353 6.730 2.959 1.687 0.762 0.291 0.272 0.002 ------
512B 14.294 8.890 3.786 2.055 1.087 0.488 0.469 0.001 ------

Table B-4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches

184

1024B 19.284 12.056 5.159 2.621 1.498 0.732 0.711 0.001 ------
2048B ------ 15.320 7.197 3.837 2.420 1.292 1.251 0.000 ------
4096B ------ ------ 12.952 6.783 3.827 1.872 1.824 0.000 ------
8192B ------ ------ ------ 8.743 5.751 3.013 2.935 0.000 ------

instruction request stream
16B 30.053 23.435 15.011 8.854 4.063 0.003 0.002 0.002 ------
32B 19.390 15.153 10.078 6.117 3.167 0.002 0.001 0.001 ------
64B 13.431 10.782 7.472 4.655 2.208 0.001 0.001 0.000 ------

128B 8.953 6.971 4.941 2.957 1.299 0.001 0.000 0.000 ------
256B 6.243 5.124 3.468 2.137 1.075 0.000 0.000 0.000 ------
512B 4.770 4.006 3.112 2.126 1.419 0.000 0.000 0.000 ------

1024B 3.764 3.142 2.556 1.839 0.984 0.000 0.000 0.000 ------
2048B ------ 2.761 2.185 1.517 0.767 0.000 0.000 0.000 ------
4096B ------ ------ 2.229 1.693 0.655 0.000 0.000 0.000 ------
8192B ------ ------ ------ 1.657 0.856 0.009 0.000 0.000 ------

unified instruction and data stream
16B 29.924 22.802 15.009 9.777 4.061 0.060 0.041 0.018 ------
32B 20.396 15.456 10.528 7.190 3.130 0.057 0.040 0.015 ------
64B 14.566 11.420 7.726 5.317 2.225 0.058 0.042 0.011 ------

128B 11.137 8.493 5.939 3.746 1.530 0.076 0.054 0.010 ------
256B 10.294 7.609 5.454 3.381 1.300 0.112 0.078 0.013 ------
512B 11.352 8.477 5.926 4.024 1.743 0.228 0.127 0.014 ------

1024B 16.410 10.468 6.303 3.994 1.647 0.318 0.189 0.016 ------
2048B ------ 15.047 9.594 6.771 4.179 2.287 0.359 0.057 ------
4096B ------ ------ 16.938 13.503 10.881 8.532 3.688 3.250 ------
8192B ------ ------ ------ 16.075 12.377 9.603 4.409 3.707 ------

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 8.809 6.129 4.155 2.702 1.639 1.027 0.620 0.255 0.144
32B 7.880 5.208 3.349 2.100 1.242 0.767 0.451 0.173 0.093
64B 7.951 5.146 3.265 1.975 1.043 0.619 0.359 0.128 0.064

128B 8.930 5.696 3.560 1.974 0.982 0.560 0.322 0.109 0.052
256B 11.060 7.106 4.304 2.305 1.141 0.614 0.360 0.111 0.050
512B 14.911 9.588 5.913 3.231 1.508 0.772 0.453 0.135 0.060

1024B ------ ------ ------ ------ ------ ------ ------ ------ ------
2048B ------ ------ ------ ------ ------ ------ ------ ------ ------
4096B ------ ------ ------ ------ ------ ------ ------ ------ ------
8192B ------ ------ ------ ------ ------ ------ ------ ------ ------

instruction request stream
16B 21.451 16.574 11.878 7.341 4.218 1.739 1.229 0.475 0.165
32B 12.812 9.994 7.303 4.595 2.651 1.094 0.779 0.295 0.107
64B 8.211 6.492 4.837 3.090 1.766 0.752 0.535 0.194 0.077

128B 5.716 4.561 3.482 2.291 1.319 0.572 0.418 0.149 0.061
256B 4.121 3.323 2.591 1.775 1.041 0.452 0.337 0.121 0.055
512B 3.292 2.584 2.043 1.466 0.927 0.435 0.321 0.106 0.050

Table B-5: Cache miss rates for 026.gcc, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches

185

1024B ------ ------ ------ ------ ------ ------ ------ ------ ------
2048B ------ ------ ------ ------ ------ ------ ------ ------ ------
4096B ------ ------ ------ ------ ------ ------ ------ ------ ------
8192B ------ ------ ------ ------ ------ ------ ------ ------ ------

unified instruction and data stream
16B 22.185 17.082 12.468 8.145 4.920 2.443 1.357 0.609 0.296
32B 15.075 11.486 8.382 5.520 3.344 1.695 0.919 0.404 0.203
64B 11.719 8.721 6.313 4.177 2.497 1.314 0.683 0.294 0.155

128B 10.712 7.627 5.429 3.552 2.132 1.130 0.576 0.244 0.130
256B 11.775 7.823 5.327 3.467 2.074 1.089 0.525 0.221 0.120
512B 15.170 9.531 6.148 3.923 2.410 1.267 0.598 0.254 0.146

1024B ------ ------ ------ ------ ------ ------ ------ ------ ------
2048B ------ ------ ------ ------ ------ ------ ------ ------ ------
4096B ------ ------ ------ ------ ------ ------ ------ ------ ------
8192B ------ ------ ------ ------ ------ ------ ------ ------ ------

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 20.961 20.883 20.840 20.806 20.764 20.336 3.857 1.446 ------
32B 10.698 10.606 10.564 10.535 10.492 10.223 2.033 0.728 ------
64B 5.617 5.519 5.466 5.427 5.380 5.162 1.113 0.369 ------

128B 3.347 3.223 3.010 2.963 2.903 2.625 0.639 0.190 ------
256B 2.857 2.070 1.778 1.697 1.621 1.357 0.394 0.102 ------
512B 2.797 1.875 1.454 1.166 0.985 0.727 0.263 0.074 ------

1024B 16.410 10.468 6.303 3.994 1.647 0.318 0.189 0.016 ------
2048B ------ 15.047 9.594 6.771 4.179 2.287 0.359 0.057 ------
4096B ------ ------ 16.938 13.503 10.881 8.532 3.688 3.250 ------
8192B ------ ------ ------ 16.075 12.377 9.603 4.409 3.707 ------

instruction request stream
16B 2.190 0.807 0.567 0.165 0.101 0.049 0.049 0.049 ------
32B 1.632 0.515 0.354 0.097 0.061 0.028 0.028 0.028 ------
64B 1.193 0.364 0.244 0.064 0.038 0.016 0.016 0.016 ------

128B 0.871 0.267 0.177 0.046 0.025 0.009 0.009 0.009 ------
256B 0.590 0.192 0.119 0.036 0.019 0.005 0.005 0.005 ------
512B 0.516 0.145 0.092 0.030 0.015 0.003 0.003 0.003 ------

1024B 16.410 10.468 6.303 3.994 1.647 0.318 0.189 0.016 ------
2048B ------ 15.047 9.594 6.771 4.179 2.287 0.359 0.057 ------
4096B ------ ------ 16.938 13.503 10.881 8.532 3.688 3.250 ------
8192B ------ ------ ------ 16.075 12.377 9.603 4.409 3.707 ------

unified instruction and data stream
16B 10.994 9.409 8.805 8.544 8.459 8.248 2.144 0.682 ------
32B 6.946 5.315 4.638 4.413 4.325 4.181 1.156 0.354 ------
64B 5.202 3.432 2.666 2.402 2.286 2.154 0.659 0.190 ------

128B 5.220 2.981 1.909 1.521 1.340 1.156 0.408 0.109 ------
256B 6.693 3.553 1.858 1.222 0.925 0.693 0.289 0.068 ------
512B 10.912 5.569 2.722 1.481 0.908 0.551 0.266 0.052 ------

Table B-6: Cache miss rates for 129.compress, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-5: Cache miss rates for 026.gcc, test input set, direct-mapped caches

186

1024B 20.175 10.065 4.929 2.425 1.356 0.755 0.439 0.145 ------
2048B ------ 20.685 9.457 4.531 2.491 1.273 0.747 0.256 ------
4096B ------ ------ 18.201 8.643 4.653 2.296 1.297 0.366 ------
8192B ------ ------ ------ 16.840 8.802 4.331 2.276 0.462 ------

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 5.088 3.651 2.178 0.993 0.034 0.001 0.001 ------ ------
32B 4.080 2.685 1.446 0.640 0.022 0.001 0.001 ------ ------
64B 3.829 2.241 1.127 0.476 0.016 0.000 0.000 ------ ------

128B 4.072 2.212 1.014 0.405 0.014 0.000 0.000 ------ ------
256B 5.311 2.878 1.478 0.592 0.018 0.000 0.000 ------ ------
512B 7.583 4.145 2.228 0.712 0.020 0.000 0.000 ------ ------

1024B 14.435 8.824 3.884 0.984 0.049 0.000 0.000 ------ ------
2048B ------ 19.512 14.353 2.941 1.408 0.000 0.000 ------ ------
4096B ------ ------ 22.624 6.141 3.766 0.000 0.000 ------ ------
8192B ------ ------ ------ 10.858 6.089 0.000 0.000 ------ ------

instruction request stream
16B 14.666 7.401 1.762 1.626 0.154 0.000 0.000 ------ ------
32B 9.483 4.867 1.214 1.120 0.124 0.000 0.000 ------ ------
64B 5.674 3.037 0.869 0.802 0.098 0.000 0.000 ------ ------

128B 3.814 2.265 0.694 0.625 0.073 0.000 0.000 ------ ------
256B 2.991 1.794 0.523 0.457 0.080 0.000 0.000 ------ ------
512B 2.982 2.059 0.817 0.717 0.379 0.000 0.000 ------ ------

1024B 2.820 1.925 0.783 0.682 0.379 0.000 0.000 ------ ------
2048B ------ 2.145 1.140 1.026 0.539 0.000 0.000 ------ ------
4096B ------ ------ 1.321 1.175 0.586 0.000 0.000 ------ ------
8192B ------ ------ ------ 1.159 0.472 0.000 0.000 ------ ------

unified instruction and data stream
16B 16.799 9.233 4.252 2.591 1.010 0.064 0.063 ------ ------
32B 12.438 6.884 3.204 1.851 0.726 0.043 0.043 ------ ------
64B 9.103 5.279 2.722 1.448 0.589 0.032 0.031 ------ ------

128B 8.328 5.144 2.724 1.383 0.662 0.028 0.028 ------ ------
256B 9.590 6.588 3.469 1.582 0.872 0.020 0.020 ------ ------
512B 14.342 9.344 5.513 2.613 1.656 0.026 0.026 ------ ------

1024B 22.374 15.369 8.668 4.859 3.655 0.025 0.025 ------ ------
2048B ------ 26.398 17.995 8.266 6.662 0.036 0.036 ------ ------
4096B ------ ------ 30.784 15.098 11.760 0.089 0.088 ------ ------
8192B ------ ------ ------ 27.286 17.566 0.394 0.386 ------ ------

Table B-7: Cache miss rates for 130.li, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-6: Cache miss rates for 129.compress, test input set, direct-mapped caches

187

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 9.868 4.837 2.821 1.600 1.122 0.705 0.517 0.426 0.387
32B 9.072 3.769 2.082 1.059 0.721 0.453 0.335 0.273 0.248
64B 9.607 3.577 1.843 0.826 0.552 0.360 0.278 0.233 0.217

128B 11.942 4.592 2.150 0.845 0.569 0.389 0.319 0.279 0.266
256B 16.031 7.063 3.138 1.115 0.759 0.532 0.452 0.406 0.392
512B 21.581 11.593 5.419 1.823 1.242 0.890 0.765 0.689 0.667

1024B 29.368 18.975 10.243 3.508 2.497 1.795 1.566 1.443 1.400
2048B ------ 22.030 12.857 4.544 3.137 2.159 1.821 1.653 1.589
4096B ------ ------ 17.286 8.251 5.056 2.489 1.831 1.468 1.335
8192B ------ ------ ------ 13.007 7.579 3.659 2.386 1.658 1.454

instruction request stream
16B 1.629 1.170 0.776 0.328 0.129 0.067 0.004 0.001 0.001
32B 0.907 0.644 0.430 0.186 0.074 0.039 0.002 0.001 0.001
64B 0.535 0.373 0.247 0.107 0.046 0.025 0.002 0.000 0.000

128B 0.332 0.232 0.156 0.065 0.028 0.016 0.001 0.000 0.000
256B 0.230 0.154 0.106 0.041 0.018 0.011 0.001 0.000 0.000
512B 0.177 0.109 0.072 0.028 0.011 0.007 0.001 0.000 0.000

1024B 0.151 0.086 0.053 0.024 0.008 0.006 0.001 0.000 0.000
2048B ------ 0.094 0.051 0.023 0.006 0.004 0.001 0.000 0.000
4096B ------ ------ 0.060 0.032 0.012 0.007 0.001 0.000 0.000
8192B ------ ------ ------ 0.035 0.015 0.009 0.001 0.000 0.000

unified instruction and data stream
16B 6.934 4.274 2.605 1.536 1.132 0.514 0.253 0.161 0.131
32B 5.510 3.003 1.789 1.033 0.741 0.341 0.163 0.104 0.082
64B 5.075 2.455 1.405 0.784 0.538 0.263 0.126 0.082 0.065

128B 5.737 2.585 1.407 0.757 0.494 0.262 0.123 0.085 0.070
256B 7.330 3.242 1.678 0.857 0.558 0.328 0.148 0.108 0.092
512B 11.069 5.489 2.522 1.220 0.776 0.500 0.230 0.170 0.149

1024B 17.266 9.534 4.944 2.473 1.643 1.166 0.460 0.355 0.314
2048B ------ 14.343 7.231 3.822 2.480 1.780 0.633 0.470 0.410
4096B ------ ------ 11.778 6.333 4.106 2.303 0.732 0.498 0.384
8192B ------ ------ ------ 11.038 6.345 3.586 1.318 0.638 0.456

Table B-8: Cache miss rates for 132.ijpeg, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 6.280 4.258 3.411 3.033 1.772 1.289 0.687 0.603 0.514
32B 5.501 3.453 2.554 2.180 1.101 0.749 0.397 0.338 0.283
64B 5.688 3.145 2.150 1.679 0.801 0.495 0.257 0.205 0.165

128B 6.940 3.701 2.242 1.588 0.679 0.391 0.198 0.144 0.108
256B 12.152 5.894 3.882 2.950 0.744 0.395 0.197 0.123 0.084
512B 14.912 7.997 5.285 3.714 1.090 0.489 0.238 0.139 0.085

1024B 18.885 11.358 7.769 5.677 2.273 0.770 0.349 0.199 0.114

Table B-9: Cache miss rates for 134.perl, test input set, direct-mapped caches

188

2048B ------ 18.032 12.544 9.290 4.588 2.673 0.566 0.303 0.175
4096B ------ ------ 16.775 12.864 7.737 5.159 0.968 0.483 0.281
8192B ------ ------ ------ 23.074 11.925 7.846 1.685 0.869 0.481

instruction request stream
16B 18.974 11.271 7.493 5.343 2.238 1.873 0.111 0.000 0.000
32B 12.231 7.579 5.007 3.669 1.622 1.324 0.061 0.000 0.000
64B 8.436 5.201 3.608 2.553 1.111 0.920 0.046 0.000 0.000

128B 6.140 4.411 3.302 2.598 1.056 0.897 0.060 0.000 0.000
256B 5.077 3.707 2.819 2.276 0.835 0.689 0.060 0.000 0.000
512B 4.272 3.240 2.455 2.105 0.807 0.609 0.052 0.000 0.000

1024B 3.965 3.021 2.197 1.759 0.662 0.516 0.066 0.000 0.000
2048B ------ 2.735 2.072 1.687 0.649 0.386 0.082 0.000 0.000
4096B ------ ------ 2.555 1.814 0.908 0.652 0.362 0.000 0.000
8192B ------ ------ ------ 2.091 1.293 0.917 0.497 0.000 0.000

unified instruction and data stream
16B 19.935 12.558 8.602 6.469 3.638 3.010 1.358 0.286 0.222
32B 13.999 8.970 5.965 4.494 2.582 2.086 0.879 0.178 0.138
64B 11.489 7.192 4.585 3.361 1.913 1.534 0.650 0.126 0.096

128B 11.459 6.949 4.534 3.530 1.810 1.425 0.596 0.109 0.081
256B 15.128 8.184 5.119 4.010 1.870 1.459 0.764 0.102 0.069
512B 23.130 10.209 6.391 4.540 2.279 1.583 0.915 0.124 0.077

1024B 29.887 15.105 11.108 8.475 5.674 4.704 1.873 0.183 0.108
2048B ------ 21.306 15.592 11.834 7.911 6.501 2.056 0.270 0.145
4096B ------ ------ 24.558 17.095 12.428 10.684 5.755 0.525 0.209
8192B ------ ------ ------ 26.464 18.033 14.470 8.087 1.042 0.533

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 6.215 4.947 3.124 1.568 1.028 0.651 0.451 0.345 0.254
32B 6.433 5.043 3.125 1.479 0.938 0.566 0.363 0.260 0.177
64B 6.955 5.103 3.141 1.464 0.922 0.519 0.318 0.215 0.133

128B 11.992 5.646 3.606 1.880 1.244 0.621 0.374 0.241 0.119
256B 14.353 6.564 4.082 2.373 1.627 0.705 0.423 0.259 0.131
512B 18.936 10.572 5.787 3.358 2.441 0.850 0.501 0.293 0.147

1024B 28.702 16.055 8.631 5.377 3.638 1.745 0.604 0.365 0.184
2048B ------ 21.186 11.778 7.207 4.676 2.304 0.837 0.493 0.239
4096B ------ ------ 14.684 9.367 6.154 3.401 1.291 0.781 0.351
8192B ------ ------ ------ 15.966 12.122 5.028 2.141 1.389 0.812

instruction request stream
16B 31.257 17.651 10.732 5.338 2.987 1.663 0.354 0.149 0.000
32B 18.821 10.508 6.445 3.195 1.780 0.970 0.238 0.092 0.000
64B 11.582 6.864 4.363 2.195 1.279 0.743 0.165 0.061 0.000

128B 8.211 4.926 3.099 1.618 0.996 0.605 0.120 0.040 0.000
256B 6.401 3.762 2.485 1.245 0.844 0.532 0.101 0.029 0.000
512B 4.832 3.026 2.023 1.065 0.713 0.439 0.085 0.027 0.000

1024B 4.096 2.779 1.883 1.029 0.750 0.436 0.088 0.025 0.000

Table B-10: Cache miss rates for 147.vortex, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-9: Cache miss rates for 134.perl, test input set, direct-mapped caches

189

2048B ------ 3.182 1.986 1.087 0.766 0.453 0.089 0.024 0.000
4096B ------ ------ 2.680 1.661 0.991 0.555 0.108 0.032 0.000
8192B ------ ------ ------ 2.006 1.381 0.822 0.328 0.041 0.000

unified instruction and data stream
16B 27.096 16.806 10.982 6.128 3.874 2.042 0.690 0.352 0.140
32B 18.165 11.595 7.808 4.357 2.736 1.396 0.537 0.264 0.106
64B 13.775 8.982 6.128 3.564 2.309 1.180 0.445 0.213 0.084

128B 14.247 8.312 5.690 3.533 2.432 1.175 0.430 0.202 0.075
256B 14.813 9.077 5.461 3.446 2.439 1.250 0.437 0.197 0.079
512B 17.524 10.997 6.298 4.036 2.928 1.359 0.500 0.239 0.088

1024B 27.743 16.685 9.314 6.784 5.139 2.021 0.635 0.282 0.116
2048B ------ 25.753 17.032 12.335 10.373 2.882 1.004 0.399 0.151
4096B ------ ------ 25.289 18.088 14.821 3.899 1.722 0.735 0.219
8192B ------ ------ ------ 28.328 23.080 7.109 4.608 1.523 0.437

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 7.976 6.722 3.156 2.234 2.144 2.129 2.115 2.096 2.060
32B 8.361 7.072 3.324 1.690 1.495 1.479 1.468 1.457 1.438
64B 8.955 7.561 4.275 1.933 1.175 1.157 1.145 1.137 1.126

128B 12.101 10.301 5.059 2.122 1.034 1.004 0.989 0.979 0.971
256B 13.357 11.487 5.717 2.290 1.006 0.950 0.921 0.906 0.897
512B 16.897 14.215 6.034 2.432 1.048 0.977 0.887 0.869 0.859

1024B 18.262 14.930 6.751 2.884 1.208 1.074 0.899 0.865 0.848
2048B ------ 21.066 9.900 5.708 3.837 3.582 0.951 0.886 0.853
4096B ------ ------ 15.929 6.599 4.368 3.873 1.068 0.943 0.881
8192B ------ ------ ------ 9.906 6.037 5.194 1.780 1.568 1.461

instruction request stream
16B 22.869 18.103 12.350 7.068 2.143 0.094 0.000 0.000 0.000
32B 13.489 11.040 7.765 4.639 1.344 0.075 0.000 0.000 0.000
64B 7.951 6.703 4.854 3.052 0.874 0.075 0.000 0.000 0.000

128B 5.097 4.337 3.248 2.197 0.621 0.094 0.000 0.000 0.000
256B 3.445 2.976 2.263 1.681 0.479 0.075 0.000 0.000 0.000
512B 2.300 1.981 1.456 1.089 0.385 0.075 0.000 0.000 0.000

1024B 2.159 1.727 1.333 0.948 0.376 0.094 0.000 0.000 0.000
2048B ------ 1.821 1.155 0.779 0.282 0.056 0.000 0.000 0.000
4096B ------ ------ 1.117 0.732 0.300 0.038 0.000 0.000 0.000
8192B ------ ------ ------ 0.788 0.394 0.056 0.000 0.000 0.000

unified instruction and data stream
16B 22.155 17.770 12.438 7.540 3.295 0.949 0.570 0.558 0.546
32B 14.460 11.938 8.510 5.285 2.280 0.710 0.403 0.394 0.386
64B 10.245 8.562 6.112 3.959 1.667 0.600 0.320 0.312 0.306

128B 9.159 7.504 4.996 3.225 1.446 0.563 0.281 0.272 0.267
256B 9.228 6.973 4.594 2.977 1.300 0.567 0.266 0.254 0.248
512B 10.968 7.641 4.223 2.678 1.175 0.501 0.263 0.248 0.240

1024B 16.882 8.551 4.627 2.897 1.363 0.702 0.306 0.253 0.240

Table B-11: Cache miss rates for 101.tomcatv, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-10: Cache miss rates for 147.vortex, test input set, direct-mapped caches

190

2048B ------ 15.825 7.081 4.487 2.854 1.399 0.367 0.296 0.274
4096B ------ ------ 12.987 6.775 4.376 1.723 0.613 0.370 0.332
8192B ------ ------ ------ 13.159 9.039 6.050 4.750 0.557 0.494

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 45.199 31.166 8.442 7.393 6.880 6.871 6.865 6.859 6.839
32B 47.764 35.429 13.544 3.900 3.624 3.610 3.603 3.596 3.585
64B 49.698 39.780 21.024 6.658 2.015 1.989 1.976 1.968 1.960

128B 50.823 42.673 25.778 8.596 1.246 1.196 1.171 1.158 1.149
256B 51.594 44.320 28.323 9.689 0.934 0.836 0.787 0.762 0.749
512B 52.356 45.481 29.900 10.467 0.915 0.724 0.629 0.581 0.557

1024B 54.204 46.792 31.325 11.334 1.187 0.809 0.620 0.526 0.478
2048B ------ 49.780 34.317 12.875 1.912 1.157 0.781 0.592 0.498
4096B ------ ------ 44.000 23.329 12.693 11.429 10.797 10.482 10.324
8192B ------ ------ ------ 42.222 35.214 33.084 32.382 32.031 31.855

instruction request stream
16B 3.162 2.170 0.809 0.001 0.001 0.001 0.001 0.001 0.001
32B 1.674 1.178 0.436 0.001 0.001 0.000 0.000 0.000 0.000
64B 1.302 0.806 0.435 0.001 0.000 0.000 0.000 0.000 0.000

128B 0.868 0.620 0.372 0.000 0.000 0.000 0.000 0.000 0.000
256B 0.868 0.620 0.372 0.000 0.000 0.000 0.000 0.000 0.000
512B 0.743 0.496 0.372 0.000 0.000 0.000 0.000 0.000 0.000

1024B 0.867 0.620 0.248 0.000 0.000 0.000 0.000 0.000 0.000
2048B ------ 0.867 0.557 0.000 0.000 0.000 0.000 0.000 0.000
4096B ------ ------ 0.743 0.000 0.000 0.000 0.000 0.000 0.000
8192B ------ ------ ------ 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream
16B 14.965 9.976 3.400 2.237 1.792 1.710 1.668 1.646 1.631
32B 14.108 10.080 4.240 1.396 1.025 0.939 0.895 0.873 0.860
64B 14.151 10.784 5.969 2.059 0.663 0.564 0.515 0.490 0.476

128B 14.547 11.409 7.079 2.558 0.510 0.391 0.331 0.301 0.286
256B 16.155 12.116 7.866 2.932 0.500 0.337 0.256 0.215 0.195
512B 18.250 13.050 8.718 3.418 0.636 0.381 0.254 0.190 0.158

1024B 22.350 15.998 10.833 5.146 2.044 0.555 0.329 0.215 0.159
2048B ------ 20.082 13.623 6.645 2.853 0.999 0.547 0.322 0.209
4096B ------ ------ 17.738 10.026 5.922 3.780 3.095 2.752 2.580
8192B ------ ------ ------ 21.737 12.381 9.477 8.492 7.999 7.753

Table B-12: Cache miss rates for 102.swim, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-11: Cache miss rates for 101.tomcatv, test input set, direct-mapped caches

191

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 10.739 9.185 8.783 8.492 8.106 6.752 4.993 2.347 0.977
32B 7.238 5.481 4.899 4.531 4.202 3.470 2.554 1.202 0.511
64B 10.110 8.058 7.279 6.693 2.350 1.883 1.372 0.640 0.286

128B 23.005 20.680 19.791 19.191 4.552 1.186 0.838 0.383 0.195
256B 30.311 25.402 24.296 23.511 15.463 1.951 0.673 0.296 0.186
512B 34.351 28.759 27.091 26.020 20.827 6.089 1.296 0.287 0.203

1024B 38.765 33.631 29.745 28.399 24.157 9.415 3.971 0.499 0.248
2048B ------ 38.735 33.012 30.771 26.572 12.439 6.391 1.512 0.403
4096B ------ ------ 38.035 35.276 29.068 15.567 8.662 2.685 0.896
8192B ------ ------ ------ 38.438 30.873 18.934 11.316 4.608 2.185

instruction request stream
16B 9.640 7.180 4.047 1.706 0.850 0.002 0.001 0.001 0.001
32B 5.772 4.460 2.616 1.103 0.550 0.001 0.001 0.001 0.001
64B 3.631 2.897 1.838 0.701 0.325 0.000 0.000 0.000 0.000

128B 2.224 1.831 1.212 0.451 0.250 0.000 0.000 0.000 0.000
256B 1.556 1.331 0.974 0.375 0.200 0.000 0.000 0.000 0.000
512B 1.004 0.883 0.662 0.225 0.100 0.000 0.000 0.000 0.000

1024B 0.788 0.672 0.549 0.275 0.125 0.000 0.000 0.000 0.000
2048B ------ 0.610 0.511 0.200 0.100 0.000 0.000 0.000 0.000
4096B ------ ------ 0.526 0.187 0.125 0.050 0.000 0.000 0.000
8192B ------ ------ ------ 0.259 0.161 0.123 0.000 0.000 0.000

unified instruction and data stream
16B 13.690 10.184 6.955 4.969 3.865 2.664 1.769 0.853 0.376
32B 9.742 6.993 4.642 3.211 2.307 1.520 0.925 0.447 0.199
64B 9.090 6.624 4.819 3.645 1.519 0.977 0.517 0.248 0.114

128B 12.499 9.969 8.534 7.671 2.251 0.799 0.355 0.177 0.097
256B 15.388 11.706 10.125 9.139 5.855 1.072 0.311 0.150 0.093
512B 17.748 13.136 11.140 10.003 7.665 2.496 0.549 0.162 0.105

1024B 22.906 16.128 12.506 11.245 8.910 3.672 1.482 0.246 0.128
2048B ------ 20.726 15.174 12.990 10.189 4.881 2.386 0.624 0.200
4096B ------ ------ 19.804 16.255 11.572 6.426 3.318 1.097 0.388
8192B ------ ------ ------ 23.451 14.983 8.428 4.806 2.195 1.234

Table B-13: Cache miss rates for 103.su2cor, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 13.484 12.734 11.755 10.882 10.599 10.445 10.392 9.982 9.056
32B 7.462 6.730 6.020 5.508 5.333 5.244 5.212 5.005 4.540
64B 5.203 4.258 3.539 2.880 2.728 2.660 2.636 2.523 2.289

128B 5.073 3.539 2.583 1.652 1.479 1.399 1.371 1.301 1.178
256B 8.228 5.113 3.582 1.625 1.324 1.205 1.159 1.103 1.033
512B 15.168 9.177 6.147 2.687 1.471 1.278 1.191 1.128 1.078

1024B 24.432 15.510 9.939 4.552 2.630 1.899 1.740 1.642 1.511

Table B-14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches

192

2048B ------ 24.327 14.881 7.160 4.127 2.695 2.408 2.254 2.023
4096B ------ ------ 22.034 11.827 7.672 3.740 3.250 2.989 2.355
8192B ------ ------ ------ 18.172 12.422 6.023 5.237 4.844 2.362

instruction request stream
16B 7.047 5.541 3.649 2.194 0.864 0.482 0.001 0.001 0.001
32B 4.223 3.322 2.257 1.329 0.519 0.273 0.000 0.000 0.000
64B 2.642 2.105 1.493 0.908 0.344 0.164 0.000 0.000 0.000

128B 1.659 1.235 0.891 0.543 0.214 0.097 0.000 0.000 0.000
256B 1.177 0.799 0.609 0.391 0.173 0.062 0.000 0.000 0.000
512B 0.945 0.572 0.442 0.310 0.159 0.035 0.000 0.000 0.000

1024B 0.805 0.417 0.331 0.257 0.149 0.028 0.000 0.000 0.000
2048B ------ 0.384 0.299 0.255 0.177 0.021 0.000 0.000 0.000
4096B ------ ------ 0.269 0.226 0.163 0.034 0.000 0.000 0.000
8192B ------ ------ ------ 0.220 0.159 0.034 0.000 0.000 0.000

unified instruction and data stream
16B 11.223 9.172 7.203 5.529 4.140 3.682 3.264 3.127 2.834
32B 7.341 5.662 4.338 3.163 2.247 1.906 1.647 1.573 1.424
64B 5.714 4.075 3.031 2.032 1.337 1.026 0.846 0.800 0.721

128B 5.443 3.446 2.383 1.408 0.883 0.588 0.462 0.421 0.376
256B 7.006 4.296 2.832 1.526 1.011 0.524 0.406 0.364 0.333
512B 10.533 6.281 3.971 2.081 1.213 0.632 0.442 0.385 0.353

1024B 15.732 9.834 6.101 3.190 1.980 0.963 0.655 0.566 0.499
2048B ------ 15.453 9.426 5.117 3.167 1.369 0.940 0.795 0.678
4096B ------ ------ 15.242 8.499 5.319 2.081 1.426 1.167 0.888
8192B ------ ------ ------ 14.129 8.975 3.562 2.389 1.935 1.011

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 8.083 4.908 4.381 3.991 3.822 3.053 2.963 2.233 2.153
32B 5.178 3.052 2.510 2.175 2.020 1.600 1.536 1.138 1.093
64B 5.934 2.620 1.865 1.457 1.235 0.966 0.901 0.596 0.566

128B 13.171 2.920 1.801 1.228 0.908 0.681 0.600 0.333 0.307
256B 18.171 4.007 2.243 1.357 0.873 0.610 0.493 0.216 0.184
512B 25.055 7.388 3.964 2.048 1.163 0.718 0.502 0.199 0.144

1024B 30.573 12.685 6.377 2.746 1.440 0.832 0.533 0.196 0.121
2048B ------ 19.776 12.142 7.764 2.277 1.234 0.720 0.282 0.155
4096B ------ ------ 19.499 13.398 4.990 2.125 1.126 0.486 0.254
8192B ------ ------ ------ 23.060 13.088 3.872 1.970 0.905 0.471

instruction request stream
16B 0.020 0.018 0.015 0.009 0.004 0.002 0.000 0.000 0.000
32B 0.011 0.010 0.009 0.006 0.003 0.001 0.000 0.000 0.000
64B 0.007 0.006 0.005 0.003 0.002 0.001 0.000 0.000 0.000

128B 0.004 0.004 0.003 0.002 0.001 0.001 0.000 0.000 0.000
256B 0.003 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000
512B 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000

1024B 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

Table B-15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches

193

2048B ------ 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
4096B ------ ------ 0.001 0.000 0.000 0.000 0.000 0.000 0.000
8192B ------ ------ ------ 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream
16B 12.481 8.974 2.906 2.174 1.812 1.367 1.254 0.930 0.880
32B 8.707 6.215 1.927 1.331 1.035 0.757 0.670 0.485 0.453
64B 7.588 4.893 1.602 1.011 0.706 0.494 0.413 0.266 0.241

128B 9.387 4.229 1.667 0.964 0.598 0.391 0.298 0.164 0.139
256B 13.314 6.003 2.109 1.148 0.650 0.396 0.272 0.125 0.094
512B 16.806 7.760 3.196 1.629 0.867 0.490 0.300 0.131 0.085

1024B 23.072 13.340 4.958 2.340 1.188 0.641 0.364 0.155 0.088
2048B ------ 18.971 8.506 4.934 1.884 1.002 0.557 0.268 0.160
4096B ------ ------ 14.608 8.795 3.881 1.832 0.955 0.466 0.259
8192B ------ ------ ------ 15.667 8.742 3.574 1.863 0.982 0.585

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 7.216 5.826 5.325 5.061 4.902 4.801 4.723 4.595 4.275
32B 5.234 3.512 2.969 2.693 2.535 2.439 2.389 2.320 2.157
64B 5.092 2.630 1.913 1.573 1.380 1.266 1.226 1.184 1.098

128B 6.456 2.852 1.721 1.171 0.873 0.702 0.655 0.622 0.572
256B 9.837 4.124 2.234 1.268 0.753 0.462 0.390 0.352 0.316
512B 15.537 7.355 3.831 2.104 1.145 0.610 0.301 0.240 0.200

1024B 23.102 11.671 6.226 3.449 1.850 0.940 0.363 0.213 0.154
2048B ------ 20.776 10.474 5.712 2.996 1.356 0.574 0.307 0.173
4096B ------ ------ 17.402 9.713 5.127 2.178 0.942 0.559 0.267
8192B ------ ------ ------ 18.624 9.896 4.657 1.804 1.018 0.517

instruction request stream
16B 12.205 4.805 0.003 0.002 0.000 0.000 0.000 0.000 0.000
32B 6.114 2.422 0.002 0.001 0.000 0.000 0.000 0.000 0.000
64B 3.078 1.248 0.001 0.001 0.000 0.000 0.000 0.000 0.000

128B 1.545 0.634 0.000 0.000 0.000 0.000 0.000 0.000 0.000
256B 0.788 0.346 0.000 0.000 0.000 0.000 0.000 0.000 0.000
512B 0.406 0.193 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1024B 0.223 0.134 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2048B ------ 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4096B ------ ------ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8192B ------ ------ ------ 0.000 0.000 0.000 0.000 0.000 0.000

unified instruction and data stream
16B 13.841 7.226 3.108 2.320 1.832 1.671 1.587 1.516 1.398
32B 8.522 4.317 1.942 1.351 1.010 0.872 0.814 0.771 0.707
64B 6.295 2.922 1.371 0.886 0.597 0.472 0.427 0.398 0.362

128B 5.656 2.554 1.267 0.718 0.420 0.281 0.238 0.214 0.191
256B 6.956 3.047 1.546 0.791 0.403 0.211 0.156 0.128 0.108
512B 9.310 4.548 2.338 1.190 0.574 0.276 0.135 0.096 0.072

1024B 15.274 6.927 3.603 1.947 0.914 0.418 0.173 0.096 0.061

Table B-16: Cache miss rates for 110.applu, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches

194

2048B ------ 11.767 6.252 3.393 1.487 0.636 0.282 0.145 0.075
4096B ------ ------ 13.161 6.023 2.629 1.105 0.515 0.294 0.122
8192B ------ ------ ------ 11.168 5.265 2.590 1.335 0.906 0.239

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 4.683 3.920 3.550 2.688 2.268 2.174 1.864 1.505 1.489
32B 4.121 3.433 3.178 2.313 1.663 1.572 1.204 0.767 0.755
64B 4.065 3.461 3.255 2.158 1.364 1.271 0.871 0.394 0.386

128B 4.644 3.868 3.640 2.119 1.235 1.131 0.710 0.211 0.201
256B 5.738 4.604 4.262 2.149 1.201 1.076 0.637 0.123 0.111
512B 7.478 5.718 5.246 2.256 1.242 1.078 0.617 0.087 0.070

1024B 8.775 6.474 5.678 2.390 1.323 1.109 0.620 0.075 0.051
2048B ------ 8.759 7.309 2.960 2.506 1.751 1.098 0.541 0.504
4096B ------ ------ 8.740 3.791 3.024 2.387 1.389 0.791 0.730
8192B ------ ------ ------ 7.260 6.202 2.819 1.770 1.002 0.887

instruction request stream
16B 2.388 1.404 0.923 0.128 0.037 0.001 0.000 0.000 0.000
32B 1.344 0.781 0.532 0.096 0.025 0.001 0.000 0.000 0.000
64B 0.836 0.535 0.382 0.100 0.015 0.000 0.000 0.000 0.000

128B 0.522 0.350 0.276 0.079 0.011 0.000 0.000 0.000 0.000
256B 0.433 0.305 0.259 0.042 0.007 0.000 0.000 0.000 0.000
512B 0.402 0.209 0.189 0.041 0.007 0.000 0.000 0.000 0.000

1024B 0.408 0.207 0.170 0.041 0.007 0.000 0.000 0.000 0.000
2048B ------ 0.202 0.166 0.038 0.005 0.000 0.000 0.000 0.000
4096B ------ ------ 0.325 0.043 0.009 0.000 0.000 0.000 0.000
8192B ------ ------ ------ 0.045 0.011 0.000 0.000 0.000 0.000

unified instruction and data stream
16B 7.405 4.438 2.023 1.124 0.868 0.684 0.557 0.441 0.430
32B 5.588 3.170 1.526 0.918 0.636 0.497 0.361 0.228 0.219
64B 4.915 2.714 1.375 0.827 0.505 0.400 0.263 0.120 0.114

128B 4.773 2.602 1.400 0.802 0.471 0.358 0.217 0.068 0.061
256B 5.477 3.017 1.590 0.807 0.477 0.347 0.198 0.044 0.036
512B 7.615 4.026 2.080 0.885 0.516 0.363 0.197 0.036 0.026

1024B 9.953 5.664 2.669 1.301 0.899 0.383 0.204 0.036 0.022
2048B ------ 8.488 3.530 1.617 1.324 0.590 0.354 0.177 0.156
4096B ------ ------ 5.013 2.489 1.676 0.840 0.471 0.266 0.231
8192B ------ ------ ------ 13.694 11.889 1.096 0.660 0.380 0.315

Table B-17: Cache miss rates for 125.turb3d, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-16: Cache miss rates for 110.applu, test input set, direct-mapped caches

195

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 8.533 7.232 6.902 5.217 3.927 2.491 1.278 0.062 0.001
32B 7.269 6.218 5.985 4.694 3.262 1.939 0.965 0.055 0.001
64B 6.995 5.911 5.646 4.450 2.943 1.673 0.816 0.056 0.001

128B 7.729 6.256 5.954 4.369 2.817 1.566 0.761 0.073 0.000
256B 8.978 6.714 6.299 4.466 2.858 1.566 0.767 0.090 0.000
512B 11.845 7.833 7.158 5.060 3.257 1.606 0.789 0.098 0.000

1024B 17.041 10.488 9.395 5.750 3.748 1.712 0.846 0.113 0.000
2048B ------ 13.644 12.018 6.220 3.827 1.699 0.793 0.138 0.002
4096B ------ ------ 14.810 7.438 4.801 1.994 0.984 0.326 0.002
8192B ------ ------ ------ 10.094 6.457 2.329 1.196 0.460 0.024

instruction request stream
16B 4.893 2.957 1.728 0.434 0.169 0.035 0.003 0.000 0.000
32B 2.785 1.682 0.952 0.236 0.090 0.019 0.002 0.000 0.000
64B 1.625 0.965 0.526 0.130 0.051 0.010 0.001 0.000 0.000

128B 0.993 0.570 0.289 0.077 0.033 0.007 0.001 0.000 0.000
256B 0.755 0.405 0.207 0.047 0.022 0.005 0.000 0.000 0.000
512B 0.528 0.302 0.140 0.035 0.017 0.003 0.000 0.000 0.000

1024B 0.500 0.302 0.169 0.028 0.013 0.003 0.000 0.000 0.000
2048B ------ 0.273 0.174 0.028 0.015 0.004 0.000 0.000 0.000
4096B ------ ------ 0.191 0.031 0.017 0.004 0.000 0.000 0.000
8192B ------ ------ ------ 0.043 0.024 0.004 0.000 0.000 0.000

unified instruction and data stream
16B 11.311 7.846 5.458 3.431 1.824 1.206 0.593 0.133 0.099
32B 8.230 5.686 4.072 2.723 1.430 0.902 0.428 0.081 0.056
64B 6.767 4.575 3.388 2.295 1.236 0.747 0.353 0.057 0.034

128B 6.827 4.386 3.340 2.163 1.164 0.691 0.323 0.052 0.025
256B 8.255 5.097 3.849 2.165 1.180 0.689 0.325 0.055 0.022
512B 11.281 6.398 4.722 2.566 1.350 0.708 0.333 0.058 0.024

1024B 17.684 10.031 6.897 3.531 1.586 0.803 0.407 0.112 0.032
2048B ------ 15.133 10.336 4.018 1.742 0.839 0.397 0.125 0.038
4096B ------ ------ 14.652 6.493 2.596 1.183 0.493 0.208 0.057
8192B ------ ------ ------ 10.815 3.970 1.829 0.769 0.408 0.108

Table B-18: Cache miss rates for 141.apsi, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 9.008 6.488 5.295 4.391 4.316 4.182 0.000 ------ ------
32B 6.943 5.304 4.524 3.737 3.670 3.555 0.000 ------ ------
64B 5.638 4.334 3.726 2.986 2.921 2.823 0.000 ------ ------

128B 5.370 4.151 3.477 2.595 2.533 2.427 0.000 ------ ------
256B 6.615 4.966 4.225 3.228 3.161 2.998 0.000 ------ ------
512B 9.609 6.752 5.751 4.421 4.336 4.156 0.000 ------ ------

1024B 13.655 9.275 7.526 5.916 5.819 5.638 0.000 ------ ------

Table B-19: Cache miss rates for 145.fpppp, test input set, direct-mapped caches

196

2048B ------ 16.834 14.678 11.478 11.361 11.157 0.000 ------ ------
4096B ------ ------ 22.152 16.211 16.112 15.431 0.000 ------ ------
8192B ------ ------ ------ 16.722 16.664 15.859 0.000 ------ ------

instruction request stream
16B 47.068 45.903 34.737 27.516 16.627 0.159 0.001 ------ ------
32B 23.760 23.139 17.572 13.858 8.381 0.101 0.000 ------ ------
64B 12.076 11.733 8.948 6.997 4.230 0.061 0.000 ------ ------

128B 6.208 6.011 4.618 3.553 2.147 0.037 0.000 ------ ------
256B 3.247 3.124 2.453 1.824 1.111 0.022 0.000 ------ ------
512B 1.747 1.668 1.340 0.963 0.592 0.019 0.000 ------ ------

1024B 0.992 0.927 0.759 0.530 0.320 0.017 0.000 ------ ------
2048B ------ 0.554 0.466 0.318 0.178 0.012 0.000 ------ ------
4096B ------ ------ 0.329 0.217 0.123 0.022 0.000 ------ ------
8192B ------ ------ ------ 0.156 0.090 0.022 0.000 ------ ------

unified instruction and data stream
16B 33.305 30.919 24.997 18.429 12.602 3.664 0.165 ------ ------
32B 18.963 17.142 13.874 10.260 7.216 2.655 0.140 ------ ------
64B 11.821 10.179 8.178 5.929 4.284 1.922 0.117 ------ ------

128B 8.752 6.915 5.449 3.752 2.808 1.539 0.103 ------ ------
256B 9.025 6.505 4.832 3.184 2.539 1.752 0.098 ------ ------
512B 12.259 8.074 5.615 3.475 2.921 2.332 0.091 ------ ------

1024B 19.111 11.465 7.185 4.220 3.612 3.094 0.083 ------ ------
2048B ------ 20.217 14.029 7.533 6.560 5.961 0.086 ------ ------
4096B ------ ------ 21.394 11.199 9.548 8.225 0.078 ------ ------
8192B ------ ------ ------ 17.482 11.318 9.102 0.094 ------ ------

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

data reference stream
16B 27.813 24.393 17.336 12.137 5.585 3.784 3.137 2.631 2.384
32B 25.932 22.256 14.367 9.032 3.108 1.951 1.593 1.332 1.203
64B 24.882 21.038 12.873 7.568 1.888 1.057 0.824 0.680 0.610

128B 24.516 20.449 12.503 6.950 1.368 0.665 0.455 0.361 0.318
256B 25.500 20.966 12.951 7.326 1.302 0.604 0.309 0.220 0.180
512B 28.648 23.647 14.017 7.993 1.696 0.902 0.382 0.259 0.206

1024B 32.300 26.494 16.864 9.650 2.663 1.679 0.616 0.406 0.325
2048B ------ 30.507 20.901 12.817 4.411 3.047 1.317 0.813 0.667
4096B ------ ------ 28.614 18.424 9.197 6.787 4.604 3.717 3.417
8192B ------ ------ ------ 22.907 11.998 8.579 5.055 3.913 3.460

instruction request stream
16B 4.198 2.943 1.281 1.258 0.005 0.002 0.000 0.000 0.000
32B 2.514 1.803 0.764 0.751 0.004 0.001 0.000 0.000 0.000
64B 1.568 1.145 0.472 0.464 0.003 0.001 0.000 0.000 0.000

128B 0.962 0.702 0.271 0.266 0.003 0.001 0.000 0.000 0.000
256B 0.620 0.448 0.160 0.157 0.002 0.000 0.000 0.000 0.000
512B 0.517 0.360 0.117 0.113 0.002 0.000 0.000 0.000 0.000

1024B 0.483 0.372 0.075 0.069 0.002 0.000 0.000 0.000 0.000

Table B-20: Cache miss rates for 146.wave5, test input set, direct-mapped caches

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-19: Cache miss rates for 145.fpppp, test input set, direct-mapped caches

197

2048B ------ 0.473 0.053 0.048 0.002 0.000 0.000 0.000 0.000
4096B ------ ------ 0.140 0.135 0.002 0.000 0.000 0.000 0.000
8192B ------ ------ ------ 0.202 0.002 0.000 0.000 0.000 0.000

unified instruction and data stream
16B 15.149 11.907 7.975 5.769 2.519 1.565 1.210 1.002 0.901
32B 13.104 10.300 6.491 4.261 1.553 0.842 0.636 0.525 0.471
64B 12.082 9.452 5.769 3.540 1.088 0.490 0.351 0.286 0.255

128B 11.767 9.101 5.565 3.245 0.907 0.332 0.202 0.157 0.136
256B 12.545 9.479 5.865 3.420 0.952 0.328 0.166 0.121 0.101
512B 14.713 11.007 6.683 3.897 1.274 0.456 0.199 0.139 0.112

1024B 19.544 13.653 8.510 4.975 1.990 0.821 0.313 0.214 0.173
2048B ------ 19.258 12.449 7.139 3.291 1.395 0.594 0.377 0.306
4096B ------ ------ 18.736 10.792 5.992 3.158 1.860 1.475 1.331
8192B ------ ------ ------ 15.624 9.143 4.281 2.240 1.659 1.419

blk. size 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Table B-20: Cache miss rates for 146.wave5, test input set, direct-mapped caches

198

B.3 Validating cache simulation

direct-mapped 4-way set associative

benchmark indexing 16KB 64KB 256KB 1MB 16KB 64KB 256KB 1MB
099.go cheetah/VIVT 9.971 3.035 1.481 0.000 5.955 0.532 0.008 0.000

sim-cache/VIVT 9.970 3.030 1.480 0.000 5.950 0.530 0.010 0.000
sim-cache/PIPT 10.980 4.550 0.970 0.000 5.950 0.630 0.010 0.000

124.m88ksim cheetah/VIVT 1.111 0.528 0.334 0.326 0.376 0.337 0.325 0.324
sim-cache/VIVT 1.120 0.540 0.350 0.340 0.380 0.350 0.340 0.340
sim-cache/PIPT 1.170 0.410 0.350 0.340 0.380 0.350 0.340 0.340

126.gcc cheetah/VIVT 3.428 1.126 0.465 0.109 1.558 0.532 0.252 0.052
sim-cache/VIVT 3.440 1.170 0.550 0.250 1.570 0.580 0.340 0.200
sim-cache/PIPT 3.440 1.380 0.580 0.260 1.570 0.620 0.340 0.200

129.compress cheetah/VIVT 4.912 2.643 0.920 ------ 3.608 1.988 0.989 0.068
sim-cache/VIVT 4.910 2.640 0.940 0.150 3.610 1.990 1.000 0.110
sim-cache/PIPT 4.310 2.500 0.770 0.110 3.610 1.980 0.980 0.110

130.li cheetah/VIVT 2.178 0.810 0.004 ------ 1.378 0.628 0.004 0.004
sim-cache/VIVT 2.260 1.620 1.550 1.550 1.610 1.550 1.550 1.550
sim-cache/PIPT 2.130 0.820 0.020 0.020 1.380 0.640 0.020 0.020

132.ijpeg cheetah/VIVT 1.837 0.795 0.515 0.449 0.609 0.229 0.130 0.032
sim-cache/VIVT 1.840 0.800 0.610 0.580 0.610 0.240 0.210 0.190
sim-cache/PIPT 2.120 0.570 0.270 0.190 0.610 0.240 0.200 0.190

134.perl cheetah/VIVT 2.150 0.801 0.257 0.165 0.569 0.423 0.214 0.155
sim-cache/VIVT 2.170 0.840 0.310 0.240 0.590 0.460 0.270 0.230
sim-cache/PIPT 2.280 1.540 0.330 0.250 0.590 0.470 0.270 0.230

147.vortex cheetah/VIVT 4.263 1.738 0.364 0.143 1.402 0.440 0.113 0.051
sim-cache/VIVT 4.300 1.770 0.400 0.190 1.430 0.470 0.150 0.100
sim-cache/PIPT 3.570 1.120 0.440 0.160 1.430 0.460 0.160 0.100

Table B-21: Cache performance varying simulator and indexing for SPECINT95

direct-mapped 4-way set associative

benchmark indexing 16KB 64KB 256KB 1MB 16KB 64KB 256KB 1MB
101.tomcatv cheetah/VIVT 12.469 3.513 3.436 3.381 10.985 1.078 1.071 1.047

sim-cache/VIVT 12.510 3.530 3.450 3.400 11.020 1.090 1.080 1.060
sim-cache/PIPT 13.020 2.700 1.470 1.150 11.020 1.090 1.080 1.060

102.swim cheetah/VIVT 28.150 2.310 2.258 2.244 33.457 2.232 2.158 2.153
sim-cache/VIVT 28.150 2.310 2.260 2.250 33.460 2.230 2.160 2.150
sim-cache/PIPT 27.870 8.460 3.750 2.580 33.460 2.240 2.160 2.150

103.su2cor cheetah/VIVT 7.495 2.295 1.774 0.722 2.202 2.140 1.787 0.685
sim-cache/VIVT 7.510 2.300 1.780 0.730 2.210 2.150 1.790 0.690
sim-cache/PIPT 4.490 2.350 1.720 0.740 2.210 2.150 1.870 0.710

104.hydro2d cheetah/VIVT 3.855 3.029 2.925 2.544 3.240 2.866 2.864 2.662
sim-cache/VIVT 3.860 3.040 2.930 2.550 3.250 2.870 2.870 2.670
sim-cache/PIPT 3.900 3.060 2.920 2.650 3.250 2.870 2.870 2.670

107.mgrid cheetah/VIVT 1.903 1.282 0.954 0.638 1.051 0.997 0.671 0.621
sim-cache/VIVT 1.900 1.280 0.960 0.650 1.050 1.000 0.670 0.630

Table B-22: Cache performance varying simulator and indexing for SPECFP95

199

sim-cache/PIPT 1.910 1.190 0.720 0.650 1.050 1.000 0.670 0.630
110.applu cheetah/VIVT 1.839 1.319 1.179 1.094 1.191 1.138 1.132 1.083

sim-cache/VIVT 1.840 1.320 1.180 1.100 1.190 1.140 1.130 1.090
sim-cache/PIPT 1.980 1.330 1.180 1.110 1.190 1.140 1.130 1.080

125.turb3d cheetah/VIVT 3.202 1.426 0.909 0.398 1.792 1.095 0.982 0.372
sim-cache/VIVT 3.200 1.430 0.910 0.400 1.790 1.090 0.980 0.370
sim-cache/PIPT 2.740 1.590 1.020 0.900 1.790 0.730 0.560 0.480

141.apsi cheetah/VIVT 5.078 4.699 2.984 0.787 2.411 2.069 1.618 0.213
sim-cache/VIVT 5.080 4.700 2.980 0.790 2.410 2.070 1.620 0.210
sim-cache/PIPT 3.990 2.470 1.550 0.370 2.410 2.050 1.590 0.170

145.fpppp cheetah/VIVT 3.798 2.988 0.001 ------ 0.251 0.013 0.001 0.001
sim-cache/VIVT 3.800 2.990 0.000 0.000 0.250 0.010 0.000 0.000
sim-cache/PIPT 1.490 0.480 0.000 0.000 0.250 0.010 0.000 0.000

146.wave5 cheetah/VIVT 13.825 2.018 0.933 0.680 16.539 1.385 0.437 0.231
sim-cache/VIVT 13.830 2.020 0.930 0.680 16.540 1.390 0.440 0.230
sim-cache/PIPT 15.190 2.580 0.630 0.320 16.540 1.950 0.440 0.240

direct-mapped 4-way set associative

benchmark indexing 16KB 64KB 256KB 1MB 16KB 64KB 256KB 1MB

Table B-22: Cache performance varying simulator and indexing for SPECFP95

		Hardware Techniques to Improve the Performance of the Processor/Memory Interface

		by

		Douglas Christopher Burger

		A dissertation submitted in partial fulfillment of

		the requirements for the degree of

		Doctor of Philosophy

		(Computer Sciences)

		at the

		University of Wisconsin–Madison

		1998

		Figure 1�1: Typical modern memory hierarchy

		1.1 Dissertation roadmap and contributions

		1.2 Increasing importance of memory bandwidth

		1.2.1 Increasing bandwidth needs

		Figure 1�2: Processor pin counts

		Figure 1�3: Raw performance per pin

		Figure 1�4: Performance per processor pin bandwidth

		1.2.2 The interactions of latency and bandwidth

		(1-1)

		(1-2)

		(1-3)

		Table 1�1: Effect of memory latency optimizations on execution time breakdown

		1.3 Bandwidth-specific solutions

		1.3.1 Tuning the PMI (reducing memory hierarchy traffic)

		1.3.1.1 Traffic-efficient caches

		1.3.1.2 Large on-chip caches

		Figure 1�5: Fraction of processor transistors devoted to cache

		1.3.2 Distributing the PMI (memory-centric architectures)

		1.3.3 Flattening the PMI (integrating the processor and physical memory)

		1.3.4 Shrinking the PMI (reducing processor/memory communication)

		1.4 A word about cost

		2.1 Software simulation

		2.2 The SimpleScalar tools

		Figure 2�1: Overview of the SimpleScalar tools

		2.2.1 Machine model

		Figure 2�2: Summary of SimpleScalar instructions

		Table 2�1: SimpleScalar architecture register definitions

		Figure 2�3: SimpleScalar architecture instruction formats

		Figure 2�4: Virtual memory organization

		2.2.2 Functional simulation

		2.2.3 Timing simulation

		Figure 2�5: Pipeline for sim-outorder

		Figure 2�6: Structure of the Register Update Unit core

		2.3 SPEC95 benchmarks

		2.3.1 Choosing the input set

		2.3.2 Benchmark characterizations

		Table 2�2: Simulation speeds of the five simulators

		Table 2�3: Instruction profile for SPECINT95

		Table 2�4: Instruction profile for SPECFP95

		Table 2�5: Memory operation profile for SPECINT95

		Table 2�6: Memory operation profile for SPECFP95

		Table 2�7: Data set and segment sizes for SPECINT95

		Table 2�8: Data set and segment sizes for SPECFP95

		Table 2�9: Cache miss rates for varied SPECINT95 data sets (data stream)

		Table 2�10: Cache miss rates for varied SPECFP95 data sets (data stream)

		2.3.3 SPEC95 benchmark analysis

		2.3.3.1 SPEC95 integer codes

		2.3.3.2 SPEC95 floating point codes

		(2-1)

		2.4 Sampling validation

		Table 2�11: Sampling validation for SPECINT95

		Table 2�12: Sampling validation for SPECFP95

		3.1 Cache efficiency

		Figure 3�1: Examples of block liveness

		3.1.1 Methodology

		3.1.2 Measurement of cache efficiencies

		Figure 3�2: Efficiency measurements

		3.2 Traffic efficiency

		3.2.1 Definition of traffic ratios

		(3-1)

		(3-2)

		(3-3)

		3.2.2 Definition of traffic efficiency

		(3-4)

		(3-5)

		(3-6)

		3.2.3 Measurement of traffic ratios

		Table 3�1: Traffic ratios for 32-byte block, direct-mapped caches

		3.2.4 Methodology for measuring traffic efficiency

		Figure 3�3: Extending Belady’s min algorithm

		3.2.5 Measuring traffic efficiency

		Table 3�2: Traffic efficiencies for 32-byte block, direct-mapped caches

		3.2.6 Factorization of traffic efficiency

		Figure 3�4: Total traffic generated by different cache and MTC sizes

		Table 3�3: Experimental parameters for Table�3�4

		Table 3�4: Efficiency gap for different optimizations

		Table 3�5: Fraction of traffic efficiency per factor

		4.1 What to fetch

		Table 4�1: Performance versus pollution points, 1MB 4-way set associative L2 cache

		4.2 Dual-size fetching

		Figure 4�1: Logic for dual-size fetch policy

		Table 4�2: Dual-size fetch functional results, part 1

		Table 4�3: Dual-size fetch functional results, part 2

		Table 4�4: Dual-size fetch functional results, part 3

		4.3 Subblock prefetching

		Figure 4�2: Logic for subblock prefetching policy

		Table 4�5: Subblock prefetch functional results, part 1

		Table 4�6: Subblock prefetch functional results, part 2

		Table 4�7: Subblock prefetch functional results, part 3

		(4-1)

		4.4 Unifying DSF and SBP

		Table 4�8: Trading off misses and traffic for a 1MB, 4-way set associative L2

		Table 4�9: Policy efficiencies; 1MB 4-way set associative L2, threshold and bound = 2

		4.5 Bus prioritization

		Figure 4�3: Datapath for bus prioritization

		Figure 4�4: Performance of traffic optimization schemes

		Figure 5�1: Access penalties for levels in the memory hierarchy

		Figure 5�2: Trends in microprocessor memory hierarchies

		5.1 A taxonomy for memory hierarchies

		5.2 A logical hybrid - the Indirect Cache

		Figure 5�3: Organization of the base ICE

		5.2.1 Additional hit latency

		5.2.1.1 Tag cache misses

		Figure 5�4: Accelerating tag cache misses

		5.2.1.2 Complex replacement

		Table 5�1: Performance impact of an imperfect tag cache (1MB ICE)

		Table 5�2: Relative misses for the ICE (compared to 1MB, 4-way set associative LRU)

		Table 5�3: Performance impact of 16-way subblocked tags)

		5.2.2 Coherence issues

		5.2.3 Performance analysis

		Figure 5�5: Performance of an ICE with traffic optimization schemes

		Table 5�4: Mean speedup (across SPEC95) of ICE++ over 1MB, 4-way set assoc. caches

		Figure 5�6: Comparing ICE++ to traditional caches

		5.3 Physical hybrids

		1. MOPs should not enforce inclusion, since the total system memory could be increased significan...

		2. MOPs should still minimize the off-chip accesses, which will be considerably more expensive th...

		3. MOPs should allow for fine-grain off-chip accesses; loading a page at a time, for example, wil...

		Table 5�5: Global miss rates for physical hybrid experiments

		5.4 Processor/memory integration

		Figure 5�7: Performance of perfect L2 caches

		6.1 The Massive Memory Machine

		6.1.1 Operation of the MMM

		Figure 6�1: Operation of the ESP Massive Memory Machine (from [45])

		Figure 6�2: Replicated vs. communicated memory

		6.1.2 Limitations of the MMM

		6.2 DataScalar Architectures

		6.2.1 Asynchronous ESP (traffic reduction)

		6.2.2 Datathreading (latency reduction)

		Figure 6�3: Comparing off-chip access serializations

		6.2.3 Implementation issues

		6.2.3.1 Cache correspondence

		Figure 6�4: Cache correspondence example

		6.2.3.2 Speculative execution

		6.2.3.3 Inter-chip communication

		6.2.4 Other pertinent issues

		6.3 Evaluating DataScalar architectures

		6.3.1 Traffic reduction

		6.3.2 Datathread lengths

		Table 6�1: Fractions of off-chip data traffic reduced by ESP

		Table 6�2: Approximate datathread measurements for a four-processor system

		6.3.3 Performance evaluation

		Figure 6�5: Comparing two IRAM organizations

		Figure 6�6: Simulated DataScalar chip datapath

		Figure 6�7: Timing simulation results of a DataScalar architecture

		Figure 6�8: Sensitivity analysis of DataScalar experiments

		Table 6�3: DataScalar broadcast statistics

		7.1 Summary

		7.2 Looking back

		A.1 Experimental methodology

		Table A�1: Input files used for benchmarks in experiments E1-E3

		Table A�2: Memory system simulation parameters

		Table A�3: Processor simulation parameters (E1/E2/E3)

		A.2 Simulation results

		A.2.1 E1 results

		Figure A�1: Execution time breakdown for E1 (SPEC92)

		Table A�4: Shift from fL to fB for E1

		A.2.2 E2 results

		Figure A�2: Execution time breakdown for E2 (SPEC95)

		Table A�5: Shift from fL to fB for E2

		A.2.3 E3 results

		Figure A�3: Execution time breakdown for E3 (SPEC95)

		Table A�6: Shift from fL to fB for E3

		A.3 Summary

		B.1 Set associativity

		Table B�1: Miss rates for varied associativities on the SPECINT95 data stream

		Table B�2: Miss rates for varied associativities on the SPECFP95 data stream

		B.2 Block size

		Table B�3: Cache miss rates for 099.go, test input set, direct-mapped caches

		Table B�4: Cache miss rates for 124.m88ksim, test input set, direct-mapped caches

		Table B�5: Cache miss rates for 026.gcc, test input set, direct-mapped caches

		Table B�6: Cache miss rates for 129.compress, test input set, direct-mapped caches

		Table B�7: Cache miss rates for 130.li, test input set, direct-mapped caches

		Table B�8: Cache miss rates for 132.ijpeg, test input set, direct-mapped caches

		Table B�9: Cache miss rates for 134.perl, test input set, direct-mapped caches

		Table B�10: Cache miss rates for 147.vortex, test input set, direct-mapped caches

		Table B�11: Cache miss rates for 101.tomcatv, test input set, direct-mapped caches

		Table B�12: Cache miss rates for 102.swim, test input set, direct-mapped caches

		Table B�13: Cache miss rates for 103.su2cor, test input set, direct-mapped caches

		Table B�14: Cache miss rates for 104.hydro2d, test input set, direct-mapped caches

		Table B�15: Cache miss rates for 107.mgrid, test input set, direct-mapped caches

		Table B�16: Cache miss rates for 110.applu, test input set, direct-mapped caches

		Table B�17: Cache miss rates for 125.turb3d, test input set, direct-mapped caches

		Table B�18: Cache miss rates for 141.apsi, test input set, direct-mapped caches

		Table B�19: Cache miss rates for 145.fpppp, test input set, direct-mapped caches

		Table B�20: Cache miss rates for 146.wave5, test input set, direct-mapped caches

		B.3 Validating cache simulation

		Table B�21: Cache performance varying simulator and indexing for SPECINT95

		Table B�22: Cache performance varying simulator and indexing for SPECFP95

