

0018-9162/97/$10.00 © 1997 IEEE December 1997 51

Changing Interaction
of Compiler and
Architecture

W
ith recent developments in compi-
lation technology and architectural
design, the line between traditional
hardware and software roles has
become increasingly blurred. The

compiler can now see the processor’s inner structure,
which lets architects exploit sophisticated program
analysis techniques to hide branch and memory access
delays, for example. Processors can now implement
register renaming and dynamic instruction scheduling
algorithms directly in the hardware—something that
was once exclusively the compiler’s job.

A similar shift is occurring in optimizing compilers
for parallel machines. To parallelize a larger class of
applications, compiler writers are moving beyond sta-
tic transformations that are provably correct and
exploring techniques that rely on runtime decisions or
hardware support.

This increased blurring of compile-time and runtime
optimizations opens many new research opportunities,
particularly for program optimization—a task typically
performed entirely at compile time. In this article, we
describe an optimization continuum with compile time
and post-runtime as endpoints and show how differ-
ent classes of optimizations fall within it. Most current
commercial compilers are still at the compile-time end-
point, and only a few research efforts are venturing
beyond it. As the gap between architecture and com-
piler closes, there are also attempts to completely rede-
fine the architecture-compiler interface to increase both
performance and architectural flexibility.

OPTIMIZATION CONTINUUM
Program optimization is traditionally viewed as a

task to be performed entirely at compile time.
Compilers often have access to profile information and
can consider platform-specific information when the
code is translated. However, because they have no
access to runtime information, they must make con-
servative assumptions so that the program will be cor-
rect under all possible runtime conditions. This limits
the degree of optimization.

At the other end of the continuum is optimization
with knowledge of the runtime environment. Current
superscalar microprocessors, for example, perform
their own set of code optimizations, such as runtime
instruction scheduling. The hardware has perfect
knowledge of the runtime environment, but it has lost
some analysis information that the compiler knew.
This again limits optimization potential.

How optimizations differ
Optimization during compile time consists of two

phases. In the analysis phase, the compiler gathers
information and evaluates if optimization is possible.
If so, it then evaluates if the optimization will actually
improve performance. In the second phase, transfor-
mation, if the compiler has determined that an opti-
mization will improve performance, it transforms the
code. Thus, a compiler analyzes and transforms the
entire program statically.

In a runtime optimization, on the other hand, the hard-
ware must determine only if the optimization is correct
and beneficial in a single instance. That is, it analyzes and
transforms only the dynamic instruction stream.

Thus, runtime optimization takes a snapshot
approach, while compile-time optimization takes a
whole-program approach.

At first glance, it may seem reasonable to do opti-
mization solely at runtime. After all, at this point the
system should (theoretically) have all the pertinent
information. Unfortunately, doing the transformation
part of the optimization at runtime causes extra work
that may prohibitively increase the program’s execu-
tion time. An optimization is useful only if the time
spent in the analysis and transformation phases does
not exceed the reduction in execution time from that
optimization. Optimization at compile time is essen-
tially free because it is done before the program is exe-
cuted. If the hardware could do the transformation,
the overhead would be low and the program might
even execute faster because of the optimization.
However, this “compile time or runtime” view of opti-
mization no longer fits, as we describe later.

Program optimizations that have been exclusively done by either the
architecture or the compiler are now being done by both. This blurred
distinction offers opportunities to optimize perfomance and redefine
the compiler-architecture interface.

Sarita
V. Adve
Rice University

Doug Burger
University of
Wisconsin
at Madison

Rudolf
Eigenmann
Purdue University

Alasdair
Rawsthorne
University of
Manchester

Michael
D. Smith
Harvard
University

Catherine
H. Gebotys
University
of Waterloo

Mahmut
T. Kandemir
Syracuse
University

David
J. Lilja
University
of Minnesota

Alok N.
Choudhary
Northwestern
University

Jesse Z. Fang
Intel Corp.

Pen-Chung Yew
University of Minnesota

Th
em

e
Fe

at
ur

e

.

.

52 Computer

Information flow
In its simplest form, the optimization continuum rep-

resents points at which the entire analyze-and-trans-
form process can take place—from compilation to
linking to loading to runtime and finally to post-run-
time. Figure 1 illustrates these points. As the graduated
bar on the continuum shows, the system gains increas-
ing amounts of information as it gets closer to run-
time—assuming it loses no information along the way.
It begins at compile time with information only from
static analysis. During linking, the code of separately
compiled modules and libraries is available for analy-
sis, which lets the system optimize the entire program.
During loading, it gets additional information about
the target machine environment, which means that it
can further optimize the program for the specific
machine. At runtime, the processor knows the exact
numeric values of program variables, which means it
can analyze and optimize the program to those values.
Finally, at post-runtime, the system can review the full
execution history to adjust for the next execution.

By now the fundamental tension between the two
endpoints should be evident: the need for more infor-
mation drives the optimization process toward run-
time; the overhead costs pull it back toward compile
time. This tension means researchers and developers
must change their view of optimization. It is no longer
an atomic process that must occur in its entirety at
one point. Rather, it is a process of narrowing choices.
At each point, the system should do as much of the
transformation as possible given its limited informa-
tion, offloading some of the optimization overhead
from later points. This implies that the parts of the
optimization should be broken across the continuum.

Optimization decomposition
If you view optimization as parts scattered along

the continuum, the next logical step is to determine
what exactly should fall where—that is, how exactly
do you decompose optimization to properly balance
useful information and optimization overhead? This
question has no general answer except that, ideally,
cooperation between the compiler and runtime sys-
tem will allow access to all information in the contin-
uum and at a low overhead.

Cooperation strategies. To see how this coopera-
tion could work, consider a hypothetical database
that holds the results of the analyses performed dur-

ing compilation, linking, loading, and running—that
is, the analysis is essentially distributed across many
optimization stages. The database contains the impor-
tant information for transformers, including static
and dynamic information about program input vari-
ables, the structure of library routines, architecture
and execution environment descriptors, and profile
data. During transformation, the transformer uses
query functions to obtain the results of the pertinent
analyses.

Developing such a database is not merely a matter
of implementing the entry and query functions. Both
entry and query operations introduce overhead that
may offset the benefits of the optimizing transforma-
tion. Also, how do you encode information in the
database? Keeping the encoding close to the data for-
mat of the entry and query functions keeps their over-
head low, but these formats may vary widely between
compiler and machine architectures. For example,
what if the machine architecture had to be compatible
with old instruction sets? This kind of constraint could
greatly limit the database’s usefulness.

Suppose you are storing the results of a data depen-
dence analysis. The analysis attempts to determine
whether a load and a store access the same address.
When the system can determine that the instructions
are indeed referencing distinct addresses, many trans-
formations are possible, such as moving code some
place that leads to a better instruction schedule, mark-
ing a loop as parallel, or conducting a coarser grained
speculative execution.

Query efficiency. In many contexts, it is too expen-
sive to gather data reference and range information to
determine if two memory accesses conflict. Gathering
the access expression, such as the index expression of
an array and the ranges for the expression variables,
is a reasonable task for a source-level translator, but
using classical analyses to extract this information
from object code may be prohibitively expensive.

The main difficulty, however, is that neither a
source-level translator nor a code-generating com-
piler has access to all the necessary information. Thus,
dependence analysis should occur closer to runtime,
combining the advantages of high-level compiler
analysis and accurate runtime information. This
might be possible if the analysis part of the opti-
mization is distributed over several analysis phases,
while the relevant information is exchanged consec-

Compile time

Post-runtime

Information
from static

analysis only

Linking Loading Runtime Complete
execution

history

Figure 1. An optimiza-
tion continuum. As
the program
progresses from com-
pile time to post-run-
time—through link-
ing, loading, and
runtime—the system
gathers additional
information, as the
widening bar above
the continuum line
shows. By post-
runtime, it has a
complete execution
history.

utively between phases. This approach, of course,
means that different optimizers must cooperate.

Techniques to reduce the overhead of performing
the transformation and to improve the efficiency of
querying the conceptual database for dependence
analyses are important because they will allow the
actual transformations to be performed closer to or
at runtime.

TAXONOMY OF OPTIMIZATIONS
Figure 2 shows the same continuum as in Figure 1

but with points at which the compiler has opportuni-
ties to optimize the program.

Static transformations
In a static transformation, the compiler performs a

single transformation at compile time. Most current
compiler optimization techniques are static.

Explicit cache control. Most compiler scheduling
algorithms assume that either all loads will hit or all
loads will miss in the cache, although more recent
techniques perform latency-sensitive load scheduling.1

Nevertheless, to exploit these techniques, researchers
must address significant challenges, such as memory
disambiguation at compile time, which involves
pointer analysis.

One way to reduce the effects of load misses is to
improve the locality of accesses. Techniques to do this
include iteration-space transformations, permutation
and tiling, data-space transformations, and hooks
that give the compiler more direct control of the
cache. In fact, nearly every cache parameter and pol-
icy can be put under compiler control, including the
cache-line size, the write policy, the data flush policy,
the prefetch policy, whether to bypass the cache, and
whether to load data only in the cache’s lower levels.

Although recent processors have begun to provide
some of these hooks, significant work is required for
compilers to keep the techniques from interfering with
each other. Further, because some techniques reduce
load misses by increasing bandwidth requirements and
resource contention, compiler algorithms that use
these techniques must do a resource-sensitive analysis
to trade off cost with expected benefit. Typically, com-
pilers have done an optimization whenever resources
were available; now, however, they must begin to eval-
uate how using a particular resource will affect
another.

Explicit control of disk-memory interface. Many of
the issues in explicit cache control also apply to the
explicit control of the disk-memory interface. Many
scientific applications have large data sets that require
out-of-core computation. Their performance is
greatly limited by the disk-memory interface, which
in current systems is managed entirely by the operat-
ing system. Compiler optimizations that maximize
page reuse and control various parameters can
enhance the interface’s performance. These parame-
ters include page size, the translation look-aside
buffer, and the page-replacement policy. The chal-
lenges here are similar to those of explicit cache con-
trol transformations, although approaches that use
explicit file I/O can offer the compiler even greater
control over data layouts on disks, the access pattern,
and the striping style of data across disks.

Dynamic selection of static transformations
With dynamic selection, the compiler generates

multiple possible transformations for different cases
that it cannot resolve at compile time. It then selects
the appropriate transformation when it has enough
information, typically at runtime. A simple example
of dynamic selection is early microprocessor system
code, which had to work both with and without a
math coprocessor.

A disadvantage of this technique is that it can pro-
duce substantially larger programs because it must
have several different code sequences. However, the
benefit of choosing the correct transformation may
outweigh the overhead associated with the runtime
decision and the larger code size. A runtime check may
also be expensive, such as in a data dependence test,
but hardware support can reduce this overhead.

Runtime disambiguation using static checks. A sim-
ple example of runtime disambiguation is to have
the compiler insert additional code, such as array-
bound checks, so that the processor can verify run-
time conditions. It can also insert code checks to
verify data dependence assumptions made during
optimization.

For example, the RTD runtime disambiguation sys-
tem2 inserts conditional statements into the compiled
code to check aliasing between indirect memory ref-
erences. It inserts checks whenever the static alias
analysis fails to generate a definitive answer and when
rearranging these memory operations would lead to

Figure 2. Where
various program
optimization
opportunities fall
along the continuum
in Figure 1.

December 1997 53

.

Compile
time

Post-
runtime

Static
transformations

Dynamic
speculation

and recovery

Dynamic
transformations

Post-runtime
optimization

Compilation Execution

Dynamic
selection of

transformations

54 Computer

a better instruction schedule. One branch of the check
leads to an optimized code sequence that assumes no
aliasing; the other branch leads to an optimized code
sequence that assumes the references are aliased. RTD
improved performance on several benchmark appli-
cations by 100 to 170 percent.2 Other researchers
could extend this basic idea to create simple code
checks for different key pieces of runtime informa-
tion.

Eliminating unnecessary work. Common subex-
pression elimination is an optimization used at com-
pile time to avoid recalculating values used several
times within a small program section. Avinash
Sodani and Gurindar Sohi used the same idea for
runtime optimization by buffering individual instruc-
tions along with their operands and results.3 When
the instructions are later fetched to be reexecuted,
the saved result from the previous execution can be
used if the current operands match those in the
buffer.

With compiler and hardware support, designers can
extend this reuse concept to support hardware “mem-
orization.” Here, the compiler identifies a computa-
tional tree containing a sequence of instructions, in
which intermediate results are not used outside it. The
compiler then identifies the source operands to the tree
so that each time it enters the tree, the hardware can
check the input operands with the values used in the
tree’s previous execution. If they all match, the hard-
ware can reuse previous results instead of having to
recompute all the instructions in the tree.

The same compiler analysis can benefit DataScalar
architectures.4 These proposed architectures run
uniprocessor binaries across multiple processors, each
of which is tightly coupled with a fraction of the pro-
gram’s physical memory. Each processor runs the same
program, performing redundant computation, and
broadcasts needed local operands to all other proces-
sors. When the compiler identifies an isolated tree,
each DataScalar node can check if it owns all the
source operands for the tree. If so, all other nodes
branch around the computation. The owner computes
the results and broadcasts them to the other nodes.

This technique saves computation at all but one
node and thereby reduces total off-chip traffic.

Multiversion loops. For some loops, the compiler
can generate two versions, one that could be executed
serially and one that could be executed in parallel. At
runtime, the compiler chooses the correct version
after reading the actual value of the variable that
determines the existence of a data dependence.

Another way is to introduce a parallelization thresh-
old, the point at which the overhead of parallel exe-
cution outweighs any benefit. If a loop does not have
a sufficient number of iterations, for example, the
compiler will choose the serial loop.

Dynamic recovery of speculative transformations
If the condition that violates a transformation is rel-

atively rare, the compiler can defer the decision-mak-
ing process and speculate that a transformation is
valid. After or while the pertinent section of the code
executes, the runtime system can check to verify that
the optimization was correct for the conditions that
actually occurred. If the conditions were incorrect for
the transformation executed, the system must roll
back to a point before it executed the offending code
section or must repair any changes it made.

As long as the cost of the verification, rollback, and
reexecution does not outweigh the benefit of the opti-
mization, the technique will improve overall perfor-
mance.

Control speculation. In this technique, which is
common in current microprocessors, the hardware
guesses the outcome of a conditional branch before it
can evaluate it. The processor can then continue
fetching and issuing instructions down one possible
branch path before it has resolved if the path is the
correct one. The compiler can move control-depen-
dent instructions above the conditional branches on
which the instructions depend.5 However, it must be
able to guarantee, without hardware assistance, that
these speculative instructions do not destroy program
semantics if it has predicted the outcome of the con-
ditional branch incorrectly.

The requirements of ensuring safe speculation at
compile time severely constrain the compiler’s abil-
ity to move code through the program (global code
motions). Several researchers have proposed new
architectures that let the compiler perform poten-
tially unsafe code moves by indicating which instruc-
tions are speculative and on what condition they
depend. With this compiler assistance, the hardware
can nullify the effect of the instruction if its specula-
tion was incorrect. Boosting 6 is an early example of
such an architectural mechanism. Conversely, the
Multiscalar processor7 is an example of how a
processor can use compiler support for dynamic
speculation, but use only the hardware to track spec-
ulative instructions and conditions that signal an
incorrect speculation.

Multiscalar processors execute a serial instruction
stream on multiple processing elements by having one
stage execute part of the program nonspeculatively,
while the other processing elements speculatively exe-
cute groups of instructions found farther along in the
instruction stream.

Data-dependence speculation. The compiler can
also speculate on dependences between memory oper-
ations, on the result of a load operation, or on any
other currently unknown (or unavailable) piece of
process state.

The MCB (Memory Conflict Buffer),8 for example,

With dynamic
selection,
the compiler
generates
multiple
possible
transforma-
tions for
different
cases that
it cannot
resolve at
compile
time.

.

lets the compiler move load operations above potentially
aliased store operations by maintaining the addresses of
speculative loads and checking these addresses against
stores it found before the loads but which it reorganized
to issue later. When a dependence is violated, the hard-
ware redirects execution to a piece of compiler-gener-
ated code that repairs the program state.

Similarly, the squash buffer9 holds loads that are
likely to cause rollbacks as a result of a dependence.
When the processor finds a suspicious load in the
squash buffer, it keeps the load from issuing until all
store addresses ahead of it in the reorder buffer have
been resolved.

With these types of hardware structures, the proces-
sor can speculatively issue the load earlier while recov-
ering from an incorrect speculation (MCB), or it can
speculate incorrectly less often (squash buffer).

Speculative parallelization. Sometimes the compiler
cannot determine if a construct, such as a loop, is par-
allel at compile time. In speculative parallelization,
the construct in question is instrumented with code
that lets the compiler verify whether it should have
been executed in parallel.10 Instrumenting a loop, for
example, involves setting bits in shadow copies of
arrays and using bit operations on the resulting bit
vectors. To minimize the runtime overhead of this
scheme, the processor compares the variables whose
values determine if the loop can be parallelized from
run to run of the same loop. If the values do not
change, the chosen optimization for the loop’s next
execution (either serial or parallel) is the same as for
the last execution of the loop.

The overhead decreases even more if the compiler
can prove statically at compile time that the decision
variables do not change between consecutive loop exe-
cutions. Instructions that support appropriate bit
operations could substantially increase this technique’s
applicability.

Dynamic transformations
Dynamic transformations delay producing the final

optimized code until runtime, although they may use
the results of previous analyses. For example, most
modern microprocessors now use dynamic instruc-
tion scheduling, in which instructions may be issued
in an order different from that of the static program.
Although the compiler generates an instruction sched-
ule, the hardware dynamically tracks dependences
among instructions to allow independent instructions
to issue ahead of stalled instructions that reside ear-
lier in the static instruction stream. The processor
thus continuously transforms the static instruction
schedule into a dynamic schedule that can hide unpre-
dictable latencies, such as cache misses. The overhead
of this scheme consists mainly of extra hardware,
such as register-renaming logic, a reorder buffer, extra

reservation stations, and dependence state. However,
with the silicon area now available, the hardware
overhead is acceptable.

Dynamic code generation is another way to delay
the final generation and optimization of a code sec-
tion until runtime. For example, the runtime system
can use data bound at load time and invariant over a
specific program run to perform optimizations such
as constant propagation and folding, common subex-
pression elimination, and branch elimination. This
technique has also been used in operating systems to
eliminate the repetitive checking of environment vari-
ables and to improve execution efficiency in languages
that use dynamic type information.

Post-runtime optimizations
Here, an object-code editor performs additional

transformations on the object code after execution to
improve the program’s performance next time it exe-
cutes. Morph11 is an example of how post-runtime
optimization can work. Morph combines compiling,
profiling, executable-rewriting, and operating system
technology to produce an environment for profile-
driven, machine-specific optimizations. Within a
Morph system, optimizations that were previously
invoked only at compile time are now automatically,
continuously, and transparently applied to executa-
bles on a user’s machine. Thus, the final stages of opti-
mization can now occur after the user has installed
and used the application, making it possible to collect
representative execution profiles and to exploit all
details of the host hardware during optimization. We
describe the Morph architecture in detail later.

REDEFINING THE ARCHITECTURE-
COMPILER INTERFACE

The taxonomy of optimizations just described
assumes a fairly fixed interface between hardware and
software. A fixed interface ensures backward com-
patibility so that existing software applications are
guaranteed to run on new implementations of an
architecture. This backward compatibility represents
an important commercial goal because developers can
take up to several years to develop complex applica-
tions and then expect them to be useful for a decade
or more. However, what processor developers must
realize is that a continued separation of compiler and
architecture will inhibit future performance improve-
ments.

Systems that allow for the automatic and continu-
ous optimization of application software offer a clear
path to greater performance. These systems are a nat-
ural consequence of increasing heterogeneity in proces-
sor and memory system implementations, which is
particularly evident in digital signal processors, as the
sidebar “Heterogeneity in Processor Architectures: A

If the
condition
that violates
a transforma-
tion is
relatively
rare, the
compiler
can defer
the decision-
making
process and
speculate
that a trans-
formation is
valid.

December 1997 55

.

56 Computer

New Obstacle for Compilation” describes.
Here we describe two optimization environments

that are attempting to redefine the architecture-com-
piler interface by automatically and transparently opti-
mizing the application software.

Morph
Figure 3 shows the general structure of a prototype

version of Morph,11 which was implemented for Digital

Equipment’s Alpha-based workstations running Digi-
tal’s Unix. The Morph executable acts as the link
between the traditional optimization phase at compile
time and the continuous reoptimization phase handled
by the Morph components on the end-user’s system.
This executable includes supplementary information
that is normally discarded after compilation but is
required for effective reoptimization—for example, a
list of target addresses for computed goto operations.
The Morph editor implements the optimizations Morph
provides.

The prototype system implements three code-lay-
out optimizations: branch alignment, procedure split-
ting, and procedure placement. These optimizations
are driven by statistical profile information that the
Morph Monitor collects.

The Morph Monitor is an operating system pseu-
dodevice that samples the program counter of all run-
ning applications. The prototype has demonstrated
that sampling in this manner increases an applica-
tion’s runtime by less than 0.3 percent, which is less
than the normal execution-time variability in Digital
Unix.

The Morph Manager is a user-level daemon that
provides off-line profile management and analysis. It
determines when reoptimization should occur. Finally,
the PostMorph tool analyzes and rewrites legacy exe-

Figure 3. The Morph
prototype. Morph pro-
vides for post-execu-
tion optimization
through a combination
of compiling, profiling,
executable rewriting,
and operating system
technology.

.

Heterogeneity in Processor Architectures:
A New Obstacle for Compilation

The increasing complexity of microarchitectures is leading to
design decisions that compromise homogeneity, making compi-
lation difficult. This issue is already a key research challenge in
digital signal processors. DSPs feature small, nonhomogeneous
register sets, specialized functional units, restricted connectivity,
and highly irregular data paths. They must also meet tight tim-
ing constraints with very little code, typically about a thousand
instructions. Conventional techniques for commercial compiler-
generated code tend to produce very inefficient code for these
processors. In fact, hand-coding for DSPs can triple perfomance
and result in more compact code.1

Thus, most code for DSPs is now written manually. However,
the increasing complexity of applications, the demand for shorter
time to market, and the lower development and maintenance
costs of modern DSPs are pushing designers toward the use of
high-level language compilation.

Unfortunately it is extremely difficult to design an appropriate
compiler, given the combination of heterogeneous architectures,
timing limitations, and small code size. Moreover, many embed-
ded systems applications and general computing environments
require low power use, which constrains the design of both hard-
ware and software even more.

Although performance improvements generally also improve

power dissipation, studies show that for a given performance
there may be additional power savings from the way instructions
are selected and scheduled. Some tools now support a low-power
analysis of architectures, but low-power software compilation
has only recently emerged as a research area. The current trend
is toward cleaner DSP architectures (typically very long instruc-
tion width), although compilation is expected to remain a chal-
lenge because of constraints particular to DSP applications.

Increased heterogeneity is beginning to appear frequently in gen-
eral-purpose processors as well. For example, almost all micro-
processor vendors now include some type of specialized support for
multimedia. With very small increases in cost, these processors have
incorporated significant increases in performance for such appli-
cations. The latest wide-issue superscalar processors are also clus-
tering register banks with certain functional units and creating
nonorthogonal forwarding paths, much like early very-long-
instruction-width machines. Thus, in the near future general-pur-
pose processors are likely to face compilation challenges similar to
those DSP designers are now attempting to overcome.

Reference
1. C. Gebotys and R. Gebotys, “Complexities in DSP Software Com-

pilation: Performance, Code Size, Power, Retargetability,” in Proc.
Hawaii Int’l Conf. Systems Science, IEEE CS Press, Los Alamitos,
Calif., to be published in 1998, pp. 150-156.

Morph
back end

SUIF compilerfile.c

Morph
executable Legacy

executable

Post
Morph

Morph
editor

Morph
Monitor

Machine
description

Profiles

Morph Manager

End-user's
computer

Development
machine

.

cutables to recover discarded information required by
the automatic optimization process and to provide the
system with a way to evolve.

Dynamite
Dynamite12 is an execution environment designed

for experimentation with pure runtime optimizations.
Dynamite operates on a program consisting of subject
instructions. These instructions are never directly exe-
cuted by the underlying target processor; instead,
each instruction is translated into an intermediate rep-
resentation when it is first executed. As the processor
encounters jumps, the environment translates the
intermediate representation for the previous block of
instructions into a block of target instructions and
executes it. When the same instruction is reexecuted,
the processor can use the translated instructions
directly. The environment also dynamically profiles
the running program, and as it detects hot spots
(groups of frequently used instruction blocks), it
invokes an optimizer to generate higher quality code
for these spots. The optimizer uses the intermediate
representation generated by the initial translator, and
benefits from the analysis carried out during the ini-
tial translation.

As execution proceeds, Dynamite combines larger
and larger groups of blocks, often giving more and
more scope for optimization. When conventional opti-
mization reaches its limits in innermost blocks,
Dynamite investigates value-specific optimizations
that create special-purpose sections of code tailored
to the program’s current behavior. It minimizes the
cost of analysis by limiting its scope to the group of
blocks currently being optimized. It avoids analysis
that must proceed beyond this scope by planting the
appropriate tests at the entry to the optimized group.
Early results show speedups of two to four on key
inner program loops. A major goal of this research is
to make these speedups available over whole program
runtimes.

Because no subject instruction is ever directly exe-
cuted, the subject and target architectures need not
be the same. In fact, the Dynamite system is con-
structed with replaceable front and back ends to con-
struct a family of cross-platform dynamic binary
translators.

M any of the optimizations we have described
require new hardware support and are thus
not compatible with older machines. The

large installed base of legacy binaries would also fail
to take advantage of many of the new hardware
mechanisms that the research community has pro-
posed. The rate of microprocessor innovation will

determine if architectural independence is worth the
price. A slow, gradual introduction of new features
would give software time to catch up. Conversely, a
relentless unfolding of new hardware features would
mean systems must not require a complete recompi-
lation to exploit each new feature. The industry is
closer to the second scenario and is likely to grow
even more so, as on-chip resources increase by orders
of magnitude. We thus expect to see even more rad-
ical interaction changes—an even fuzzier line—
between architecture and compiler. ❖

References
1. J. Lo and S. Eggers, “Improving Balanced Scheduling

with Compiler Optimizations That Increase Instruction-
Level Parallelism,” in Proc. Conf. Programming Lan-
guage Design and Implementation, ACM Press, New
York, 1995, pp. 151-162.

2. A. Nicolau, “Run-Time Disambiguation: Coping with
Statically Unpredictable Dependencies,” IEEE Trans.
Computers, May 1989, pp. 663-678.

3. A. Sodani and G. Sohi, “Dynamic Instruction Reuse,” in
Proc. Int’l Symp. Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., 1997, pp. 194-205.

4. D. Burger, S. Kaxiras, and J. Goodman, “Datascalar
Architectures,” in Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1997, pp. 338-349.

5. H. Hwu et al., “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation,” J. Supercom-
puting, Jan.-Feb. 1993, pp. 229-248.

6. M. Smith, “Architectural Support for Compile-Time
Speculation,” in Architectural Support for Compile-
Time Speculation, D. Lilja and P. Bird, eds., Kluwer Aca-
demic, New York, 1994, pp. 13-49.

7. G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
Processors,” in Proc. Int’l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., 1997, pp. 414-425.

8. D. Gallagher et al., “Dynamic Memory Disambiguation
Using the Memory Conflict Buffer,” in Proc. Symp.
Architectural Support for Programming Languages and
Operating Systems, ACM Press, New York, 1994, pp.
183-193.

9. A. Moshovos et al., “Dynamic Speculation and Syn-
chronization of Data Dependences,” in Proc. Int’l Symp.
Computer Architecture, IEEE CS Press, Los Alamitos,
Calif., 1997, pp. 181-193.

10. W. Blume et al., “Parallel Programming with Polaris,”
Computer, Dec. 1996, pp. 78-82.

11. X. Zhang et al., “System Support for Automatic Profil-
ing and Optimization,” in Proc. Symp. Operating Sys-
tems Principles, ACM Press, New York, 1997, pp. 15-26.

12. A. Rawsthorne and J. Souloglou, Dynamite: A Frame-
work for Dynamic Retargetable Binary Translation, Tech.

December 1997 57

58 Computer

Report UMCS 97-3-2, University of Manchester, Man-
chester, UK, 1997.

Sarita V. Adve is an assistant professor of electrical and
computer engineering at Rice University. She received
a BTech in electrical engineering from the Indian Insti-
tute of Technology, and an MS and a PhD in computer
science from the University of Wisconsin, Madison.

Doug Burger is a PhD candidate at the University of
Wisconsin at Madison. He received an MS from the
University of Wisconsin, Madison and a BS from Yale
University, both in computer science.

Rudolf Eigenmann is a faculty member of the School
of Electrical and Computer Engineering at Purdue Uni-
versity and chairman of the High-Performance Group
of the Standard Performance Evaluation Corp. He
received a PhD in electrical engineering/computer sci-
ence from ETH Zurich.

Alasdair Rawsthorne is a lecturer in computer science at
the University of Manchester. He received a BSc in elec-
tronic engineering from the University of Southampton.

Michael D. Smith is an associate professor of electri-
cal engineering and computer science in the Division
of Engineering and Applied Sciences at Harvard Uni-
versity. He received a BS in electrical engineering and
computer science from Princeton University, an MS
in electrical engineering from Worcester Polytechnic
Institute, and a PhD in electrical engineering from
Stanford University.

Catherine H. Gebotys is an associate professor of elec-
trical and computer engineering at the University of
Waterloo. She received a BASc in engineering science
and an MASc in electrical engineering, both from the
University of Toronto, and a PhD in electrical engi-
neering from the University of Waterloo.

Mahmut T. Kandemir is a PhD candidate in electrical
engineering and computer science at Syracuse Uni-
versity. He received a BS and an MS, both in computer
engineering, from the Technical University of Istan-
bul.

David J. Lilja’s biography appears on p. 50.

Alok N. Choudhary is an associate professor of elec-
trical and computer engineering at Northwestern Uni-
versity. He received an MS from the University of
Massachusetts, Amherst, and a PhD from the Uni-
versity of Illinois, Urbana-Champaign—both in elec-
trical and computer engineering.

Jesse Z. Fang is manager of a compiler and tools
research group at Intel’s Microcomputer Research
Labs. Fang received a PhD in computer science from
the University of Nebraska, Lincoln.

Pen-Chung Yew is a professor of computer science at
the University of Minnesota and former associate
director of the Center for Supercomputing Research
and Development at the University of Illinois,
Urbana-Champaign.

Contact Lilja at the ECE Dept., University of Min-
nesota, 200 Union St., SE, Minneapolis, MN 55455;
lilja@ece.umn.edu.

.

Reader Service Number 7

