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Abstract. The multiplicity of a zero of a (univariate, polynomial) spline is defined
in terms of its B-spline coefficients, thus making certain bounds trivial while, at the same
time, adhering to the principle that the multiplicity of a zero indicates the number of
simple zeros nearby achievable by a nearby element from the same class. In particular, the
multiplicity depends on the class to which the function is assumed to belong.

The resulting multiplicity turns out to coincide with that given recently in more
traditional terms by T. N. T. Goodman.
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Dedicated to Ted Rivlin, on the occasion of his 70th birthday

The variation-diminishing property of B-splines provides a ready upper bound on
the number of zeros of a (univariate) spline in terms of the number of sign changes in
the sequence of its B-spline coefficients. Because of the compact support of the B-spline,
this bound is even local. Finally, the bound even holds if zeros are counted with certain
suitable multiplicities. However, the sharpness of the resulting bound depends on just how
one defines the multiplicity of a spline zero.

For arbitrary real-valued functions, smooth or not, on some interval I, zeros have long
been classified as nodal (aka simple, odd) or nonnodal (aka double, even) depending on
whether or not the function changes sign across the zero. Here, the function f is said to
change sign across ξ, or, ξ is a sign change of f , iff, for all ε > 0, f(α)f(ω) < 0 for
some ξ − ε ≤ α < ξ < ω ≤ ξ + ε.

For a continuous f , a sign change is necessarily also a zero of f , but need not be a zero
if f fails to be continuous. Not surprisingly, such a sign change is treated, nevertheless,
as a zero whenever zeros are considered in the context of the possible sign changes of the
function.

For smooth f , this rudimentary multiplicity concept (of simple vs double zeros) has
been augmented and refined by assigning the multiplicity m+1 to any zero of f which is a
zero of multiplicity m of Df , the first derivative of f . This refinement is mainly motivated
by the desire to exploit Rolle’s theorem to the fullest, and is, offhand, of not much help
when f is not smooth.

It is one purpose of this note to advocate, instead, the notion (implicit in various
definitions of multiplicity of zeros) that the multiplicity of a zero of f depend on the class
F of which f is thought to be a member. Because this note is devoted to splines, it is

1



convenient (as noted already in [5]) to define a zero of f to be an interval, more precisely
any maximal closed interval whose interior lies in the set

f−1{0} := {x ∈ dom f : f(x) = 0}.

This definition takes account of the fact that a spline need not be continuous but does
have right and left limits at every point. By this definition, for every ζ ∈ dom f , [ζ . . ζ] is
a zero of f , but usually a zero of multiplicity 0, in the sense of the following definition.

Definition 1. We say that z in domF is a zero of multiplicity m of the element f of
the collection F of real-valued functions, all defined on the real interval domF , if z is a
zero of f and, for every neighborhood of f and every open interval w containing z, there
is some element g of F which has m sign changes in w.

It is the main purpose of this note to compare the resulting multiplicity of a zero of
a spline to some definitions in the literature and to give a very simple characterization of
this multiplicity in terms of the B-spline coefficients of the spline. In other words,

F = Sk,t := span{Bi := Bi,k,t : i = 1, . . . , n},

with k the order of the splines, with

t := (t1 ≤ · · · ≤ tn+k)

the knot sequence, and Bi := B(·|ti, . . . , ti+k) the B-spline with knots ti, . . . , ti+k.
Since the order, k, is not varied, I will refer to Bi or Bi,t rather than Bi,k,t. It will be
assumed throughout that ti < ti+k for all i, i.e., none of the Bi is trivial. Further, the
open interval (t1 . . tn+k) will, at times, be referred to as the basic interval of the spline
space (and its elements).

[7 : p.184] traces the development of the multiplicity concept of a spline zero, up
to 1976, mentioning work by Schoenberg, Johnson, Braess, Karlin, Micchelli, Pence and
others, with Schumaker’s paper [6] providing a kind of capstone. All these different ways
of counting spline zeros according to some multiplicity result in a count Z+(f) of the zeros
of the spline f which satisfies the bound

Z+(f) ≤ S+(a), (2)

with f =:
∑

j ajBj the B-spline expansion for f , and

S+(a), S−(a)

the maximal, respectively, minimal, number of sign changes in the coefficient sequence a
obtainable by a suitable choice of the signum of any zero entry.

However, the recent paper [2] by T.N.T. Goodman showed that, surprisingly, there
was still room for improvement, both in the definition of spline-zero multiplicities and
in the bound (2). As simple examples, Goodman offers (i) the quadratic spline f :=
B1 +B3−B5−B7 with simple knots which obviously has just one zero in its basic interval,
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and this zero is nodal, hence Z+(f) = 1 while S+(a) = S+(1, 0, 1, 0,−1, 0,−1) = 5; and
(ii) the linear spline f := B1 −B4 on the knot sequence t = (1, 2, 3, 3, 4, 5), which has just
one zero in its basic interal, and this zero is of multiplicity 1 by Schumaker’s count but
is of multiplicity 3 according to the multiplicity count (1), and the latter count makes (2)
sharp for this example.

This note offers a slight improvement on Goodman’s results and their proofs and may
serve as motivation for his definition of spline-zero multiplicities.

Goodman’s results

Goodman [2] relies on nothing more than knot insertion, by now a standard tool even
in spline theory, as it has been in CAGD for a long time. The basic fact, first pointed
out by Boehm in [1], has a very pretty geometric interpretation in terms of the control
polygon Ck,tf of f :=

∑
i aiBi,t ∈ Sk,t, which, by definition, is the broken line with

vertices

vj := (t∗j := (tj+1 + · · · + tj+k−1)/(k − 1), aj) ∈ IR2, j = 1, . . . , n.

Here is Boehm’s result.

Lemma 3 (Boehm). If the knot sequence t̂ is obtained from the knot sequence t by the
insertion of just one point, and

∑
i aiBi,t = f =

∑
i âiBi,t̂, then, for each i, the vertex v̂i

of Ck,t̂f lies in the segment [vi−1 . . vi] of Ck,tf .
More explicitly, if ζ is the point inserted, then v̂i = (1 − αi)vi−1 + αivi, all i, with

αi ∈



{1}, if ζ ≤ ti;
(0 . . 1), if ti < ζ < ti+k−1;
{0}, if ti+k−1 ≤ ζ.

It is immediate that
S−(â) ≤ S−(a), (4)

hence, by suitable choice of additional knots and induction, that

S−(
∑

i

aiBi) ≤ S−(a), (5)

as was first proved this way by Lane and Riesenfeld in [4]. Here, S−(f) counts the number
of sign changes of f .

Goodman and Lee [3] prove that also

S+(â) ≤ S+(a) (6a)

in case the following

Condition(a, t): ∀x ∈ (t1 . . tn+k) ∃ i s.t. ti < x < ti+k and ai 6= 0 (6b)
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holds. Based on this result, Goodman proves in [2] that, under Condition(a, t),

Z+(f) ≤ S−(a). (7)

Examination of Goodman’s proof shows that this striking improvement on (2) relies
on nothing more than the following observation: Assume without loss (i.e., without change
of f or S−(a)) that a1an 6= 0. If S−(a) < S+(a), then there must be some µ ≤ ν for which

aµ−1 6= 0 = aµ = · · · = aν 6= aν+1. (8)

If tµ−1+k ≤ tν+1, then ai = 0 for all i with ti < tν+1 < ti+k, a situation excluded by
Condition(a, t). Consequently, we may choose some ζ ∈ (tν+1 . . tµ−1+k)\t. Let t̂ be the
knot sequence obtained from t by insertion of any one such ζ, and let â be the corresponding
B-spline coefficient sequence for f . By (8) and Lemma 3,

aµ−1âµ > 0, âν+1aν+1 > 0,

âµ 6= 0 = âµ+1 = · · · = âν 6= âν+1.

It follows that, while the B-spline coefficient segment with endpoints aµ−1 = âµ−1 and
aν+1 = âν+2 has been lengthened by one entry, the number of strong sign changes in it has
not changed and, more noteworthy, the number of zero entries in it has decreased. Also,
Condition(t̂, â) holds. Therefore, induction provides a refined knot sequence t̃ for which
the corresponding B-spline coefficient sequence ã has no zero entries, thus ensuring that
S+(ã) = S−(ã) while, in any case, S−(ã) ≤ S−(a), from (5). Therefore, (7) now follows
from (2).

The argument just given suggests, as does Goodman in [2 : p.126], that, for the
sharpest possible bound on the number of zeros of the spline f =

∑
i aiBi,t, one should

break up f into what I will call here its connected components. By this, I mean the
partial sums

fI :=
∑
i∈I

aiBi

with I = (ν, . . . , µ) for which
∑

i∈I |ai|Bi > 0 on its basic interval (i.e., on (tν . . tµ+k))
while f − fI vanishes on that interval. Between any two neighboring such intervals, f is
obviously zero, since even

f t :=
∑

i

|ai|Bi,t

is zero there. For this reason, such a zero of f is called ‘obvious’ below.
However, in contrast to [2], I will carry out the discussion entirely in terms of the

B-spline coefficients. This requires the characterization in terms of B-spline coefficients of
the multiplicity of a spline zero as defined by Definition 1. This is the subject of the next
section.
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Definition of spline-zero multiplicity

Since multiplicity is defined in terms of nearby sign changes possible in nearby splines,
it is important to understand just how many sign changes an element of Sk,t can have ‘near’
some interval. Denote by

S−(f,w) := sup{r : ∃x0 < · · · < xr in w s.t. S−(f(x0), . . . , f(xr)) = r}

the number of sign changes of f on the open interval w. From (5), we know that

S−(
∑

i

aiBi, I(w)) ≤ S−(aI(w)), (9)

with
I(w) := (i : (ti . . ti+k) ∩ w 6= ∅).

Further, equality is always achievable in (9) by proper choice of a since, by the Schoenberg-
Whitney theorem, we can uniquely interpolate from span(Bi : i ∈ I(w)) to arbitrary data
at any strictly increasing sequence (xi : i ∈ I(w)) as long as ti < xi < ti+k, all i ∈ I(w).

With this, consider first what I will call an obvious zero of f ∈ Sk,t. By this, I mean
any zero z of f =

∑
i aiBi which satisfies

aI(z) = 0.

Let
aµ,ν := (aµ, . . . , aν)

be the corresponding zero of a, i.e., the maximal sequence of consecutive zero entries
of a containing the segment aI(z). It is convenient (and consistent) to include here the
possibility that I(z) = ∅, in which case

µ − 1 := max{i : ti+k ≤ z, ai 6= 0}, ν + 1 := min{i : z ≤ ti, ai 6= 0}.

Now consider the multiplicity to be assigned to z as a(n obvious) zero of f . By (2),
for every g in Sk,t near f , there is some open interval w properly containing z on which g
has at most

S+(aµ−1, . . . , aν+1) (10)

sign changes, with
a0 := a1, an+1 := an.

The next proposition shows this bound to be sharp, hence, with Definition 1, I define the
multiplicity of z as a zero of f to be the number (10).
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Proposition 11. If f =
∑

i aiBi ∈ Sk,t has the obvious zero z, with aµ,ν the correspond-
ing zero of a, then, for every open interval w containing z, every neighborhood of f in Sk,t

contains some g with S+(aµ−1, . . . , aν+1) sign changes in w.

Proof. The proof is case-by-case.
Case µ > ν: Then, necessarily, I(z) = ∅, and so, necessarily, z = [ζ . . ζ] for some

ζ ∈ [t1 . . tn+k].
If ζ is one of the endpoints, ζ = t1 say, then a1 6= 0, and (10) equals 0, thus there is

nothing to prove.
Else, ζ ∈ (t1 . . tn+k). Since I(z) = ∅, ζ is not in (ti . . ti+k) for any i, hence, necessarily,

ζ is a knot, of multiplicity k. Further, since µ > ν,

f(ζ−) = aµ−1, µ = ν + 1, f(ζ+) = aµ,

hence (10) is 0 or 1 depending on whether f(ζ−)f(ζ+) is positive or negative, thus, g = f
will serve.

Case µ ≤ ν: In this case,

[zl . . zr] := z = [tµ+k−1 . . tν+1].

Let
I(z) =: (µ′, . . . , ν′).

Reduction to the case I(z) = (µ, . . . , ν): Assume that, e.g., ν′ < ν. In this case,

f(zr + s) = aν+1s
κ + O(sκ+1) as s ↓ 0,

with k−κ the multiplicity of zr as a knot for Bν+1. Since ν 6∈ I(z), it follows that tν = zr,
hence Bν has zr as a knot of multiplicity k − κ + 1. Therefore, as ε ↓ 0,

aε
ν := −f(zr + ε)/Bν(zr + ε)

goes to zero, while, for every small ε > 0,

gε := f + aε
νBν

has a simple zero at zr + ε, hence zr + ε is a sign-change for gε. Since gε → f as ε → 0,
we can choose ε so small that any sign change of f to the right of zr gives rise to a sign
change in gε. Consequently, we can now use induction on ν − ν′ to conclude, for all small
ε > 0, the existence of

gε =
∑

i

aε
i Bi

within ε of f , with z an obvious zero, with aε
i = ai for all i 6∈ {ν′ + 1, . . . , ν}, with ν − ν′

sign changes in (zr . . zr + ε), and with

S−(aε
ν′+1, . . . , a

ε
ν , aν+1) = ν − ν′ = S+(aν′+1, . . . , aν , aν+1).
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There is an analogous argument in case µ < µ′. Hence the proposition is proved once we
deal with the following case.

Case I(z) = (µ, . . . , ν):
Subcase zl < zr: In this case, we may choose xµ < · · · < xν in (zl . . zr) with

ti < xi < ti+k, all i, and, by the Schoenberg-Whitney theorem, for any such fixed choice
and any ε > 0, Sµ,ν contains an element hε =:

∑ν
i=µ aε

i Bi of size ε for which

S−(hε(xi) : i = µ, . . . , ν) = ν − µ = S−(aε
i : i = µ, . . . , ν),

while hε(zr−)aν+1 < 0. Thus, for all sufficiently small ε > 0,

gε := f + hε

has µ − ν sign changes in (zl . . zr) and an additional sign change at zr or to the right
of it (in addition to all the sign changes inherited from f) and, finally, an additional sign
change at zl or to the left of it in case aµ−1(−1)ν−µaν+1 > 0; hence, in either case, gε is
close to f and has S+(aµ−1, . . . , aν+1) sign changes near z.

Subcase zl = zr: Let ζ := zr. Then the multiplicity of ζ in t is k−κ, with κ := ν+1−µ,
and this is also the multiplicity of ζ as a knot for both Bµ−1 and Bν+1, hence

f(x) = aµ−1(ζ − x)κ
+ + aν+1(x − ζ)κ

+ + O(|x − ζ|κ+1).

For given ε > 0, choose pε to be the unique polynomial of degree < κ which agrees with f
at z + jε, j = 1, . . . , κ. Then limε→0 pε = 0, hence the unique element, gε, of Sk,t which
agrees with f − pε on (ζ . . ζ + (κ + 1)ε) has κ sign changes there and converges to f as
ε → 0. Further, gε(ζ+)(−1)κaν+1 > 0 while gε(ζ − s)aµ−1 > 0 for some small positive s.
Hence, depending on whether or not aµ−1(−1)κaν+1 < 0, gε has an additional sign change
near, and to the left of, ζ, for a total of S+(aµ−1, . . . , aν+1) sign changes.

The remaining zeros of f , if any, I will call nonobvious. Any such zero is an interior
zero of one of the connected components of f , and necessarily of the form z = [ζ . . ζ].

Proposition 12. Let z = [ζ . . ζ] be a nonobvious zero of f =:
∑

i aiBi ∈ Sk,t and let

f =:
∑

i ãiBi,̃t
, with t̃ obtained from t by insertion of ζ just enough times to make z an

obvious zero of f as an element of S
k,̃t

.

Then, the multiplicity according to Definition 1, of ζ as a zero of f ∈ Sk,t, equals

S+(ãµ−1, . . . , ãν+1) = µ + 1 − ν, (13)

with ãµ,ν the corresponding zero of ã.

Proof. The only issue is the equality (13) and whether S+(ãµ−1, . . . , ãν+1) is the
multiplicity of z as a zero of f as an element of Sk,t.

Let
Ĩ(z) := (i : (t̃i . . t̃i+k) ∩ z 6= ∅) =: (j, . . . , j + r).
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Figure 1. Since the control polygon must have its vertices on the dot-
ted lines and must cross the axis at the circled points strictly
between the dotted lines, it maximally oscillates unless it is
entirely flat.

Since z is an obvious zero of f =
∑

i ãiBi,̃t
, Ĩ(z) must be a subsequence of (µ, . . . , ν). I

claim that, actually,
Ĩ(z) = (µ, . . . , ν). (14)

To see this, let t̂ be the knot sequence obtained from t̃ by removal of one occurrence of ζ.
For each i ∈ Ĩ(z), the most recently inserted knot, ζ, satisfies t̂i = t̃i < ζ < t̃i+k = t̂i+k−1,
hence, by the second part of Lemma 3, the corresponding vertex ṽi = (t̃∗i , 0) must lie
strictly inside the corresponding segment [v̂i−1 . . v̂i] of the control polygon for f as an
element of Sk,t̂. This implies (see Figure 1) that v̂i, i ∈ Ĩ(z), is determined once v̂j−1 is
known. In particular,

S−(âj−1, . . . , âj+r) = r + 1, (15)

unless all these coefficients are zero. However, this alternative would mean that z is already
an obvious zero of f as an element of Sk,t̂, contrary to construction. Thus, µ = j, ν = j+r
and, correspondingly,

âj−1 = ãµ−1 6= 0 = ãµ = · · · = ãν 6= ãν+1 = âj+r,

proving (13). In particular, the multiplicity to be assigned to z equals the number of
entries in the corresponding zero ãµ,ν of ã.

With (14) now proved, we know that, thinking of f as an element of S
k,̃t

, we are in
the last case treated in the proof of Proposition 11, hence know from there the existence
of a gε in Sk,t (since gε was obtained there by extending a suitable polynomial to a spline)
close to f and with S+(ãµ−1, . . . , ãν+1) sign changes close to z.
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With this way of counting the multiplicity of the zeros of f , the following improvement

Z+(f) ≤ S−(a1, . . . , aµ1−1) + S+(aµ1−1, . . . , aν1+1) + S−(aν1+1, . . . , aµ2−1) + · · ·
· · · + S+(aµJ−1−1, . . . , aνJ+1) + S−(aνJ+1, . . . , an)

(16)

over (2) is immediate, in which aµj ,νj
, j = 1, . . . , J , are all the zeros of a corresponding to

obvious zeros of f , in order.

Comparison with the multiplicity of Schumaker and of Goodman

Both Schumaker and Goodman distinguish explicitly between isolated zeros and zero
intervals, providing separate discussions of their multiplicities.

So, let z be a zero, interval or isolated. Both Schumaker and Goodman begin with
the determination of a certain number α(z), which I will denote here by αS(z) and αG(z)
if that distinction matters and which, by definition, is the multiplicity of z unless that
would lead to an incorrect parity, i.e., when α(z) is odd while z is nonnodal, or α(z) is
even while z is nodal; in the latter case, the actual multiplicity is taken to be α(z) + 1.
The multiplicity count I am proposing is certain to assign odd (even) multiplicity to nodal
(nonnodal) zeros, without any case distinction being required.

When z is an interval zero, with endpoints zl, zr, then αS(z) ≤ αG(z), with strict
inequality possible. Precisely, αS(z) = k+ the number of knots strictly inside the interval
z, while αG(z) replaces k by l + r + p + q − k, with l the exact order of f(zl−), p the
multiplicity of zl as a knot in t, and, correspondingly, r the exact order of f(zr+) and q
the multiplicity of zr in t. It follows that, in the B-representation of the spline, no B-spline
with some support in the interior of z can appear nontrivially, nor can any B-spline in
which zl occurs with multiplicity ≥ k − l nor any in which zr occurs with multiplicity
≥ k − r. This readily shows that the multiplicity I assigned to such a zero agrees with
Goodman’s.

When z is an isolated zero, obvious or nonobvious, then also αS(z) ≤ αG(z) with
strict inequality possible. Precisely, with l (r) the exact order of f(z−) (f(z+)), αS(z) =
max(l, r), and this agrees with αG(z) except when l ≥ k − s, with s the multiplicity of z
in t, in which case αG(z) = l + r + s − k. In the latter case, all B-splines that have z in
the interior of their support have it appear there to multiplicity s ≥ k − l, hence cannot
appear nontrivially in the B-representation for f . In other words, z is an obvious zero. In
either case, the multiplicity I assigned to this isolated zero agrees with Goodman’s.
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