
A NOTE ON THE LIMITED STABILITY

OF SURFACE SPLINE INTERPOLATION

Michael J. Johnson

johnson@mcs.sci.kuniv.edu.kw
Kuwait University

Abstract. Given a finite subset Ξ ⊂ Rd and data f|Ξ
, the surface spline interpolant to

the data f|Ξ
is a function s which minimizes a certain seminorm subject to the interpolation

conditions s|Ξ
= f|Ξ

. It is known that surface spline interpolation is stable on the Sobolev

space W m in the sense that ‖s‖L∞(Ω) ≤ const ‖f‖W m , where m is an integer parameter

which specifies the surface spline. In this note we show that surface spline interpolation is
not stable on W γ whenever γ < m − 1/2.

1. Introduction

Let m, d be positive integers with m > d/2. The Beppo-Levi space Hm is defined to be

the space of tempered distributions f for which Dαf ∈ L2 := L2(R
d) for all |α| = m, and

the seminorm |·|Hm is defined by

|f |Hm :=
∥∥∥|·|m f̂

∥∥∥
L2

, f ∈ Hm,

where f̂ denotes the Fourier transform of f . Let Πk denote the space of polynomials

over R
d having total degree at most k, and let Ξ be an arbitrary nonempty subset of R

d.

Duchon [5] has shown that if Ξ is not contained in the zero-set of any nontrivial polynomial
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in Πm−1, then for all f ∈ Hm there exists a unique s ∈ Hm which minimizes |s|Hm subject

to the interpolation conditions

(1.1) s(ξ) = f(ξ) for all ξ ∈ Ξ.

The function s is called the surface spline interpolant to f at Ξ, and will be denoted TΞf .

In case Ξ is finite, Duchon has characterized TΞf as the unique function which satisfies

(1.1) and has the form

TΞf = q +
∑

ξ∈Ξ

λξφ(· − ξ),

where

φ(x) :=

{
|x|

2m−d
if d is odd

|x|
2m−d

log |x| if d is even
,

q ∈ Πm−1, and λ satisfies the auxiliary conditions

∑

ξ∈Ξ

λξp(ξ) = 0 for all p ∈ Πm−1.

With the above formulation, the coefficients λ and the polynomial q ∈ Πm−1 can be

readily found by solving a system of linear equations, and this has made surface spline

interpolation an attractive method for interpolating scattered data. The function TΞf

is called a radial basis function because its essential part,
∑

ξ∈Ξ λξφ(· − ξ), is a linear

combination of translates of a single radially symmetric function. For a more general

construction of radial basis function interpolants to scattered data, the reader is referred

to the work of Light and Wayne [10].

Duchon has estimated the error in surface spline interpolation in terms of the fill distance

from Ξ to Ω, given by

h := h(Ξ,Ω) := sup
x∈Ω

inf
ξ∈Ξ

|x− ξ| .

One formulation of Duchon’s [6] error estimate is the following:
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Theorem 1.2. Let Ω ⊂ R
d have the cone property. There exists h1 > 0 (depending only

on Ω and m) such that if Ξ satisfies h := h(Ξ,Ω) ≤ h1, then

‖g‖Lp(Ω) ≤ const(Ω, m)hm−d/2+d/p |g|Hm

for all g ∈ Hm which vanish on Ξ and for all 2 ≤ p ≤ ∞.

By choosing g = f −TΞf and noting that |f − s|Hm ≤ 2 |f |Hm one immediately obtains

the familiar error estimate:

‖f − TΞf‖Lp(Ω) ≤ const(Ω, m)hm−d/2+d/p |f |Hm .

We wish to draw the reader’s attention to the fact that it follows from this error estimate

that surface spline interpolation is stable on the Sobolev space Wm(Rd) in the sense that

if h ≤ h1, then

‖TΞf‖L∞(Ω) ≤ const(Ω, m) ‖f‖W m(Rd) ,

where W γ(Rd) (γ ≥ 0) is defined to be the space of all f ∈ L2(R
d) for which

‖f‖W γ(Rd) :=
∥∥∥(1 + |·|

2
)γ/2f̂

∥∥∥
L2(Rd)

<∞.

To see this, we recall that by the Sobolev imbedding theorem [1, p.97] (as m > d/2),

‖f‖L∞(Rd) ≤ const(d,m) ‖f‖W m(Rd) , f ∈Wm(Rd).

Hence,

‖TΞf‖L∞(Ω) ≤ ‖TΞf − f‖L∞(Ω) + ‖f‖L∞(Rd)

≤ const(Ω, m)hm−d/2 |f |Hm + const(d,m) ‖f‖W m(Rd) ≤ const(Ω, m) ‖f‖W m(Rd) ,

where we have used the imbedding |f |Hm ≤ ‖f‖W m(Rd) in the last inequality.

The purpose of this note is to show that surface spline interpolation is not stable on

W γ(Rd) whenever d/2 < γ < m− 1/2. Specifically we prove the following:
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Theorem 1.3. Let Ω be the closed unit ball {x ∈ R
d : |x| ≤ 1}, and assume d/2 < γ <

m − 1/2. For every h0 > 0 there exists f ∈ W γ(Rd) and a sequence of finite pointsets

Ξn ⊂ Ω, with h(Ξn,Ω) ≤ h0, such that ‖TΞn
f‖L1(Ω) → ∞ as n→ ∞.

Note that this theorem leaves open the interesting possibility that surface spline interpo-

lation remains stable on W γ(Rd) when γ ≥ m− 1
2 .

We mention that the question of whether univariate spline interpolation is stable on

C(R) has been addressed by de Boor [3, pp. 194–197]. In contrast to Theorem 1.3,

Brownlee and Light [4] (see also [11] and [12]) show that if the interpolation points are

quasi-uniformly scattered, then in addition to being stable on W γ(Rd) (γ ∈ Z∩ (d
2 , m−1])

surface spline interpolation actually acheives the expected order of approximation.

2. Construction of a function in W γ(Rd)

Our first task is to construct the function f which will be used in the proof of Theorem

1.3. Let σ ∈ C∞
c ([−4, 4]) be such that σ = 1 on [−3, 3]. Here C∞

c (A) denotes the space

of compactly supported C∞ functions whose support is contained in A. For α > 0 and

β ∈ R, we define fα,β ∈ C(R) by

fα,β(x) := σ(x− β) |x− β|
α
.

Lemma 2.1. If α > 0 and 0 ≤ γ < α+ 1/2, then fα,β ∈ W γ(R) for all β ∈ R.

Proof. Assume α > 0 and 0 ≤ γ < α+ 1/2. If α is an even integer, then fα,β ∈ C∞
c (R) ⊂

W γ(R), so assume α is not an even integer. Since fα,β is simply a translate of fα,0 and

W γ(R) is translation invariant, we may assume without loss of generality that β = 0.

Define ψ ∈ C(R) by ψ(x) := |x|
α

so that we can write fα,0 = σψ. Note that since ψ has
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at most polynomial growth, ψ is a tempered distribution. It is known [7] that ψ̂ can be

identified on R\{0} with c |·|
−α−1

for some constant c. Writing

ψ̂ = σψ̂ + (1 − σ)c |·|
−α−1

=: ĝ1 + ĝ2,

we see that ĝ2 admits the estimate |ĝ2(w)| ≤ const(α, σ)(1 + |w|)−α−1 whence it readily

follows that g2 ∈ W γ(R); hence, σg2 ∈ W γ(R). As for g1, we note that g1 ∈ C∞(R) since

ĝ1 is compactly supported; hence, σg1 ∈ C∞
c (R) ⊂W γ(R). Therefore, fα,0 = σg1 + σg2 ∈

W γ(R). �

Let ν ∈ C∞
c ([1/4, 4]) satisfy 0 ≤ ν ≤ 1 and ν = 1 on [1/2, 2]. Let ρ : R

d → [0,∞)

denote the modulus mapping

ρ(x) := |x| .

We define the linear operator M : Cc(R) → Cc(R
d) by Mf := (νf) ◦ ρ; in other words

Mf(x) := ν(|x|)f(|x|), x ∈ R
d.

Having defined M on Cc(R), we note that by changing to spherical coordinates one sees

that the L2(R
d)-norm of Mf is dominated by a constant multiple of the L2(R)-norm of f :

‖Mf‖
2
L2

= const(d)

∫ ∞

0

td−1 |ν(t)f(t)|
2
dt ≤ const(d)

∫ 4

1/4

|f(t)|
2
dt ≤ const(d) ‖f‖

2
L2(R) .

Since M is linear and Cc(R) is dense in L2(R) it follows that M can be uniquely extended

to a continuous linear operator from L2(R) into L2(R
d). For brevity, let us denote this

extension also by M .

Proposition 2.2. For all γ ≥ 0 and f ∈W γ(R),

‖Mf‖W γ(Rd) ≤ const(d, ν, γ) ‖f‖W γ(R) .
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Proof. Let us first consider the case γ = 2n for an integer n ≥ 0. We will employ the

following equivalent norms for ‖·‖W 2n(R) and ‖·‖W 2n(Rd), respectively:

‖g‖W 2n(R) ∼

2n∑

k=0

∥∥∥g(k)
∥∥∥

L2(R)
, g ∈W 2n(R);

‖g‖W 2n(Rd) ∼ ‖g‖L2(Rd) + ‖∆ng‖L2(Rd) , g ∈W 2n(Rd),

where ∆ := ∂2

∂x2

1

+ ∂2

∂x2

2

+ · · · + ∂2

∂x2

d

denotes the Laplacian operator. Since C∞
c (R) is dense

in W 2n(R), it suffices to consider the case f ∈ C∞
c (R). Put g := νf . It is shown in the

proof of [8, Lem. 2] that there exist functions p0, p1, . . . , p2m−1 ∈ C∞(0,∞) such that

∆n(g ◦ ρ) = g(2n)(ρ) + p2n−1(ρ)g
(2n−1)(ρ) + · · ·+ p0(ρ)g(ρ).

Hence,

‖∆nMf‖
2
L2(Rd) = const(d)

∫ ∞

0

td−1
∣∣∣g(2n)(t) + p2n−1(t)g

(2n−1)(t) + · · · + p0(t)g(t)
∣∣∣
2

dt

≤ const(d, n)

∫ 4

1/4

2n∑

k=0

∣∣∣g(k)(t)
∣∣∣
2

dt ≤ const(d, n) ‖g‖
2
W 2n(R) ≤ const(d, n, ν) ‖f‖

2
W 2n(R) .

Since we have already established

(2.3) ‖Mf‖L2(Rd) ≤ const(d) ‖f‖L2(R) ,

we obtain the desired estimate

(2.4) ‖Mf‖W 2n(Rd) ≤ const(d, ν, n) ‖f‖W 2n(R) .

We consider now the general case γ ≥ 0. Let n be the smallest integer satisfying γ ≤ 2n.

Since M : L2(R) → L2(R
d) is a linear operator satisfying (2.3) and (2.4), we can interpolate

between these inequalities (see [2, p. 301,302] and [13, p. 39,40]) to obtain

‖Mf‖W γ(Rd) ≤ const(d, ν, γ) ‖f‖W γ(R) . �

Combining this proposition with Lemma 2.1 yields

Corollary 2.5. If α > 0 and 0 ≤ γ < α+ 1/2, then Mfα,β ∈ W γ(Rd) for all β ∈ R.



M.J. JOHNSON 7

3. Proof of Theorem 1.3

Let us invoke the hypothesis of Theorem 1.3; namely that d/2 < γ < m − 1/2 and

h0 > 0. We will assume, without loss of generality, that h0 < min{1, h1}, where h1 is as

described in Theorem 1.2. Let α be a non-integer satisfying γ < α+ 1/2 < m− 1/2. Put

β0 := 1 − h0/3, and let us assume that β ∈ (1 − h0/2, β0). Note that by Corollary 2.5,

f := Mfα,β0
∈W γ(Rd).

The construction of Mfα,β0
ensures that f is C∞ on the compliment of the sphere Sβ0

:=

{x ∈ R
d : |x| = β0} and that

f(x) = ||x| − β0|
α

for 1/2 < |x| < 2.

Let B := {x ∈ R
d : |x| < 1} denote the open unit ball. Although we cannot claim that f

belongs to Hm, we note that TβBf is well-defined since there exists g ∈ Hm which satisfies

g|βB
= f|βB

(eg. g = ψf ∈ C∞
c (β0B), with ψ ∈ C∞

c (β0B) satisfying ψ = 1 on βB).

Lemma 3.1.

‖TβBf‖L1(B) → ∞ as β ↑ β0.

Proof. Since the seminorm |·|Hm is rotationally invariant and f is radially symmetric, it

follows that TβBf is radially symmetric. It is shown in [9, Th. 4.1] that there exists a

polynomial q ∈ Πm−1 and a distribution µ, with supp µ ⊂ βB such that TβBf = q+ φ ∗µ.

Since φ is C∞ on R
d\{0}, it follows that TβBf is C∞ on R

d\βB. In [9, Lem. 5.9], it is

shown that ∆m(φ ∗ µ) = cµ for some constant c. In particular, ∆m(TβBf) = 0 on R
d\βB.

To reiterate, we have shown that TβBf is radially symmetric, C∞ on R
d\βB, and satisfies
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∆m(TβBf) = 0 on R
d\βB. Consequently, we can invoke [8, Lem. 2] to conclude that

TβBf can be identified on R
d\βB with an element vf of the finite dimensional space

V := span{1, ρ2, . . . , ρ2m−2}

+

{
span{ρ2−d, ρ4−d, . . . , ρ2m−d} if d is odd,

span{ρ2−d, ρ4−d, . . . , ρ−2, log ρ, ρ2 log ρ, . . . , ρ2m−d log ρ} if d is even.

Since the functions in V are radially symmetric and C∞ on R
d\{0}, for each v ∈ V , there

exists a unique ṽ ∈ C∞(0,∞) such that v = ṽ ◦ ρ. Similarly, we can write TβBf = f̃ ◦ ρ

for some f̃ ∈ C([0,∞)). Note that f̃ = (β0 − ·)α on [1/2, β] and f̃ = ṽf on (β,∞). Since

f̃ ◦ ρ ∈ Hm, it follows from [1, Th. 7.55] that

ṽf
(j)

(β) =
dj

dtj
(β0 − t)α

|t=β

for j = 0, 1, . . . , m− 1.

In particular, ṽf
(m−1)

(β) = α(α− 1) · · · (α−m+ 2)(β0 − β)α−m+1, and since α is not an

integer and α−m+ 1 < 0, it follows that

(3.2)
∣∣∣ṽf

(m−1)
(β)

∣∣∣ → ∞ as β ↑ β0.

For t ∈ [1/2, 1], let λt denote the continuous linear functional on V defined by

〈v, λt〉 := ṽ(m−1)(t),

and note that the family {λt}1/2≤t≤1 is equicontinuous; hence, there exists a constant c

such that

|〈v, λt〉| ≤ c ‖v‖L1(B\β0B) for all 1/2 ≤ t ≤ 1, v ∈ V,

where we have used the fact that ‖·‖L1(B\β0B) is a norm on V . It thus follows from (3.2)

that ‖vf‖L1(B\β0B) → ∞ as β ↑ β0. Since TβBf = vf on B\β0B, we obtain the desired

conclusion that ‖TβBf‖L1(B) → ∞ as β ↑ β0. �
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Proof of Theorem 1.3. It suffices to show that for each N > 0 (large), there exists a finite

subset Ξ ⊂ B, with h(Ξ, B) ≤ h0, such that ‖TΞf‖L1(B) ≥ N .

Let N > 0. By Lemma 3.1, there exists β ∈ (1 − h0/2, β0) such that ‖TβBf‖L1(B) > N .

Let Ξn be an increasing sequence of finite subsets of βB which satisfy h(Ξn, βB) ≤ h0/2n,

n ∈ N, and note that h(Ξn, B) ≤ h0 for all n. We recall that there exists g ∈ Hm such

that g|βB
= f|βB

, and hence TβBf = TβBg and TΞn
f = TΞn

g. Duchon [6] has shown that

|TβBf − TΞn
f |Hm → 0 as n → ∞ (see also [9, Th. 1.5]). We invoke Duchon’s inequality,

Theorem 1.2, to write

‖TβBf − TΞn
f‖L∞(B) ≤ const(d,m)h

m−d/2
0 |TβBf − TΞn

f |Hm → 0 as n→ ∞.

It follows that ‖TΞn
f‖L1(B) → ‖TβBf‖L1(B) and hence ‖TΞn

f‖L1(B) > N for sufficiently

large n. �
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