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On two polynomial spaces associated with a box spline
Carl de Boor, Nira Dyn & Amos Ron

1. Introduction

The space H(φ) of all exponentials in the linear span S(φ) of the integer translates of a
compactly supported distribution φ is of basic importance in multivariate spline theory since, in
principle, it allows the construction of good approximation maps to S(φ) from spaces containing
S(φ). Generically, H(φ) is D-invariant (i.e., closed under differentiation), hence is the joint kernel
for a set {p(D) : p ∈ IH(φ)} of differential operators with constant coefficients, with IH(φ) a
polynomial ideal of finite codimension (in the space Π of all multivariate polynomials, i.e., an
ideal of transcendental dimension 0, hence with finite variety). An understanding of the interplay
between the space H(φ) and its associated ideal IH(φ) is useful in the determination of the basic
properties of H(φ) such as its spectrum, its dimension, and its local approximation order.

For the important special case when φ is a polynomial box spline (and H := H(φ) is thus a
polynomial space), an explicit set of generators for the ideal IH is known [BH1], but nevertheless,
the construction of their joint kernel was found to be very difficult. At the same time, a polynomial
space P (of very simple structure) is known which serves as a natural dual for H and is of substantial
use in the analysis of H. Specifically, the duality between H and P has been used in [DR1] in the
investigation of the local approximation order of some exponential spaces, in [DR1,2] in the solution
of an interpolation problem induced by H, in [J] in the construction of linear projectors onto a box
spline space, and in [DR1] in the computation of the homogeneous degrees of H (which is equivalent
to computing the Hilbert function of IH). See also [DM3; §3].

It is the purpose of this paper to establish the surprising result that P, too, is the joint kernel
of a rather simple set of constant coefficient differential operators, each being just a power of a
directional derivative. This allows us to characterize P in terms of the degrees of its polynomials
when restricted to certain linear manifolds. Various applications of this result to multivariate
polynomial interpolation, box spline theory, and duality between polynomial and exponential spaces
are discussed as well.

In section 2, after defining the space P and its associated differential operators, we prove that
P is indeed the joint kernel of these operators. In section 3, we identify P as a space of least
degree among all polynomial spaces that interpolate correctly on certain subsets of the integer
lattice. As a matter of fact, the discussion in that section may have an independent value: this
discussion illustrates how the interpolating space of least degree from [BR1] may be computed
using the technique from [BR2] of “perturbing the generators of a homogeneous ideal”, hence in a
computationally painless way.

Section 4 is devoted to the more general discussion of duality between finite dimensional
polynomial and exponential spaces, a discussion which improves proofs and results from [DM2] and
[DR1]. Finally, we discuss in section 5 the construction of piecewise polynomials on the support of
a box spline and improve thereby an observation in [R].

2. The Main Result

Let X be a multiset of vectors in IRs\0. We will at times think of X, equivalently, as a real
matrix, of size (s× #X). Let IH(X) denote the collection of all hyperplanes (i.e., linear subspaces
of codimension 1) which are spanned by some columns of X. We associate with each h ∈ IH(X) a
nontrivial linear polynomial which vanishes on h, and write this polynomial

〈h⊥, ·〉,
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thus using h⊥ to stand for any particular nonzero vector normal to h. We are interested in the
ideal

IX

generated by all polynomials of the form

(2.1) ph := ph,X := 〈h⊥, ·〉#(X\h), h ∈ IH(X),

where X\h = {x ∈ X | x /∈ h}.
We assume that X spans all of IRs. Then the only point common to all h ∈ IH(X) is 0, and

consequently, the variety of IX (i.e., the set of common zeros of all the polynomials in IX) consists
of 0 alone:

VIX = {0}.
This implies that the codimension of IX in the space Π of all polynomials in s variables (i.e., the
dimension of the quotient space Π/IX) is finite, and that its kernel IX⊥ is a finite-dimensional
polynomial space, whose dimension equals the codimension of IX . Moreover, IX⊥ is stratified,
i.e., spanned by its homogeneous elements, since IX is generated by homogeneous polynomials.
[BR2] is a ready reference for these known facts.

Here, to recall the definition, the kernel I⊥ of an ideal I is the set

(2.2) {f ∈ D′(IRs) : p(D)f = 0, ∀p ∈ I}

of all distributions annihilated by the set of differential operators induced by I. In particular, since
IX is generated by

ph = 〈h⊥, ·〉#(X\h), h ∈ IH(X),

IX⊥ consists of the solutions f of the system of linear differential equations

(2.3) (Dh⊥)#(X\h)f = 0, ∀h ∈ IH(X).

This section is devoted to a proof of the fact that IX⊥ equals the polynomial space

(2.4) P(X) := span{pV : V ⊂ X, span(X\V ) = IRs},

with
pV :=

∏
v∈V

〈v, ·〉.

In the proof, the multiset

(2.5) IB(X) := {B ⊂ X : B invertible}

of all bases contained in X plays an important role. We use the abbreviation

(2.6) b(X) := #IB(X).

(2.7) Theorem. The kernel IX⊥ of IX coincides with P(X), and

(2.8) dim IX⊥ = b(X).

The theorem follows from the following three lemmata.
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(2.9) Lemma.
b(X) ≤ dimP(X).

(2.10) Lemma.
P(X) ⊂ IX⊥.

(2.11) Lemma.
dim IX⊥ ≤ b(X).

Proof[DR1] of (2.9)Lemma: Every polynomial

qB :=
∏

x∈X\B

(〈x, ·〉 − λx),

with B ∈ IB(X) and (λx) arbitrary constants, is in P(X), as follows readily by multiplying out.
For each B ∈ IB(X), there is a unique common zero of the s linear factors 〈x, ·〉 −λx, x ∈ B, which
do not occur in the associated qB ; call that point θB . Choose now, as we may, the constants (λx) in
such a way that θB 6= θB′ whenever B 6= B′. (In fact, almost every choice of the λx would satisfy
this condition.) It then follows that

qB(θB′) = 0 ⇐⇒ B 6= B′,

proving the linear independence of the collection (qB)B∈IB(X) in P(X).

Proof of (2.10)Lemma: We have to prove that, for each h ∈ IH(X), ph(D) = (Dh⊥)#(X\h)

annihilates P(X), i.e., that ph(D)pV = 0 for every V ⊂ X for which X\V contains a basis. For
this, we note that Dh⊥pV ∩h = 0, hence

ph(D)pV = (pV ∩h)ph(D)pV \h.

On the other hand, since X\V contains a basis, V \h cannot coincide with X\h, hence deg pV \h <
#X\h = deg ph and therefore ph(D)pV \h = 0.

Proof of (2.11)Lemma: We prove the lemma by induction on #X. For the case #X = s we ob-
serve that IX is generated by s linearly independent linear homogeneous polynomials, consequently
IX⊥ contains only constants, and so dim IX⊥ = 1 = b(X). Assume now that #X > s. We follow
the argument used in the proof of [DM3; Thm.3.1], decompose X as

X =: X ′ ∪ x,

with spanX ′ = IRs, and consider the map

T : IX⊥ → ×h∈IH(X′)Ph : q 7→ (ph(D)q)h∈IH(X′),

where ph := ph,X′ = 〈h⊥, ·〉#(X′\h) are the generators of IX′
and Ph := ph(D)(IX⊥). Then

dim IX⊥ ≤ dim IX′⊥ +
∑

h∈IH(X′)

dimPh,
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since
kerT = (IX′⊥) ∩ (IX⊥) ⊆ IX′⊥.

Consequently, by induction,

dim(IX⊥) ≤ b(X ′) +
∑

h∈IH(X′)

dimPh.

This proves that
dim IX⊥ ≤ b(X),

provided we can prove that ∑
h∈IH(X′)

dimPh ≤ #{B ∈ IB(X) : x ∈ B}.

In particular, it is sufficient to prove that, for all h ∈ IH(X ′),

(2.12) Ph ⊂ IXh⊥

with
Xh := (X ∩ h) ∪ x.

For, (2.12) implies that
dimPh ≤ dim IXh⊥ ≤ b(Xh),

(the last inequality by induction), while∑
h∈IH(X′)

b(Xh) = #{B ∈ IB(X) : x ∈ B}.

The claim (2.12) is trivial in case x ∈ h, since then X ′\h = X\h, therefore ph,X′ = ph,X and
so Ph = {0} in that case.

We now prove (2.12) for the contrary case, i.e., the case when x 6∈ h. We have to show that
for every k ∈ IH(Xh)

(2.13) pk,Xh
(D)Ph = {0},

with
pk,Xh

= 〈k⊥, ·〉#(Xh\k).

If x 6∈ k, then k = h and (since Xh\h = {x}) pk,Xh
is a linear polynomial, and there is nothing

to prove since then pk,Xh
ph,X′ = ph,X , while ph,X annihilates IX⊥ by definition of IX⊥ . For the

contrary case, i.e., the case that x ∈ k, we need to prove that

(2.14) Dm
k⊥D

A−m
h⊥ (IX⊥) = 0,

with
m := #(Xh\k), A−m := #(X ′\h).

For this, it is sufficient to show that

(2.15) KmHA−m ∈ ideal{La(`)}`,
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with ` running over all hyperplanes spanned by elements of X and containing k ∩ h, and with

K := 〈k⊥, ·〉, H := 〈h⊥, ·〉, L := 〈`⊥, ·〉,

a(`) := #(X\`).
For, (2.14) follows from (2.15) since each generator La(`) of the ideal in (2.15) appears also in the
defining set (2.1) of generators of IX , hence annihilates IX⊥.

We prove (2.15) by writing each polynomial L as linear combination of the linear polynomials
K and H, thereby obtaining the general homogeneous element of degree A of the ideal in (2.15) in
the form ∑

`

(αK + βH)a(`)r`,

with r` a homogeneous polynomial of degree

µ(`) := A− a(`),

all `. We then show that the resulting linear system (for the coefficients of the various r`) has
a solution by showing that its coefficient matrix is the transpose of the matrix which occurs in
(univariate polynomial) Hermite interpolation.

Here are the details.
Since each ` contains k ∩ h, `⊥ can be written uniquely as a linear combination of k⊥ and

h⊥. We find it convenient in the sequel to have the weights in this linear combination sum to 1,
i.e., to have `⊥ in the affine hull of k⊥ and h⊥. This we can achieve by first choosing the (signed)
magnitudes of the nonzero vectors k⊥ and h⊥ so that their difference is not perpendicular to any
of the finitely many `. Then, for each `, we choose the nonzero vector `⊥ to lie on the line through
k⊥ and h⊥, i.e., so that

`⊥ =: (1 − β)k⊥ + βh⊥

for some β = β`. Then L = (1 − β)K + βH, hence

La =
∑

j

KjHa−jBa
j (β),

with

Br
j (t) :=

(
r

j

)
(1 − t)jtr−j

the polynomials appearing in the Bernstein form. Since DBr
j = r(Br−1

j − Br−1
j−1 ), we have more

generally (
(a+ i)!/a!

)
(H −K)iLa =

∑
j

KjHa+i−jDiBa+i
j (β).

This means that we have available in our ideal an expression of the form

∑
`

µ(`)∑
i=0

(H −K)iLA−ic(`, i) =
∑

j

KjHA−j
∑

`

µ(`)∑
i=0

DiBA
j (β)c(`, i)

to match the monomialKmHA−m. Such a match is possible provided the linear system of conditions
imposed thereby on the coefficients c(`, i) is solvable.
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We begin the proof that this linear system is indeed solvable by showing that its coefficient
matrix is square. With the abbreviation k′ := h ∩ k, we compute

m = #(Xh\k) = #((X ∩ h)\k′) = #((X ′ ∩ h)\k′),

therefore

(2.16) A = #((X ′ ∩ h)\k′) + #(X ′\h) = #(X ′\k′).

Also,

µ(`) = A− a(`) = #(X ′\k′) − #(X\`) = −1 + #(X\k′) − #(X\`) = #((X ∩ `)\k′) − 1.

Therefore, the number of unknowns is∑
`

(µ(`) + 1) =
∑

`

#((X ∩ `)\k′) = #(X\k′) = A+ 1,

i.e., equal to the number of equations. Here, the sums are over all ` ∈ IH(X) which contain k′,
which implies that X\k′ is the disjoint union of the sets (X ∩ `)\k′ and so justifies the second
equality.

Now organize the unknowns by ` and, within `, by i = 0, . . . , µ(`), and order the equations by
j = 0, . . . , A. Then the matrix consists, more precisely, of one block of columns for each `, with
the ith column (in the block for `) containing the value at β = β` of the ith derivative of all the
polynomials BA

j , j = 0, . . . , A, i = 0, . . . , µ(`). Hence our matrix is the transpose of the matrix
which occurs in the linear system for the determination of the Bernstein form of the polynomial in
ΠA which agrees with some function (µ(`) + 1)-fold at β = β`, all `. Since such univariate Hermite
interpolation is correct (since β` 6= β`′ for ` 6= `′), the invertibility of our matrix follows.

We note that (2.7)Theorem now allows us to conclude that all inequalities appearing in its
proof must be equalities. This implies, e.g., that

IX′ ⊂ IX whenever X ′ ⊂ X,

and that ph,X′(D)(IX⊥) = Ih∪x⊥. Another immediate consequence is the following

(2.17) Corollary[DM3],[DR1].
dimP(X) = b(X).

Furthermore,

(2.18) d(X) := min{#(X\h) : h ∈ IH(X)}

is the least degree of the generators of IX , hence, since IX⊥ = P(X), we have the following.

(2.19) Corollary[DR1]. With d(X) as in (2.18),

Π<d(X) ⊂ P(X),

but
Πd(X) 6⊂ P(X).

By its definition, IX⊥ is the set of all polynomials p ∈ Π that satisfy the following condition:
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(2.20) Condition. For every h ∈ IH(X) and v ∈ IRs, p|v+h⊥ ⊂ Π#(X\h)−1 (with h⊥ the subspace
orthogonal to h).

On the other hand, every p ∈ P(X) satisfies an apparently stronger condition (cf. [DR2;Prop.1]):

(2.21) Condition. For every subspace M of IRs which is spanned by elements from X, and for
every v ∈ IRs,

p|v+M⊥ ∈ Π#(X\M)−dim M⊥.

Hence we conclude the following from (2.7)Theorem:

(2.22) Corollary. The space P(X) is characterized either by (2.20)Condition or by (2.21)Condi-
tion. In particular, these two conditions are equivalent on Π.

(2.22) Corollary verifies the claim made in [DR2; Remark 2] that (2.21)Condition characterizes
P(X). In case X consists of N repetitions of s + 1 vectors Y ⊂ IRs in general position, the
characterization of P(X) by (2.21)Condition has been proved in [G] by other methods.

3. An associated polynomial interpolation problem

Here we identify certain exponential spaces H whose corresponding “limit at the origin” H↓
coincides with P(X) (for an appropriate choice of X), and use this identification in the solution of
an associated interpolation problem. The map

(3.1) H 7→ H↓,

which associates with every finite-dimensional space of entire functions a homogeneous space of
polynomials of the same dimension, has been introduced and studied in [BR1] in the context of
a multivariate polynomial interpolation problem, and has been discussed as well in [BR2] in the
context of kernels of polynomial ideals. To begin with, we recall the definition of H↓ and review
some of the results of [BR1,2] needed here. Then we discuss a certain interpolation problem and
its relation to P(X).

Given a function f 6= 0 analytic at the origin, we write its power series expansion at the origin
in the form

f = f0 + f1 + f2 + ...,

where, for each j, fj is a homogeneous polynomial of degree j, and define f↓ := fk with k =
min{j : fj 6= 0}; i.e., f↓ is the first non-trivial homogenenous polynomial in the power expansion
of f . Using this notion of the least term f↓ of f , we then define

(3.2) H↓ := span{f↓ : f ∈ H},

and have [BR1]

(3.3) dimH↓ = dimH.

We say that a pointset Θ ⊂ IRs is correct for the polynomial space P if the restriction map
P → CΘ : p 7→ p|Θ is invertible. Equivalently, Θ is correct for P if, for every data (dθ)θ∈Θ, there
is exactly one p ∈ P for which p(θ) = dθ for all θ ∈ Θ. In other words, interpolation from P at the
points of Θ is correct.
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Result [BR1]. Θ is correct for (expΘ)↓. Moreover, among all polynomial spaces P for which Θ
is correct, (expΘ)↓ is “of least degree” in the sense that

(3.4) dim(P ∩ Πj) ≤ dim((expΘ)↓ ∩ Πj) , ∀j.

Here,

(3.5) expΘ := span{eθ}θ∈Θ,

where eθ : x 7→ e〈θ,x〉 is the exponential function (with frequency θ).
In view of this result, it is useful to be able to identify the “least” space (expΘ)↓ for given Θ.

This we now do for certain pointsets Θ = νX associated with the box splines MX . Our tool is the
following result

(3.6) Result[BR2].

H↓ = (IH↑)⊥.

which obtains H↓ as the kernel of the ideal generated by the leading terms of the annihilator of H.
Precisely, [BR2;(4.3)Theorem (b)] provides the statement that, for any polynomial ideal I of finite
codimension,

(I⊥)↓ = (I↑)⊥,

and (3.6)Result is obtained by applying this to

(3.7) I = IH := {p ∈ Π : p(D)H = 0},

which is an ideal since H is closed under differentiation. In fact, with H = expΘ, IH consists of all
polynomials which vanish at Θ, hence IH has finite codimension and

H = IH⊥,

(cf. [BR2; §3]). From IH , we obtain its homogeneous counterpart IH↑ as

(3.8) IH↑ := span{p↑ : p ∈ IH},

where p↑ is the leading term of the polynomial p, namely the homogeneous polynomial satisfying

deg(p− p↑) < deg p.

The result (3.6) is of interest here since it is easy to identify elements of IH in case H = expΘ:
If (pj) are linear homogeneous polynomials for which the union of the corresponding hyperplanes
{x ∈ IRs : pj(x) = cj} (for suitable choices of the constants cj) contains Θ, then p :=

∏
j(pj −cj) ∈

IH , hence
∏

j pj ∈ (IH)↑. If we obtain enough of these p to generate all of IH↑, then we know by
(3.6)Result that H↓ is the joint kernel of all the corresponding differential operators p(D). In fact,
since we know from (3.3) that dimH↓ = dimH, we can already reach this conclusion when we only
know that the p so constructed generate an ideal J of codimension ≤ dimH.
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(3.9)Result [BR2]. If the ideal J generated from the leading terms of some polynomials in IH
has codimension ≤ dimH, then J = IH↑, therefore

H↓ = J⊥.

In our case, we have identified (in (2.7)Theorem) P(X) as the joint kernel of the differential
operators (Dh)#(X\h) (with h running over IH(X)), hence are entitled to conclude that (expΘ)↓ =
P(X) whenever we can find, for each such h, constants cj,h so that

∏#(X\h)
j=1 (〈h⊥, ·〉−cj,h) vanishes

on Θ, and know additionally that #Θ ≥ dimP(X).
Just such a pointset is, under certain assumptions on X, provided by

(3.10) νX := νX(z) := {α ∈ ZZs : z − α =
∑
x∈X

txx, 0 < tx < 1, ∀x},

with z ∈ IRs\⋃
h∈IH(X)(h + ZZs). The set −νX comprises the integer points in the support of the

shifted box spline MX(· + z) (cf. [DM2]).
Assume now thatX is unimodular, i.e., the columns ofX are from ZZs\0 and every B ∈ IB(X)

has determinant ±1. For such unimodular X, the observations made in [R;§4] (especially before
the proof of Th. 4.1 and in the proof of Cor. 4.2) confirm the existence, for each h ∈ IH(X), of
consecutive integers ch,j so that νX is contained in the union of the hyperplanes

〈h⊥, ·〉 = ch,j , j = 1, . . . ,#X\h.

Indeed, fixing h ∈ IH(X) and taking the normal h⊥ to be a relatively prime integer vector,
implies that |〈h⊥, x〉| = 1 for every x ∈ X\h since X is unimodular. By choosing the signs of the
columns of X appropriately (which amounts to a shift in MX), we can achieve that 〈h⊥, x〉 > 0 for
all x ∈ X\h, hence

ch :=
∑

x∈X\h

〈h⊥, x〉 = #X\h.

Consequently, with z chosen so as to satisfy ch − 1 < 〈h⊥, z〉 < ch, νX(z) must lie in the union of
the hyperplanes

〈h⊥, ·〉 = j, j = 0, ..., ch − 1.

Moreover, #νX = dimP(X), because of (2.17)Corollary and the following.

(3.11) Result [DM2]. If X is unimodular, then

#νX = b(X).

This establishes the following theorem.

(3.12)Theorem. If X is unimodular, then (expνX
)↓ = P(X). In particular, νX is correct for

P(X), and P(X) is of least degree among all polynomial spaces for which νX is correct.

Note that only the inequality #νX ≥ b(X) was needed in the proof of (3.12)Theorem. As a
matter of fact, the converse inequality is a consequence of the theorem.
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4. The duality between H(X) and P(X)

The ideal IX and its kernel P(X) are intimately related to another ideal IX and its kernel
H(X), which play a fundamental role in the theory of box splines. In the following, we review some
of the basics about IX and H(X) and draw several connections between the two settings.

Let IX be the ideal generated by all polynomials of the form pV =
∏

v∈V 〈v, ·〉 with V ⊂ X
and span(X\V ) 6= IRs. This means that

(4.1) IX := ideal{pX\h : h ∈ IH(X)}.

Let H(X) denote the kernel of IX , i.e.,

H(X) := IX⊥.

It is known [BH1], [DM1] that H(X) is a finite-dimensional polynomial space and [DM2] that

(4.2) dimH(X) = b(X).

The spaces P(X) and H(X) are dual to each other in the following sense. Each p ∈ Π gives
rise to a linear functional p∗ on Π (and even on a larger space of smooth functions), viz. the linear
functional

p∗ : q 7→ p(D)q(0).

This allows us to consider, for any two finite-dimensional linear polynomial spaces Q and R, the
map

M : Q→ R∗ : p 7→ p∗|R.

If M is invertible, we say that Q is dual to R (in the sense that we can then use the elements of
Q in this fashion to represent uniquely the dual of R). Note that the dual to M carries R∗∗ = R
in the same way to Q∗, hence Q is dual to R iff R is dual to Q.

A necessary and sufficient condition for such duality is that M be 1-1 and dimR ≤ dimQ
(since then M is necessarily onto). In particular, if dimQ = dimR, then such duality is assured
as soon as we know that, for every q ∈ Q\0, there is an r ∈ R for which q∗(r) 6= 0. By the duality
already mentioned, this is equivalent to having, for every r ∈ R\0, a q ∈ Q for which q∗(r) 6= 0.

For q ∈ Q, the linear functional q∗ cannot tell the difference between f and Tkf := f0 + ...+
fk−1 := the power expansion of f up to order k, if k is sufficiently large. This allows us to extend
this notion of duality to pairs Q,R in which R is a finite-dimensional space of smooth functions.

We will eventually make use of the following observation:

(4.3) Theorem. Let P be an n-dimensional homogeneous polynomial space. Let H be an n-
dimensional space of entire functions. If P is dual to H↓, then P is dual to H.

Proof: For any f ∈ H\0, f↓ ∈ H↓\0, hence, by assumption, p∗(f↓) 6= 0 for some p ∈ P . Further,
since P is spanned by homogeneous polynomials, we may assume that this p is homogeneous. But
then p∗(f) = p∗(f↓) 6= 0, showing that the linear map H → P ∗ : f 7→ (p 7→ p∗(D)f(0)) is 1-1,
hence P → H∗ : p 7→ p∗|H is onto. Since dimH = dimH↓, and dimH↓ = dimP by assumption, the
theorem follows.
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We note that the converse of (4.3)Theorem does not hold, in general. For, it is easy to make
up a nonhomogeneous polynomial space H together with a homogeneous P dual to it, for which
the conditions dim(Πj ∩P ) = dim(Πj ∩H↓), all j, fail to hold, while these conditions are necessary
for P and H↓ to be dual, according to the following proposition of use later.

(4.4)Proposition. If the homogeneous polynomial spaces Q and R are dual to each other, then

(4.5) dim(Πj ∩Q) = dim(Πj ∩R)

for all j.

Proof: Indeed, if (4.5) is violated for some (minimal) j and, say, dim(Πj∩Q) > dim(Πj∩R), then
there exists a homogeneous polynomial q ∈ Q of degree j for which q∗ vanishes on all homogeneous
polynomials in R of degree j, and hence vanishes on all of R, in contradiction to the duality between
Q and R.

With this, the meaning of the following result is clear.

(4.6) Result[DM3]*,[DR1]. The polynomial spaces P(X) and H(X) are dual to each other.

In (3.12)Theorem, the space P(X) has been identified as the least space for certain inter-
polation problems. In [BR2] the space H(X) has been identified as the least space for other
interpolation problems. We now make use of the duality between P(X) and H(X) to connect
H(X) with the interpolation problems associated with P(X) and vice versa. As a preparation, we
procure a class of spaces whose corresponding least space is H(X) in much the same way in which
we obtained suitable exponential spaces expνX

whose least is P(X): We perturb the linear factors
of the set of generators for the ideal (viz. IX) whose kernel is H(X). Specifically, given the set
Γ =

{
(x, λx) | x ∈ X , λx ∈ C}, we consider the ideal

(4.7) IΓ := ideal{qh : h ∈ IH(X)},
with

qh :=
∏

x∈X\h

(〈x, ·〉 − λx) .

Then H(Γ) := IΓ⊥ is an exponential space (i.e., a space which is spanned by certain products of
exponentials with polynomials), and [BR2]

(4.8) H(Γ)↓ = H(X).

The diagram below illustrates for a unimodularX the various connections established so far between
the ideals IX , IX , their kernels and the associated exponential spaces.

(expνX
)↓ = P(X) = IX⊥

↑
dual
↓

H(Γ)↓ = H(X) = IX⊥
* The authors in [DM3] attribute the result to Hakopian.
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Our first corollary improves [DM2;Thm. 4.1]:

(4.9) Corollary. Let X be unimodular. Then νX is correct for H(X), and H(X) is of least degree
among all polynomials spaces for which νX is correct.

Proof: We apply (4.3)Theorem withH = expνX
and P = H(X). By (3.12)TheoremH↓ = P(X),

while by (4.6)Result, P(X) is dual to H(X). Since also H(X) is homogeneous (as the kernel of
a homogeneous ideal), (4.3)Theorem implies that H(X) is dual to expνX

, which is equivalent
(cf. [BR1;§4]) to the correctness of νX for H(X). Moreover, since P(X) and H(X) are both
homogeneous and, by (4.6)Result, dual to each other, we must have

(4.10) dim(Πj ∩H(X)) = dim(Πj ∩ P(X))

for every j, by (4.4)Proposition. Since we already know by (3.12)Theorem that P(X) is of least
degree among all polynomial spaces for which νX is correct, it follows from (4.10) that H(X) has
the same property.

(4.11) Corollary[DR1]. The spaces P(X) and H(Γ) are dual to each other.

Proof: Take P = P(X) and H = H(Γ) in (4.3)Theorem. Since, by (4.8), H(Γ)↓ = H(X), and,
by (4.6)Result, H(X) is dual to P(X), (4.3)Theorem provides the desired result.

We refer to [DR1; §7] for a discussion of the interpolation conditions induced by H(Γ).

5. Application to box splines

In this section we point out some connections between the results of the previous sections and
the theory of multivariate splines. In the discussion here the (polynomial) box splineMX associated
with a set of directions X plays a central role. For our purposes, it is sufficient to note that MX is
a piecewise-polynomial function supported on

ΩX := {Xt : t ∈ [0, 1]#X}

and satisfies
Π(MX) = H(X),

where, for a general compactly supported φ, the notation Π(φ) stands for the space of polynomials
spanned by the integer translates of φ.

We make use of the following result, which is a special case of [R; Thm.1.1]:

(5.1) Result. Let P be a translation-invariant space of polynomials, and Ω a compact subset of
IRs with boundary ∂Ω. Then the following conditions are equivalent:
(a) There exists a function φ supported in Ω and satisfying Π(φ) = P , φ̂(0) 6= 0.
(b) For every z ∈ IRs\ ∪α∈ZZs α+ ∂Ω, the set

νΩ := νΩ(z) := {α ∈ ZZs : z − α ∈ Ω}

is total for P , i.e., no element of P\0 vanishes on this set.

Note that when we take Ω to be ΩX = suppMX , the sets νΩ are identical with the sets νX

from (3.10). Thus, by appealing to (3.12)Theorem, we deduce from the implication (b) =⇒ (a) of
(5.1)Result the following

12



(5.2) Corollary. Let X be a unimodular set of vectors. Then there exists a function (actually
many) ψ = ψX which is supported in ΩX and satisfies

Π(ψ) = P(X).

The above corollary provides no information about the smoothness of the compactly supported
ψ. Yet, it is known [BH2] that, at least for the special case of the three-direction mesh with equal
multiplicities, no piecewise-P(X) function supported on ΩX can match the smoothness of the
corresponding box spline MX .

The box spline MX is a smooth function supported on ΩX . Hence, one may hope that there
exist functions φ supported on ΩX which are less smooth than MX , yet their corresponding Π(φ) is
“better” in the sense that it contains some of the polynomials of lower degrees which were missing
in Π(MX) = H(X). [R; Cor.4.2] gives a partial negative answer to that hope by showing that for
a unimodular X and a function φ supported in ΩX , if φ̂(0) 6= 0 and Πj ⊂ Π(φ) for some j, then
Πj ⊂ H(X) = Π(MX). The following result improves that corollary.

(5.3) Corollary. Let X be an unimodular set of directions, MX the corresponding box spline.
Let φ be a compactly supported function satisfying

suppφ ⊂ suppMX ,

and

φ̂(0) 6= 0.

Then, for each j,

dim(Πj ∩ Π(φ)) ≤ dim(Πj ∩ Π(MX)).

Proof: Let ν be one of the sets νX(z) associated with X. By (3.12)Theorem, (expν)↓ = P(X).
Now we may apply (5.1)Result to conclude that ν is total for Π(φ), and hence Π(φ) can be extended
to a space Q for which ν is correct. Since P(X) is the least space of expν , it satisfies the least
degree property (3.4), thus we conclude that for every j

(5.4) dim(Πj ∩ Π(φ)) ≤ dim(Πj ∩Q) ≤ dim(Πj ∩ P(X)).

On the other hand, by (4.4) and (4.6),

dim(Πj ∩ P(X)) = dim(Πj ∩H(X)), ∀j,

and (5.3) now follows from the fact that Π(MX) = H(X).

We note that the result is no longer valid if we drop the unimodularity assumption (cf. [R; Ex.
4.1]).

13



6. A remark on (2.11)Lemma

A careful examination of the proof of (2.11)Lemma shows that the details of the connection
between the ideal IX and its kernel IX⊥ enter into the argument in only a minor way. The only
facts used are: (i) the map Π → L(Π) : p 7→ p(D) is a ring homomorphism; and (ii) for any basis
B in X, dim IB⊥ = 1.

This suggests the following result.

(6.1) Proposition. Let M : Π → L(V ) be a ring-homomorphism into the ring of linear maps on
the linear space V . For a given multiset X of directions, define

IX
M⊥ := ∩p∈IX kerM(p).

Then
dim IX

M⊥ ≤
∑

B∈IB(X)

dim IB
M⊥.

The proof of the proposition follows entirely that of (2.11)Lemma, with the obvious modifica-
tions whenever the induction hypothesis is applied.

It would be nice to identify other settings rather than the one utilized in this paper, where the
above proposition is of use.
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[BH1] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. d’Anal. Math. 42(1982/3), 99–115.
[BH2] C. de Boor and K. Höllig, Bivariate box splines and smooth pp functions on a three-direction

mesh, J. Comput. Applied Math. 9 (1983), 13–28.
[BR1] C. de Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx. 6(1990),

287–302.
[BR2] C. de Boor and A. Ron, On polynomial ideals of finite codimension with application to box

spline theory, J. Math. Anal. Applic. 158(1991), 168–193.
[DM1] W. Dahmen and C.A. Micchelli, Translates of multivariate splines. Linear Algebra and Appl.

52/3 (1983), 217–234.
[DM2] W. Dahmen and C.A. Micchelli, On the local linear independence of translates of a box spline,

Stud. Math. 82 (1985), 243–263.
[DM3] W. Dahmen and C. A. Micchelli, Multivariate E-splines, Advances in Math. 76(1989), 33–93.
[DR1] N. Dyn and A. Ron, Local Approximation by certain spaces of multivariate exponential-

polynomials, approximation order of exponential box splines and related interpolation prob-
lems, Trans. AMS 319(1990), 381–403.

[DR2] N. Dyn and A. Ron, On multivariate polynomial interpolation, in Algorithms for Approxima-
tion, J.C. Mason, M.G. Cox (eds.), Capman and Hall, London 1989, 177–184.

[G] J. A. Gregory, Interpolation to boundary data on the simplex, CAGD 2(1985), 43–52.
[J] R. Q. Jia, A dual basis for the integer translates of an exponential box spline, Rocky Mountain

J. Math. 23(1993), 223–242.
[R] A. Ron, Relations between the support of a compactly supported function and the exponential-

polynomials spanned by its integer translates, Constructive Approx. 6(1990), 139–155.

15


