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In  [3], P e r e y r a  a n d  S c h e r e r  d i scuss  t h e  n u m e r i c a l  s o l u t i o n  of  a l i n e a r  s y s t e m  of  
t h e  f o r m  

(Al  ® " .  ® A D x  = b (1) 

w i t h  A,  a n  i n v e r t i b l e  m a t r i x  of  o r d e r  n,, i = 1 . . . . .  k, and ,  c o r r e s p o n d i n g l y ,  b o t h  
x a n d  b k - d i m e n s i o n a l  a r r ays ,  of  size nl  × n2 × . . .  × n l z k .  S u c h  s y s t e m s  a r i se  
n a t u r a l l y  w h e n  f o r m i n g  t e n s o r  p r o d u c t s  of  u n i v a r i a t e  i n t e r p o l a t i o n  s c h e m e s .  

P e r e y r a  a n d  S c h e r e r  p r o p o s e  to  s to re  a r r a y s  such  as  x a n d  b w i t h  t h e  l a s t  
i n d e x  r u n n i n g  f a s t e s t  a n d  t h e n  h a v e  a s c h e m e  of  a p p l y i n g  Ak -~, A~-~I a n d  so on  
d o w n  to  a n d  i nc lud ing  A1 -~, a p p r o p r i a t e l y  r e s to r ing  t h e  i n t e r m e d i a t e  i n f o r m a t i o n  
so t h a t  a p p l i c a t i o n  o f  A,  -1 invo lves  on ly  r e p e a t e d  o r d i n a r y  m a t r i x  m u l t i p l i c a t i o n  
to  a v e c t o r  s t o r e d  in c o n s e c u t i v e  l o c a t i o n s  in  m e m o r y .  W h e n ,  a s  is m o r e  r ea son -  
able ,  a p p l i c a t i o n  o f  U,-~l ,  -~ r a t h e r  t h a n  of  A,  -~ is w a n t e d ,  w i t h  L , U ,  a t r i a n g u l a r  
f a c to r i z a t i on  for  A,,  a f u r t h e r  c o m p l i c a t i o n  a r i se s  a n d  is d e a l t  wi th .  

I t  is t h e  p u r p o s e  of  th i s  p a p e r  to  d e s c r i b e  a d i f f e r en t  p r o c e d u r e  w h i c h  I h a v e  
u sed  for  s o m e  t i m e  a n d  w h i c h  is m o r e  d i r e c t  a n d  s i m p l e r  t h a n  t h e  P e r e y r a -  
S c h e r e r  p r o c e d u r e  a p p e a r s  to  be.  

W e  a s s u m e  tha t ,  for  e ach  ~, we have  a v a i l a b l e  a F o r t r a n  s u b r o u t i n e  SUB,b ,  n, 
x) w h i c h  so lves  t h e  i th  l i n e a r  s y s t e m  A , x  = b (of o r d e r  n -- n,) for  x, g iven  b. 
P r e s u m a b l y ,  t h e  r o u t i n e  does  th i s  in an  ef f ic ient  way,  t a k i n g  a d v a n t a g e  o f  a n y  
spec i a l  s t r u c t u r e  A ,  m i g h t  h a v e  such  as  b a n d e d n e s s ,  pos i t i ve  de f in i t eness ,  etc.  
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174 Carl de Boor 

We fur ther  assume tha t  the k-dimensional arrays x and b are (to be) s tored in 
For t ran  fashion, i.e., 

x(il, i2 . . . .  , iD = x(il  + nl(i2 - 1 + n2(i8 - 1 + . . .  + nk- l ( ik  -- 1) . . . ) ) )  

if we refer to x also as an equivalent  one-dimensional  array. 
T he  following simple procedure  will then  lead to an efficient way for solving 

eq. (1). For  each i, enlarge the subrout ine  SUB, to a subrout ine  SUB/(b ,  n, m, x) 
which solves s imultaneously A , x  = b for m given right sides b( . ,  1), b( . ,  2), . . . ,  b 
(., m), each of length n = n,, and stores the corresponding solutions in x(1, • ), x(2, 
• ) . . . . .  x ( m ,  • ). Thus  the  dimension s ta tement  for the arguments  b and x in SUB, '  
reads 

DIMENSION b(n, m), x(m, n) 

and the change otherwise consists in put t ing every s ta tement  involving b or x 
appropr ia te ly  into a DO loop. In this, care should be taken  to leave s ta tements  
which do not  depend on the part icular  r ight side outside such loops. 

M a ny  l ibrary routines for specific l inear problems already provide this facility 
for dealing with several  r ight sides in one call, since the work in solving A , x  = b 
for an additional r ight side b is usually much  less t han  the work for solving such 
a sys tem the first time. Bu t  such routines re turn  the  solution corresponding to 
the j t h  column b(. ,  j )  of the input  ar ray customari ly  in the j t h  c o l u m n  of the 
ou tpu t  ar ray x and not, as I propose here,  in the j t h  row.  

LEMMA. F o r  i = 1, . . . ,  k, le t  S U B ;  be a n  e x p a n d e d  vers ion ,  as  descr ibed ,  o f  
t he  r o u t i n e  S U B ,  f o r  s o l v i n g  A , x  = b, a n d  se t  N := n~*n2* . . .  *nk. T h e n ,  t he  
f o l l o w i n g  s t a t e m e n t s  

b0 :=  b 
C A L L  S u b l '  (bo, nl,  N / nl ,  b 3  
C A L L  S U B 2 ' ( b l ,  n~, N / n 2 ,  b2) 

C A L L  SUBk ' (bk -1 ,  nk, N / n k ,  bD 
x := bk 

w i l l  p r o d u c e  the  s o l u t i o n  x o f  eq. (1). 
PROOF. Le t  x, be the  k-dimensional  array x, := (A1 -~ ® . . .  ® A, -1 ® 1 ® . . .  

® 1)b, i = 0 . . . .  , k. T h e n  

x , ( j t  . . . . .  J,-,, ",J,+, . . . .  , h )  = A , - ' x , - , ( j t ,  . . . , ] ,  - 1,. , j ,+,  . . . .  , jk) (2) 

and our  assert ion is proved if we can establish tha t  bk = xk. We prove this by 
showing that ,  for all i, b, as generated by  the succession of calls above is re la ted 
to x, in the following way: I f  b ,  is  i n t e r p r e t e d  a s  a k - d z m e n s i o n a l  F o r t r a n  a r ray ,  
o f  d i m e n s i o n  (n,+l . . . .  , nk, n l  . . . .  , n,),  t h e n  

b,(j,+l . . . .  , j k ,  j l  . . . .  , j , )  = x, ( j l  . . . . .  jk) ,  a l l  j ,  (3) 

f o r  i = O, . . . ,  k .  For  z = k, eq. (3) is indeed the desired s ta tement  tha t  bk = xk. 
Now, eq. (3) holds for ~ = 0 because of the  initial assignment bo := b. Assuming 

eq. (3) to hold for i < v, we consider the action of the 
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Effm~ent Computer Manipulation of Tensor Products 175 

CALL SUBv'(bv-1, nv, N ~  no, by). 

SUBd considers bo-~ to be a two-dimensional array, b say, of dimension (no, N ~  

no). Thus  with 

s := jo+l + nv+l(jo+2 - 1 + . . .  + n k ( j l  - 1 + . . .  + nv-2(jv-1 - 1 ) . . . ) . . . ) ,  

we have 

b(. ,  s) = bo-m(.,jo+, . . . . .  jk,  j~ . . . . .  jo-1) 
(4) 

= X v - , ( j ,  . . . . .  jo-1, . , jo+, . . . . .  jk)  

by induction hypothesis.  SUBo' then  applies Ao -~ to each of  these m ffi N / n o  
no-vectors b(. ,  s), thus  obtaining the corresponding no-vector 

x o ( j l  . . . . .  j r - l ,  ° , j r + l , . . .  , j k ) ,  

by eqs. (2) and (4), and stores this vector  in 

x(s ,  .) = bv(s + ( N / n o ) ( .  - 1)) 

= bv(jv+l + no+~[jv+2 - 1 + . . .  + nv-2(f i -~ - 1) . . . ]  + ( N / n o ) ( .  - 1)) 

= bo(jo+~, . . .  , j k ,  j l  . . . .  , jo-1,  ") 

which proves eq. (3) for i = v and so advances the induction hypothesis.  Q.E.D. 
We introduced the axuiliary arrays only for argument ' s  sake. In calculations, 

two arrays, say bl  and b2, are sufficient, with bl serving in place of  all bk with i 
odd, and b2 serving for all the others. 

Also, in typical situations, the various subroutines S U B 1 , . . . ,  SUBk are, in fact, 
just  one routine called with additional arguments  which differ with i. In such a 
case, only one extended version has to be written. 

Finally, we put  the above discussion in terms of solving a linear system, i.e., in 
terms of premult iplying a given vector  by the inverse of a given matrix. We did 
this in order to make the point  tha t  we do not  require the matr ix  by which we 
wish to premult iply to be present  explicitly. Any For t ran  subprogram SUB=(b, x) 
which has the effect of forming x = B=b for given b can serve as a basis for an 
extended version SUB/(b ,  n, m, x) suitable for the calculation of (B1 ® - - .  ® 
BDb, and the matrices B ,  need not  be square. We state  this slight extension of 
the lemma as a corollary for the record. 

COROLLARY. F o r  i = 1 . . . .  , k ,  le t  B ,  be a (n,, r , ) -ma t r i x ,  a n d  le t  S U B , ' ( b ,  n,, m ,  
x, r,) be a s u b r o u t i n e  w h i c h ,  f o r  j = 1 . . . . .  m ,  f o r m s  t h e  r , -vec tor  B , b ( . ,  j )  ( in  
s o m e  m a n n e r )  f r o m  t h e  n , - v ec to r  b(. ,  j ) ,  a n d  s t o r e s  i t  in  x ( j ,  . ) .  T h e n ,  t he  

f o l l o w i n g  s t a t e m e n t s  

bo := b 
r n  : =  n2* • • • * nk 
C A L L  SUB((bo ,  nl, m, bl, rl) 
rn .= m*rl/n2 
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176 Carl de Boor 

C A L L  SUB2'(bl ,  n2, m, b2, r2) 
m := m*re/n3 

C A L L  SUBk'(b~-I ,  nk, m ,  b k ,  rD 
x :~ bk  

f o r m  t h e  k - d i m e n s i o n a l  a r r a y  x = (B~ ® . . .  ® BDb. 
It  is not even necessary tha t  B, be a matrix, i.e., a two-dimensional array. The 

more general situation in which B, is a linear map which associates s,-dimensional 
arrays with t,-dimensional arrays is covered by the corollary as well since we can 
always interpret such s,-dimensional and t,-dimensional arrays Fortran fashion as 
equivalent one-dimensional arrays. 

We give some simple examples in the next section. 

TENSOR PRODUCTS OF UNIVARIATE INTERPOLATION SCHEMES 

The following material  concerning tensor products of univariate interpolation 
schemes is well known and is mentioned here only in order to illustrate the use 
and usefulness of the simple idea expounded earlier. (A simple account giving 
proofs and details can be found, e.g., in [1].) 

The construction of a (univariate) linear interpolant g to some function 
f usually involves the calculation of the coefficients a = (a,) in a representation 

g =  ~,, a,9~, 
$ 

for the interpolant from certain information (~,,f) about  f. Here, each ~, is a l i n e a r  
f u n c t i o n a l ,  e.g., X,f = f ( x , )  or X,f-- ftr,~ (x,) or X,f-- S ¢ , ( x ) f ( x ) d x ,  etc., and g is so 
constructed tha t  ~,g = ~,f, all i. 

At the level of the present discussion, there is no reason to require the 
representation for g to be irredundant,  i.e., to require the sequence (¢p,) to be 
linearly independent.  All tha t  is necessary is the assumption tha t  a --- B ( k , f )  for 
some matrix B. The matrix B is commonly not known explicitly (although it 
could, of course, be determined). Rather ,  some procedure or subprogram SUB is 
available which transforms the vector (k,f) of data  appropriately into the vector 
a of coefficients. 

For example, consider the construction of the polynomial p = pf of degree less 
than  n which agrees with f at the n distinct points xl, . . . ,  x,. In its Newton form, 
p f  looks like 

p f ( x )  = [x . . . . . .  Xn] f  " 1-I (X -- X]) (5) 
¢11 j z l + l  

with the coefficient [x,  . . . ,  xn] f t h e  so-called divided difference for f at  the points 
x , ,  . . . , x n ,  i = 1 , . . . ,  n ,  i .e. ,  

f(x,), i = j 
[ x , , . . . ,  xj]f :--  [ ([x,+, . . . .  , x j ] f -  [x  . . . . .  , x j - , ] f ) / ( x ~  - x,), i < j .  (6) 

These coefficients can therefore be determined as final entires in a so-called 
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Efficient Computer Man,pulat,on of Tensor Products 177 

divided difference table, for instance, as in the following subprogram: 

SUBROUTINE POLINT (X, F, N) 
DIMENSION X(N), F(N) 
NM1 -- N - 1 
IF (NM1 .LE. 0) RETURN 
DO 10K- -1 ,  NM1 

NMK -- N - K 
DO 1 0 I = I ,  NMK 

10 F(I) = (F(I + 1) - F(I))/(X(I + K) - X(I)) 
RETURN 

END 

Here, the array F contains F(i) = / (x , ) ,  i = 1 . . . . .  n, on input  and F(i) = [x . . . . . .  
Xn]f,  ~ = 1, . . . ,  n ,  on output.  (For details concerning divided differences and the 
Newton form (5), see, e.g., [2].) 

Once the coefficient vector a in the representat ion ~,a,cp, for the interpolant  g 
has been determined, one may  evaluate g in various ways. Typically, one then 
wants  to find hg  for various linear functionals h such as h g  = g ( x ) ,  some x, or )~g 
= g(J)(x), or h g  = f~g  for some 6, etc. All of these values can be obtained from the 
vector a = (a,) by applying to it a matrix consisting of just  one row, viz., the 
matrix [~,q0~, ),q02, . . .  ]. Thus  evaluation of the interpolant  at  some linear functional 
h is just  another  linear procedure or subprogram which applied some matrix B to 
the vector a. 

For  example, the evaluation of the interpolating polynomial  (5) at  some point 
x = ARG proceeds customarily by nested multiplication, as in the following 
function subprogram.: 

FUNCTION POLVAL (X, F, N, ARG) 
DIMENSION X(N), F(N) 
POLVAL = F(1) 
IF (N .LE. 1) RETURN 
DO 10 K = 1, N 

10 POLVAL = POLVAL*(ARG - X(K)) + F(K) 
RETURN 

END 

Note that,  once again, the matrix B to be applied to the coefficient vector a of 
coefficients (in the array F) is not  formed explicitly. 

Suppose now tha t  we have, for each of the k independent  variables tl . . . . .  tk, a 
linear interpolation scheme. This means that, for r = 1 . . . .  , k, we have a matrix 
B r  which associates with each data  vector (A,rf) a coefficient vector (a, ~) = Br(A,~f ) ,  
giving the interpolant gr  = ~,~a,r~p~,r for f = f ( t~) .  Further,  for all appropriate  integer 
vectors i = (i~ . . . . .  iD, let A, be a linear functional on some appropriate  class of 
functions f of k variables for which 

whenever  f (tl . . . . .  tk) = f l ( t l )  f2(t2) . . .  f k ( tD,  all  tl . . . . .  tk. For example, i fk  = 3 and 
h r f=/ (O/r ) ,  )~2rf = f"(f lr) ,  and harf = J'~ f ( t )  d t ,  then 
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,X~L~,~)f : =  f (~,,  52, 53) 

X(l,=,~)f :ffi (a/ot=)=f(5~, B2, t3) dt3 
3 

~2,2, ,~f  :ffi (04/ot,2ot22) f (B~, B2, ~3) 

w o u l d  serve. ALso, le t  ¢#,(tl . . . . .  tk) := ~#,,,l(tl)~,2(t2 . . .  ~,,,k(tk). 
T h e n  we can cons t ruc t  an in te rpolant  g = ~,a,~, for a function f of  the k 

var iables  tl, . . . ,  tk as follows: Calculate  the  k-dimensional  a r ray  a = (a,) as a = 
(B1 ® . . .  ® Bk) (k , f )  f rom the k-dimensional  a r ray  (k,f) of  data.  Th is  funct ion g 
is then  indeed an in te rpolant  to f i n  the  sense t ha t  k ~  = k,f, all i. T h e  calculat ion 
of the  coefficient a r ray  a is, of  course, easily effected as descr ibed in the  corol lary 
above.  

T o  follow up  on the  example  of  po lynomia l  interpolat ion,  an appropr ia te ly  
extended version P O L N T E  of the  subprogram P O L I N T  would require a separa te  
ou tpu t  array,  D say, for the  calculated divided differences. Otherwise,  only the  
s t a t e m e n t  labeled 10, 

10 F(I) = (F(I + 1) - F(I)/(X(IPK) - X(I)) 

needs  to be put  into an  addit ional  loop over  the  da ta  sets, with the  difference 
X ( I P K )  - X(I) calculated outside t ha t  loop, of  course. We  get 

SUBROUTINE POLNTE (X, F, N, M, D) 
DIMENSION X(N), F(N, M), D(M, N) 
D O 5 I f f i  1, N 

D O 5 J f l ,  M 
5 D(J, I) -- F(I, J) 

NM1 = N - 1 

IF (NM1 .LE. 0) RETURN 
DO 1 0 K f 1 ,  NM1 

NMK ffi N - K 
DO 1 0 I - - 1 ,  N M K  

DIFF = X(I + K) - X(I) 
DO 10 J ffi 1, M 

10 D(J, I) -- (D(J, I + 1) - D(J, I ) ) /DIFF 
RETURN 

END 

Note  t h a t  this rout ine  funct ions appropr ia te ly  even for M -- 1, the  only difference 
compa red  to P O L I N T  being t ha t  the  ou tpu t  is now to be  found in D and not  in 
F. No te  fu r the r  t ha t  it takes  N (N - 1)/2 adds  and  divides per  da ta  set  to fo rm 
B ( k , f ) .  Since the  mat r ix  B -~ is uppe r  t r iangular  in this case, explicit appl icat ion 
of B by  backsubs t i tu t ion  would take  no fewer opera t ions  and would require the  
genera t ion  and  s torage of B (or its inverse).  

Now, to i l lustrate the  l e m m a  and its corollary, suppose  t ha t  we require the 
po lynomia l  in te rpolan t  p = p ( x ,  y, z)  to da ta  f (x,, yj ,  zk), i = 1 . . . . .  nx; j = 1, . . . ,  
ny; k = 1 . . . . .  nz. We load f ( x , ,  yj, zk) into F ( i , j ,  k) ,  x, into X (~), yj into Y (j),  and 
zk into Z (k), for all appropr ia te  i, j ,  k. T h e n  
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N := nx*ny*nz 
CALL POLNTE (X, F, n,, Nine, D) 
CALL POLNTE (Y, D, n~, N/ny. F) 
CALL POLNTE (Z, F, n~, N/n , ,  D) 

to get the  appropr ia te  polynomial  coefficients of  the  polynomial  in te rpolant  p 
into the  three-dimensional  a r ray  D. 

I f  we wish to evaluate  this in terpolant  a t  some point  (~, 3;, 2), we have  to 
procure  an extended version of the function rout ine  POLVAL. T h e  ou tpu t  for 
such a rout ine  will consist now of more  than  one number ;  we mus t  therefore  give 
up on having a function. Otherwise,  it is again only the ass ignment  s t a t e m e n t  
P O L V A L  -- F(1) and s t a t emen t  10 which need to be put  into a loop over  the  da ta  
sets. Here  is an extended version P O L V L E  of POLVAL.  

SUBROUTINE POLVLE (X, D, N, M, ARG, VALUE) 
DIMENSION X(N), D(N, M), VALUE(M) 
D O 5 J = I , M  

5 VALUE(J) = D(1, J) 
IF (N .LE. 1) RETURN 
DO 10 K = 2, N 

FACTOR = ARG - X(K) 
DO 10 J = 1, M 

10 VALUE(J) = VALUE(J)*FACTOR + D(K, J) 
RETURN 

END 

Now, to find p (~, 3;, ~), 

CALL POLVE (X, D, n~, N/nx,  ~, TEMPI)  
CALL POLVE (Y, TEMPI,  ny, n~, );, TEMP2) 
CALL POLVE (Z, TEMP2, nz, 1, 5, ANSWER) 

to get p (~, 3;, 5) -- A N S W E R .  Note  t ha t  T E M P 1  mus t  be  of  size ny*nz and 
contains the  necessary informat ion to evaluate  the bivar ia te  polynomial  p (~, y, 
z) for any  choice of y and z. Again, T E M P 2  is of  size n ,  and  contains the 
appropr ia te  coefficients of  the  polynomial  p (~, 3;, z) in the  single var iable  z. In 
part icular ,  if p is to be evalua ted  a t  all the points  of  a regular  grid, it is mos t  
efficient to evaluate  p along lines parallel  to the z-axis. 

As an example  of some of the  difficulties one migh t  encounter ,  we now discuss 
briefly osculatory polynomial  interpolation.  Here ,  the in terpolant  is again of  the  
form of  eq. (5), bu t  now some of the interpolat ion points  X l , . . . ,  x ,  might  coincide. 
This  requires  an extension of eq. (6) which reads  as follows: 

[x . . . . . .  x j ] f : =  f~J- '~ (x , ) / ( j -  i )! ,  if x, = . . . .  x~. (6a) 

By insisting that ,  for given da ta  points  xl . . . .  , xn, we have  x, = xj implies x, -- 
x,+~ . . . .  --- x j, eqs. (6) and (6a) cover  all eventualit ies.  T h e  point  of  this extension 
is tha t  now p f  agrees with f in the  sense tha t  pCr~(z)= f~r~(z) in case the  n u m b e r  z 
appears  (at least) r + 1 t imes in the sequence xl . . . . .  Xn. This  explains the  t e r m  
osculatory. 
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The  following program for the construct ion of the coefficients in eq. (5) is based 
on eqs. (6) and (6a) and can be found, in somewhat  different notation, in [2]. 

C 
C 
C 
C 

SUBROUTINE POLOSC (X, F, N) 
INPUT MUST SATISFY THE FOLLOWING. 
IF X(I - 1) .NE. X(I) -- X(I + J) .NE. X(I + J + 1), THEN 
X(I + L) = X(I) AND F(I + L) = (D**L)F(X(I)), L -- 0 . . . . .  J. 
(HERE, X(0), X(N + 1) .NE. X(I), I = 1 . . . . .  N, BY DEFINITION.) 

DIMENSION X(N), F(N) 
NM1 = N - 1 

IF (NM1 .LE. 0) RETURN 
DO 10 K -- 1, NM1 

FLOATK = K 
NMK = N - K 

FLAST = F(1) 
DO9 1 = 1, NMK 

DX = X(I + K) - X(I) 
IF (DX .EQ. 0.) GO TO 7 
F(I) --- (F(I + 1) - FLAST)/DX 
FLAST = F(I + 1) 

7 F(I) --- F(I + 1)/FLOATK 
9 CONTINUE 

10 F(NMK + 1) -- FLAST 

GO TO9 

RETURN 
END 

The construction of an efficient extension of POLOSC is made difficult by the 
fact that the local variable FLAST depends on the data F but is active through 
various statements which are independent of the data F and should therefore not 
be put inside a loop over the various data sets. One way out is to make FLAST 
an array of length M, either local or as an argument, which then requires the four 
groups of statements 

FLAST -- F(1) 
F(1) -- (F(I + I) - F(I))/DX; FLAST -- F(I + I) 
F(I) -- F(I + I)/FLOATK 
F(NMK + 1) -- FLAST 

each be pu t  into a loop over the different data  sets. 
An alternative way consists in a reorganization of  the entire calculation which 

avoids the t emporary  saving of terms which depend on F, possibly at  the cost of 
a slight increase in F- independent  work. For  the record, here is such a subprogram. 
Note  tha t  the input information in F is to be arranged differently, too. 

S U B R O U T I N E  P O L S C N  (X, F, N) 
C I N P U T  M U S T  S A T I S F Y  T H E  FOLLOWING.  
C IF  X{I - 1) .NE. X(I) ffi X(I + J). .NE. X(I  + J + 1), T H E N  
C X(I  + L) = X(I) A N D  F(I + L) = (D**(J - L))F(X(I)) ,  L = 0 , . . . ,  J. 
C (HERE,  BY D E F I N I T I O N ,  X(0), X(N + 1) .NE. X(I), I -- 1 . . . . .  N.) 

D I M E N S I O N  X(N), F(N) 
NM1 -- N - 1 
IF  (NM1 .LE. 0) RETURN 
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DO 3 N E X T P 1  = 2, N 
IF  ( X ( N E X T P 1 )  .NE. X(1) 
C O N T I N U E  

N E X T P 1  = N + 1 
DO 1 0 K = 1 ,  NM1 

N E X T  = N E X T P 1  = 1 
F L O A T K  = F L O A T ( K )  
N M K  = N - K 

DO 9 1 -- 1, N M K  
IF  ( N E X T  .EQ. I) 
F(I) = F ( I ) / F L O A T K  

GO TO 4 

GO TO 5 

GO TO 9 
5 N E X T  = N E X T  + 1 

IF  ( N E X T  .GT. N M K )  GO TO 7 
IF  ( X ( N E X T  + K) .EQ. X ( N E X T ) )  GO TO 5 

7 F(I) = ( F ( N E X T )  - F ( I ) / ( X ( I  + K) - X(I)  
9 C O N T I N U E  

10 N E X T P 1  = MAX0(2,  N E X T P 1  - 1) 
RETURN 

E N D  

We do not  bo ther  to carry  out  here  the  extension of this rout ine because  it  is 
s traightforward.  Aside f rom an initial t ransfer  of F(~,]) to D( j ,  i ) ,  a l l  i , j ,  o n l y t w o  
s ta tements ,  

F(I) = F(I)/FLOATK 
F(I) = (F(NEXT) - F(I))/(X(I + K) - X(I)) 

need to be put  into a loop over  the da ta  sets, with the difference X( I  + K) - X(I)  
formed outside such a loop (and, of  course, F replaced by  D( j ,  • )). 

We close with an example  in which the "mat r ix"  B is three  dimensional ,  taking 
vectors  to matr ices,  viz., comple te  cubic spline interpolat ion.  A typical  implemen-  
ta t ion of this scheme (see, e.g., [2] s tar ts  off with an array,  C, of  d imension 
(4, n + 1), which contains  the  following informat ion  initially: 

C(1, i ) = f ( x , ) ,  i = l  . . . .  , n +  1 

C(2, 1) = f ' ( x l ) ,  C(2, n + 1) = f ' (x ,~+~).  

This  says tha t  the  da ta  (h,f) about  f in this scheme consist  of  the  vec tor  ( f ( x l ) ,  
. . . .  f (Xn+l) ,  f'(Xl), f ' ( x , + l ) ) .  After  passing th rough  a subrout ine  S P L I N E ( X ,  C, 
N), the a r ray  C contains the coefficients of the polynomial  pieces which make  up 
the interpolat ing cubic spline, i.e., C(j ,  i)  = g ( J - ~ ) ( x , ) / ( j  - 1)!, j -- 1 . . . . .  4 and  i 
= 1 ,  . . . ,  n .  

For  an extended version, i t  would seem reasonable  to in t roduce a separa te  
input  array,  F say, with 

(F(1), . . . ,  F(n + 3)) = (f(xl) . . . .  , f ( x , + ~ ) ,  f'(x~), f ' ( x n + l ) ) .  

The  calling s t a t emen t  of  the extended version then  might  be S P L N E E ( X ,  F, 
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N + 3, M, C, N) with F and C dimensioned internally as F(N + 3, M), C(M, 4, N). 
Thus  if SPLNEE is used as SUB,' in the corollary above, then  n, = N + 3, r, = 
4*N. Consequently, bicubic spline interpolation, on a mesh (x,)~ "+~ by (y j)l ~+~, 
would be carried out  by 

CALL SPLNEE (X, F, n + 3, m + 3, C, n) 
CALL SPLNEE (Y, C, m + 3, 4*n, F, m) 

with F initially of dimension (n + 3, m + 3) and containing the data  

"f(x~, yl) f(x, ,  y~+,) fax , ,  y,) fax,,  y~+,) - 

F = 

° ° .  

U U I 

Q I I 

J Q U 

U I 6 f(xn+l, y,) f(x,+l, ym+~) fy(x,+~, yl) fy(x,+~, Ym+~) 
fx(x,,yl) . . .  f.(x,,ym+,) fxAx,, y,) AAx,, ym÷,) 
fx(Xn+,,Yl) "'" f~(x,+,,ym+~) fxy(x,÷,,y~) f=y(x,+~,y~,+]) 

After the two calls, F contains the polynomial coefficients of the interpolating 
bicubic spline, 

F(i + 1, r, j + 1, s) = (O/OX)'(O/OyVg(Xr, ys), 

i, j f f i O , . . . , 3 ; r f f i l , . . . , n ; s = l  . . . . .  m. (7) 

Note the difference between this way of storing the coefficients and the customary 
way followed by the various available routines which return the coefficients in 
some array COEF containing COEF(i, j ,  r, s) = F(i, r, ], s). The  coefficient array 
F, organized as in eq. (7), lends itself easily to evaluation by extended univariate 
evaluation routines. 

In summary,  the approach to tensor products advocated here allows one to do 
the detailed programming work in the univariate context. The  resulting programs 
are then  strung together to give or evaluate a tensor product  interpolant (or, 
effect multiplication by a tensor or Kronecker product  of matrices) with an ease 
which mirrors the ease of the mathematical  construction of tensor products. 
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