
Efficient Computer Manipulation
of Tensor Products

CARL DE BOOR

University of Wtsconsin-Madison

It m shown how to construct a modified version SUB,' of a (presumably efficmnt) subroutine SUB, for
solving the hnear system A,x = b, t = 1, , k, so that the hnear system

(AI ® . . . ® A k) x = b

can be solved by just one call to each of the routines SUB,', i = 1, , k Polynomml interpolation and
sphne interpolation in several varmbles are gwen as examples.

Key Words and Phrases: tensor product, multivariate, mterpolatmn, approximation, polynomml,
sphne, osculatory
CR Categorms. 5.13

In [3], P e r e y r a a n d S c h e r e r d i scuss t h e n u m e r i c a l s o l u t i o n of a l i n e a r s y s t e m of
t h e f o r m

(Al ® " . ® A D x = b (1)

w i t h A, a n i n v e r t i b l e m a t r i x of o r d e r n,, i = 1 k, and , c o r r e s p o n d i n g l y , b o t h
x a n d b k - d i m e n s i o n a l a r r ays , of size nl × n2 × . . . × n l z k . S u c h s y s t e m s a r i se
n a t u r a l l y w h e n f o r m i n g t e n s o r p r o d u c t s of u n i v a r i a t e i n t e r p o l a t i o n s c h e m e s .

P e r e y r a a n d S c h e r e r p r o p o s e to s to re a r r a y s such as x a n d b w i t h t h e l a s t
i n d e x r u n n i n g f a s t e s t a n d t h e n h a v e a s c h e m e of a p p l y i n g Ak -~, A~-~I a n d so on
d o w n to a n d i nc lud ing A1 -~, a p p r o p r i a t e l y r e s to r ing t h e i n t e r m e d i a t e i n f o r m a t i o n
so t h a t a p p l i c a t i o n o f A, -1 invo lves on ly r e p e a t e d o r d i n a r y m a t r i x m u l t i p l i c a t i o n
to a v e c t o r s t o r e d in c o n s e c u t i v e l o c a t i o n s in m e m o r y . W h e n , a s is m o r e r ea son -
able , a p p l i c a t i o n o f U,-~l , -~ r a t h e r t h a n of A, -~ is w a n t e d , w i t h L , U , a t r i a n g u l a r
f a c to r i z a t i on for A,, a f u r t h e r c o m p l i c a t i o n a r i se s a n d is d e a l t wi th .

I t is t h e p u r p o s e of th i s p a p e r to d e s c r i b e a d i f f e r en t p r o c e d u r e w h i c h I h a v e
u sed for s o m e t i m e a n d w h i c h is m o r e d i r e c t a n d s i m p l e r t h a n t h e P e r e y r a -
S c h e r e r p r o c e d u r e a p p e a r s to be.

W e a s s u m e tha t , for e ach ~, we have a v a i l a b l e a F o r t r a n s u b r o u t i n e SUB,b , n,
x) w h i c h so lves t h e i th l i n e a r s y s t e m A , x = b (of o r d e r n -- n,) for x, g iven b.
P r e s u m a b l y , t h e r o u t i n e does th i s in an ef f ic ient way, t a k i n g a d v a n t a g e o f a n y
spec i a l s t r u c t u r e A , m i g h t h a v e such as b a n d e d n e s s , pos i t i ve de f in i t eness , etc.

Permmslon to copy without fee all or part of this material is granted provided that the copras are not
made or distributed for direct commercial advantage, the ACM copyright notme and the title of the
pubhcation and its date appear, and notme m given that copying is by permmsion of the Association
for Computing Machinery. To copy otherwtse, or to repubhsh, reqmres a fee and/or specific
permission
This work supported by the United States Army under Contract DAAG29-75-C-0024.
Author's address" Mathematms Research Center, Univermty of Wisconsin-Madison, 610 Walnut St ,
Machson, WI 53706

© 1979 ACM 0098-3500/79/0600-0173500.75

ACM Transactions on Mathematmal Software, Vol 5, No. 2, June 1979. Pages 173-182

carl de boor
Sticky Note
the corrigenda, ACM Math Software, 5(2), 1979, p.525, acknowledges that the final production process of this paper introduced various misprints. These are pointed out below

carl de boor
Highlight
nlzk --> n_k

carl de boor
Highlight
l --> L

carl de boor
Highlight
SUB_i --> SUB_i(

174 Carl de Boor

We fur ther assume tha t the k-dimensional arrays x and b are (to be) s tored in
For t ran fashion, i.e.,

x(il, i2 , iD = x(il + nl(i2 - 1 + n2(i8 - 1 + . . . + nk- l (ik -- 1) . . .)))

if we refer to x also as an equivalent one-dimensional array.
T he following simple procedure will then lead to an efficient way for solving

eq. (1). For each i, enlarge the subrout ine SUB, to a subrout ine SUB/(b , n, m, x)
which solves s imultaneously A , x = b for m given right sides b(. , 1), b(. , 2), . . . , b
(., m), each of length n = n,, and stores the corresponding solutions in x(1, •), x(2,
•) x (m , •). Thus the dimension s ta tement for the arguments b and x in SUB, '
reads

DIMENSION b(n, m), x(m, n)

and the change otherwise consists in put t ing every s ta tement involving b or x
appropr ia te ly into a DO loop. In this, care should be taken to leave s ta tements
which do not depend on the part icular r ight side outside such loops.

M a ny l ibrary routines for specific l inear problems already provide this facility
for dealing with several r ight sides in one call, since the work in solving A , x = b
for an additional r ight side b is usually much less t han the work for solving such
a sys tem the first time. Bu t such routines re turn the solution corresponding to
the j t h column b(. , j) of the input ar ray customari ly in the j t h c o l u m n of the
ou tpu t ar ray x and not, as I propose here, in the j t h row.

LEMMA. F o r i = 1, . . . , k, le t S U B ; be a n e x p a n d e d vers ion , as descr ibed , o f
t he r o u t i n e S U B , f o r s o l v i n g A , x = b, a n d se t N := n~*n2* . . . *nk. T h e n , t he
f o l l o w i n g s t a t e m e n t s

b0 := b
C A L L S u b l ' (bo, nl, N / nl , b 3
C A L L S U B 2 ' (b l , n~, N / n 2 , b2)

C A L L SUBk ' (bk -1 , nk, N / n k , bD
x := bk

w i l l p r o d u c e the s o l u t i o n x o f eq. (1).
PROOF. Le t x, be the k-dimensional array x, := (A1 -~ ® . . . ® A, -1 ® 1 ® . . .

® 1)b, i = 0 , k. T h e n

x , (j t J,-,, ",J,+, , h) = A , - ' x , - , (j t , . . . ,] , - 1,. , j ,+, , jk) (2)

and our assert ion is proved if we can establish tha t bk = xk. We prove this by
showing that , for all i, b, as generated by the succession of calls above is re la ted
to x, in the following way: I f b , is i n t e r p r e t e d a s a k - d z m e n s i o n a l F o r t r a n a r ray ,
o f d i m e n s i o n (n,+l , nk, n l , n,), t h e n

b,(j,+l , j k , j l , j ,) = x, (j l jk) , a l l j , (3)

f o r i = O, . . . , k . For z = k, eq. (3) is indeed the desired s ta tement tha t bk = xk.
Now, eq. (3) holds for ~ = 0 because of the initial assignment bo := b. Assuming

eq. (3) to hold for i < v, we consider the action of the

ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979

carl de boor
Highlight
\sl --> \rm [also in next line]

carl de boor
Highlight

carl de boor
Highlight
\sl Sub --> \rm SUB

carl de boor
Highlight

carl de boor
Highlight

carl de boor
Highlight
\sl --> \rm

carl de boor
Highlight
\sl b --> \bf b

carl de boor
Highlight
j_i -1 --> j_{i-1}

Effm~ent Computer Manipulation of Tensor Products 175

CALL SUBv'(bv-1, nv, N ~ no, by).

SUBd considers bo-~ to be a two-dimensional array, b say, of dimension (no, N ~

no). Thus with

s := jo+l + nv+l(jo+2 - 1 + . . . + n k (j l - 1 + . . . + nv-2(jv-1 - 1) . . .) . . .) ,

we have

b(. , s) = bo-m(.,jo+, jk, j~ jo-1)
(4)

= X v - , (j , jo-1, . , jo+, jk)

by induction hypothesis. SUBo' then applies Ao -~ to each of these m ffi N / n o
no-vectors b(. , s), thus obtaining the corresponding no-vector

x o (j l j r - l , ° , j r + l , . . . , j k) ,

by eqs. (2) and (4), and stores this vector in

x(s , .) = bv(s + (N / n o) (. - 1))

= bv(jv+l + no+~[jv+2 - 1 + . . . + nv-2(f i -~ - 1) . . .] + (N / n o) (. - 1))

= bo(jo+~, . . . , j k , j l , jo-1, ")

which proves eq. (3) for i = v and so advances the induction hypothesis. Q.E.D.
We introduced the axuiliary arrays only for argument ' s sake. In calculations,

two arrays, say bl and b2, are sufficient, with bl serving in place of all bk with i
odd, and b2 serving for all the others.

Also, in typical situations, the various subroutines S U B 1 , . . . , SUBk are, in fact,
just one routine called with additional arguments which differ with i. In such a
case, only one extended version has to be written.

Finally, we put the above discussion in terms of solving a linear system, i.e., in
terms of premult iplying a given vector by the inverse of a given matrix. We did
this in order to make the point tha t we do not require the matr ix by which we
wish to premult iply to be present explicitly. Any For t ran subprogram SUB=(b, x)
which has the effect of forming x = B=b for given b can serve as a basis for an
extended version SUB/(b , n, m, x) suitable for the calculation of (B1 ® - - . ®
BDb, and the matrices B , need not be square. We state this slight extension of
the lemma as a corollary for the record.

COROLLARY. F o r i = 1 , k , le t B , be a (n,, r ,) -ma t r i x , a n d le t S U B , ' (b , n,, m ,
x, r,) be a s u b r o u t i n e w h i c h , f o r j = 1 m , f o r m s t h e r , -vec tor B , b (. , j) (in
s o m e m a n n e r) f r o m t h e n , - v ec to r b(. , j) , a n d s t o r e s i t in x (j , .) . T h e n , t he

f o l l o w i n g s t a t e m e n t s

bo := b
r n : = n2* • • • * nk
C A L L SUB((bo , nl, m, bl, rl)
rn .= m*rl/n2

ACM Transac t ions on MathemaUca l Software, Vol. 5, No. 2, J u n e 1979

carl de boor
Highlight
xu --> ux

carl de boor
Highlight

carl de boor
Sticky Note
\ls CALL SUB --> \rm CALL SUB

176 Carl de Boor

C A L L SUB2'(bl , n2, m, b2, r2)
m := m*re/n3

C A L L SUBk'(b~-I , nk, m , b k , rD
x :~ bk

f o r m t h e k - d i m e n s i o n a l a r r a y x = (B~ ® . . . ® BDb.
It is not even necessary tha t B, be a matrix, i.e., a two-dimensional array. The

more general situation in which B, is a linear map which associates s,-dimensional
arrays with t,-dimensional arrays is covered by the corollary as well since we can
always interpret such s,-dimensional and t,-dimensional arrays Fortran fashion as
equivalent one-dimensional arrays.

We give some simple examples in the next section.

TENSOR PRODUCTS OF UNIVARIATE INTERPOLATION SCHEMES

The following material concerning tensor products of univariate interpolation
schemes is well known and is mentioned here only in order to illustrate the use
and usefulness of the simple idea expounded earlier. (A simple account giving
proofs and details can be found, e.g., in [1].)

The construction of a (univariate) linear interpolant g to some function
f usually involves the calculation of the coefficients a = (a,) in a representation

g = ~,, a,9~,
$

for the interpolant from certain information (~,,f) about f. Here, each ~, is a l i n e a r
f u n c t i o n a l , e.g., X,f = f (x ,) or X,f-- ftr,~ (x,) or X,f-- S ¢ , (x) f (x) d x , etc., and g is so
constructed tha t ~,g = ~,f, all i.

At the level of the present discussion, there is no reason to require the
representation for g to be irredundant, i.e., to require the sequence (¢p,) to be
linearly independent. All tha t is necessary is the assumption tha t a --- B (k , f) for
some matrix B. The matrix B is commonly not known explicitly (although it
could, of course, be determined). Rather , some procedure or subprogram SUB is
available which transforms the vector (k,f) of data appropriately into the vector
a of coefficients.

For example, consider the construction of the polynomial p = pf of degree less
than n which agrees with f at the n distinct points xl, . . . , x,. In its Newton form,
p f looks like

p f (x) = [x Xn] f " 1-I (X -- X]) (5)
¢11 j z l + l

with the coefficient [x, . . . , xn] f t h e so-called divided difference for f at the points
x , , . . . , x n , i = 1 , . . . , n , i .e. ,

f(x,), i = j
[x , , . . . , xj]f :-- [([x,+, , x j] f - [x , x j - ,] f) / (x ~ - x,), i < j . (6)

These coefficients can therefore be determined as final entires in a so-called

ACM Transactions on Mathematical Software, Vol 5, No 2, June 1979

carl de boor
Highlight

carl de boor
Highlight

carl de boor
Highlight
\bf x --> \sl x

carl de boor
Highlight
f\cdot --> f\ \cdot

carl de boor
Highlight
ir --> ri

Efficient Computer Man,pulat,on of Tensor Products 177

divided difference table, for instance, as in the following subprogram:

SUBROUTINE POLINT (X, F, N)
DIMENSION X(N), F(N)
NM1 -- N - 1
IF (NM1 .LE. 0) RETURN
DO 10K- -1 , NM1

NMK -- N - K
DO 1 0 I = I , NMK

10 F(I) = (F(I + 1) - F(I))/(X(I + K) - X(I))
RETURN

END

Here, the array F contains F(i) = / (x ,) , i = 1 n, on input and F(i) = [x
Xn]f, ~ = 1, . . . , n , on output. (For details concerning divided differences and the
Newton form (5), see, e.g., [2].)

Once the coefficient vector a in the representat ion ~,a,cp, for the interpolant g
has been determined, one may evaluate g in various ways. Typically, one then
wants to find hg for various linear functionals h such as h g = g (x) , some x, or)~g
= g(J)(x), or h g = f~g for some 6, etc. All of these values can be obtained from the
vector a = (a,) by applying to it a matrix consisting of just one row, viz., the
matrix [~,q0~,),q02, . . .]. Thus evaluation of the interpolant at some linear functional
h is just another linear procedure or subprogram which applied some matrix B to
the vector a.

For example, the evaluation of the interpolating polynomial (5) at some point
x = ARG proceeds customarily by nested multiplication, as in the following
function subprogram.:

FUNCTION POLVAL (X, F, N, ARG)
DIMENSION X(N), F(N)
POLVAL = F(1)
IF (N .LE. 1) RETURN
DO 10 K = 1, N

10 POLVAL = POLVAL*(ARG - X(K)) + F(K)
RETURN

END

Note that, once again, the matrix B to be applied to the coefficient vector a of
coefficients (in the array F) is not formed explicitly.

Suppose now tha t we have, for each of the k independent variables tl tk, a
linear interpolation scheme. This means that, for r = 1 , k, we have a matrix
B r which associates with each data vector (A,rf) a coefficient vector (a, ~) = Br(A,~f) ,
giving the interpolant gr = ~,~a,r~p~,r for f = f (t~) . Further, for all appropriate integer
vectors i = (i~ iD, let A, be a linear functional on some appropriate class of
functions f of k variables for which

whenever f (tl tk) = f l (t l) f2(t2) . . . f k (tD, all tl tk. For example, i fk = 3 and
h r f=/ (O/r) ,)~2rf = f"(f lr) , and harf = J'~ f (t) d t , then

ACM Transact ions on Mathemat ica l Software, Vol. 5, No. z, June 1979

carl de boor
Highlight
d --> s

178 • Carl de Boor

,X~L~,~)f : = f (~,, 52, 53)

X(l,=,~)f :ffi (a/ot=)=f(5~, B2, t3) dt3
3

~2,2, ,~f :ffi (04/ot,2ot22) f (B~, B2, ~3)

w o u l d serve. ALso, le t ¢#,(tl tk) := ~#,,,l(tl)~,2(t2 . . . ~,,,k(tk).
T h e n we can cons t ruc t an in te rpolant g = ~,a,~, for a function f of the k

var iables tl, . . . , tk as follows: Calculate the k-dimensional a r ray a = (a,) as a =
(B1 ® . . . ® Bk) (k , f) f rom the k-dimensional a r ray (k,f) of data. Th is funct ion g
is then indeed an in te rpolant to f i n the sense t ha t k ~ = k,f, all i. T h e calculat ion
of the coefficient a r ray a is, of course, easily effected as descr ibed in the corol lary
above.

T o follow up on the example of po lynomia l interpolat ion, an appropr ia te ly
extended version P O L N T E of the subprogram P O L I N T would require a separa te
ou tpu t array, D say, for the calculated divided differences. Otherwise, only the
s t a t e m e n t labeled 10,

10 F(I) = (F(I + 1) - F(I)/(X(IPK) - X(I))

needs to be put into an addit ional loop over the da ta sets, with the difference
X (I P K) - X(I) calculated outside t ha t loop, of course. We get

SUBROUTINE POLNTE (X, F, N, M, D)
DIMENSION X(N), F(N, M), D(M, N)
D O 5 I f f i 1, N

D O 5 J f l , M
5 D(J, I) -- F(I, J)

NM1 = N - 1

IF (NM1 .LE. 0) RETURN
DO 1 0 K f 1 , NM1

NMK ffi N - K
DO 1 0 I - - 1 , N M K

DIFF = X(I + K) - X(I)
DO 10 J ffi 1, M

10 D(J, I) -- (D(J, I + 1) - D(J, I)) /DIFF
RETURN

END

Note t h a t this rout ine funct ions appropr ia te ly even for M -- 1, the only difference
compa red to P O L I N T being t ha t the ou tpu t is now to be found in D and not in
F. No te fu r the r t ha t it takes N (N - 1)/2 adds and divides per da ta set to fo rm
B (k , f) . Since the mat r ix B -~ is uppe r t r iangular in this case, explicit appl icat ion
of B by backsubs t i tu t ion would take no fewer opera t ions and would require the
genera t ion and s torage of B (or its inverse).

Now, to i l lustrate the l e m m a and its corollary, suppose t ha t we require the
po lynomia l in te rpolan t p = p (x , y, z) to da ta f (x,, yj , zk), i = 1 nx; j = 1, . . . ,
ny; k = 1 nz. We load f (x , , yj, zk) into F (i , j , k) , x, into X (~), yj into Y (j), and
zk into Z (k), for all appropr ia te i, j , k. T h e n
ACM Transac t ions on Mathemat ica l Software, VoL 5, No 2, June 1979.

carl de boor
Highlight
t_2 --> t_2)

carl de boor
Sticky Note
[all subscripted i should be \bf]

carl de boor
Highlight
N\ (--> N(

Efficient Computer Mampulation of Tensor Products 179

N := nx*ny*nz
CALL POLNTE (X, F, n,, Nine, D)
CALL POLNTE (Y, D, n~, N/ny. F)
CALL POLNTE (Z, F, n~, N/n , , D)

to get the appropr ia te polynomial coefficients of the polynomial in te rpolant p
into the three-dimensional a r ray D.

I f we wish to evaluate this in terpolant a t some point (~, 3;, 2), we have to
procure an extended version of the function rout ine POLVAL. T h e ou tpu t for
such a rout ine will consist now of more than one number ; we mus t therefore give
up on having a function. Otherwise, it is again only the ass ignment s t a t e m e n t
P O L V A L -- F(1) and s t a t emen t 10 which need to be put into a loop over the da ta
sets. Here is an extended version P O L V L E of POLVAL.

SUBROUTINE POLVLE (X, D, N, M, ARG, VALUE)
DIMENSION X(N), D(N, M), VALUE(M)
D O 5 J = I , M

5 VALUE(J) = D(1, J)
IF (N .LE. 1) RETURN
DO 10 K = 2, N

FACTOR = ARG - X(K)
DO 10 J = 1, M

10 VALUE(J) = VALUE(J)*FACTOR + D(K, J)
RETURN

END

Now, to find p (~, 3;, ~),

CALL POLVE (X, D, n~, N/nx, ~, TEMPI)
CALL POLVE (Y, TEMPI, ny, n~,);, TEMP2)
CALL POLVE (Z, TEMP2, nz, 1, 5, ANSWER)

to get p (~, 3;, 5) -- A N S W E R . Note t ha t T E M P 1 mus t be of size ny*nz and
contains the necessary informat ion to evaluate the bivar ia te polynomial p (~, y,
z) for any choice of y and z. Again, T E M P 2 is of size n , and contains the
appropr ia te coefficients of the polynomial p (~, 3;, z) in the single var iable z. In
part icular , if p is to be evalua ted a t all the points of a regular grid, it is mos t
efficient to evaluate p along lines parallel to the z-axis.

As an example of some of the difficulties one migh t encounter , we now discuss
briefly osculatory polynomial interpolation. Here , the in terpolant is again of the
form of eq. (5), bu t now some of the interpolat ion points X l , . . . , x , might coincide.
This requires an extension of eq. (6) which reads as follows:

[x x j] f : = f~J- '~ (x ,) / (j - i)! , if x, = x~. (6a)

By insisting that , for given da ta points xl , xn, we have x, = xj implies x, --
x,+~ --- x j, eqs. (6) and (6a) cover all eventualit ies. T h e point of this extension
is tha t now p f agrees with f in the sense tha t pCr~(z)= f~r~(z) in case the n u m b e r z
appears (at least) r + 1 t imes in the sequence xl Xn. This explains the t e r m
osculatory.

ACM Transactions on Mathematical Software, Vo|, 5, No 2, June 1979

carl de boor
Sticky Note
POLVE --> POLVLE [three times]

180 Carl de Boor

The following program for the construct ion of the coefficients in eq. (5) is based
on eqs. (6) and (6a) and can be found, in somewhat different notation, in [2].

C
C
C
C

SUBROUTINE POLOSC (X, F, N)
INPUT MUST SATISFY THE FOLLOWING.
IF X(I - 1) .NE. X(I) -- X(I + J) .NE. X(I + J + 1), THEN
X(I + L) = X(I) AND F(I + L) = (D**L)F(X(I)), L -- 0 J.
(HERE, X(0), X(N + 1) .NE. X(I), I = 1 N, BY DEFINITION.)

DIMENSION X(N), F(N)
NM1 = N - 1

IF (NM1 .LE. 0) RETURN
DO 10 K -- 1, NM1

FLOATK = K
NMK = N - K

FLAST = F(1)
DO9 1 = 1, NMK

DX = X(I + K) - X(I)
IF (DX .EQ. 0.) GO TO 7
F(I) --- (F(I + 1) - FLAST)/DX
FLAST = F(I + 1)

7 F(I) --- F(I + 1)/FLOATK
9 CONTINUE

10 F(NMK + 1) -- FLAST

GO TO9

RETURN
END

The construction of an efficient extension of POLOSC is made difficult by the
fact that the local variable FLAST depends on the data F but is active through
various statements which are independent of the data F and should therefore not
be put inside a loop over the various data sets. One way out is to make FLAST
an array of length M, either local or as an argument, which then requires the four
groups of statements

FLAST -- F(1)
F(1) -- (F(I + I) - F(I))/DX; FLAST -- F(I + I)
F(I) -- F(I + I)/FLOATK
F(NMK + 1) -- FLAST

each be pu t into a loop over the different data sets.
An alternative way consists in a reorganization of the entire calculation which

avoids the t emporary saving of terms which depend on F, possibly at the cost of
a slight increase in F- independent work. For the record, here is such a subprogram.
Note tha t the input information in F is to be arranged differently, too.

S U B R O U T I N E P O L S C N (X, F, N)
C I N P U T M U S T S A T I S F Y T H E FOLLOWING.
C IF X{I - 1) .NE. X(I) ffi X(I + J). .NE. X(I + J + 1), T H E N
C X(I + L) = X(I) A N D F(I + L) = (D**(J - L))F(X(I)) , L = 0 , . . . , J.
C (HERE, BY D E F I N I T I O N , X(0), X(N + 1) .NE. X(I), I -- 1 N.)

D I M E N S I O N X(N), F(N)
NM1 -- N - 1
IF (NM1 .LE. 0) RETURN

ACM Transact ions on Mathemat ica l Software, Vol 5, No 2, June 1979

Efficient Computer Manipulation of Tensor Products • 181

DO 3 N E X T P 1 = 2, N
IF (X (N E X T P 1) .NE. X(1)
C O N T I N U E

N E X T P 1 = N + 1
DO 1 0 K = 1 , NM1

N E X T = N E X T P 1 = 1
F L O A T K = F L O A T (K)
N M K = N - K

DO 9 1 -- 1, N M K
IF (N E X T .EQ. I)
F(I) = F (I) / F L O A T K

GO TO 4

GO TO 5

GO TO 9
5 N E X T = N E X T + 1

IF (N E X T .GT. N M K) GO TO 7
IF (X (N E X T + K) .EQ. X (N E X T)) GO TO 5

7 F(I) = (F (N E X T) - F (I) / (X (I + K) - X(I)
9 C O N T I N U E

10 N E X T P 1 = MAX0(2, N E X T P 1 - 1)
RETURN

E N D

We do not bo ther to carry out here the extension of this rout ine because it is
s traightforward. Aside f rom an initial t ransfer of F(~,]) to D(j , i) , a l l i , j , o n l y t w o
s ta tements ,

F(I) = F(I)/FLOATK
F(I) = (F(NEXT) - F(I))/(X(I + K) - X(I))

need to be put into a loop over the da ta sets, with the difference X(I + K) - X(I)
formed outside such a loop (and, of course, F replaced by D(j , •)).

We close with an example in which the "mat r ix" B is three dimensional , taking
vectors to matr ices, viz., comple te cubic spline interpolat ion. A typical implemen-
ta t ion of this scheme (see, e.g., [2] s tar ts off with an array, C, of d imension
(4, n + 1), which contains the following informat ion initially:

C(1, i) = f (x ,) , i = l , n + 1

C(2, 1) = f ' (x l) , C(2, n + 1) = f ' (x ,~+~).

This says tha t the da ta (h,f) about f in this scheme consist of the vec tor (f (x l) ,
. . . . f (Xn+l) , f'(Xl), f ' (x , + l)) . After passing th rough a subrout ine S P L I N E (X , C,
N), the a r ray C contains the coefficients of the polynomial pieces which make up
the interpolat ing cubic spline, i.e., C(j , i) = g (J - ~) (x ,) / (j - 1)!, j -- 1 4 and i
= 1 , . . . , n .

For an extended version, i t would seem reasonable to in t roduce a separa te
input array, F say, with

(F(1), . . . , F(n + 3)) = (f(xl) , f (x , + ~) , f'(x~), f ' (x n + l)) .

The calling s t a t emen t of the extended version then might be S P L N E E (X , F,

ACM Transact ions on Mathematmal Software, Vol. 5, No. 2, June 1979

carl de boor
Highlight
[2] --> [2])

182 Carl de Boor

N + 3, M, C, N) with F and C dimensioned internally as F(N + 3, M), C(M, 4, N).
Thus if SPLNEE is used as SUB,' in the corollary above, then n, = N + 3, r, =
4*N. Consequently, bicubic spline interpolation, on a mesh (x,)~ "+~ by (y j)l ~+~,
would be carried out by

CALL SPLNEE (X, F, n + 3, m + 3, C, n)
CALL SPLNEE (Y, C, m + 3, 4*n, F, m)

with F initially of dimension (n + 3, m + 3) and containing the data

"f(x~, yl) f(x, , y~+,) fax , , y,) fax,, y~+,) -

F =

° ° .

U U I

Q I I

J Q U

U I 6 f(xn+l, y,) f(x,+l, ym+~) fy(x,+~, yl) fy(x,+~, Ym+~)
fx(x,,yl) . . . f.(x,,ym+,) fxAx,, y,) AAx,, ym÷,)
fx(Xn+,,Yl) "'" f~(x,+,,ym+~) fxy(x,÷,,y~) f=y(x,+~,y~,+])

After the two calls, F contains the polynomial coefficients of the interpolating
bicubic spline,

F(i + 1, r, j + 1, s) = (O/OX)'(O/OyVg(Xr, ys),

i, j f f i O , . . . , 3 ; r f f i l , . . . , n ; s = l m. (7)

Note the difference between this way of storing the coefficients and the customary
way followed by the various available routines which return the coefficients in
some array COEF containing COEF(i, j , r, s) = F(i, r,], s). The coefficient array
F, organized as in eq. (7), lends itself easily to evaluation by extended univariate
evaluation routines.

In summary, the approach to tensor products advocated here allows one to do
the detailed programming work in the univariate context. The resulting programs
are then strung together to give or evaluate a tensor product interpolant (or,
effect multiplication by a tensor or Kronecker product of matrices) with an ease
which mirrors the ease of the mathematical construction of tensor products.

REFERENCES

1. DE BOOR, C. AppendLx to "Sphnes and histograms" by I.J. Schoenberg Rep. MRC TSR 1273,
Oct 1972, m Sphne Functions and Approximation Theory, A Melr and A Sharma, Eds.,
Bwkhauser Verlag, Basel, Switzerland, 1973, pp. 329-358.

2 CONTE, S., AND DE BOOR, C Elementary Numerical Analys~s. McGraw-Hill, New York, second
ed, 1972.

3 PEREYRA, V., AND SCHERER, G. Efficmnt computer mampulation of tensor products with appli-
cations to multidimensional approximation Math. Comput 27 (1973), 595-605.

Received October 1977

ACM Transactions on Mathematmal Software, Vol. 5, No 2, June 1979

