
A SYMMETRIC COLLOCATION METHOD WITH FAST EVALUATION

Michael J. Johnson

Department of Mathematics and Computer Science
Kuwait University

P.O. Box: 5969 Safat 13060 Kuwait
johnson@mcs.sci.kuniv.edu.kw

In memory of Georg Heinig

Abstract. Symmetric collocation, which can be used to numerically solve linear partial
differential equations, is a natural generalization of the well-established scattered data inter-
polation method known as radial basis function (rbf) interpolation. As with rbf interpolation,
a major shortcoming of symmetric collocation is the high cost, in terms of floating point opera-
tions, of evaluating the obtained function. When solving a linear partial differential equation,
one usually has some freedom in choosing the collocation points. We explain how this free-
dom can be exploited to allow the fast evaluation of the obtained function provided the basic
function is chosen as a tensor product of compactly supported piecewise polynomials. Our
proposed fast evaluation method, which is exact in exact arithmetic, is initially designed and
analyzed in the univariate case. The multivariate case is then reduced, recursively, to multiple
univariate evaluations. Along with the theoretical development of the method, we report the
results of selected numerical experiments which help to clarify expectations.

1. Introduction

A well-known result from linear algebra (see [7, p. 344]) states that if νr1 , ν
r
2 , . . . , ν

r
n are

linearly independent elements of a real inner-product space H and f is a given element

of H, then there exists a unique element s ∈ H which has minimal norm subject to the

conditions

(1.1) 〈s, νri 〉 = 〈f, νri 〉, 1 ≤ i ≤ n.

Typeset by AMS-TEX

1

2 A SYMMETRIC COLLOCATION METHOD

This result is well liked because s can be easily found as the unique function of the form s =

λ1ν
r
1 +λ2ν

r
2 + · · ·+λnν

r
n which satisfies conditions (1.1). In matrix form, these conditions

can be expressed as Aλ = F , where λ = [λ1, λ2, . . . , λn]
t, F = [〈f, νr1〉, 〈f, νr2〉, . . . , 〈f, νrn〉]t

and A is the n× n symmetric positive definite Grammian matrix A(i, j) = 〈νri , νrj 〉. If we

think of νi as the linear functional on H defined by νi(g) := 〈g, νri 〉, then conditions (1.1)

are interpolation conditions and consequently s is the minimal norm interpolant to f at

the linear functionals ν1, ν2, . . . , νn.

We wish to employ this result in a rather specific context. Let d be a positive integer

and let φ be an even, real-valued function in L1(R
d) satisfying

(1.2) φ̂(w) > 0 for all w ∈ R
d,

where φ̂ denotes the Fourier transform of φ defined by φ̂(w) :=
∫

Rd φ(x)e−ıx·w dx. Given

our basic function φ, we let Hφ denote the subspace of real-valued functions in L2(R
d) for

which

‖f‖2
φ := (2π)−d

∫

Rd

∣∣∣f̂(w)
∣∣∣
2

/φ̂(w) dw <∞.

It can be easily shown that Hφ is a Hilbert space with inner product

〈f, g〉φ := (2π)−d
∫

Rd

f̂(w)ĝ(w)/φ̂(w) dw;

however, we make no use of the completeness of Hφ; for our purpose it suffices that Hφ be

an inner product space.

Definition 1.3. A compactly supported real distribution ν is admissable if

(1.4)

∫

Rd

|ν̂(w)|2 φ̂(w) dw <∞.

We show in section 2 that if ν is admissible, then νr := ν ∗ φ belongs to Hφ and

represents ν in the sense that ν(f) = 〈f, νr〉φ for all f ∈ Hφ. In this context, the minimal

norm interpolation result becomes the following:

FAST EVALUATION 3

Minimal Norm Interpolation Theorem. Let ν1, ν2, . . . , νn be admissible distributions

and let f ∈ Hφ. Then there exists a unique s ∈ Hφ which minimizes ‖s‖φ subject to the

interpolation conditions νi(s) = νi(f) for 1 ≤ i ≤ n. Moreover, s can be written as

s = λ1ν
r
1 + λ2ν

r
2 + · · · + λnν

r
n,

for some scalars λ1, λ2, . . . , λn.

For ξ ∈ R
d, let δξ denote the Dirac delta distribution defined by

δξ(f) := f(ξ).

We note that δξ is admissible if and only if φ̂ ∈ L1(R
d), and in this case, the representor

of δξ is δrξ = δξ ∗ φ = φ(· − ξ). Furthermore, the Minimal Norm Interpolation Theorem

says that if f ∈ Hφ and ξ1, ξ2, . . . , ξn are points in R
d, then the function s ∈ Hφ, of

minimal norm, which satisfies δξi
(s) = δξi

(f) (ie. s(ξi) = f(ξi)), 1 ≤ i ≤ n, has the form

s =
∑n
i=1 λiφ(· − ξi). In the literature, this method of interpolation is called radial basis

function interpolation (see [11] and [3]).

For a multi-integer α, the distribution Dαδξ is defined by

Dαδξ(g) := (−1)|α|Dαg(ξ).

It is easy to check that the distributions Dαδ0, |α| ≤ k, are all admissible if and only if

∫
Rd(1 + |w|2k)φ̂(w) dw < ∞ (which, incidentally, implies that φ ∈ C2k(Rd)). In this case,

the representor of ν := Dαδξ is

νr = (Dαδξ) ∗ φ = Dαφ(· − ξ).

In the literature, this approach, which can be used to solve linear partial differential equa-

tions, is called symmetric collocation (see [5], [9], and [14]). A general framework for

4 A SYMMETRIC COLLOCATION METHOD

deriving error estimates is given in [6]. In order to illustrate how symmetric collocation

can be used to approximately solve a linear partial differential equation, we consider an

example using Poisson’s equation.

Example 1.5. Let Ω be a bounded domain in R
2 with a piecewise smooth boundary ∂Ω,

and consider the problem of finding u satisfying

∆u = f in Ω,
u = g on ∂Ω,

where ∆ := D(2,0)+D(0,2) denotes the Laplacian operator. Since our problem involves sec-

ond order derivatives, we assume that our basic function φ satisfies
∫

R2(1+ |w|4)φ̂(w) dw <

∞. One first chooses points ξ1, ξ2, . . . , ξn in Ω and points η1, η2, . . . , ηκ on ∂Ω, and we

take, as an approximation to the solution u, the function s ∈ Hφ of minimal norm which

interpolates u at the linear functionals ∆δξj
, 1 ≤ j ≤ n, and δηj

, 1 ≤ j ≤ κ. The minimal

norm interpolation theorem tells us that s has the form

(1.6) s(x) =

n∑

j=1

λj∆φ(x− ξj) +

κ∑

j=1

µjφ(x− ηj),

where the coefficients {λj} and {µj} are determined by the interpolation equations ∆δξj
(s) =

∆δξj
(u) (ie. ∆s(ξj) = f(ξj)) and δηj

(s) = δηj
(u) (ie. s(ηj) = g(ηj)).

A major drawback to the symmetric collocation method is the high numerical cost of

evaluating the obtained function s. In the above example, each evaluation of s requires

O(n + κ) floating point operations (flops); whereas in most of the standard numerical

methods for solving this equation (eg. the finite element method), each evaluation of

the obtained solution would require O(1) flop. If the linear system of equations which

determine the unknown coefficients are solved with an iterative method, then one is also

FAST EVALUATION 5

faced with the high cost of evaluating the residual. In the above example, to evaluate the

residual, ie to evaluate ∆s(ξj), 1 ≤ j ≤ n, and s(ηj), 1 ≤ j ≤ κ, requires O(n+ κ)2 flops.

The primary aim of this paper is to show that the evaluation costs can be substantially

reduced if the basic function φ is chosen as a tensor product of piecewise polynomials; that

is, if φ has the form

(1.7) φ(x) = ψ1(x1)ψ2(x2) · · ·ψd(xd), x = (x1, x2, . . . , xd) ∈ R
d,

where the functions ψi are univariate compactly supported piecewise polynomials. This

improvement in efficiency is obtained as certain assumptions begin to be realized. The

nature and significance of these assumptions will become clear as the results develop, but

we can at least explain how these assumptions would be realized in the above example. For

Example 1.5, assume that the points {ξj} lie on a grid X ×Y , where X and Y are subsets

of R, each having cardinality O(
√
n). As for the points {ηj}, we assume that their number

satisfies κ = O(
√
n). This assumption should be reasonable since if one has covered a two

dimensional domain with n points, then one should be able to cover the one dimensional

piecewise smooth boundary curve with the same density using O(
√
n) points. Under these

assumptions it is then possible to evaluate the residual using O(n) flops.

The motivation for our proposed fast evaluation method is largely the same as that of

the methods proposed by Beatson and his collaborators (see [1], [12], [4]). Our method

differs from those in that we provide exact evaluation in exact arithmetic; whereas these

other methods provide approximate evaluation (they incorporate an adjustable trade-off

between efficiency and accuracy). Furthermore, special properties of the basic function,

which would not be valid when the basic function is a tensor product piecewise polynomial,

are required by these previous methods.

6 A SYMMETRIC COLLOCATION METHOD

An outline of the paper is as follows. In section 2, we prove the abovementioned rep-

resentation in Hφ of admissible distributions; while in section 3 we lay the groundwork

for our fast evaluation method. The univariate case of this method is then addressed in

section 4, and the multivariate case is treated in section 5. Regarding notation, we mention

that when working with vectors in R
d, we prefer that subscripts (as in ξ1, ξ2, ξ3, . . .) be

used to label a sequence of vectors rather than the components of a single vector. In order

to access the components of a vector ξ ∈ R
d, we employ the standard orthonormal basis

e1, e2, . . . , ed for R
d to write ξ = (ξ · e1, ξ · e2, . . . , ξ · ed). With this notation, the function

φ in (1.7) will be written φ(x) = ψ1(x · e1)ψ2(x · e2) · · ·ψd(x · ed).

2. Representors in Hφ of Admissible Distributions

Let ν be a real compactly supported distribution. For test functions g ∈ C∞
c (Rd), the

convolution ν ∗ g is again a test function and is defined by (ν ∗ g)(x) := ν(g̃(· − x)), where

g̃ := g(−·) (see [13, p.155]). In particular, we obtain

ν(g) = (ν ∗ g̃)(0), g ∈ C∞
c (Rd).

We wish to employ this equality as our definition of ν(f) for f ∈ Hφ, but first of all, we

must define ν ∗g, say for g ∈ L1∪L2. Recall that ĝ ∈ L∞∪L2 by the Plancherel Theorem.

Since ν̂ and all of its derivatives have at most polynomial growth, it follows that ν̂ĝ is a

tempered distribution, and so we define the tempered distribution ν ∗ g by

(ν ∗ g)̂ := ν̂ĝ

FAST EVALUATION 7

Proposition 2.1. Let ν be admissible and let f ∈ Hφ. Then ν ∗ φ ∈ Hφ and (ν ∗ f)̂ is

integrable.

Proof. We first mention that the assumptions on φ ensure that ε := min
w∈Rd

1

φ̂(w)
> 0; it

follows that

ε ‖ĝ‖2
L2(Rd) ≤ (2π)d ‖g‖2

φ

whenever g is a tempered distribution with ĝ locally integrable; and consequently ‖g‖φ <∞

implies g ∈ L2(R
d). Thus, in order to show that ν ∗ φ ∈ Hφ, it suffices to show that

‖ν ∗ φ‖φ <∞:

‖ν ∗ φ‖2
φ = (2π)−d

∫

Rd

∣∣∣ν̂(w)φ̂(w)
∣∣∣
2

/φ̂(w) dw = (2π)−d
∫

Rd

|ν̂(w)|2 φ̂(w) dw <∞.

Regarding (ν ∗ f) ,̂ we see that

‖(ν ∗ f) ‖̂L1(Rd) =
∥∥∥ν̂f̂

∥∥∥
L1(Rd)

≤
∥∥∥∥ν̂

√
φ̂

∥∥∥∥
L2(Rd)

∥∥∥∥f̂ /
√
φ̂

∥∥∥∥
L2(Rd)

<∞,

where we have used the Cauchy-Schwarz inequality. �

Since (ν ∗ f)̂ is integrable, it follows that ν ∗ f is continuous (in particular, (ν ∗ f)(0)

is well-defined) and (ν ∗ f)(x) = (2π)−d
∫

Rd e
ıx·w (ν ∗ f) (̂w) dw for all x ∈ R

d. With this

in mind, we make our

Definition 2.2. For admissible ν and f ∈ Hφ, we define

ν(f) := (ν ∗ f̃)(0), where f̃ := f(−·).

We can now prove that ν ∗ φ is the representor of ν in Hφ.

8 A SYMMETRIC COLLOCATION METHOD

Theorem. Let ν be admissible and put νr := ν ∗ φ. Then ν(f) = 〈f, νr〉φ for all f ∈ Hφ.

Proof. Since Hφ is a real inner product space, we have, on the one hand,

(2π)dν(f) = (2π)d(ν ∗ f̃)(0) =

∫

Rd

(
ν ∗ f̃

)
̂=

∫

Rd

ν̂
̂̃
f =

∫

Rd

ν̂f̂ ,

while on the other hand,

(2π)d〈f, νr〉φ = (2π)d〈νr, f〉φ =

∫

Rd

ν̂r f̂/φ̂ =

∫

Rd

ν̂f̂ .

�

The above representation is well-known in the theory of reproducing kernel Hilbert

spaces (see [8], [10]). The above proof is a slight generalization, however, in that the space

Hφ is not necessarily a reproducing kernel Hilbert space (Hφ is not necessarily a subspace

of C(Rd)).

3. Fast Evaluation

We are concerned with the fast evaluation of the function s, or of its derivatives, when

s is the function of minimal norm obtained when a linear partial differential equation

is solved using the symmetric collocation method as described in the introduction. If the

basic function φ is chosen as a tensor product of univariate piecewise polynomials, then any

standard evaluation task can be reduced to several basic evaluation tasks of the following

form:

Basic Evaluation Task 3.1. Let ψ be the tensor product of univariate polynomials

ψ(x) := ψ1(e1 · x)ψ2(e2 · x) · · ·ψd(ed · x), x ∈ R
d,

FAST EVALUATION 9

where ψi is a compactly supported piecewise polynomial of degree ki having mi nodes.

Given distinct translation points ξ1, ξ2, . . . , ξn in R
d, real scalars λ1, λ2, . . . , λn and evalu-

ation points Z = {z1, z2, . . . , zN} ⊂ R
d, the basic evaluation task is the task of evaluating

the function

f(x) :=

n∑

j=1

λjψ(x− ξj)

at the points in Z.

To illustrate how such basic evaluation tasks arise, let us consider the context of Example

1.5. If φ(x) = ψ1(e1 · x)ψ2(e2 · x), then we can write (1.6) as

s(x) =
n∑

j=1

λjψ
′′
1 (e1 · (x− ξj))ψ2(e2 · (x− ξj)) +

n∑

j=1

λjψ1(e1 · (x− ξj))ψ
′′
2 (e2 · (x− ξj))

+

κ∑

j=1

µjψ1(e1 · (x− ηj))ψ2(e2 · (x− ηj));

hence the task of evaluating s at Z reduces to three basic evaluation tasks. Similarly,

evaluating Dαs also reduces to three basic evaluation tasks, and consequently, evaluating

∆s reduces to six basic evaluation tasks.

Our fast evaluation algorithm hinges on the univariate case d = 1 which we consider in

section 4, leaving the general d-variate case to section 5. However, before that we discuss

a few basic ideas regarding polynomials and piecewise polynomials.

Let us adopt the point of view that a polynomial p, of degree k, is numerically repre-

sented by the vector [p0, p1, . . . , pk] in the sense that

p(t) =
k∑

ℓ=0

pℓt
ℓ.

It is well-known that p can be evaluated at a real number t using 2k flops. For a real scalar

λ, the polynomial λp can be rendered1 using k + 1 flops, and if q is another polynomial

1The term render is used to refer to the task of computing an object’s numerical representaton.

10 A SYMMETRIC COLLOCATION METHOD

of degree k, then the sum p+ q (or difference p− q) can be rendered using k + 1 flops. If

τ is a real number and q is the translate of p defined by q := p(· + τ), then we can write

q(t) =
∑k

ℓ=0 qℓt
ℓ, where the vector [q0, q1, . . . , qk] can be found using a standard algorithm

associated with the Newton form of a polynomial [2, pp. 13–16]:

Step 1: Set qi = pi for i = 0, 1, . . . , k, and set s = τpk.

Step 2: For i = 0, 1, . . . , k − 1 do {

set qk−1 = qk−1 + s

set qj = qj + τqj+1 for j = k − 2, k − 3, . . . , i }

It is a simple matter to show that this algorithm uses k+(k−1)+ · · ·+1 additions and

1 + (k − 1) + (k − 2) + · · · + 1 products; hence q = p(· + τ) can be rendered using k2 + 1

flops.

A function g : R → R is said to be a compactly supported piecewise polynomial if there

exist real numbers t1 < t2 < · · · < tm and polynomials g1, g2, . . . , gm−1 such that

g(t) =

{
0 if t < t1 or t ≥ tm,

gj(t− tj) if tj ≤ t < tj+1.

We denote the set of all compactly supported piecewise polynomials by P, and we note that

it is a translation invariant linear space, all of whose members are right-continuous. The

numbers t1 < t2 < · · · < tm form a node system for g with polynomial pieces g1, g2, . . . gm−1.

Since there are infinitely many node systems for a given g ∈ P, we will say that a real

number t is an essential node for g if it is contained in every node system for g. It is easy

to see that the essential nodes of any non-trivial g ∈ P form a node system for g; however,

in numerical algorithms one usually does not care whether or not the node system in hand

contains only essential nodes.

FAST EVALUATION 11

In order to discuss the computational cost of some basic operations with piecewise

polynomials, let us assume that the polynomial pieces of g are given as polynomials of

degree at most k. It is easy to see that the task of evaluating g at a real number t requires

at most 1 + 2k flops and to multiply g by a real scalar requires at most (m − 1)(k + 1)

flops. The translate g(· + τ) can be rendered simply by subtracting τ from each node,

an operation which requires m flops. The piecewise polynomials in P have the interesting

property that for any g ∈ P and y ∈ R, there exists a unique polynomial Pyg such that

(Pyg)(t) = g(y + t) for all t ∈ [0, ε),

provided ε > 0 is sufficiently small. The linear operator Py : P → Π will play an important

role in the following section. If y < t1 or y ≥ tm, then Pyg = 0, and if y = ti, for

some 1 ≤ i ≤ m − 1, then Pyg = gi. On the other hand, if ti < y < ti+1, then Pyg =

gi(· + y − ti). Hence, the task of rendering the polynomial Pyg requires k2 + 2 flops if

y ∈ [t1, tm]\{t1, t2, . . . , tm} and requires 0 flops otherwise.

4. Fast evaluation in the univariate case

We consider the Basic Evaluation Task in the univariate case d = 1. If the function

(4.1) f(t) :=
n∑

j=1

λjψ(t− ξj), t ∈ R,

is evaluated directly, then each evaluation requires n subtractions, n evaluations of ψ, n

products and n−1 additions for a potential total of 2n(k+2)−1 flops. Hence, performing

the Basic Evaluation Task directly may require N(2n(k + 2) − 1) flops. An alternate

approach is to first render f as a piecewise polynomial (of degree k), and then evaluate it

12 A SYMMETRIC COLLOCATION METHOD

at Z. The efficiency of this alternate approach depends on an efficient means of rendering

f , which we now present.

We assume that ψ has been rendered with nodes t1 < t2 < · · · < tm and polynomial

pieces s1, s2, . . . , sm−1, each of degree k, and we assume that the translation points {ξj}

have been sorted as ξ1 < ξ2 < · · · < ξn. Noting that the translate ψ(· − ξj) has nodes

t1 + ξj , t2 + ξj, . . . , tm+ ξj , we see that a node system for f can be obtained as the distinct

entries in the list

(4.2) (ti + ξj : 1 ≤ i ≤ m, 1 ≤ j ≤ n),

which we will denote x1 < x2 < · · · < xM , and the polynomial pieces of f will be denoted

f1, f2, . . . , fM−1. The idea behind our fast rendering method is that once a particular

polynomial piece fr is known, the adjacent piece fr+1 can be computed very efficiently.

Once fr+1 has been computed, we can then efficiently compute fr+2, and so on...

To see how this is done, let us assume that fr = Pxr
f has been rendered and we consider the

task of rendering fr+1 = Pxr+1
f . For the sake of simplicity, let us assume (for the moment)

that the node xr+1 appears only once in the above list as xr+1 = ti0 + ξj0 . Then the node

xr+1 is caused by the term λj0ψ(·−ξj0) in (4.1), and thus f0(t) := f(t)−λj0ψ(t−ξj0) does

not have an essential node at xr+1. Consequently, Pxr+1
f0 can be obtained from Pxr

f0

simply by polynomial translation:

Pxr+1
f0 = [Pxr

f0](· + xr+1 − xr).

But since f and f0 differ by only one term, it is then possible to express Pxr+1
f as the

sum of [Pxr
f](·+xr+1 −xr) and some remainder which is caused by the outstanding term

λj0ψ(· − ξj0). The resulting relation is

fr+1 = fr(· + xr+1 − xr) + λj0(si0 − si0−1(· + ti0 − ti0−1)),

FAST EVALUATION 13

from which we conclude that fr+1 can be rendered with only O(k2) flops. In order to elimi-

nate repeated computations, it is advisable to render and save, in advance, the polynomials

Q1, Q2, . . . , Qm defined by

Qi := si − si−1(· + ti − ti−1), i = 1, 2, . . . , m,

where s0 = sm = 0.

In order to address the general case, we assume that the list (4.2) has been sorted as y1 ≤

y2 ≤ · · · ≤ ymn with pointers i : {1, 2, . . . , mn} → {1, 2, . . . , m} and j : {1, 2, . . . , mn} →

{1, 2, . . . , n} satisfying yℓ = ti(ℓ) + ξj(ℓ) for ℓ = 1, 2, . . . , mn.

Proposition 4.3. Let r ∈ {1, 2, . . . ,M − 2}. If ℓ and u are defined by

xr = yℓ < yℓ+1 = xr+1 = yℓ+u < yℓ+u+1 = xr+2, then

fr+1 = fr(· + xr+1 − xr) +

u∑

i=1

λj(ℓ+i)Qi(ℓ+i).

Proof. Put x = xr and τ = xr+1 − xr, and define the linear operator L by Lg := Px+τg −

TτPxg, where Tτ is the translation operator defined by Tτg := g(·+ τ). Note that Lg = 0

whenever g ∈ P is a piecewise polynomial having no essential nodes in the interval (x, x+τ].

The assumptions in force ensure that only the translates ψ(· − ξj), for j = j(ℓ + 1),

j(ℓ+ 2), . . . , j(ℓ+ u), have nodes at xr+1, and hence L[ψ(· − ξj)] = 0 for all other indices

j. We can thus write

fr+1 − fr(· + xr+1 − xr) = Lf =

n∑

j=1

λjL[ψ(· − ξj)] =

u∑

i=1

λj(ℓ+i)L[ψ(· − ξj(ℓ+i))].

In order to complete the proof, it suffices to show that L[ψ(· − ξj(ℓ+i))] = Qi(ℓ+i) for

i = 1, 2, . . . , u. For this, assume 1 ≤ i ≤ u and let us write i = i(ℓ+ i) and j = j(ℓ+ i), for

the sake of brevity. Since xr+1 = yℓ+i = ti + ξj, it follows that xr+1 − ξj = ti, and hence

ti−1 ≤ x− ξj < ti,

14 A SYMMETRIC COLLOCATION METHOD

with the understanding that t0 = x− ξj (in case i = 1). Noting that Px[ψ(· − ξj)] = Pyψ,

with y := x−ξj, and with the above inequality in view, we see that Pyψ = si−1(·+y−ti−1).

Therefore,

TτPx[ψ(· − ξj)] = TτPyψ = si−1(· + y − ti−1 + τ) = si−1(· + ti − ti−1).

On the other hand, noting that (x+ τ) − ξj = xr+1 − ξj = ti, we see that

Px+τ [ψ(· − ξj)] = Ptiψ = si.

Hence L[ψ(· − ξj)] = si − si−1(· + ti − ti−1) = Qi which completes the proof. �

Proposition 4.3 leads immediately to the following

Fast Rendering Method. The nodes of f will be denoted x1, x2, . . . , xM and the poly-

nomial pieces of f will be denoted f1, f2, . . . , fM−1.

Step 1: Set Qi := si − si−1(· + ti − ti−1), for i = 1, 2, 3, . . . , m.

Step 2: Form and sort the list (ti + ξj : 1 ≤ i ≤ m, 1 ≤ j ≤ n) as

y1 ≤ y2 ≤ · · · ≤ ymn with yℓ = ti(ℓ) + ξj(ℓ),

and let x1 < x2 < · · · < xM denote the distinct values in {y1, y2, . . . , ymn}.

Step 3: Set f1 = λj(1)Qi(1) and r0 = r = 1.

Step 4: For ℓ = 2, 3, . . . , mn− 1 do {

if yℓ = yℓ−1

set fr = fr + λj(ℓ)Qi(ℓ).

otherwise

set r = r + 1 and fr = fr−1(· + xr − xr−1) + λj(ℓ)Qi(ℓ).

}

FAST EVALUATION 15

Theorem 4.4. The rendering of the piecewise polynomial f using the Fast Rendering

Method requires no more than m(k2 + 2k + 5)(n+ 1) flops.

Proof. Since s0 = sm = 0, step 1 requiresm−1 subtractions, m−1 polynomial translations,

and m − 2 polynomial subtractions which amounts to (m − 1)(k2 + 2) + (m − 2)(k + 1)

flops. Step 2 requires mn sums and step 3 requires k+ 1 products. For step 4, we see that

for each value ℓ ∈ {2, 3, . . . , mn−1}, at most one subtraction, one polynomial translation,

one multiplication of a polynomial by a scalar, and one polynomial addition are performed.

Hence, step 4 requires at most (mn− 2)(k2 + 2 + 2(k+ 1)) flops. Adding these flop counts

shows that the Fast Rendering Method requires at most m(k2 + 2k + 5)(n + 1) − 3k2 −

k(m+ 5) − 2m− 11 flops. �

Note that if m and k are constant, then the Fast Rendering Method requires O(n) flops.

Although the Fast Rendering Method is exact, in exact arithmetic, numerical experiments

using floating point arithmetic show that the rendering loses accuracy as one marches away

from the starting point x1. To counter this loss of accuracy, it is advisable to periodically

refresh the computation by directly computing a polynomial piece fr, rather than rely on

Proposition 4.3. We note that a particular polynomial piece fr can be computed directly

as

(4.5) fr = Pxr
f =

n∑

j=1

λjPxr
[ψ(· − ξj)] =

n∑

j=1

λjPxr−ξj
ψ.

Proposition 4.6. The direct computation of a particular polynomial piece fr via (4.5)

requires no more than

nr (k2 + 2k + 4) flops, where nr := #{j : t1 ≤ xr − ξj < tm}.

16 A SYMMETRIC COLLOCATION METHOD

Proof. Since Pxr−ξj
ψ = 0 whenever xr − ξj 6∈ [t1, tm), we see that the rightmost sum in

(4.5) contains at most nr nonzero terms. In case nr = 0, the conclusion is clear since

fr would equal 0; so let us assume nr > 0. As mentioned at the end of the previous

section, these nonzero terms {Pxr−ξj
ψ} can be computed using at most nr(k

2 + 2) flops,

and multiplying them by the scalars {λj} requires an additional nr(k + 1) flops. Finally,

the sum of the nr nonzero polynomials {λjPxr−ξj
ψ} requires (nr−1)(k+1) flops. Adding

these flop counts shows that the computation of fr requires at most nr(k
2+2k+4)−(k+1)

flops. �

In order to decide when to use (4.5) rather than Proposition 4.3, the author suggests

employing the notion of a trust radius Rψ with the following understanding: Suppose fr0−1

has been computed directly using (4.5) and then subsequent pieces fr0 , fr0+1, . . . , fr have

been computed using Proposition 4.3. The piece fr will be trusted (considered accurate)

if xr+1 − xr0 ≤ Rψ. In order to illustrate how a suitable choice of a trust radius can be

found experimentally we consider the following

Example 4.7. Let ψ be the multiple of Wendland’s function φ1,3 (see [15]), given by

ψ(t) :=

{
(1 − |t|)7(21 |t|3 + 19t2 + 7 |t| + 1) if |t| ≤ 1

0 if |t| > 1
,

which is an even piecewise polynomial of degree 10, is supported on [−1, 1], and has three

nodes {−1, 0, 1}. Wendland has shown that the Fourier transform of ψ satisfies

(4.8) K1(1 + |w|)−8 ≤ ψ̂(w) ≤ K2(1 + |w|)−8, w ∈ R,

for some positive constantsK1, K2. Incidentally, it follows from (4.8) that
∫

R
(1+|w|6)ψ̂(w) dw <

∞, which implies that ψ ∈ C6(R). We randomly choose translation points −1 = ξ1 ≤ ξ2 ≤

FAST EVALUATION 17

· · · ≤ ξn ≤ 2 and coefficients λj ∈ [−1, 1], and then render f over the interval [xr0−1, xM],

where xr0 = 0. The rendering is obtained by directly computing fr0−1 using (4.5) and

computing subsequent pieces using Proposition 4.3. Denoting the resultant piecewise poly-

nomial by f , which is not exactly equal to f due to round-off errors, we compute the largest

interval [0, b] for which

‖f − f‖L∞([0,b]) ≤ (3 × 10−13)
∥∥f

∥∥
L∞(R)

,

where f(x) :=
∑n
j=1 |λjψ(x− ξj)|. The computation of f and its evaluation is per-

formed using double precision arithmetic as defined by IEEE’s Binary Floating Point

Arithmetic Standard 754-1985. The computation of the ‘exact’ values of f is performed

using GNU’s multiple precision library gmp-3.1.1. After 1021 independent runs, using

values n = 4, 5, . . . , 1024, we find that the intersection of all obtained intervals [0, b] is

[0, 0.52]. Based on this, we choose the trust radius to be Rψ = 0.52. It is encouraging

to note that the obtained interval [0, 0.52] is fairly independent of n; for example, if the

same experiment is run with n = 32 (still 1021 independent runs), the smallest interval is

[0, 0.61].

Using the trust radius Rψ to decide when to refresh the rendering computation in the

Fast Rendering Method leads to the following variant.

Stabilized Fast Rendering Method. Steps 1,2,3 are the same as in the Fast Rendering

Method, but step 4 becomes

Step 4’: For ℓ = 2, 3, . . . , mn− 1 do {

if yℓ = yℓ−1

set fr = fr + λj(ℓ)Qi(ℓ).

18 A SYMMETRIC COLLOCATION METHOD

otherwise {

if xr+1 − xr0 > Rψ, set r0 = r + 1 and directly compute fr using (4.5).

set r = r + 1 and fr = fr−1(· + xr − xr−1) + λj(ℓ)Qi(ℓ). }

}

Theorem 4.9. The rendering of the piecewise polynomial f using the Stabilized Fast

Rendering Method requires no more than

(4.10) m(k2 + 2k + 5)(n+ 1) + (m+ ⌈L/Rψ⌉(k2 + 2k + 4))n flops,

where L = tm − t1 denotes the length of the support interval of ψ.

Proof. The required cost (in terms of flops) is the same as the cost of the Fast Rendering

Method, except for the additional cost in step 4′ of directly computing fr, say for r ∈

{r1 < r2 < · · · < rN}, and of computing the differences xr+1 − xr0 , of which there are less

than mn. By Proposition 4.6, the cost of directly computing these polynomial pieces is at

most
∑N
i=1 nri

(k2 + 2k + 4) flops. We first note that

N∑

i=1

nri
=

n∑

j=1

#{i : t1 ≤ xri
− ξj < tm} =

n∑

j=1

#{i : t1 < x1+ri
− ξj ≤ tm},

where the last equality holds since f has no nodes in the open interval (xri
, x1+ri

). Since

x1+ri+1
− x1+ri

> Rψ, it follows that #{i : t1 < x1+ri
− ξj ≤ tm} ≤ ⌈L/Rψ⌉, and hence

that
∑N
i=1 nri

(k2 + 3k + 3) ≤ n⌈L/Rψ⌉(k2 + 2k + 4). �

We mention that the first term in (4.10) estimates the cost of the Fast Rendering Method

and the second term estimates the additional costs which arise in step 4′.

FAST EVALUATION 19

Corollary 4.11. If the Basic Evaluation Task is performed by first rendering f using

the Stabilized Fast Rendering Method and then evaluating f at the points in Z, then this

requires no more than

(m+ ⌈L/Rψ⌉)(k2 + 2k + 6)(n+ 1) + (2k + 1)N flops.

To illustrate the potential improvement in efficiency, we mention that if N is propor-

tional to n (and ψ is fixed), then the above flop count is O(n); whereas directly performing

the Basic Evaluation Task (as mentioned at the beginning of this section) requires O(n2)

flops. In practice it is often the case that one has settled on the choice of a particular

function ψ, but has left the choice of scale open. In other words, one intends to use the

dilate ψ(σ·), where the dilation parameter σ is left as a tuning parameter. Note that the

length of the support interval for the dilate ψ(σ·) is Lσ = L/σ. If R has been chosen as

the trust radius for the function ψ, we suggest that the trust radius for the dilate ψ(σ·) be

chosen as Rσ = R/σ. In this case we will have Lσ/Rσ = L/R and hence the cost estimates

in Theorem 4.9 and Corollary 4.11 are independent of the dilation parameter σ.

Example 4.12. With n = 1024, let f , f , ψ and {ξj} be as in Example 4.7 except that

we will employ the dilate ψ(σ·) in place of ψ, and the translation points {ξj} are chosen

randomly in the interval [−6, 6]. Let f denote the rendering of f obtained using the

Stabilized Fast Rendering Method with trust radius R = 0.52/σ. For each dilation value

σ ∈ { 1
4
, 1

2
, 1, 2}, we make 1024 independent runs and record the average (over 1024 runs)

number of flops used to obtain f and the maximum (over 1024 runs) of the normalized

error: ‖f − f‖L∞(R) /
∥∥f

∥∥
L∞(R)

.

σ 1/4 1/2 1 2
average flops 852n 851n 849n 844n

normalized error 3.6 × 10−14 4.9 × 10−14 7.1 × 10−14 9.0 × 10−14

20 A SYMMETRIC COLLOCATION METHOD

Running the same experiments using the second derivative ψ′′ in place of ψ and trust

radius R = 0.40/σ, we find that

σ 1/4 1/2 1 2
average flops 676n 675n 672n 667n

normalized error 3.1 × 10−14 3.8 × 10−14 5.5 × 10−14 7.4 × 10−14

Running the same experiments using the fourth derivative ψiv in place of ψ and trust

radius R = 0.54/σ, we find that

σ 1/4 1/2 1 2
average flops 353n 353n 352n 350n

normalized error 2.4 × 10−14 2.9 × 10−14 3.0 × 10−14 4.6 × 10−14

5. Fast evaluation in the multivariate case

Let M1 be a method for performing the Basic Evaluation Task in the univariate case

d = 1. We will show that one can then obtain, recursively, methods Md, d = 2, 3, 4, . . . , for

the general case. For this, we consider the Basic Evaluation Task assuming that methods

M1,M2, . . .Md−1 have been defined.

For vectors x ∈ R
d, we define x′ := (e1 · x, e2 · x, . . . , ed−1 · x) ∈ R

d−1, and for subsets

X ⊆ R
d, we define X ′ := {x′ : x ∈ X} ⊆ R

d−1. For x ∈ R
d, let us write

ψ(x) = ψ<d(x
′)ψd(ed · x), where ψ<d(y) := ψ1(e1 · y)ψ2(e2 · y) · · ·ψd−1(ed−1 · y).

Put Ξ := {ξ1, ξ2, . . . , ξn}, and define

ni := # ei · Ξ and Ni := # ei · Z, for i = 1, 2, . . . , d,

where ei · X denotes the set {ei · x : x ∈ X}. With {x1, x2, · · · , xnd
} := ed · Ξ and

Ξℓ := {ξ ∈ Ξ : ed · ξ = xℓ}, we see that Ξ1,Ξ2, . . . ,Ξnd
is a partition of Ξ, and hence, for

z ∈ R
d, we can write

f(z) =

nd∑

ℓ=1

Gℓ(z
′)ψd(ed · z − xℓ), where Gℓ(z

′) :=
∑

ξ∈Ξℓ

λξψ<d(z
′ − ξ′).

FAST EVALUATION 21

Note that, for each ℓ, Gℓ is a (d−1)-variate function which can be evaluated using method

Md−1. Using method Md−1, we compute Gℓ(w) for all w ∈ Z ′, 1 ≤ ℓ ≤ nd. Then, for

each w ∈ Z ′, we use method M1 to evaluate the univariate function
∑nd

ℓ=1Gℓ(w)ψd(·−xℓ)

at {ed · z : z ∈ Z with z′ = w}; thus obtaining the values of f(z) for z ∈ Z with z′ = w.

As w ranges over Z ′, we obtain all values of f(z) for z ∈ Z. We summarize this algorithm

as follows:

Recursive Evaluation Algorithm.

Step 1: For ℓ = 1, 2, . . . , nd, use method Md−1 to evaluate the (d − 1)-variate function

Gℓ at all points in Z ′; thus obtaining the values Gℓ(w) for all w ∈ Z ′, 1 ≤ ℓ ≤ nd.

Step 2: For each w ∈ Z ′, use method M1 to evaluate the univariate function
∑nd

ℓ=1Gℓ(w)ψd(·−

xℓ) at {ed · z : z ∈ Z with z′ = w}; thus obtaining the values f(z) for all z ∈ Z.

We illustrate the Recursive Evaluation Algorithm with a simple example in two dimen-

sions.

Example. Suppose Ξ = {ξ1, ξ2, . . . , ξ10} and Z = {z1, z2, . . . , z11} are as indicated:

x1

x2

x3

−

−

−

• ξ1 • ξ2

• ξ3 • ξ4 • ξ5 • ξ6

• ξ7 • ξ8 • ξ9 • ξ10

w1 w2 w3
+ + +
• z1
• z2

• z3

• z4
• z5
• z6

• z7

• z8
• z9
• z10
• z11

22 A SYMMETRIC COLLOCATION METHOD

With z = (w, x), we write f(z) =
∑10
i=1 λiψ1(w − e1 · ξi)ψ2(x− e2 · ξi) in the form

f(z) = G1(w)ψ2(x− x1) +G2(w)ψ2(x− x2) +G3(w)ψ2(x− x3), where

G1(w) = λ1ψ1(w − e1 · ξ1) + λ1ψ1(w − e1 · ξ2),

G2(w) = λ3ψ1(w − e1 · ξ3) + λ4ψ1(w − e1 · ξ4) + λ5ψ1(w − e1 · ξ5) + λ6ψ1(w − e1 · ξ6),

G3(w) = λ7ψ1(w − e1 · ξ7) + λ8ψ1(w − e1 · ξ8) + λ9ψ1(w − e1 · ξ9) + λ10ψ1(w − e1 · ξ10).

In step 1, method M1 is used to evaluate Gℓ at Z ′ = {w1, w2, w3} for ℓ = 1, 2, 3, thus

obtaining the values

G1(w1) G2(w1) G3(w1)
G1(w2) G2(w2) G3(w2)
G1(w3) G2(w3) G3(w3)

Then in step 2, method M1 is used to evaluate:

f(w1, x) = G1(w1)ψ2(x−x1)+G2(w1)ψ2(x−x2)+G3(w1)ψ2(x−x3) at x ∈ e2 ·{z1, z2, z3}

(obtaining f(z1), f(z2), f(z3)),

f(w2, x) = G1(w2)ψ2(x−x1)+G2(w2)ψ2(x−x2)+G3(w2)ψ2(x−x3) at x ∈ e2·{z4, z5, z6, z7}

(obtaining f(z4), f(z5), f(z6), f(z7)),

f(w3, x) = G1(w3)ψ2(x−x1)+G2(w3)ψ2(x−x2)+G3(w3)ψ2(x−x3) at x ∈ e2·{z8, z9, z10, z11}

(obtaining f(z8), f(z9), f(z10), f(z11)).

We now estimate the number of flops required by the Recursive Evaluation Algorithm.

Let us suppose, in the univariate case, that the basic evaluation task can be performed by

method M1 using at most F1(ψ,Ξ, Z) flops. For d > 1, we define Fd(ψ,Ξ, Z) recursively

by

Fd(ψ,Ξ, Z) := Fd−1(ψ<d,Ξ
′, Z ′)nd + F1(ψd, ed · Ξ, ed · Z) #Z ′.

It is fairly easy to see (by induction) that the Recursive Evaluation Algorithm can be per-

formed using at most Fd(ψ,Ξ, Z) flops: Step 1 requires Fd−1(ψ<d,Ξ
′, Z ′)nd flops (as the

mapping ξ 7→ ξ′, from Ξℓ to Ξ′, is injective) and Step 2 requires at most F1(ψd, ed · Ξ, ed · Z) #Z ′

FAST EVALUATION 23

flops, where we have employed the inclusion {ed · z : z ∈ Z with z′ = w} ⊂ ed · Z.

The inequality #Z ′ ≤ N1N2 · · ·Nd−1 leads to the following

Theorem 5.1.

Fd(ψ,Ξ, Z) ≤
d∑

i=1

∏

1≤j<i

Nj

F1(ψi, ei · Ξ, ei · Z)

∏

i<j≤d

nj

 .

Proof. The case d = 1 holds with equality. Proceeding by induction, we assume the

inequality for d− 1 and consider d. Then

Fd(ψ,Ξ, Z) = Fd−1(ψ<d,Ξ
′, Z ′)nd + F1(ψd, ed · Ξ, ed · Z) #Z ′

≤
d−1∑

i=1

∏

1≤j<i

Nj

F1(ψi, ei · Ξ′, ei · Z ′)

∏

i<j≤d−1

nj

nd

+ F1(ψd, ed · Ξ, ed · Z) N1N2 · · ·Nd−1

=
d∑

i=1

∏

1≤j<i

Nj

F1(ψi, ei · Ξ, ei · Z)

∏

i<j≤d

nj

 ,

which completes the induction. �

In order to better appreciate Theorem 5.1, we mention that the right side of the estimate

is a sum of d terms, where each term is the product of d factors. Specifically, the j-th

factor of the i-th term equals Nj if j < i, equals F1(ψi, ei · Ξ, ei · Z) if j = i and equals nj

if j > i.

If the method M1, which until now has been left unspecified, is taken as described in

Corollary 4.11, then we can take

(5.2) F1(ψi, ei · Ξ, ei · Z) = (mi+ ⌈Li/Ri⌉)(k2
i +2ki +6)(1+# ei · Ξ)+(2ki+1) # ei · Z,

where ki and mi denote, respectively, the degree and number of nodes of ψi, and Li/Ri is

the ratio between the length of the support interval and the trust radius for ψi.

24 A SYMMETRIC COLLOCATION METHOD

Example 5.3. Let us return to example 1.5 in the specific case when Ω is the region

bounded by the cardioid given in polar coordinates by r = 2 + 2 cos θ, and φ is the tensor

product function φ(x) = ψ(e1 · x)ψ(e2 · x), where ψ is the piecewise polynomial used in

examples 4.7 and 4.12. Given h > 0, with 1
2h

∈ N assumed for simplicity, we choose

Ξ := {ξ1, ξ2, . . . , ξn} := hZ
2 ∩ Ω and let Γ := {η1, η2, . . . , ηκ} be points around ∂Ω (with

η1 = (4, 0)) which are equispaced by a distance h with respect to arclength along the

cardioid. Since Ω has area 6π, we can say n ≈ 6π/h2, and since the length of the cardioid

is 16 we have κ = 16/h. With the function s written as in (1.6), we will concern ourselves

with the tasks of evaluating s at the points in Γ and evaluating ∆s at the points in Ξ (this

amounts to evaluating the residual for the collocation equations). Writing s as

s(x) =

κ∑

j=1

µjφ(x− ηj) +

n∑

j=1

λjD
(2,0)φ(x− ξj) +

n∑

j=1

λjD
(0,2)φ(x− ξj),

we see that the task of evaluating s at the points in Γ comprises three basic evaluation

tasks (see 3.1), which we label I, II and III, and writing ∆s as

∆s(x) =

κ∑

j=1

µjD
(2,0)φ(x− ηj) +

κ∑

j=1

µjD
(0,2)φ(x− ηj)

+
n∑

j=1

λjD
(4,0)φ(x− ξj) + 2

n∑

j=1

λjD
(2,2)φ(x− ξj) +

n∑

j=1

λjD
(0,4)φ(x− ξj),

we see that the task of evaluating ∆s at the points in Ξ comprises five basic evaluation

tasks, which we label IV, V, VI, VII and VIII. We wish to use Theorem 5.1 along with (5.2)

to estimate the number of flops needed for each of these basic evaluation tasks assuming

method M1 is as described in Corollary 4.11. Toward this end, we mention that

(5.4) # e1 · Ξ =
9

2h
, # e2 · Ξ = 2⌊3

√
3

2h
⌋ + 1, # e1 · Γ =

8

h
+ 1, # e2 · Γ =

16

h
− 1.

FAST EVALUATION 25

Furthermore, we list the following details regarding the functions ψ, ψ′′ and ψiv:

degree #nodes R L ⌈L/R⌉
ψ 10 3 0.52 2 4
ψ′′ 8 3 0.40 2 5
ψiv 6 3 0.54 2 4

In order to illustrate the use of Theorem 5.1 and (5.2), let us consider basic evaluation

task IV, which employs the tensor product function D(2,0)φ(x) = ψ′′(e1 · x)ψ(e2 · x). By

Theorem 5.1 (and the observation preceding it), we have

flops(IV) ≤ F1(ψ
′′, e1 · Γ, e1 · Ξ)(# e2 · Γ) + (# e1 · Ξ)F1(ψ, e2 · Γ, e2 · Ξ),

and then (5.2) yields F1(ψ
′′, e1 ·Γ, e1 ·Ξ) ≤ 688(1+#e1 ·Γ)+17(#e1 ·Ξ) and F1(ψ, e2 ·Γ, e2 ·

Ξ) ≤ 882(1 + #e2 · Γ) + 21(#e2 · Ξ). After substituting the values in (5.4) and employing

a simplifying estimate, we see that flops(IV) ≤ 153284h−2 + O(h−1). The cost (in terms

of flops) of the remaining basic evaluation tasks can be estimated in a similar manner to

obtain

flops(I) ≤ 231168h−2 +O(h−1)
flops(II) ≤ 56147h−2 +O(h−1)
flops(III) ≤ 52273h−2 +O(h−1)
flops(IV) ≤ 153284h−2 +O(h−1)

flops(V) ≤ 164342h−2 +O(h−1)
flops(VI) ≤ 30258h−2 +O(h−1)
flops(VII) ≤ 32970h−2 +O(h−1)
flops(VIII) ≤ 164342h−2 +O(h−1)

Since the number of collocation points n + κ is bounded above and below by a constant

multiple of h−2, we conclude that the number of flops needed to evaluate s at Γ and to

evaluate ∆s at Ξ is bounded by a constant multiple of n + κ. In the following table,

we display the actual cost of each basic evaluation task for the case h = 1/32, where

n+κ = 19807 ≈ 19.3h−2. In order to improve the efficiency, we have implemented method

M1 using direct evaluation whenever it is expected to be more efficient than the method

described in Corollary 4.11 (typically when N << n). We also report a normalized error,

26 A SYMMETRIC COLLOCATION METHOD

‖f − f‖ℓ∞(Z) / ‖f‖ℓ∞(Z), where the coefficients {λj} and {µj} have been chosen randomly

in [−1, 1].

task flops (×h−2) normalized error
I 3245 7.77 × 10−15

II 11990 6.02 × 10−15

III 14253 3.63 × 10−14

IV 60402 1.08 × 10−13

task flops (×h−2) normalized error
V 48613 8.52 × 10−14

VI 20742 7.76 × 10−15

VII 23467 3.18 × 10−15

VIII 19331 1.94 × 10−14

Although solving the collocation equations is beyond the scope of the present contribution,

we mention that these equations are notoriously ill-conditioned and are usually solved

using a pre-conditioned iterative method. The author employs quad-precision along with a

domain-decomposition preconditioner which is similar to that suggested in [2]. Essentially

this amounts to a multilevel implementation of Von Neumann’s method of alternating

projections, along with a GMRES-like subspace development on the outer-most level. The

following table details the experimental results for the problem

∆u = 0 in Ω; u = g on ∂Ω,

where g(x, y) = ℜ
(

sin
4z2

1 + z

)
(with z = x+ ıy).

h # col pts # iter. ‖u− g‖L∞(∂Ω) ‖∆u‖L2(Ω) ‖u− g‖L∞(Ω)

1/4 1325 8 3.4 × 10−10 27256 92.804
1/8 5077 18 2.4 × 10−11 3953.6 6.8975
1/32 19807 37 1.3 × 10−11 261.6 0.46348

The exact solution is of course u = g; incidentally, ‖g‖L∞(Ω) ≈ 6853 and ‖gxx‖L2(Ω) ≈

48767. We remark that each iteration requires O(N) flops, where N ∼ h−2 denotes the

total number of collocation points. It appears from this trial that the required number

of iterations for convergence is roughly O(h−1) = O(
√
N), and thus it appears that the

collocation equations are solved using O(N3/2) flops.

FAST EVALUATION 27

References

1. R.K. Beatson & W.A. Light, Fast evaluation of radial basis functions; Methods for two-dimensional
polyharmonic splines, IMA J. Numer. Anal. 17 (1997), 343–372.

2. C. de Boor, A practical guide to splines, Applied Mathematical Sciences 27, Springer-Verlag, New
York, 1978.

3. M.D. Buhmann, New developments in the theory of radial basis function interpolation, Multivariate
Approximation: From CAGD to Wavelets (K. Jetter, F.I. Utreras, eds.), World Scientific, Singapore,
1993, pp. 35–75.

4. J.B. Cherrie, R.K. Beatson & G.N. Newsam, Fast evaluation of radial basis functions: Methods for
generalized multiquadrics in IRn, SIAM J. Sci. Comput. 23 (2002), 1549–1571.

5. G. Fasshauer, Solving Partial Differential Equations by Collocation with Radial Basis Functions,
Surface Fitting and Multiresolution Methods (A. Le Mehaute, C. Rabut, and L. L. Schumaker, eds.),
Vanderbilt University Press, 1997, pp. 131-138.

6. C. Franke & R. Schaback, Convergence Order Estimates of Meshless Collocation Methods using Radial
Basis Functions, Advances in Computational Mathematics 8 (1998), 381–399.

7. S.H. Friedberg, A.J. Insel, & L.E. Spence, Linear Algebra, 3rd ed., Prentice Hall, New Jersey, 1997.
8. M. Golomb & H.F. Weinberger, Optimal approximation and error bounds, On numerical approximation

(R.E. Langer, ed.), Univ. Wisconsin Press, Madison, Wisconsin, 1959, pp. 117–190.
9. E.J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to computa-

tional fluid-dynamics – I: Surface approximations and partial derivative estimates, Computers and
Mathematics with Applications 19(8/9) (1990), 127–145.

10. W. Light and H. Wayne, Spaces of distributions, interpolation by translates of a basis function and
error estimates, Numer. Math. 81 (1999), 415–450.

11. M.J.D. Powell, The theory of radial basis function approximation in 1990, Advances in Numerical
Analysis II: Wavelets, Subdivision, and Radial Functions (W.A. Light, ed.), Oxford University Press,
Oxford, 1992, pp. 105–210.

12. M.J.D. Powell, Truncated Laurent expansions for the fast evaluation of thin plate splines, Numer.
Algorithms 5 (1993), 99-120.

13. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
14. R. Schaback & H. Wendland, Using compactly supported radial basis functions to solve partial dif-

ferential equations, Boundary Element Technology XIII (C.S. Chen, C.A. Brebbia and D.W. Pepper,
eds.), WitPress, Southampton, Boston, 1999, pp. 311–324.

15. H. Wendland, Error estimates for interpolation by radial basis functions of minimal degree, J. Approx.
Th. 93 (1998), 258–272.

