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Abstract

The functions �m := j � j2m�d if d is odd, and �m := j � j2m�d log j � j if d is even, are
known as surface splines, and are commonly used in the interpolation or approximation
of smooth functions. We show that if one's domain is the unit ball in Rd, then the
approximation order of the translates of �m is at most m. This is in contrast to the
case when the domain is all of Rd where it is known that the approximation order is
exactly 2m.

1 Introduction

The area of Radial Basis Function Approximation is motivated by the practical problem
of approximating a smooth function f : Rd ! C

d which is known only at �nitely many
scattered points � � R

d. A standard technique for approximation is that one starts with a
radially symmetric function � 2 C(Rd), and then seeks an interpolant of fj�

from the space

spanned by the �-translates of �. In other words, one seeks

s 2 spanf�(� � �) : � 2 �g

such that s(�) = f(�) for all � 2 �. Of course there is, in general, no guarantee that such
a function s exists, but conditions on � which ensure the existence of such an s are known.
However, for many interesting choices of the function �, the above setup needs to be modi�ed
slightly in order to guarantee the existence of the interpolant s.

De�nition 1 Let � 2 C(Rd) and m 2 Z+ := f0; 1; 2; : : :g. For �nite pointsets � � Rd, we

denote by

S(�; �;m)

the collection of all functions s of the form

s =
X
�2�

���(� � �) + p;
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where p 2 �m�1 := fpolynomials of deg � m� 1g and the coe�cients f��g satisfyX
�2�

��q(�) = 0 for all q 2 �m�1.

Micchelli [8] has given general conditions on � which ensure that for all f , there exists a
unique s 2 S(�; �;m) such that sj�

= fj�
. Examples of suitable � are the surface splines

given by

�m :=

�
�2m�d if d is odd

�2m�d log � if d is even
, m > d=2:

Here, � : Rd ! R is given by �(x) := jxj, x 2 Rd. The surface splines, �m, arise naturally
in the solution of a variational problem. Duchon [6] showed that of all functions which
interpolate fj�

, the one which minimizes a certain semi-norm is the one which belongs to

S(�m; �;m). The results of the present work apply primarily to this example.
In order to raise the issue of approximation, let us suppose that we desire to approximate

f on an open bounded domain 
 � R
d. One hopes that the interpolant s approximates f

better and better as the pointset � becomes `dense' in 
. To make this notion precise, let
us measure the density of � in 
 by

� := �(�;
) := sup
x2


min
�2�

jx� �j:

In other words, � is the smallest value for which 
 � �+ �B, where B := fx 2 Rd : jxj < 1g
is the open unit ball in Rd.The notion of `approximation order' is typically used to describe
the asymptotic rate at which the error decays when f , the function to be approximated, is
smooth. Let us say that interpolation from S(�; �;m) provides approximation of order  in


 if
kf � skL1(
) = O(�) as � ! 0

for all su�ciently smooth functions f , where s 2 S(�; �;m) is the unique interpolant to fj�
.

A basic problem is that of determining, for a given �, the largest such ; that is, determining
the approximation order of interpolation from S(�; �;m). In the literature there are two
rather distinct approaches to this problem.

One of the approaches starts by writing the interpolant s 2 S(�; �;m) as the solution
of a variational problem. The error can then be estimated by careful consideration of the
variational problem. In the case of the surface spline �m, what is known is that if 
 is a
compact subset of Rd satisfying a uniform interior cone condition, then interpolation from
S(�m; �;m) provides approximation of order m� d=2 (cf. [12], [11], [10]). That is

kf � skL1(
) = O(�m�d=2) as � := �(�;
)! 0;
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where s 2 S(�m; �;m) interpolates f at �.
The other approach started under the simplifying assumptions 
 = Rd and � = hZd.

Of course these assumptions violate our initial setup, but it was hoped that the results and
insights gained under these assumptions would shed light on the original problem. The
reader is referred to the surveys [4],[1],[9] for descriptions of these works. For the sake of
the present discussion, we mention only that for the surface spline, �m, it is known that
interpolation from S(�m;hZd; 0)1 provides approximation of order 2m in 
 = Rd.

Later, Buhmann, Dyn and Levin [2] were able to dismiss the assumption � = hZd, while
still retaining the assumption 
 = Rd (see also [5],[3]). By and large they obtained the same
approximation orders as were obtained under the simplifying assumption � = hZd. It should
be pointed our that their work was done not in the context of interpolation from S(�; �; 0),
but rather in the context of approximation from S(�; �; 0). The di�erence being that one
doesn't insist that the chosen s 2 S(�; �; 0) actually interpolate fj�

. With regard to the sur-

face spline, �m, they showed that one can approximate from S(�m; �; 0) with approximation
of order 2m in 
 = Rd. From their results, one can derive the following concerning the case
when 
 is bounded: If e
 is a compact subset of 
 (necessarily at a positive distance from
the boundary of 
), then as � becomes dense in 
, one can approximate from S(�m; �; 0)

with approximation of order 2m in e
. In other words, it is possible to choose s 2 S(�m; �; 0)
so that

kf � skL1(e
) = O(�2m) as � := �(�;
)! 0

for all su�ciently smooth f . This of course leaves open the question as to how well f can
be approximated near the boundary of 
.

The purpose of the present work is to examine this boundary question primarily in the
context of the surface spline �m. Since we intend only to give an upper bound on the
approximation order, we will consider only the nice case when the domain 
 is taken as the
unit ball B. We will show that the approximation order of interpolation from S(�m; �;m)
is at most m. Note that this lies strictly between the values m � d=2 and 2m mentioned
above. Our bound on the approximation order applies not just to the error of interpolation
from S(�m; �;m), but in fact to the error of best approximation from S(�m; �;m) (or more
generally, from S(�m; �; `), ` = 0; 1; : : : ;m). The arguments also apply in case one measures
the error in the Lp(B) norm. Here is the result:

Theorem 1 For all 1 � p �1 and ` = 0; 1; : : : ;m, there exists f 2 C1(Rd) such that

E(f; S(�m; �; `);Lp(B)) 6= o(�m+1=p) as � ! 0:

Here, E(f; V ;X) denotes the error of best approximation, measured in the X norm, from
the space V to the function f :

E(f; V ;X) := inf
v2V

kf � vkX .

1S(�; �; 0) is often used in place of S(�; �;m) when 
 = Rd or when one is not interpolating f .
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Throughout this paper we use standard multi-index notation:

D� :=
@�1

@x�11

@�2

@x�22
� � �

@�d

@x�dd
; � 2Zd

+.

The Laplacian operator is denoted by

� :=
@2

@x21
+

@2

@x22
+ � � �+

@2

@x2d
:

For � 2 Zd
+, we de�ne j�j := �1 + �2 + � � � + �d, while for x 2 Rd we de�ne jxj :=p

x21 + x22 + � � �+ x2d. The natural basis for R
d is denoted as fe1; e2; : : : ; edg. We employ the

function r : (0::1)! R de�ned by r(t) := t. For t 2 R, the greatest integer � t is denoted
by btc.

2 A reduction of the problem

Our plan for proving Theorem 1 is to exhibit (the existence of) a function f 2 C1(Rd) and
a family of pointsets f�hgh2(0::1=2] such that �(�h;B) = O(h) as h! 0, but

E(f; S(�m; �h; `);Lp(B)) 6= o(hm+1=p) as h! 0: (1)

Let f�hgh2(0::1=2] be any family of �nite pointsets satisfying

�h � (1� h)B and

�(�h;B) = O(h) as h! 0:

As hinted in the introduction, when examining an approximation to f from S(�m; �h; `), we
will focus our attention not on the entire domain B, but rather on just the boundary layer
Bn(1� h)B. So rather than (1), we will in fact be showing

E(f; S(�m; �h; `);Lp(Bn(1� h)B)) 6= o(hm+1=p) as h! 0:

We can further reduce our focus to just the interval [1 � h::1] by employing the spherical
averaging operator R : C(Rd)! C([0::1)) given by

Ru(t) :=
1

c

Z
jxj=1

u(tx) d�(x), where c :=

Z
jxj=1

1 d�(x):

Here, � is the measure associated with spherical coordinates (see [7]). In words, Ru(t) is the
average of u over the sphere of radius t with center at the origin.
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Lemma 2 Let � 2 C(Rd). If there exists g 2 C1(R) such that

E(g;R[S(�; �h; `)];Lp[1� h::1]) 6= o(hk+1=p) as h! 0; (2)

then there exists f 2 C1(Rd) such that

E(f; S(�; �h; `);Lp(B)) 6= o(hk+1=p) as h! 0:

Proof. Let 1 � p �1, and assume that for all f 2 C1(Rd),

E(f; S(�; �h; `);Lp(B)) = o(hk+1=p) as h! 0:

Let g 2 C1(R). Since we are only concerned with g on the interval [1=2::1], we may assume
WLOG that g is identically 0 on a neighborhood of 0. Hence, f := g � � 2 C1(Rd). For the
case 1 � p <1, we note that if s 2 S(�; �h; `), then

kg �RskpLp[1�h::1] =
R 1

1�h

���Rjxj=1(f(tx)� s(tx))1
c
d�(x)

���p dt
�
R 1

1�h

R
jxj=1 jf(tx)� s(tx)jp 1

c
d�(x)dt; by Jensen's inequality,

� 2d�1
R 1

0

R
jxj=1 jf(tx)� s(tx)jp td�1 1

c
d�(x)dt = 2d�1

c
kf � skpLp(B):

Taking pth roots proves

kg �RskLp[1�h::1] �
2(d�1)=p

c1=p
kf � skLp(B) (3)

for the case 1 � p <1. That (3) holds as well for the case p =1, can be seen by taking the
limit as p ! 1. The proof of the lemma is now completed by taking, in (3), the in�mum
over all s 2 S(�; �h;m).

Although S(�m; �h; `) has a rather complicated structure, the structure of R[S(�m; �h; `)]
(the spherical averages of the functions in S(�m; �h; `)) is surprisingly simple. We will
show that there is an m-dimensional space Vm;` (independent of �) whose restriction to the
interval [1�h::1] always contains the restriction of R[S(�m; �h; `)] to the same interval. The
upshot is that we can replace the (apparantly h-dependent) space R[S(�m; �h; `)] with the
(h-independent) space Vm;`. This allows us to show, in a rather simple fashion, that there
exists g 2 C1(R) such that (2) holds with k = m.

Theorem 3 Let � 2 C(Rd). If there exists a k-dimensional space V � C[1=2::1] such that

R[S(�; �h; `)]j[1�h::1]
= Vj[1�h::1]

for all h 2 (0::1=2],

then there exists f 2 C1(Rd) such that

E(f; S(�; �h; `);Lp(B)) 6= o(hk+1=p) as h! 0:
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Proof. Assume to the contrary that

E(f; S(�; �h; `);Lp(B)) = o(hk+1=p) for all f 2 C1(Rd).

Then by Lemma 2,

E(g;R[S(�; �h; `)];Lp[1� h::1]) = o(hk+1=p) for all g 2 C1(R).

Since R[S(�; �h; `)]j[1�h::1]
= Vj[1�h::1]

, it follows that

E(g; eV ;Lp[0::h]) = o(hk+1=p) for all g 2 C1(R),

where eV := fv(1� �) : v 2 V g. Let vn;h 2 eV be such that

krn � vn;hkLp[0::h] = o(hk+1=p) as h! 0; for n = 0; 1; : : : ; k.

Let p0 be the exponent conjugate to p. Note that even if p > 1, we still have

krn � vn;hkL1[0::h]
� k1kLp0 [0::h] kr

n � vn;hkLp[0::h] ; by Holder's inequality,

= h1=p
0

krn � vn;hkLp[0::h] = o(hk+1=p+1=p
0

) = o(hk+1).

Since dim eV < k + 1, there exists scalars cn;h such that

kX
n=0

cn;hvn;h = 0 and max
0�n�k

jcn;hj = 1; 8h 2 (0::1]:

Hence, 
kX

n=0

cn;hr
n


L1[0::h]

=


kX

n=0

cn;h (r
n � vn;h)


L1[0::h]

�
kX

n=0

jcn;hj kr
n � vn;hkL1[0::h]

= o(hk+1):

De�ne
M := min

0�n�k
E
�
rn; spanf1; r; : : : ; rn�1; rn+1; : : : ; rkg;L1[0::1]

�
:

Since f1; r; : : : ; rkg is linearly independent in L1[0::1], it follows that M > 0. Note that

inf

8<
:


kX
n=0

anr
n


L1[0::1]

: max
0�n�k

janj � 1

9=
; �M
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Hence, 
kX

n=0

cn;hr
n


L1[0::h]

= h


kX

n=0

cn;h(hr)
n


L1[0::1]

= hk+1


kX

n=0

hn�kcn;hr
n


L1[0::1]

� hk+1M

because max0�n�k hn�k jcn;hj � 1. Thus we have a contradiction.

3 The space Vm;`

De�nition 2 For n = 0; 1; : : : ;m, de�ne vn : (0::1)! R by

vn(t) := (�n�m)(te1):

For 0 � ` � m, let Vm;` be the subspace of C1(0::1) given by

Vm;` := spanfvn : ` � 2n � 2m� 2g+ spanf1; r2; r4; : : : ; r2b(`�1)=2cg:

That dimVm;` � m can be easily seen. Indeed, if ` is even, then

dimVm;` � #fn : `=2 � n � m� 1g+#f0; 1; : : : ; b(`� 1)=2cg

= (m� `=2) + (`=2) = m;

while if ` is odd, then

dimVm;` � #fn : ` � 2n � 2m� 2g+#f0; 1; : : : ; b(`� 1)=2cg

= #fn : (`+ 1)=2 � n � m� 1g+#f0; 1; : : : ; (`� 1)=2g

= (m� (` + 1)=2) + (` + 1)=2 = m:

Now, in view of Theorem 3, in order to prove Theorem 1 it su�ces to show the following

Theorem 4 For all h 2 (0::1=2],

R[S(�m; �h; `)]j[1�h::1]
= Vm;`j[1�h::1]

:

In order to prove 4, we need the following lemmata:
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Lemma 5 Let 0 � a < b � 1. If g 2 C2m(a::b), then �m(g � �) = 0 on the annulus

fx 2 Rd : a < jxj < bg if and only if

g 2 spanf1; r2; :::; r2m�2g

+

�
spanfr2�d; r4�d; :::; r2m�dg if d is odd

spanfr2�d; r4�d; :::; r�2; log r; r2 log r; :::; r2m�d log rg if d is even

Proof. It is a straightforward matter to verify �rstly that

�(g � �) = g00(�) +
d � 1

�
g0(�);

and secondly that

�m(g � �) = g(2m)(�) + p2m�1(�)g
(2m�1)(�) + � � �+ p0(�)g(�),

for some functions p0; : : : ; p2m�1 2 C1(0::1). Hence, we can appeal to the classical di�er-
ential equations theory to conclude that the solution space of the linear DEQ

g(2m) + p2m�1g
(2m�1) + � � �+ p0g = 0

has dimension 2m. Since the proposed space of solutions has dimension 2m, it su�ces to
simply show that these are solutions of the equation. For m = 1, this can be veri�ed by
inspection. Continuing by induction, assume the Theorem is true for all m0 < m. Consider
m: It su�ces to show that
1) �(�2m�2) 2 spanf�2(m�1)�2g
2) If d is odd or 2m� d < 0, then �(�2m�d) 2 spanf�2(m�1)�dg
3) If d is even and 2m = d, then �(�2m�d log �) 2 spanf�2(m�1)�dg
4) If d is even and 2m� d > 0, then �(�2m�d log �) 2 spanf�2(m�1)�d log �; �2(m�1)�2g

Each of these can be easily veri�ed.

Lemma 6 Let u 2 C(Rd), and for t > 0 de�ne ft : R
d ! R by

ft(�) := R[u(� � �)](t):

If u 2 C1(Rdn0), then ft 2 C1(tB) and

D�ft =
(�1)j�j

c

Z
jxj=1

(D�u)(tx� �) d�(x) on tB (4)

for all � 2Zd
+.
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Proof. We begin by noting that

ft(�) = R[u(� � �)](t) =
1

c

Z
jxj=1

u(tx� �) d�(x):

Clearly ft 2 C(tB) and (4) holds for � = 0. Proceeding by induction assume that ft 2
Ck(tB) and (4) holds for all j�j � k. Let �; � 2 Zd

+ be such that j�j = k and j�j = 1. Let
y 2 tB. Then for h of su�ciently small magnitude,

D�ft(y + h�)�D�ft(y)

h

=
(�1)k

c

Z
jxj=1

D�u(tx� y � h�)�D�u(tx� y)

h
d�(x)

!
(�1)k+1

c

Z
jxj=1

D�+�u(tx� y) d�(x) as h! 0;

by the Dominated Convergence Theorem. Therefore,

D�D�ft =
(�1)j�+�j

c

Z
jxj=1

(D�+�u)(tx� �) d�(x) on tB:

Note that D�D�ft is continuous on tB. Therefore, ft 2 Ck+1(tB) and (4) holds for all
j�j � k + 1.

Lemma 7 If p 2 �k, then Rp 2 spanf1; r2; r4; : : : ; r2bk=2cg.

Proof. Since �k is spanned by homogeneous polynomials and since R is linear, it su�ces to
show that if q 2 �k is homogeneous of order n, then Rp 2 spanfrng if n is even and Rp = 0
if n is odd. So let q 2 �k be homogeneous of order n and consider �rst the case n even. If
t > 0, then

Rq(t) =
1

c

Z
jxj=1

q(tx) d�(x) = tn
1

c

Z
jxj=1

u(x) d�(x) = tnRq(1):

Hence Rq 2 spanfrng. On the other hand, if n is odd, then

Rq(t) =
1

c

Z
jxj=1

q(tx) d�(x)

=
1

c

Z
jxj=1

q(t(�x)) d�(x), since � is a symmetric measure,

= �
1

c

Z
jxj=1

q(tx) d�(x) = �Rq(t):
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Hence Rq = 0.
Proof. (of Theorem 4) Let s 2 S(�m; �h; `), say

s =
X
�2�h

���m(� � �) + p

for some p 2 �`�1 and coe�cients satisfyingX
�2�

��q(�) = 0 for all q 2 �`�1. (5)

Then Rs =
P

�2�h
��R[�m(� � �)] +Rp. By Lemma 7,

Rp 2 spanf1; r2; r4; : : : ; r2b(`�1)=2cg: (6)

We turn now to analysing R[�m(� � �)]. As in Lemma 6, for t > 0, de�ne

ft(�) := R[�m(� � �)](t); � 2 Rd.

Since �m 2 C1(Rdn0), we know, by Lemma 6, that ft 2 C1(tB) and

D�ft =
(�1)j�j

c

Z
jxj=1

(D��m)(tx� �) d�(x) on tB for all � 2Z+.

Hence, since �m�m = 0 on Rdn0, it follows that �mft = 0 on tB. Therefore, by Lemma 5
(note that ft 2 C1(tB) has no singularity at 0), ft 2 spanf1; �2; : : : ; �2m�2g. Hence there
exist c0(t); c1(t); : : : ; cm�1(t) such that

ft =
m�1X
n=0

cn(t)�
2n on tB. (7)

The coe�cients cn(t) can be determined in a straightforward fashion: First, one shows that

(�k�2n)(0) =

�
0 if k 6= n
an if k = n

;

where an :=
Qn�1

j=0 2(n� j)(2(n� j) + d� 2) is positive for n 2Z+. Applying �n to (7) and
evaluating at 0 yields (�nft)(0) = ancn(t): Hence

cn(t) =
1

an
(�nft)(0) =

1

anc

Z
jxj=1

(�n�m)(tx) d�(x)

=
1

an
�n�m(te1) , since �

n�m is radially symmetric,

=
1

an
vn(t).
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Therefore,

R[�m(� � �)](t) =
m�1X
n=0

1

an
vn(t)j�j

2n, j�j < t:

Now, if t 2 [1� h::1], then j�j < t for all � 2 �h. Hence,

X
�2�h

��R[�m(� � �)](t) =
m�1X
n=0

1

an
vn(t)

X
�2�h

��j�j
2n

=
X

`�2n�2m�2

1

an
vn(t)

X
�2�h

��j�j
2n , by (5).

Thus
P

�2�h
��R[�m(� � �)]j[1�h::1]

2 spanfvnj[1�h::1]
: ` � 2n � 2m � 2g which, in view of

(6), completes the proof.
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